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Executive Summary 
Introduction 
High oil prices and the desire to reduce the overall CO2 output is creating a shift in electricity generation. Originally, 
electricity was produced by centralized power plants, where nowadays more and more electricity is produced 
decentralized, by for example solar panels that are installed on households roofs. Due to the use of these solar panels, 
which production is very dependent on the sun, a mismatch between the supply and demand of electricity emerged. 
As a result of this mismatch, the electricity grid is confronted with network congestion and balancing problems. In 
order to resolve such balancing problems and threats of network congestion, direct load control Demand Side 
Management (DSM) was introduced as a possible solution. This control mechanism (DSM) allows a third party (the 
Aggregator) to control appliances within the households in order to regulate the load of these households on the 
electricity network. By controlling these household appliances, the Aggregator provides an electricity flexibility service 
to the Balance Responsible Party (BRP) (such as Essent, Eneco and Vattenfall) and the Distribution System Operator 
(DSO) (such as Alliander, Stedin and Enixis). The BRP is interested in procuring electricity flexibility from the 
Aggregator to maintain the balance between electricity demand and supply, and the DSO in order to reduce grid 
congestion and prevent system overload (in order to prevent electricity system blackouts). However, as the effect of 
such a control mechanism on the electricity grid is uncertain (for example due to the available electricity flexibility, the 
participation of the DSO, etc.), Essent (a BRP and energy supplier) and Alliander (a DSO) are currently performing a 
field trial in Heerhugowaard. Within this field trial, 201 households are equipped with solar panels, heat pumps, fuel 
cells and electric boilers, and directly controlled by the Aggregator. Nevertheless, before such a control mechanism can 
be employed on a large scale, uncertainties with regards to the financial feasibility of the Aggregator must be alleviated. 
The theoretical body of knowledge on the financial outcome of DSM for the Aggregator is inconclusive, due to the 
uncertain:  

1. Cost of control technology for direct load control DSM
2. The availability of electricity flexibility
3. The influence of additional electricity flexibility on the spot market price
4. The non-extendibility of the results from other foreign large scale DSM feasibility studies to the Netherlands.

Consequently, the research performed within this thesis focussed on the financial feasibility of the expansion of 
direct load control DSM projects for the Aggregator within the Netherlands, by means of the following research 
question: 

How does the electricity flexibility availability and trading, provided by direct load control Demand Side Management, 
influence the financial feasibility for the Aggregator, based on the Heerhugowaard field trial? 

Methodology 
In order to answer this research question, this thesis first examined direct load control DSM and the financial feasibility 
for the Aggregator by means of a literature review of for example Gellings (1981) and Strbac (2005) in chapter 2. 
Afterwards, in order to determine the financial feasibility of DSM for the Aggregator, a simulation model was 
constructed that replicates the electricity flexibility trade process between the Aggregator, DSO and BRP. In order to 
construct this simulation model, literature research was performed to determine factors that influence the output of 
the controllable household appliances in chapter 3. Thereafter, based on these insights, prediction models were 
constructed based on the data collected from the Heerhugowaard field trial, as a sufficient large data set was available 
for all the household appliances. These prediction models were constructed through various statistical techniques (panel 
data regression, logistics regression and simulation) for the Photovoltaic panels, Heat Pumps, and Electric Boilers in 
chapter 5. No prediction model was constructed for the Fuel Cell, as the outcome of the Fuel Cell is not influenced by 
outside factors. Last, the predictions models were combined with a set of household electricity load curves in an excel 
spreadsheet in order to replicate the electricity flexibility trade process. Based on this simulation model a volume 
optimization analysis was performed (chapter 6) in order to determine the preferred smart appliances for an Aggregator, 
and a financial analysis in order to determine the financial outcome of direct load control DSM for the Aggregator (in 
chapter 7).  
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 Introduction 
 
Countries have become highly dependent on oil as 70% of the world’s energy is produced by means of fossil 

fuel (Warren, 2014). Power plants that use fossil fuel are large contributors (37.5%) to worldwide carbon emissions 
(Sims, Rogner, & Gregory, 2003). As a result of the agreements made during the Kyoto summit in 1997 and during 
the Sustainable Innovations Forum in 2015, EU countries have invested significantly in expanding their share of 
renewable energy generation (Menegaki, 2011). Therefore, shifting to renewable energy generation has moved to the 
forefront of the Dutch political agenda (Sociaal Economische Raad, 2013). In the Energy Agreement for Durable 
Development, parties have agreed to increase the generation of renewable energy from the current 4%, to 14% in 2020, 
and further to 16% in 2023 (Sociaal Economische Raad, 2013). However, these renewable energy sources do not 
provide a stable and predictable output as conventional power plants do, because their level of output is highly 
dependent on for example sun irradiance. This increase in local renewable energy generation and the fluctuating output 
from these energy sources, aggravated the existing mismatch between electricity supply and demand. As a result of this 
mismatch, electricity grids are confronted with network congestion and balancing problems, where these problems are 
currently resolved by an increase of power plants reserve capacity. Consequently, higher levels of reserve capacity led 
to lower utilization of power plants and through higher marginal cost of generation to higher prices of electricity 
(Strbac, 2008). Since the objective of the Energy Agreement for Durable Development was not only the reduction of 
emission but also to provide electricity affordability and consequently electricity security, the Dutch government is 
challenged to find additional measures to this problem (Sociaal Economische Raad, 2013).  

A possible solution for this mismatch and for the higher electricity prices, was already mentioned in the Energy 
Agreement for Durable Development (Sociaal Economische Raad, 2013) and discussed years ago, when the Electric 
Power Research Institute in 1984 introduced Demand Side Management (DSM). Gellings (1996) described DSM as 
“…designed to influence customer use of electricity in ways that will produce desired changes in the utility's load shape…” (p. 
285). Projections indicate that DSM would allow better synchronization between electricity demand and supply and 
thereby provide a partial solution to these higher levels of power plant reserve capacity and network congestion 
(Negnevitsky, Nguyen, & de Groot, 2010; Babar, Taj, Ahamed, & Al-Ammar, 2013). However, there is currently 
little proof on what the effects from DSM applications might be on the electricity grid. Therefore, the Dutch 
government would like to see experiments, in collaboration with the electricity sector, that provide insight into DSM 
and if DSM should be applied on a larger scale (Sociaal Economische Raad, 2013).  

Consequently, this chapter will first elaborate on one of the uncertainties related to the application of DSM 
innovations within the Netherlands in section 1.1. Based on this research problem the chapter will introduce the 
research question and further divide the described problem in sub-research questions in section 1.2. Then, the chapter 
indicates the relevance of the study in section 1.3. Based on these sub-research question a research design is proposed, 
and last the chapter proposes an outline for the thesis in section 1.4.  

 
 The Research Problem 

 
DSM was initially developed for two reasons: to optimize the supply demand interface (balancing activities) 

and to introduce a new marketing utility (an incentive based marketing model to offset the peak demand). As DSM 
started to receive more attention, more DSM alternatives, such as load management, strategic conservation and 
consumer generation, evolved (Strbac, 2008). This development enabled the control of consumer electricity demand 
and the possibility to shift the demand for electricity from high peaks to low peaks of demand (Gellings, 1996; 
Negnevitsky, Nguyen, & de Groot, 2010). This balancing mechanism is referred to as Demand Response (DR), which 
provides electricity ‘flexibility’ (Eurelectric. , 2015), that is described as: “the ability to vary the performance characteristics 
or resources to maintain a balanced and efficient power system” (Mohler & Sowder, 2014, p. 285). To create electricity 
flexibility within DSM, two control mechanism, referred to as direct and indirect load control, are used. 

In-direct load control is a medium to long term approach to change the consumer’s electricity consumption 
by means of financial incentives. This is achieved by means of electricity price negotiation on the electricity trading 
market, and by reimbursing consumers in the form of electricity rate discounts or direct payments (Strbac, 2008). 
However, Torriti, Hassan and Leach (2010) argue that there has been an observation that “customer[s] lack means and 
[that only a] limited number of incentives are in place to respond to change[s] in prices” (p. 1581). Additionally, there is 
still a great deal of uncertainty on the relation between the responses to changes in electricity prices and actual electricity 
demand. This uncertainty makes it hard to determine if in-direct load control is really as effective as governments tend 
to believe (Gillingham, Rapson, & Wagner, 2014). 
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Within direct load control, smart appliances such as (but not limited to) solar panels, heat pumps, natural gas 
electricity generators and electric boilers, are installed within households. Through the control of these smart 
appliances, the system operator is able to dynamically control loads (heat pump, boiler) and energy sources (solar panels 
and natural gas electricity generators) permitting flexible demand and local supply adjustments, resulting in lower 
demand for reserve capacity, and consequently, lower electricity prices and network congestion (Warren, 2014; 
Behrangrad, 2015). 

As a consequence of the application of direct load control, a transition occurred from only electricity demand 
to electricity demand and electricity supply, resulting in the transformation from consumers to prosumers, a 
combination of consumers and producers. The creation of this new party and the establishment of a bi-directional 
electricity grid, required a new approach to optimally integrate new electricity and electricity flexibility into the 
electricity system (USEF Foundation, 2014). Therefore, the USEF Foundation (2014) developed the Universal Smart 
Energy Framework (USEF) to support the integration of flexibility into the electricity market.  

One of the accompaniments of direct load control is the introduction of the Aggregator within the electricity 
system, a party that is responsible for maximizing the value of electricity flexibility generated by the prosumers. The 
Aggregator performs the maximization of the value of flexibility by taking into consideration prosumers’ needs, 
economic optimization and the electricity grids’ capacity. Thereby, the Aggregator directly represents the prosumers 
on the electricity market and trades electricity flexibility, for example, with the Balance Responsible Party (BRP) and 
the Distribution System Operator (DSO) (USEF Foundation, 2014). Within this trade, the BRP is interested in 
procuring flexibility to “maintain a continuous balance between their clients’ electricity demand and the electricity produced” 
(USEF, 2014, p. 9), while the DSO is interest in procuring flexibility to reduce grid congestion and prevent system 
overload (USEF, 2014). Consequently, the contribution of the Aggregator solves the complexity of contracts in the 
balancing mechanism and the ambiguity on how to involve consumers into the capacity market (Warren, 2014). 
Additionally, if the flexibility would be offered by independent households to the wholesale electricity market, these 
households would have little transaction freedom. The addition of the Aggregator allows prosumers to pool available 
flexibility and gain additional bargaining power on this electricity market (Alizadeh, Li, Wang, Scaglione, & Melton, 
2012). Consequently, the Aggregator ensures that, within the particular context of direct load control, flexibility can 
be traded between the prosumers and the BRP and DSO, and enables demand and local supply adjustments. However, 
it remains unclear if there is a financial benefit for the Aggregator when the Aggregator takes the role of energy 
aggregation and trading. Therefore, the Dutch government is financing multiple experiments through the 
Innovatieprogramma Intelligente Netten subsidy, where Essent (a BRP and energy supplier) and Alliander (a DSO) are 
currently performing such an experiment in Heerhugowaard, and are trying to determine the effect of direct load 
control DSM on the electricity grid. Within this experiment 201 households are equipped with smart appliances such 
as Photovoltaic panels, Heat Pumps, Fuel Cells and Electric Boilers, and directly controlled by the Aggregator (USEF, 
2014). 

Throughout the years, due to innovations in technology and electrification, the role of the Aggregator is urgently 
becoming more important. Consequently, research has been performed on the cost and benefits of DSM 
implementations. Initially, in the late 1990, a CBA by Byrne et al. (1996) on five different DSM applications within 
different parts of the USA, and a CBA by Reddy and Parikh (1997) on twelve DSM applications within India, indicated 
that the cost of DSM at that point would exceed the benefits. However, recent CBA by Sheen (2005), Weigt (2009), 
Liu, Xu and Wang (2015) on DSM applications in Taiwan, Germany and China respectively, indicate that DSM has 
become financially feasible. Furthermore, research from Hull (2001) and Lambert (2012) indicate that not only DSM 
has become financially feasible but also the role of the Aggregator. However, the financial feasibility of the Aggregator 
is uncertain due to the cost of direct control technology, the availability of electricity flexibility and the influence of 
additional electricity flexibility on the spot market price.  

Even when a number of case studies and research indicates that the role of the Aggregator might be financially 
feasible, Torriti, Hassan and Leach (2010) mention that it is not possible to extend such results to other countries, and 
that only insights can be gained through a real application of DSM (Lambert, 2012). Therefore, due to the non-
extendibility of the financial feasibility of the Aggregator in large scale direct load control DSM applications, 
organizations that are investigating the roll of the Aggregator are unaware of the financial feasibility of DSM and 
subsequently hesitant to implement DSM on a larger scale in the Netherlands. Therefore, taking into consideration 
the importance of the role of the Aggregator in the success of DSM and the further integration of renewable electricity 
sources into the electricity network, research should be performed on the financial feasibility for the Aggregator, in 
order to eliminate possible uncertainties of DSM before direct load control can be fully implemented on a larger scale 
and be integrated in the electricity grid.  
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 Research Questions 
 
To support the further integration of renewable energy sources into the electricity grid and consequently prevent 

congestion and supply and demand mismatches, DSM might be expanded to constitute larger groups of households. 
However, due to the uncertain cost of control technology, the availability of electricity flexibility, the influence of 
additional electricity flexibility on the spot market price, and the non-extendibility of the results from other large scale 
feasibility studies to the Netherlands, the financial feasibility of the Aggregator within the Netherlands remains 
uncertain. Therefore, this thesis proposes the following research question with the aim to determine the financial 
feasibility of direct load control DSM for the Aggregator within the Netherlands: 

 
Main research question:  

 
How does the electricity flexibility availability and trading, provided by direct load control Demand Side Management, 

influence the financial feasibility for the Aggregator, based on the Heerhugowaard field trial? 
 

Sub questions:  
1. What is Demand Side Management and how is Demand Side Management applied in the Heerhugowaard 

field trial? 
2. What is the role of the Aggregator in Demand Side Management and how is this role applied in the 

Heerhugowaard field trial? 
3. What is electricity flexibility and how is electricity flexibility traded in the Heerhugowaard field trial? 
4. What are potential factors (weather, people per household etc.) that influence the available electricity flexibility 

within Demand Side Management applications? 
5. To what extent are the results from the Heerhugowaard field trial generalizable for the expansion of Demand 

Side Management to more households in the Netherlands? 
6. What type of model can predict the available electricity flexibility when Demand Side Management is expanded 

to more households within the Netherlands? 
7. What is the relationship between the potential factors that predict the available electricity flexibility and the 

measured available electricity flexibility? 
8. Which configuration of smart appliances, used in the Heerhugowaard field trial, results in the maximization of 

electricity flexibility trading for the Aggregator? 
9. What is the financial outcome and uncertainty of Demand Side Management expansion within the Netherlands 

for the Aggregator, taking into consideration the appliances used in the Heerhugowaard field trial?  
 

 The Scientific and Social Justification 
 
The relevance of performing research on the financial feasibility for the Aggregator when DSM is expanded to 

more households can be divided into: Scientific and Social relevance, and will be elaborated on further respectively: 
  

1.3.1 Scientific Relevance  
 
Literature (Byrne, Letendre, Govindarajaly, Wang, & Nigro, 1996; Reddy & Parikh, 1997; Sheen, 2005; 

Weigt, 2009; Liu, Xu, & Wang, 2015; Hull, 2001; Lambert, 2012) indicate that research has been performed on the 
costs and benefits of DSM and the financial feasibility of the Aggregator. However, due to the uncertain cost of control 
technology, the availability of electricity flexibility, the influence of additional electricity flexibility on the spot market 
price, and the non-extendibility of the results from other large scale feasibility studies to the Netherlands, the financial 
feasibility of large scale direct load control DSM applications within the Netherlands remains uncertain for the 
Aggregator (Torriti, Hassan, & Leach, 2010). Accordingly, research on the financial feasibility of DSM for the 
Aggregator in the Netherlands will lead to an extension of knowledge on the role of the Aggregator within the 
application of DSM. Possible insights gained from this analysis adds to the scientific body of knowledge and might 
assist in further substantiating the financial certainty with respect to the possibility for organizations to pursue a role 
as an Aggregator, and consequently, allow for the further integration of renewable energy sources into the electricity 
grid.  
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1.3.2 Social Relevance 

The addition of the Aggregator to DSM ensures that flexibility can be traded between the prosumers (and 
possibly industry) and the BRP and DSO (and possibly the TSO), enabling demand and local supply adjustments, and 
providing a possible solution to demand and supply mismatches and grid congestion (Alizadeh, Li, Wang, Scaglione, 
& Melton, 2012). Therefore, the role of the Aggregator is essential to the application of DSM and an enabler for the 
further integration of renewable energy into the electricity network. However, due to the various reasons mentioned 
earlier, parties that are investigating the roll of the Aggregator, are unaware of the financial feasibility of DSM 
applications and subsequently hesitant to implement DSM on a larger scale. Therefore, to enable further application 
of DSM and enable further growth of renewable electricity sources in the electricity system without electricity network 
congestion and supply and demand mismatches, research should be performed on the financial feasibility for the 
Aggregator. Additionally, when the role of the Aggregator can be integrated within the electricity system, the trade of 
electricity flexibility may result in financial benefits for Prosumers, as prosumers are financially remunerated for the 
participations within the electricity flexibility service. Consequently, a second social relevance is that the application of 
DSM might results in a financial saving for Prosumers within the electricity system under control of an Aggregator.  

Proposed Research Design 

In order to provide answers to the stated main research question in section 1.2, a research design will be followed 
in order to provide answers to the sub-research questions as unambiguously as possible. To answer the first three sub-
research questions, literature research will be employed as the current scientific body of knowledge provides sufficient 
insights on the use of DSM, as for example Gellings (1981) and Strbac (2008). For sub-research question 4, literature 
research will be performed for the appliances applied in the Heerhugowaard field trial, in order to uncover exogenous 
factors that might influence the functioning of these devices. Sub-research question 5 then moves to determine the 
effect from the sample size on the extendibility of the results, which can be addressed through statistical analysis and 
scientific literature, as for example Kruskal and Mosteller (1979). Sub-research question 6 and 7 then touch upon a 
more quantitative nature, where the relation between the exogenous variables and the output of the four smart 
appliances is determined. Through literature, as for example Wooldridge (2010; 2015), possible techniques are 
investigated, and employed on the data collected from the Heerhugowaard field trial. The techniques that will be 
employed are random effect panel data regression, logistics regression and statistical simulation through density 
distribution functions. Based on the prediction models estimated through the earlier mention techniques, electricity 
flexibility volume optimization is performed to determine if there is a preference for certain smart appliances within 
the context of USEF, which will be performed through experimental optimization as addressed by FrontlineSolver 
(2016). Last, in order to answer sub-research question 8, a simulation model will be constructed in order to determine 
the financial outcome of electricity flexibility trading for the Aggregator.  

Thesis Outline 

In order to present the analysis and outcome of the sub-research questions, leading to answering the main 
research question, in a structured manner, the outline proposed by Sekaran and Bougie (2012) is used within this 
thesis. Consequently, Chapter 2 will first present a literature review of DSM, the role of the Aggregator within DSM, 
and how DSM is currently employed within the Heerhugowaard field trial. Based on this review, Chapter 3 elaborates 
on electricity flexibility, as a result of direct load control DSM, and presents the potential factors that might have an 
influence on the available electricity flexibility. However, before analysis can be performed to determine if such 
potential factors statistically have a relation with the available electricity flexibility, analysis is performed on the 
generalizability of the data from the Heerhugowaard field trial. This analysis, in addition to the methodology is 
presented in Chapter 4. After that, in order to proof if these potential factors might have a relationship with the available 
electricity flexibility, Chapter 5 first discusses the selection of the statistical approach and secondly presents a multitude 
of statistical models that predict the electricity flexibility for the smart appliances. Based on these statistical models it 
is possible to determine the electricity flexibility over an entire year. With such an opportunity, one can question if the 
smart appliances used in the Heerhugowaard field trial configuration is optimal in contrast to the electricity demand 
and supply. Therefore, with the aim of addressing the alignment of the smart appliances with the demand and supply 
for electricity, Chapter 6 addresses the smart appliance configuration optimization. With this insight, and the available 
electricity flexibility prediction models, it is possible to analyse the financial outcome and uncertainty of electricity 
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flexibility trading for the Aggregator within a multitude of scenarios. Subsequently, Chapter 7 addresses the financial 
outcome and uncertainty of DSM expansion, based on the analysis and outcomes of the previous chapters. In 
conclusion, chapter 8 present the conclusion of the analysis on the financial feasibility for DSM expansion for the 
Aggregator. In addition, Chapter 9 and 10 present the references and Appendix list of this thesis.  
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 Demand Side Management  
 
The term ‘Demand Side Management’ is a commonly used term in the energy domain but has been described 

differently over time. The most cited papers that address DSM refer to it as following: “Demand Side Management 
commonly refers to programs implemented by utility companies to control the energy consumption at the costumer side of the 
meter” (Mohsenian-Rad, Wong, Jatskevich, Schober, & Leon-Garcia, 2010, p. 320) or “Demand Side Management 
includes everything that is done on the demand side of an energy system, ranging from exchanging old incandescent light bulbs 
to compact fluorescent lights, up to installing a sophisticated dynamic load management system” (Palensky & Dietrich, 2011, 
p. 381). The differences in descriptions are not surprising as Nilsson (1994) already mentioned that DSM is confusing 
because of the different appearances DSM can take. To clarify the concept of DSM, section 2.1 first presents the 
development and the two approaches that enable DSM. The introduction of one of the concepts of DSM resulted in 
the establishment of supervisory control, which later in literature (Jose, Muller, & Royletman, 2010; Lazaros, 
Koutsopoulos, & Salonidis, 2013; Siano, 2014) is described as the role of Aggregator. Throughout time, this party has 
taken an important role in the execution of DSM and is consequently discussed in section 2.2. Even though the 
Aggregator takes such an important role in the DSM concept - direct load control - , limited research has been 
performed on the financial feasibility for this party. Therefore, section 2.3 investigates these sources in order to gain 
insights into earlier attempts to determine the financial feasibility of the role as an Aggregator. To further examine this 
role, among other research, two Dutch organizations (Essent and Alliander), are currently performing a DSM - direct 
load control - field experiment in Heerhugowaard. This field experiment might assist in shedding light on the financial 
feasibility of the Aggregator and is therefore introduced in section 2.4. 

