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Abstract

Online searching for healthcare information has gradually become a widely used
internet case. Suppose a patient suffers the symptom but is unsure of the action he
needs to take, a self-diagnosis tool can help the patient identify the possible conditions
and whether this patient needs to seek immediate medical help. However, the accuracy
and quality of the service provided by those self-diagnosis tools are still disappointing
and need further improvement. This thesis focuses on an automatic differential diag-
nosis task with a comprehensive evaluation of reinforcement learning methods. Also,
we present a systematic method to simulate medically correct patients records, which
integrates a standard symptom modeling approach called NLICE. In this way, we can
bridge the gap between limited available patients records and data-driven healthcare
methodologies. This project investigates both flat-RL methods and hierarchical RL in
an automatic differential diagnosis setting and evaluates the performance of those two
kinds of methods on simulated patients records. More specifically, the action space
for the differential diagnosis task is inevitably large, so the flat-RL performs relatively
poorly in complicated scenarios. The hierarchical RL method can split a complex
diagnosis task into smaller tasks: it contains two-level of policy learning, and each
low-layer policy imitates one medical specialty. Therefore hierarchical RL method
increases the Top 1 success rate from 23.1% in flat-RL method to 45.4%.

Besides the advanced policy learning strategy, this thesis explores the ability of
NLICE symptom modeling in distinguishing conditions that share similar symptoms.
The experimental results experience increases in flat-RL and hierarchical RL models
and finally achieve 36.2% and 71.8% Top 1 success rates, respectively. To further solve
the sparse action space problem in the automatic diagnosis domain, the reward shaping
algorithm is implemented in the reward configuration part. The average gained reward
of hierarchical RL increases from -3.65 to 0.87. Additionally, we model the gen-
eral demographic background of patients and utilize contextual information to perform
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the policy transformation strategy, which eliminates the miss classification problem in
highly sex-age related diseases.
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Chapter 1

Introduction

1.1 Motivation

Medical history taking, or “anamnesis,” is a fundamental diagnostic procedure of the med-
ical consultation, illustrating the source and reason for a health issue. In almost 70 to 80
percent [4] of all primary health cases, a valid diagnosis can be made based on the medical
history of the patient alone. However, this essential step toward making an accurate diag-
nosis is one of the most complicated and time-consuming tasks a doctor must undertake.
A medical consult usually allocates more than 50 percent of the time spent on the medical
history-taking process.

With the advent of recent pandemic concerns, population aging, and increased use of
healthcare services, the primary healthcare sector faces unprecedented workplace pressure.
This growing issue calls for expert solutions that can unburden global primary healthcare
systems and for focus on increasing cost-effectiveness and clinical workflow efficiency. For
instance, the survey reveals that in 2012 [18], 35% of adults in the U.S. had ever tried an
online symptom checker or other medical interaction systems to accomplish self-diagnosis
for their diseases. They usually begin by searching a symptom in a search engine like
google and gain the diagnosis recommendation results. Even though fast accessibility and
no cost are advantages of the online-engine automatic diagnosis, the quality and accuracy
still are disappointing. In addition, some online symptom checkers still suffer from insuffi-
cient gathering of demographic information from patients [19], which limits the diagnosis
accuracy.

One promising method to achieve such automation is to explore data-driven reinforce-
ment learning models to automate the medical history-taking process. In collaboration with
Medvice - a Dutch Healthcare Startup which focuses on automating as much of the in-
teraction between patient and doctor as possible - this project explores the design of such
an automatic diagnostic system, which could perform a fully autonomous medical history-
taking session. This session is also called anamnesis, a process to gather relevant medical
symptom information from a specific complaint.

This project aims to develop a “dialogue” system for the automatic medical diagnosis
that converses with patients to collect related symptoms and automatically makes a diag-
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1. INTRODUCTION

nosis. During the interaction process between the patient and the Anamnesis AI interface,
our interface will interact with a patient, ask questions about their symptoms based on the
interaction results, and then attempt to create a differential diagnosis.

1.2 Problem statement and research questions

As the motivation above illustrates, due to their several disadvantages, healthcare online
symptom checkers are still not able to satisfy the patients’ needs and would result in in-
correct differential diagnoses in many cases. As a result, the main research question we
investigated in this thesis could be summarized as: what reinforcement learning algorithm
could achieve high efficiency and accuracy of clinical workflows, reduce clinician work-
load, manage finite resources and help patients access the most appropriate care pathway
more rapidly.

Another challenge in the current online symptom checker system is obtaining reliable
and realistic patient records due to privacy concerns and copyright limitations. Even though
there are databases that are built based on symptom-disease pair probability relationships,
these are still insufficient to reflect the symptom representation in the real world. In addition,
the symptom-disease pair probability is not always medically correct and does not have
medical experts’ validation. Another reason is the insufficient expression of symptoms.
More specifically, the same symptom may appear in various diseases, but the characteristics
of such symptoms vary with multiple factors, e.g., age, gender, frequency, and effect on
specific body parts. Lack of symptom characteristics leads to differential diseases that share
the same symptom fails. Therefore, this project will also address building a reliable and
professional medical database to improve differential diagnosis.

1.3 Thesis contributions

Firstly, this thesis investigates a feasible methodological approach to applying reinforce-
ment learning models using simulated historical training data. From formulating the au-
tomatic diagnosis problem to developing an automatic diagnosis chatbox, this project will
design a feasible symptom chatbox prototype with the purpose of assisting the medical
professional and focusing on developing data-driven reinforcement learning models to au-
tomate the medial history-taking process dynamically.

Secondly, to bridge the gap between limited available patient data and data-driven
methodologies, we propose an approach to generate synthetic clinical data. As discussed
before, distinguishing diseases by only relying on symptoms-diseases probability is not
reliable; we enrich the medical database with extra information in collaboration with med-
ical experts in Medvice. In addition, we created a symptom modeling standard approach
and named it NLICE modeling, which contains nature, duration, what situations excite the
symptom, etc. We could provide a feasible, reliable, and medically correct patient database
for further research in the automatic diagnosis area.

2



1.4. Outline

1.4 Outline

The thesis is organized as follows. Firstly, we discuss the objective of this thesis in Chap-
ter 1. Chapter 2 introduces current data-driven decision support systems that have been
implemented to facilitate medical doctors in the automatic diagnosis domain. The funda-
mental concepts of reinforcement learning algorithms are also included in this chapter as
a reference. We discuss the detailed synthetic data generation procedure in Chapter 3. In
Chapter 4, an in-depth explanation is provided for our solution including the methodol-
ogy and implementation approach, followed by the experimental results and discussion in
Chapter 5. Finally, Chapter 6 concludes the thesis and lists future research directions.
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Chapter 2

Automatic diagnosis via
reinforcement learning

2.1 Background

In the healthcare domain, differential diagnosis is a dynamic interaction between patients
and doctors. Doctors will generally analyze patient information such as symptoms and
demographic information (medical history, age, gender, etc.) to identify patients’ possible
diseases and then differentiate them from other cases that may share similar situations. In
most cases, patients usually see a doctor and want to inform doctors of their symptoms by
answering questions. Nevertheless, few doctors will directly diagnose based on patients’
self-reported records. They usually continue to ask more questions or perform clinical tests
to make a final diagnosis decision. Usually, gathering those patients’ information via asking
a series of questions is called the clinical decision process. However, the rules for making
diagnosis decisions are still unclear because of the high prevalence of complex diseases and
dynamic changes in patients’ clinical conditions.

The process of determining a differential diagnosis can be modeled in a number of
ways and involves several aspects. One of the first methods proposed for this purpose
is the use of decision trees and utility functions, to decide what test to take [10]. These
methods have limited accuracy and applicability in real-world scenarios. In order to achieve
reasonable prediction accuracy, Bayesian inference [11] was proposed. [12, 11] implement
entropy or impurity functions to pick symptoms based on the theory of information gain.
To further acquire additional information, analysis of medical imaging and radiology was
shown in [14], which firstly accesses the health status of a patient, and may decide to take
additional measurements such as diagnostic tests or imaging scans before making a final
diagnosis decision. However, these works generally adopt certain greedy or approximation
schemes since computing the global maximum of information gain is intractable, and hence
this approach results in a reduction in accuracy. Moreover, the problem formulation in
these approaches is ambiguous and complex, which limits their generality and applicability.
Abstracting differential diagnosis to a simplified problem can more likely be extended to
more general cases.

Reinforcement learning [21] is a goal-oriented learning strategy wherein an agent or
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2. AUTOMATIC DIAGNOSIS VIA REINFORCEMENT LEARNING

Agent

Environment

action

At

Rt+1

St+1

Rt

rewardstate

St

Policy

Transition = (s0,a0,s1,a1.....)

Figure 2.1: RL method for learning by interaction

a decision-maker learns a policy to maximize a reward function by interacting with the
environment. Figure 2.1 shows the action-reward loop of a general reinforcement learning
model. Deep reinforcement learning has proven to improve the efficiency and to achieve
certain human-level accuracy in multiple control domains, such as game playing, computer
vision, and autonomous control. An example is Alpha Go, a reinforcement learning agent
for playing the strategy board game Go. Given the current state of the Go stones, Alpha Go
is able decide where to next place the white/black stone on the board based on its learned
optimal policy. Therefore, given the dynamic nature of the automatic differential diagnosis,
reinforcement learning (RL) is particularly suitable for symptom checker settings.

2.2 Diagnosis dialogue system as a markov decision process

2.2.1 Terminology

An automatic diagnosis dialogue system is a diagnosis system that requests symptoms au-
tomatically from patients, gradually building a symptom profile, then finally makes a de-
cision about a diagnosis. We could formulate this process as Markov Decision Processes
(MDPs) [7] and employ reinforcement learning based approaches for policy learning in this
system. At the beginning of this section, we will first briefly introduce the basic terms we
used in the reinforcement learning approach (see Figure 2.1).

