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An automated approach for solution based mesh
adaptation to enhance numerical accuracy for a given

number of grid cells
Applied to steady flow on hexahedral grids
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Abstract: Mesh adaptation is a fairly established tool to obtain numerically ac-
curate solutions for flow problems. Computational efficiency is, however, not al-
ways guaranteed for the adaptation strategies found in literature. Typically exces-
sive mesh growth diminishes the potential efficiency gain. This paper, therefore,
extends the strategy proposed by [Aftosmis and Berger (2002)] to compute the re-
finement threshold. The extended strategy computes the refinement threshold based
on a user desired number of grid cells and adaptations, thereby ensuring high com-
putational efficiency. Because our main interest is flow around wind turbines, the
adaptation strategy has been optimized for flow around wind turbine airfoils. The
proposed strategy was found to yield computationally efficient computations for
flow around wind turbine airfoils as well as for other flow problems.

Keywords: Solution based mesh adaptation, computation refinement threshold,
hexahedral grids, computational efficiency.

1 Introduction

Computational fluid dynamics (CFD) has developed over the last decades into a
comprehensive design tool. It is now possible to compute the flow around com-
plex aerospace configurations such as complete aircraft, helicopter and spacecraft,
see for example [Kroll and Fassbender (2005); Vos, Rizzi, Darracq, and Hirschel
(2002)]. This rapid increase in CFD applications has become possible by an ever in-
creasing computer power, more efficient algorithms and progress in physical mod-
eling [Vos, Rizzi, Darracq, and Hirschel (2002)].
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However, even the current state of the art Reynolds averaged Navier-Stokes based
CFD codes are not yet practical tools for complex design trade off studies due to
the tremendous CPU costs involved, see e.g. [Simms, Schreck, Hand, and Fin-
gersh (2001); Chaviaropoulos, Nikolau, Aggelis, Soerensen, Johansen, and Hansen
(2003a); Chaviaropoulos, Nikolau, Aggelis, Soerensen, Johansen, and Hansen
(2003b)] for wind turbine design. Hence, there is still a need to increase the com-
putational efficiency of CFD codes.

In this paper we focus on grid adaptation through h-refinement. Grid adaptation can
enhance the computational efficiency since the adapted mesh is only dense in the
important regions. Especially for unsteady flows, where important flow phenomena
can move through the domain, mesh adaptation has a potential since non-adapted
grids need to be almost uniformly dense to capture all important flow phenomena.
However, since the grid needs to be adapted many times for an unsteady flow field,
a strict control over the mesh size growth is indispensable. Without a strict control
on the mesh size growth over-refinement can easily occur, thereby reducing the
potential efficiency gain, even for steady computations.

Many of the mesh adaptation strategies that can be found in the literature, how-
ever, lack this strict control, see for example [Bijl, Zuijlen, and Mameren (2005);
Mavriplis (2000); Wang and Chen (2002)]. In these works the grid is over re-
fined such that the adapted grids contain much more cells than such a case typ-
ically would require, hence the adaptation strategy likely decreased the compu-
tational efficiency. Furthermore, the total computational costs required to obtain
the grid adapted solution are often omitted, see for example [Cavallo and Baker
(2000); Ham, Lien, and Strong (2002); Oh, Kim, and Kwon (2002); Wang and
Chen (2002)]. This makes it difficult to judge the computational efficiency of the
adaptation strategy. As the actual grid adaptation and computing the solution on a
series of refined grids requires computational time, it is important to evaluate the
overall computational costs.

The goal of this paper is, therefore, to develop a solution based mesh adaptation
strategy that enables a strict control on the mesh size growth to enable computation-
ally efficient flow computations. In this paper a novel strategy is proposed where
a strict control on the mesh size growth is achieved by computing the refinement
threshold based on a target number of grid cells and number of adaptations. This is
a somewhat unconventional approach because commonly the refinement threshold
is set such that a certain numerical error is tried to be achieved. With the proposed
strategy, however, the numerical error is tried to be minimized for a certain number
of grid cells or CPU costs. This approach is very useful when the number of grid
points is limited, for example for large three dimensional and / or unsteady cases.

[Aftosmis and Berger (2002)] also tackled the issue of over-refinement. They pro-
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posed 2 log histograms of the error indicator such that the resulting histograms bet-
ter resembled a Gaussian distribution. Consequently over refinement is less likely
to occur when the refinement threshold is set to the mean plus a certain percentage
of the standard deviation. However, this strategy still does not enable a strict control
on the mesh size growth. In this paper their strategy is, therefore, extended such
that the user can a priori set the number of grid cells on the adapted grid, thereby
ensuring a strict control on the mesh size growth and high computational efficiency.

In most adaptation strategies unstructured tetrahedral or hybrid meshes are used
because they lend themselves well for complex bodies and are well-suited for adap-
tation. However, besides a possible low accuracy in the boundary layer, tetrahedral
grids have a large disadvantage when mesh adaptation is applied: the constraints of
a high quality and efficient grid to capture one-dimensional features by means of
mesh adaptation are difficult to satisfy simultaneously [Biswas and Strawn (1998)].
This paper, therefore, uses a body-conforming octree mesh generation [Tchon,
Hirsch, and Schneiders (1997)]. It combines the favorable accuracy of hexahe-
dral meshes inside boundary layers with the ease of grid generation of unstructured
meshes. Such grids consist of a few body conformal cell layers, whereas the re-
mainder of the domain is discretized with Cartesian cells. Anisotropic refinement
is easily possible by dividing hexahedral cells in one or two directions.