 
 The Development of Demand Side Management 

 
To supply electricity during peak loads, gas and oil power plants are presented into service, whereas nuclear and 

coal power plants provide the base load because these are considered to be more economical. Due to the significant 
increase in oil and gas prices over the last decades, the cost for peak demand has risen tremendously. To alleviate these 
higher costs, additional base load capacity might be constructed; however, the mere suggestion to construct a new coal 
or nuclear power plant draws vociferous discontentment. As a possible solution to these issues, Gellings (1981) coined 
the term ‘Demand Side Management’ which portrayed the shift from energy utilities into the, once forbidden, 
customer side of the meter (Gellings, 1996). The most accepted definition of DSM is as following: 

 
“Demand-side management is the planning, implementation, and monitoring of those utility activities 
designed to influence customer use of electricity in ways that will produce desired changes in the utility’s load 
share, i.e., changes in the time pattern and magnitude of a utility’s load” (Gellings & Parmenter, 1988, p. 
290).  
 
In order to fully capture the benefits that DSM might have to offer, DSM was integrated in electric utility 

planning and operation (Gellings & Smith, 1989). The connection between utility planning and DSM was also 
recognized by Gellings as he, in 1982, referred to DSM as ‘demand-side planning’ (Gellings & Parmenter, 1988). As 
part of energy planning, components that embrace the following aspects might be considered to be DSM (Gellings & 
Parmenter, 1988): 

 
1. Demand side management will influence customer use 

Programs that are considered to influence the customer’s use of energy are considered DSM.  
2. Demand side management must achieve selected objectives  

DSM was proposed as a solution to the increase in peak prices. The changes in the load shape, due to DSM, 
must consequently, also result in a reduction in energy rates, elevated customer satisfaction and higher levels of 
reliability, etc.  

3. Demand side management will be evaluated against non-demand side management alternatives 
DSM should be considered as an alternative to, for example, the construction of additional capacity. It is only 
then when DSM becomes an integrate part of energy planning.  

4. Demand side management will identify how customers will respond  
DSM is considered to be pragmatic, it constitutes ‘if then else’ relations. Therefore, DSM identifies how 
customers will respond.  
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5. Demand side management value is influenced by the load shape
The value of DSM is determined by the capability of altering the load shape and accordingly influencing the
cost and benefits throughout the day.

From these components it is possible to distil that DSM only includes activities that result in deliberate
interventions, from the utility provider in the marketplace, to change the load shape (consumer demand)(Gellings, 
1985). Regardless of this definition, literature on DSM provides examples for DSM that should not be considered as 
such. For example, Boshell and Veloza (2008) mention that replacing light bulbs with more efficient bulbs is an 
example of energy efficiency, as part of DSM concepts, while Gellings (1985) states that: “… customer purchases of 
energy-efficient appliances as a reaction to the perceived need for conservation would not be classified as DSM” (p. 1468). 
This follows from the statements that DSM determines how customers will respond, not how they might respond. 

The utility programs and concepts that do fall under DSM are described by Gellings (1985) and consists of the 
following: Peak clipping, Valley filling, Load shifting, Strategic Conservation, Strategic load growth and Flexible load 
shape. 

1. Peak Clipping
Peak clipping (Figure 1) is the reduction of the peak load during, for example, solar peaks or evening peaks.
This concept is applied either through a time based rate or incentive-based strategy, with or without enabling
technology (Gellings & Parmenter, 1988). Although that most utilities only consider this concept applicable to
prevent congestion, the concept of peak clipping can also be applied to reduce costs. If the peak load can be
prevented, utilities would not have to shift to less economical means of energy production and thus lower
production cost (Gellings, 1985).

2. Valley Filling
Valley filling (Figure 1) is the increase of loads during periods of low energy consumption. Valley filling is
desired as it can make the energy production and transmission more efficient. This concept is achieved by
adding thermal energy storages which can be charged in off-peak periods. Thermal energy storage units are for
example electric boilers or space heating/cooling (for example for a house or industrial freezing cell) (Gellings,
1985; Gellings & Parmenter, 1988).

3. Load Shifting
Load shifting (Figure 1) is a concept where loads are shifted from peak to off peak periods. Possible techniques
to accomplish such a shift is through energy storage units, as for example, water heaters and space heating
(Gellings & Parmenter, 1988). The water inside the water heater or the air within the house can be heated in
off peaks because both the house and the water heater are capable to retain their temperature over a longer
period of time (Gellings, 1985).

Figure 1: DMS Concepts: Peak clipping, Valley filling and Load shifting 
From: Gellings & Parmenter, Demand-side management, 1988 
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4. Strategic Conservation 
Strategic conservation (Figure 2) is the change in the load shape as the result from utility stimulated programs 
directed to reduce end use electricity consumption. In most cases strategic conservation occurs due to the 
efficiency increase of appliances or weatherization, where weatherization is the practice of protecting the 
household from the outside elements as wind, sun and participation, in order to reduce energy consumption 
(Gellings, 1985). 
 

5. Strategic Load Growth 
Strategic load growth (Figure 2) is the primary result of either an increase in sales due to an increase in market 
share or due to electrification, where electrification is a term used to refer to new emerging technologies as for 
example electric vehicles (Gellings & Parmenter, 1988). Strategic load growth might be considered illusive to 
be part of DSM as it concerns a load increase; however, DSM is defined as ‘changes in the utility’s load’, not 
mentioning if this change is conservative or growth.  
 

6. Flexible Load Shape  
In the concept of a flexible load shape (Figure 2), the load shape is considered to be controllable through the 
use of curtail-able loads or individual customer load control appliances. This concept is strongly related to the 
reliability of the grid where a forecast, over a certain planning horizon, indicates if curtailment is requirement 
to ensure that the load remains within the desired limits (Gellings, 1985).  
 

Figure 2: DSM Concepts: Strategic conservation, Strategic load growth and Flexible load shape 
From: Gellings & Parmenter, Demand-side management, 1988 

To enable these load shifts, two DSM approaches are used, which are pricing incentives, or indirect load control, 
and direct load control. Both these means use different approaches in enabling a customer to change his or her 
electricity consumption willingly, and consequently, these approaches are presented in section 2.1.1 and 2.1.2.  

 
2.1.1 Indirect Load Control 

 
Indirect load control is a control mechanisms where the direct relation between the control response and 

outcome is broken. Therefore, the control mechanism is only an incentive to direct consumers into a desired direction, 
where the outcome is often unobservable and loathed with time delays (Heussen, You, Hansen, & Andersen, 2012). 
Within indirect load control, the incentive to alter the consumer’s behaviour is time of use rates, where the time of use 
is related to the price of electricity. By elevating the price of electricity in the peak hours, the generator expects that the 
consumer will be incentivised to shift the consumption to other, cheaper off peak periods. Other approaches are for 
example interruptible rates, off-peak rates, seasonal rates, conservation rates, promotional rates and variable reliability 
pricing. Although, these approaches do not differ much from time to use, only the relation to time is regulated 
differently.  

One of the weaknesses of indirect load control is that the consumers must first be aware of the desire to shift 
the load, second, be able to respond to this desire of the generator and last, be willing to respond (Torriti, Hassan & 
Leach, 2010; Mohsenian-Rad, 2012). Furthermore, Heassen, You and Andersen (2012) mention that due to the non-
responses to the desire to shift the load, indirect load control may not be able to achieve a consistent response level and 
might result in highly volatile pricing signals, that might even exceed the value of the desired response.  
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2.1.2 Direct Load Control 

Direct load control, in contrast to indirect load control, is a closed loop control system where the outcome of 
the control signal is directly observed (Heussen, You, Hansen, & Andersen, 2012). Direct load control is realized 
through the control of appliances within the household by means of a communication interface. Having direct control 
over the appliances in the household resolves the problem of unreliable response from the consumers to the incentive 
and makes the form of DSM more reliable. Approaches that fall under direct load control are for example: load 
shedding, thermal energy storage, appliance control cycling and cogeneration.  

However, the disadvantage of direct load control is that controlling the appliances within the household might 
result in declining levels of comfort for the inhabitants. Therefore, a payback structure is an inherent nature of direct 
load control, where the consumer should not only remunerated for the losses in energy production (from for example 
photovoltaic panels) but also for possible losses in comfort (Shafiu & Watts, 2007).  

The Introduction of the Role of the Aggregator 

As introduced in section 2.1, DSM consists of two distinct concepts: indirect load control and direct load 
control, where Gellings (1981) mentions that direct load control is the most effective tool for load management because 
of the ability to control consumers’ appliances. However, when direct load control is applied on a larger scale, and 
considered as supervisory control, the utility provider might retain most of the benefits for itself, as each individual 
household only provides a small portion of the total demand/supply and consequently, only has limited negotiation 
power (Lazaros, Koutsopoulos, & Salonidis, 2013). Conversely, the application of direct load control on a larger scale 
would provide a higher probability that adjustable loads are available when there is a need to control the load curve 
(Seung-Jun & Giannakis, 2013) and therefore, increasing the amount of flexibility that is traded, where electricity 
flexibility is defined as “the extent to which a power system can modify electricity production or consumption in response to 
variability…” (Energy Agency, 2011, p. 37). Nevertheless, the utility provider does not contain the required knowledge 
on how to design and apply direct load control on a larger scale and would consequently, result in scalability issues 
(Lazaros, Koutsopoulos, & Salonidis, 2013; Karfopoulos, et al., 2015).  

The projected challenges of providing direct load control on a larger scale, motivated the introduction of the 
aggregator into the energy system. Within this context, the aggregator provides two different functions; to provide load 
adjustment services to operators of the electricity grid, and to 
represent the consumers on the electricity capacity market. By 
representing the consumers, the Aggregator provided the solution 
to the complexity of contracts in the balancing mechanism and the 
ambiguity on how to involve consumers into the capacity market 
(Warren, 2014). Additionally, since the Aggregator can 
dynamically shape the load curve through the consumer’s 
appliances, the Aggregator is considered equivalent to a generation 
resource, and can consequently, participate in the wholesale 
energy market. In this hierarchical load control approach (Figure 
3) by means of multiple Aggregators, an Aggregator has the
jurisdiction over a group of households (load group) and provides 
a bridge between the households and the energy system operators. 
The Aggregator defines the availability of load actions and uses 
this information to describe the responsiveness of the entire group. 
Since the Aggregator is considered to be equivalent to a generation 
resource, the same commands (to raise or lower the load) are used 
as for individual generators. The Aggregator then uses these 
commands in order to control the consumers’ equipment 
accordingly and change the load respectively (Callawar & Hiskens, 
2011). This allows independent households (through the 
Aggregator) to offer load adjustments to the wholesale electricity 
market and gain additional transaction freedom (Bessa & Matos, 
2010). 

Figure 3: Hierarchical Load Control 

From: Callaway, D. S., & Hiskens, I. A. (2011). 
Achieving controllability of electric loads. 
Proceedings of the IEEE, 99(1), 184-199. 
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 A Review of the Financial Feasibility of the Aggregator 
  
The role of the Aggregator is essential in the execution of direct load control DSM. Without the aggregator the 

households are not represented on the wholesale electricity market and the utility provider is tempted to retain all 
benefits. However, before any party will attempt to take the role of the Aggregator, it must be clear that such a party 
can at least break-even. The following cases provide some initial insights:  

1. A theoretical analysis of Lambert (2012) on the financial sustainability of the role of the Aggregator indicates 
that, due to the high investment cost and the low variations in the electricity market, such a role would hardly 
be economically feasible over a longer period of time. Especially when a DSO will decide to invest in the 
electricity grid and would no longer require the services of an Aggregator.  

2. A case study on the use of dynamic response of residential heating load in France indicates different conclusions. 
The analysis indicates that there is a a potential for the Aggregator to have a profitable business case; however, 
due to the energy legislation applied in France, the Aggregator is required to compensate the utility provider 
for the losses of revenue, which has a significant impact on the financial feasibility. Consequently, the business 
case of the Aggregator is inevitably not financially feasible (Hull, 2001).  

3. For a different case study on dynamic control of electric heaters in Finland, based on the assumption that only 
an investment is required for control, monitoring and communication technology, the Aggregator is capable of 
breaking even in 20 years while selling demand response for £69/MWh to the BRP. Accordingly, this case study 
indicates that the role of the Aggregators might become feasible. However, no research in the case study has 
been performed if the Aggregator is able to retail the electricity flexibility for that price, and consequently, the 
financial feasibility remains uncertain (Hull, 2001).  

4. A fourth case of direct load control of commercial air-condition units in the United Kingdom has indicated a 
positive financial feasibility for the Aggregator. Based on the analysis of the load of the air-conditioning units 
and the minimum usage of 10% days per year, the Aggregator is able to break even within 10 years with a 
benefit of £65/customer/year. With fluctuating demand and usage the benefits tend to shift between €15 till 
€240 per customer per year (Hull, 2001).  
 
Hull (2001) concludes on an analysis of a multitude of case studies that the financial feasibility of direct load 

control for the Aggregator is shrouded in uncertainty due to the use of historical information, the uncertainty of the 
cost of control, monitoring and communication technology and the possible influence from electricity flexibility on 
the spot market price. Additionally, Lambert (2012) adds that the involvement of the end users in such a new energy 
framework is hard to predict, resulting in an uncertain financial sustainability for the Aggregator.  

Although that these case studies indicate varying uncertain economic results for the role of the Aggregator, 
Torriti, Hassan and Leach (2010) mention that it is not possible to extend such results to other countries. This 
extension is not feasible due to the divergent penetration level of DSM technologies, the amount of manageable power, 
and the household load curves. Lambert (2012) adds that only a real application of DSM could help to provide more 
insights in the interconnection between the Aggregator and market actors.  

 
 A Practical Application of Demand Side Management  

 

The energy transition, where consumers are starting to generate their own electricity, has resulted in a number 
of necessary measures to prepare the electricity network for the future. These measures are for example the development 
of electricity storage capacity or research on the use of hydrogen, but also the introduction of smart grids and DSM 
(Sociaal Economische Raad, 2013). In order to gain more insights into the effect of DSM on the electricity 
infrastructure, the Smart Energy Collective (SEC) performs research and demonstrates the smart energy networks in 
practice (Energiekaart, 2016). These experiments are performed in five experimental projects, which are: the Proeftuin 
Heerhugowaard, the Proeftuin Goese, the Proeftuin Gorichem, the Proeftuin Haarlemmermeer, and Smart Offices. 
As was already introduced earlier, this thesis focuses on the Heerhugowaard field trial, which will consequently be 
shortly introduced in section 2.4.1. Additionally, the experiment in Heerhugowaard assists in the development of the 
Universal Smart Energy Framework (USEF) as a market standard for the exchange and trade of electricity flexibility 
from consumer household to the wholesale electricity market (Energiekaart, 2016). Accordingly, USEF will be 
introduced in section 2.4.2. Based on USEF, the Aggregator trades the electricity flexibility with the BRP and DSO, 
and receives payment for this exchanges. In order to shed more light on these transactions, as the core of the financial 
business model for the Aggregator, section 2.4.3 introduces the remuneration scheme for the Aggregator, applicable in 
the Heerhugowaard field trial.  
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2.4.1 The Heerhugowaard Field Trial 

The Heerhugowaard field trial is an experiment where 201 households are equipped with direct load control 
appliances, in order to investigate if direct load control could postpone grid investment for the DSO, and if direct load 
control might contribute to sourcing and balancing strategies for the BRP. Direct load control is achieved by the 
interaction of electricity consumption and gas consumption, where the reserve capacity of one network could be used 
to absorb the overload of the other network (Energiekaart, 2016). In other words, when there is a peak load in the 
electricity network, an electric device (Heat Pump) is switched off and a gas consuming unit takes over. Additionally, 
direct load control on Photovoltaic panels is used to absorb the peak of the solar peak. The four appliances used in the 
field trial have the specifications presented in Table 1, where each controlled household has one controllable smart 
appliance installed.  

Table 1: Smart Appliances in the Field Trial (Energiekoplopers, 2015; Inventum, 2015) 

Device Type Households Base State Flex Max Capacity per unit (W) 
Photovoltaic Panel 89 On Flex Up 380 - 6000 

Heat Pump1 50 On Flex Down 620 
Electric Boiler 44 Off Flex Up 1000 / 1500 / 2500 

Fuel Cell 18 Off Flex Down 1500 

2.4.2 Electricity Flexibility Trading with the BRP and DSO through USEF 

The electricity flexibility that is created through the use of smart appliances (indicated as ADS in Figure 4) from 
the prosumers, as for example by means of Photovoltaic panels or Heat Pumps, is aggregated by the Aggregator in an 
electricity flexibility portfolio. Such a portfolio creates the opportunity to provide flexibility services to different 
markets, serving different players. The Universal Smart Energy Framework provides a scalable and standardized market 
solution, and allows the Aggregator to provide flexibility services to the BRP, DSO and TSO. These parties are 
interested in using such a service for the following reasons (USEF Foundation, 2014): 

1. The BRP is interested in procuring electricity flexibility in order to reduce the costs of sourcing and balancing,
and to avoid imbalance charges.

2. The DSO is interested in procuring electricity flexibility to prevent congestion on the electricity grid, retain the
voltage levels within constraints, increase controlled islanding and further increase redundancy.

3. The TSO is interested in procuring electricity flexibility through the BRP in order to perform Primary Control,
or frequency containment, Secondary Control in order to reduce imbalances on the imbalance market and
Tertiary Control, which resembles secondary control, but on a longer time period.

These parties purchase electricity flexibility from the Aggregator by means of the USEF flexibility supply chain (
Figure 4). In this supply chain the Aggregator maximizes the value of the electricity flexibility in the portfolio 

by selling it to the party with the most urgent need, and consequently the party that is willing to pay the highest price. 

Figure 4: The USEF Electricity Flexibility Supply Chain 
(USEF Foundation, 2014) 

1 The Heat Pump is only designed to keep the house on temperature, therefore the heat pump has only a low capacity. 
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In order to provide the parties with equal access to the electricity flexibility services, USEF introduced a market-
based coordination mechanism. This market-based coordination mechanism consists of five different phases with 
different actions and requirements for the involved parties. These five phases are: Contract, Plan, Validate, Operate 
and Settle2 (USEF Foundation, 2014).  

 
1. Contract Phase 

In order for USEF to function accordingly, contractual relationships between the Aggregator, Prosumers, BRP 
and DSO need to be established. In this phase the TSO is not involved as the TSO already has an ancillary 
service contract with the BRP.  
 

2. Plan Phase 
In the plan phase the aim is to determine an economically optimal program that meets the electricity demands 
of the BRP and Aggregator portfolio. The results of this plan are reflected in the A-plan. The following steps in 
the respective order are undertaken in the plan phase: 

• Agg: Collect forecast information and create forecast for the entire portfolio 
• Agg: Optimize the internal portfolio  
• Agg: Generate A-plan and communicate to BRP (electricity flexibility offered) 
• BRP: Receive A-plan and optimize internal portfolio 
• BRP: Request electricity flexibility from the Aggregator (electricity flexibility ordered) 
• Agg: Trade electricity flexibility with the BRP 

 
3. Validate Phase 

The Validate phase is related to ensuring that the electricity load remains within the network congestion limits. 
The Aggregator performs a D-prognoses in order to forecast the load for the controlled households, after which 
the DSO combines this forecast with the forecast of the DSO controlled households in order to determine if 
network congestion might occur. The following steps are taken in the validate phase: 

• Agg: Creates D-prognoses and communicate with DSO 
• DSO: Receive D-prognoses and perform grid safety analysis  
• DSO: Request electricity flexibility from the Aggregator  
• Agg: Trade electricity flexibility with the DSO 
• Agg: Adjusts the A-plan iteratively through the Plan Phase (the arrow in Figure 5 from validate to 

plan) 
 

4. Operate Phase 
In the operate phase the Aggregator controls the smart appliances in the households of the prosumers in order 
to deliver the sold flex to the BRP and DSO. However, deviation in the D-prognoses may occur due to, for 
example, forecast errors, hardware/IT errors, and human interaction. In order to ensure that the DSO is able 
to prevent additional network congestion, the DSO can order additional electricity flexibility in the operate 
phase.  

• DSO: If needed the DSO orders additional electricity flexibility in order to preserve network reliability 
• Execute the A-plan and D-prognoses by scheduling active control of the smart appliances  

 
 

2 The presented description and overview of steps are associated with the Heerhugowaard Field Trial. USEF originally constitutes 
of an additional number of steps which are not performed in the field trial and consequently not discussed.  

Figure 5: The USEF Market-Based Coordination Mechanism (USEF Foundation, 2014) 
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5. Settle Phase
In the settle phase the Aggregator calculates the amount of electricity flexibility sold to the BRP and DSO and
settles the offered flexibility. The BRP and DSO will consequently remunerate the Aggregator for the provided
services, as the Aggregator remunerates the Prosumers for the provided electricity flexibility.

As one might expect, the Contract phase is only performed ones or periodically. The Plan and Validate phases may 
take place both day-ahead and intraday, where day-ahead concerns the coming 24 hours (from 00:00 till 23:59) and 
intraday the next coming 4 hours (a day is split in 6 blocks of 4 hours). In contrast, the Operate phase is executed every 
15 min time period, in order for the DSO to correct the D-prognoses in regards to the observed network congestion 
(USEF Foundation, 2014). An additional difference is that the BRP uses the APX market for day-ahead and the 
Imbalance market for intraday electricity flexibility trading.  

2.4.3 The Compensation Scheme for the Aggregator 

2.4.3.1 Electricity Flexibility Pricing 

14 



15 



2.4.3.2 The Decision Making Process of the BRP 

The BRP orders electricity flexibility in order to reduce the cost of electricity purchasing, which implies that 
the cost of electricity flexibility, in combination with the APX, Imbalance market and retail price are primary drivers 
for the purchasing behaviour of the BRP. Based on these influential factors the decision making process of the BRP 
can be captured in two equations, with the difference that in one the BRP orders electricity flexibility up and in the 
other orders electricity flexibility down: 

The BRP orders electricity flexibility up if: 

APX Price + Electricity Flexibility Price < Electricity Supply Tariff 
Unbalance Price + Electricity Flexibility Price < Electricity Supply Tariff 

The BRP orders electricity flexibility down if: 

APX Price – Electricity Flexibility Price > Electricity Supply Tariff 
Unbalance Price – Electricity Flexibility Price > Electricity Supply Tariff 

2.4.3.3 The Variable Cost for the Aggregator 
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Electricity Flexibility 

The financial business case of the Aggregator pivots on the trade of electricity flexibility with the BRP, DSO 
and TSO. In order to determine the financial outcome for the Aggregator when DSM is expanded, it is essential to 
know how much electricity flexibility can be sold per time unit per smart device. With the aim of predicting electricity 
flexibility, section 3.1 first addresses the types of electricity flexibility to provide a clear understanding of the different 
aspects of electricity flexibility. Furthermore, since electricity flexibility is procured from different appliances, the factors 
that influence the available electricity flexibility of these appliances are device specific. Hence, section 3.2 describes the 
potential factors that might have a relation with the available electricity flexibility per smart device. Last, section 3.3 
provides an overview of the hypothesized causal relations between the potential factors that could influence the available 
electricity flexibility and the available electricity flexibility by means of a causal diagram.  