1. Agent: A reinforcement learning agent is the entity trained to make correct decisions.

2. Environment: The environment is the object or surrounding which the agent interacts
with.

3. State: The State defines the agent’s status at the current timestamp.

6



2.2. Diagnosis dialogue system as a markov decision process

4. Action: The choice that the agent makes at current the timestamp based on the current
State. We should pre-define the Action Space as a set of actions that an agent can
perform.

5. Transition: the function that could calculate the probability of transferring to next
State given the current State and Action.

6. Reward Function: the expected reward over all the possible states that one can tran-
sition to from State s.

7. Policy: Policy is the algorithm behind an agent picking an action. In practice, it is a
probability distribution assigned to the set of actions. Highly rewarding actions will
have a high probability and vice versa.

2.2.2 Markov decision process (MDP)

RL is associated with the more difficult setting in which no prior knowledge about the
Markov decision process is presented. Therefore the basic definition of MDP can be found
as follows.

At each step, an RL agent obtains evaluative feedback about the its action, allowing it
to improve the performance of succeeding actions. Generally, Markov Decision Process is
defined by

(S,A,P,R,γ) (2.1)

where S is States, A is set of Actions, P represents the probability transition function, R
means reward, γ means discount factor.

By applying action a ∈ A in a states ∈ S, the system makes a transition from s to a new
state s0 ∈ S, based on a probability distribution over the set of possible transitions [23]. The
probability ending up in state s0 after doing the action, a state s is denoted by T(s, a, s0).

P(st+1|st) = Pt(st+1|s1...st) = T (st ,at ,st+1) (2.2)

which means that the future state at timestamp t+1 only depends on present state at times-
tamp t.

In Markov Decision Process, Transition is defined as follows:

Pa
ss′ = P[st+1 = s′|st = s,at = a] (2.3)

and Reward Function is defined as:

Ra
S = E[rt+1|st = s,at = a] (2.4)

The state reward Ra
s is the expected reward in all the possible states that one can transit to

from state s. Furthermore, according to the state transition probability and reward function
defined before, the rewards and the next state also depend on the agent’s action in the earlier
timestamp.

As mentioned before, a policy function defines the algorithm behind making a decision
or picking an action. It also illustrates the behind behavior of an RL agent. Formally, a

7



2. AUTOMATIC DIAGNOSIS VIA REINFORCEMENT LEARNING

policy is a probability distribution over the set of actions a, given the current state s, i.e., it
gives the probability of picking an action at state s. Moreover, policy function is defined as:

π(a|s) = E[rt+1|at = a,st = s] (2.5)

The MDP is solved to get an optimal policy π. A policy π is defined as π(s)→ a, which
is a mapping from states to actions that typically represents the behavior of the agent. π∗ is
an optimal policy that maximizes the cumulative reward at the end of an interaction session.

2.2.3 Automatic diagnosis system formulation

In this chapter, we define a diagnosis dialogue system as progress that tries to achieve as
much as high differential diagnosis accuracy efficiently through a series of interactions with
the user. We show that by quantifying the terms efficiency and achievement of application
goal in terms of an objective function, the dialogue system can be described as a known
stochastic model MDP that can be used for learning the differential diagnosis strategy for a
given patient’s state.

Moreover, before we formulate the automatic diagnosis system, some notations should
be first built. We use I and D to represent the set of all symptoms and all diseases. In
the diagnosis context, the way that the agent interacts with a patient could be found as
follows: at the beginning of the dialogue session, the agent is provided with a symptom
that the patient has from the set of all symptoms I. This initial symptom is regarded as
the main complaint and provided by the patient. The agent picks a symptom i ∈ I to ask
the patient at each round step. Then this patient responds to the agent with a Yes or No
answer indicating whether he/she is suffering from that particular symptom. At the end of
the diagnosis interaction, the agent predicts a disease that the patient may have from all
sets of all diseases D. In reinforcement learning concepts, the agent’s goal is to maximize
the expected reward during the interaction process. Therefore the final goal of automatic
diagnosis system is to correctly predict diseases and inquire as much as possible correct
symptoms the user may suffer.

We also formulate the state space and action space as follows:

1. State: A state s contains symptoms requested by the agent and informed by the user
till the current time t, the earlier response of the user, the earlier action of the agent,
and the step information. Regarding the representation of symptoms, its dimension is
equal to the number of sets of symptoms, whose elements for positive symptoms are
1, negative symptoms are -1, not sure symptoms are -2, and not mentioned are 0 [13].
Each state s ∈ S is the concatenation of these three vectors.

2. Action: In time step t, the agent receives a state St and then selects an action from a
discrete action set A according to a policy . In our formulation, A = I ∪D.

The goal for the agent is to find an optimal policy so that it can maximizes the expected
cumulative future discounted rewards

Rt =
T

∑
t ′=t

t ′−tr′t (2.6)

8



2.3. Reinforcement learning based methods

where γ ∈ [0,1] is the discounted factor and T is maximal turn of current dialogue ses-
sion. The Q-value function

Qπ(a,s) = E[rt |at = a,st = s,π] (2.7)

is the expect of return of taking action a in state s following a policy π.
The optimal Q-value function is the maximum Q-value over all possible policies:

Q∗ (s,a) = maxπQπ(s,a) (2.8)

It follows the Bellman equation:

Q∗(a,s) = Es′ [r+ γmaxQ∗(s′,a′)|s,a] (2.9)

where a′ ∈ A, policy π is optimal if and only if for every state and action,

Qπ(s,a) = Q∗(s,a) (2.10)

Then the policy can be reduced deterministically by

π(a|s) = argmaxa∈AQ∗ (s,a) (2.11)

2.3 Reinforcement learning based methods

The main challenge of the automatic diagnosis task is how to gather the underlying dynam-
ics and uncertainties of the reasoning process, then inquire about accurate symptoms under
limited labeled data and within limited interaction turns. Most current methods usually ad-
dress this problem as a sequential decision-making process, then formulate the process as
Markov Decision Processes and employ Reinforcement Learning for policy learning. RL
learns what is the next symptom should be asked and make a disease diagnosis at the end
of session, which partly deviates from the doctor’s diagnostic procedure. This chapter lists
some state-of-the-art reinforcement learning models for automatic disease diagnosis.

2.3.1 Policy learning with Deep-Q network

DeepMind firstly developed the DQN (Deep Q-Network) algorithm in 2015 [16]. DQN
could solve a wide range of Atari games (some to superhuman level) by combining re-
inforcement learning and deep neural networks at scale. Before the DQN was proposed,
q-learning was the most mainstream reinforcement learning algorithm, which used a table
to store the state function and action function [25]. The basic idea behind q-learning is to
estimate the action-value function by using the Bellman equation as an iterative update,

Qi+1(s,a) = E[r+ γmax
a′

Qi(s′,a′)|s,a] (2.12)

Such value iteration algorithms converge to the optimal action-value function, Qi → Q∗ as
i → ∞ [20]. However, this basic approach is impractical in practice because the action-
value function is estimated separately for each sequence without any generalization. In
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2. AUTOMATIC DIAGNOSIS VIA REINFORCEMENT LEARNING

other words, representing the Q-function as a table containing values for each combination
of s and a is impossible for the automatic diagnosis task. Rather, it is typical to use a
function approximator to estimate the action-value function Q(s,a;θ) ≈ Q ∗ (s,a), where
θ is a parameter included in neural network. DQN enhances the q-learning algorithm by
replacing the value-state table with a neural network and experience replay technique.

The function approximator could be done via the minimizing the following loss at each
step t :

Li(θi) = Es,a,r,s′∼ρ(.)[(yi −Q(s,a;θi)
2] (2.13)

where yi = γmaxa′Q(s,a;θi−1). the parameters from the previous iteration θt−1 are fixed
and not updated. We use a ”target network” to copy the network parameters from a few
iterations back instead of the latest iteration.

To avoid calculating the full expectation in the DQN loss, we can minimize the loss
using stochastic gradient descent. If the loss is computed using just the latest transition
s,a,r,s′, this will be reduced to standard Q-Learning.

Besides target network techniques, Atari DQN work [16] proposed a new technique
called Experience Replay to update the network parameters stably. The transitions are added
to the replay buffer at each data collection step. Then during the training procedure, not use
just the latest transition to calculate the gradients and weights. They compute them using
a mini-batch of transitions sampled from the replay buffer. This could contribute to two
main advantages: higher data efficiency by reusing each transition in many updates and
improving stability using uncorrelated transitions in a batch.

2.3.2 Flat-RL based method

A flat RL Agent is trained with a classic flat reinforcement learning method that uses gained
rewards to learn a signle-layer dialogue policy. Existing work [22, 26] employs flat rein-
forcement learning (flat-RL) based methods for the policy learning of the diagnosis system.

The basic idea behind the flat-RL method [26] is discussed next. As Figure 2.2 shows,
there are two entities in the system: agent and patient. The agent is a DQN network and
works as a doctor. The patient works as an environment and interacts with the agent. The
patient’s feedback usually contains diagnosis response and inquiry response, which depends
on the type of action the agent picks. If the agent picks an inquiry action, the patient
responds to this inquiry and continues to the next round. Otherwise, the patient is informed
of the diagnosis results, and then the whole session is terminated.

At each turn T, the user takes action At , according to the current user state St , and the
previous agent action At−1, and transits into the next user state St+1. The user initiates
every dialogue session via the user action Au, consisting of the requested diseases and all
symptoms. As for symptoms requested by the agent during the dialogue, the user will take
one of the three types of actions, including True (the symptom appears), False (the symptom
does not appear), and not sure (the symptom is not known) after inquiring about a certain
number of symptoms. Then the agent picks an action that belongs to diseases as the final
diagnosis. The reward will be positive if the agent predicts the right disease or the symptom
appears in the user’s true symptoms. Meanwhile, the correct predicted disease status means
that this dialogue session will be terminated as successful by the patient. Otherwise, the
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Agent(DQN)

Patient
State(t+1)

Action(t)

Reward(t+1)

Terminal

Diagnose response

Inquiry response

Figure 2.2: Flat-RL based method architecture [26]

dialogue session will be treated as failed if the agent makes an incorrect diagnosis or the
dialogue turn reaches the maximum dialogue turn T [26].

