
Efficient and Effective DPD
Neural Network

Master’s Thesis

Kun Qian

i

Efficient and Effective DPD
Neural Network

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

by

Kun Qian

Lab of Efficient Machine Intelligence Research Group
Department of Electrical Engineering

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2025 Kun Qian

Efficient and Effective DPD
Neural Network

Author: Kun Qian
Student id: 5995469

Abstract

This paper presents a comprehensive investigation into novel Recurrent
Neural Network (RNN) architectures for enhancing the efficiency and
performance of Digital Predistortion (DPD) for Radio Frequency (RF) Power
Amplifiers (PAs). The research first introduces Delta Just Another Net-
work (DeltaJANET), a computationally efficient model that leverages a
sparse delta update rule. By updating only a small fraction of the hidden
state at each time step, DeltaJANET significantly reduces the complexity
and computational cost associated with traditional RNNs, establishing a
new baseline for efficient DPD solutions. Building upon this foundation
of efficiency, the paper then proposes a second, more powerful architec-
ture: the Temporal Convolutional Just Another Network (TC-JANET). This
advanced hybrid model synergistically combines a Temporal Convolu-
tional Network (TCN) for long-range feature extraction with a lightweight
Just Another Network (JANET) unit. Key innovations, including a di-
rect memory input module and a dynamic phase normalization scheme
applied to the recurrent state, enable the TC-JANET to robustly model
complex PA behaviors. A systematic multi-seed evaluation demonstrates
the exceptional performance and scalability of this architecture, show-
ing that it significantly surpasses existing benchmarks and establishing
a new benchmark for high-performance DPD solutions.

Thesis Committee:

Chair: Prof. Dr. Leo de Vreede, Faculty EEMCS, TU Delft
University supervisor: Dr. Chang Gao, Faculty EEMCS, TU Delft
Committee Member: Dr. Yanki Aslan, Faculty EEMCS, TU Delft

Acknowledgements

As my Master’s journey at TU Delft is now coming to an end, I am sincerely
grateful for the special experience of returning to academia and for the many
people who supported me.

I offer my deepest thanks to my thesis supervisor, Dr. Chang Gao. His
deep knowledge, keen insight into cutting-edge research, and passion for
teaching with an innate ability to tailor his guidance to each student are in-
valuable. This thesis would not have been possible without his professional
and patient guidance. His dedication in teaching me everything from reading
papers to innovating went far beyond my expectations. When I faced im-
mense challenges, he was like a lighthouse, illuminating the path forward. I
am truly honored to have had such a perfect mentor.

I would also like to thank my daily advisor, Yizhuo Wu, for her timely help
and patient guidance. Her extensive knowledge in wireless communications
and machine learning inspired many new ways of thinking. I am also grateful
to my thesis committee members, Prof. Dr. Leo de Vreede and Dr. Yanki
Aslan, for their invaluable feedback which made this thesis more robust.

I am very grateful to my friend Huanqiang Duan, a former master’s stu-
dent of Dr. Gao, whose TCN DPD paper inspired this work and who offered
great help and experience. I also want to thank my friend, Kevin Xu, for his
encouragement and the much-needed relaxation during this long and difficult
research journey.

Finally, I must thank my family for their unwavering financial and emo-
tional support, which allowed me to step away from my career and embark on
this new voyage. My deepest gratitude is for my wife and daughter. Though
they are far away in China, every video call had the magic power to sweep
away my anxiety and stress.

I am grateful for all the people I have met and the experiences I have
had in Delft these past two years, including the notoriously terrible Dutch
weather. It wasn’t always easy, but I will cherish these memories.

Kun Qian
September, 2025

Delft, the Netherlands

iii

Acronyms

ACLR Adjacent Channel Leakage Ratio ix

ACPR Adjacent Channel Power Ratio ix

AM Amplitude Modulation . 14

ASIC Application-specific integrated circuit 2

AutoML Automated Machine Learning 41

BER Bit Error Rate . 8

BO-JANET Block-Oriented Just Another Network 26

CNN Convolutional Neural Networks 16

D-Conv Depthwise Separable Convolutions 17

DeltaJANET Delta Just Another Network i

DeltaDGRU Delta Dense Gated Recurrent Unit ix

DGRU Dense Gated Recurrent Unit 2

DPD Digital Predistortion . i

DVR-JANET Decomposed Vector Rotation-based JANET 14

E2E End-to-End . 27

EVM Error Vector Magnitude . ix

FIR Finite Impulse Response . 26

FPGA Field Programmable Gate Arrays 2

GMP Generalized Memory Polynomial vii

GRU Gated Recurrent Unit . vii

JANET Just Another Network . i

LSTM Long Short-Term Memory . vii

NMSE Normalized Mean Square Error ix

NN Neural Network . viii

OFDM Orthogonal Frequency Division Multiplexing 27

v

Acronyms

PA Power Amplifier . i

PAPR Peak-to-Average Power Ratio 1

PG-JANET Phase-Gated Just Another Network 2

PM Phase Modulation . 14

PN Phase Normalization . 3

PSD Power Spectral Density . x

QAM Quadrature Amplitude Modulation ix

RF Radio Frequency . i

RMS Root Mean Square . 8

RNN Recurrent Neural Network . i

RVTDNN Real-Valued Time-Delay Neural Network ix

TC-JANET Temporal Convolutional Just Another Network i

TCN Temporal Convolutional Network i

TDNN Time-Delay Neural Network vii

VDLSTM Vector Decomposed Long Short-Term Memory 2

vi

Contents

Acknowledgements iii

Acronyms v

Contents vii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement and Research Questions 2

1.2.1 Problem Statement . 2
1.2.2 Research Questions . 2

1.3 Thesis Contributions . 3
1.3.1 Thesis Contributions . 3

1.4 Thesis Outline . 3
1.5 Terminology . 4

2 Background and Related Works 7
2.1 Digital Predistortion in RF Systems 7

2.1.1 Evaluation Metrics . 8
2.2 Traditional Methods and the Rise of Neural Networks in DPD . 9

2.2.1 Generalized Memory Polynomial (GMP) 9
2.2.2 Volterra Series . 10
2.2.3 Time-Delay Neural Network (TDNN) 10

2.3 RNN . 11
2.3.1 Long Short-Term Memory (LSTM) 12
2.3.2 Gated Recurrent Unit (GRU) 12

2.4 JANET . 13
2.5 Delta Networks . 14
2.6 Temporal Convolutional Network (TCN) Architecture 16
2.7 Phase Normalization . 18

3 Methods 21

vii

Contents

3.1 Overview . 21
3.2 DeltaJANET: Enhancing Digital Predistortion With Sparsity . . . 21

3.2.1 Architecture Design . 21
3.2.2 Theoretical Operation and Memory Access Savings . . . 22
3.2.3 Optimizations . 23

3.3 TC-JANET: A Hybrid Neural Network (NN) Architecture for High-
Performance DPD . 23
3.3.1 Architecture Design . 23
3.3.2 Optimizations . 26

4 Experimental Results 27
4.1 DeltaJANET . 27

4.1.1 Experimental Setup . 27
4.1.2 Results and Discussion 29

4.2 TC-JANET . 32
4.2.1 Experimental Setup . 32
4.2.2 Results and Discussion 33

5 Conclusions 39
5.1 Conclusion . 39
5.2 Outlook . 40

Bibliography 43

A Source Code 47
A.1 DeltaJANET Model Implementation 47
A.2 TC-JANET Model Implementation 54

viii

List of Figures

2.1 Demonstration of DPD . 8
2.2 First quadrant of a Quadrature Amplitude Modulation (QAM) Con-

stellation diagram illustrating the error vector used in Error Vector
Magnitude (EVM) calculation. 9

2.3 Block diagram of three-layer Real-Valued Time-Delay Neural Net-
work (RVTDNN) behavioral model. 11

2.4 LSTM Architecture [10]. 12
2.5 GRU Architecture [2]. 13
2.6 JANET Architecture [18]. 14
2.7 Conceptual comparison between a conventional network update

(left) and a delta network update (right). (This figure is adapted
and redrew from [7] . 15

2.8 Illustration of how sparse vector ∆x(t) skips multiplications with
corresponding columns in the weight matrix.(This figure is adatped
and redrew from [7] . 16

2.9 Comparison of (a) causal and (b) non-causal dilated convolutions,
distinguished by the use of future inputs (> t) in the non-causal
case. 16

2.10 The architecture of a TCN Residual Block, as used in [3], which
employs depthwise separable convolutions. 17

3.1 Architecture of the TC-JANET model, highlighting the TCN-based
gating mechanism, memory context window, and the phase-normalized
recurrent core. 24

4.1 Chrono initialization vs. Zero initialization 28
4.2 Performance vs. Number of Parameters for DeltaJANET. 29
4.3 Adjacent Channel Power Ratio (ACPR)/Normalized Mean Square

Error (NMSE) comparison of single-layer vs. double-layer DeltaJANET. 30
4.4 NMSE and Adjacent Channel Leakage Ratio (ACLR) over β values

for DeltaJANET. 30
4.5 Comparison of DeltaJANET and Delta Dense Gated Recurrent Unit

(DeltaDGRU) across Active Parameters and ACPR. 31

ix

List of Figures

4.6 ACPR/NMSE comparison of DeltaJANET and DeltaDGRU under Equiv-
alent Active Parameters. 31

4.7 Learning curve comparison for TC-JANET with different TCN kernel
sizes. 35

4.8 ACLR and EVM performance as a function of memory depth (MD). 35
4.9 Learning curve comparison of DPD models with approximately 200

parameters. 36
4.10 Learning curve comparison of DPD models with approximately 500

parameters. 37
4.11 Power Spectral Density (PSD) comparison for the 500 parameter

models. 37
4.12 AM/AM and AM/PM characteristics for the 500 parameter models. 38
4.13 Learning curve comparison of DPD models with approximately

1000 parameters. 38

x

Chapter 1

Introduction

1.1 Motivation

The rapid evolution of 5G and future 6G communication technologies has
created an unprecedented demand for higher data rates and greater spectral
efficiency. The adoption of complex modulation schemes with high Peak-to-
Average Power Ratio (PAPR) has become an essential strategy to meet these
demands. However, this brings severe challenges to a critical component in
the RF chain: the PA. PAs are typically operated in the nonlinear region in or-
der to achieve maximum power efficiency, which introduces significant signal
distortion, along with spectral regrowth and in-band signal degradation.

DPD has been established as the standard technique to address this chal-
lenge. Although traditional polynomial-based DPD models, such as the GMP,
have proven effective in many scenarios, they often struggle to accurately
model the increasingly complex and dynamic memory effects exhibited by
modern wideband PAs. This limitation has strongly motivated the develop-
ment of NN based DPD technologies, as NNs offer superior capabilities in fitting
the highly nonlinear behavior of such systems.

However, the powerful expressive capacity of NNs often comes at the cost
of high computational complexity, which can be a significant bottleneck for
deployment on resource-constrained hardware. Therefore, our preliminary
research was conducted under such circumstances, focusing on enhancing
the computational efficiency of DPD models. By introducing a sparse update
mechanism, we successfully developed the DeltaJANET model. This model sig-
nificantly reduces the computational overhead of conventional RNNs while
maintaining strong linearization performance, thereby establishing a solid
baseline for efficient DPD design.

Despite DeltaJANET achieving high performance in terms of efficiency, we
never stopped the pursuit of the theoretical limits of DPD in linearity per-
formance. We observed that even advanced RNN DPD models are often con-
strained by their recurrent structure, which can struggle to capture long-range
temporal dependencies and hard to align with the physical properties of RF
distortion. Furthermore, standard RNNs compress the entire signal history
into a single recurrent state, which can obscure important details of the most

1

1. Introduction

recent inputs required for modeling rapid dynamics.
This motivated the design of a hybrid architecture that synergistically

combines a powerful feature extractor for global context with an efficient re-
current core for state processing. The key inspiration was to create an architec-
ture that explicitly decouples phase and amplitude dynamics, while ensuring
the most critical short-term signal history is losslessly utilized. Therefore, this
research aims at exploring the performance limit of a RNN DPD by combining
efficient global feature planning and the physical insights of phase normal-
ization into recurrent cores, architecturally tailored for the task.

1.2 Problem Statement and Research Questions

1.2.1 Problem Statement

While RNN-based DPD has unveiled significant potential, its practical appli-
cation is often constrained by the trade-off between computational efficiency
and linearization performance. On one hand, High-performance architectures
are often too computationally intensive for resource-constrained hardware,
such as Field Programmable Gate Arrayss (FPGAs) and Application-specific
integrated circuits (ASICs). This creates a clear demand for more efficient
model designs that can reduce computational cost without a huge perfor-
mance cutdown, forming the first major problem in this research.