Electricity Flexibility from Smart Appliances 

Electricity flexibility, in the context of electricity systems, is defined by the International Energy Agency (2011) 
as: “the extent to which a power system can modify electricity production or consumption in response to variability…” (p. 
37). In this setting, electricity flexibility is employed to maintain a reliable supply of electricity while faced with large 
and rapid imbalances. Because the deployment of electricity flexibility prevents such imbalances, one might believe 
that electricity flexibility is a balancing activity. However, Tripple (2014) mentions that balancing activities and 
electricity flexibility are not the same, as balancing activities only have a short time span, from seconds to an hour, 
whereas electricity flexibility includes daily, weekly and seasonal variations. From this perspective, electricity flexibility 
includes balancing activities, but balancing activities are not explicitly achieved through the use of electricity flexibility. 

Electricity flexibility provides means to ‘regulate up’ or ‘regulate down’, where up regulation ensures an increase 
in the energy output from power plants, and down regulation reduces the energy output from power plants. Although 
that traditionally these services were only associated with dispatch-able generators, other resources as DSM are now 
also considered (Tripple, 2014). In the context of DSM, up regulation is provided by reducing the load of controllable 
appliances and down regulation by increasing the load of controllable appliances (Ecofys, 2014). Additionally, in the 
context of the Heerhugowaard field trial, electricity flexibility provides ‘flex up’ or ‘flex down’, where flex down reduces 
the load from appliances or increases the output from appliances, and flex up increases the load from appliances or 
reduces the output from appliances. An overview of these control actions is presented in Table 3.  

Table 3: Electricity Flexibility in the Energy System 

Type of control Control action Control result Energy system result 

Power plant Regulate up Increases the power plant output  Increase in energy available 

Regulate down Decreases the power plant output Decrease in energy available 

Demand Side Management Regulate up Reduces the load of the device Increase in energy available  

Regulate down Increases the load of the device Decrease in energy available 

Flex up Increases the load of the device Decrease in energy available 

Reduces the output of a device  Decrease re energy available 

Flex down Reduces the load of a device Increase in energy available  

Increases the output of a device Increase in energy available  

Although that the control actions and results between regulate up and regulate down and flex up and down 
seem illogical, it helps to realize that the results of DSM for regulate up and regulate down are comparable to when a 
control action is taken for the power plant. In other words, regulate up for DSM has the same effect on the total 
available energy as regulate up for the power plant. Additionally, if a comparison is made for the effect on the load 
curve, regulate down would elevate the load curve as the load of a device is increased, while regulate down for the power 
plant would decrease the load curve as a smaller amount of energy is available. The same effect is realized with flex up, 
where the term ‘up’ refers to the change in the load curve. Therefore, the changes in the load curve or in the power 
plant output level are comparable.  

 When electricity flexibility is procured from a device, a particular device’s load is disconnected from, or 
connected to the electricity system, which results that the electricity flexibility of that device is equal to the load (where 
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the load of a solar panel and fuel cell are negative) of the device at time t. This implies that the amount of electricity 
flexibility is limited by the amount of appliances and their respective load on the electricity system (or supply to the 
electricity system), since when a device is switched off to create flex, this device cannot be switched off again, and vice 
versa. Accordingly, the current measure of electricity flexibility is unable to capture these differences. Consequently, 
other measures are introduced to define electricity flexibility more closely in all stages of operation. Throughout this 
thesis the following three measures are used: 

1. Available Electricity Flexibility
The available electricity flexibility is the total flexibility that is available at time t from each smart appliance. For
example, Figure 6 displays the energy output of 4 houses with controllable Photovoltaic panels, where the sum
of these outputs represents the total available flexibility, and the independent output the available electricity
flexibility per device. This implies that the total, and independent, available flexibility changes over the day,
dependent on, for example, the irradiance at that particular point in time.

2. Controlled Electricity Flexibility
The moment, for example, flex up is requested by a BRP or DSO, the Aggregator may decide to switch off one
of a Photovoltaic panels. Figure 6 presents this transition where Photovoltaic panel 4 is switched off, and causes
a reduction in the produced Photovoltaic electricity. This reduction is the controlled electricity flexibility. Due
to this ‘control’ the overall available electricity flexibility does not change, as indicated by the dashed line. This
is because at any point in time, the Aggregator can switch the Photovoltaic panel back on, restoring the original
situation.

3. Remaining Electricity Flexibility
When a Photovoltaic panel is controlled, other Photovoltaic panels might still be producing electricity. These
remaining sources of electricity flexibility are still available for the Aggregator to provide electric flexibility
service for the BRP and DSO. Therefore, the electricity flexibility that can still be requested (available electricity 
flexibility - controlled electricity flexibility) is referred to as the remaining electricity flexibility.

From these three measures of electricity flexibility it is possible to conclude that:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶 𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 + 𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑅𝑅 𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 

As was already presented in Table 3, electricity flexibility can be procured from different types of appliances, 
where these appliances can be categorized as; Energy Storage, Demand, Supply and Network (Ecofys, 2014). In the 
Heerhugowaard field trial only the Demand and Supply category are present, where the Photovoltaic panels and the 
Fuel Cells both belong to the supply category and the Electric Boilers and the Heat Pumps to the Demand category 
(Ecofys, 2014). As these appliances are different, the factors that influence the available electricity flexibility from these 
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Figure 6: Different types of Electricity Flexibility 
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appliances also varies. Therefore, in order to predict the available electricity flexibility from the appliances in the 
Heerhugowaard field trial, the potential factors that influence the available electricity flexibility are investigated per 
device.  

 
 Potential Factors that Influence the Available Electricity Flexibility 

 
The electricity flexibility from the four appliances, even when the appliances are from the same electricity 

flexibility category, are the result from a varying set of household exogenous and endogenous factors. In order to predict 
the available electricity flexibility of these appliances, the household exogenous and endogenous factors that might have 
an influence on these appliances are investigated and discussed in section 3.2.1 through 3.2.4 for the Photovoltaic 
panels, the Electric boiler, the Heat Pump and the Fuel cell respectively.  

 
3.2.1 The Available Electricity Flexibility from the Photovoltaic Panels 

 
Electricity from photovoltaic panels is created through the principle of conservation of momentum and energy 

and the photovoltaic effect which converts the energy from incident photons into electrical energy (Mekhilef, Saidur, 
& Kamalisarvestani, 2012). The available electricity flexibility from a photovoltaic panel is equal to the production of 
electrical energy from the photovoltaic panel at time t, as this amount of load on the electricity network can be increased 
by switching the energy provision from the photovoltaic panels to off. Therefore, to determine what influences the 
available electricity flexibility from a photovoltaic panel, the potential factors that influence the photovoltaic output 
are investigated. The output from photovoltaic panels can be approached through the following state equation 
(Ashouri, 2014):  

 
�̇�𝑬𝑷𝑷𝑷𝑷𝑷𝑷,𝒐𝒐𝒐𝒐𝒐𝒐
𝒅𝒅 (𝒊𝒊) =  𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑  ∙  𝜂𝜂𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴) ∙ 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴) 𝐴𝐴 = 1, 2, … , 𝐸𝐸. 

 
where Ed

PVS, out is the electrical power output of the photovoltaic panel, Ad
PVS, the area of the photovoltaic panel 

(cq. the photovoltaic capacity), ηPVS the photovoltaic energy transition efficiency and IPVS the vector of total solar 
incidents on the photovoltaic panel. The vector of the total solar incidents, which provides the relative intensity of the 
irradiance, is further dependent on the solar elevation angle, the solar zenith angle and the local irradiance (Tao, 
Shanxu, & Changsong, 2010). Furthermore, the efficiency of the photovoltaic panel, ηPVS, is negatively dependent on 
the outside air temperature as it influences the panel temperature and reduces the energy conversion efficiency (Dubey, 
Sarvaiya, & Seshadri, 2013). Additionally, humidity also negatively influences the output of the photovoltaic panel as 
water in the atmosphere causes the light to refract, reflect or diffract, which causes a decreases in the reception levels 
for photovoltaic panels (Mekhilef, Saidur, & Kamalisarvestani, 2012).  

Next to the hypothesized exogenous variables the Aggregator also has control over the photovoltaic panels and 
may decide, based on the demand for electricity flexibility, to switch off the photovoltaic panel. This action significantly 
influences the output of the photovoltaic panel even in the presence of irradiance. Therefore, due to the presence of 
this control, the effect of irradiance and the capacity of the photovoltaic panel differ over time. When such an effect is 
present, terms are interacting with each other and might be combined in an ‘interaction term’. Consequently the term 
PV-Capacity*Irradiance*State refers to the interaction between Irradiance, the photovoltaic state and photovoltaic 
capacity of the panel.  

Based on this analysis the following factors can be stated to be potential factors that might influence the available 
electricity flexibility from Photovoltaic Panels: Solar Irradiance, PV-CapacityIrradianceState, Solar Elevation Angle, Solar 
Azimuth Angle, Outside Air Temperature, Outside Air Humidity, Photovoltaic Energy Transition Efficiency, and the PV-
Capacity. 

 
3.2.2 The Available Electricity Flexibility from the Electric Boilers 

 
The electric boiler can be considered to be a Thermal Energy Storage (TES) unit as it is able to store energy in 

the form of warm water for a longer period of time. Electricity demand from the electric boiler is created when the 
electric boiler is switched on by the Aggregator and when the boiler charge level is lower than 100%. This implies that 
the electric boiler will not heat the stored water when there is demand from the household for hot water, in the absence 
of a control signal from the Aggregator. The electricity flexibility, which can be created per t from the electric boiler, 
is equal to the load from the boiler and varies per household from 1 kW to 2.5 kW. However, in contrast to the other 
smart appliances, the duration the electric boiler can create electricity flexibility is not only dependent on household 
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exogenous factors, like for example the irradiance for the photovoltaic panels, but also household endogenous factors. 
The system state equation for a thermal energy storage system substantiates this distinction (Ashouri, 2014):  

𝑸𝑸𝑻𝑻𝑬𝑬𝑷𝑷(𝒊𝒊) = (1 − 𝜎𝜎𝑇𝑇𝑇𝑇𝑃𝑃) ∙ 𝑄𝑄𝑇𝑇𝑇𝑇𝑃𝑃(𝐴𝐴 − 1) + 𝐸𝐸𝑠𝑠 ∙ �𝑄𝑄𝑇𝑇𝑇𝑇𝑃𝑃,𝑖𝑖𝑖𝑖
𝑑𝑑 (𝐴𝐴 − 1) −  𝑄𝑄𝑇𝑇𝑇𝑇𝑃𝑃,𝑜𝑜𝑜𝑜𝑜𝑜

𝑑𝑑 (𝐴𝐴 − 1)� , 𝐴𝐴 = 2,3, … , 𝐸𝐸 
0 ≤  𝑄𝑄𝑇𝑇𝑇𝑇𝑃𝑃(𝐴𝐴)  ≤ 𝐶𝐶𝑇𝑇𝑇𝑇𝑃𝑃 

𝑑𝑑  

where QTES indicates the current energy in the electric boiler, σTES the self-discharge of the electric boiler and 
Qd

TES, in and Qd
TES, out, the energy charge and energy discharge respectively, in which both Qd

TES, in and Qd
TES, out, 

are constrained to the capacity (Cd
TES) of the electric boiler. The system state equation identifies that the 

electric load, resulting in Qd
TES, in,  can only occur when QTES ≤ Cd

TES. Implying that the total available electricity 
flexibility from the electric boiler is limited by the capacity of the electric boiler, and the remaining electricity flexibility 
at time t is limited to the charge level at time t. Concluding that when an electric boiler is fully charged, electricity 
flexibility can no longer be requested from that electric boiler.  

The household endogenous influence is also identified in the electric boiler state equation as Qd
TES, out. Qd

TES, out 
identifies the withdrawal of energy from the electric boiler, outside of the thermal losses, and is a direct result of hot 
water consumption by the household. Because charging the electric boiler results in a decrease in the remaining available 
electricity flexibility, the consumption of hot water, results in an increase of the remaining available electricity flexibility 
from the electric boiler. Subsequently, the remaining electricity flexibility (Cd

TES - QTES ) at time t depends on Qd
TES, in 

and Qd
TES, out. Since Qd

TES, in fully depends on the exogenous control signal from the Aggregator, and is therefore in 
direct control by the Aggregator, it is possible to conclude that only the Qd

TES, out is uncertain. Implying that, hot water 
consumption should be investigated in order to predict the available electricity flexibility from the electric boiler. 

Analysis on water consumption in households in the Netherlands have been performed in the past by for 
example TNS NIPO (2013) and Blokker (2010). However, these analysis did not specifically analyse ‘hot’ water 
consumption. An analysis from Defra (2008) did focus especially on hot water consumption and found, by analysing 
the hot water consumption from 120 households in the United Kingdom, that only the time of the day and the number 
of inhabitants significantly influence the hot water consumption. Furthermore, research from Kalogirou and 
Tripanagnostopoulos (2006) indicates that higher outside air temperatures reduce the demand for hot water from 
households.  

Based on this analysis the following factors can be stated to be potential factors that might influence the hot 
water consumption and indirectly, in combination with the control from the Aggregator, the available electricity 
flexibility from the Electric Boiler: Hour of the Day, Number of Inhabitants per Household and the Outside Air 
Temperature. 

3.2.3 The Available Electricity Flexibility from the Heat Pumps 

The heat pump is a device that requires electrical energy to initiate a reverse vapour compression refrigeration 
cycle where outside thermal energy is used to warm indoor air or tap water. Electric demand from the heat pump is 
created by two different heat demands. These demand for heating can either come from the electric boiler installed in 
the heat pump, or from the household thermostat. The available electricity flexibility from the heat pump consequently 
depends on the electric load generated by supply of thermal energy either to the household air or to the water boiler. 
This relation is substantiated by the following heat pump state equation (Ashouri, 2014): 

𝐸𝐸𝐴𝐴𝐴𝐴𝑃𝑃,𝑖𝑖𝑖𝑖
𝑑𝑑 = �

𝑄𝑄𝐴𝐴𝐴𝐴𝑃𝑃→𝑇𝑇𝑇𝑇𝑃𝑃𝑑𝑑 ∙ 𝑓𝑓𝑇𝑇𝑇𝑇𝑃𝑃
𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃→𝑇𝑇𝑇𝑇𝑃𝑃 

� + �
𝑄𝑄𝐴𝐴𝐴𝐴𝑃𝑃→𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑 ∙ 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵
𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃→𝐵𝐵𝐵𝐵𝐵𝐵

� 

𝑄𝑄𝐴𝐴𝐴𝐴𝑃𝑃𝑚𝑚𝑖𝑖𝑖𝑖 ≤ 𝑄𝑄𝐴𝐴𝐴𝐴𝑃𝑃𝑑𝑑 ≤ 𝑄𝑄𝐴𝐴𝐴𝐴𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 

where Ed
AHP,in indicates the load of the heat pump, depended on the energy required per C to charge the boiler 

and to heat the household, indicated by Qd
AHP->TES and Qd

AHP->BDG respectively. The amount of energy that is required 
for the boiler and the household further depends on the difference between the current temperature and the desired 
temperature, indicated by fTES and fBDG, and the Coefficient of Performance (COP) of the heat pump for both processes. 

The heat pump combines the operation of a normal household heat installation and the electric boiler, as 
described in 3.2.2. The household exogenous factors that influence the household heating function are possibly the 
Outside Air Temperature (Tamb), the Size of the House, the Type of the House and the Energy Class of the House (Verhallen 

22 



& van Raaij, 1981; Ashouri, 2014). These four factors might play a role in the transfer of heat from the household to 
the environment, following the law of Fourier (Thermopedia, 2015): 

 
𝐽𝐽𝑚𝑚
𝑆𝑆

=  − 𝜆𝜆
𝐶𝐶𝑑𝑑
𝐶𝐶𝐹𝐹

 

 
where Jx is the heat flux in direction x (W), S is the surface area under which the heat transfer takes place (m2), 

λ is the negative temperature coefficient (W m-1 K-1) and dT/dx is the temperature gradient (K/m). The type of the 
house and the size of the house might have an influence as they have a relation with the surface area under which the 
heat transfer can take place, in other words, a larger house has a larger surface area contacting the outside air, which 
might influencing the heat transfer, and consequently the heat pump load. Additionally, the temperature coefficient 
might have a relation with the energy class of the house, as the energy classification 2, 3 and 4 specifically take into 
consideration household isolation (Milieu Centraal, 2016). Furthermore, the temperature difference between the inside 
and the outside of the household might also have a positive influence on the heat transfer, as directly indicated by the 
law of Fourier, and therefore also influences the heat pump load (the lower the outside air temperature the higher the 
heat pump load).  

Additional to the direct relation to the Fourier equation, other factors might also influence the heat transfer. 
For example the irradiance during the day heats the house, which consequently postpones the heating activity of the 
heat pump. Additionally, the wind speed during the day increases the subtraction of energy from the house and thus 
ensures that the house cools down faster. Therefore the heat pump load might also have relations with the solar 
irradiance and wind speed (Badescu & Sicre, 2003).  

Next to the natural order, the heat pump might also influenced by household endogenous factors. Two of these 
possible factors are the number of inhabitants in the household and the hour of the day (Defra, 2008). Because the 
heat pump pre-heats water for hot water consumption, the load of the heat pump might be related to the number of 
household inhabitants (as was indicated in section 3.2.2). Furthermore, the operation of the heat pump is scheduled, 
following a daily pattern and in some cases even a night clock, or even a summer/winter schedule (Inventum, 2015). 
Therefore, this schedule could play an important role in predicting the load of the heat pump. A third factors is that 
the heat pump is also controlled through the Aggregator, which results in the inactivity of the heat pump, and 
consequently results in a direct relation between the SESP state (the state of the Heat Pump, 1 being off and 2 being 
on) and the heat pump load.  

Based on this analysis the following factors can be stated to be potential factors that might influence the available 
electricity flexibility from the Heat Pump: Outside Air Temperature, Solar Irradiance, Wind speed, Hour of the Day, 
House Size, House Type, The Energy Class, Number of Inhabitants and the SESP State.  

 
3.2.4 The Available Electricity Flexibility from the Fuel Cells  

 
The Fuel Cell produces electricity due to the chemical reaction between positively charged hydrogen ions and 

an oxidizing agent (oxygen) (also referred to as a redox reaction). The conversion process from chemical energy (from 
gas) into electrical energy is of a continuous nature. In other words, in order to produce electrical energy, the Fuel Cell, 
requires a continuous supply of chemical energy. The moment the supply of chemical energy is halted, the output of 
electrical energy, coming from the Fuel Cell, returns to zero.  

Based on this simplified description of the Fuel Cell, it is possible to defer that the Fuel Cell’s output is primarily 
influenced by the supply of chemical energy. This implies that the available electricity flexibility is primarily influenced 
by the supply of chemical energy to the Fuel Cell. The supply of gas to the Fuel Cell is directly regulated by the Power 
Matcher and consequently in control by the Aggregator. The output and the available electricity flexibility for the Fuel 
Cell are thus fully predictable for the Aggregator, where the Aggregator can control the Fuel Cell between 500 and 
1500 W. Based on this analysis only the SESP State is identified as a potential factor that might influence the available 
electricity flexibility from the Fuel Cell.  
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Hypothesized Causal Model for the Available Electricity Flexibility 

In the previous sections, relations between the available electricity flexibility and household endogenous and 
exogenous influences, are hypothesized. In order to provide a clear overview of these relations a causal relations diagram 
can be presented. However, a causal relations diagram is a model that expresses more than correlation (Judea, 2000), 
as correlation does not imply causation. In order to indicate causation, outside the field of philosophy, it is understood 
that the cause and effect relation must be in accordance with the known laws of nature (Beebee, Hitchcock, & Menzies, 
2009). Consequently, it is possible to construct a causal map as the proposed relations are based on the state equations 
presented by Ashouri (2014) and the law of Fourier.  

A causal map may be constructed using the ordered tripled 〈𝑌𝑌,𝑋𝑋,𝐸𝐸〉 where Y is the independent variable, X is 
the dependent variable and E is the set of structural equations. In a causal map the relationship is identified by means 
of an arrow, indicating the direction of the causal relationship. Figure 7 illustrates a graphical representation of the 
causal map, where the scientific representation of the causal map can be found in Appendix I.  

Figure 7: Hypothesized Causal model for the Available Electricity Flexibility 
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 Methodology  
 
The methodology describes the justification of the used techniques and procedures to identify, select and analyse 

the information required to establish an answer to the proposed research problem, in order to allow the reader to 
critically assess the validity and reliability of the study (Kallet, 2004). In order to provide the reader with the required 
information, to assess the validity and reliability, the chapter will first introduce the research design in section 4.1. 
Second, the chapter provides an overview on how the sampled households were selected, how representative these 
households are to the Dutch population, and to what extend the sample size has an influence on the confidence interval 
in section 4.2 through 4.5. Furthermore, section 4.6 provides a description on how the data, which was used in the 
analysis, was collected from the individual households, and last, section 4.7 indicates how the data was processed and 
by means of which software the data was analysed.  

 
 Research Design  

 
The research design aims to assist the researcher in obtaining answers to the initially stated sub-research 

questions as unambiguously as possible. In other words, “given this research question (or theory), what type of evidence is 
needed to answer the question (or test the theory) in a convincing way?” (De Vaus, 2001, p. 9). Therefore, this section 
provides the types of evidence required to answer the sub-research questions and provides a rigor methodology through 
which this evidence can be found. The sub-research questions will be grouped in Qualitative research (4.1.1) and 
Quantitative research (4.1.2).  

 
4.1.1 Qualitative Research  

 
Qualitative research questions are primarily exploratory in nature and are used to gain understanding of 

underlying reasons and provides further insights into the problem. The most popular methodology for exploratory 
research is the analysis of secondary data, also referred to as literature search (Onwuegbuzie, Leech, & Collins, 2012). 
These sources are reviewed to discover what is already known about the subject. Furthermore, exploratory research 
assists in discovering causal relations which later can be proven by causal research (De Vaus, 2001). The following 
research questions belong within the qualitative research category: 

 
1. What is Demand Side Management and how is Demand Side Management applied in the Heerhugowaard 

field trial? 
2. What is the role of the Aggregator in Demand Side Management and how is this role applied in the 

Heerhugowaard field trial? 
3. What is electricity flexibility and how is electricity flexibility traded? 
4. What are potential factors (weather, people per household etc.) that influence the available flexibility within 

DSM applications? 
5. What type of model can predict the available flexibility when Demand Side Management is expanded to more 

households within the Netherlands? 
 