This paper is organized as follows: in Section 2 and 3, respectively, the method-
ology and basic aspects of the proposed grid adaptation strategy are discussed. In
Section 4 and Section 5, respectively, the computation of the refinement threshold
and the number of grid adaptations are discussed. Finally, in Section 6 the perfor-
mance of the adaptation strategy is discussed, while in Section 7 the conclusions
are drawn.

2 Methodology

In this section details are given concerning the test cases, flow solver, error assess-
ment and computation of grid independent values.

2.1 Test cases

For the development of the adaptation strategy, and in particular the strategy to
compute the refinement threshold, we first designed the adaptation strategy for
flows around wind turbine airfoils because these flows have our main interest.
Thereafter the adaptation strategy has been tested for other flow problems to show
its generic applicability beyond wind turbine airfoils (Section 6).

A 25% thick wind turbine airfoil (DU91-W2-250) with an angle of attack of 1 de-
gree, a Reynolds number of 3.0 ·106 and a Mach number of 0.21 is used to discuss



150 Copyright © 2009 Tech Science Press CMES, vol.41, no.2, pp.147-175, 2009

the development of the adaptation strategy. Transition from laminar to turbulent
flow is defined according to the experiments by [Timmer (2001)].

2.2 Flow solver and initial grid generator

(a) Overview grid. (b) Close up showing the body confor-
mal and Cartesian cells.

Figure 1: Grid layout as used for the grid refinement study DU91-W2-250 test case.

The flow solver (Hexstream [Numeca International (2003)]) is based on the Reynolds
Averaged Navier-Stokes equations which describe conservation of mass, momen-
tum and energy. The one-equation turbulence model of [Spalart and Allmaras
(1992)] is used as a closure model. Space discretization is performed with a cell
centered, conservative, finite volume scheme. The convective flux is discretized
using a second order central scheme with Jameson type scalar artificial dissipation
[Jameson, Schmidt, and Turkel (1981)]. Steady solutions are obtained with a time
marching method using an explicit four stage Runge-Kutta scheme. Convergence
is accelerated with a multigrid technique, see [Patel (2003); Patel, Léonard, Elsden,
and Hirsch (2003)] and [Numeca International (2003)] for more information.

Because a Cartesian grid is used, it is not trivial to efficiently capture the boundary
layer. A solution would be to deal with the triangular cells that arise at the interface
as for example described in [Pasquim, B.M. and Mariani, V.C. (2008)]. However,
as a matter of preference we use a hybrid grid that contains Cartesian as well as
body conformal cells. In the grid generator [Numeca International (2002)] special
attention is paid to obtain a smooth progression in cell size from the body conformal
cells to the hexahedral cells, Fig. 1 shows the typical grid layout.

2.3 Assessment of the numerical accuracy

In order to assess the numerical accuracy of the grid adapted solutions it is impor-
tant to compare them with a numerical benchmark as can also be concluded from
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[Zhao, F., Zhu, S.-P., and Zhang, Z.-R. (2005)]. For numerical error assessment
it is undesirable to compare grid adapted solutions with experiments because there
also exists a modeling error which may bias interpretation of the results. Therefore,
for all cases numerical benchmarks are obtained by means of a grid convergence
study.

The relative error in lift and drag compared to the numerical benchmark values
are used to judge numerical accuracy since these quantities are the main quantities
of interest. Furthermore, the pressure distribution is monitored to detect possible
cancellation of errors in these integral quantities.

2.4 Numerical benchmark

To construct the numerical benchmarks we use the least squares approach as ad-
vocated by [Eça and Hoekstra (2002); Eça, Vaz, Falcão de Campos, and Hoekstra
(2004)]. First it is assumed that the error of a numerical prediction can be estimated
by a Taylor series expansion:

εφi = φi−φbenchmark =
n

∑
j=1

α j h
p j
i , (1)

where φi is the numerical solution of any local or integral quantity on a given grid i,
φbenchmark is the (numerical) benchmark solution, α j are constants, hi is a parameter
related to grid spacing, p j is the observed order of accuracy and n is the order of
the expansion. When the numerical predictions for a sequence of refined grids are
in the asymptotic range, only the leading term is retained from Eq. 1, i.e.:

φi−φbenchmark = αhp
i . (2)

Eq. 2 requires at least three numerical predictions to solve for the three unknowns:
φbenchmark, α and p. From Eça and Hoekstra (2002), the least squares approach is
based on minimizing the function:

S (φbenchmark, α, p) =

√
ng

∑
i=1

(
φi−

(
φbenchmark +αhp

i

))2
, (3)

where ng is the number of grids available. By setting the partial derivatives of S
with respect to φbenchmark, α and p to zero, φbenchmark, α and p can be computed.
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Figure 2: Lift and drag coefficient versus hi
h1

for the DU91-W2-250 test case. Open
circles are results from the benchmark study whereas the solid line is the least
squares approximation.

In Fig. 2 the numerical results of the grid convergence study for the DU91-W2-250

test case are shown. The solid lines show the approximation to Eq. 2 in the least
squares sense, whereas the open circles are the results on the different grids. In
Fig. 2 the parameter relating to cell size, hi, is made dimensionless by dividing
it by h1, which corresponds to the finest grid. Hence, going from right to left on
the horizontal axis the number of mesh cells increases. For hi

h1
= 0 the benchmark

values are obtained. The coarsest grid contains 33k cells whereas the finest grid
contains 389k cells.