On the other hand, lightweight design was adopted in many models in-
evitably sacrifice the expressive capacity required to accurately model the
complex, long-range memory effects of modern wideband PAs, limiting their
effectiveness. This leads to a performance gap between theoretical poten-
tial and achievable, robust results. Addressing this second problem requires
the development of novel architectures that not only possess high expressive
capability, but can also effectively translate an increased parameter count
into significant, measurable improvements in linearization performance.
The goal of this research is to develop distinct solutions for each of these
challenges respectively, in order to achieve either high efficiency or superior
performance with stability.

1.2.2 Research Questions

The evolution of RNN-based DPD models from GRU and LSTM-based struc-
tures (such as Vector Decomposed Long Short-Term Memory (VDLSTM) [14]
and Dense Gated Recurrent Unit (DGRU)) [19], to JANET-based models (such
as Phase-Gated Just Another Network (PG-JANET) [13] and PNRNN [6]), and
ultimately to simplified single-gate architectures reveals a consistent trend
toward reducing the complexity of the recurrent gate structure while rely-
ing on increasingly complicated feature extraction techniques to minimize
model size. Although this progression has generally resulted in improved
linearization performance, our experimental results show that, with a suf-
ficiently large RNN kernel size, models employing simple feature extraction
and GRU-based architectures still significantly outperform their more complex

2

1.3. Thesis Contributions

counterparts. Consequently, to further investigate the respective roles of the
RNN architecture and feature extraction strategies in determining lineariza-
tion performance and achieving efficient DPD, we pose the following research
questions:

1. When applying the delta update rule to an RNN-based DPD model, how
much temporal sparsity can be exploited to reduce computational com-
plexity without affecting linearization?

2. Compared with JANET and GRU, what are the advantages and disad-
vantages of a simplified RNN structure in the design of an efficient DPD
Model?

3. As a DPD model, the TCN has good linearization performance when the
model size is small. If it is used as a learnable feature extraction layer
and combined with an RNN to build a hybrid network, how will the
linearization performance be affected?

4. What is the impact of feature augmentation techniques, such as phase
normalization and the input memory context window, on the perfor-
mance of the proposed TC-JANET model?

1.3 Thesis Contributions

1.3.1 Thesis Contributions

The main contributions of this thesis are summarized as follows.

1. We first introduce DeltaJANET, a computationally efficient RNN architec-
ture for DPD that leverages a sparse delta update rule. This approach
is shown to significantly reduce the computational cost of conventional
recurrent models while maintaining a competitive level of linearization
performance.

2. We then propose TC-JANET, a novel hybrid architecture that synergis-
tically combines a TCN as a global feature planner with a lightweight
recurrent core. The recurrent core is augmented with a Phase Normal-
ization (PN) scheme to effectively handle the complex-valued nature of
the signals and stabilize the learning process. This design is motivated
by the need to more effectively model long-range memory effects and is
validated by its superior linearization performance.

1.4 Thesis Outline

The rest of this thesis is organized as follows.

• Chapter 2: Background and Related Work: This chapter first introduces
the background of PA nonlinearities and the principles of DPD. It then
reviews the evolution of DPD, from the traditional polynomial-based

3

1. Introduction

model to various milestone NN-based architectures, including RNN, TCN,
and other prior models relevant to this work.

• Chapter 3: Methods: This chapter introduces the two novel archi-
tectures proposed in this research. First part details the motivations
and architecture of DeltaJANET, a model designed for computational ef-
ficiency through sparse updates. Subsequently, it presents our high-
performance model, TC-JANET, explaining its hybrid TCN-RNN design,
the Memory Context Window module, and the core PN mechanism.

• Chapter 4: Experimental Setup and Results: This chapter describes
the comprehensive experimental validation process. It first details the
common experimental setup, including the dataset, hardware platform,
and evaluation metrics. It then presents the results for the DeltaJANET
model, focusing on its efficiency gains. The second half of the chap-
ter is dedicated to the extensive results of the TC-JANET model, covering
the systematic optimization of its hyperparameters and its final perfor-
mance comparison against prior models on multiple metrics.

• Chapter 5: Conclusion and Discussion: This chapter summarizes the
key findings and contributions of the thesis, discusses the implications
of the results, and proposes potential avenues for future research.

1.5 Terminology

This thesis uses the following key terms:

DPD (Digital Predistortion) A key technology used to mitigate nonlineari-
ties in power amplifiers by pre-distorting the input signal.

PA (Power Amplifier) A device used to amplify RF signals, typically exhibit-
ing nonlinear characteristics that need to be compensated.

RNN (Recurrent Neural Network) A class of neural networks specifically de-
signed for processing sequential data with temporal dependencies.

JANET (Just Another Network) A simplified RNN architecture that reduces
computational complexity by focusing solely on the forget gate mecha-
nism.

Delta Network A neural network architecture that exploits temporal sparsity
by updating states only when input changes exceed a threshold.

ACPR (Adjacent Channel Power Ratio) A metric measuring signal lineariza-
tion performance by quantifying power leakage into adjacent frequency
channels.

NMSE (Normalized Mean Square Error) A metric quantifying the deviation
between the transmitted signal and the ideal signal.

4

1.5. Terminology

Γ (Sparsity) The proportion of inactive neurons in the network, indicating
computational efficiency.

β (Beta) A hyperparameter in the JANET architecture that balances between
memory retention and adaptation to new inputs.

OpenDPD An end-to-end learning framework for evaluating digital predis-
tortion architectures, implemented in PyTorch.

5

Chapter 2

Background and Related Works

In the begining, this chapter first introduced the fundamental concepts of PA
nonlinearity and the principles of DPD in RF systems in Sec. 2.1. Then, it
reviews the history of DPD modeling, beginning with traditional approaches
such as the GMP and the Volterra Series in Sec. 2.2. The following sections pro-
vide a detailed overview of the key NN architectures that form the foundation
of modern DPD. Sec. 2.3 describes foundational gated RNNs like LSTM and
GRU. Sec. 2.4 and Sec. 2.5 introduce the more advanced JANET and Delta Net-
work concepts, which are central to our work on efficiency. Finally, Sec. 2.6
and Sec. 2.7 cover two critical technologies for high-performance modeling:
the TCN architecture and the PN technique, respectively.

2.1 Digital Predistortion in RF Systems

DPD is a baseband signal processing technique designed to linearize RF PAs.
They are inherently nonlinear devices, with characteristic related to the physics
of the transistors from which they are built. This nonlinearity becomes par-
ticularly pronounced when they are operated near their saturation region, in
order to maximize power efficiency in mordern communication systems [11].
Signal distortion was introduced by this nonlinear behavior, leading to spec-
tral regrowth into adjacent channels and degrades the in-band signal quality.
As illustrated in Figure 2.1, the fundamental principle of DPD is to apply a
complementary nonlinear function to the digital input signal. With this "pre-
distorted" signal, the amplifier’s distortion is precisely canceled out when
passed through the PA, resulting in a final RF output that is a linearized, am-
plified version of the original input. The challenge, however, is significantly
intensified by the PA’s memory effects, where the current output depends not
only on the current input but also on its recent history. These effects are
more severe for wideband signals. They originate from both short-term elec-
trical phenomena (e.g., trapping effects) and long-term thermal phenomena.
Accurately modeling and compensating for these dynamic memory effects
demands more sophisticated DPD solutions than traditional static methods
can provide.

7

2. Background and Related Works

Figure 2.1: Demonstration of DPD

2.1.1 Evaluation Metrics

To quantify the effectiveness of a DPD solution, several standard metrics are
employed, each evaluating a different aspect of the linearization performance.

The NMSE is a fundamental metric that reflects the accuracy of the DPD
model in the time domain. It measures the normalized power of the error
between the measured PA output and the ideal, desired output. For a test
signal of N samples, it is calculated as:

NMSE (dB) = 10log10

(
∑N

n=1 |y(n)− yideal(n)|2

∑N
n=1 |yideal(n)|2

)
(2.1)

where y(n) is the measured output and yideal(n) is the ideal reference signal.
While NMSE measures time-domain accuracy, the ACPR, or ACLR, is ar-

guably the most critical metric for system-level performance especially in DPD
application. It quantifies the spectral regrowth caused by PA nonlinearity by
measuring the ratio of the leaked power in adjacent channels to the power in
the main channel. This is defined as:

ACLR (dBc) = 10log10

(
Padjacent

Pmain

)
(2.2)

It is expressed in dBc and directly related to the spectral efficiency and the
ability of a transmitter to operate without interfering with neighboring chan-
nels.

Furthermore, the EVM is used to evaluate the quality of the transmitted
signal in the modulation domain. As illustrated for a QAM signal in Fig-
ure 2.2, the EVM is defined as the Root Mean Square (RMS) amplitude of the
error vector between the ideal constellation point and the measured point,
normalized by the amplitude of the ideal signal. A low EVM is essential for
the receiver to correctly demodulate the signal and maintain a low Bit Error
Rate (BER).

8

2.2. Traditional Methods and the Rise of Neural Networks in DPD

Figure 2.2: First quadrant of a QAM Constellation diagram illustrating the
error vector used in EVM calculation.

Finally, the complexity of the DPD model is another important dimen-
sion to be considered for hardware implementation. One of the indcatior of
model’s computational cost is the total number of trainable paramters, al-
though this should be supplemented with analysis of specific operations.

2.2 Traditional Methods and the Rise of Neural
Networks in DPD

In early history, the field of DPD was dominated by polynomial-based models.
These approaches aimed to mathematically model the nonlinear behavior of
PAs. As the understanding of PA characteristics went deeper, these models
also grew in complexity and efficacy. The progression from early memory-
less approaches to more complex structures capable of modeling dynamic
memory effects led to the transition towards more powerful, learning-based
techniques.

2.2.1 GMP

The GMP model emerged and became an industry standard for many years
[17] due to its highly effective and practical compromise. The GMP model
simplifies the Volterra series by considering only a subset of its cross-terms,
focusing on the interactions between the current signal and delayed versions
of its envelope. The general form can be expressed as:

yGMP(n) =
Ka−1

∑
k=0

La−1

∑
l=0

aklx(n − l) |x(n − l)|k (2.3)

+
Kb

∑
k=1

Lb−1

∑
l=0

Mb

∑
m=1

bklmx(n − l) |x(n − l − m)|k

+
Kc

∑
k=1

Lc−1

∑
l=0

Mc

∑
m=1

cklmx(n − l) |x(n − l + m)|k

9

2. Background and Related Works

Here, the coefficients akl , bklm, and cklm represent the aligned, lagging, and
leading envelope terms, respectively. However, the efficacy of the GMP model
diminishes in wider signal bandwidths. This tremendously increases the
number of coefficients required in order to model long and complex mem-
ory effects and consequently results in high computational complexity and
parameter identification challenges.

2.2.2 Volterra Series

The Volterra series represents one of the most comprehensive theoretical frame-
works for modeling nonlinear systems with memory. As a high-order exten-
sion of the Taylor series, it can theoretically approximate any arbitrary non-
linear system to a desired level of accuracy. The output y(t) of a discrete-time
Volterra series is given by a sum of multi-dimensional convolutions:

y(t) =
∞

∑
p=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
hp(τ1, . . . ,τp)

p

∏
i=1

x(t − τi)dτi (2.4)

where hp(·) are the Volterra kernels of order p. While the Volterra series are
powerful, the full version is rarely used in practice due to its explosive com-
plexity. The number of coefficients required grows exponentially with both
the nonlinearity order and the memory depth. The high computational com-
plexity makes it hardly possible for wideband DPD applications [4]. This is
why the various pruned or simplified versions, such as the memory polyno-
mial model have become more prevalent.

2.2.3 TDNN

The performance gap of traditional models motivated the transition towards
Neural Network (NN) based DPD. NNs, with their inherent ability to approxi-
mate complex, arbitrary nonlinear functions, are naturally suited for the DPD
task. Early explorations in TDNN were successful as they provided a struc-
tured way for feedforward networks to process temporal information. A
TDNN augments its input layer with a tapped delay line, allowing it to process
not only the current input sample but also a finite window of past samples
simultaneously, thereby capturing short-term memory effects.