Sub-research question 1 – 3 focused on what is known regarding DSM, the role of the Aggregator in DSM and 

the concept of Electricity Flexibility. As these concepts are not new, and DSM has been around since the beginning of 
the 1980’s, the current scientific body of knowledge should be an appropriate source of information, as for example 
Gellings (1981, 1985 and 1996). For this reason, the analysis of secondary data was chosen to provide an answer to 
these questions.  

Sub-research question 4 aimed at providing evidence for the relation between potential factors, as for example 
the weather and socio demographics, and the electricity flexibility within DSM applications. This analysis was not 
performed to prove the actual existence of the relationship but merely to indicate that a theoretical relation exists. The 
electricity flexibility within DSM systems is present because of the use of four types of appliances which have been 
addressed in 2.4.1. These appliances have been in use for a longer period of time, although not necessarily for DSM. 
Therefore, literature should provide sufficient information on the possible relation between potential exogenous and 
endogenous factors and the functioning of these appliances. Consequently, a literature review in combination with a 
qualitative comparative analysis was performed (Onwuegbuzie, Leech, & Collins, 2012).  
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Sub-research question 5 addressed the question which methodology can be employed to predict the available 
electricity flexibility for a larger set of households. Therefore, this question required an analysis and comparison of 
methods applied for prediction. The initial information for such an analysis was found by means of a literature review 
in combination with a qualitative comparative analysis, as sufficient literature is available regarding these methods.  

 
4.1.2 Quantitative Research  

 
Quantitative research is referred to as “techniques that seek to understand behaviour by using complex mathematical 

and statistical modelling, measurements and research” (Investopedia , 2015). Quantitative research uses deductive 
reasoning to derive a set of outcomes from observations following a certain theory (De Vaus, 2001). The following 
research questions belong within the quantitative research category: 

 
6. To what extent are the results from the Heerhugowaard field trial generalizable for the expansion of Demand 

Side Management to more households in the Netherlands? 
7. What is the relationship between the potential factors that predict the available electricity flexibility and the 

measured available electricity flexibility? 
8. Which configuration of smart appliances, used in the Heerhugowaard field trial, results in the maximization of 

flexibility trading for the Aggregator? 
9. What is the financial outcome and uncertainty of Demand Side Management expansion for the Aggregator 

within the Netherlands, taking into consideration the appliances used in the Heerhugowaard field trial?  
 
Sub-research question 6 investigated if the sample, which is taken from a longitudinal continuous panel in a 

field experiment, is statistically representative with respect to the Dutch households. This analysis was performed with 
goodness of fit tests as Tomlin (2014) mentioned the usefulness of such test for sample representative testing. The 
goodness of fits tests that were employed are the Pearson statistics, the one sample t-test and the independent sample 
student t-tests because of the differing levels of measurement. Through these statistical tests, the difference between the 
sample and the population were proven with a certain level of significance.  

Sub-research question 7 investigated the relationship between the potential factors that predict the available 
electricity flexibility and the measured available electricity flexibility from the Heerhugowaard field trial. As the 
question placed substantial focus on the ‘relation’, regression was used in the context of longitudinal data (Tso & Yau, 
2007; Wooldridge, 2015). Therefore, to predict the available electricity flexibility from the Photovoltaic panels, 
random effect regression was used. For the prediction of the available electricity flexibility of the Electric Boiler linear 
regression was also inapplicable due to the absence of a useful dataset. Therefore, a simulation study was performed, as 
introduced by Blokker (2010), in order to approximate the Dutch household hot water consumption pattern. 
Additionally, for the prediction of the Heat Pump load, normal panel data regression could also not be employed 
because the data from the Heat Pump was considered to be binary choice data. Consequently, logistics panel regression 
was performed in order to capture the high numbers of zero correctly (Wooldridge, 2015).  

Sub-research question 8 focussed on the optimization of electricity flexibility trading, where electricity flexibility 
is traded when there is a demand for electricity flexibility and electricity flexibility is available. As this question focused 
on the optimum configuration mix, linear and non-linear optimization was initially attempted (Jorge & Wright, 2006). 
However, due to the nature of the optimization problem, the solution space was non-linear, non-smooth and assumed 
to be non-convex. These implications resulted in a shift from non-linear optimization to Evolutionary optimization 
because with a non-smooth solution space, derivative or gradients generally cannot be used within the optimization 
process (FrontlineSolvers, 2016). 

The last sub-research question, question 8, focussed on the financial outcome and uncertainty of this outcome 
for the Aggregator. As no experiment of large scale DSM projects were available, the only financially feasible alternative 
was selected, which is a simulation model. This simulation model was constructed in Excel through the prediction 
models estimated in earlier analysis and combined with an automated Visual Basis executive runtime simulation model. 
Through, verification and validation methods presented by Sargent (2012) the model was validated for operational 
use, and through the work from Schoots and Hammingh (2015), the uncertainty of the outcome was analysed through 
scenario analysis.  

 
Based on the presented qualitative and quantitative research methods, the following research flowchart can be drawn:  
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Figure 8: The Research Flowchart 
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The Sampling Frame 

The sampling frame, or just the frame, is the ‘device’ used to obtain observational access to the population of 
interest. The device assists in identifying and selecting a sample from the finite population in a manner that respects 
the probability sampling design (Särndal, Swensson, & Wretman, 2003). The sample frame with respect to the research 
of DSM in households, requires a particular type of households. Only households that are connected to a rigid energy 
grid with overcapacity might be eligible for selection. The overcapacity of the energy grid is essential in order to simulate 
congestion without endangering the reliability of the energy provision to the households that are participating 
(Energiekoplopers, 2015). Without the simulation of congestion, tests with respect to DSM and flexibility trading 
cannot be performed. Consequently, the sample frame might be formulated as following: 

“Households that are connected to a rigid energy grid that allows for simulated congestion without 
endangering the reliability of the energy provision to the households” 

Because the city of Heerhugowaard, or more precisely the district, the ‘city of the sun’, was constructed with 
the viewpoint of energy neutral living, a high number of photovoltaic panels are installed on the households. This 
resulted in the installation of an energy grid with a higher capacity in comparison to other energy grids in the 
Netherlands (Energiekoplopers, 2015). Additionally, the presence of the photovoltaic panels relaxes one of the barriers 
for the application of DSM as Gellings and Parmenter (1988) mention that the implementer should obtain the 
customer’s trust to install smart appliances in the households. Consequently, the presence of the photovoltaic panels 
and the high capacity energy grid resulted in the selection of the city of Heerhugowaard. Therefore, the sampling frame 
can be adjusted to the following: 

“Households in Heerhugowaard that are connected to the rigid energy grid that allows for simulated 
congestion without endangering the reliability of the energy provision to the households” 

The sampling technique that was used in order to draw a sample through means of the presented sampling 
frame is discussed in the next section.  

The Sampling Technique 

In all research, analysing the complete population is desired; however, often too time consuming and expensive. 
Therefore, a sample of the population is selected in attempt to approximate the total population on a smaller scale. 
However, research on the topic of DSM, simply due to the limitations of the sampling frame, automatically results in 
a convenient (non-random) sample (Heerhugowaard was chosen because the convenient high capacity electricity 
systems and the installed photovoltaic panels).  

With the stratum selected, participants were nest-sampled randomly from the district of the sun in the city of 
Heerhugowaard. Alliander/SEC (2013) describes that employees randomly addressed pedestrians on the street 
(Location column in Table 4) and visited random households (Type of household’s column in Table 4) on the locations 
presented in Table 4 and Appendix II.  

Table 4: The Sampling Locations in Heerhugowaard (Energiekoplopers, 2015) 

Location Type of households 
1 Primary School 'Reflector' A Free standing 
1 Child day care 'de Komeet' B Apartment 
2 Shopping mal C Apartment 
3 Restaurant 'de Mediaan' D Maisonette  
4 Bus stop E Town House 
5 Pharmacy  F Two under one roof 
6 Playground G Town House + Free standing 
7 Basketball court H Town House 
8 Playground I Town House 
9 Playground 

10 Primary School 'de Cocon' 
11 Playground 

30 



 Population 
 
The population of interest to this analysis is twofold. Initially, only the population of the city of 

Heerhugowaard, and especially the district: ‘the city of the sun’, is of interest, and will consequently be addressed in 
4.4.1. However, for extendibility of the results to other section of the Netherlands, the target population must also be 
defined, and will subsequently be presented in 4.4.2. 

 
4.4.1 The Heerhugowaard Field Trial Sample Population 

 
From the 201 participating households, demographic information is available for 185 households. The 

demographic data from these households is collected by Essent in the initial stages of the field trial and on a categorical 
level of measurement. One of the limitations of the collected data is that the information is limited to one person. 
For example, for a household with multiple inhabitants, only one age and one level of education is available which 
limits the precision of the representability analysis. The information that is available from the households are: the 
amount of inhabitants per household, the income level, the education level, the age of the inhabitants, the size of the 
house, the type of the house, the energy class of the house and the year of construction of the house. Additionally, 
information on electricity and gas consumption is available on a 15 min basis as recorded in the SESP database.  

 
4.4.2 The Demographics of the Target Population 

 
The Aggregator is interested in expanding DSM to possible areas within the Netherlands, which due to the 

penetration level of smart appliances, are in need of electricity flexibility. Therefore, in order to allow for a wide 
comparison, that takes such potential areas into consideration, a comparison to the Dutch household population is 
performed.  

In order to compare the demographics from the sample of Heerhugowaard with the Dutch household 
population, demographic data from the Central Bureau of Statistics (CBS) is used. However, not all demographic data 
collected by the CSB is available on a categorical level of measurement, as is the data from Essent. Therefore, Table 5 
provides an overview of which demographics are available, and consequently can only be compared on which level of 
measurement.  

 
Table 5: The Level of Measurement for Demographic Comparison 

 

 Level of measurement 
The age of inhabitants Categorical 

The number of inhabitants per household Categorical 
Level of education Categorical 

Energy consumption  Ratio  
Gas consumption Ratio 

The year of household construction Ratio 
The household energy label  Categorical 

The household size  Ratio 
The household type Categorical 
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The Generalizability of the Results 

The generalizability of results, or external validity, is commonly referred to by the degree to which the sample 
is similar in essential characteristics to its parent population. Furthermore, a sample should not only be similar on a 
global scale, but also on a local scale for each consecutive part. A sample that is representative on a global scale but not 
on a local scale can still deviates significantly from the probability distribution function (Kahneman & Tversky, 1972). 
However, to what extend should a sample represent the population and on which and how many characteristics? 
Because of this particular question, Kruskal and Mosteller (1979) (taken from pp. 31-32 of Stephan, Frederick F., and 
McCarthy, Philip J., Sampling Opinions: An Analysis of Survey Procedure, New York: Wiley, 1958) define a 
representative sample as:  

“A representative sample is a sample which, for a specified set of variables, resembles the population … [in 
that] certain specified analyses … (computation of means, standard deviations, etc….) will yield results … 
within acceptable limits set about the corresponding population values, except that … [rarely] the results will 
fall outside the limits …” (p. 251).  

A second notion with respect to a representative sample is that the sample should be taken randomly from the 
population. This implies that each unit of the population has an equal probability of being selected for the sample and 
that no selective forces have been present (Kruskal & Mosteller, 1979). However, Yule, Udney and Kendall (1950) 
state that:  

“It may be claimed, with some plausibility, that [a] purposive method is more likely to give us a sample which 
is typical or representative of the population than a random method ... [but] as the sample becomes larger the 
random sample becomes more and more representative of the parent, whereas owing to bias, the purposive 
sample in general does not.” (p. 382).  

In the analysis presented in this thesis, the initial sample was sampled conveniently, as described in section 4.3. 
This non-random sampling technique limits representativeness of that specific sample. However, taking regards of the 
notion presented from Yule, Udney and Kendall (1950), such a sample could still present a representable sample with 
regards to the selected population variables within acceptable statistical limits. Teddlie and Yu (2007) substantiate this 
statement as they mention that such as sample may seeks the form of generalizability and consequently could be 
considered to have the characteristics of transferability.  

To indicate if the sample in the current form is representative to the population, even though the non-random 
sampling approach, a representative analysis will be performed in section 4.5.1. Furthermore, the effect of the sample 
size will be investigated in order to determine with what level of confidence the results can be transferred to a larger 
population in section 4.5.2. 

4.5.1 The Representativeness of the Sample 

In order to investigate if the sample taken from Heerhugowaard is representative to Dutch household, a 
representative analysis is performed. In order to test the representativeness of a sample Tomlin (2014) mentions the 
use of goodness of fit tests, where possible goodness of fit tests are for example the Pearson Statistic (also known as the 
χ2 test) and the Kolmogorov Smirnov test (Olivares & Garcia-Forero, 2010). The selection of either test initially 
depends on the level of measurement, the number of intervals and the sample size. If the sample size is large enough 
(>100) the Kolmogorov Smirnov test performs equal or better than the Pearson Statistic. Additionally, as the number 
of intervals increase the type 1 error of the Pearson Statistic increases, making the Kolmogorov Smirnov test preferable 
(Wang, 2009; Olivares & Garcia-Forero, 2010). Therefore, when the level of measurement is numerical and the sample 
size >100, the Kolmogorov Smirnov test is preferred. Conversely, when the data is of categorical level of measurement 
and no more than 20% of all expected counts is smaller than 5, the Pearson Statistic is used. However, in some cases 
no numeric or categorical information is available for both groups. In that case the data can only be compared by means 
of a one sample student t-test, if the data is parametric, or the Wilcoxen signed rank test if the data is non-parametric. 

The goodness of fit tests are performed for the available demographics from the Heerhugowaard field trial with 
the H0 hypotheses that there is no significant difference between the samples, and a significance level of 95%. Based 
on these settings, Table 6 presents the outcome of the goodness of fits tests. As the type of demographics can be 
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separated in three distinct groups; Household characteristics, House characteristics and Consumption characteristics, 
the sections 4.5.1.1, 4.5.1.2 and 4.5.1.3 will discuss the results respectively.  

Table 6: Goodness of Fit Test Demographics 

Test 
Chi Square 

value 
T-test 
value 

Degrees of 
freedom 

95% Rejection 
value Hypotheses Sig. 

Age χ2 104.623 15 26.3 Rejected 0.000 
Education χ2 214.7585 5 11.07 Rejected 0.000 

Number of people per 
household 

χ2 97.984 4 9.49 Rejected 0.000 

Average Construction 
year house 

t-test 31.169 184 1.96 Rejected 0.000 

Energy Class χ2 328.364 2 5.99 Rejected 0.000 
Size of the house t-test 2.2294 184 1.96 Rejected 0.027 

Type of house χ2 20.075 4 9.49 Rejected 0.000 
Average Energy 

Consumption 
t-test 6.324 2835794 1.96 Rejected 0.000 

Average Gas 
Consumption 

t-test -23.832 1196140 1.96 Rejected 0.000 

4.5.1.1 Household Characteristics 

The outcome of the goodness of fit tests, performed 
through the Pearson Statistic, indicate that the Heerhugowaard 
field trial sample significantly deviates from the Dutch 
households on Age, Education and the Amount of people per 
household. This outcome was expected, as the Central Planning 
Bureau (2015) indicates that newly constructed districts are 
expected to have a higher number of young families. Although 
that the Pearson Statistic cannot significantly proof that the 
sample is significantly younger, the mean of the sample of 
Heerhugowaard indicates an average age of 45 in comparison 
to the average age of 50 for Dutch households (Figure 9). 
Additionally, the higher number of families was also observed 
in the higher average of number of people per household, as the 
sample indicates an average of 2.84 in comparison to the 
average of 2.15 people per household for Dutch households 
(CBS, 2015).  

Additional to the Age and Number of people per 
households, the Education level of the sample is also 
significantly different from the Dutch population (CBS, 2015). 
From the comparison of the two distributions, Figure 11, it 
appears that the level of education is higher for the sample of 
Heerhugowaard in comparison to the Dutch population. This 
is especially observable in the higher frequency for HBO 
educated and the lower frequency for VMBO educated in the 
Heerhugowaard sample. This difference was to be expected as 
the Ministry of Welfare of the Netherlands (2014) indicates 
that nowadays younger people have a higher education than 
older people. This might be contradictory as education is 
positively correlated with age; however, due to the increase of 
people following a secondary or tertiary level of education in 
the last years, this shift has occurred. Therefore, in contrast with 
the higher number of young people in the sample, a higher level 
of education is justified.  
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4.5.1.2 House Characteristics 

The goodness of fit analysis for the house characteristics, in comparison to the Dutch average houses, indicates 
that the Heerhugowaard sample is significantly different on all categories. The average construction year of the houses 
in the sample of Heerhugowaard is 1997 in contrast to the average construction year of 1959 for average Dutch houses 
(CBS, 2015). This deviation in the construction year of the house is in line with the energy class of the house, as newer 
houses tend to have a higher energy class (Figure 12) (Bosch, 2011). Furthermore, the district in Heerhugowaard, from 
which the sample was taken, consists of a small set of different house types, and one might therefore expect that the 
sample would significantly deviate from the house types in the Netherlands, which through the Pearson Statistic is 
substantiated. Last, the size of the house only differs slightly from the average of the Netherlands, 128 m2 compared to 
123 m2 respectively (CBS, 2015). However, this difference is still significant and the houses in the sample cannot be 
considered to be the same as the average houses of the Netherlands.  

4.5.1.3 Consumption Characteristics 

For the comparison of the energy consumption and the gas consumption of the households, measured data is 
used. The availability of measured data of these households provides the advantage that these households can be 
compared within the sample, as one might expect a difference in the consumption patterns due to different appliances 
per households. In other words, one might expect a higher level of gas consumption for a household with a Fuel Cell, 
and a lower gas consumption for a household with a Heat Pump, and vice versa for electricity. This expectation is 
substantiated by the outcome of an Analysis of Variance that indicates that there is a significant (F value: 123.49, sig. 
0.000 for α: 0.05) difference between the households gas consumption, with the groups categorized per type of device. 
Therefore, the addition of a gas consuming or reducing device significantly changes the gas consumption pattern. In 
order to take this difference into account, the gas consumption of the households with controllable photovoltaic panels 
(and thus no Heat Pump, Boiler or Fuel Cell) is compared to the Dutch average household gas consumption. This 
comparison shows, through a one sample t test, that the gas consumption is significantly (t value -23.823, sig. 0.000 
for α: 0.05) lower than the Dutch average household gas consumption. In contrast, the Heerhugowaard sample 
household yearly gas consumption is 1121 m3 compared to the 1430 m3 for average Dutch households (NIBUD, 
2015). 

For electricity consumption the household load must be corrected, as all smart appliances influence the total 
energy consumption differently. This statement is substantiated by the significant (F value: 1270.93, sig. 0.000 for α: 
0.05) results from an Analysis of Variance on household energy consumption. Consequently, the household load is 
corrected by subtracting the generated load or supply of electricity from the smart appliances. Based on the one sample 
t-test the corrected average household electricity consumption of 3773 kW per year is significantly (t value 6.324, sig. 
0.000 for α: 0.05) higher than the Dutch average of 2970 kW per year (NIBUD, 2015).  

Based on the results presented from the representativeness analysis, it is possible to conclude that the sample of 
the Heerhugowaard field trial is not representable to the Dutch population. However, this does not necessarily imply 
that the data from the sample cannot be used. The bias that is present due to the non-random sample may not be of 
influence on the estimators of the prediction models, as the prediction models might not have independent variables 
that are related to these demographics. Therefore, to validate that the proposed estimators are correct, the influence 
from the demographics must be investigated, and if significant, the estimators corrected.  
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4.5.2 The Effect from the Sample Size on the Confidence Levels  
 
The size of the sample together with the desired confidence interval, confidence level and the population size, 

determine to what extend the results from the analysis may become statically accurate. These variables are related in 
the following two equations: 

 

𝐶𝐶0 =
𝑧𝑧2𝑝𝑝𝑝𝑝
𝐴𝐴2

 𝐶𝐶 =
𝐶𝐶0

1 + (𝐶𝐶0 − 1)
𝑁𝑁

 

  
where n0 is the infinite population sample size, z is the abscissa of the normal curve that cuts off an area α at 

the tails, e is the desired level of precision, p is the estimated proportion of an attribute that is present in the population, 
and q is 1-p (Israel, 1992). Furthermore, the calculated sample size must be corrected for the finite population, which 
is accomplished with the second equations where n is the required sample size and N the population size.  

With regards to the field experiment performed in Heerhugowaard, a sample of 201 households was used, that 
at this point in in time cannot be altered, and consequently implies that the results may only be extended to N number 
of households with a confidence interval of e. Furthermore, because the prediction of the available electricity flexibility 
is based on the types of appliances, the sample size is reduced further to 89 for the Photovoltaic panels, 18 for the Fuel 
Cell, 44 for the Electric Boiler and 50 for the Heat Pump. Based on these sample sizes (n), a confidence level of 95% 
(z = 1.96) and p and q fixed to 0.5 as mentioned by Dusick (2016) for sample size estimation, the following equation 
can be used to determine the population size, based on the confidence interval e (which is incorporated in n0).  

 

𝑁𝑁 =
𝐶𝐶(𝐶𝐶0 − 1)
𝐶𝐶0 − 𝐶𝐶

 

 
The outcomes of this equation indicates (Figure 14) that for the extendibility of the results, from the prediction 

models to a larger set of households, the minimum confidence interval is strictly related to the sample size (because 
higher sample sizes give a smaller confidence interval). Furthermore, Figure 14 also indicates that beyond a certain 
population size the relation asymptotically approaches a certain confidence interval, which can be determined by 
analysing the domain of the function. 

 

 
Figure 14: The Population Size for various Confidence Intervals 

 
By transforming the equation for N → n0, and substituting it into the equation for e, the domain can be obtained 

as N goes to infinity.  
 