The height of the cells adjacent to the surface (y0) is such that for these cells:

y+ =
y0uτ

ν
< 3, (4)

with ν the kinematic viscosity and uτ the friction velocity defined as:

uτ =
√

τ

ρ
= u∞

√
c f

2
, (5)

where τ is the skin friction, ρ is the density, c f is the skin friction coefficient and
u∞ the undisturbed velocity. With y+ < 3 the first grid point is in the viscous sub
layer which is required to have a well resolved boundary layer. The value for y0 is
the same for all computations that are performed for the DU91-W2-250 test case.
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In order to construct the benchmark values, the numerical prediction on the coarsest
grid is not taken into account because it is obviously not in the asymptotic range.
The benchmark values are obtained for hi

h1
= 0 and are 0.523 for the lift coefficient

and 0.00833 for the drag coefficient.

3 Basic aspects of an adaptation strategy

In this section the basic aspects of the adaptation strategy are discussed. These
are: 1) grid quality, 2) error indicator and 3) iterative convergence on intermediate
adapted grids. We call these aspects the basic aspects of an adaptation strategy
because they are well established. In Section 4 and Section 5 it is discussed how to
compute the refinement threshold and to set the number of grid adaptations.

3.1 Grid quality

Other than when meshless methods are used, see e.g. [Orsini, P., Power, H., and
Morvan, H. (2008)], [Mohammadi, M.H. (2008)], [Arefmanesh, A., Najafi, M., and
Abdi, H. (2008)], grid quality after adaptation plays an important role because very
low quality cells can lead to low numerical accuracy. Grid quality after adaptation
is ensured with the following rules:

• do not allow more than 1 hanging node per cell interface;

• do not allow hanging nodes for the body conformal cells;

• do not allow neighboring cell sizes to differ more than a factor 2;

• force a smooth progression in cell sizes between the body conformal and
Cartesian cells.

The first till the third rule are satisfied by propagation of cell refinement, i.e. when
one of these rules is violated additional cells are refined such that the grid satisfies
the quality rules. When boundary faces on the solid are refined additional vertices
are added on the solid. These vertices are then reprojected on the surface to avoid
unwanted flow discontinuities due to insufficient geometry resolution compared to
mesh resolution, see also [Patel (2003); Patel, Léonard, Elsden, and Hirsch (2003)].

The fourth rule is satisfied by rebuilding the body conformal cell layer. First,
the Cartesian cells are refined according to the refinement flags. Hereafter the
body conformal cell layer is rebuild such that a smooth progression in cell size
is achieved, see Fig. 3 for an illustration. Fig. 3(a) to Fig. 3(c) show refinement
of the Cartesian cells and propagation of cell refinement (hanging nodes are not
allowed for the body conformal cells). Fig. 3(d) shows how the body conformal
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cell layer is rebuild: with y0 and the stretching ratio kept constant the body confor-
mal cells increase in size from the wall, until the remaining part can be divided in
equally sized body conformal cells.

bl

(a) Initial grid. (b) Fictitious grid after one adaptation,
body conformal cell layer not rebuild.

bl

(c) Fictitious grid after two adaptations,
body conformal cell layer not rebuild.

(d) Grid after two adaptations, layer of
body conformal cells rebuild.

Figure 3: Illustration Cartesian refinement and the required refinement of the body
conformal cells to ensure a smooth progression in cell size at connection body
conformal and Cartesian cells. The grids shown in (b) and (c) are fictitious because
the body conformal cell layer is not rebuild.

3.2 Error indicator

The error indicator serves to indicate which regions need to be refined to decrease
the discretization error and to increase the numerical accuracy. Adaptation based
on flow features assumes that large discretization errors occurs in areas with large
gradients. For subsonic flows this is commonly assumed to be a valid assumption.
However for supersonic flows one may need to rely on adaptation based on adjoints
as for example discussed in Dwight (2006).

In the literature a wealth of different error indicators is available, see for example
[Biswas and Strawn (1994); Cavallo and Baker (2000); Coirier and Powell (1995);
Marcum (1996); Nithiarasu and Zienkiewicz (2000); Oh, Kim, and Kwon (2003);
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Pirzadeh (2000); Rausch, Batina, and Yang (1992); Walsh and Zingg (1997); Walsh
and Zingg (2001); Wang and Chen (2002); Warren, Anderson, James, and Krist
(1991)]. Roughly these error indicators differ in two aspects: 1) the flow param-
eter(s) used, e.g. pressure and 2) the type of difference used, e.g. a multiplied
difference. The flow parameter determines which regions will be refined, i.e. an er-
ror indicator based on the pressure will result in refinement in regions with a large
pressure gradient. The type of difference controls the level of global refinement,
i.e. a multiplied difference will result in more global refinement than a divided
difference.

In general the error indicator is based on the pressure (or density) and/or veloc-
ity (Mach number). Sometimes an additional parameter is used to capture highly
rotational regions of the flow, see for example [Pirzadeh (2000)]. A multiplied dif-
ference is commonly used to avoid too much local refinement. We therefore use
the following error indicator:

εi+ 1
2
= (||∇p||)

∣∣
i+ 1

2
·hx, (6)

where the mean of ||∇p|| is evaluated at cell interface i+ 1
2 and h is defined as:

h = 2min
(

hfacei+1/2,centeri , hfacei+1/2,centeri+1

)
. (7)

The error indicator given in Eq. 6 has the following advantages over a regular
multiplied difference: 1) multiplying with h as given in Eq. 7 rather than h =
hcenteri,centeri+1 results in less chaotic grid refinement around cell interfaces neigh-
boring cells of different size and 2) the mean of the norm of the pressure gradient
results in more isotropic refinement which, for our spatial discretization [Patel,
Léonard, Elsden, and Hirsch (2003); Patel (2003)], drastically improves numerical
accuracy. Preliminary investigations revealed that x = 1.5 leads to high numerical
accuracy. Typically values of 1 to 2 are used throughout the literature, see e.g.
[Coirier and Powell (1995); Wang and Chen (2002)].