A prominent and effective variant is the RVTDNN, which was demon-
strated to be a powerful tool for PA modeling [15]. As shown in Figure 2.3,
the RVTDNN processes the in-phase (I) and quadrature (Q) components of
the complex baseband signal separately. For a complex input signal x(t) =
I(t) + jQ(t), the input to the network is a real-valued vector, u(t), formed by
concatenating the current and a set number of M delayed I/Q samples:

u(t) = [I(t), Q(t), I(t − 1), Q(t − 1), . . . , I(t − M), Q(t − M)]T (2.5)

This input vector is then fed through one or more hidden layers, which use
nonlinear activation functions (e.g., tanh or sigmoid) to learn the complex

10

2.3. RNN

mapping from the PA’s input history to its distorted output. The output of a
hidden neuron j is typically of the form:

yj(t) = f

(
2(M+1)−1

∑
i=0

wjiui(t) + bj

)
(2.6)

where wji are the weights, bj is the bias, and f (·) is the activation function.
The final output layer then combines the outputs of the hidden neurons to
produce the predistorted signal. The RVTDNN demonstrated that NNs could
effectively capture both the static nonlinearities and the dynamic memory
effects of PAs, paving the way for the more advanced recurrent and convolu-
tional architectures explored in this work.

Figure 2.3: Block diagram of three-layer RVTDNN behavioral model.

2.3 RNN

RNNs are a class of NNs specifically designed for sequential data, making
them exceptionally well-suited for modeling the dynamic memory effects of
PAs. Unlike feedforward networks, RNNs possess an internal hidden state, ht,
which is updated at each time step, t, by combining the current input, xt,
with the previous hidden state, ht−1. This recurrent structure allows them to

11

2. Background and Related Works

process sequences of arbitrary length by recursively applying the same transi-
tion function, theoretically enabling them to capture temporal dependencies.
However, simple RNNs are notoriously difficult to train on long sequences due
to the vanishing and exploding gradient problems. To address this, more so-
phisticated architectures incorporating gating mechanisms were introduced,
with the most prominent being the LSTM and the GRU.

2.3.1 LSTM

The LSTM network [10] was a milestone innovation designed to overcome the
limitations of simple RNNs. Its core feature is the introduction of a dedicated
cell state, ct, which acts as an information "conveyor belt," allowing long-term
dependencies to flow through the network with minimal decay. The flow
of information into, out of, and within this cell state is precisely regulated
by three gates: an input gate (it), a forget gate (ft), and an output gate (ot).
This architecture, illustrated in Figure 2.4, uses these gates to selectively add
or remove information from the cell state, enabling the LSTM to effectively
remember relevant information over very long time horizons. The update
equations are as follows:

ft = σ(W f xt + U f ht−1 + b f) (2.7)

it = σ(Wixt + Uiht−1 + bi) (2.8)
ot = σ(Woxt + Uoht−1 + bo) (2.9)
c̃t = tanh(Wcxt + Ucht−1 + bc) (2.10)
ct = ft ⊙ ct−1 + it ⊙ c̃t (2.11)
ht = ot ⊙ tanh(ct) (2.12)

where σ is the sigmoid function, ⊙ denotes element-wise multiplication, and
c̃t is the candidate cell state.

Figure 2.4: LSTM Architecture [10].

2.3.2 GRU

The GRU [2] was proposed as a more computationally efficient alternative to
the LSTM. The GRU simplifies the architecture by merging the cell state and

12

2.4. JANET

the hidden state into a single state vector, ht. It also replaces the three gates
by a reset gate (rt) and an update gate (zt). The reset gate determines how
to combine the new input with the previous memory, while the update gate
decides how much of the previous information to keep. This streamlined
structure, shown in Figure 2.5, reduces the number of parameters, which lead
to faster training while often delivering comparable performance to LSTM.
The GRU’s update equations are:

zt = σ(Wzxt + Uzht−1 + bz) (2.13)
rt = σ(Wrxt + Urht−1 + br) (2.14)

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh) (2.15)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (2.16)

where h̃t is the candidate hidden state. These gated architectures form the
foundation upon which more specialized recurrent models for DPD, such as
JANET, have been developed.

Figure 2.5: GRU Architecture [2].

2.4 JANET

JANET [18] simplifies the LSTM network by using a single forget gate, which
reduces computational complexity while retaining a strong expressive capac-
ity in modeling temporal dependencies. The state update equations are given
by:

st = U f ht−1 + W f xt + b f (2.17)

c̃t = tanh(Ucht−1 + Wcxt + bc) (2.18)
ht = σ(st)⊙ ct−1 + (1 − σ(st − β))⊙ c̃t (2.19)

Here, σ is the sigmoid function, c̃t is the candidate value, ct−1 is the previous
cell state, and st is the unactivated forget gate. This architecture is shown in
Fig. 2.6. A key feature is the hyperparameter β, which decouples the forget

13

2. Background and Related Works

Figure 2.6: JANET Architecture [18].

and input gates, allowing the model to flexibly control the balance between
retaining historical information and adapting to new inputs.

A highly specialized variant designed for the DPD task is the Decomposed
Vector Rotation-based JANET (DVR-JANET)[12]. The strength of the DVR-JANET
lies in its explicit decoupling of magnitude and phase processing. The model
first decomposes the input signal x(t) into its magnitude |x(t)| and phase
components, represented by cos(ϕ(t)) and sin(ϕ(t)). These are then pro-
cessed by separate recurrent sub-networks (typically JANET or GRU cells). This
structural separation allows the model to learn distinct and independent map-
pings for the Amplitude Modulation (AM)-AM and AM-Phase Modulation (PM)
distortions. The core innovation is the vector rotation mechanism, where the
outputs of these sub-networks are used to construct a complex rotation factor
that modifies the input vector to produce the predistorted output ŷ(t):

ŷ(t) = x(t) · f (|x(t)|, ht−1) · ej·g(ϕ(t),ht−1) (2.20)

where f (·) and g(·) are the functions learned by the magnitude and phase
sub-networks, respectively. This specialized structure, by dedicating separate
pathways for amplitude and phase modeling, has demonstrated high perfor-
mance, making it a particularly challenging and relevant benchmark.

2.5 Delta Networks

Delta Networks [7, 16] offer a compelling approach to reduce the computa-
tional cost of RNNs by exploiting the temporal sparsity inherent in many real-
world signals. The core principle is that for continuous sequential data, the
input and the resulting RNN activations often do not change significantly at
every single time step. A conventional RNN, however, performs a full, compu-
tationally expensive matrix-vector multiplication for every input, leading to
redundant operations when the signal is quasi-static, as illustrated in Fig. 2.7.

14

2.5. Delta Networks

Figure 2.7: Conceptual comparison between a conventional network update
(left) and a delta network update (right). (This figure is adapted and redrew
from [7]

To address this inefficiency, Delta Networks transition from a clock-driven
to an event-driven computation paradigm. The update for a neuron is only
computed when the change in its input exceeds a predefined threshold, Θ.
This is formalized by first computing a "delta" input, ∆xt. For the i-th dimen-
sion of an input vector xt, the delta input is:

∆xi,t =

{
xi,t − x̂i,t−1 if |xi,t − x̂i,t−1| > Θx,
0 otherwise.

(2.21)

Here, x̂i,t−1 is a state-holding variable that stores the value of the input from
its last significant change, preventing error accumulation over time. The state-
holding variable is updated only when the threshold is exceeded:

x̂i,t =

{
xi,t if |xi,t − x̂i,t−1| > Θx,
x̂i,t−1 otherwise.

(2.22)

This same principle is applied to the recurrent hidden state, ht, creating a
delta hidden state ∆ht. The standard matrix-vector multiplication, yt = Wxt,
can then be reformulated into a sequential, additive form:

yt = W∆xt + yt−1 (2.23)

where yt−1 is the result from the previous time step. In this formulation, if the
vector ∆xt is sparse (containing many zeros), the operation becomes a sparse
matrix-vector multiplication. As shown in Fig. 2.8, computations correspond-
ing to the zero elements in ∆xt can be skipped entirely, significantly reducing
the number of required arithmetic operations and memory accesses.

As a concrete example, consider the application of this principle to a GRU.
In a DeltaGRU, the update equations are reformulated to operate on the delta
inputs, ∆ϕt, and delta hidden states, ∆ht−1. The pre-activation accumulations
for the gates, denoted by M, are updated additively, e.g.:

Mz,t = Wiz∆ϕt + Whz∆ht−1 + Mz,t−1 (2.24)

ht = (1 − σ(Mz,t))⊙ ht−1 + σ(Mz,t)⊙ h̃t (2.25)

15

2. Background and Related Works

Figure 2.8: Illustration of how sparse vector ∆x(t) skips multiplications with
corresponding columns in the weight matrix.(This figure is adatped and re-
drew from [7]

This event-driven computation avoids redundant operations, leading to
substantial energy and latency savings and making the Delta Network con-
cept an attractive foundation for efficient DPD design.

2.6 Temporal Convolutional Network (TCN)
Architecture

TCN [1] represent a powerful architecture for sequence modeling that is built
upon Convolutional Neural Networks (CNN), offering a compelling alterna-
tive to traditional recurrent architectures. Unlike RNNs, TCN are non-recurrent
and can process entire sequences in parallel, leading to significant advantages
in training and inference speed. The modern TCN architecture is typically con-
structed from a stack of residual blocks, each employing dilated convolutions
to capture long-term history [3].

Figure 2.9: Comparison of (a) causal and (b) non-causal dilated convolutions,
distinguished by the use of future inputs (> t) in the non-causal case.

A fundamental aspect of TCN for time-series modeling is the concept of
causality. As shown in Figure 2.9(a), a causal convolution ensures that the
prediction at time step t can only depend on inputs from time t and ear-
lier, i.e., (x0, . . . , xt). This is a critical property for real-time applications as it
prevents any leakage from future information. Alternatively, for offline pro-

16

2.6. Temporal Convolutional Network (TCN) Architecture

cessing tasks like DPD where the entire signal block is available beforehand,
a non-causal convolution can be employed, as depicted in Figure 2.9(b). This
symmetric window provides a richer contextual representation for each time
step, which can potentially lead to improved modeling accuracy, at the cost
of introducing latency.

To achieve a large receptive field efficiently in either configuration, TCN
employ dilated convolutions. For a 1D input sequence x and a filter f of size
k, the dilated convolution operation F at element s of the sequence is defined
as:

F(s) = (x ∗d f)(s) =
k−1

∑
i=0

f (i) · x(s − d · i) (2.26)

where d is the dilation factor. By stacking these convolutional layers and
exponentially increasing the dilation factor at each subsequent layer (e.g., d =
bl for layer l, where b is the dilation base), the TCN can expand its receptive
field exponentially.

As illustrated in Figure 2.10, a standard TCN is built from a series of resid-
ual blocks. While conceptually similar to the residual blocks found in ar-
chitectures like ResNet [9], the blocks in TCN are specialized for sequence
modeling and computational efficiency. Instead of standard convolutions, a
stack of Depthwise Separable Convolutions (D-Conv) was employed to decou-
ple the temporal and cross-channel features. First, a D-Conv (implemented via
groups = inchannels in PyTorch) applies a single convolutional filter to each
input channel independently to capture temporal patterns. This is followed
by a pointwise convolution (a 1× 1 convolution) that linearly combines the out-
puts of the depthwise layer to facilitate information flow between channels.
This entire structure is then placed within a residual connection, where the
input to the block is added to its output. This residual mechanism is critical
for training very deep networks by preventing the vanishing gradient prob-
lem and ensuring a stable flow of information.

Figure 2.10: The architecture of a TCN Residual Block, as used in [3], which
employs depthwise separable convolutions.

The structure and performance of a TCN are affected by several key hy-

17

2. Background and Related Works

perparameters. The kernel_size (k) defines the width of the convolutional
filter. The dilation_base (b) controls the expansion rate of the receptive field.
The number of layers (N) determines the depth of the network. These hyper-
parameters synergistically define the TCN’s effective Receptive Field , which
can be calculated as:

Receptive Field = 1 + (k − 1)
N−1

∑
l=0

bn = 1 + (k − 1)
bN − 1
b − 1

(2.27)

This formula shows how a well-configured TCN can achieve a very large re-
ceptive field with a modest number of parameters, making it highly efficient
for modeling the long-term memory effects required for wideband DPD.

2.7 Phase Normalization

A significant challenge in NN-based DPD is that standard networks treat the
complex baseband signal as a generic two-dimensional input (I/Q), failing
to leverage the physical properties of RF distortion. PA nonlinearities are pri-
marily dependent on the signal’s instantaneous envelope (amplitude) and
its history, not its absolute phase [5]. Consequently, the model must learn
the PA’s distortion characteristics for every possible input phase angle, which
cause a highly inefficient process that leads to increased model complexity.

PN is a technique designed to align the learning process with this physical
reality [5, 6]. The core idea is to dynamically rotate the complex-valued input
signal at each time step t such that the current sample x(t) is projected onto
the positive real axis, effectively normalizing its phase to a reference of zero.
This is achieved by computing a sample-wise rotation factor, r(t), as follows:

r(t) =
x∗(t)

|x(t)|+ ϵ
(2.28)

where x∗(t) is the complex conjugate of the input sample, |x(t)| is its enve-
lope, and ϵ is a small constant for numerical stability.