𝑁𝑁 =
𝐶𝐶(𝐶𝐶0 − 1)
𝐶𝐶0 − 𝐶𝐶

 →  𝐶𝐶0 =
𝑁𝑁𝐶𝐶 − 𝐶𝐶
𝑁𝑁 − 𝐶𝐶

 →  lim
𝑁𝑁→ ∞

𝐴𝐴 = �
𝑧𝑧2𝑝𝑝𝑝𝑝

�𝑁𝑁𝐶𝐶 − 𝐶𝐶
𝑁𝑁 − 𝐶𝐶 � 

  

 
Based on this transformation, the confidence interval is 10.38% for the Photovoltaic Panels prediction, 

13.86% for the Heat Pump prediction, 23.10% for the Fuel Cell prediction and 14.77% for the Electric Boiler 
prediction.  
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The Data Collection Procedure 

The data on the smart appliances and household consumption, which is used in the data analysis, is collected 
through the SESP interface with the Prosumer household (Koenders, 2014). The interface is primary used by the 
Aggregator in order to control the smart appliances, and by the User Portal to present electricity consumption and 
generation to the inhabitants of the household. Next to these primary functions, the interface is also used to collect 
data on the smart appliances such as the electricity consumption, generation, state and charge levels. The data is 
collected on a 15 minute interval through the SESP home gateway and the SESP back-office. After the collection of 
the data, the data is stored in a SQL database that can be accessed through an ODBC with Microsoft Access. Figure 
15 presents an overview, in the UML format, of the interface between the SESP SQL database, the Prosumer interface, 
and its associated units.  

SESP Backoffice

Centralized collection and 
storage of data

SESP Home Gateway

Communicate beween 
SESP Backoffice and 
household systems

Smart Meter Reader

Reading P1 and P4 data 
from the Smart Meter

PV Controller

Reading and controlling 
the PV Switch

Boiler Controller

Reading and controlling 
the Electric Boiler

Heat Pump Controller

Reading and controlling 
the Heat Pump

Fuel Cell Connector

Reading data from the 
Fuel Cell

P1

Smart Meter

PV Boiler Heat 
Pump

Fuel 
Cell

SESP

P4

1

0..1 0..1 0..1

1

1

1 1

1 1

1 10..11

1111

1

201

Prosumer

Figure 15: UML Overview of the SESP – Prosumers Interface (based on Koenders, 2014). 

From the SESP database information was available from the 4th of August to the 29th of February starting from 
hour 00:00 and ending on hour 00:00. This resulted in 4095 15 min intervals for 201 household on 4 different 
appliances.  

Data Processing 

The data gathered for the analysis of available electricity flexibility of the smart appliance could not be directly 
used in data analyses. In order to prepare the data for analysis, the steps presented in section 4.7.1through 4.7.5 were 
performed.  

4.7.1 Data Sources 

Next to the SESP data collected from the field trial, two other data sources are used. For weather data, 
information is collected from the Koninklijk Nederlands Meterologisch Instituut. Because of the absence of a weather 
station in Heerhugowaard, weather information from the closest weather station, Berkhout, is used.  

The second data source provides information on the elevation and azimuth angle of the sun. This information 
originates from the Earth System Research Laboratory and may be calculated for any time interval required. 
Additionally, the data is calculated based on the longitudinal and latitudinal (52°40'N, 04°51'E for Heerhugowaard) 
values and consequently corrects the results to match with the geographical location.  
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4.7.2 Data Preparation 
 
The available data from the SESP database consisted of approximately 30000 individual files of 70 kb, with 

the following format: 
 

20150718000000;EEXPLOW;ea1.2015-03.nl.energiekoplopers:Huishouden088;191.288;0.000;;;; 
 

In order to analyse the data efficiently, these files were combined by means of the following DOS subroutine: 
 

for %f in (*.txt) do type "%f" >> output.txt 
 
The output of the presented DOS subroutine resulted in an output.txt file of 3.08 GB containing 2,939,813 

rows of information on 36 variables. Furthermore, household level data was extracted from the complete dataset to 
compile household specific datasets as analysis could not be performed in Excel due to the 1,048,576 row limit. This 
resulted in four different datasets, each containing the households related to one smart appliance.  

 
4.7.3 Outlier removal and Missing Values  
 
Outlier are data points that fall within a specific rejection zone, where numerous 
techniques, such as the Grubbs’ technique or the modified Thompson τ test, can 
be performed to detect such data point. However, outlier removal is biased in 
philosophical sense as Dieck (2007) mentions that: “Outlier removal is used to make 
the data ‘look’ better and is therefore the preconceived notion of the analyst, toward 
making the data set better to prove the thesis” (p. 168). Therefore, removing outlier, 
if even attempted, should be done with great caution as it elevates the risk to type 
one errors. Consequently, the rejection zone outlier technique was no used for 
detection and removal of data points.  

Next to the rejection zone, it is also possible to determine outliers through 
common sense, by for example evaluating the measurement in contrast to the 
expected value. For example, a Heat Pump theoretically cannot consume more than 
620 Wh (Inventum, 2015); therefore, finding a consumption of 2000 Wh is simply 
not possible and should be accounted as a measurement error. Comparably, finding 
a Photovoltaic output that is higher than the Photovoltaic panel capacity. Analysis 
of the data for outliers resulted in 1002 values out of 281751 being market as outlier 
for the Photovoltaic dataset, and 6635 values out of 143321 for the Heat Pump. 
Outlier analysis for the Electric Boiler and Fuel Cell was not performed as these 
datasets were not used for relation analysis.  

With the removal of the outlier the number of missing data point in the 
dataset increased, in comparison to the initially missing data points. Missing panel 
data results in an unbalanced longitudinal dataset and has consequences for the 
random and fixed effect estimators. However, due to the implementation of the 
Swamy – Arora method in the fixed and random effect estimators, this consequence 
only starts to play a role when the sample size of the unbalanced panel is 200 or less (STATA, 2014). Therefore, when 
panels have a sample size smaller than 200 data points, these panels (or households) are not taken into consideration 
for the data analysis. Based on this criteria, the households presented in Table 7 were rejected for analysis, where the 
light grey coloured household numbers are reserve numbers, and initially did not contain any information. In total, 
the remaining household panels for the Photovoltaic panels contained 21188 (7.52%) missing data points, and for the 
Heat Pump 45450 (31.71%) missing data points.  

 
4.7.4 Time verification with external sources 

 
The data collected from the households in Heerhugowaard is collected on a 15 min interval, or 96 times per 

day. On the other hand, the weather data from the KNMI is recorded on an hourly basis, 24 times per day. In order 
to manage this inconsistency the household data is averaged over 4, 15 minute time intervals, transforming the data 
into hourly data.  

Photovoltaic 
Panel 

Heat Pump 

5 2 558 
68 44 636 

722 55 672 
769 100 682 
807 107 713 
809 116 754 
811 167 781 
830 178 783 
832 188 788 
819 229 792 
956 340 804 
992 351 891 

 391 909 
 420 914 
 467 934 
 505 947 
 536 991 
 555 998 

Table 7: Rejected Households 
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Additional inconsistencies arise due to the missing values in the data set, because the missing data is not recorded 
as empty values. This inconsistencies results in synchronization errors between the household data and the weather 
data. For example, due to a few hours missing, the solar irradiance becomes positive during the night and zero during 
the day. To prevent this error a Lookup function was used in Excel, which matches the dates of both data sets and 
transposes the corresponding household data.  

4.7.5 Software 

The software packages used in the data analysis are: 
• STATA v. 14 Parallel Edition Single-user 8-core
• IBM SPSS Statistics v. 22 64-bit
• Microsoft Excel 2013 v. 15.0.4649.1000 64-bit
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 Predicting the Available Electricity Flexibility  
 
In order to predict the available electricity flexibility one must investigate the relationship between the potential 

factors that predict the available electricity flexibility and the measured available electricity flexibility. The term 
‘relationship’ identifies that this question aims at finding the cause and effect association between two elements and is 
consequently of causal nature. However, one is never able to observe cause, one can only observe correlation (De Vaus, 
2001). Therefore, in order to provide evidence of the relationship, a method must be employed that can proof the 
existence of correlation. The data that is available from the field experiment is taken from a longitudinal continuous 
panel and can therefore be considered as panel data. Panel data from a longitudinal continuous panel consists of a time 
series for each cross-section household in the data set. Using data from households and predicting for households 
allows the possibility to include the household demographics that might have a significant influence on the available 
electricity flexibility, which allows further adjustment when such prediction models are used for different cities in the 
Netherlands. Additionally, observing the same household over time has an advantage makes it possible to distinguish 
between the prediction error and the household related errors, which are caused, for example, by the changing 
demographics of the household (Wooldridge, 2015). To determine correlation between a dependent variable (the 
available electricity flexibility) and independent variables for panel data, one could use panel data regression 
(Wooldridge, 2015). However, as the answer to this question is inevitably used to predict the available electricity 
flexibility, one should also assess prediction techniques.  

A common used technique in prediction, next to regression, is a neural network and explained as (Tso & Yau, 
2007). Even though that neural networks have proven to be better in prediction than regression analysis (Tso & Yau, 
2007), neural networks are ‘black boxes’. The term ‘black box’ implies that the neural network does not provide any 
insights into the form of the function the neural network uses to predict. Therefore, from a statistical viewpoint, the 
neural network is a non-identifiable model. Consequently, neural networks are not able to assist in answering the 
research question with respects to the relationship between the potential factors that predict the available electricity 
flexibility and the measured available electricity flexibility and consequently regression is used.  

In order to use regression for panel data, or longitudinal data, the concepts of panel data regression will first be 
introduced in section 5.1. To then employ regression, the bivariate relationships between the dependent and 
independent variables are investigated in section 5.2. On the basis of possible significant bivariate relationships, an 
attempt is made to construct models that predict the available flexibility of the smart appliances in section 5.3. Last, 
the chapter concludes by presenting an overview of the models that predict the available electricity flexibility for the 
smart appliances in section 5.4.  

 
 An Introduction to Panel Data Regression  

 
As was already mentioned in the introduction of this chapter, panel data is longitudinal data and consists of a 

cross-section, which is represented by the households, and a time series, which is represented by the passing of time. 
To collect such data, the same individuals must be sampled over multiple, subsequent moments in time. This provides 
a significant benefit for the researcher as it is possible to isolate specific effects and policies, but prevents that individuals 
are independently distributed over time. Furthermore, panel data provides the researcher with a larger number of 
observations, increases the degrees of freedom, and reduces the change of collinear explanatory variables, and 
consequently improves the estimates (Hurlin, 2010). Additionally, panel data makes it possible to obtain a more 
accurate representation of an individual’s behaviour by supplementing observation of the individual with observations 
from other individuals (Cheng, 2003). But maybe the most important reason to collect panel data is that it allows for 
the control of omitted variables, where these omitted variables can either be unobserved or miss-measured (Wooldridge, 
2015). 

The omitted variable problem occurs when one attempts to estimate coefficients for the population when not 
all correlating explanatory variables are taken into consideration. Since it is always possible to find additional 
explanatory variables that are correlated with the independent and dependent variable, this will lead to the violation of 
the E (uit | Xi, ai) = 0 Gauss–Markov assumption. Even with the assumption that uit (the idiosyncratic error) is 
uncorrelated with xit, the OLS estimators are biased and inconsistent (heterogeneity bias). By means of panel data it is 
possible to control for some types of omitted variables and therefore should provide more consistent and less biased 
estimators (Wooldridge, 2015). 
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In econometrics there are two possible approaches to take heterogeneity bias into consideration. One approach 
is first differencing to remove ai (the unobserved effect3, or fixed effect), or assuming that ai is negligible when one has 
good control variables in the regression equation (random effects). In the case of electricity flexibility prediction for the 
Heat Pump and Electric Boiler one can assume that something within the household might impact or bias the 
estimator, as flexibility is a direct response from energy consumption and individual behaviour, and therefore there is 
a need to correct for this. By estimating ai, it is possible to take into consideration the time invariant characteristics 
and predict the net effect of the estimators on the dependent variable. To take ai into consideration during panel data 
regression, a fixed effects regression model is required (Torres-Reyna, 2007). However, as one assumes that ai is 
uncorrelated with each explanatory variable, like for example with the production of electricity flexibility from the 
Photovoltaic panels, then using such an estimation would result in inefficient estimators. In that case one should not 
use fixed effects regression but random effects regression (Wooldridge, 2015).  

5.1.1 Fixed Effects and Random Effects 

Next to using first differencing, the fixed effect regression is a method of dealing with the ai. Because fixed 
effects assumes that ai is constant over time, the ai will not be taken into consideration within the estimation of the 
estimators. This fixed effect transformation is mathematically represented as: 

𝑌𝑌𝑖𝑖𝑜𝑜 = 𝛽𝛽1𝑋𝑋1 + 𝛼𝛼𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑜𝑜 

The estimators found by means of OLS, based on the within transformation, are referred to within estimators or fixed 
effect estimators. In within estimation, OLS uses the time variation in y and x within each cross sectional observation. 
Under the strict exogeneity, homoscedasticity and no serial correlation assumptions the explanatory variables from the 
fixed effect estimation are unbiased (Wooldridge, 2015).  

When there is the assumption that ai is uncorrelated with xit one should use random effects. However, if this 
holds true, then why should one even endeavour to use random effects as the correlation of ai to xit was the reason to 
shift to fixed effects? The main reason to use random effects when ai and xit are uncorrelated is that OLS will result in 
incorrect standard errors due to positive serial correlation in the composite error, vit (ai + uit) (Wooldridge, 2015). 
Therefore, instead of using fixed effects, random effects should be used, where random effects is mathematically 
represented as: 

𝑌𝑌𝑖𝑖𝑜𝑜 = 𝛽𝛽𝑋𝑋𝑖𝑖𝑜𝑜 + 𝛼𝛼 + 𝑢𝑢𝑖𝑖𝑜𝑜 + 𝜀𝜀𝑖𝑖𝑜𝑜 

Due to the non-observability of the ai, the selection of a regression method might become arbitrary without 
further statistical direction or substantiation, as it would always remain uncertain which approach is deemed to be best, 
or provide unbiased and consistent estimators (Hausman, 1978). In order to make this decision three tests are available: 

1. The Fixed Effect F-Test
The H0 hypotheses of the F-test assumes that the regression function will have the following structure

𝐸𝐸𝑖𝑖𝑜𝑜 = 𝑋𝑋𝑖𝑖𝑜𝑜′ 𝛽𝛽 + 𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑜𝑜 

where the observed and unobserved ui are equal to zero. The H1 hypotheses assumes that the ui are not equal 
to zero, and would imply that OLS and random effects will be biased. However, this conclusion only hold if 
the Cov (Xit, ui) ≠ 0, which can be tested through the Durbin–Wu–Hausman test (Park, 2011). 

2. Breusch and Pagan Lagrange- Multiplier Test for Random Effects
The Breusch and Pagan Lagrange- multiplier test, or LM test, hypothesizes that the variance of ui is equal to
zero (Var (uit) = 0). Rejecting this H0 implies that OLS would result in biased estimators and that random
effects should be preferred (Breusch & Pagan, 1980).

3 The unobserved effect or time invariant characteristics are for example gender, religion, culture, race, etc. 
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3. Durbin–Wu–Hausman Test 
The Durbin-Wu-Hausman test, also referred to as the Hausman specification tests evaluates that consistence 
of estimators in comparison to less efficient estimators. Under the H0 the Hausman specification tests assumes 
that the random effect estimators are consistent and efficient, while under the H1 that the fixed effect estimators 
are consistent and efficient. Therefore, if H0 is rejected, fixed effect is preferred over random effects (Hausman, 
1978). 
 
A combination of these test should be employed to determine which regression approach leads to consistent 

and efficient estimators. In most cases the Fixed Effects F-Test and LM test are performed and later contrasted through 
means of the Hausman specification test.  

 
5.1.2 The Assumptions for Fixed and Random Effects  

 
In order to find the Best Linear Unbiased Estimators (BLUE), where best implies the lowest variance, for Fixed 

Effects regression the following assumptions must be proven and hold (Wooldridge, 2015): 
 

1. Linearity  
According to Wooldridge (2015) a population model, or the true model, is considered to be a model with the 
following structure for fixed and random effects.  
 

yit = β1 xit1 + …+ βk xitk + ai + uit, t = 1,…,T 
 
This implies that the model is linear in the estimator’s βo, β1, …, βk . This further implies that the relation 
between the independent and the dependent variable must be of linear nature. Any violation of this assumption 
might lead to heteroscedasticity, non-normal residuals and consequently biased and non-consistent estimators. 
Berry and Feldman (1985) describe three methods to verify the linearity of the relation: theory analysis on the 
relation, analysis of the standardized residuals or detecting curve-linearity. However, if a relation is assumed to 
be linear, this does not imply that the data used for the regression analysis is also linear. Therefore, to assess the 
linearity of each relation the standardized residuals will be examined as a function of the standardized predicted 
values. If this relation does not proof to be linear, the dependent or independent variable will be transformed 
by means of the required curvilinear component.  

 
2. Random Sample 

The second assumption for fixed effects is that the cross-section is sampled randomly. If this is not the case the 
estimators might be biased for extension to the population, which was discussed partly in 4.5. For this analysis, 
due to the sampling technique applied, a non-random sample is available, and therefore the estimators are 
equally biased as the sample is biased from the population (E (�̂�𝛽|xi) ≠ βp) (Wooldridge, 2015). 

 
3. Zero Conditional Mean 

The zero conditional mean error assumption assumes that E (uit | Xi, ai) = 0 and implies that the expectation 
of the error, given any independent variable has to be equal to zero. If this assumption is violated the estimators 
of the regression model are biased (E (�̂�𝛽|xi) ≠ βp). A possible method to verify if E (uit | Xi, ai) = 0 is to investigate 
if the Cov (ui| Xi, ai) = 0. In the absence of AR terms, this assumption holds for all t and is referred to as the 
strict exogeneity assumption. If AR terms are present, there is a transition from strict to weak exogeneity where 
Cov (ui| Xi, ai) = 0 only has to be valid for t.  

 
4. No Perfect Collinearity  

Perfect collinearity, or multicollinearity, may not exist between independent variables and each variables has to 
change over time. Multicollinearity can be investigated by determining the variance inflation factor (VIF), 
where a VIF of 5 or more would indicate multicollinearity (O'Brien, 2007). The existence of multicollinearity 
can be corrected by removing independent variables that indicate a high VIF value.  
 

5. Homoscedasticity  
Homoscedasticity assumes that the variance of uit, conditional to the independent variable is constant (Var (uit |Xi, 

ai) = Var (uit) = σ2
u, for all t = 1, …, T). Therefore, this assumption fails when the variance of the residuals 
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changes across different segments of the population. The violation of this assumption implies that the standard 
errors are incorrect and that the estimators are inefficient, as when heteroscedasticity is present, more efficient 
estimation is possible (Wooldridge, 2010).  

To test if the homoscedasticity assumption is violated in a fixed effect model the Breusch-Pagan / Cook-
Weisberg test for heteroscedasticity. The Breusch-Pagan / Cook-Weisberg test determines homoscedasticity by 
regressing the residuals based on the independent variables and investigating if the independent variables are 
responsible for the residuals. To determine the significance of homoscedasticity the Breusch-Pagan / Cook-
Weisberg test calculates the F value for H0: homoscedastic variance and H1: heteroscedastic variance. However 
the Breusch-Pagan / Cook-Weisberg test for heteroscedasticity assumes that uit should not be serial correlated. 
Therefore, the assumption of serial correlation should be tested first before any attempt should be made to test 
or correct for heteroscedasticity (Wooldridge, 2015). However, as heteroscedasticity does not result in biased 
and inefficient estimators a robust fixed effect estimation can be performed.  

6. No Serial Correlated Errors
Serial correlation occurs when there is a relation between ut and ut-1. Serial correlation of residuals can be tested
by means of the Wooldridge test for autocorrelation which tests the H0 that the residual are not serial correlated
and H1 that the residual are serial correlated. The Wooldridge test for autocorrelation is considered to be robust 
and can therefore be applied to panels that are conditionally heteroscedastic (Drukker, 2003).

Just like heteroscedasticity, serial correlation does not influence the estimators of the fixed effects 
regression and can thus considered to be efficient and unbiased. However, the standard error and confidence
intervals are affected and thus biased. To correct for serial correlation and heteroscedasticity it is possible to use
a variety of robust alternatives depending on the type of disturbances. The most popular robust estimators are
based on White, Huber and Eicker; however these approaches do not take into consideration the cross sectional
correlation. In the situation where one assumes that cross sectional dependence is present, caused by for example 
spatial dependence, and one wants to retain the fixed and random effects estimators, the Driscoll and Kraay
correction can be used (Drukker, 2003; De Hoyos & Sarafidis, 2006). The Driscoll and Kraay correction
ensures that the standard errors are corrected for heteroscedasticity and serial correlated residuals, while retaining
the cross sectional dependence.

7. Normally Distributed Residuals
The last assumption of fixed effects is not related to the unbiasedness of the estimators but to the interference
of the t distribution and the F-statistic. This assumption requires that the uit are normally distributed with a
mean of zero. This assumption can be tested by performing a Shapiro Wilk test on the residuals after fixed or
random effects regression. Shapiro Wilk, tests through the H0, if the sample comes from a normally distributed
population. However, with increasing sample size, the normality test also increases in power and will reject the
H0 hypotheses almost instantly.

From a different perspective, Wooldridge (2015) states that the assumption of normally distributed 
residuals is equivalent to saying that the distribution of y, given x1, x2, …, xk is normal. This in relation to the
large sample size, one can conclude through the central limit theorem, that y, even if y is not normally
distributed, comes from a normal distribution and therefore one can also conclude that uit is normally
distributed. However, for this condition to hold, it is very important that the residuals are homoscedastic and
that there is a zero conditional mean. Without these condition, the t statistic and the related confidence intervals
are invalid regardless of the size of the sample. However, as heteroscedasticity can be treated through means of
the Driscoll and Kraay correction, the confidence intervals for the estimators are considered to be valid
(Wooldridge, 2015). For additional substantiation a normally plot will be estimated and evaluated for each
regression model.

In addition to the fixed effects assumption the following assumptions have to be added for random effects: 

1. Zero Conditional Mean ai

The expected value of ai, given all explanatory variables is zero: E (ai | Xi) = 0.

2. Homoscedastic ai

The variance of ai given all explanatory variables is constant: Var (ai | Xi,) = σ2
a.
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 Bivariate Analysis  
 
In section 3.2 causal relations were presented in order to determine the influence of hypothesized exogenous 

factors on the available flexibility from the smart appliances. In order to determine if such relations exist, a literature 
study was performed. However, literature cannot be considered a fool proof technique to determine if such a relation 
actually exists (Berry & Feldman, 1985). In order to proof that a relation exists, a bivariate analysis may be performed. 
This analysis will be done by means of the Pearson correlation coefficient as it is possible to assume, through the central 
limit theorem, that the arithmetic mean of the independent and dependent variables approximate a normal distribution 
as a very large sample size is available (Mordkoff, 2011). Next to the assumption of an interval or ratio level of 
measurement, a third assumption is that the relationship between the two variables must be linear in order for the 
Pearson coefficient to be consistent through the law of large numbers.  