Note that the error indicator given in Eq. 6 does not capture boundary layers. How-
ever, because the body conformal cells ‘follow’ the refinement of the Cartesian
cells (Section 3.1), refinement of the body conformal cells does occur. So far our
results did not indicate that we should have used an additional flow parameter to
refine boundary layers.
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Table 1: Influence convergence criterium set for intermediate adapted grids on total
CPU costs DU91-W2-250 test case.

conv. crit. εcl εcd # cells CPU costs
-3.5 3.8% 7.6% 49.9k 348
-5.0 3.8% 7.6% 49.7k 345
-6.0 3.8% 7.6% 49.6k 555

3.3 Iterative convergence on intermediate adapted grids

It is well known that the level of iterative convergence on the initial grid should be
sufficient to avoid adaptation to transient features. Sometimes it is stated that the
iterative convergence on the intermediate adapted grids should also be high, see for
example [Cavallo and Baker (2000)].

However, since the solution does not change much after adaptation it is less likely
to adapt to transient features when the level of iterative convergence is low on the
intermediate adapted grids. Low iterative convergence on the intermediate adapted
grids can imply significant savings in CPU costs as the intermediate adapted grids
are much denser than the initial grid. Iterative convergence on the final adapted
grid should again be sufficient to warrant a small iteration error.

To investigate if a low iterative convergence on the intermediate adapted grids has
a positive result on the total CPU costs the same case is computed for different con-
vergence criteria on the intermediate grids. We have used 3 different convergence
criteria: a drop in nonlinear residual of 3.5, 5 and 6 orders in magnitude compared
to the initial solution. Roughly speaking these convergence criteria result in a nu-
merical accuracy for lift and drag on the intermediate adapted grids of, respectively,
1, 2 and 3 digits. The convergence criteria set for the initial and final grid is such
to warrant a negligible iteration error.

From Tab. 1 it becomes clear that a too strict threshold (a drop in nonlinear residual
of 6 orders compared to its initial value) for the iterative convergence on the inter-
mediate adapted grids almost doubles the CPU costs, however does not increase the
numerical accuracy. Results obtained for other cases revealed similar results.

4 Computation refinement threshold

The refinement threshold determines which and how many grid cells will be refined.
It, therefore, plays a crucial role in the computational efficiency of the adaptation
strategy. Common strategies to compute the refinement and coarsening thresholds
found in literature [Biswas and Strawn (1994); Cavallo and Baker (2000); Coirier
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and Powell (1995); Ham, Lien, and Strong (2002); Mavriplis (2000); Warren, An-
derson, James, and Krist (1991)] are:

• a priori set fixed thresholds;

• thresholds set by the user by trial and error;

• thresholds computed based on the assumption of a Gaussian distribution of
the error indicator distribution.

Unfortunately, these strategies all suffer from serious disadvantages. A priori set-
tings for the thresholds can easily lead to over or under refinement because the error
indicator distribution is not known beforehand. Setting the refinement threshold by
trial and error is inefficient since the adaptation process should be fully automated.
Finally, the strategy that is based on the assumption of a Gaussian distribution (also
referred to as Kallinderis’s method [Kallinderis and Baron (1989)]) is automated
with respect to computation of the refinement threshold. However, especially for
3-dimensional flows, the assumption of the Gaussian distribution is highly inaccu-
rate [Aftosmis and Berger (2002)] often leading to an excessive mesh growth, see
for example [Bijl, Zuijlen, and Mameren (2005)] and [Wang and Chen (2002)].

In this paper, therefore, a novel strategy is developed to compute the refinement
threshold based on the user desired number of grid cells and user desired number
of grid adaptations on the final adapted grid. This is a somewhat unconventional
approach because commonly the refinement threshold is set such that a certain
numerical error is tried to be achieved. With the proposed strategy, however, the
numerical error is tried to be minimized for a certain number of grid cells or CPU

costs. This approach is very useful when the number of grid points is limited, for
example for large three dimensional and / or unsteady cases. The proposed strategy
is an extension of the strategy proposed by [Aftosmis and Berger (2002)]. They
proposed 2 log histograms of the error indicator such that the resulting histograms
better resemble a Gaussian distribution. Consequently over refinement is less likely
to occur when the refinement threshold is set to the mean plus a certain percentage
of the standard deviation.

4.1 Basic idea

The basic idea of the proposed strategy to compute the refinement threshold is that
the histograms of the 2 log values of the error indicator distribution correspond-
ing to the solutions on the next adapted grids can be extrapolated from the initial
grid. When it is assumed that: 1) the solution does not change with mesh refine-
ment and 2) there is a fixed amount of cell interfaces that are added per refinement
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flag, the 2 log histograms can be estimated because it is known how much the er-
ror indicator of a certain cell interface will shift through the histogram with mesh
refinement. Therefore, imagine a certain error indicator that has a value z before
mesh refinement, with z larger than the refinement threshold. After adaptation both
cells neighboring this particular cell interface are halved in size in the correspond-
ing direction. For an error indicator that is proportional to hy it equals z ·

(
1
2

)y
after

mesh adaptation. However, in terms of 2 log we have:

2 log

(
z ·
(

1
2

)y)
=2 logz−2 log(2y) =2 logz− y. (8)

Hence, this particular error indicator has shifted y units through the 2 log histogram.
When it is also assumed that there is a fixed amount of mesh cells that are added
per refinement flag, the number of mesh cells on the final adapted grid can be ex-
tracted from the error indicator distribution on the initial grid. Hence, the following
parameters should be approximately known or tuned:

1. proportionality of the error indicator to h (y in Eq. 8);

2. number of cell interfaces added per refinement flag;

3. number of cells added per refinement flag.