When applied to a model with a memory window of depth M, this ro-
tation factor is multiplied not only with the current sample but also with
the entire vector of past samples, xM(t) = [x(t), x(t − 1), . . . , x(t − M)]. This
transforms the entire input window into a normalized domain:

xnorm(t) = r(t)⊙ xM(t) (2.29)

The NN then learns a mapping from this simplified, phase-agnostic represen-
tation to the PA’s distorted output. By operating in this normalized domain,
the network is no longer required to learn redundant mappings for different
phase angles. Instead, it can focus on the more fundamental relationship be-
tween the signal envelope, the relative phase differences between samples in
the memory window, and the resulting distortion.

Finally, after the network produces a normalized output, ynorm(t), the
original absolute phase must be restored. This is accomplished by a de-
normalization step, where the output is multiplied by the complex conjugate

18

2.7. Phase Normalization

of the original rotation factor:

ŷ(t) = ynorm(t) · r∗(t) (2.30)

This approach has been shown to lead to a more efficient and accurate model
of the PA’s behavior, particularly for the complex cross-dependency distor-
tions such as AM-PM and PM-PM, making it a powerful technique in the design
of modern DPD systems.

19

Chapter 3

Methods

3.1 Overview

This chapter introduces two novel architectures mainly to address the chal-
lenges in DPD. Firstly, the DeltaJANET model presented in Sec. 3.2 is an archi-
tecture that utilizes the principle of temporal sparsity to enhance the compu-
tational efficiency of the recurrent DPD model. Secondly, the Sec. 3.3 provides
a detailed introduction to TC-JANET, a high-performance hybrid architecture.
In this section, The motivation and design of its core components will be ex-
plained, including the TCN-based gate mechanism, the memory context win-
dow, and a PN enhanced JANET core.

3.2 DeltaJANET: Enhancing Digital Predistortion With
Sparsity

In this section, we introduce the proposed DeltaJANET architecture. First, Sub-
sec. 3.2.1 and 3.2.2 explain how the delta mechanism is integrated with the
JANET recurrent unit and how this integration benefits model efficiency. Fi-
nally, Subsec. 3.2.3 describes the optimization process for the model.

3.2.1 Architecture Design

The motivation of the design for the DeltaJANET architecture is to reduce the
computational complexity of traditional RNNs in DPD applications. This archi-
tecture is built upon the JANET recurrent unit [18], which is a simplification
of the LSTM that adopts only a single forget gate. The standard JANET archi-
tecture is illustrated in Chapter 2 (see Fig. 2.6), and its state update equations
are given by:

st = U f ht−1 + W f xt + b f (3.1)

c̃t = tanh(Ucht−1 + Wcxt + bc) (3.2)
ht = σ(st)⊙ ht−1 + (1 − σ(st − β))⊙ c̃t (3.3)

21

3. Methods

where ht is the hidden state, xt is the input, and st and c̃t are the intermediate
activations for the forget gate and candidate state, respectively. The JANET
architecture is shown in Fig. 2.6.

The core innovation of DeltaJANET is the integration of the delta network
principle [16], which exploits temporal sparsity by updating only those neu-
rons whose state change exceeds a certain threshold. A state-holding variable,
ĥt−1, stores the value of the hidden state at its last update. The change in the
hidden state, ∆ht, is computed, and only the dimensions where this change is
significant are propagated. The full formulation of the DeltaJANET recurrent
update is as follows:

∆x = xt − x̂t−1, (3.4)

∆h = ht−1 − ĥt−1, (3.5)
Ms,t := Wx f ∆x + Wh f ∆h + Ms,t−1, (3.6)

Mc̃,t := Wxc∆x + Whc∆h + Mc̃,t−1, (3.7)
c̃t = tanh(Mc̃,t), (3.8)
ht = σ(Ms,t)⊙ ht−1 + (1 − σ(Ms,t − β))⊙ c̃t. (3.9)

where Ms,t and Mc̃,t are memory values that accumulate the weighted changes.
By applying this delta rule, a large portion of the computations can be skipped
at each time step.

3.2.2 Theoretical Operation and Memory Access Savings

In DeltaJANET for DPD tasks, the computational operations and memory ac-
cesses are mainly determined by matrix-vector multiplication (M×V) and
sparse matrix-vector multiplication (M×SV). Considering the equations for
∆xt, ∆ht, and their corresponding matrix operations, the dense and sparse
computational cost (Ccomp) and memory cost (Cmem) can be expressed as:

Ccomp,dense = n2, (3.10)

Ccomp,sparse = (1 − Γ)n2 + 2n, (3.11)

Cmem,dense = n2 + n, (3.12)

Cmem,sparse = (1 − Γ)n2 + 4n. (3.13)

where n is the dimension of input and hidden vectors, Γ is the overall tempo-
ral sparsity, accounting for zeros in ∆xt and ∆ht. From these equations, the
theoretical computation speedup and memory access reduction for DeltaJANET
are given by:

Speedup ≈ n
(1 − Γ)n + 2

, (3.14)

Memory Access Reduction ≈ n + 1
(1 − Γ)n + 4

. (3.15)

22

3.3. TC-JANET: A Hybrid NN Architecture for High-Performance DPD

For easier comparison and presentation, the number of active parameters
during DeltaJANET inference can be estimated as:

#Active Parameters = #DeltaJANET Parameters × (1 − Γ)
+ #FC Parameters, (3.16)

where #FC Parameters refers to the fully connected layer parameters unaf-
fected by sparsity.

These formulations show that DeltaJANET reduces the computational cost
and memory access proportionally to sparsity (Γ). As Γ increases (higher
sparsity), fewer neurons are active, resulting in significant efficiency improve-
ments while maintaining linearization performance in DPD tasks.

3.2.3 Optimizations

The primary optimization for the DeltaJANET model involves tuning its key hy-
perparameters to balance the trade-off between computational efficiency and
linearization performance. A systematic evaluation was conducted to identify
the optimal value for the hyperparameter β, which decouples the forget and
input gates. Unlike in general sequence modeling tasks, the unique charac-
teristics of DPD signals were found to favor a negative β value. Furthermore,
we evaluated multi-layer DeltaJANET configurations to find the most effective
network depth. We also analyzed the relationship between parameter count
and performance to select a hidden size that offers a good balance between
linearization accuracy and computational cost.

3.3 TC-JANET: A Hybrid NN Architecture for
High-Performance DPD

In this section, I’m going to introduce another major contribution TC-JANET,
which is a hybrid architecture specifically designed for high performance.
Subsec. 3.3.1 provide a detailed introduction the multi-stage architectural de-
sign of this model. While Sec. 3.3.2 describes the optimization process used
to find a suitable configuration and training strategy.

3.3.1 Architecture Design

The design of the hybrid model was inspired by the characteristics of each
subsystem. As illustrated in Fig. 3.1, the TC-JANET model synergistically com-
bines a TCN-based gating mechanism with a phase-normalized JANET core
and is composed of three main stages: a feature engineering front-end, the
TCN, and a phase-normalized JANET recurrent loop.

The pipeline begins with a carefully designed feature engineering stage.
Since the nonlinear behavior of a PA is known to be highly dependent on the
signal’s envelope, the input features must adequately represent both phase
and amplitude information. While some architectures utilize polar coordinate
features such as amplitude and the sin/cos of the phase angle, we opted

23

3. Methods

Figure 3.1: Architecture of the TC-JANET model, highlighting the TCN-based
gating mechanism, memory context window, and the phase-normalized re-
current core.24

3.3. TC-JANET: A Hybrid NN Architecture for High-Performance DPD

for a Cartesian coordinate-based approach augmented with explicit envelope
terms. For a given complex baseband input sequence x = [x(1), . . . , x(L)], a
feature vector xfeat(t) is constructed at each time step t. This vector comprises
the baseband in-phase (I(t)) and quadrature (Q(t)) components, as well as
the signal envelope (amplitude) |x(t)| and its cubic term:

xfeat(t) = [I(t), Q(t), |x(t)|, |x(t)|3] (3.17)

This choice provides a rich, non-redundant feature set that explicitly feeds the
model with both the linear components of the signal and the crucial nonlinear
envelope terms, facilitating the learning of AM-AM and AM-PM distortions.

To provide the model with explicit short-term memory, a "Memory Con-
text Window" module is employed. The feature vectors from the current time
step and M previous time steps are concatenated to form a wide input vector
z(t) for the TCN:

z(t) = [xfeat(t),xfeat(t − 1), . . . ,xfeat(t − M)] (3.18)

where M is the hyperparameter memory_depth.
This sequence of wide vectors, Z = [z(1), . . . ,z(L)], is then processed by

the TCN. In our architecture, the TCN functions as a highly efficient, non-
recurrent gating mechanism, serving as a lightweight alternative to the com-
putationally expensive matrix multiplications found in conventional RNN gat-
ing. Through its stack of dilated convolutions, the TCN effectively captures
long-range temporal dependencies across the entire sequence. The output of
this convolutional feature extraction process is two pre-computed sequences
for the recurrent core: the forget gate signals f = [f1, . . . , fL] and the candidate
state signals c = [c1, . . . , cL].

JANET recurrent unit still plays an indispensable role in the whole archi-
tecture, processing the gate signals produced by TCN at each time step. To
avoid learning redundant mappings, PN is applied directly to the state tran-
sition. The hidden state h is represented as a complex value, h ∈ CNh , and a
time-varying rotation factor rt is computed from the input signal:

rt =
x∗(t)

|x(t)|+ ϵ
(3.19)

Both the previous hidden state ht−1 and the current candidate state ct are then
projected into a normalized domain:

hnorm,t−1 = ht−1 ⊙ rt (3.20)
cnorm,t = ct ⊙ rt (3.21)

The JANET state update is then performed within this normalized domain. st
is the value of the forget gate before the activation, the updated hidden state,
h′norm,t, is computed as:

h′norm,t = σ(st)⊙ hnorm,t−1 + (1 − σ(st − β))⊙ cnorm,t (3.22)

25

3. Methods

The resulting hidden state is then de-normalized back to the absolute phase
domain before being passed to the next time step:

ht = h′norm,t ⊙ r∗t (3.23)

Finally, the sequence of output hidden states [h1, . . . , hL] is passed through a
fully connected layer to produce the predistorted output signal.

3.3.2 Optimizations

The performance of the TC-JANET is enhanced by two key structural optimiza-
tions that improve its feature representation for the DPD task.

A primary optimization is the use of a sliding context window, a prin-
ciple conceptually similar to the Direct Memory Inputs explored in archi-
tectures like the VDLSTM [14]. In a standard RNN, all historical information
must be compressed into the recurrent hidden state, ht−1, which can dilute
the influence of the most recent input samples. Our architecture avoids this
by providing the TCN with an explicit, uncompressed view of the recent sig-
nal history, ensuring that the most salient short-term information is losslessly
presented to the feature extractor.

Another critical optimization lies in the sophisticated gating mechanism
that precedes the recurrent loop. Prior work, such as Block-Oriented Just
Another Network (BO-JANET) [21], has often used a linear Finite Impulse Re-
sponse (FIR) filter for this purpose, which computes a weighted average over
a sliding window of inputs:

y(t) =
M

∑
i=0

bi · z(t − i) (3.24)

where z(t) is the input feature vector and bi are the learnable filter coefficients.
However, the expressive power of such a linear filter is fundamentally limited.
Therefore, in our TC-JANET architecture, this role is fulfilled by a TCN, which
acts as a deep, non-linear generalization of a traditional FIR filter bank. The
TCN’s superiority stems from its inherent non-linearity, a deep hierarchical
structure, and a large receptive field enabled by dilated convolutions, making
it a key factor in the model’s high performance.

26

Chapter 4

Experimental Results

4.1 DeltaJANET

This section presents the experimental evaluation of the DeltaJANET model.
First, Subsec. 4.1.1 details the robust experimental methodology, including
the framework, implementation details, dataset, and evaluation metrics used.
Following this, Subsec. 4.1.2 presents and analyzes the extensive results, fo-
cusing on the optimization of the hyperparameters and the linearization per-
formance and efficiency compared to prior and peer models.

4.1.1 Experimental Setup

Framework and Implementation

The experiments were conducted using the OpenDPD End-to-End (E2E) learn-
ing framework, a comprehensive platform for evaluating DPD architectures
implemented in PyTorch [19]. The DeltaJANET architecture was integrated into
this framework as a backbone, enabling a consistent and reproducible evalu-
ation of its ability to linearize wideband PAs. The E2E learning structure em-
ployed backpropagation through the DPD model cascades with a pre-trained
PA behavioral model to iteratively optimize performance. The training process
was conducted with frame-based processing, where each frame contained 50
samples over 100 epochs, and the Adam optimizer with an initial learning
rate of 5× 10−3 and a batch size of 64, ReduceLROnPlateau was adopted as the
learning rate scheduler with a setting of (patience=10, factor=0.5) to ensure
convergence.