The linearity of the relationship is presented and substantiated through literature in section 3.2; however, the 
same reasoning holds that a theoretical indication of linearity does not proof linearity. Linearity of the relation can be 
observed by the Augmented Partial Residuals (APR) plot (Mallows, 1986). The APR plot has proven to be very effective 
in detecting significant outliers and non-linear relationships (Fernandez, 2003). However, due to the sheer size of the 
dataset, it was not possible to compute these ARP plots. Therefore, non-linearity will be observed through scatter plots. 
If non-linearity is observed, the variables can be transformed by means of mathematical transformations. In this 
transformation, the dependent and independent variable may be transformed; however, the dependent variable may 
only be transformed in the presence of heteroscedasticity (Hair et. al, 2009).  

By transforming the independent and dependent variable, the aim is to reduce the Mean Square Error for that 
particular relation. However, as multiple independent variables have a relation with the same dependent variable, the 
transformation of the dependent variable will influence the relations with the untransformed independent variables. 
To find the most suitable transformation which takes into account all relations, the following non-linear optimization 
approach is proposed: 

𝑅𝑅𝐴𝐴𝐹𝐹�
𝐸𝐸𝐶𝐶�𝐴𝐴(𝑋𝑋𝑖𝑖

𝑚𝑚𝑡𝑡𝑡𝑡 ,𝑌𝑌𝑦𝑦𝑡𝑡 )
𝑠𝑠𝑋𝑋𝑡𝑡𝑠𝑠𝑌𝑌

𝑖𝑖

𝑖𝑖=1

 

where Xi are the independent variables, Y is the dependent variable, and xti and yt are the transformation and 
decision variables respectively. The limitation of this approach is that this optimization methodology can only 
transform convex and concave functions to linear. Therefore, if other transformation are required these will be 
performed manual. If only the Y dependent variable is transformed with a different transformation the same approach 
can be used to optimize the linear relation for the independent variable X. The presented methods shall be implemented 
in the following order for each set of relationships belonging to each smart device: 

 
1. Observe the scatter plot in order to determine if a transformation is required; 
2. Test for heteroscedasticity in each relationship to determine if the dependent variable should be transformed; 
3. Transform the variables by means of the proposed non-linear optimization approach; 
4. Perform Pearson correlation to determine if a significant relation is present between the dependent and 

independent variable.  
 

5.2.1 Bivariate Analysis for Photovoltaic Output  
 
The bivariate analysis of the hypothesized explanatory variables by means of a scatter plot (Appendix III.a) 

indicates that the relations between the dependent variable PV-Output and independent variables 
SunAzimuthFrom180, PV-CapacityIrradianceState, Irradiance, PV-Capacity, ElevationAboveHorizon, Temperature, and 
Humidity are non-linear. An analysis of the Photovoltaic Energy Transition Efficiency cannot be performed due to an 
absence of data. Furthermore, the Breusch-Pagan / Cook-Weisberg test for heteroscedasticity indicates that the relations 
between the independent variable and the dependent variable are all heteroscedastic (significance 0.000) and that 
consequently, the dependent variable PV-Output should also be transformed. With the proposed optimization 
approach, the dependent and independent variables are transformed to maximize the summed R2. This approach 
resulted in the transformations indicated in Table 8. The transformation of the independent variables and the 
dependent variables for the prediction of PV-Output was also indicated by Moghram and Rahman (1989) and by 
Soares (2014).  
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Table 8: Photovoltaic Hypothesized Exploratory Variable Transformation 
 

 PV-Output SunAzim Interaction Irradiance PV-Capacity Elevation Temperature Humidity 
Transformation 0.353 0.481 0.474 0.463 0 0.587 0 -0.098 
Parsimony 
Transformation 

0.33 0.5 0.5 0.5 0 0.5 0 0 

 
After this transformation was performed, the Pearson correlation coefficient was calculated for each relation to 

test the proposed hypotheses in 3.3. From this analysis Table 9 presents the correlation coefficients where all except 
the Temperature and Humidity, PV-Output relations tested significant with a α of 0.05.  

 
Table 9: Pearson’s Correlation Coefficients for the Hypothesized Photovoltaic Relations 

 

 SunAzim Interaction Irradiance PV-Capacity Elevation Temperature Humidity 
Original dependent and 

independent variables  
-0.329 0.794 0.644 0.147 0.521 0.304 -0.456 

Transformed dependent and 
independent variables  

-0.515 0.831 0.737 0.058 0.657 0.326 0.475 

H0 hypotheses Rejected Rejected Rejected Rejected Rejected Cannot 
reject 

Cannot 
reject 

 
From these results it is possible to conclude that for the SunAzimuthFrom180, PV-CapacityIrradianceState, 

Irradiance, PV-Capacity and ElevationAboveHorizon the H0 hypotheses are rejected and that the hypothesized relation 
exists between these independent variables and the PV-Output. However, although the correlation coefficients for 
Temperature and Humidity are significant, the H0 cannot be rejected because an inverse relation is found. This inverse 
relation might be the cause of multicollinearity between Humidity, Temperature and Irradiance (0.626 and 0.477, 
respectively). The existence of this relation was also indicated by the work of Chang and Root (1974) as they performed 
an analysis on the relationship between irradiance and air temperature. Consequently, SunAzimuthFrom180, PV-
CapacityIrradianceState, Irradiance, PV-Capacity and ElevationAboveHorizon will be used for the Panel Data Regression 
in order to predict the PV-Output. 

 
5.2.2 Bivariate Analysis for Warm Water Consumption  

 
In section 3.2.2 the independent variables that influence water consumption were introduced. From these 

independent variables only the Temperature can be analysed in a bivariate analysis as the number of inhabitants per 
household is not known and the hour of the day is a categorical variable that does not portray linear behaviour due to 
the distinct double peak pattern over the day (morning and evening peak).  

The scatter plot (Appendix IV) for the relation between the Hot Water Consumption and the Temperature 
indicate that the relation can be considered to be linear. Therefore, further transformation of the independent variable 
is not required. The Pearson correlation coefficient for this relation further indicates a significant (significance 0.000) 
negative relation of -0.0649. Consequently it is possible to reject the H0 hypotheses and conclude that an increase of 
the outside air Temperature has an inverse relation with Hot Water Consumption. Subsequently, the influence from 
Temperature will be taken into consideration to predict the Hot Water Consumption. 

 
5.2.3 Bivariate Analysis for Heat Pump Load 

 
In section 3.2.3 a large number of relations were hypothesized based on the Heat Pump state equation and the 

law of Fourier. However, due to the absence of household specific information not all of these relations can be 
empirically tested. Therefore, for the hypothesized relationships with the independent variables House size, House type, 
Energy class and Household Inhabitants no bivariate analysis can be performed4, and these variables can consequently 
not be used in the regression analysis. The data on the remaining independent variables: Temperature, Irradiance, Wind 
speed and the StateSESP are available and of interval level of measurement, resulting that the relations can be 
investigated by means of Pearson’s correlation.  

4 Because of legal concerns (confidentiality agreements) it was not possible to connect the household demographic data to the 
measure data from the household. Consequently, the demographics could not be tested in relation to the hot water consumption.  
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The scatter plots of the four relations with the Heat Pump Load indicate (Appendix V) an approximation to a 
linear relationship. Additionally, optimization as proposed in 5.2, indicates corrections (Table 10) for the dependent 
and the independent variables that indicate that the relationships can be considered to be linear. The proposed 
transformation for Irradiance is not taken into consideration as the difference in the R2 is only 0.8% and would not 
result in a parsimony regression model. Therefore, the Pearson correlation coefficient is calculated for the 
untransformed dependent and independent variables as proposed in the hypotheses in section 3.2.3.  

 
Table 10: Heat Pump Hypothesized Exploratory Variable Transformation 

 

 Heat Pump Load Temperature Irradiance  Wind speed StateSESP 
Transformation 1.00 1.00 1.55 1.00 1.00 

Parsimony Transformation 1.00 1.00 1.50 1.00 1.00 
 

Table 11: Pearson’s Correlation Coefficients for the Hypothesized Heat Pump Relations 
 

 Temperature Irradiance  Wind speed StateSESP 
Heat Pump Load -0.297 -0.070 0.136 0.480 

H0 hypotheses Rejected Rejected Rejected Rejected 
 
Based on these significant results (all 0.000 for α = 0.05) it is possible to conclude that all H0 hypotheses can 

be rejected and that there is a relationship between the Temperature, Irradiance, Wind speed and StateSESP and the 
Heat Pump Load. Additionally the analysis of the Irradiance indicated that the relation between the 8 hour lagged 
Irradiance and the Heat Pump load was stronger (-0.07 for Irradiance and -0.20 for Irradiance lagged 8). This lag is 
substantiated by the Low Energy Architecture Research Unit (2016) whom mentions that the thermal capacity of the 
building causes a delay in the heat transfer to the interior of the building. Therefore, the lagged independent Irradiance, 
in combination with the other presented independent variables, are used for further regression analysis.  

 
 Smart Appliance Electricity Flexibility  

 
The bivariate analysis performed in the previous section indicates multiple significant relations between 

dependent and independent variables. Based on these relations it is feasible to predict the available electricity flexibility 
from the smart appliances. Consequently, section 5.3.1 through 5.3.3 present prediction models for the Photovoltaic 
Panels, the Electric Boilers and the Heat Pumps respectively. A prediction model for the Fuel Cell is not required as 
was already discussed in 3.2.4 and will therefore not be addressed.  

 
5.3.1 Predicting the Available Electricity Flexibility from Photovoltaic Panels  

 
Controllable photovoltaic panels are installed on 89 of the houses in the Heerhugowaard field trial with varying 

levels of capacity. The output of these photovoltaic panels is unaffected by any interference from unobservable errors, 
as discussed in 5.1. This is because it is assumed that the household characteristics do not influence the output of the 
photovoltaic panel in any manner. The only two differences that exist between households are the difference in the 
panel capacity and the geographical location of the households in Heerhugowaard. However, the panel capacity is 
available per household and therefore controllable in the regression model, and the geographical difference between 
households are considered to be negligible as all the households are in the city of Heerhugowaard and exogenous 
influence should not differ significantly. Therefore, to predict the output of these photovoltaic panels one can assume 
that ai is uncorrelated with any xi and random effects regression can be employed. The random effects model is 
estimated by the dependent variable PV-Output and independent variables ElevationAboveHorizon and 
SunAzimuthFrom180, and the interaction terms PV-CapacityIrradianceState, which were introduced and discussed in 
3.2.1. Furthermore, to correctly apply the interaction term, Irradiance, State and PV-Capacity are also included.  

The estimated random effects model (Table 12) tests all independent variables significant with an overall R2
 of 

0.7084. Furthermore, the Hausman tests, which compares the estimators from the fixed effects model with the random 
effects model, concludes (significance of 0.9623) that the random effects model has more consistent estimators. 
Furthermore the Breusch and Pagan Lagrange- multiplier test for random effects rejects (significance 0.000) the H0 
hypotheses that OLS is more consistent than random effects resulting in that random effects has efficient estimators. 
Concluding, that the random effects model should be estimated and will be used throughout the prediction of the PV-
Output. A complete overview of all tests can be found in Appendix III.c.  
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Table 12: Random Effects Regression for PV-Output (α 0.05) 

 

PvOutput Coef. Std. Err. z P>z [95% Conf. Interval] 

ElevationAboveHorizon .1423402 .0023054 61.74 0.000 .1378217 .1468586 

SunAzimuthFrom180 -.0387559 .0019197 -20.19 0.000 -.0425185 -.0349933 

PV-CapacityIrradianceState .0200485 .0000587 341.70 0.000 .0199335 .0201635 

Irradiance .013744 .0025794 5.33 0.000 .0086885 .0187996 

PVCapacity -.0002322 .000093 -2.50 0.013 -.0004145 -.00005 

State .2369979 .0144818 16.37 0.000 .2086141 .2653816 

Constant 1.045971 .2167404 4.83 0.000 .6211673 1.470774 

 
To determine if the estimators presented by the fixed effects regression estimation are BLUE, the assumptions 

discussed in 5.1.2 will be evaluated accordingly.  
 

1. Zero Conditional Mean  
The zero conditional mean assumes for random effects E (uit | Xi, ai) = 0 and E (ai | Xi) = 0 which result in 
unbiased and efficient estimators. The Cov (uit| Xi, ai) matrix (Table 13) indicates that the idiosyncratic (uit) 
error is indeed uncorrelated with Xi for t. However, not for all t, as with ui, t-1 the Cov (uit| Xi, ai) matrix 
indicates that correlation are present. The presence of correlated ui with Xi might be the cause of the AR term 
which is present in the PV-output. In other words, PV-output is auto correlated with ARt-1 which implies that 
the errors will also be correlated with PV-output-1. For that reason a transition is made from strict exogeneity to 
weak exogeneity and one can state that the condition for Cov (uit| Xi, ai) is valid (Wooldridge, 2015). 
Furthermore, the Cov (uit| Xi, ai) matrix (Table 13) indicates that there is only a very weak correlation between 
ui and ai, and results in a substantiation of a zero conditional mean in regards to the assumption of weak 
exogeneity.  

The second assumption, related to random effects, indicates that E (ai | Xi) = 0 is violated due to the 
correlation of the ai and the independent variable PV-CapacityIrradianceState and State. This violation can be 
explained by the fact that there is a geographical difference between the households, which might results in 
different irradiance levels per time. Due to the absence of additional independent variables concerning the 
irradiance per household or additional instrumental variables for IV panel regression, it is not possible to correct 
for this exogeneity, which implies that the estimators are not BLUE. However, the level of violation is minimal 
and will therefore not have a large impact on the estimators.  

 
Table 13: Zero Conditional Mean for ui and ai for PV-Output  

 

 SunAzim PV-Power Irradiance PV-Capacity Elevation State ai  

uit 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
ui, t-1 0.0191 -0.0039 -0.0516 0.0000 -0.0176 0.0756  
ui       0.0005 
ai  -0.0001 -0,0106 -0.0003 -0.0007 -0.0001 -0.0435  

 
2. No Perfect Collinearity  

Both the assumptions for fixed effects and random effects assume that the independent variables are not 
collinear. A VIF analysis (Table 14) indicates that irradiance and elevation shows high levels of multicollinearity, 
but is not perfectly collinear. This high level of VIF can be explained by the presence of the irradiance in the 
interaction term PV-CapacityIrradianceState. However, removing this independent variable would result in the 
improper use of the interaction term. Therefore, the current independent variables will be maintained as they 
do not violate the perfect collinearity assumption.  
 
Table 14: VIF Analysis for PV-Output 
 

 SunAzim PV-Power Irradiance PV-Capacity Elevation State 

VIF 2.40 3.90 3.72 1.11 4.24 1.38 
VIF - Irradiance 2.27 2.45  1.07 3.56 1.22 
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3. Homoscedasticity and Serial Correlation  

Homoscedasticity for PV-Output was investigated through the The Breusch-Pagan / Cook-Weisberg test which 
rejects the H0 hypotheses (significance 0.000) and indicates that the variance of the residuals significantly 
deviates from zero. Furthermore, the Wooldridge test for autocorrelation also indicates that the H0 hypotheses 
is rejected (significance 0.000) and that the residuals are serial correlated. Both these violations result in that 
the standard errors and confidence intervals are biased and inefficient. To take serial correlated residuals and 
heteroscedasticity into account the Driscoll and Kraay correction will be applied as the Friendman test indicates 
(significance 0.000) that the panel is cross sectional correlated. The application of the Driscoll and Kraay 
correction resulted in loss of Irradiance and State due to insignificance. The results of the Driscoll and Kraay 
correction are presented in Table 15.  
 
Table 15: Driscoll and Kraay correction for PV-Output 
 

PvOutput Coef. Std. Err. z P>z [95% Conf. Interval] 
ElevationAboveHorizon .1405118 .0150301 9.35 0.000 .1110447 .169979 

SunAzimuthFrom180 -.0410736 .0135 -3.04 0.002 -.0675409 -.0146063 
PV-CapacityIrradianceState .0204076 .0002816 72.48 0.000 .0198556 .0209597 

PVCapacity -.0002381 9.07e-06 -26.25 0.000 -.0002559 -.0002203 
Constant 1.300594 .1280255 10.16 0.000 1.049594 1.551594 

  
The model estimated to predict the PV-Output has an R2 of 0.7085 with a constant and four independent 

variables. According to the random effects regression model, the interclass correlation, or the variance caused by the 
differences across the panels, is 19.92%. This implies that additional information on the differences between the 
households would allow the model to explain 19.92% more variance. The regression model for PV-Output with the 
Driscoll and Kraay correction, taking into account the data transformations, has the following form: 

 
𝑃𝑃𝑃𝑃𝐶𝐶𝑢𝑢𝐸𝐸𝑝𝑝𝑢𝑢𝐸𝐸 (𝑊𝑊) =�  � 1.3� − 0.000238� ∗𝑃𝑃𝑃𝑃𝐸𝐸𝐴𝐴𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 + 0.0204� ∗ �𝑃𝑃𝑃𝑃𝐶𝐶𝐴𝐴𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 ∗ 𝐼𝐼𝐸𝐸𝐸𝐸𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐸𝐸𝐴𝐴 ∗ 𝑆𝑆𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴2

− 0.0411� ∗ √𝑆𝑆𝑢𝑢𝐶𝐶𝐴𝐴𝑧𝑧𝐴𝐴𝑅𝑅𝑢𝑢𝐸𝐸ℎ𝐹𝐹𝐸𝐸𝐶𝐶𝑅𝑅1802 + 0.141� ∗  √𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐸𝐸𝐶𝐶𝐸𝐸𝐴𝐴𝑧𝑧𝐶𝐶𝐶𝐶2  �
2.75

 
 
With the following upper and lower 95% confidence intervals respectively:  

 
𝐿𝐿𝐶𝐶𝐿𝐿𝐴𝐴𝐸𝐸 95% 𝐸𝐸𝐶𝐶𝐶𝐶𝑓𝑓.𝑃𝑃𝑃𝑃𝐶𝐶𝑢𝑢𝐸𝐸𝑝𝑝𝑢𝑢𝐸𝐸 =� � 1.05�− 0.000256� ∗𝑃𝑃𝑃𝑃𝐸𝐸𝐴𝐴𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 + 0.0196� ∗

�𝑃𝑃𝑃𝑃𝐶𝐶𝐴𝐴𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 ∗ 𝐼𝐼𝐸𝐸𝐸𝐸𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐸𝐸𝐴𝐴 ∗ 𝑆𝑆𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴2 − 0.0675� ∗ √𝑆𝑆𝑢𝑢𝐶𝐶𝐴𝐴𝑧𝑧𝐴𝐴𝑅𝑅𝑢𝑢𝐸𝐸ℎ𝐹𝐹𝐸𝐸𝐶𝐶𝑅𝑅1802 + 0.111� ∗
 √𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐸𝐸𝐶𝐶𝐸𝐸𝐴𝐴𝑧𝑧𝐶𝐶𝐶𝐶2 �

2.75 
  

 
𝑈𝑈𝑝𝑝𝑝𝑝𝐴𝐴𝐸𝐸 95% 𝐸𝐸𝐶𝐶𝐶𝐶𝑓𝑓.𝑃𝑃𝑃𝑃𝐶𝐶𝑢𝑢𝐸𝐸𝑝𝑝𝑢𝑢𝐸𝐸 =� � 1.55�− 0.00022� ∗𝑃𝑃𝑃𝑃𝐸𝐸𝐴𝐴𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 + 0.0210�

∗ �𝑃𝑃𝑃𝑃𝐶𝐶𝐴𝐴𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 ∗ 𝐼𝐼𝐸𝐸𝐸𝐸𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐸𝐸𝐴𝐴 ∗ 𝑆𝑆𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴2 − 0.0146� ∗ √𝑆𝑆𝑢𝑢𝐶𝐶𝐴𝐴𝑧𝑧𝐴𝐴𝑅𝑅𝑢𝑢𝐸𝐸ℎ𝐹𝐹𝐸𝐸𝐶𝐶𝑅𝑅1802 + 0.170�

∗  √𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐸𝐸𝐶𝐶𝐸𝐸𝐴𝐴𝑧𝑧𝐶𝐶𝐶𝐶2 �
2.75 

 
 
The presented regression model is validated by means of data from a household that was not taken into 

consideration during the model estimation (Household 757), where such a technique is referred to as predictive 
validation (Sargent, 2005). Figure 16 presents the measured photovoltaic output of a 2750 Watt panel (from a random 
point in time) in comparison to the predicted output. From this fit it is possible to conclude that the regression model 
is capable of closely following the overall trend in the photovoltaic output. However, some over- and underestimation 
do occur, which can be explained by the fact that the used weather data is not exactly in line with the city of 
Heerhugowaard. Based on these observations it is possible to conclude that the regression model is capable of predicting 
the photovoltaic output on a household level. Furthermore, it is also possible to conclude that these results are 
generalizable to other sections of the Netherlands as no demographic or household specific aspects are included in the 
regression function and consequently the model is applicable to all regions of the Netherlands. 
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Figure 16: Actual versus Predict Photovoltaic Power Output per Hour 
  

5.3.2 Predicting the Available Electricity Flexibility from the Electric Boiler  
 
Electric boilers are installed in 45 houses in the Heerhugowaard field trial with different load characteristics. In 

contrast to the photovoltaic panels, the electric boiler load fully depends on the control of the Power Matcher and the 
water consumption of the household, as discussed in 3.2.2. This implies that, as water consumption is clearly 
endogenous to the household, a fixed effect approach should be considered as one could assume that ai is associated 
with the particular household. However, attempts to construct a regression model with fixed effects and the 
independent variables Hour of the Day, Temperature and Number of Inhabitants (which had to be estimated based on 
the household load) provided an R2 of 0.01, which is clearly unacceptable. If the pattern of water consumption is 
observed on a daily level for a random household, the discrete nature becomes apparent (Figure 17).  

If the water consumption over the complete dataset is observed, it becomes clear that the data can be classified 
as Zero-Inflated Negative Binomial data as 127,238 out of the 171,989 (73.98%) hot water observations are zero. This 
data can be identified by the excessive number of zeros, which are generated by two independent process. In the case 
of hot water consumptions for the households, the measures used for hot water consumption is related to the charge 
level of the electric boiler. If the electric boiler is uncharged, hot water consumption cannot be observed. Therefore, 
water consumption can take the value of zero because the household is not consuming hot water or hot water 
consumption could not be observed because the electric boiler is uncharged and a gas generated heater generates the 
hot water provision. To estimate the influences of these processes, Zero-Inflated Negative Binomial regression could 
be attempted. However, the independent variables that hypothetically explain water consumption are either not 
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available (the number of inhabitants) or are not on a categorical scale. Consequently, regression cannot be employed 
to determine the Hot Water Consumption per household. The limitations presented by the discrete and zero inflated 
nature of water consumption ask for a different approach than regression. Studies from for example Jordan and Vajen 
(2001) and Blokker (2010) consider a simulation approach to predict daily household water consumption. 
Consequently, a simulation model is presented for Hot Water Consumption.  