Note that the first two parameters deal with histogram extrapolation, whereas the
third parameter deals with the estimation of the total number of mesh cells based
on the histogram extrapolation. In the next section these parameters are discussed
in more detail.

4.2 Tuning parameters

4.2.1 Proportionality of the error indicator with respect to cell size

Since the solution changes with mesh adaptation, it is not exactly known how many
units the error indicator will shift through the histogram. To obtain a starting point
for the proportionality of the error indicator to h we assume one dimension and a
solution that does not change with grid adaptation. Eq. 6 then becomes:

(||∇q ||)|i+ 1
2
h1.5 = (||q′ ||)|i+ 1

2
h1.5

=
1
2

(
||q′i+1 ||+ ||q′i ||

)
h1.5. (9)

A Taylor series expansion of q around i is:
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qi+1 = qi +q′i h+
1
2

q′′i h2 +O(h3). (10)

Substitution of Eq. 10 into Eq. 9 yields:

(||∇qi ||)|i+ 1
2
=
(
||q′i +q′′i h ||+ ||q′i ||

)
h1.5 +O(h3.5). (11)

From Eq. 11 it can be concluded that the finite difference is at least proportional to
h1.5 and at most to h2.5. These bounds form the starting point to tune the histogram
estimation in Section 4.3.

4.2.2 Number of cell interfaces added per refinement flag

Based on the 2 log values of the error indicators it is unknown how many cell in-
terfaces are added during adaptation, see Fig. 4 for two academic examples. In
Fig. 4(a) two refinement flags result in 3 new cell interfaces, whereas in Fig. 4(b)
four refinement flags result in 16 new cell interfaces. Hence, in the first situation
1.5 cell interfaces are added per refinement flag, whereas in the second situation
4 cell interfaces are added per refinement flag. Hence, we expect this ratio some-
where between 1 and 4 for two dimensional computations. In the following this
ratio is referred to as the FACESADDEDPERFLAG ratio.

(a) Two refinement flags (filled squares) re-
sult in 3 extra cell interfaces (dashed lines).

(b) Four refinement flags (filled squares) re-
sult in 16 extra cell interfaces (dashed lines).

Figure 4: The ratio of cell interfaces and cell added per refinement flag is not
constant.

4.2.3 Number of cells added per refinement flag

Finally, we are not interested in estimating any histograms, but in the number of
mesh cells on the final adapted grid. Consider again Fig. 4. In Fig. 4(a) two refine-
ment flags result in 3 extra cells, whereas in Fig. 4(b) four refinement flags result in
12 extra cells. Hence, in the first situation 1.5 cells are added per refinement flag,
whereas in the second situation 3 cells are added per refinement flag.
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Table 2: Number of cell interfaces that have an error indicator larger than the refine-
ment threshold for different assumptions of the proportionality of the error indicator
(hy) for the DU91-W2-250 test case.

adap 1 adap 2 adap 3 adap 4
y FACESADDEDPERFLAG est. real est. real est. real est. real
1 2.138 8270 8271 5929 4742 3137 466 0 134

1.5 3.530 8267 8271 4000 4742 176 466 0 134
2 6.375 8268 8271 1869 4742 0 466 0 134

2.5 12.77 8275 8271 652 4742 0 466 0 134

4.3 Tuning the histogram estimation

In this section the histogram extrapolation is tuned for hexahedral grids and the
DU91-W2-250 test case. As discussed in Section 4.2.1 two parameters need to be
tuned to estimate the error indicator distributions corresponding to the next adapted
grids: 1) y (the amount of units the error indicator will shift through the histogram
with refinement) and 2) the FACESADDEDPERFLAG ratio (how many cell interfaces are
added for each cell interface flagged for refinement).

These two parameters are simultaneously tuned, which is accomplished by com-
paring extrapolated histograms with real histograms. In Section 4.2.1 it has been
argued that y is bounded between 1.5 and 2.5. These values for y are therefore used
as a starting point to tune the histogram estimation. The FACESADDEDPERFLAG ratio
is then adjusted such that the number of estimated error indicators larger than the
refinement threshold matches the real number of error indicators larger than the re-
finement threshold. The FACESADDEDPERFLAG ratio is computed for the extrapolation
from the initial grid to the first adapted grid and then assumed to be constant.

Tab. 2 compares the estimated number of cell interfaces with the true number of
cell interfaces having an error indicator larger than the refinement threshold versus
the number of mesh adaptations. Note that the estimation of the first adaptation is
indeed very accurate, since the FACESADDEDPERFLAG ratio is tuned for the first adap-
tation step. Since the number of cell interfaces is underestimated for 1.5 < y < 2.5,
a value of 1 for y has also been tried.

Tab. 2 shows that the extrapolation of histograms is most accurate for an error in-
dicator that is assumed to be proportional to h1.5 (Implying that the solution does
change with mesh refinement) and a FACESADDEDPERFLAG ratio of 3.53. A FACESADDED-

PERFLAG ratio of 3.53 seems large, however is not because refinement tends to be
rather isotropic due to the error indicator used (see also Fig. 4(b)).
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(a) Histogram after 1 adaptation: 25.4k cells.
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(b) Histogram after 2 adaptations: 38.6k cells.
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(c) Histogram after 3 adaptations: 46.6k cells.
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(d) Histogram after 4 adaptations: 47.5k cells.