The flat-RL method employs a deep-Q network [16] for parameterizing the policy,
which takes the state st as input and outputs Q(st ,a|θi) for all actions a. A Q-network
can be trained by updating the parameters θi at iteration i to reduce the mean squared error
between the Q-value computed from the current network Q(st ,a|θi) and the Q-value ob-
tained from the Bellman equation yi = r+ γmax

a′
Q(s0,a0|θi), where Q(s0,a0|θi)is the target

network with parameters θi from some previous iterations.
Even though the performance result in [26] shows that it could achieve 57 percent ac-

curacy in the self-constructed dataset for diagnosis, this accuracy level could not reflect the
diagnostic procedures in the real world. One reason is that the task-orientated dataset used
for evaluation only contains four types of diseases. Therefore, it only indicates that the flat-
RL method could be reasonable for simple tasks with only small action space. Besides the
lack of large-scale dataset evaluation, the interaction way could not represent the doctor’s
hospital behavior.

More comprehensive experiments on large-scale synthetic clinical data could be found
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2. AUTOMATIC DIAGNOSIS VIA REINFORCEMENT LEARNING

in another flat-RL method [22], which proposes flat-RL models in an anatomical manner
to simulate real doctors who belong to different departments in hospitals. Anatomical-
Rl method creates model to be an ensemble model of various anatomical parts: M =
{mp|p ∈ P}. They selected eleven representative body parts:

P = {abdomen,arm,back,buttock,chest,general symptoms,head, leg,neck, pelvis,skin}
(2.14)

The model mp of each anatomical part p ∈ P is responsible for a subset of diseases Dp ∈ D.
Similarly, it represents the subset of the symptoms associated with mp by Ip ∈ I. DQN is
selected as the Q-value estimator for each anatomical part model mp. The action set of mp

is Ap = Ip ∪Dp. The state sp for mp is a combination of related symptom statuses. Then
they trained those eleven models mp simultaneously, and each trained model was in charge
of an anatomical part p.

When a patient asks about an initial symptom i to the anatomical-Rl system, it will
select the representative model mrepr that has the highest accuracy for initial symptom i by
using SymptomModelMapping algorithm [22]. The actual inquiry and diagnosis process
is performed by the mrepr. This concept is similar to the real hospital, where they regard
different anatomical parts as several experts, and then these experts jointly perform practical
inquiries and diagnoses.

2.3.3 Hierarchical reinforcement learning

However, existing flat-RL approaches to automatic diagnosis problem typically work well in
simple tasks but have significant challenges in complex scenarios. Although flat-RL meth-
ods approaches have shown positive results for symptom acquisition [26], when it comes to
hundreds of diseases in the real-world, flat-RL policy learning setting is impractical. Fur-
thermore, anatomical-Rl [22] method outperforms flat-RL in large-scale synthetic clinical
data, the performance of anatomical-Rl method is still relatively disappointing, especially
in the dataset that contains more than 50 diseases. Besides that, several issues could also be
found in anatomical-Rl diagnosis procedure: For example, it is possible that the target dis-
ease does not belong to the disease set of the chosen anatomical part. Also, other anatomical
parts are not fully utilized because it only chooses a single anatomical part to interact with
users.

In order to solve the sparse action space problem existing in flat-RL methods, Hierar-
chical Reinforcement Learning (HRL) [17], in which multiple layers of policies are trained
to perform decision making, has been successfully applied to automatic diagnosis tasks.
The main idea in the currently proposed approaches [13, 9] is to perform a group of doctors
with different expertise who can jointly diagnose a patient. A group of doctors is called
low-layer agents. Each low-layer agent has a different action space as it only represents
diseases and symptoms related to its expertise. Since a patient can only accept an inquiry
from one doctor at a time, a host, called master agent in HRL terms, is in charge of ap-
pointing doctors of different expertise to inquire about the patient. As Figure 2.3 shows, at
each step, the master agent is responsible for appointing a lower-layer model to perform a
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master

worker1 worker2 worker n

patient

request symptom or inform disease

Internal
Critic

Extrinsic
reward

Intrinsic
reward

Figure 2.3: HRL-based method architecture[13]

symptom inquiry or a disease prediction. This approach essentially creates a hierarchy in
the HRL model by introducing a level of abstraction since the master agent cannot directly
perform inquiry and prediction actions. Moreover, several low layer works perform direct
interaction with the patient. Like the flat-RL system, the patient in the HRL method works
as an environment that interacts with agents. Internal critic in the HRL method defines the
reward configuration for each response given by the patient, and it will generate an intrinsic
reward for the current lower layer worker. Extrinsic reward is the accumulation of intrinsic
rewards from lower layer works.

Usually, hrl-based methods group all the diseases in D into h subsets D1,D2, ...,Dh,
where D1 ∪ D2 ∪ ·· · ∪ Dh = D and Di ∩ D j = for any i ̸= j and i, j = 1,2, · · · ,h. Each
Di is associated with a set of symptoms Si ∈ S, whose symptoms related to diseases in Di.
While worker wi is responsible or collecting information from user about symptoms of Si or
inform disease.Hierarchical Reinforcement Learning enables autonomous decomposition of
challenging long-horizon decision-making tasks into simpler subtasks, then reducing action
space when we have hundreds of diseases and symptoms.

2.4 Evaluation matrix

There are several famous metrics to evaluate the performance of the diagnosis system, in-
cluding success rate, average reward. That evaluation matrix could determine how effective
the trained agent is and perform as an approach for comparing different models on the same
task.
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2. AUTOMATIC DIAGNOSIS VIA REINFORCEMENT LEARNING

2.4.1 Top n success rate

Success rate =
Number o f SD

Number o f samples
(2.15)

where SD means successful diagnosis. Furthermore, generally, three kinds of conditions
could indicate that the dialogue is successful. Top 1 success means diagnosis ends with a
successful inform user correct Top 1 disease, and Top 3 or Top 5 success means that correct
disease is included in Top 3, or Top 5 informed diseases.

2.4.2 Average turn

Average Turn =
∑

N
i Li

Number o f samples
(2.16)

where N is equal to several episodes, Li means the number of turns in episodesi. Average
Turn could evaluate the average number of symptoms inquired by an agent. More symptoms
inquiries in an episode play a positive role in disease prediction. However, it will not be
user-friendly because patients usually do not have the patience to answer long series of
questions.

2.4.3 Matching rate

Matching rate means the proportion of dialogue requested about the at least one correct
symptom that the user indeed occurs.

Matching Rate =
Number o f matching samples

Number o f samples
(2.17)

2.4.4 Average reward

Namely, average reward is the average rewards that agent gained from environment.

Average Reward =
∑

N
i Ri

Number o f samples
(2.18)

2.4.5 Error confusion matrix

Error Confusion Matrix consists of multiple squares with two dimensions and is widely
used to evaluate classification problems. In the automatic diagnosis task, the square in an
error confusion matrix with true class i and predicted class j means a disease in medical
specialty group i is mis-classified into medical specialty group j by the disease classifier.

14



Chapter 3

Synthetic data generation

3.1 Symptom modeling: an NLICE approach

Due to privacy concerns and laws (e.g., the Health Insurance Portability and Accountability
Act; HIPAA), the clinical records from the real world may not be released publicly. Even
though current available medical datasets have been used for medical research domains, like
the MIMIC-III [8] and PCORnet [15], the scope is only limited to real-time interpretation of
data in the ICU setting. Thus, the current medical datasets lack the relationship information
between symptoms and conditions. These limitations in current medical datasets have led
several research efforts to resort to synthetically generated patient records. For example,
using data from publicly available medical databases such as PubMed [2], other sources
such as medical literature, published records of disease symptom relationships, etc. Sym-
cat, the most popular symptom-disease database, is widely used in the automatic diagnosis
task. Since each disease in Symcat is associated with a set of symptoms and probabilities,
i.e.,p(s|d). An example of disease-symptoms probabilities pair could be found in Table 3.1.
Besides relationships between symptoms and conditions, Symcat also includes the preva-

Condition Associated Symptoms Probability

abscess-of-the-pharynx

sore-throat 83%
fever 69%
nasal-congestion 58%
cough 51%
difficulty-in-swallowing 48%
ear-pain 34%
headache 34%
sharp-chest-pain 27%
coughing-up-sputum 27%
allergic-reaction 20%

Table 3.1: Selected sample disease of Symcat
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Condition Age distribution Probability

abscess-of-the-pharynx <1 years 8.9%
1-4-years 27.8%
5-14-years 22.2%
15-29-years 13.3%
30-44 years 10%
45-59 years 10%
60-74 years 3.3%
75+ years 4.4%

Table 3.2: Age distribution of a selected disease

lence of diseases and symptoms by age, gender, race, and ethnicity. An example of the age
distribution for abscess of the pharynx disease could be found in Table 3.2. that additional
relationship information could also be helpful to diagnosis correctly for diseases that share
similar symptoms. For example, there are several types of diabetes, but juvenile diabetes
typically appears in people who are under the age of 30, whereas Type 2 diabetes is more
common after age 45 [3].

Even though utilizing context information(age, gender) of a patient in a diagnosis pro-
cedure could mitigate the difficulty of identifying diseases that share similar symptoms, the
diagnosis procedure still heavily relies on symptoms appearing in a patient. During the
project, one thing that became apparent is that a true/false binary modeling of symptoms
is not enough to make proper distinctions, especially between diseases that showed simi-
lar symptoms. To address this problem, an alternative approach to Symptom Modeling is
explored.

3.1.1 Symptom data introduction

For most automatic diagnosis tasks, symptoms were modeled as binary values - a value
of 1 representing symptom presentation and 0 denoting an absence of the symptom. This
approach to modeling the symptoms was motivated by the nature of the data available in
Symcat. However, more information can be obtained about a symptom without having to
perform any laboratory or diagnostic tests. This approach to symptom inquiry and the po-
tential for improved performance over the more straightforward yes-no modeling approach
is the focus of this section.