Datasets and Evaluation Metrics

The experiments utilized a dataset generated from a 3.5 GHz GaN Doherty PA,
driven by a TM3.1a 5×40-MHz (200-MHz) 256-QAM Orthogonal Frequency
Division Multiplexing (OFDM) baseband I/Q signal at 41.5 dBm average out-
put power. The test signal’s PAPR measured 10.01 dB. The ELCA40 dataset
which is mainly adopted in this experiment consists of I/Q-modulated sig-
nals with a main channel bandwidth of 40 MHz. The data was divided into

27

4. Experimental Results

training (60%), validation (20%), and test (20%) subsets. Three key metrics
were employed to evaluate performance: ACPR, NMSE, and Sparsity, defined
as the fraction of inactive neurons, which quantifies the computational effi-
ciency of the DeltaJANET.

Initialization Method

The weights of the DeltaJANET backbone were initialized by a combination
of Xavier initialization for the input layer and orthogonal initialization for
recurrent layers. For the bias initialization, a comparison between Chrono
initialization [18] and a simple zero initialization was conducted. Chrono ini-
tialization is designed for long-term dependencies, but its effectiveness was
limited by the rapid dynamics of DPD signals. We compared the almost tai-
lored Chrono method with zero initialization. Table 4.1 and Fig. 4.1 con-
cluded that zero initialization provided similar final performance with faster
converging speed. Therefore, zero initialization will be selected for the rest of
the experiments.

Table 4.1: Initialization Method Comparison

Metric Zero init Chrono Init

ACPR (dBc) -53.64 -53.98
NMSE (dB) -45.19 -44.31

Figure 4.1: Chrono initialization vs. Zero initialization

28

4.1. DeltaJANET

4.1.2 Results and Discussion

Parameter Optimization

In order to balance the trade-off between computational efficiency and lin-
earization performance, we swept a range of hidden sizes from 8 to 48. As
shown in Fig. 4.2, a hidden size of 18 (corresponding to approximately 1000
parameters) seems to be an optimal point. Models with fewer parameters
lacked the expressive capacity to fully capture the PA’s nonlinearities, while
increasing the parameter count beyond this point increased computational
cost without proportional gain.

Figure 4.2: Performance vs. Number of Parameters for DeltaJANET.

Performance with Multi-Layer DeltaJANET

To evaluate the effect of network depth on performance, we compared a 2-
layer DeltaJANET with the standard single-layer version. As shown in Fig. 4.3,
the single-layer network consistently outperformed the 2-layer structure. We
hypothesize that sparse updates in a multi-layer network may hinder gradient
propagation across layers. The results suggest that a single-layer DeltaJANET
with a larger hidden size is the most effective configuration. This approach
fully utilizes the model’s efficiency while avoiding the risks of overfitting or
vanishing gradients associated with increased depth.

Effect of β

To verify the hypothesis from the original JANET paper that the β hyperpa-
rameter is dataset-dependent [18], our experiments for the DPD task found
an optimal value of approximately -2.1 (Fig. 4.4)—in contrast to the paper’s
β = 1 for MNIST—suggesting that the dynamic nature of RF signals benefits
more from rapid adaptation than from long-term memory retention.

29

4. Experimental Results

Figure 4.3: ACPR/NMSE comparison of single-layer vs. double-layer
DeltaJANET.

Figure 4.4: NMSE and ACLR over β values for DeltaJANET.

30

4.1. DeltaJANET

Comparison with DeltaDGRU

In practical DPD implementation, especially on those resource-constrained en-
vironments such as FPGAs or edge devices, minimizing the number of active
parameters for lightweight models (e.g., under 1000 parameters) is a critical
objective. To evaluate the efficiency of our proposed model in this context,
DeltaJANET was benchmarked against a peer model DeltaDGRU architecture.
The comparison was conducted under the optimal configuration of β = −2.1
and approximately 1000 total parameters for both models.

Figure 4.5: Comparison of DeltaJANET and DeltaDGRU across Active Parameters
and ACPR.

Figure 4.6: ACPR/NMSE comparison of DeltaJANET and DeltaDGRU under Equiv-
alent Active Parameters.

31

4. Experimental Results

The results presented in Fig. 4.5 and Fig. 4.6, highlight the great advan-
tages of DeltaJANET, which consistently demonstrated superior temporal spar-
sity, achieving a higher fraction of inactive neurons than DeltaDGRU. This di-
rectly results in reduced computational cost and energy consumption during
inference. To be specific, DeltaJANET achieved a better sparsity at a comparable
total parameter count and reduced its active parameters to approximately 216,
significantly fewer than DeltaDGRU for a similar level of linearization perfor-
mance in both NMSE and ACLR. This superior parameter efficiency indicates
that the architectural simplicity of JANET combined with the delta update
mechanism, provides a more resource-efficient and higher liearization perfor-
mance for real-time DPD applications.

4.2 TC-JANET

This section evaluates the TC-JANET model, our proposed architecture for
high-performance DPD. Subsec. 4.2.1 details the experimental setup, train-
ing configuration, and the models used for comparison, and the benchmark
for evaluation. Subsec. 4.2.2 then presents an ablation study of architectural
components, and discusses the model’s final performance across various com-
plexity budgets against prior models.

4.2.1 Experimental Setup

Framework and Implementation

The experimental setup for the TC-JANET model followed a robust methodol-
ogy to ensure a fair and comprehensive evaluation. All experiments were also
conducted within the OpenDPD E2E learning framework, . The E2E DPD learn-
ing process involves backpropagation through a pre-trained 2751-parameter,
-40.04 dB-NMSE DGRU PA behavioral model [19] with the measured PA dataset.

To ensure statistical significance and robustness, all key results were vali-
dated across 5 random seeds. The models underwent training for 200 epochs
using the AdamW optimizer with an initial learning rate of 5 × 10−3 and a
batch size of 64. An aggressively configured ReduceLROnPlateau learning rate
scheduler (patience=5, factor=0.25) was employed. Based on a systematic
study of initialization methods, the TCN’s default Kaiming initialization was
used for all experiments as it provided the most stable and superior average
performance.

Datasets and Evaluation Metrics

The experiments utilized a dataset generated from a 3.5GHz GaN Doherty
PA, driven by a TM3.1a 5×40-MHz (200-MHz) 256-QAM OFDM baseband I/Q
signal at 41.5 dBm average output power. The test signal’s PAPR measured
10.01 dB. The dataset, comprising 98304 samples, was divided into a 60%
training set, a 20% validation set for early stopping, and a 20% test set for

32

4.2. TC-JANET

performance evaluation. The core evaluation metrics of ACLR, EVM, and NMSE
were used to assess performance.

4.2.2 Results and Discussion

This section evaluates the proposed TC-JANET model based on systematic,
multi-seed experiments. The analysis includes two main parts: a benchmark
against prior DPD models across different complexity budgets, and an ablation
study of the core architectural components.

Ablation Study of Architectural Components

To validate the contribution of each key innovation within our proposed ar-
chitecture, we conducted a systematic ablation study. The study starts from
a standard JANET baseline and progressively adds the core components of
our final model: the TCN-based gating mechanism, the PN mechanism, and
a memory context window for the input. The DGRU model is also included
as a baseline to represent a standard gated recurrent architecture. The per-
formance of each variant, configured with approximately 500 parameters, is
summarized in Table 4.2.

Table 4.2: Performance Comparison of Different DPD Model Configura-
tions.Based on a DGRU PA Pre-trained Model with 2751 parameters on the
dataset of ELCA200 Validation

Model* ACLR (dBc) EVM (dB) NMSE (dB)

DGRU ∼487 -49.57 -41.20 -40.54
TCN ∼507 -50.16 -41.93 -41.59
JANET ∼506 -51.35 -43.37 -42.42

TC-JANET ∼506 -50.91 -45.47 -43.99
+ Context Window ∼482 -49.65 -38.54 -38.29

TC-JANET with PN ∼499 -50.76 -45.57 -43.85
+ Non-causal ∼487 -50.74 -45.63 -44.12
+ Causal Context Window ∼503 -52.77 -47.12 -45.55
* All baseline models(DGRU, TCN, and JANET) were provided with the

full set of concatenated input features: I, Q, |x(t)|, |x(t)|3, cos(ϕ), and
sin(ϕ), while the TC-JANET only took I, Q, |x(t)|, |x(t)|3.

The first step of our study was to replace the computationally expensive,
matrix-multiplication-based gating of a standard JANET with our proposed
TCN-based gating mechanism, creating the TC-JANET model. As the results
show, this architectural shift alone yields a significant performance improve-
ment in EVM and NMSE, demonstrating the superior capability of the TCN to
extract rich, long-range temporal features from the input sequence.

Next, we introduced the PN mechanism into the recurrent core, resulting
in the Phase-Normalized TC-JANET model. The motivation for this is that PA

33

4. Experimental Results

distortion is primarily dependent on the signal envelope and its history, not
its absolute phase. Without PN, the network is forced to learn redundant map-
pings for signal trajectories that are physically similar but have different phase
rotations. By dynamically rotating the complex-valued hidden and candidate
states to a zero-phase reference before the update, and de-normalizing them
afterward, these trajectories is effectively aligned by the PN structure in the
feature space. This enables the network to learn a single, normal-compliant
distorted mapping, thus bringing about a more efficient and robust learning
process.

The most significant performance improvement was achieved with the fi-
nal addition of the input context window. This complete TC-JANET model
reached an ACLR of -52.77 dBc, outperforming all other variants. We attribute
this to a synergistic effect. The context window provides the TCN an ex-
plicit view of recent signal history, improving its feature extraction. The PN
mechanism then operates on these higher-quality signals, resulting in a more
accurate linearization.

Conversely, applying the context window to the TC-JANET without Phase-
Normalization resulted in a notable performance degradation. This finding is
crucial, as it suggests that simply increasing the input information to the TCN
without handling the signal’s constantly changing phase can be counterpro-
ductive. Without PN, the model is presented with a high-dimensional input
where the I/Q components are always rotating, forcing it to learn redundant
mappings. This unnecessarily complicates the learning process and prevents
the model from converging to an effective solution.

Furthermore, we explored a "non-causal context window" which incorpo-
rated future time steps (e.g., x(t + 1)) into the input. While this approach
demonstrated faster initial convergence, its final performance was inferior to
the causal-only model. We identified two likely reasons for this: maintaining
a fixed parameter budget required reducing other model dimensions (such as
rnn_hidden_size), which may have constrained expressive capacity. More im-
portantly, the future sample is an overly strong predictive feature, leading to
"shortcut learning." The model became too reliant on this feature and failed to
learn complex long-term dependencies, hindering its convergence to a more
optimal solution.

This comprehensive study confirms that the specific combination of the
gating mechanism enhanced by TCN, a causal input context window, and the
PN mechanism is essential to achieve the final performance.

Impact of Architectural Hyperparameters

An ablation study, illustrated in 4.2.2, confirmed the positive contribution of
each key component. The introduction of PN provided a notable improvement
over a baseline TC-JANET, and a further significant gain was achieved with
the addition of Memory Context Window, validating our architectural design
choices.

We then investigated the impact of the TCN’s kernel_size by testing values
of 3, 5, and 7 while keeping a fixed parameter budget of ∼500. The average

34

4.2. TC-JANET

performance over 5 random seeds for each configuration is shown in Fig. 4.7.
The results indicates that a kernel_size of 5 as the optimal choice. Although
a smaller kernel of 3 was highly stable and showing faster convergence but
yielded slightly worse linearization performance. In contrast, a larger kernel
of 7 led to a significant performance drop, likely because a wide local context
is detrimental under complexity constraints.

Figure 4.7: Learning curve comparison for TC-JANET with different TCN kernel
sizes.

In addition, we analyzed how the memory_depth (MD), which controls the
context window length, will impact the model performace. The results are
presented in Fig. 4.8. A clear optimal point was observed at MD=2, which
achieved an ACLR of -52.77 dBc. This was a significant improvement over
both MD=0 and MD=1. However, increasing the depth further to MD=3 led
to a performance degradation. This finding indicates that MD=2 provides the
best balance of sufficient context without adding noise from distant samples,
confirming the window’s depth is a critical factor.

Figure 4.8: ACLR and EVM performance as a function of memory depth (MD).