Figure 5: 2 log (error indicator) histogram of adapted grids DU91-W2-250 test case:
the frequency is given on the vertical axis whereas the 2 log (error indicator) value
is given on the horizontal axis. Error indicators that have a value larger than the
refinement threshold are assumed to shift 1.5 units to the left with refinement. The
refinement threshold is 1.5.

In Fig. 5 the histogram estimation is compared to the actual error indicator dis-
tribution. The refinement threshold in this case is equal to 1.5. Hence, all error
indicators that have a value larger than 1.5 are flagged for refinement. Note that the
part of the histogram where error indicators have a value larger than the refinement
threshold is estimated more accurately than the error indicators in the bins 0 and
smaller. This is because according to the estimations the frequencies of bins smaller
than 0 cannot increase, while this can happen in reality due to a different propor-
tionality of the error indicator, changes in the solution and additional refinement to
satisfy the quality rules.

Note, when y is fixed, the tuning can be made fully automated, because it is pos-
sible to adjust the value for FACESADDEDPERFLAG based on the extrapolated and true
histograms. It is recommended to use a value for y of 1.5 and an initial value for
FACESADDEDPERFLAG of 3.53.

4.4 Tuning the number of mesh cells added per refinement flag

Tab. 3 displays the increase in mesh cells for the different grid adaptations for
the DU91-W2-250 test case. From this table it can be concluded that the ratio of
cells added per refinement flag (‘total / # flags’) does not differ much for the first
3 adaptations, i.e. it is between 1.50 and 1.68. After the third adaptation there
is larger variation. However, most grid cells are added during the first three grid
adaptations so we assume this ratio to be equal to 1.6.
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Table 3: Increase in mesh cells for the DU91-W2-250 case for a certain refinement
threshold.

a0→ a1 a1→ a2 a2→ a3 a3→ a4 a4→ a5 a0→ a5

total 12280 13199 7982 931 277 34669
in bound. layer grid 4224 1540 506 88 0 6358

Cartesian 8056 11659 7476 843 277 28311
satisfy quality rules 139 300 231 118 73 861

# flags 8191 8271 4742 466 137 21807
total / # flags 1.50 1.60 1.68 2.00 2.07 1.59

4.5 Computation of the refinement threshold

In the previous sections it has been shown that the histograms corresponding to
the solutions on the adapted grids can be extrapolated based on the solution on the
initial grid. This has been accomplished by assuming that the error indicator is
proportional to h1.5 and tuning the estimated number of cell interfaces added per
refinement flag. The number of grid cells on next adapted grids is estimated by
tuning the estimated number of grid cells added per refinement flag. Hence, based
on the solution on the initial grid and the number of grid adaptations that will be
performed it is possible to estimate the number of grid cells on the final adapted
grid. This can also be reversed which makes it possible to compute the refinement
threshold based on a user desired number of grid cells and user desired number of
grid adaptations on the final adapted grid. How to determine the number of grid
adaptations is topic of the next section.

5 Number of grid adaptations

It is commonly believed that an equidistribution or a strict upper bound for the
error indicator distribution results in the highest numerical accuracy for a given
number of mesh cells, see for example [Aftosmis and Berger (2002); Hall and
Zingg (1995)]. However, to obtain an equidistribution or an upper bound, many
adaptations may be required which can be computationally expensive. In this sec-
tion it is investigated if a strict upper bound is advantageous for the computational
efficiency.

Fig. 6(a) shows the number of grid cells as function of the number of adaptations
for three different user desired settings for the number of grid cells. Because the
number of grid cells is set to a certain value it should be (approximately) the same
regardless the number of grid adaptations. Fig. 6(a) shows that this is the case,
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except for case: ‘target 35k cells, 2 adaptations’ and case: ‘target 75k cells, 1
adaptation’. In the first case the target is not reached because the solver diverged
after 1 adaptation, whereas in the latter case the target is not reached because the
initial grid was too coarse1. Hence, we can already conclude that the strategy to
compute the refinement threshold results in a grid that contains approximately the
number of grid cells as desired by the user.

Number of grid adaptations

N
u
m

b
e
r

o
f
g
ri

d
c
e
ll
s

target 35k cells
target 50k cells
target 75k cells

0 2 4 6
2

4

6

×104

(a) Number of grid cells.

Number of grid adaptations

C
p
u

c
o
st

s
[m

in
]

target 35k cells
target 50k cells
target 75k cells

0 2 4 6
0

200

400

600

(b) CPU costs.

Number of grid adaptations

R
e
la

ti
v
e

e
rr

o
r

in
li
ft

[%
] target 35k cells

target 50k cells
target 75k cells

0 2 4 6
2

4

6

8

10

(c) Relative error in lift.

Number of grid adaptations

R
e
la

ti
v
e

e
rr

o
r

in
d
ra

g
[%

] target 35k cells
target 50k cells
target 75k cells

0 2 4 6
0

10

20

30

(d) Relative error in drag.

Figure 6: Number of grid cells, CPU costs and relative error in lift and drag as
function of the number grid adaptations DU91-W2-250 case.

Fig. 6(b) shows the CPU costs as function of the number of grid cells. Remarkably
the CPU costs are rather insensitive to the number of grid adaptations. This is
because the cost driver for these cases is to drive the nonlinear residual on the final

1 The maximum number of grid cells after 1 adaptation is less than 4 times the number of grid cells
of the initial grid because of different refinement strategies for the body conformal and Cartesian
cells.
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(a) target 50k cells, 1 adaption (51.9k cells, ref.
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(b) target 50k cells, 2 adaptions (48.7k cells,
ref. thres. is 1.31).
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(c) target 50k cells, 3 adaptions (52.6k cells,
ref. thres. is 1.56).
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(d) target 50k cells, 4 adaptions (53.8k cells,
ref. thres. is 1.56).