3.1.2 NLICE description

When a particular symptom is expressed, the current symptom model marks the symptom as
being present (i.e., having a value of a positive integer). If it is absent, the value is negative
or zero. However, other characteristics of the symptom’s expression might help make a
differential diagnosis in practice. These characteristics are summarized with the NLICE
acronym, which is short for Nature, Location, Intensity, Chronology, and Excitation.
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Synthea’s expressive generic module framework meant that as long as statistical re-
lationships between these additional symptom descriptors and respective conditions were
present, realistic data could also be generated.

Nature

It is also possible to obtain the nature of the presented symptom. As an example, consider
cough, which is a common symptom associated with respiratory infections. A 1 or 0 ap-
proach to modeling this symptom ignores the different ways cough might present. Some
patients might experience a dry cough. Others might have a cough that produces mucus,
etc. These differences define the nature of the cough and provide information that might
make it easier to distinguish between diseases that have similar symptoms.

Location

The location of a symptom can also be a discriminating factor when making distinctions
between diseases. As an illustration, consider a patient who complains of abdominal pain.
The abdomen can be separated into four parts in medical anatomy: upper and lower right
quadrants and upper and lower left quadrants. There is also a division into nine regions:
right and left hypochondriac, right and left lumbar, right and left iliac, and the epigastric,
umbilical hypogastric regions [6]. Additional information on which regions/quadrants in
the abdomen are affected by this pain might help make easier recognition regarding the
causal disease.

Intensity

The symptom modeling should also have the ability to accurately evaluate the intensity of
a symptom. Symptom intensity could represent how severe the symptom presentation is.
It can also be a pointer to the causal disease. For example, pain is a typical ”experience”
in many symptoms. A patient suffering from appendicitis is likely to experience severe to
moderate abdominal pain.

One remark is that intensity is usually a uniquely personal experience. Sometimes it is
hard to quantify intensity as several factors accurately could heavily affect human experi-
ences, like a patient’s emotional and mental state [5].

Chronology

Chronology can be divided into three subterms: the first one is frequency, representing
how often the symptom happens. Furthermore, duration illustrate how long the symptom
persists, and finally onset is when the patient started experiencing this symptom. These
could also be additional factors when making a differential diagnosis.
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Condition Group Condition Name Condition Group Condition Name

Pulmonary

Covid

Neurological

Migraine
Seasonal influenza Tension headache
Pneumococcal pneumonia Subarchnoidal bleeding
COPD Radicular syndrome
Asthma Lumbago
Pneumothorax Cauda equina
Pulmonary edema Lumbar spinal stenosis

Gastrointestinal

Salmonellosis Carpal tunnel syndrome
Yersinosis Bacterial meningitis
Giardinasis Viral meningitis, enterovirus

Norovirus
Viral meningitis,
varicella zostervirus

Appendicitis
Functional constipation
Acute pancreatitis
IBS (Constipation)
Atrophic gastritis

Table 3.3: Selected conditions for NLICE Analysis

Excitation

Excitation refers to activities or scenarios that the patient performs or is exposed to that
activate or worsen the symptoms. For example, a patient might complain of heart pain only
while swimming. If we captured excitation information, we could also make for a more
accurate distinction between diseases.

3.2 Data collection

As mentioned before, the data supplied in Symcat was not immediately suited to NLICE.
modeling approach. Some symptoms present in Symcat did capture some components of
this approach e.g., some conditions presented with burning-abdominal pain and others with
sharp-abdominal pain (both distinctions made on the nature of the abdominal pain). How-
ever, this was not available for all the symptoms supporting the NLICE approach. Hence,
as a proof of concept, data for a small set of conditions were gathered from medical lit-
erature. This data-gathering effort was carried out by medical experts from our industry
collaborators at Medvice. The conditions were restricted to ten categories for the data col-
lection based on the medical specialty. The selected three groups of conditions are shown
in Table 3.3

For each of these conditions, data regarding typical symptoms, associated expression
probability, and NLICE characteristics were extracted manually from medical literature.
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Condition Symptom Probability NLICE Probability

covid-19

Cough 68% Nature: Mucus 33%
Altered breathing 47% Nature: Dyspnea 100%
Fatigue 38% N/A

Pain 14%
Location:Head 99.81%
Location: Chest 0.11%

Fever 43.8% Intensity: Mild 78.2%
Intensity: Moderate 18.2%
Intensity: Severe 3.5%

Soreness 14% Location: Throat 100%
Vomiting 5% N/A
Congestion 48% Location: Nose 100%
Discoloration 0.13% Nature:Blue (Cyanosis) 100%

Table 3.4: NLICE symptoms modeling for covid-19

Condition Age distribution Probability Gender distribution Probability

covid-19

0 - 14 years 1% male 42%
15 - 49 years 55% female 58%
50 - 64 years 30%
>65 years 15%

Table 3.5: Contextual information modeling for covid-19

One detailed example could be found in Table 3.4 and 3.5.
Using the generation method described in Section 3.3 NLICE datasets were generated

based on the modeling symptoms with NLICE approach. And in total we group those con-
ditions via medical specialty, the conditions and symptoms statistics is present in Table 3.6.
It should be stated that symptoms do not have to support all NLICE characteristics. For
example, fever can be characterized by its intensity, but it would not be logical to associate
a location with fever.

3.3 Synthetic patient records generation

The synthetic patient records generation approach is an extension of the work [1]. Synthea
is a Synthetic Patient Population Simulator that could export synthetic realistic (but not
accurate) patient health records in various formats. As Synthea source code is public, we
could easily modify it to suit the target tasks.

The exact architecture of Synthea can be found in Figure 3.1. Clinical care maps and
incidence & prevalence statistics are in charge of building patients’ models, which will be
used later for disease progression in disease modules. Disease modules can encode disease
models as state transition machines in JSON format. In addition, census data demographics
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medical speciality Num. of diseases Num. of symptoms
Pulmonary 10 18
Gastrointestinal 9 13
Neurological 4 19
Neuro-orthopaedic 6 20
Rheumatological 5 6
Urological 3 19
Oropharyngeal 3 13
STDs 7 28
Oncological 4 16
Deficiencies 4 6

Table 3.6: Overview of the NLICE-Modeling data

Figure 3.1: Synthea’s architecture [24]

and configuration seed the synthetic world [24]. Finally, the state and transition in dis-
ease modules simulate the synthetic world population and feed the simulation results to the
exporters. We choose the CSV format to save the patients’ event dataset.

The most critical component in Synthea architecture would be Synthea’s Generic Mod-
ule Framework (GMF), which enables the modeling of various diseases and symptoms that
generate the medical history records of synthetic patients. It simulates patients’ records
independently from birth to the present day. These modules are based on state machines,
where each state depicts one stage in the disease progression procedure. There are two
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general classes of states in Synthea inside: the Clinical States and the Control States.
As the name suggests, clinical states provide medical knowledge when modeling condi-

tions. They assume encounters within health care facilities or seeing doctors, the condition
the patient develops, prescribed medications, and observations varying from temperature
assignments associated with the condition to conclusions with additional complicated labo-
ratory tests.

On the other hand, control states show the birth and termination of the disease mod-
ule and introduce pauses between different stages, e.g., a usually time delay could happen
between the beginning of medication and the next patient with the doctor. Some control
states describe unique characteristics of the patients or correct errors on a particular stage,
e.g., It is impossible that male patients to suffer from pregnancy. All states must include a
transition procedure. The Terminal state implies the termination of the module, so there is
no transition after the terminal state. This property specifies which next state in the patient’s
module should transfer. Integrated with the clinical and control states, the state transition
characterizations, prevalence statistics, and clinical care maps, A patient’s interaction with
doctors while suffering from various symptoms could be modeled by the Synthea simulator.

In Synthea inside, modules are responsible for modeling clinical events that could
appear in a patient’s lifetime, describing stages’ progress and shifts.Synthea’s expressive
generic module framework meant that as long as statistical relationships between these ad-
ditional symptom descriptors in Section 3.1.2 and respective conditions were present, then
realistic data could also be generated.

Parsing the original collected conditions-symptoms dataset was also developed with
medical experts in Medvice. This function aims to output the Synthea-compatible disease
modules based on our custom medical data. Then Synthea could incorporate the prob-
abilistic symptom-condition relationships above in a Synthea module generating process,
and modules are formed by real-world statistics collected by Medical experts in Medvice.
Synthea modules were generated for all 55 diseases present in the Medvice database. An
example generated module for Asthma is shown in Figure 3.2
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Figure 3.2: Generated Synthea Module for Asthma. Not all states are shown to allow for an
easier visualization
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Chapter 4

Methodology and approach

4.1 Data processing

Referring to the data generation procedure mentioned in Chapter 3, we finally generated
patient records with NLICE-modeling symptoms and contextual information. One sample
can be found below.

As the Synthea architecture in Figure 3.1 represents , demographics configuration de-
fines synthetic patients demographics information. For all datasets we generated in this
project, we generated the demography of patients based on census data from the state of
Massachusetts in the United States of America. Besides areas, we configure the age, gender
for each disease in demography based on the contextual information modeling mentioned
in Table 3.5.

GENDER RACE AGE PATHOLOGY SYMPTOMS

F Asian 30 Acute pancreatitis

Discoloration:Yellow(Jaundice):::::::;
Altered appetite:Decreased(anorexia):::::::;
Pain:Radiating:::::::;
Nausea::::::::;
Flatulence::::::::;
Bloating::::::::

F White 48
Rheumatoid arthritis
feminine

Disability::::::::;
Altered appetite:Decreased(Anorexia):::::::;
Fatigue::::::::;
Stiffness::::::Morning::;
Weight loss::::::::

M Naive 87
Pulmonary edema
oldest

Pain::::::::;
Altered mental state:ConfusionORdelirium:::::::;
Altered breathing:Dyspnea:::::::

Table 4.1: Sample Generated Data for Patients with Acute pancreatitis, Rheumatoid arthri-
tis feminine and Pulmonary edema oldest
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We export the dataset in CSV format. Each row represents one patient record, including
demographics and symptoms information. Sex and Age differences in certain diseases are
apparent. The generated synthetic datasets utilize the pre-defined contextual information
modeling from medical experts, thus contributing to a reliable and realistic patient dataset.
For instance, Rheumatoid arthritis feminine could only appear in women. Thus all patient
records with Rheumatoid arthritis feminine are only for females. Similarly, Pulmonary
edema oldest is a disease occurring in patients older than 85 years old.