Benchmark Against Prior Works

A comprehensive benchmark was performed to evaluate the proposed TC-JANET
against various DPD models at three complexity levels 200, 500, and 1000

35

4. Experimental Results

parameters. The complete performance summary is presented in Table 4.3,
where all reported results are the average of the best performance from 5
random seeds to ensure statistical significance.

Table 4.3: Comprehensive Performance Comparison of Proposed TC-JANET
against Prior DPD Models based on a Fixed DGRU PA Pre-trained Model on
the dataset of ELCA_200 Validation, Averaged across 5 Random Seeds

Parameters Model ACLR Mean (dBc) EVM Mean (dB) NMSE Mean (dB)

∼1000 LSTM ∼1038 -51.43 ±0.35 -45.22 ±0.43 -43.83 ±0.41
GRU ∼994 -51.89 ±0.47 -46.58 ±0.66 -44.95 ±0.58
DGRU ∼1041 -52.76 ±0.50 -45.76 ±0.25 -44.48 ±0.30
TCN ∼1006 -51.60 ±0.32 -42.95 ±0.20 -42.62 ±0.22
JANET ∼1066 -53.80 ±0.37 -48.40 ±0.53 -46.68 ±0.43
DVR-JANET ∼1097 -53.96 ±0.52 -49.30 ±0.53 -47.22 ±0.48
TC-JANET ∼1013 -54.66 ±0.88 -49.92 ±0.76 -47.93 ±0.78

∼500 LSTM ∼488 -46.87 ±0.80 -40.51 ±0.83 -39.42 ±0.76
GRU ∼519 -47.98 ±0.70 -41.29 ±0.40 -40.31 ±0.51
DGRU ∼486 -49.29 ±0.27 -41.41 ±0.40 -40.64 ±0.30
TCN ∼511 -49.02 ±0.37 -41.17 ±0.22 -40.77 ±0.26
JANET ∼506 -50.89 ±0.27 -43.50 ±0.18 -42.38 ±0.16
DVR-JANET ∼509 -50.40 ±0.66 -44.80 ±1.17 -43.15 ±1.03
TC-JANET ∼503 -51.06 ±0.96 -45.94 ±0.63 -44.37 ±0.75

∼200 LSTM ∼192 -42.14 ±0.66 -31.21 ±0.58 -30.85 ±0.51
GRU ∼194 -42.75 ±0.53 -33.14 ±1.15 -32.84 ±1.09
DGRU ∼186 -44.21 ±0.75 -31.07 ±0.21 -30.27 ±0.24
TCN ∼214 -42.64 ±1.05 -35.60 ±1.58 -34.84 ±1.31
JANET ∼226 -45.19 ±0.52 -36.18 ±1.72 -35.63 ±1.47
DVR-JANET ∼215 -45.96 ±1.22 -39.84 ±1.32 -38.53 ±1.21
TC-JANET ∼212 -46.03 ±0.87 -40.28 ±1.23 -39.08 ±1.06

At the low-complexity level (200 parameters), the proposed TC-JANET
demonstrates its superior efficiency. As shown in Fig. 4.9, our model achieves
a mean ACLR of -46.03 dBc, outperforming the DVR-JANET, which is specifically
noted in prior work for its ability to achieve high linearization performance
with a small number of parameters [12]. This result highlights the inherent
efficiency of the proposed architecture even at a small scale.

Figure 4.9: Learning curve comparison of DPD models with approximately
200 parameters.
36

4.2. TC-JANET

As we increase the model capacity to the medium-scale (∼500 param-
eters), the advantages of the TC-JANET architecture become more apparent.
Table 4.3 confirms the model achieves a mean ACLR of -51.06 dBc, outper-
forming other architectures in this complexity class. The model’s learning
curve, shown in Fig. 4.10, indicates both a rapid convergence and a high final
performance level. This linearization quality is further validated in both the
frequency and modulation domains. The power spectral density (PSD) plot in
Fig. 4.11 shows effective suppression of out-of-band spectral regrowth, while
the AM/AM and AM/PM characteristics in Fig. 4.12 confirm the correction
of the PA’s core nonlinearities, with the output points tightly clustered along
the ideal linear gain.

Figure 4.10: Learning curve comparison of DPD models with approximately
500 parameters.

Figure 4.11: PSD comparison for the 500 parameter models.

The most significant finding of our research is revealed in the high-capacity
(∼1000 parameters) benchmark. At this scale, the TC-JANET model demon-
strates its exceptional scalability and establishes a new performance level, as
clearly visualized in Fig. 4.13. It achieves a robust mean ACLR of -54.66 dBc,
widening its performance gap with the next best models, DVR-JANET (-53.96
dBc) and JANET (-53.80 dBc). This result proves that the performance bottle-
neck in many DPD models is indeed model capacity, and that our proposed ar-
chitecture is uniquely effective at leveraging increased complexity to achieve

37

4. Experimental Results

Figure 4.12: AM/AM and AM/PM characteristics for the 500 parameter
models.

superior linearization. The consistent outperformance across all three metrics
(ACLR, EVM, and NMSE) validates the comprehensive modeling capabilities of
the TC-JANET.

Figure 4.13: Learning curve comparison of DPD models with approximately
1000 parameters.

38

Chapter 5

Conclusions

This thesis proposed two novel neural network architectures for the DPD of
wideband PA and presented a comprehensive investigation, progressing from
an initial focus on computational efficiency to the final pursuit of superior
linearization performance.

5.1 Conclusion

Based on the JANET and Delta Network mechanism, our first contribution, the
DeltaJANET model, was proposed and evaluated. The experimental results con-
firmed our initial hypothesis: By leveraging temporal sparsity, the DeltaJANET
architecture significantly reduces computational complexity compared to its
non-sparse counterparts. The analysis demonstrated that DeltaJANET inher-
its the lightweight and expressive capacity from JANET with absorbing the
key advantages from Delta mechanism, achieving strong linearization per-
formance comparable to standard RNNs while operating with a significantly
reduced number of active parameters. This successfully validated DeltaJANET
as a highly parameter-efficient and computationally aware DPD solution.

Following the exploration of efficiency, a systematic and extensive series
of experiments was conducted to identify the optimal hyperparameters for
the DeltaJANET model. This process revealed several key findings specific
to the application of sparse RNNs in the DPD context. We investigated the
bias initialization of the JANET core, comparing Chrono initialization against
a simple zero initialization. Although Chrono initialization is designed to
enhance long-term memory, we found it less suitable for the rapidly chang-
ing signals characteristic of the DPD task. Our experiments concluded that a
simple zero initialization provided faster convergence with comparable final
performance, and was therefore selected. Furthermore, our results consis-
tently showed that, a negative β value is optimal for DPD, which is totally
distinct to the original paper’s β = 1 for it’s MNIST dataset. This confirms
that β as a dataset-dependent hyperparamer and the importance of tuning it
to favor adaptation over memory retention. The study also explored the im-
pact of network depth, revealing that a single-layer architecture consistently
outperformed multi-layer configurations. This suggests that for sparse

39

5. Conclusions

acpRNN in DPD, increasing the width of the hidden layer is a more effective
strategy for enhancing model capacity than increasing its depth.

Another key finding of this research is the successful validation of a hy-
brid architecture, the TC-JANET, across a range of complexity budgets. Within
a low complexity setting (212 parameters), the TC-JANET already establishes it-
self as a highly efficient architecture, achieving a robust average ACLR of -46.03
dBc and performing competitively with specialized models like DVR-JANET.
As the model capacity is increased to the medium-scale (503 parameters),
its advantages become more pronounced, with the average ACLR improving
to -51.06 dBc, surpassing other architectures in its class. As the number of
parameters goes higher (1013 parameters, the scaled-up TC-JANET achieves a
robust average ACLR of -54.66 dBc. This result represents a decisive perfor-
mance advantage over the full suite of established DPD models, including the
highly competitive DVR-JANET. The performance improvement observed with
each increase in model capacity confirms that the synergistic combination of
an TCN-based gating, a recurrent core augmented with phase normalization,
and a memory context window is a highly effective strategy for overcoming
the performance limitations of existing DPD solutions.

Although this thesis presents promising results, there are still several lim-
itations that should be noted. The evaluation was entirely conducted within
the OpenDPD simulation framework, which utilized a pre-trained PA behav-
ioral model. These studies did not take into account the impact of actual
hardware defects. Situations like impedance mismatch or hardware noise can
occur in physical measurement Settings. Furthermore, the hyperparameter
optimization is relatively systematic but not exhaustive. The performance of
the proposed model can still be improved with more extensive tunings.

5.2 Outlook

The research conducted in this thesis opens up several promising avenues for
future investigation:

1. Real-World Measurement and Validation While the OpenDPD frame-
work provides a robust and reproducible simulation environment, like
what is mentioned in Sec. 5.1, the ultimate validation of any exper-
iment relies on its performance from a physical hardware testbench.
Therefore, future work should focus on implementing and evaluating
the proposed DeltaJANET and TC-JANET models on a real-world RF mea-
surement setup to assess their linearization capabilities under practical
hardware constraints.

2. Hardware-Aware Optimizations: Quantization and Implementation
The efficiency of the DeltaJANET makes it a strong candidate for low-
power hardware implementation. Future work could explore its deploy-
ment on FPGA or ASIC platforms, inspired by existing accelerator designs
for sparse RNNs [7]. Quantization are critical for making these models
suitable for edge devices. Techniques like mixed-precision quantization,

40

5.2. Outlook

for example, can provide an additional optmization on model’s mem-
ory footprint and replace costly floating-point operations by fixed-point
[20]. A further research direction is to develop a quantization-aware
training scheme for both DeltaJANET, with the goal of co-designing the
algorithm and a dedicated hardware accelerator, similar to the approach
in [8].

3. Comprehensive Hyperparameter Search for TC-JANET Although we per-
formed a systematic optimization of the TC-JANET, the vast hyperparam-
eter space of this complex model warrants further exploration. A more
extensive search, potentially employing Automated Machine Learning
(AutoML) techniques, could uncover even better configurations of Ker-
nel Size, Hidden Channels of TCN, and other parameters, potentially
pushing the performance boundary further.

4. Structural Optimization of TC-JANET The TC-JANET’s performance could
be further enhanced through advanced structural modifications. A promis-
ing direction, inspired by the DVR-JANET [12], is the adoption of a multi-
headed TCN. In this structure, amplitude-based features (e.g., |x(t)|, |x(t)|3)
and phase-based features (I/Q) are processed in separate, specialized
pathways before being fused. This would align the architecture more
closely with the physical nature of AM-AM and AM-PM distortion and
could lead to improved performance and stability.

41

Bibliography

[1] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An Empirical Evaluation
of Generic Convolutional and Recurrent Networks for Sequence Model-
ing. arXiv preprint arXiv:1803.01271, 2018.

[2] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, pages 1724–1734, 2014.

[3] Huanqiang Duan, Manno Versluis, Qinyu Chen, Leo C. N. de Vreede,
and Chang Gao. TCN-DPD: Parameter-Efficient Temporal Convolutional
Networks for Wideband Digital Predistortion. In Proceedings of the IEEE
MTT-S International Microwave Symposium (IMS), 2025.

[4] Changsoo Eun and E. J. Powers. A New Volterra Predistorter Based on
the Indirect Learning Architecture. IEEE Transactions on Signal Processing,
45(1):223–227, Jan 1997. doi: 10.1109/78.552219.

[5] Arne Fischer-Bühner, Lauri Anttila, Manil Dev Gomony, and Mikko
Valkama. Phase-Normalized Neural Network for Linearization of RF
Power Amplifiers. IEEE Microwave and Wireless Technology Letters, 33(9):
1357–1360, 2023. doi: 10.1109/LMWT.2023.3290980.

[6] Arne Fischer-Bühner, Lauri Anttila, Manil Dev Gomony, and Mikko
Valkama. Recursive Neural Network With Phase-Normalization for
Modeling and Linearization of RF Power Amplifiers. IEEE Microwave
and Wireless Technology Letters, 34(6):809–812, jun 2024. doi: 10.1109/LM
WT.2024.3393859.

[7] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck. DeltaRNN:
A Power-Efficient Recurrent Neural Network Accelerator. In Proc.
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2018.

[8] Chang Gao, Antonio Rios-Navarro, Xi Chen, Tobi Delbruck, and Shih-
Chii Liu. EdgeDRNN: Enabling low-latency recurrent neural network

43

Bibliography

edge inference. In 2020 2nd IEEE International Conference on Artificial In-
telligence Circuits and Systems (AICAS), 2020. doi: 10.1109/AICAS48895.
2020.9074001.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Resid-
ual Learning for Image Recognition. arXiv preprint arXiv:1512.03385,
2015. doi: 10.48550/arXiv.1512.03385. URL https://arxiv.org/abs/
1512.03385.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[11] A. Katz, J. Wood, and D. Chokola. The Evolution of PA Linearization:
From Classic Feedforward and Feedback Through Analog and Digital
Predistortion. IEEE Microwave Magazine, 17(2):32–40, feb 2016. doi: 10.
1109/MMM.2015.2498079.