Figure 7: Final histograms of the error indicator distribution for different settings
DU91-W2-250 case. True number of grid cells and refinement threshold are given
between curley brackets.

grid below a certain threshold. It is, furthermore, striking that the CPU costs are
largest for the cases when only 1 grid adaptation is made. Apparently the cases that
use more grid adaptations result in a faster convergence on the final grid. This may
well be explained by a better initial solution on the final adapted grid because of
more intermediate iterations.

Fig. 6(c) and Fig. 6(d), furthermore, respectively show the relative error in lift and
drag. First of all these figures show that the adaptation strategy is consistent, i.e.
the larger the target set for the number of grid points, the higher the numerical
accuracy. The reduction in error is impressive when the number of grid adaptations
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is increased from 1 to 3 grid adaptations, whereas the reduction in error going
from 3 to 5 grid adaptations is marginal. The low relative error in lift against a
rather large (more than 100 percent) error in drag for a target of 75k cells and 1
grid adaptation is because the pressure distribution for this case is rather accurate
except for a wrong prediction of the stagnation pressure.

Finally, in Fig. 7(a) to Fig. 7(d) the error indicator distributions are shown for the
same target of grid cells (50k), however for different number of grid adaptations. To
meet the target set for the number of grid cells the refinement threshold is different
for these cases. From these figures it follows that the larger the number of grid
adaptations, the stricter the upper bound.

By comparison of Fig. 6(c) and Fig. 6(d) with Fig. 7(a) to Fig. 7(d) we can con-
clude that the numerical accuracy is highest when a strict upper bound is created.
Furthermore, because the CPU costs are virtually independent on the number of
grid adaptations, we can conclude that also the computational efficiency is highest
when a strict upper bound is created. Hence, to optimize the results obtained with
the adaptation strategy the number of grid adaptations should be chosen such that
a strict upper bound is created for the user desired number of grid cells.

6 Performance adaptation strategy

In this section the computational efficiency of the adaptation strategy is addressed:
how does it compare with results that have been obtained on manually optimized
grids. The adaptation strategy is therefore applied to three different flow problems:
1) the DU91-W2-250 case, 2) a transonic viscous flow over a NACA 0012 airfoil and
3) a three dimensional inviscid flow over an AGARD wing.

For these cases we have used the following settings: 1) the number of grid cells
is a priori defined 2) the number of grid adaptations is such that (approximately)
a strict upper bound is created and 3) the iterative convergence criterion on the
intermediate adapted grids is set to -3.5. Once more, our approach is rather uncon-
ventional because the number of grid cells is set and not the numerical accuracy.
This approach is useful when the number of allowed grid cells is limited, for exam-
ple for large three dimensional or unsteady flows. All cases have the same iterative
convergence on the final (adapted) grid and are obtained on a Pentium 4 2.6 GHz
processor. Finally, we strive for engineering order of accuracies (approximately 5
percent numerical error).

6.1 Subsonic flow over a wind turbine airfoil

This test case is the DU91-W2-250 case used previously. Although the difference in
final histogram is minimal (see Fig. 7), we have applied 5 grid adaptations to create
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a strict upper bound for the error indicator distribution. In Tab. 4 two adaptation
cases are compared with 2 grids that have been used for the grid convergence study.

Table 4: Computational efficiency of the adaptation strategy DU91-W2-250 test case.

case εcl εcd CPU costs # mesh cells
initial grid 8.1% 106% 35.5 min 23.9k

5 adapt., target 50k cells 3.5% 7.2% 348 min 49.9k
5 adapt., target 75k cells 3.3% 4.2% 509 min 73.9k

man. opt. 1 5.3% 10% 514 min 50.6k
man. opt. 2 3.0% 4.7% 917 min 78.9k

(a) Overview. (b) Close up.

Figure 8: Adapted grid DU91-W2-250 test case: ‘5 adap., target 50k cells’.

From Tab. 4 it follows that the adaptation strategy performs very well compared
with the results obtained on the manually optimized grids (which required a sub-
stantial amount of man hours). For the same order of numerical accuracy, the com-
puting time required is much lower (approximately 30 to 40 percent) when the
adaptation strategy is employed. Fig. 8 shows the adapted grid for case ‘5 adapt.,
target 50k cells’.

6.2 Viscous transonic flow over NACA0012 airfoil

The NACA test case concerns viscous flow with a Reynolds number of 1.0 · 107

and a Mach number of 0.80 over a NACA0012 airfoil at an angle of attack of 1.25
degrees. This case has a supersonic region on the lower and upper side of the airfoil.
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6.2.1 Numerical benchmark

In the same way as described in Section 2.4 the grid convergence study is per-
formed, Fig. 9 shows the results. The coarsest grid contains 98k cells and the finest
1073k. For the lift coefficient a value of 0.25482 is found and for the drag coeffi-
cient a value of 0.024678.
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Figure 9: Lift and drag coefficient versus hi
h1

NACA test case. Open circles are results
from the benchmark study whereas the solid line is the least squares approximation.

6.2.2 Results and discussion

As already discussed in Section 3.2 solution based grid adaptation should be ap-
plied with great care when supersonic / transonic flows are computed. This is be-
cause the sharpness of the shock tends to increase with adaptation. Hence, although
a multiplied difference is used, the error indicator in the shock will hardly decrease
with grid adaptation. We, therefore, do not try to achieve a strict upper bound for
the error indicator distribution, however limit the number of grid adaptations to 3
to avoid over refinement of the shocks.