Regarding symptoms in each record, we separate symptoms via a semicolon symbol,
and its eight types of NLICE features follow each symptom. [symptom : nature : location :
vas : duration : onset : excitation : f requency].Nevertheless, each condition does not need to
have all NLICE features. This way aims to be easier to work with people without sacrificing
machine usability while being more complete in the depiction of medical conditions. The
synthea displays only those conditions for which ”NLICE” is known. E.g., if there is no
data about the nature of, for example, the fatigue present in covid-19, then the NLICE point
’nature’ is not displayed. For the administrative and epidemiology data, however, this is not
the case since their amount is fixed and relatively small.

4.2 Flat reinforcement learning approach

The first chosen method is flat-RL based method, which only contains one policy layer
to train the deep-q network. When choosing actions, both symptoms and diseases are re-
garded as actions. As the architecture shows in Figure 4.1, main components(User simula-
tor, Agent, Inquiry response, Diagnose response and Terminal) have the same functionali-
ties as the system in Figure 2.2. The database NLICE in Figure 4.1 provides fixed NLICE
questions for each symptom. The agent accepts a state that comprises all symptoms status
at timestep t. The status is decided by the response of the user when receiving actions.
Initially, all symptoms status starts from ”unknown” except initial complaint. Therefore,
an appropriate encoding symptoms status should be considered. In general state encoding
scheme in flat-RL methods [22], one eight-dimensional vector is utilized for represent-
ing status of symptomi. Each symptom will have three status types: unknown, yes, or no.
When an agent chooses an action that belongs to symptoms, then this action is treated as
an inquiry action. Then the user replies to the agent with a ”yes/no” answer. The next
state updates the status of the corresponding symptom and restarts the interaction proce-
dure. Nevertheless, to take advantage of the extra NLICE features we gained, the cod-
ing scheme for status should be changed slightly. An eight-dimensional vector should be
chosen for representing status of symptomi: For positive symptoms, it will be encoding
as [1,Nature,Onset,Frequency, Intensity,Excitation,Duration,body]. For negative symp-
toms, vector [−1,−1,−1,−1,−1,−1,−1,−1] is used. Unknown symptoms are encoded
as [0,0,0,0,0,0,0,0].

Then all symptoms vectors are concatenated to form the final status vector

s = [bT
1 ,b

T
2 , ......,b

T
n ]

T (4.1)

where bi is status of symptom, and n is the number of total symptoms.
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Name Type Input Size Output Size

FC1
Linear
Relu

|I| * 8 1024 × ω

FC2
Linear
Relu

1024 × ω 1024 ×ω

FC3
Linear
Relu

1024 × ω 512 × ω

FC4 Linear 512 × ω |I|+ |D|

Table 4.2: The network architecture of our DQN model

User Simulator

NLICE dataset

Turn Starts

Agent(DQN)

User  Simulator

NLICE dataset

State(t+1)

Action(t)

Reward(t+1)

Terminal

Next patient

Diagnose response
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Figure 4.1: Flat-RL system architecture

The notations we used in the flat-RL method include I,D, and A, representing sets of
symptoms, diseases, and action space. Given a state vector, our DQN model outputs the Q-
value of each action a∈A. The detailed architecture of the DQN model can be found below:
In our definition, each action consists two types: an inquiry action (a ∈ I) or a diagnosis
action (a ∈ D). If the maximum Q-value of the outputs corresponding to a symptom inquiry
action, then our model asks about the symptom to the current user, then this user provides
feedback before proceeded to the next stage. According to our state encoding scheme,
the feedback is incorporated into the next state st+1. Otherwise,the maximum Q-value
corresponds to a diagnosis, and a diagnosis action means the termination of the interaction
session.
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4. METHODOLOGY AND APPROACH

4.3 Hierarchical reinforcement learning framework for disease
diagnosis

The main advantages of flat-RL based method are easy development and efficiency for
simple disease diagnosis task that includes a limited number of diseases. However, based on
the experimental results proposed in [22], the single-layer agent could only inquire around
1 to 3 symptoms questions. These short inquiry sequences indicate that the flat-RL model
typically predicts diseases based on the main complaint and only a few additional inquired
symptoms to make disease predictions. The large sparse action problem that the flat-RL
model encounters make it challenging to learn helpful candidate symptoms to inquire users,
resulting in poor disease-prediction accuracy.

To solve the problems above, we also choose the hierarchical reinforcement learning
based method to build an efficient and high-accuracy system. As Figure 4.2 shows, the
whole system includes four main components: A master-layer agent, a group of low-layer
agents, a user simulator, and a dialogue manager. As defined in Section 2.3.3, the master
layer and lower layer agents work together as a hierarchy for interacting with users. More
specifically, lower layer agents contain two types of models: a group of agents in the lower
layer like different experts who diagnose a patient together for inquiring symptoms and
making a diagnosis. Another is a classifier model for predicting diseases. Furthermore, a
master agent in the master layer appoints doctors from the low layer in turn. The user simu-
lator in the system works as the environment to directly interact with the lower layer agent.
A dialogue manager manages all dialogue sessions, which mainly includes the functions
of evaluation calculation and dialogue recording. Besides dynamic symptoms questions
inquired by lower layer agents, the NLICE questions are designed as fixed in state rep-
resentation. In addition, state representation is responsible for transferring states between
different action spaces in agents.

4.3.1 Master

We defines the action space of Master as Am =
{

wi|i = 1,2, ....,h
}
∪{classi f ier}. h is sev-

eral medical specialties we used in dataset modeling. Moreover, at each timestamp, when
choosing agents that belong to medical specialty, it means that the master agent chooses to
perform symptoms inquiring, whereas disease prediction when chooses ”classifier” action.
However, as the similar method proposed in [13], this procedure is not a Markov Deci-
sion Process as the extrinsic rewards returned during the interaction between the user and
the chosen lower-layer agent can be accumulated as the immediate rewards for the master.
Therefore, the reward for the master agent could be formulated as follows:

rw
t =


N

∑
t ′=1

γ
t ′re

t+t ′ , am
t = wi,

re
t , am

t = classi f ier.

(4.2)

where i = 1, ...,h,rt
e is the extrinsic reward returned by the user at turn t, γ is the discounted

factor of the master and N is the number of primitive actions of lower-layer agents.
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Figure 4.2: HRL system architecture
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We use the same Bellman equation as defined by Equation 2.12. and loss function
defined by Equation 2.13.

4.3.2 Medical specialty in lower-layer agents

There are ten types of medical specialty available in the database, as the Table 3.3 shows,
each department contains numbers of diseases. The lower-layer agents wi represents one
specific medical specialty, and corresponds to the set of diseases Di and the set of symptoms
Si. The action space of lower layer agent wi is: Ai

w = {request(symptom)|symptom ∈ Si}.
At turn t, if the medical specialty wi is activated, the current state of master st will be passed
to that medical specialty wi, then lower-layer agent wi will take st to choose an action
at

i ∈ Ai
w, the dialogue is updated into st+1 and lower layer agent wi will receive an intrinsic

reward rt
i from the definition of internal critic.

4.3.3 Extra disease classifier in lower-layer agents

Once the master picks the disease classifier as current action, it will take current user state
st as input and output a vector p ∈ R|D|, representing the probability distribution among
all diseases. The disease with the highest probability will inform the user of the diagnosis
prediction result. We implemented two layers of Multi-Layered Perceptron (MLP) for the
disease diagnosis classification.

4.3.4 User simulator

We use a user simulator as the environment to directly interact with the agent. At the
beginning of each interaction episode, the user simulator randomly samples a patient record
from the training samples. We randomly choose one symptom as main complaint from a
user for initializing an interaction session. The simulator interacts with the agent during
the dialogue based on the patient’s true disease. One interaction session will be terminated
as successful if the agent makes the correct prediction disease. If the informed disease is
incorrect or the dialogue turn reaches the maximal turn T, it will be terminated as failed
status.

4.3.5 Internal critic

The internal critic is responsible for generating intrinsic reward rt
i to lower layer agent wi

after an action at
i is taken at turn t. rt

i is positive if the lower layer agent asks a symptom that
the user indeed suffers. Otherwise, if there are repeated actions generated by lower layer
agent wi or the number of subtasks turns reaches Tsub, rt

i would be negative. For all other
statuses, rt

i would be zero. The internal critic also works to decide the termination condition
of the lower layer agents. In our case, a lower layer agent is terminated as failed when there
is repeated action produced or the number of subtask turns reaches Tsub. While a lower layer
agent is terminated as successful when the user responds true to the symptom requested by
the agent. The current lower layer agent finishes the subtask by collecting enough symptom
information.
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4.3.6 State representation

When inquiry correct symptom by one medical specialty, state representation will extract
this patient’s NLICE of this symptom and then update the latest state. Different from symp-
toms questions, the NLICE questions could be fixed as given a symptom, we could exactly
know which NLICE question should be asked to the patient. Therefore performing the
NLICE inquires is just a static process in case gathering a positive symptom.