[12] T. Kobal and A. Zhu. Digital Predistortion of RF Power Amplifiers With
Decomposed Vector Rotation-Based Recurrent Neural Networks. IEEE
Transactions on Microwave Theory and Techniques, 70(11):4900–4909, nov
2022. doi: 10.1109/TMTT.2022.3209658.

[13] T. Kobal, Y. Li, X. Wang, and A. Zhu. Digital Predistortion of RF Power
Amplifiers With Phase-Gated Recurrent Neural Networks. IEEE Trans.
Microw. Theory Techn., 70(6):3291–3302, Jun 2022.

[14] H. Li, Y. Zhang, G. Li, and F. Liu. Vector Decomposed Long Short-Term
Memory Model for Behavioral Modeling and Digital Predistortion for
Wideband RF Power Amplifiers. IEEE Access, 8:63780–63789, 2020. doi:
10.1109/ACCESS.2020.2984682.

[15] Taijun Liu, S. Boumaiza, and F. M. Ghannouchi. Application of Neural
Networks to 3G Power Amplifier Modeling. In Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005., volume 4, pages
2378–2382, 2005. doi: 10.1109/IJCNN.2005.1556274.

[16] D. Neil, J. H. Lee, T. Delbruck, and S.-C. Liu. Delta Networks for Op-
timized Recurrent Network Computation. In Proc. 34th Int. Conf. Mach.
Learn. (ICML), 2017.

[17] A. A. M. Saleh and J. Salz. Adaptive Linearization of Power Amplifiers in
Digital Radio Systems. The Bell System Technical Journal, 62(4):1019–1033,
apr 1983. doi: 10.1002/j.1538-7305.1983.tb03113.x.

[18] J. van der Westhuizen and J. Lasenby. The Unreasonable Effectiveness of
the Forget Gate. arXiv preprint arXiv:1804.04849, 2018.

[19] Y. Wu, G. D. Singh, M. Beikmirza, L. C. N. de Vreede, M. Alavi, and
C. Gao. OpenDPD: An Open-Source End-to-End Learning & Benchmark-
ing Framework for Wideband Power Amplifier Modeling and Digital

44

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

Bibliography

Pre-Distortion. In Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Singapore,
2024.

[20] Yizhuo Wu, Ang Li, Mohammadreza Beikmirza, Gagan Deep Singh,
Qinyu Chen, Leo C. N. de Vreede, Morteza Alavi, and Chang Gao.
MP-DPD: Low-complexity mixed-precision neural networks for energy-
efficient digital predistortion of wideband power amplifiers. IEEE Mi-
crowave and Wireless Technology Letters, 2024. doi: 10.1109/LMWT.2024.
3386330.

[21] Q. Zhang, C. Jiang, G. Yang, R. Han, and F. Liu. Block-Oriented Recur-
rent Neural Network for Digital Predistortion of RF Power Amplifiers.
IEEE Transactions on Microwave Theory and Techniques, 72(7):3875–3885, jul
2024. doi: 10.1109/TMTT.2023.3337939.

45

Appendix A

Source Code

A.1 DeltaJANET Model Implementation

import torch
from torch import Tensor
import torch.nn as nn
import numpy as np

class DeltaJANET(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers,

thx=0, thh=0, bias=True, beta=-2.5):
super(DeltaJANET, self).__init__()
self.hidden_size = hidden_size
self.input_size = input_size
self.output_size = output_size
self.num_layers = num_layers
self.thh = thh
self.thx = thx
self.bias = bias
self.beta = beta

Instantiate NN Layers
self.rnn = DeltaJANETLayer(input_size=input_size,

hidden_size=hidden_size,
num_layers=num_layers,
beta=self.beta,
thx=self.thx,
thh=self.thh)

self.fc_out = nn.Linear(in_features=hidden_size,
out_features=self.output_size,
bias=True)

self.set_debug(1)

def reset_parameters(self):

47

A. Source Code

self.rnn.reset_parameters()

for name, param in self.fc_out.named_parameters():
if 'weight' in name:

nn.init.xavier_uniform_(param)
if 'bias' in name:

nn.init.constant_(param, 0)

def forward(self, x, h_0):
i_x = torch.unsqueeze(x[..., 0], dim=-1)
q_x = torch.unsqueeze(x[..., 1], dim=-1)
amp2 = torch.pow(i_x, 2) + torch.pow(q_x, 2)
amp = torch.sqrt(amp2)
amp3 = torch.pow(amp, 3)
cos = i_x / amp
sin = q_x / amp
x = torch.cat((i_x, q_x, amp, amp3, sin, cos), dim=-1)
h_0 = None
out = self.rnn(x, h_0)
out = self.fc_out(out)
return out

def set_debug(self, value):
setattr(self, "debug", value)
self.rnn.statistics = {

"num_dx_zeros": 0,
"num_dx_numel": 0,
"num_dh_zeros": 0,
"num_dh_numel": 0

}

def get_temporal_sparsity(self):
temporal_sparsity = {}
if self.rnn.debug:

Get RNN layer sparsity
num_dx_zeros = self.rnn.statistics["num_dx_zeros"]
num_dx_numel = self.rnn.statistics["num_dx_numel"]
num_dh_zeros = self.rnn.statistics["num_dh_zeros"]
num_dh_numel = self.rnn.statistics["num_dh_numel"]

Add FC layers neurons to total count
rnn_numel = sum(p.numel() for name, p in

self.rnn.named_parameters() if 'weight' in name)
fc_numel = self.fc_out.weight.numel()
total_numel = num_dx_numel + num_dh_numel + fc_numel
total_zeros = num_dx_zeros + num_dh_zeros + fc_numel # FC

layers are dense, count as zeros

48

A.1. DeltaJANET Model Implementation

temporal_sparsity["SP_T_DX"] = float(num_dx_zeros /
num_dx_numel)

temporal_sparsity["SP_T_DH"] = float(num_dh_zeros /
num_dh_numel)

temporal_sparsity["SP_T_DV"] = float(total_zeros /
total_numel)

temporal_sparsity["HW_PARAM"] = float(fc_numel + rnn_numel *
float(total_zeros / total_numel))

return temporal_sparsity

class DeltaJANETLayer(nn.Module):
def __init__(self,

input_size=6,
hidden_size=256,
num_layers=1,
beta=-2.0,
thx=0.1,
thh=0):

super(DeltaJANETLayer, self).__init__()

Hyperparameters
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.beta = beta
self.th_x = thx
self.th_h = thh
self.weight_ih_height = 2 * self.hidden_size
self.weight_ih_width = self.input_size
self.weight_hh_width = self.hidden_size
self.weight_hh_height = 2 * self.hidden_size
self.x_p_length = max(self.input_size, self.hidden_size)
self.batch_first = True
self.debug = 1
Statistics
self.abs_sum_delta_hid = torch.zeros(1)
self.sp_dx = 0
self.sp_dh = 0

self.set_debug(self.debug)

Define the weights and biases as Parameters for each layer
for layer in range(num_layers):

Input to hidden weights (input_size -> 2*hidden_size)

49

A. Source Code

weight_ih = nn.Parameter(torch.empty(2 * hidden_size,
input_size if layer == 0 else hidden_size))

setattr(self, f'weight_ih_l{layer}', weight_ih)

Hidden to hidden weights (hidden_size -> 2*hidden_size)
weight_hh = nn.Parameter(torch.empty(2 * hidden_size,

hidden_size))
setattr(self, f'weight_hh_l{layer}', weight_hh)

Biases
bias_ih = nn.Parameter(torch.empty(2 * hidden_size))
setattr(self, f'bias_ih_l{layer}', bias_ih)

bias_hh = nn.Parameter(torch.empty(2 * hidden_size))
setattr(self, f'bias_hh_l{layer}', bias_hh)

Initialize the parameters
self.reset_parameters()

def set_debug(self, value):
setattr(self, "debug", value)
self.statistics = {

"num_dx_zeros": 0,
"num_dx_numel": 0,
"num_dh_zeros": 0,
"num_dh_numel": 0

}

def add_to_debug(self, x, i_layer, name):
if self.debug:

if isinstance(x, Tensor):
variable = np.squeeze(x.cpu().numpy())

else:
variable = np.squeeze(np.asarray(x))

variable_name = '_'.join(['l' + str(i_layer), name])
if variable_name not in self.statistics.keys():

self.statistics[variable_name] = []
self.statistics[variable_name].append(variable)

def reset_parameters(self):
for name, param in self.named_parameters():

num_gates = int(param.shape[0] / self.hidden_size)
if 'bias' in name:

nn.init.zeros_(param)
if 'weight' in name:

for i in range(0, num_gates):

50

A.1. DeltaJANET Model Implementation

nn.init.orthogonal_(param[i * self.hidden_size:(i +
1) * self.hidden_size, :])

if 'weight_ih_l0' in name:
for i in range(0, num_gates):

nn.init.xavier_uniform_(param[i * self.hidden_size:(i
+ 1) * self.hidden_size, :])

def get_temporal_sparsity(self):
temporal_sparsity = {}
if self.debug:

temporal_sparsity["SP_T_DX"] =
float(self.statistics["num_dx_zeros"] /
self.statistics["num_dx_numel"])

temporal_sparsity["SP_T_DH"] =
float(self.statistics["num_dh_zeros"] /
self.statistics["num_dh_numel"])

temporal_sparsity["SP_T_DV"] =
float((self.statistics["num_dx_zeros"] +
self.statistics["num_dh_zeros"]) /

(self.statistics["num_dx_numel"] +
self.statistics["num_dh_numel"]))

self.statistics.update(temporal_sparsity)
return temporal_sparsity

def process_inputs_first(self, x: Tensor, x_p_0: Tensor = None,
h_0: Tensor = None, h_p_0: Tensor = None,

dm_0: Tensor = None):
if not self.batch_first:

x = x.transpose(0, 1)
batch_size = x.size(0)

if x_p_0 is None or h_0 is None or h_p_0 is None or dm_0 is None:
x_p_0 = torch.zeros(self.num_layers, batch_size,

self.x_p_length, dtype=x.dtype, device=x.device)
h_0 = torch.zeros(self.num_layers, batch_size,

self.hidden_size, dtype=x.dtype, device=x.device)
h_p_0 = torch.zeros(self.num_layers, batch_size,

self.hidden_size, dtype=x.dtype, device=x.device)
dm_0 = torch.zeros(self.num_layers, batch_size,

self.weight_ih_height, dtype=x.dtype, device=x.device)
for l in range(self.num_layers):

bias_ih = getattr(self, 'bias_ih_l{}'.format(l))
bias_hh = getattr(self, 'bias_hh_l{}'.format(l))
dm_0[l, :, :self.hidden_size] +=

bias_ih[:self.hidden_size] +
bias_hh[:self.hidden_size]

51

A. Source Code

dm_0[l, :, self.hidden_size:2 * self.hidden_size] +=
bias_ih[self.hidden_size:2 * self.hidden_size] +
bias_hh[self.hidden_size:2 * self.hidden_size]

return x, x_p_0, h_0, h_p_0, dm_0

@staticmethod
def compute_deltas(x: Tensor, x_p: Tensor, h: Tensor, h_p: Tensor,

th_x: Tensor, th_h: Tensor):
delta_x = x - x_p
delta_h = h - h_p

delta_x_abs = torch.abs(delta_x)
delta_x = delta_x.masked_fill(delta_x_abs < th_x, 0)

delta_h_abs = torch.abs(delta_h)
delta_h = delta_h.masked_fill(delta_h_abs < th_h, 0)

return delta_x, delta_h, delta_x_abs, delta_h_abs

@staticmethod
def update_states(delta_x_abs, delta_h_abs, x, h, x_p, h_p,

x_prev_out, th_x, th_h):
x_p = torch.where(delta_x_abs >= th_x, x, x_p)
x_prev_out[:, :x.size(-1)] = x_p
h_p = torch.where(delta_h_abs >= th_h, h, h_p)
return x_p, h_p, x_prev_out

@staticmethod
def compute_gates(delta_x: Tensor, delta_h: Tensor, dm: Tensor,

weight_ih: Tensor,
weight_hh: Tensor):

mac_x = torch.mm(delta_x, weight_ih.t())
mac_h = torch.mm(delta_h, weight_hh.t())
new_dm = mac_x + mac_h + dm
dm_f, dm_g = new_dm.chunk(2, dim=1)
return dm_f, dm_g, new_dm

def layer_forward(self, input: Tensor, l: int, x_p_0: Tensor =
None, h_0: Tensor = None,

h_p_0: Tensor = None, dm_0: Tensor = None):
weight_ih = getattr(self, 'weight_ih_l{}'.format(l))
weight_hh = getattr(self, 'weight_hh_l{}'.format(l))
batch_size, seq_len, input_size = input.size()

th_x = torch.tensor(self.th_x, dtype=input.dtype)
th_h = torch.tensor(self.th_h, dtype=input.dtype)