In Tab. 5 a comparison is made between the computational cost and numerical
accuracy obtained on the manually optimized grids and with the adaptation strategy.
First note that the numerical accuracy obtained on the initial grid is rather high.
Fig. 10, however, shows that this is caused by cancellation of errors, i.e. the shock
is not captured on the initial grid.

Tab. 5 shows that also for the NACA case the proposed strategy to compute the
refinement threshold works very well, i.e. the number of grid cells on the final
adapted grid is almost equal to the target set.
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Table 5: Efficiency adaptation strategy applied to the NACA test case.

case εcl εcd # cells CPU costs
initial grid 5.72% 1.65% 17.7k 68.3 min

3 adap., target 100k cells 4.85% 1.07% 97.9k 538 min
3 adap., target 150k cells 2.65% 0.268% 148k 865 min

man. opt. 1 5.08% 1.90% 167k 433 min
man. opt. 2 2.22% 0.688% 309k 690 min

From Tab. 5 it, furthermore, follows that for the same numerical accuracy the adap-
tation strategy leads to slightly larger CPU cost than obtained on the manually op-
timized grids. However, for these cases the CPU costs to manually optimize the
grids have been omitted. Hence, many hours of gridding have been saved. The
adaptation strategy, therefore, also performs well for this supersonic case.

Finally, Fig. 11 shows the adapted grid for case ‘3 adap., target 150k cells’. The
‘sharp’ edges from finer to coarser cells are caused by the layout of the initial grid.

6.3 Euler subsonic flow over AGARD wing

The AGARD test case concerns three dimensional inviscid flow with a Mach number
of 0.80 over an AGARD 445.6 wing at an angle of attack 5 degrees. The AGARD

wing consists of a symmetric NACA 65A004 airfoil with a sweep angle of 45◦ and
a taper ratio of 0.66.

6.3.1 Numerical benchmark

In the same fashion as described in Section 2.4 the grid convergence study is per-
formed. Fig. 12 shows the results for the Euler flow over the AGARD wing. The
coarsest grid contains 151k cells and the finest one 5480k cells. For the lift co-
efficient a value of 0.01266 and for the drag coefficient a value of 7.455 · 10−4 is
found. Note that grid convergence is less smooth than for the previous cases. We
believe this is caused by different grid quality from one grid to another. Due to the
nature of our unstructured grid generator low orthogonal cells are formed around
sharp edges.

6.3.2 Results and discussions

When the number of dimensions is increased from 2 to 3 the tuning parameters in
the strategy to compute the refinement threshold cannot be kept constant, because
a cell can now be subdivided into 8 children. In the same fashion as described in
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Figure 11: Adapted grid NACA case: ‘3 adap., target 150k cells’.
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Section 4.3 these parameters are tuned to the following values: ‘FACESADDEDPERFLAG

ratio’ = 40 and ‘ratio of cells added per refinement flag’ = 2.6. The proportionality
of the error indicator with respect to cell size is not modified, because the same
error indicator is used.

Although the difference is small, for the AGARD case and for a target number of grid
cells of 100k and 200k, 1 or 2 grid adaptations yield the most strict upper bound,
see Fig. 13. We believe this is caused by decreasing grid quality when several
grid adaptations are performed. The proposed strategy to compute the refinement
strategy, however, also works well in three dimensions as can be concluded from
Fig. 14, i.e. for all settings for the number of grid adaptations the user desired target
for the number of grid cells is achieved.

In Tab. 6 the computational efficiency of the adaptation strategy for the AGARD

case is addressed. From this table it can be concluded that the adaptation strategy
also performs well for this three dimensional case, i.e. for the same computational
costs the numerical accuracy achieved with the adaptation strategy is higher. Fur-
thermore, the gain in user comfort is significant: manually optimizing the grids for
this test case has been a rather time consuming phase.

Table 6: Efficiency adaptation strategy applied to the AGARD case.

case εcl εcd # cells CPU costs
initial grid 11.8% 1.08% 57.0k 4.0 min

1 adap., target 100k cells 10.6% 1.49% 109k 16 min
1 adap., target 200k cells 5.57% 2.08% 204k 36 min

man. opt. 1 5.30% 16.2% 124k 35 min
man. opt. 2 5.30% 2.75% 151k 60 min

7 Conclusions

Goal of this paper is to enable numerically accurate and computationally efficient
grid adaptation for flow around wind turbine airfoils. Key point is the development
of a new strategy to compute the refinement threshold that is fully automated and
enables a strict control on the mesh size growth.

In this paper it has been shown that the refinement threshold can be computed based
on the user desired number of grid adaptations, the user desired number of grid cells
and the error indicator distribution corresponding to the solution on the initial grid.
Furthermore, it has been shown that the adaptation strategy enables computation-
ally efficient and numerically accurate subsonic flow computations. Also for the
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(a) target 200k cells, 1 adaption (204k cells,
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(b) target 200k cells, 2 adaptions (231k cells,
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(c) target 200k cells, 3 adaptions (193k cells,
ref. thres is 6.35).
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Figure 13: Final histograms of the error indicator distribution for different settings
AGARD case. The most strict upper bound is obtained when only 1 grid adaptation
is applied. True number of grid cells and refinement threshold are given between
curley brackets.
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supersonic case, with the number of grid adaptations limited to avoid over refine-
ment of the shock, the adaptation strategy has been shown to yield computationally
efficient and numerically accurate flow computations.

Grid quality for three dimensional cases is a candidate for further improvement.
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