4.4 Exploring positive symptoms with reward shaping

In reality, the number of symptoms a patient suffers from is much less than the size of
symptom set S, resulting in a sparse action space. In other words, it is hard for the agent
to discover the symptoms that the user indeed suffers from. To encourage master to choose
a lower layer agent that can discover more positive symptoms, we follow [13] and use the
reward shaping method to add supplemental reward to the original extrinsic reward while
keeping the optimal reinforcement learning policy unchanged. The supplemental reward
function from state st to st+1 is defined as f (st ,st+1) = γθ(st+1)θ(st), θ(s) is the potential
function and can be defined as

θ(s) =

{
γ×| j : b j = [1,NLICE]|, i f s ∈ s∪ st

0,otherwise.
(4.3)

Where θ(s) counts the number of right requested symptoms for a given state s, γ > 0 is a
hyper-parameter that decides the magnitude of reward shaping and St is the terminal state
set. Therefore, the final reward function for master will be changed into Rt

θ
= rt + f (st ,st+1).

4.5 Context-aware policy transformation

However, only using a hierarchical reinforcement learning strategy in our dialogue sys-
tem could not reflect the actual diagnosis procedure. We only rely on comprehension of
symptom-disease relations without considering the context of medical knowledge. The
symptoms that dialogue system inquiries should be related to underlying disease and con-
sistent with medical knowledge.

4.5.1 Context modeling

When writing this thesis, there are only gender and age relationships completed in the cur-
rent NLICE database. Therefore we only model context information with gender and age
information. The original state representation is s = [bT ]T , which only contains the status of
symptoms information. In order to encode contextual information provided by patient, we
need to slightly modify the state to s = [bT ,CT ]T ,which share similar concepts in [9]. Then
given a state s = [bT ,CT ]T , our master model should output Q-values for each lower-layer
agent, followed by inquiring or disease prediction actions taken by lower-layer agents.
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4. METHODOLOGY AND APPROACH

More specifically, the new part vector c comprises age,gender contextual information
of a patient, which is denoted as c = [ageT ,genderT ]T . We encode age as an integer num-
ber and gender binary(0/1). In this way, the agent could take actions based on medical
knowledge instead of only relying on symptom-diseases relationships. Given the new state
representation, our DQN algorithm to be changed now: for the master agent, each action a
has two types one is inquiry action (a ∈ Am) or a diagnosis action (a = classi f ier ). Suppose
the maximum Q-value of the outputs belongs to a medical specialty from low-layer groups.
In that case, our lower-layer model asks for a series of symptoms, then obtains reward feed-
back from the patient, and continues to the next step. The feedback is incorporated into the
next state st+1 = [bT

t+1,cT ] according to symptom status encoding scheme. Otherwise, the
maximum Q-value is identified as a diagnosis action.

4.5.2 Policy transformation strategy

Besides directly considering contextual information, the strategy for utilizing medical knowl-
edge is implemented. Given an optimal policy π, we transform it directly to an optimal
policy πc with contextual information.

π
∗
c = argmaxQ∗(s,a)p(c|a) (4.4)

We can see that if the master action is a diagnosis action (a = classi f ier ), the optimal
policy πc(considering context) can be obtained from the optimal value function Q(without
considering context) by using the posterior probability distribution p(c|d). In our cases,
age and gender are available therefore we finally gain the policy transformation strategy as
follows:

π
∗
c = argmaxQ∗(s,a)p(age|a)p(gender|a) (4.5)

30



Chapter 5

Experimental results and discussion

In this chapter, we discuss the experimental results obtained using the reinforcement learn-
ing models discussed previously.

5.1 Implementation details

The dataset we generated is constructed based on a symptom-disease database collected by
medical experts and utilizes the patient records simulator Synthea to simulate the patient’s
records. According to Medical Specialty, there are 55 diseases in the database, and we clas-
sify them into ten departments. Given a patient record and all symptoms that this patient
suffers, we randomly chose one of the symptoms as the main complaint and all other symp-
toms as implicit symptoms. A generated record for this dataset can be seen in Table 5.1. In
total, the simulated dataset we constructed contains 550,000 patient records, of which 80 %
for training reinforcement learning agents and 20% for evaluation models. Moreover, each
kind of disease contains 10,000 records.

medical specialty # of records # of main complaints # of implicit symptoms
Pulmonary 100K 1 2.33
Gastrointestinal 90K 1 2.54
Neurological 40K 1 3.42
Neuro-orthopaedic 60K 1 2.97
Rheumatological 50K 1 2.21
Urological 30K 1 2.97
Oropharyngeal 30K 1 3.55
STDs 70K 1 2.17
Oncological 40K 1 2.53
Deficiencies 40K 1 1.79
Total 550k

Table 5.1: Overview of the NLICE Dataset. Each patient contains only 1 main complaint.
# of records is the number of patients records included in this medical specialty.
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5. EXPERIMENTAL RESULTS AND DISCUSSION

We set ε for master and all the low-layer agents to 0.1 for balancing exploration and
exploitation. The maximal dialogue length is set to 22, and the maximal subturn for lower-
layer agents is set to 5, which means that low-layer departments maximal inquiry five dif-
ferent symptoms when this department is selected. As for reward configuration, the master
agent will receive an extrinsic reward of +1 if informing the right predicted disease. Oth-
erwise, it will receive -1 as extrinsic when it reaches maximal turns, or informs the user is
wrong disease. In all other situations(like inquiring about wrong or right symptoms), the
extrinsic reward is 0.

Furthermore, the hyper-parameter λ in reward shaping is +1. The sum of the extrinsic
rewards (after reward shaping) over one subtask taken by a worker will be the reward for
the master.

For the neural network architecture configuration of the master and all the lower-layers
agents, We choose DQN, a three-layer network with two dropout layers, and the size of the
hidden layer is 512. We choose 0.95 as The discounted factor γ for all agents in two-layer
policy learning, and the learning rate is 0.0005. Additionally, all the lower-layer agents of
medical specialists are trained every ten simulated epochs during the training process of the
master.

Last but not least, with regards to the disease classifier, we choose a two-layer MLP
network with a dropout layer the size of the hidden layer is also 512, and the learning rate
is set to 0.0005. It has trained every ten epochs during the training process of the master.

5.2 Models for comparison

For evaluating and comparing the performance of various policy learning systems, we
choose the following models and perform the differential diseases task.

As Table 5.2 shows, there are two machine learning models included as baseline mod-
els: Random Forest and Naive Bayes. Both machine learning models treat an automatic
diagnosis task as a multi-label classification task. Moreover, the machine learning models
concentrate on all symptoms that the user suffers and predicts diseases based on all symp-
toms. The reason for implementing machine learning based methods is to illustrate the
upbound of reinforcement learning agents.

As for reinforcement learning models, we implement flat-RL agents and hierarchical
RL agents with different optimization methods. Encoding state with/without NLICE fea-
tures for RL methods could investigate the impact of improved symptom modeling. In
addition, context-aware policy transformation experiments could take advantage of medical
knowledge and historical diagnostic cases.

5.3 Overall performance

Table 5.2 illustrates the performance of all chosen models. Random forest and Naive Bayes
with NLICE symptom modeling could achieve the highest Top 5 accuracy, which means that
machine learning models could predict correct diseases once it obtains all explicit symptoms
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5.4. Further analysis

Model
Context policy
transformation

NLICE Top 1 Top 3 Top 5 Reward Turn
Matching
rate

Random forest N/A True 74.7% 86.9% 99.8% N/A N/A N/A
Naive Bayes N/A True 78.0% 92.4% 99.9% N/A N/A N/A
flat-RL False False 23.1% 28.7% 33.2% -1.69 1.46 10.7%
flat-RL False True 28.2% 35.4% 36.9% -0.75 1.98 18.9%
flat-RL True True 36.2% 41.4% 45.3% -0.74 2.34 20.1%
HRL False False 45.4% 52.3% 61.3% 0.20 10.69 77.1%
HRL False True 71.8% 87.0% 88.6% 0.52 9.95 84.6%
HRL True True 83.9% 90.5% 93.8% 0.87 9.89 88.7%

Table 5.2: Overall performance

and the main complaint. Figure 5.1 represents performance of RL Models with proposed
NLICE modeling approach and context-aware policy.

As Figure 5.1 shows, flat-RL performs negatively with only around 23.1 % Top 1
success rate. NLICE symptom modeling could only improve the performance slightly to
28.2%. Remarkably, for all flat-RL experiments, the average steps are less than 3, which
means that flat-RL agent tends to directly predict diseases based on the primary complaint
without asking for additional explicit symptoms. We hypothesize that the flat-RL model
encounters difficulties learning additional positive symptoms to ask users due to the sparse
space of symptoms and action, resulting in poor disease-prediction accuracy.

Compared to the flat-RL models, HRL model takes more steps to have longer interac-
tions with the user so that it can obtain more information about their implicit symptoms.With
more information about implicit symptoms, our HRL the model significantly outperforms
the other baselines in the Top 1 diagnosis success rate. There is also an increase in the
matching rate as the number of steps rises. Furthermore, the HRL model reaches 71.8%
Top 1 success rate after encoding NLICE symptoms, proving the efficiency of introducing
NLICE symptoms and HRL-based methods.

We also report the results of context-aware policy transformation via modeling context
and strategy mentioned in Chapter 4.5. Compared with the task without a context-aware
policy transformation strategy, we can see that the accuracy results for flat-RL and HRL are
improved by at least five percentage points with context-aware policy transformation.

5.4 Further analysis

5.4.1 NLICE modeling case study and performance analysis

To compare the performance of the RL based models, we choose multiple patient records
in the test set of our generated dataset and output the dialogue interaction procedures. Ta-
ble 5.4.1 represents a failed diagnosis case via using flat-RL method with NLICE symptom
modeling. We could observe that flat-RL agent only inquires about one additional symp-
tom, ”Altered breathing,” then directly predicts disease. Unfortunately, it predicts wrongly
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Figure 5.1: Performance of RL Models with proposed NLICE modeling approach and
context-aware policy

Inquiry
Turn Inquiry Symptom NLICE Response
0 Cough N/A main complaint
1 Altered breathing ”nature”:”Dyspnea” Yes
Top 5 Disease
1 Pneumonia (Pneumococcal most likely)
2 Pneumonia (Adenovirus most likely)
3 Asthma
4 COPD
5 Lung cancer (NSCLC)

Table 5.3: A failed interaction example using the flat-RL method. The true disease is
Asthma and the main complaint is Cough.

in top-1. Patients who suffer from Pneumonia (Pneumococcal most likely) and Pneumo-
nia (Adenovirus most likely) usually also have Cough and Altered breathing. The nature
of Altered breathing is the same as Asthma. Therefore, even though the NLICE modeling
approach is implemented in flat-RL model, it is still difficult for flat-RL to distinguish those
diseases within a limited number of inquiring symptoms.