According to Jordan and Vajen (2001), Defra (2008) and Blokker (2010) water consumption patterns depend 
on three independent aspects: Frequency of occurrence, Duration and Intensity. Furthermore Jordan and Vajen (2001) 
classify four distinct categories for hot water consumption: short loads (for example washing and shaving), medium 
loads (for example washing the dishes), showering and taking a bath. Consequently the consumption patterns for these 
categories are investigated in order to construct a simulation model. 

 
1. Short Hot Water Consumption  

Hot water consumption for washing and shaving per household occurs on average 4.1 times per day and follows 
a Binomial Distribution (Blokker, 2010) and are assumed to take place between 05:00 and 23:00 (Jordan & 
Vajen, 2001). The duration of this occurrence is further estimated to follow a Normal distribution with a mean 
of 40 seconds and a standard deviation of 15 seconds (Blokker, 2010). The consumption of water is estimated 
to be 0.042 liter per second; however, this is an estimation for ‘water consumption’ and not hot water 
consumption. Research from De Oreo and Mayer (2000) on the water consumption in 10 households in 
Seattle5 indicates that 72.7% of the small loads water consumption is hot water. Therefore, the hot water 
consumption is estimated to be 0.0305 liter per second. Consequently small load hot water consumption can 
be simulated with the following equation: 

 
𝑆𝑆ℎ𝐶𝐶𝐸𝐸𝐸𝐸 𝐸𝐸𝐶𝐶𝐸𝐸 𝑊𝑊𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑢𝑢𝑅𝑅𝑝𝑝𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶 = 𝐵𝐵(1,0.309) ∙ 𝑁𝑁(40,15) ∙ 0.0305 𝑓𝑓𝐶𝐶𝐸𝐸 05: 00 ≤ 𝐸𝐸 ≤ 23: 00 

  
2. Medium Hot Water Consumption 

Hot water consumption for medium loads as doing the dishes is assumed to occur 0.39 times per day, following 
a Binominal distribution (TNS NIPO, 2013). This probability is not equal to 1 due to the presence of 
dishwashers (66%) in Dutch households. Furthermore, this medium hot water consumption load is estimated 
to occur between 05:00 and 23:00, following the same pattern as the small consumptions of hot water 
consumption (Jordan & Vajen, 2001). Per occurrence 3.6 liter of water is consumed, which does not have to 
be transformed as 100% of this water is hot water (De Oreo & Mayer, 2000). Concluding that medium hot 
water consumption can be simulated by means of the following equation: 

 
𝑀𝑀𝐴𝐴𝐶𝐶𝐴𝐴𝑢𝑢𝑅𝑅 𝐸𝐸𝐶𝐶𝐸𝐸 𝑊𝑊𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑢𝑢𝑅𝑅𝑝𝑝𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶 = 𝐵𝐵(1,0.39) ∙ 3.6 𝑓𝑓𝐶𝐶𝐸𝐸 05: 00 ≤ 𝐸𝐸 ≤ 23: 00 

 
3. Showering Hot Water Consumption  

Showering for the Dutch population is estimated to occur 0.72 times per day per person (TNS NIPO, 2013), 
and occurs around 7:00 in the morning or around 19:00 in the evening following a Normal distribution with 
a standard deviation of 2 hours (Jordan & Vajen, 2001). Furthermore, showering is assumed to occur 2 hours 
later on average during weekends as people tend to sleep longer on weekends. Additionally, showering can either 
occur in the morning and the evening, where the evening has a probability of 0.5 following a Binomial 
distribution (Jordan & Vajen, 2001). The showering duration is then estimated to follow a LogNormal 
distribution with a mean of 2 and a standard deviation 0.5 (Blokker, 2010). Per second a shower would then 
consume 0.142 liter per second, which can be translated to 6.228 liter of hot water per minute (De Oreo & 
Mayer, 2000). These estimations enable that hot water consumption from showering can be simulated with the 
following equations: 

 
𝑆𝑆ℎ𝐶𝐶𝐿𝐿𝐴𝐴𝐸𝐸 𝐸𝐸𝐶𝐶𝐸𝐸 𝑊𝑊𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑢𝑢𝑅𝑅𝑝𝑝𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶 = 𝐵𝐵(1,0.72) ∙  𝐿𝐿𝑁𝑁(2,0.5) ∙ 6.228 

 
 
 

5 The water consumption in Seattle is 95 liter per capita per day (De Oreo & Mayer, 2000). In comparison, the water consumption 
in the Netherlands is 118 liter per day per capita (TNS NIPO, 2013). Although this difference, it can be assumed that the overall 
percentage of hot water consumption would not change.  

51 
 

                                                           



4. Bath Hot Water Consumption 
Bathing consumes the most water but is also the least common activity. Bathing occurs approximately 0.27 
times per week (0.04 times per day), following a Binomial distribution. However, this only applies to 
households that own a bathtub as only 36% of the households do (TNS NIPO, 2013). If the bathtub is used, 
per bath on average 89.5 liter of hot water is used. Just like showering does bathing also occur around 19:00 in 
the evening, but does not occur in the morning (Jordan & Vajen, 2001). The consumption of hot water of the 
bathtub can then be summarized as: 

 
𝐵𝐵𝐴𝐴𝐸𝐸ℎ𝐸𝐸𝑢𝑢𝐴𝐴 𝐸𝐸𝐶𝐶𝐸𝐸 𝑊𝑊𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑢𝑢𝑅𝑅𝑝𝑝𝐸𝐸𝑢𝑢𝐶𝐶𝐶𝐶 = 𝐵𝐵(1,0.04) ∙ 89.5 

 
The simulation model presented through these four equations represent the discrete behaviour of Hot Water 

Consumption per hour, but do not include the influence from the Number of Inhabitants and the influence from 
Temperature. To include the Number of Inhabitants it is possible to look at the research performed by Defra (2008) on 
hot water consumption in households. The outcome of the research from Defra is comparable to the average hot water 
consumption in the Netherlands, as Defra estimated an average of 46 liters per capita per day in comparison to the 
average hot water consumption, according to TNS NIPO (2013), of 46.7 liter per capita per day (46.7 = 118*0.396 
(TNS NIPO, 2013; De Oreo & Mayer, 2000)). In this research the influence from the Number of Inhabitants is 
estimated to be an increase of 22 liter per person per day, which will be associated to the shower hot water consumption. 
To take this increase into consideration, the Number of Inhabitants per household must be included. Therefore, the 
Number of Inhabitants per household was simulated based on the Dutch population demographics according to the 
CBS, to follow the distribution of 1 = 0.3741, 2 = 0.3277, 3 = 0.1205, 4 = 0.1254 and 5 = 0.0523.  

To take into consideration the influence from Temperature it is possible to determine the influence on Hot 
Water Consumption through a simple OLS regression. Although this model will not explain Hot Water Consumption, 
it is possible to explain the variance caused by the change in Temperature, and then through the coefficient determine 
the influence from Temperature on the Hot Water Consumption. The OLS regression indicates that with a one degree 
increasing temperature, the consumption of water decreases with 0.0213782 liter. However, this only applies to the 
consumption of hot water in showering (Kalogirou & Tripanagnostopoulos, 2006).  

When the presented simulation equations are combined, the average hot water distribution presented in Figure 
18 arises from 100 simulations of one year for a one capita household.  

 
 

Figure 18: Daily Average Hot Water Consumption Per Capita (from 100 random samples) 
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On average the average hot water consumption from 
the simulation is estimated to be 42.73 liter with a standard 
deviation of 2.30 (estimated on 100 simulation for a year for 
one capita). Although this average is significantly (0.000) 
different from the average hot water consumption per day per 
capita (46 liter), the difference is only very small. 
Furthermore, by comparing the percentage cumulative 
average hot water consumption over a day with the percentage 
cumulative hot water consumption from the field trial in 
Heerhugowaard (Figure 19), the Mann-Whitney Test cannot 
reject (sig. 0.443) the H0 hypotheses that the distributions are 
significantly different. From these comparisons and the use of 
average Dutch household hot water consumption values, one 
can conclude that the presented simulation model is capable 
of approximating the Hot Water Consumption of households 
in the Netherlands and can consequently be used for further 
analysis of the available electricity flexibility of the electric 
boiler.  

In order to use the Hot Water Consumption from the regression model to predict the available electricity 
flexibility from the electric boilers, a conversion must be made, taking into consideration the characteristics of the 
boiler. The electric boilers that are used in the Heerhugowaard field trial have either 80 or 120 liter capacity with 
varying levels of electrical load as represented in Table 16.  

 
Table 16: Characteristics of the Electric Boiler  

 

Capacity 
(liter) Wattage 

Charge time from empty 
(hr) 

Stored Energy 
(W) 

Required energy per liter 
(W/liter) 

Charging speed 
(liter/hour) 

80 1000 7:35 7583.3 94.79 10.55 
80 1500     
80 2500 3:00 7500 93.75 26.67 

 
Taking into consideration these limitations of the electric boiler, the following example (Figure 20) explains 

how the electricity flexibility is calculated. Assume that the electric boiler on t = 0 is fully charged and that at time t = 
6, 50 liter of hot water is consumed for showering. Due to the showering activity, the hot water in the electric boiler is 
consumed and respectively the remaining flexibility of the electric boiler increases. At t = 10, electric flexibility is 
procured by the Aggregator to, for example, compensate for the solar peak, and consequently the electric boiler heats 
the water with 1000 Watt per hour. The result of this activity is that the amount of hot water in the electric boiler 
increases and the remaining flexibility decreases.  

 

 

Figure 20: The Available Electricity Flexibility of the Electric Boiler 
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5.3.3 Predicting the Available Electricity Flexibility from the Heat Pump 

The available electricity flexibility from the heat pump is influenced by household endogenous and exogenous 
effects. The household endogenous effects are for example the hour of the day, as the heat pump has a timed operation, 
the energy class of the household, the size of the house or the influence of the activities in the household. Therefore, 
due to the household endogenous influences, one can assume that ai is correlated with xi and consequently that there 
is a need for fixed effects regression. However, computation of the fixed effects regression results in a numerical 
overflow, and prevents that fixed effects can be computed. Consequently, in order to predict the electricity flexibility 
from the heat pump, random effects must be assumed. This implies that the assumption is made that ai is negligible.  

To determine the estimators of random effects regression for the heat pump load it is not efficient to use normal 
linear regression. This is because the load from the heat pump approaches a binary choice model (varying between zero 
and a constant). This can be implied because the load of the heat pump is zero 85% of the time. In the remaining 15% 
of the values, the heat pump load fluctuates between 1 and 500Wh, with a clear spike around 300Wh (Figure 21).  

If OLS would be used to estimate the coefficients for the heat pump load for air heating, which clearly fluctuates 
between zero and 500, OLS will estimate predictions that fall outside this interval. This occurs because OLS cannot 
take the operational limits into consideration during estimator fit. Predictions outside the operational interval would 
make the results questionable and ambiguous. Additionally, when there is such a clear binary process, OLS estimation 
will result in heteroscedastic residuals. Even though that heteroscedasticity can be corrected through robust estimations, 
it should clearly be prevented by selecting an appropriate regression technique. Last, due to the heteroscedastic errors, 
the residuals are also non-normally distributed, resulting in inconsistent results from F and t tests (Söderbom, 2009).  

An alternative approach, that takes into account the operational interval and approaches the system as a binary 
choice model, is Logit regression. A Logit binary response model is described as: 

𝑃𝑃𝐸𝐸(𝐸𝐸 = 1|𝐹𝐹) = 𝐺𝐺(𝛽𝛽1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝐾𝐾𝐹𝐹𝐾𝐾) 

where G is a function that strictly predicts between zero and one, for all real number. Using Logit regression 
would result in binary state outcomes of zero and one, where one would depict a constant heat pump load. Logit 
regression also applies for panel data, and assists in estimating the unobserved individual effects. Therefore, a Logit 
regression model for the presence of a Heat pump load is estimated for the longitudinal data set with the independent 
variables Temperature, IrradianceL8, SESPState, Wind speed and the categorical variable Hour.  
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Table 17: Logit Panel Regression Estimation 
 

HeatPumpON Coef. Std. Err. z P>z [95% Conf. Interval] 
StateSESP 3.104897 0.0295318 105.14 0.000 3.047015 3.162778 

Temperature -0.0151885 0.0002596 -58.51 0.000 -0.0156972 -0.0146797 
IrradianceL8 -0.0047467 0.0005676 -8.36 0.000 -0.0058591 -0.0036343 
 Wind speed 0.0091514 0.0003538 25.87 0.000 0.008458 0.0098449 

Constant -5.838895 0.2960106 -19.73 0.000 -6.419065 -5.258724 
       

Hour       
3 0.1293005 0.0659842 1.96 0.050 -0.0000261 0.2586272 
4 0.188673 0.0658466 2.87 0.004 0.059616 0.31773 
5 0.2413404 0.0660866 3.65 0.000 0.111813 0.3708678 
6 0.3536307 0.0661084 5.35 0.000 0.2240607 0.4832007 
7 0.2000092 0.0668524 2.99 0.003 0.068981 0.3310375 
8 -0.2299082 0.067783 -3.39 0.001 -0.3627604 -0.097056 
11 0.4118793 0.0681407 6.04 0.000 0.278326 0.5454325 
12 0.5963495 0.0674498 8.84 0.000 0.4641503 0.7285487 
13 0.587542 0.0674075 8.72 0.000 0.4554256 0.7196583 
14 0.4968283 0.0676691 7.34 0.000 0.3641994 0.6294573 
15 0.5504221 0.0678904 8.11 0.000 0.4173594 0.6834849 
16 0.5094269 0.0687051 7.41 0.000 0.3747674 0.6440864 
17 -0.8478335 0.076955 -11.02 0.000 -0.9986626 -0.6970044 
18 -1.905886 0.1140652 -16.71 0.000 -2.129449 -1.682322 
19 -1.133251 0.1137157 -9.97 0.000 -1.356129 -0.9103718 
20 -0.8620521 0.1053132 -8.19 0.000 -1.068462 -0.655642 
21 -0.2454671 0.0868452 -2.83 0.005 -0.4156806 -0.0752536 
24 0.2993223 0.0687389 4.35 0.000 0.1645966 0.434048 

 
 
The outcome of the Logit regression for random effects (Table 

17) indicates a Log Likelihood of -29582, in comparison to the Log 
Likelihood of -45936 for the constant only model. A possible 
approach to determine the increase in goodness of fit due to the 
addition of the independent variables was described by Mac Fadden 
(1974). Mac Fadden mentioned that the Log Likelihood may be 
transformed into an “index analogous to the multiple correlation 
coefficient” (p. 123) and could serve as an index for goodness of fit. 
This transformation is performed through the following equation: 

 
𝜌𝜌2 = 1 − 𝐿𝐿(�̂�𝛽)/𝐿𝐿(�̅�𝛽) 

 
where �̂�𝛽 represents the Log Likelihood of the estimated model, 

and �̂�𝛽 represents the Log Likelihood of the constant model. The ρ2 for 
the heat pump load then computes to 0.356, or 35.6%.  

In most cases, the ρ2 introduced by Mac Fadden, is referred to 
as the Pseudo R2, and is consequently believed to be interpretable in the same manner as an OLS R2. However, this is 
not the case as Mac Fadden mentions that the ρ2 and R2 vary in the unit interval. In order to make these two indexes 
comparable, Mac Fadden provided a graph (Figure 22) that provides the relative stable empirical relationship between 
these two indexes. The dashed line in Figure 22 indicates that a ρ2 of 0.356 corresponds with an R2 of approximately 
0.7, or 70%, which indicates a strong fit. Additionally, the panel level variance, or the variance caused by the differences 
across the panels, is 4.04%, which implies that with more independent household variables 4.04% more variance can 
be explained.  

Figure 22: The Relationship between ρ2 and R2 

From Mac Fadden (1974) 
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The regression model for presence of a heat pump load, based on Logit regression, has the following form6,7: 
 

𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝑃𝑃𝑢𝑢𝑅𝑅𝑝𝑝 𝑃𝑃𝐸𝐸𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝐸𝐸𝐸𝐸 = 0.371�� − 0.0152� ∙𝑑𝑑𝐴𝐴𝑅𝑅𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝑢𝑢𝐸𝐸𝐴𝐴 − 0.0048� ∙𝐿𝐿8𝑅𝑅𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶𝑜𝑜 + 0.0092� ∙𝑊𝑊𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝐴𝐴𝐴𝐴𝐶𝐶
+/− 𝐸𝐸𝐶𝐶𝑢𝑢𝐸𝐸𝐻𝐻𝑢𝑢𝑅𝑅𝑅𝑅𝐸𝐸  

 
With the following upper and lower 95% confidence intervals respectively:  
 

𝐿𝐿𝐶𝐶𝐿𝐿𝐴𝐴𝐸𝐸 95% 𝐸𝐸𝐶𝐶𝐶𝐶𝑓𝑓.𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝑃𝑃𝑢𝑢𝑅𝑅𝑝𝑝 𝑃𝑃𝐸𝐸𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝐸𝐸𝐸𝐸 =�  −0.325� − 0.0157� ∙𝑑𝑑𝐴𝐴𝑅𝑅𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝑢𝑢𝐸𝐸𝐴𝐴 − 0.0059� ∙𝐿𝐿8𝑅𝑅𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶𝑜𝑜
+ 0.0085� ∙𝑊𝑊𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝐴𝐴𝐴𝐴𝐶𝐶 +/− 𝐸𝐸𝐶𝐶𝑢𝑢𝐸𝐸𝐻𝐻𝑢𝑢𝑅𝑅𝑅𝑅𝐸𝐸  

 
𝑈𝑈𝑝𝑝𝑝𝑝𝐴𝐴𝐸𝐸 95% 𝐸𝐸𝐶𝐶𝐶𝐶𝑓𝑓.𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝑃𝑃𝑢𝑢𝑅𝑅𝑝𝑝 𝑃𝑃𝐸𝐸𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝐸𝐸𝐸𝐸 =�  1.066� − 0,0147� ∙𝑑𝑑𝐴𝐴𝑅𝑅𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝑢𝑢𝐸𝐸𝐴𝐴 − 0.0036� ∙𝐿𝐿8𝑅𝑅𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶𝑜𝑜

+ 0.0099� ∙𝑊𝑊𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝐴𝐴𝐴𝐴𝐶𝐶 +/− 𝐸𝐸𝐶𝐶𝑢𝑢𝐸𝐸𝐻𝐻𝑢𝑢𝑅𝑅𝑅𝑅𝐸𝐸  
 
The linear prediction of the Logit regression is not interpretable in the same manner as the OLS estimators. 

Firstly, Logit regression estimates coefficients that indicate the odds ratio, or the probability of an event occurring, 
where an event implies the heat pump load is non-zero. Secondly, the estimators need to be transformed in order to 
predict the probability correctly (Torres-Reyna, 2007). This transformation can be performed with the following 
function: 

1

1 + � 1
𝐴𝐴(𝛽𝛽1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝐾𝐾𝑚𝑚𝐾𝐾) �

 

 
After this transformation, the linear prediction provides the probability of the heat pump load to be non-zero, 

varying between zero and one. As Logit regression is based on the Bernoulli distribution, the probability also follows a 
Bernoulli distribution. The state of the heat pump load can then be found by using the Binomial distribution for 1 
trial with the following equation (Yoshimoto, 2008):  

 

𝑃𝑃(𝑋𝑋 = 𝑘𝑘) = �𝐶𝐶𝑘𝑘� 𝑝𝑝
𝑘𝑘𝑝𝑝(𝑖𝑖−𝑘𝑘) 

 
The probability to find a Heat Pump load provides the distribution over a year as presented in Figure 23. Figure 

23 figure also clearly indicates the influence from the weather on the household heat requirement, as the probability 
for heat pump air heating lowers during warm periods and raises during cold periods. Furthermore, it is to be expected 
that the Heat Pump load does not decline to zero probability due to the operation of the boiler.  

 

 

Figure 23: The Probability of Heat Pump Load for Air Heating over the year 

6 In the regression function, the constant and the StateSESP term are combined as for prediction the device is default in operation 
and the value of the StateSESP is then be equal to 1.  
7 L8Irradiancet is a lag operator where the term Irradiance is lagged by 8 hours.  
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The presented Logit regression model predicts the probability of a Heat Pump load but not the actual load. 
Figure 21 indicates that it would be incorrect to assume that when the Heat Pump is on, only one load may be expected. 
Therefore, a second stage model should predict the load for the Heat Pump when the Heat Pump is estimated to be 
operational. To determine if the Heat Pump load is influenced by any of the independent variables used in the Logit 
regression, normal OLS regression is performed. The outcome of the regression model with the dependent variable 
Heat Pump Load and independent variables Temperature, Irradiance and Wind speed indicates a R2 of 0.0034, or 0.34%. 
Furthermore the Breusch-Pagan / Cook-Weisberg test for heteroscedasticity indicates a χ2 value of 8.97, which 
significantly indicates heteroscedasticity, but not to a large extend (especially when the large sample size is taken into 
consideration). Therefore, it is possible to conclude that the load of the Heat Pump is uncorrelated with the 
independent variables and has (almost) equal variance over the predictors. Consequently, the assumption is made that 
the Heat Pump load can be approached through a distribution with a mean and standard deviation.  

Estimating the data with multiple distributions indicated that the Normal distribution has the closest fit with 
a mean of 311.41 and standard deviation of 26.48. The average of 311.41 Wh closely represents the average 
consumption of 300 Wh stated by the manufacturer of the device (Inventum, 2015). 

 

 

Figure 24: The Heat Pump Load (W) over a year 
 
Based on the probability and average Heat Pump load, it is possible to predict the Heat Pump load all over a 

year for one household (Figure 24). Figure 24 presents the probability as the density of lines, and the Heat Pump load 
as the height of the line.  

In order to validate these results, a comparison is performed between the predicted Heat Pump load and the 
measured Heat Pump load. For this comparison, only the households that have less than 1000 values missing are 
selected to prevent underestimation of the consumption level. If the cut-off value would be reduced further, the sample 
size would become too small (less than 10) to estimate an accurate household consumption level. Based on this setting, 
the observed Heat Pump Load from the period of 04-08-2015 till 29-01-2016 is 414.74 kW in comparison to the 
predicted Heat Pump Load for the same period of 524.28 kW, which, through an independent student t-test indicates 
to be significantly (t value 2.9816, sig. 0.0023 for α: 0.05) higher than the observed consumption.  