52

A.1. DeltaJANET Model Implementation

output = []

reg = torch.zeros(1, dtype=input.dtype,
device=input.device).squeeze()

x_p_out = torch.zeros(batch_size, self.x_p_length,
dtype=input.dtype, device=input.device)

x_p = x_p_0[:, :input_size]
x_prev_out = torch.zeros_like(x_p)
h = h_0
h_p = h_p_0
dm = dm_0
l1_norm_delta_h = torch.zeros(1, dtype=input.dtype,

device=input.device)

for t in range(seq_len):
x = input[:, t, :]

delta_x, delta_h, delta_x_abs, delta_h_abs =
self.compute_deltas(x, x_p, h, h_p, th_x, th_h)

reg += torch.sum(torch.abs(delta_h))

if self.debug:
zero_mask_delta_x = torch.as_tensor(delta_x == 0,

dtype=x.dtype)
zero_mask_delta_h = torch.as_tensor(delta_h == 0,

dtype=x.dtype)
self.statistics["num_dx_zeros"] +=

torch.sum(zero_mask_delta_x)
self.statistics["num_dh_zeros"] +=

torch.sum(zero_mask_delta_h)
self.statistics["num_dx_numel"] += torch.numel(delta_x)
self.statistics["num_dh_numel"] += torch.numel(delta_h)

x_p, h_p, x_prev_out = self.update_states(delta_x_abs,
delta_h_abs, x, h, x_p, h_p, x_prev_out, th_x, th_h)

l1_norm_delta_h += torch.sum(torch.abs(delta_h))

s, cat, dm = self.compute_gates(delta_x, delta_h, dm,
weight_ih, weight_hh)

c_hat = torch.tanh(cat)

h = torch.sigmoid(s) * h + (1 - torch.sigmoid(s -
self.beta)) * c_hat

53

A. Source Code

output += [h]

output = torch.stack(output, dim=1)
x_p_out[:, :input_size] = x_p
return output

def forward(self, input: Tensor, x_p_0: Tensor = None, h_0: Tensor =
None, h_p_0: Tensor = None,

dm_0: Tensor = None):
x, x_p_0, h_0, h_p_0, dm_0 = self.process_inputs_first(input,

x_p_0, h_0, h_p_0, dm_0)

for l in range(self.num_layers):
x = self.layer_forward(x, l, x_p_0[l], h_0[l], h_p_0[l],

dm_0[l])

return x

A.2 TC-JANET Model Implementation

import torch
from torch import Tensor
import torch.nn as nn

EPSILON = 1e-8

class TCJANET(nn.Module):
def __init__(self, hidden_size, output_size,

tcn_hidden_channels=9, tcn_num_layers=4,
batch_first=True, bias=True, beta=-2.1, memory_depth=2):

super(TCJANET, self).__init__()
self.input_size = 4
self.hidden_size = hidden_size
self.output_size = output_size
self.tcn_hidden_channels = tcn_hidden_channels
self.tcn_num_layers = tcn_num_layers
self.batch_first = batch_first
self.bias = bias
self.beta = beta
self.memory_depth = memory_depth

JANETLayer with multiple layers integrated inside
self.network = TCJANETLayer(input_size=self.input_size,

hidden_size=self.hidden_size,
tcn_hidden_channels=self.tcn_hidden_channels,
tcn_num_layers=self.tcn_num_layers,

54

A.2. TC-JANET Model Implementation

batch_first=self.batch_first,
bias=self.bias,
beta=self.beta,
memory_depth=self.memory_depth)

Fully connected output layer
self.fc_out = nn.Linear(in_features=self.hidden_size,

out_features=self.output_size,
bias=True)

def reset_parameters(self):
for name, param in self.fc_out.named_parameters():

if 'weight' in name:
nn.init.xavier_uniform_(param)

if 'bias' in name:
nn.init.constant_(param, 0)

def forward(self, x, h_0=None):
if not self.batch_first:

x = x.transpose(0, 1)
batch_size, seq_len, _ = x.shape

h = h_0.squeeze(0) if h_0 is not None else torch.zeros(batch_size,
self.hidden_size, device=x.device)

Network forward
out = self.network(x, h)
out = self.fc_out(out)

return out

class TCJANETLayer(nn.Module):
def __init__(self, input_size, hidden_size, tcn_hidden_channels,

tcn_num_layers,
batch_first=True, bias=True, beta=-2.1, memory_depth=2):

super(TCJANETLayer, self).__init__()
JANET parameters
self.input_size = input_size
self.hidden_size = hidden_size
self.janet_num_layers = 1
self.batch_first = batch_first
self.bias = bias
self.beta = beta

TCN parameters
self.dilation_base = 2

55

A. Source Code

self.kernel_size = 5
self.tcn_hidden_channels = tcn_hidden_channels
self.tcn_num_layers = tcn_num_layers
self.tcn_activation = 'SiLU'

memory depth for context window
self.memory_depth = memory_depth
self.tcn_input_size = self.input_size * (self.memory_depth + 1)

self.tcn = TCN(in_channels=self.tcn_input_size,
hidden_channels=self.tcn_hidden_channels,
output_size=2 * self.hidden_size,
num_layers=self.tcn_num_layers,
kernel_size=self.kernel_size,
stride=1,
dilation_base=self.dilation_base,
activation=self.tcn_activation)

self.bias_ih = nn.Parameter(torch.empty(2 * hidden_size))
self.bias_hh = nn.Parameter(torch.empty(2 * hidden_size))

self.reset_parameters()

def reset_parameters(self):
self.tcn.reset_parameters()
for name, param in self.named_parameters():

if 'bias' in name:
nn.init.zeros_(param)

def forward(self, x: Tensor, h_0: Tensor) -> Tensor:
batch_size, seq_len, _ = x.shape

x_complex = torch.view_as_complex(x.contiguous())
amp = x_complex.abs().unsqueeze(-1)
amp3 = torch.pow(amp, 3)
x_features = torch.cat([x, amp, amp3], dim=-1)

memory context window
if self.memory_depth > 0:

padding = x_features[:, 0, :].unsqueeze(1).repeat(1,
self.memory_depth, 1)

x_features_padded = torch.cat([padding, x_features], dim=1)

x_features_unfolded = x_features_padded.unfold(dimension=1,
size=self.memory_depth + 1,

step=1)

56

A.2. TC-JANET Model Implementation

x_features = x_features_unfolded.permute(0, 1, 3,
2).flatten(start_dim=2)

Split gates for JANET update
f, c = self.tcn(x_features).chunk(2, dim=2)

Add bias terms
f = f + self.bias_ih[:self.hidden_size] +

self.bias_hh[:self.hidden_size]
c = c + self.bias_ih[self.hidden_size:] +

self.bias_hh[self.hidden_size:]

c = torch.tanh(c)
s = torch.sigmoid(f)
s_mod = torch.sigmoid(f - self.beta)

rotate factor
r = x_complex.conj() / (x_complex.abs() + EPSILON)

h = h_0

outputs = []
for t in range(seq_len):

r_t = r[:, t].unsqueeze(-1)

gate
s_t = s[:, t, :]
s_mod_t = s_mod[:, t, :]
c_t = c[:, t, :]

normalize hidden state
h_complex = torch.view_as_complex(h.view(batch_size,

self.hidden_size // 2, 2))
c_complex = torch.view_as_complex(c_t.view(batch_size,

self.hidden_size // 2, 2).contiguous())

h_complex_norm = h_complex * r_t
c_complex_norm = c_complex * r_t

h_real_norm =
torch.view_as_real(h_complex_norm).flatten(start_dim=1)

c_real_norm =
torch.view_as_real(c_complex_norm).flatten(start_dim=1)

JANET update
h_updated = s_t * h_real_norm + (1 - s_mod_t) * c_real_norm

57

A. Source Code

denormalize hidden state
h_complex_norm = torch.view_as_complex(h_updated.view(batch_size,

self.hidden_size // 2, 2))
h_complex_denorm = h_complex_norm * r_t.conj()
h = torch.view_as_real(h_complex_denorm).flatten(start_dim=1)

outputs.append(h)

out = torch.stack(outputs, dim=1)

return out

ACTIVATION_FUNCS = ['CELU', 'ELU', 'GELU', 'Hardshrink', 'Hardtanh',
'Hardswish', 'LeakyReLU', 'LogSigmoid',

'Mish', 'ReLU', 'ReLU6', 'RReLU', 'SELU', 'SiLU', 'Softplus',
'Softshrink', 'Softsign',

'Tanh', 'Tanhshrink', 'Hardsigmoid', 'Sigmoid', 'PReLU',
'Threshold', 'GLU']

class TCN(nn.Module):
def __init__(self, in_channels, hidden_channels, output_size, num_layers,

kernel_size=5, stride=1, dilation_base=2, activation='SiLU'):
super(TCN, self).__init__()
self.bias = False
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.output_size = output_size
self.num_layers = num_layers
self.kernel_size = kernel_size
self.padding = (self.kernel_size-1) // 2
self.stride = stride
self.dilation_base = dilation_base
self.activation_name = activation

Create activation function based on the activation parameter
self.activation_fn = self._get_activation_fn(activation)

layers = []
Initial pointwise projection layer
layers.append(nn.Conv1d(in_channels=self.in_channels,

out_channels=self.hidden_channels, kernel_size=1))
layers.append(self.activation_fn)

Add dilated convolution layers based on num_layers
for i in range(num_layers):

dilation = self.dilation_base ** i

58

A.2. TC-JANET Model Implementation

layers.append(nn.Conv1d(self.hidden_channels, self.hidden_channels,
self.kernel_size,

stride=self.stride, padding=self.padding *
dilation,

dilation=dilation, groups=self.hidden_channels,
bias=self.bias))

layers.append(self.activation_fn)

Output projection
layers.append(nn.Conv1d(self.hidden_channels, self.output_size,

kernel_size=1, bias=self.bias))

self.network = nn.Sequential(*layers)

self.res_proj = nn.Conv1d(self.in_channels, self.output_size, 1)

def _get_activation_fn(self, activation):
"""Helper method to create the activation function based on name"""
return {

'Threshold': lambda: nn.Threshold(0.5, 0.0),
**{name: getattr(nn, name) for name in ACTIVATION_FUNCS}

}.get(activation, nn.Hardswish)()

def reset_parameters(self):
for m in self.modules():

if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_out',

nonlinearity='relu')
if m.bias is not None:

nn.init.constant_(m.bias, 0)

def feature_extraction(self, x):
i_x = torch.unsqueeze(x[..., 0], dim=-1)
q_x = torch.unsqueeze(x[..., 1], dim=-1)
amp2 = torch.pow(i_x, 2) + torch.pow(q_x, 2)
amp = torch.sqrt(amp2)
amp3 = torch.pow(amp, 3)
cos = i_x / amp
sin = q_x / amp
return i_x, q_x, amp, amp3, sin, cos

def forward(self, x, h_0=None):
input = self.res_proj(x.transpose(1, 2)).transpose(1, 2)

59

A. Source Code

out = self.network(x.transpose(1, 2)).transpose(1, 2)
return out + input

60

	Acknowledgements
	Acronyms
	Contents
	List of Figures
	Introduction
	Motivation
	Problem Statement and Research Questions
	Problem Statement
	Research Questions

	Thesis Contributions
	Thesis Contributions

	Thesis Outline
	Terminology

	Background and Related Works
	Digital Predistortion in RF Systems
	Evaluation Metrics

	Traditional Methods and the Rise of Neural Networks in DPD
	GMP
	Volterra Series
	TDNN

	RNN
	LSTM
	GRU

	JANET
	Delta Networks
	Temporal Convolutional Network (TCN) Architecture
	Phase Normalization

	Methods
	Overview
	DeltaJANET: Enhancing Digital Predistortion With Sparsity
	Architecture Design
	Theoretical Operation and Memory Access Savings
	Optimizations

	TCJANET: A Hybrid NN Architecture for High-Performance DPD
	Architecture Design
	Optimizations

	Experimental Results
	DeltaJANET
	Experimental Setup
	Results and Discussion

	TCJANET
	Experimental Setup
	Results and Discussion

	Conclusions
	Conclusion
	Outlook

	Bibliography
	Source Code
	DeltaJANET Model Implementation
	TCJANET Model Implementation