Table 5.4 represents the HRL interaction procedures. The true disease of this patient
is Wernicke-Korsakoff complex, and the main complaint is Paresis Paralysis. The number
of additional symptoms inquired by the agent is far more than the flat-RL agent, therefore
predicting the disease correctly.

We then compare the impact of NLICE symptom modeling by using the same test case.
This patient’s true disease is Pneumonia (Adenovirus most likely), and the main complaint
is Fever. The Table 5.5 and Table 5.6 represent HRL agent with NLICE symptom model-
ing, without NLICE symptom modeling respectively. We could find that HRL agent usually
lacks the ability to distinguish the diseases that share similar symptoms. One example is
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5.4. Further analysis

Inquiry
Turn Inquiry Symptom NLICE Response

0 Paresis Paralysis
”location main”: ”Head”

”location”: ”Eyes”
main complaint

1 Altered movement
”nature”: ”Ataxia”,
”location main”: ”Head”,
”location”: ”Eyes”

Yes

2 Fever N/A False
3 Self diagnosis N/A False
4 Altered breathing N/A False
5 Swelling N/A False
6 Altered mental state ”nature”: ”Disorientation” Yes
Top 5 Disease
1 Wernicke-Korsakoff complex
2 Subarachnoidal bleeding
3 Pulmonary edema (among oldest)
4 Otitis media acuta
5 viral respiratory infection (Influenza most likely)

Table 5.4: A successful interaction example. The true disease is Wernicke-Korsakoff com-
plex and the main complaint is Paresis Paralysis.

Pneumonia (Adenovirus most likely), the wrongly informed diseases in Table 5.6 all con-
tain the same symptoms as Pneumonia (Adenovirus most likely). In contrast, the agent
successfully predicts correct disease after NLICE encoding in Table 5.5 because those sim-
ilar symptoms contain different NLICE features.

Besides the case study, we also report the learning trends of NLICE symptom modeling
experiments in Figure 5.2. There is a noticeable increase in NLICE modeling approach
compared with no NLICE modeling, which indicates that our NLICE symptom modeling
approach is beneficial to the diagnosis accuracy.

5.4.2 Performance of lower-layer agents

In order to analyze deeply the patient who has been informed of the wrong disease by the
master agent in the hierarchical reinforcement learning scheme, we collect all the wrong
predicted user diseases. It illustrated the error matrix in Figure 5.3, 5.4 , 5.5, 5.6. Four tasks
are formed as a benchmark.

It shows the disease prediction result for all the ten medical specialty groups. We can
see the color of the diagonal square is darker in tasks without NLICE symptom modeling,
especially in Pulmonary and Neurological. The diseases within these two groups often share
similar and even the same symptoms. Therefore not easy to distinguish them when NLICE
symptoms are not included. Context-aware polity transformation could partly eliminate the
miss classification problem for highly sex-age-related diseases. Nevertheless, the color of
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Inquiry
Turn Inquiry Symptom NLICE Response
0 Fever N/A main complaint
1 Cough ”nature”: ”Mucus”, Yes
2 Congestion N/A False

3 Pain
”nature”: ”Myalgia”,
”location main”: ”Head”

Yes

4 Altered breathing N/A False
5 Swelling N/A False
Top 5 Disease
1 Pneumonia (Adenovirus most likely)
2 Pneumothorax
3 viral respiratory infection (Influenza most likely)
4 Viral meningitis (Varicella zoster virus)
5 Lumbago (Muscle strain)

Table 5.5: A successful interaction example. The true disease is Pneumonia (Adenovirus
most likely) and the main complaint is Fever.

Inquiry
Turn Inquiry Symptom NLICE Response
0 Fever N/A main complaint
1 Pain N/A Yes
2 Nausea N/A False
3 Swelling N/A False
4 Altered breathing N/A False
5 Fatigue N/A False
Top 5 Disease
1 viral respiratory infection (Influenza most likely)
2 viral respiratory infection (COVID-19 most likely
3 Testicular cancer
4 Viral meningitis (Varicella zoster virus)
5 Migraine

Table 5.6: A failed interaction example without NLICE modeling. The true disease is
Pneumonia (Adenovirus most likely) and the main complaint is Fever.
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Figure 5.2: Learning curves of HRL models

the wrong classification in Pulmonary medical specialty is still the darkest among all other
groups after NLICE modeling and context-aware policy transformation because the diseases
in Pulmonary group usually contain the same symptom even with NLICE modeling.
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Figure 5.3: without NLICE modeling task
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Figure 5.4: without NLICE modeling task
after context-aware policy transformation

5.4.3 Case study for policy transformation

The context information includes age and gender based on the currently available dataset.
Some examples below illustrate how context-aware policy transformation could change the
diagnosis prediction.

Table 5.7 and Table 5.8 uses a same patient who suffers disease which is highly related
to age factor. We could see that the true disease is Pulmonary edema (among old), and
this patient is 69 years old. As medical experts defined in the original data set, Pulmonary
edema ( among old) could only occur in patients from 65 to 84. However, without con-
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Figure 5.5: NLICE modeling

1 2 3 4 5 6 7 8 9 10
predicted group

1

2

3

4

5

6

7

8

9

10

tru
e 

gr
ou

p

Error confusion matrix

20

40

60

80

100

Figure 5.6: NLICE modeling task after
context-aware policy transformation

textual information, the agent wrongly predicts Top 1 disease as Pulmonary edema (among
young) that only occurs in patients below 64. When we consider the context background in
Table 5.7, the target disease Pulmonary edema (among old) is informed successfully as Top
1.

The above examples represent cases that are highly influenced by age distribution. In
Table 5.9 and Table 5.10 we show another case in which context policy transformation fixes
the wrongly predicted diagnosis result. If the predictions do not consider gender context,
the Top 5 predictions wrongly inform the disease targeting the wrong gender. Conversely,
Rheumatoid arthritis (M) is moved to the Top 1 result when the context is considered since
the patient is male.

However, context-aware policy transformation sometimes also misleads the diagnosis
by suppressing the probability of diseases highly correlated with age and gender. For exam-
ple, Table 5.8 wrongly moves the ”Testicular cancer” to Top 2, and the gender of this patient
is male. Furthermore, Testicular cancer also only appears in males. However, apparently,
the symptoms of Testicular cancer do not include Chest Pain, Dyspnea Altered breathing.

5.4.4 Performance of reward shaping

To evaluate the learning efficiency and accuracy of the reward shaping algorithm, we form
two diagnostic tasks: one uses the reward shaping algorithm during the interaction loop. In
contrast, another one uses a basic reward configuration as defined in 4.3.1. Figure 5.7 illus-
trates the learning curves of these two tasks. The experimental result shows that using the
reward shaping algorithm task outperforms the baseline. Table 5.11 shows the comparison
of cumulative discounted rewards received in the interaction loop. We can see that the HRL
baseline struggles to gain positive rewards. However, our reward shaping algorithm can
obtain rewards far more than the basic reward configuration. This proves that the reward
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Inquiry
Turn Inquiry Symptom NLICE Response
0 Pain ”location main”: chest main complaint
1 Altered breathing ”nature”:”Dyspnea” Yes
2 Cough N/A False
3 Dizziness N/A Yes
4 Eruption N/A False
5 Fever N/A False
Top 5 Disease
1 Pulmonary edema (among young)
2 Pulmonary edema (among old)
3 Pulmonary edema (among oldest)
4 viral respiratory infection (COVID-19 most likely)
5 Vitamin B12 deficiency

Table 5.7: A failed interaction example without context-aware policy transformation. The
true disease is Pulmonary edema (among old) and the main complaint is Pain. The patient
is 69 years old.

Inquiry
Turn Inquiry Symptom NLICE Response
0 Pain ”location main”: chest main complaint
1 Altered breathing ”nature”:”Dyspnea” Yes
2 Cough N/A False
3 Dizziness N/A Yes
4 Eruption N/A False
5 Fever N/A False
Top 5 Disease
1 Pulmonary edema (among old)
2 Testicular cancer
3 Female cystitis
4 Pulmonary edema (among oldest)
5 Carpal tunnel syndrome

Table 5.8: A successful interaction example with context-aware policy transformation. The
true disease is Pulmonary edema (among old) and the main complaint is Pain. The patient
is 69 years old.
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Inquiry
Turn Inquiry Symptom NLICE Response
0 Altered appetite ”nature”:”Decreased” main complaint
1 Pain ”location main”:”Joints” Yes
2 Altered breathing N/A False
3 Swelling N/A Yes
4 Nausea N/A False
5 Cough N/A False
6 Dizziness N/A False
7 Fever N/A False
Top5 Disease
1 Rheumatoid arthritis (F)
2 Rheumatoid arthritis (M)
3 Otitis media acuta
4 Oesophageal carcinoma
5 Vitamin D deficiency

Table 5.9: A failed interaction example without context-aware policy transformation. The
true disease is Rheumatoid arthritis (M) and the main complaint is Pain. The gender of the
patient is male.