Although that the prediction model overestimates the Heat Pump load for the households in Heerhugowaard 
by a factor of 1.265, it approximates the average Dutch households closely. On average the Dutch gas consumption is 
(1430 m3 /1121 m3) 1.27 times higher than the gas consumption from the households in the Heerhugowaard sample 
(as discussed in 4.5.1.3). In line with this thought, the Heat Pump load from the households in Heerhugowaard might 
be corrected to approximate the Heat Pump load from Dutch households. However, the corrected average does not 
significantly deviate from the uncorrected sample (t value -1.2429, sig. 0.2235 for α: 0.05) and correction would thus 
result in no significant change. Consequently, the presented prediction model can be used to approximate the Dutch 
household Heat Pump Load.  

 
 

0

50

100

150

200

250

300

350

400

1
25

1
50

1
75

1
10

01
12

51
15

01
17

51
20

01
22

51
25

01
27

51
30

01
32

51
35

01
37

51
40

01
42

51
45

01
47

51
50

01
52

51
55

01
57

51
60

01
62

51
65

01
67

51
70

01
72

51
75

01
77

51
80

01
82

51
85

01
87

51

H
ea

t P
um

p 
H

ea
t L

oa
d 

(W
)

Hours per year

57 
 



 The Smart Appliance Electricity Flexibility Prediction Models  
 
In attempt to predict the available electricity flexibility from the smart appliances, the relationships between the 

potential factors that explain the available electricity flexibility and the measured available electricity flexibility were 
investigated. Based on a set of independent variables, these relationships were combined in the form of a linear function, 
a simulation model and a probability model for the Photovoltaic panels, Electric boiler and Heat Pump respectively. 
Additionally, these models have taken into consideration the non-generalizability of the sample as presented in 4.5.1 
by correcting the model where necessary. Based on the analysis presented in the previous sections the following three 
models might be used to predict (with the precision and confidence intervals mentioned in the associated sub-sections) 
the available electricity flexibility for Dutch households: 

 
Photovoltaic Panel Available Electricity Flexibility (Watt): 
� 1.3� − 0.000238� ∙𝑃𝑃𝑃𝑃𝐸𝐸𝐴𝐴𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 + 0.0204� ∙ �𝑃𝑃𝑃𝑃𝐶𝐶𝐴𝐴𝑝𝑝𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 ∗ 𝐼𝐼𝐸𝐸𝐸𝐸𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐸𝐸𝐴𝐴 ∗ 𝑆𝑆𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴2 − 0.0411� ∙ √𝑆𝑆𝑢𝑢𝐶𝐶𝐴𝐴𝑧𝑧𝐴𝐴𝑅𝑅𝑢𝑢𝐸𝐸ℎ𝐹𝐹𝐸𝐸𝐶𝐶𝑅𝑅1802 +

0.141� ∙  √𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐸𝐸𝐶𝐶𝐸𝐸𝐴𝐴𝑧𝑧𝐶𝐶𝐶𝐶2 �
2.75

  
 

Hot Water Consumption: 
𝑆𝑆ℎ𝐶𝐶𝐸𝐸𝐸𝐸 𝐸𝐸𝐶𝐶𝐸𝐸 𝑊𝑊𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑢𝑢𝑅𝑅𝑝𝑝𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶 = 𝐵𝐵(1,0.309) ∙ 𝑁𝑁(40,15) ∙ 0.0305 𝑓𝑓𝐶𝐶𝐸𝐸 05: 00 < 𝐸𝐸 < 23: 00 

𝑀𝑀𝐴𝐴𝐶𝐶𝐴𝐴𝑢𝑢𝑅𝑅 𝐸𝐸𝐶𝐶𝐸𝐸 𝑊𝑊𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑢𝑢𝑅𝑅𝑝𝑝𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶 = 𝐵𝐵(1,0.39) ∙ 3.6 𝑓𝑓𝐶𝐶𝐸𝐸 05: 00 < 𝐸𝐸 < 23: 00 
𝑆𝑆ℎ𝐶𝐶𝐿𝐿𝐴𝐴𝐸𝐸 𝐸𝐸𝐶𝐶𝐸𝐸 𝑊𝑊𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑢𝑢𝑅𝑅𝑝𝑝𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶 = 𝐵𝐵(1,0.72) ∙  𝐿𝐿𝑁𝑁(2,0.5) ∙ 6.228 

𝐵𝐵𝐴𝐴𝐸𝐸ℎ𝐸𝐸𝑢𝑢𝐴𝐴 𝐸𝐸𝐶𝐶𝐸𝐸 𝑊𝑊𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑢𝑢𝑅𝑅𝑝𝑝𝐸𝐸𝑢𝑢𝐶𝐶𝐶𝐶 = 𝐵𝐵(1,0.04) ∙ 89.5 
 

Heat Pump Available Electricity Flexibility (Watt) 

�1 + �𝐴𝐴(0.371� −0.0152� ∙𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇−0.0048� ∙𝐿𝐿8𝑅𝑅𝑚𝑚𝑑𝑑𝑖𝑖𝑚𝑚𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡+0.0092� ∙𝑊𝑊𝑖𝑖𝑖𝑖𝑑𝑑𝑠𝑠𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑+/− 𝐴𝐴𝑜𝑜𝑜𝑜𝑇𝑇𝐵𝐵𝑜𝑜𝑚𝑚𝑚𝑚𝑦𝑦)�
−1
�
−1
∙  𝑁𝑁(311.41, 26.48)  

 
In order to provide the correct input for the presented regression models Appendix VI presents an overview of 

the format of the input variables.  
 
The models presented in their current form indicate the unstandardized population estimators (�̂�𝛽) which 

cannot be directly interpreted to determine the contribution to the prediction of y, due to the difference in the units 
and degrees of variability of the x variables. In order to determine which coefficients provide the highest relative 
contribution to the regression plane, the standardized coefficients must be investigated. The larger the magnitude of 
the standardized 𝛽𝛽𝚤𝚤�, the more xi adds to the prediction of y.  
The standardized coefficients can further be interpreted as the standard deviation change in the dependent variable 
when the independent variable is changed by one standard deviation, holding all other variables constant (ceteris 
paribus) (Bring, 1994). This holds also true for the negative standardized beta coefficients, only changing the negative 
change of the standard deviation in y. The standardized coefficients for the Photovoltaic and Heat Pump regression 
models are presented in Table 18. Based on these results it is possible to conclude that the Interaction term and the 
Sun elevation above the horizon have the largest influence on the PV-Output, and the Temperature and the SESP State 
the largest influence on the Heat Pump, which are both clearly in line with what one might expect for such appliances.  

 

 

 

Model Independent Variable Beta 

Photovoltaic Panel 

PV Capacity -0.075 
PVCapacityIrradianceState 0.746 

SunAzimuthFrom180 -0.030 
ElevationAboveHorizon 0.119 

Heat Pump 

Temperature -0.225 
Irradiance 0.033 

 Wind speed 0.0851 
State SESP 0.409 

Table 18: Standardized Beta Coefficients 
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Appendix I. Causal Map Diagram 
 

The causal map diagram, as presented in Figure 44, indicates the hypothesized causal relations between the 
household endogenous and exogenous factors that might influence the available electricity flexibility from the four 
appliances. The arrows not only indicate the relation, but also the direction of the causal relation, in other words the 
cause and effect relation. A positive sign on the arrow indicates that the independent household endogenous or 
exogenous factor positively influences the available electricity flexibility from the device. Consequently, a negative sign 
on the arrow indicates that the independent household endogenous or exogenous factor negatively influences the 
available electricity flexibility from the device.  
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Figure 44: The Causal Map Diagram for the Available Electricity Flexibility 
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Appendix II. Sample location 

Figure 45: The sampling locations 
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Appendix III. Photovoltaic Electricity Flexibility 
 
The regression analysis performed in 5.3 requires bivariate analysis and linearity proof. This appendix provides 

an overview of the scatter plots, corrected and uncorrected, for the bivariate relations between the hypothetical factors 
that might influence the Photovoltaic Electricity Flexibility. Furthermore, this appendix also provides an overview of 
all the statistical tests that have been performed to fit a regression model.  

 
a. Bivariate Relationships Uncorrected  

 
Figure 46: The Bivariate Relation between PV-Power and SunAzimuthFrom180 

 

  

Figure 47: The Bivariate Relation between PV-Power and PV-CapacityIrradianceState 
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Figure 48: The Bivariate Relation between PV-Power and Irradiance 

Figure 49: The Bivariate Relation between PV-Power and PV-Capacity 
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Figure 51: The Bivariate Relation between PV-Power and ElevationAboveHorizon 

Figure 50: The Bivariate Relation between PV-Power and Humidity 
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b. Bivariate Relationships Corrected

Figure 52: The Bivariate Relation between PV-Power and Temperature 

Figure 53: The Bivariate Relation between PV-Power and SunAzimuthFrom180 Corrected 
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Figure 54: The Bivariate Relation between PV-Power and PV-CapacityIrradianceState Corrected 
 

Figure 55: The Bivariate Relation between PV-Power and Irradiance Corrected 
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Figure 57: The Bivariate Relation between PV-Power and ElevationAboveHorizon Corrected 

Figure 56: The Bivariate Relation between PV-Power and Humidity Corrected 
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c. Regression Estimation Tests 
 
In order to perform estimate a model that is capable of predicting the Photovoltaic panel output per household, 

multiple statistical test are performed. The following outcomes are the results from these statistical analysis in STATA.  
 

Random Effects Regression  

 
Fixed Effects Regression  

   

F test that all u_i=0: F(68, 281677) = 1069.21               Prob > F = 0.0000
                                                                                              
                         rho    .20917464   (fraction of variance due to u_i)
                     sigma_e    1.7605195
                     sigma_u    .90543039
                                                                                              
                       _cons      .578239   .0236855    24.41   0.000     .5318161     .624662
                       State     .2371552   .0144826    16.38   0.000     .2087696    .2655407
                  PVCapacity            0  (omitted)
          RadiationCorrected     .0137492   .0025794     5.33   0.000     .0086936    .0188048
InteractionTermRADPVpwrStaCO     .0200484   .0000587   341.69   0.000     .0199334    .0201634
       SunAzimuthFrom180CORR    -.0387541   .0019198   -20.19   0.000    -.0425168   -.0349915
   ElevationAboveHorizonCORR     .1423419   .0023054    61.74   0.000     .1378235    .1468603
                                                                                              
          PvOutputwatthrCORR        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                                              

corr(u_i, Xb)  = -0.0553                        Prob > F          =     0.0000
                                                F(5,281677)       =  168046.46

     overall = 0.7032                                         max =      4,095
     between = 0.1038                                         avg =    4,083.3
     within  = 0.7489                                         min =      3,291
R-sq:                                           Obs per group:

Group variable: HouseHold                       Number of groups  =         69
Fixed-effects (within) regression               Number of obs     =    281,751

                                                                                              
                         rho    .20123758   (fraction of variance due to u_i)
                     sigma_e    1.7605195
                     sigma_u    .88366279
                                                                                              
                       _cons     1.045971   .2167404     4.83   0.000     .6211673    1.470774
                       State     .2369979   .0144818    16.37   0.000     .2086141    .2653816
                  PVCapacity    -.0002322    .000093    -2.50   0.013    -.0004145     -.00005
          RadiationCorrected      .013744   .0025794     5.33   0.000     .0086885    .0187996
InteractionTermRADPVpwrStaCO     .0200485   .0000587   341.70   0.000     .0199335    .0201635
       SunAzimuthFrom180CORR    -.0387559   .0019197   -20.19   0.000    -.0425185   -.0349933
   ElevationAboveHorizonCORR     .1423402   .0023054    61.74   0.000     .1378217    .1468586
                                                                                              
          PvOutputwatthrCORR        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                                              

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000
                                                Wald chi2(6)      =  840245.18

     overall = 0.7084                                         max =      4,095
     between = 0.1062                                         avg =    4,083.3
     within  = 0.7489                                         min =      3,291
R-sq:                                           Obs per group:

Group variable: HouseHold                       Number of groups  =         69
Random-effects GLS regression                   Number of obs     =    281,751
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Hausman Specification Test (Fixed vs. Random Effects) 
The outcome of the Hausman Specification test which cannot reject the H0 hypotheses and thereby concludes that 
the random effect estimators are efficient. 

The Breusch-Pagan / Cook-Weisberg test for Homoscedasticity 

Wooldridge test for Autocorrelation 

The Driscoll and Kraay correction for serial correlation and heteroscedasticity 

 Prob>chi2 =  0.9623
 =  1.00

 chi2(5) = (b-B)'[(V_b-V_B)^(-1)](b-B)

 Test:  Ho:  difference in coefficients not systematic

 B = inconsistent under Ha, efficient under Ho; obtained from xtreg
    b = consistent under Ho and Ha; obtained from xtreg

 State  .2371552  .2369979  .0001573  .0001583
RadiationC~d  .0137492  .013744  5.17e-06  .0000109
Interactio~O  .0200484  .0200485  -1.22e-07  2.91e-07
SunAzimuth~R  -.0387541    -.0387559  1.78e-06  5.33e-06
ElevationA~R  .1423419  .1423402  1.75e-06  6.26e-06

 fixed  random  Difference  S.E.
 (b)  (B)  (b-B)  sqrt(diag(V_b-V_B))

 Coefficients 

 Prob > chi2  =   0.0000
 chi2(1)      = 56329.44

 Variables: fitted values of PvOutputwatthrCORR
 Ho: Constant variance

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 

 Prob > F =  0.0000
 F(  1, 68) =    337.512

H0: no first-order autocorrelation
Wooldridge test for autocorrelation in panel data

 _cons  1.300594  .1280255  10.16  0.000  1.049594  1.551594
 PVCapacity    -.0002381   9.07e-06   -26.25   0.000    -.0002559   -.0002203

InteractionTermRADPVpwrStaCO  .0204076  .0002816  72.48  0.000  .0198556  .0209597
 SunAzimuthFrom180CORR    -.0410736  .0135    -3.04   0.002    -.0675409   -.0146063

 ElevationAboveHorizonCORR  .1405118  .0150301  9.35  0.000  .1110447  .169979

 PvOutputwatthrCORR  Coef.   Std. Err.   t    P>|t|  [95% Conf. Interval]
    Drisc/Kraay

 Root MSE  =    1.9588
 R-squared  =    0.7085

maximum lag: 9  Prob > F  =    0.0000
Group variable (i): HouseHold  F(  4,  4094)  =   4980.44
Method: Pooled OLS  Number of groups  =  69
Regression with Driscoll-Kraay standard errors   Number of obs  =    281751
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Residual Normality Plot  
 

 
 
 
 

 
  

Figure 58: The Normality Plot for the Residuals from the Photovoltaic Linear Prediction 
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Appendix IV. Bivariate Relationship Electric Boiler 

Figure 59: The Bivariate Relation between Hot Water Consumption and Temperature 
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Appendix V. Bivariate Relationship Heat Pump  

 
 

 
 
 
 
 
 
 
 
 
 

Figure 60: The Bivariate Relation between Heat Pump Load and Temperature 

Figure 61: The Bivariate Relation between Heat Pump Load and Irradiance 
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Figure 63: The Bivariate Relation between Heat Pump Load and Windspeed 

Figure 62: The Bivariate Relation between Heat Pump Load and StateSESP 
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Appendix VI. Input Variables 
 
Table 35: Independent Variable Units  

 

Model Independent Variable Unit Calculation 
Photovoltaic 

Panel 
PV Capacity W  
PVCapacityIrradianceState (J/cm2)*W Irradiance * PVCapacity * State 
SunAzimuthFrom180 ° | 180 - Solar Azimuth Angle (deg from N) | 
ElevationAboveHorizon ° IF(ElevationAngle >0; ElevationAngle; 0) 

Heat Pump Temperature °C The data from the KNMI is Temperature*10 
 Irradiance  J/cm2  
  Wind speed m/s  
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Appendix VII. Unbalance Trading 

Figure 64 presents an overview of the Imbalance prices and the electricity flexibility prices of the Heat Pump, 
Fuel Cell, Electric Boiler and Photovoltaic Systems respectively from the upper red horizontal line to the lowest 
horizontal green line. As with the APX price, the Imbalance price is mostly too low for the Heat Pump to become 
attractive as an alternative to other energy sources. The same holds for the Electric Boiler and Photovoltaic systems. 
However, as with the APX prices, the Fuel Cell is highly desired due to its low electricity flexibility price.  

Figure 64: A Boxplot of the Imbalance price (€/MWh) of the year 2015 over a day 
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Appendix VIII. Smart Appliance Comparison 
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Appendix IX. The Financial Outcome Under Different Sized Household Groups 
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Appendix X. Financial Simulation Model 
Simulations are considered the closest approach next to observing reality, as the methodology allows the 

researcher to study the system in a situation where it is too expensive or difficult to experiment in reality. Additionally, 
simulation studies allow the researcher to perform ‘what if’ analysis and allows the researcher to control time, as it is 
possible to observe the system over multiple years (Shannon, 1998). Within the domain of simulation, simulation is 
defined as: “the process of designing a model of a real system and conducting experiments with this model for the purpose 
either of understanding the behavior of the system or evaluating various strategies…” (Shannon, 1998, p. 7), where Shannon 
uses the term ‘model’ as a representation of a group of ideas in some form, different from the real world object 
(Shannon, 1998; Attila Boer & Verbraeck, 2003). In order to construct such a simulation model, Rosen (2012) 
presented four steps that describe the modeling relation between two systems (the real observed system and the 
simulation model). These four steps are Causality, Encoding, Simulation and Decoding, where Causality was performed 
in the analysis of section 3.2, Encoding was partly performed in section 5.3, and finalized in the creation of the financial 
analysis simulation model based on the guidelines of USEF. Furthermore, the Simulation step is syntactic and does not 
require a semantic approach as this process is fully automated through means of a Visual Basic Interface in Microsoft 
Excel. The only remaining phase is Validation, and will be divided into two distinct steps referred to as Implementation 
verification and Operational Validation (Sargent, 2005). Consequently, these two steps are addressed in section a and 
b respectively.  

a. Verification of the Financial Analysis Simulation Model

Sargent (2005) defines the verification process, and specifically the Implementation Verification as “assuring 
that the simulation model has been implemented according to the simulation model specification” (p. 40). This implies that 
the model is programmed according to the USEF electricity flexibility trade processes between the BRP and the DSO, 
and that the decision making processes from both the BRP and DSO are correct. Whitner and Balci (1989) describe a 
multitude of verification techniques as informal analysis, dynamic analysis, constraint analysis and formal analysis. 
However, due to the simplistic nature of the programming language, which is nothing more than general purpose 
programming langue (Shannon, 1998), only informal analysis is performed. Informal analysis verification can be 
performed by investigating the input-output relations of the model and evaluating if the presented outcome is correct 
(Whitner & Balci, 1989; Sargent, 2005).  

In order to investigate the input-output relationships, the response of the simulation models is evaluated on the 
DSO and BRP decision making processes. This implies that for the BRP the decision making process as described in 
section 2.4.3.2 is used. However, for the DSO the electricity flexibility decision making process does not directly 
depend on the electricity prices on the APX and Imbalance market but simply on the situation of network congestion. 
A DSO will order electricity flexibility when the load exceeds the network capacity limitation in order to resolve this 
exceedance, with the cheapest form of electricity flexibility. The results from this investigation are presented in Figure 
67and Figure 68 

Figure 67 presents a comparison between the actual observed ordered flex (observed from Heerhugowaard) and 
simulated ordered flex for the BRP over a period from the 16th December till the 31st of December 2015. This specific 
period was chosen as in this period all the smart appliances were available and provide electricity flexibility to the BRP 
and DSO. Based on this analysis, one can conclude that the simulated ordering process of the BRP complies with 
specification outlined in USEF and is comparable to the ordering process performed in Heerhugowaard. 
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Figure 68 presents a comparison between the electricity flexibility required by the DSO and the electricity 
flexibility delivered to the DSO. As one might infer from this figure, is that there is no difference between the required 
and delivered quantity of electricity flexibility. Consequently, one can conclude that also the DSO ordering process 
complies with USEF and can be assessed as correct.  

b. Validation of the Financial Analysis Simulation Model

Implementation verification allows a research to perform experimentation with the simulation model and 
interpret simulation model results. However, before such results can be used in order to draw conclusion regarding the 
financial outcome for the Aggregator, Operational validation must be performed. According to Sargent (2005) 
Operational validation is defined as: “determining that the model’s output behaviour has sufficient accuracy for the model’s 
intended purpose over the domain of the model’s intended applicability” (p. 40), where Sargent further describes that 
Extreme Condition tests, and Degenerate tests are often used for validation of simulation models.  

Extreme Condition Tests 
The extreme condition test verifies if the model produces plausible outputs under extreme conditions. For example, 
no electricity flexibility can be traded when there are no controllable smart appliances. The following Extreme 
condition tests are performed and result in the following outcomes: 

1. Congestion Limits of 10 kVA per household results in no congestion and no electricity flexibility traded
with the DSO. 

2.
3. Zero controllable smart appliances results in zero electricity flexibility traded
4. Zero households results in no load curve and no electricity flexibility traded
5.

Degeneracy Tests 
The degeneracy tests validates if the response from the simulation model is in line with expectations from the system. 
For example, when the number of smart appliances is increased, more electricity flexibility is traded, which is in line 
with the expectancy from the real system, as more flexibility becomes available and the BRP will order more electricity 
flexibility. The following degeneracy test are performed and result in the following outcomes: 

1. When the number of controllable smart appliances is increased the traded electricity flexibility increases
2. When the electricity flexibility price is increased (BRP) the traded electricity flexibility decreases15

3. When the electricity flexibility price is increased (DSO) the traded electricity flexibility is constant16

4. When the margin for the Aggregator is increased the profits for the Aggregator increases

15 When the price of electricity flexibility increases, the probability that the BRP will order electricity flexibility instead of 
electricity from the APX market decreases, and consequently, less electricity flexibility is ordered from the Aggregator.  
16 Within the current USEF model it is assumed that the DSO orders electricity flexibility whatever the electricity flexibility price 
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Figure 67: Flex Order from the BRP Figure 68: Flex Orders from the DSO 
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5. When the congestion limit is reduced the traded electricity flexibility increases
6. When the Aggregator cost per household increase, the profits for the Aggregator decrease

Based on the performed tests and the outcome of these tests, in combination with the verification results, one 
can conclude that the simulation model constructed for the analysis of the financial feasibility of direct load control 
DSM is verified and validated for operational use.  
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Appendix XI. Sensitivity Analysis Optimized Mix 
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Appendix XII. Confidence Interval 
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Figure 77: The Confidence Interval for various Population sizes dependent on the Sample size 
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