Inquiry
Turn Inquiry Symptom NLICE Response
0 Altered appetite ”nature”:”Decreased” main complaint
1 Pain ”location main”:”Joints” Yes
2 Altered breathing N/A False

3 Stiffness
”location main”:”Joints”
”exciation”:”Morning”

Yes

4 Nausea N/A False
5 Cough N/A False
6 Dizziness N/A False
7 Fever N/A False
Top5 Disease
1 Rheumatoid arthritis (M)
2 Rheumatoid arthritis (F)
3 Oesophageal carcinoma
4 Vitamin D deficiency
5 Otitis media acuta

Table 5.10: A successful interaction example with context-aware policy transformation.
The true disease is Rheumatoid arthritis (M) and the main complaint is Pain. The gender of
the patient is male.
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5.4. Further analysis
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Figure 5.7: Learning curves of HRL models for studying reward shaping performance

model task
average cumulative
discounted rewards

HRL
basic reward configuration -3.65
reward shaping 0.87

Table 5.11: Average cumulative discounted rewards of baseline and reward shaping task

shaping algorithm plays a positive role in discovering actual symptoms and could partly
solve the sparse action space problem in the diagnosis task.

5.4.5 Performance of varying different number of main complaints

Recall that for dataset statistics in Table 5.1, the number of the main complaint is set to
1 by default. The average number of implicit symptoms for each medical specialty varied
from 2 to 5. Even though the hierarchical reinforcement learning scheme with multiple
optimization approaches could efficiently improve the performance, the experiments are still
limited to one simulated scenario because only one main complaint is chosen. Generally, it
is not possible that all patients went to the hospital with only one known symptom.

To investigate the model performance under various scenarios in the real world, we
change the number of main complaints by adjusting the user simulator configuration. In-
stead of randomly choosing one symptom from all symptoms as the main complaint, we
create two more dataset settings where two and three symptoms are chosen as main com-
plaints, and all other true symptoms are set as implicit ones. All other experimental setting
is as the same as the setting in Chapter 5.1.

We report the learning curves of three data settings in Figure 5.8. MLP performance
and Average Turn could be found in Figure 5.9. As we expected, the performance of Top n
success rate and MLP accuracy increases slightly as the number of main complaints grows.
However, all scenarios could finally achieve over 90 % Top 5 success rate. It is worth men-
tioning that the average turn decreases significantly when the number of main complaints
increases. We conclude that if more symptoms are known when starting the diagnosis pro-
cedures, the agent tends to inquire shorter sequence of symptoms and then make a diagnosis
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Figure 5.8: Learning curves of HRL models with varying different number of main com-
plaints
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Figure 5.9: MLP learning curve and average turn with varying different number of main
complaints

decision. Nevertheless, the number of complaints could not significantly increase the Top n
success rate because the hierarchical RL approach could efficiently find positive symptoms
with longer interaction turns.

5.4.6 Effect of increased maximum number of turn

HRL models could decide the maximum number of inquiries during the interaction process.
We vary the maximum number of turn(5,10,15,20,25) in the HRL configuration setting, and
compare the Top n results of increased maximum number of turn in Figure 5.10, Average
reward that master agent gained in Figure 5.11 and matching rate results in Figure 5.12. The
baseline model is the HRL model with NLICE symptom modeling. The reward shaping
task adds a reward shaping algorithm to the baseline model, and the context-aware policy
task employs a context-aware policy strategy the reward shaping task. Similar to previous
experimental results, there is a gradual rise from the baseline model to the context-aware
policy task. Top n success rates increase on all three tasks with larger interaction turns, and
finally could achieve above 80% Top 1 in the maximum 25 turns. However, the average
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Figure 5.10: Performance of varying different number of max turn

reward of the baseline task decreases when increasing the number of turns, which means
that the agent intends to ask more wrong symptoms, thereby leading negative reward. At
the same time, the matching rate and Top n success rate remain almost unchanged in the
baseline model after 15 turns. In addition, for the other two tasks, average reward results
first rise as the increasing turns peak at 15 turns. However, the average reward decreases
gradually with more interactions.

Our HRL models could gain enough positive symptoms within 15 rounds. Even though
Longer question sequences could slightly increase the Top n success rate and matching
rate, patients are sometimes impatient to answer long questionnaires. We conclude that
our system could provide a user-friendly symptom inquiring process and maintain a high
accuracy-precision diagnosis prediction.
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Figure 5.11: Average reward results of vary-
ing different number of max turn
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Figure 5.12: Matching rate results of vary-
ing different number of max turn

5.5 Conclusions

We report the overall performance in Figure 5.13,5.14. As the figures show, the proposed
HRL model that enables different experts jointly diagnose significantly improves diag-
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Figure 5.13: Overall performance in flat-RL Model with proposed improvements
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Figure 5.14: Overall performance in HRL Model with proposed improvements

nostic accuracy compared to the flat-RL model while tending to generate shorter inquiry
sequences. Obviously, the HRL model outperforms the flat-RL model in matching rate,
which means that the HRL model can explore more positive symptoms compared with the
flat-RL model. Furthermore, the NLICE symptom modeling method is beneficial for iden-
tifying diseases that share similar symptoms, as few diseases completely contain the same
symptoms after NLICE modeling. More specifically, flat-RL and HRL models increase
Top 1 success rate by 5% and 26.2%, respectively. When considering contextual infor-
mation(gender and age), we have shown transfer the optimal policy to utilize the contextual
information plays a positive role in improving performance. However, the trade-off between
wrongly dominating age-sex highly related diseases and symptom dominating optimal pol-
icy still needs to be investigated in the future. The reward shaping algorithm is more suitable
for tasks with more interaction loops. Therefore flat-RL shows limited improvement with
the reward shaping algorithm, whereas HRL increases around 5% Top 1 success rate. The
same trends of using optimization approaches could be found in Top 3 success rate and Top
5 success rate.
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Chapter 6

Conclusions and Future Work

This chapter gives an overview of the thesis conclusions and contributions. Then, some
ideas for future work will be discussed.

6.1 Conclusions

In this thesis, we firstly formulate differential diagnosis as a Markov Decision Process and
implement flat and hierarchical policy learning approaches to perform interactions between
patient and agent. The flat-RL approach treats all symptoms and diseases as action, which is
easily implemented but results in large space action problems. Therefore, we further employ
hierarchical reinforcement learning algorithms to split a complicated task into several sub-
tasks in a two-layer policy learning manner: symptom inquiry and predicting disease. The
sub-task of disease prediction is assigned to different kinds of workers in the lower hierarchy
level. The high level of the hierarchy is a master agent who takes charge of deciding which
lower layer agent should directly interact with a patient.

The experimental results shown in Chapter 5 conclude that the flat-RL algorithm is only
suitable for trivial diagnosis task. The flat-RL agent generates shorter inquiry sequences and
fails to explore positive symptoms due to the sparse action space. In contrast, hierarchical
RL could partly solve the problems involved in a flat-RL agent and improve the success rate
from 23.1% to 45.4% Top 1 success rate.

Besides the algorithms, we generate a reliable patient dataset to evaluate our reinforce-
ment learning models. Moreover, different from the available public medical dataset only
based on symptom-disease probability relationships, we firstly propose a novel symptom
modeling method and represent symptoms with more characters. The performance results
also prove the positive effect made by NLICE symptom modeling approach: The flat-RL
method slightly increases the Top 1 success rate from 23.1% to 28.2%. Remarkably, there
is a significant improvement (from 45.4% to 71.8%) in HRL method after modeling NLICE
symptoms. In order to power the proposed algorithms, we further introduce demographic
background of patients and then utilize contextual information to transfer the optimal policy,
which is beneficial to identifying the diseases that are highly related to age and gender. Fi-
nally, our HRL models could achieve more than 90% Top 5 success rate after context-aware
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policy transformation.
The reward shaping algorithm is an alternative way to solve the sparse action space.

Therefore we choose an informative potential reward shaping algorithm to guide the HRL
agent to explore the sparse action space productively. As the results show, the reward shap-
ing algorithm increases the average reward gained from -3.65 to 0.87. In addition, the
shaping algorithm increases the Top n success rates by around 10%.

We discuss the trade-off between a user-friendly system and high-precision prediction
by varying the maximum number of interaction loops. The results show that the longer se-
quence can contribute to higher accuracy when gaining more symptom information but re-
duce the average reward. Moreover, our system can gain enough positive symptoms within
15 rounds of questions, proving the efficiency of our proposed optimization approaches.

Last but not least, we report the effect of the number of main complaints in Chap-
ter 5. The main aim of this experiment is to investigate the action of models in a real-world
scenario. The results indicate that our HRL model tends to inquire fewer questions when
patients provide enough initial complaints, reflecting the realistic scenario.

6.2 Future work

In future work, there are multiple research directions could be explored for the task of
automatic diagnosis.

Expand dataset with more diseases and symptoms

The experimental results are based on a database that consists only 55 conditions. There
is still significant room for expanding the database with more diseases and symptoms to
investigate the efficiency and suitability of reinforcement learning for automatic diagnosis
tasks. Furthermore, improving the reward shaping algorithm to deal with the larger action
space could be further explored and optimized.

From contextual information to doctor experience

Current available contextual information in the database is limited to gender and age, so dis-
ease related to gender and age will be heavily influenced after context-aware policy transfor-
mation. It might be more worth researching the contextual effect if we have more attributes
in the future. The context-aware policy transformation will consider more factors instead of
being heavily influenced by age and gender.

The complicated automatic medical diagnosis task needs more critical requirements for
the dialogue rationality in the context of medical knowledge and symptom-disease relations.
Therefore, the need for doctor experience is increasingly important in later research. And
utilizing doctor experience and medical knowledge to form a knowledge graph might be a
promising research area in the medical domain.
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6.2. Future work

Reformulate automatic diagnosis as a sequence generation task

In this project, we formulate automatic diagnosis as a Markov Decision Process and im-
plement a reinforcement learning approach to perform multi-step inquiry and diagnosis.
Even though we could achieve over 80% Top 1 accuracy, limitations such as low efficiency,
repeated actions, and complex reward shaping configuration still occur in the system.

As an automatic diagnosis system is built on conversations between the agent and the
patient, we could formulate this problem in a different task: Symptom Generation task,
which takes advantage of natural learning processing techniques to address the problems
mentioned before. The objective of the sequence generation task is to generate a target
sequence given a source input, which is suitable for automatic diagnosis background.
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