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Abstract

With recent advancements in autonomous driving, the demand for precise and
accurate perception systems has increased. Perception of the vehicle’s environ-
ment is a key element in ensuring safe operation. Due to their wide aperture
angle and low cost, ultrasonic sensors are a viable option for achieving close-
range 360° perception around the vehicle. This thesis investigates and evaluates
the use of ultrasonic sensors for detection and tracking of objects and vulnerable
road users in an SAE-level 4 autonomous vehicle. The thesis focuses on optimiz-
ing ultrasonic sensors for their designated measurement task and optimizing the
positions of ultrasonic sensors on the vehicle. Furthermore, it explores different
detection and tracking methods to investigate whether an ultrasonic detection
system is indeed a viable candidate for close-range detection and tracking.
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Chapter 1

Introduction

With recent advancements in autonomous driving, the demand for precise and
accurate perception systems has increased, as vehicles take over more and more
tasks from the driver. Accurate and precise perception of the vehicle’s environ-
ment is a key element in ensuring safe operation of the vehicle. The drive for
autonomous vehicles has lead to an increase in the performance of state-of-the-
art perception sensors, like radar and lidar. This thesis aims to contribute to the
field of perception for autonomous vehicles by exploring the use of ultrasonic
sensors for detection and tracking of objects and road users in close proximity
of the vehicle.

Compared to radar and lidar sensors, ultrasonic sensors are simple and inex-
pensive. Nowadays, these small sensors can be found on almost any new vehicle,
as they are widely used in parking assistant systems and automated parking
systems. However, the use of ultrasonic sensors in the driving function is gener-
ally limited to these parking related tasks. For general driving radar, lidar, and
camera systems seem to be the preferred option.

A drawback of lidar and radar sensors is their minimum detection range.
These sensors typically have a minimum detection range of 1 m. However, due to
the low propagation speed of sound in air (compared to the propagation speed
of EM waves of radar and lidar), the minimum detection range of ultrasonic
sensors is typically in the range of Ocm to 30 cm, with a maximum detection
range of 2.5m to 8m.

In SAE level 4 and 5 autonomous driving, full awareness of the environment
is a key element for safe operation. Achieving full awareness of the environment
with radar and lidar sensors can be challenging and expensive. Due to their low
minimum detection range and wide aperture angle, achieving 360° close range
sensor coverage around the vehicle with ultrasonic sensors could be a feasible
option.

In this thesis the use of ultrasonic sensors as a complement to lidar and
radar sensing in autonomous vehicles is investigated. More precisely, the deploy-
ment of an ultrasonic detection system for an SAE level 4 vehicle is evaluated.
This vehicle functions as a public transportation means in both segregated and
mixed-traffic environments. The vehicle is equipped with various state-of-the-
art sensors for autonomous driving, such as radar and lidar. Since these sensors
are mainly intended for the driving function, they are mounted in the direction
of travel of the vehicle, as show in The intention of adding ultrasonic



sensors to the sensor set is to achieve 360° sensor coverage in the close range

around the vehicle, as shown in [Figure 1.2

-

Figure 1.1: Top-down illustration of the vehicle with the fields-of-view of the different
sensors of the sensor set intended for the driving functions. The field-of-view of the
radar (pink) and lidar (blue) mainly cover the area in the direction of travel of the
vehicle.

Figure 1.2: Top-down illustration of the vehicle with the fields-of-view of the different
sensors of the sensor set of the vehicle. With the addition of ultrasonic distance sensors,
a 360° close range sensor coverage can be achieved. Due to the wide aperture angle
of automotive ultrasonic distance sensors, the entire area around the vehicle can be
covered with a limited amount of sensors.

The two operational design domains of the vehicle: segregated operation



and mixed-traffic operation, each have their own characteristics. In segregated
operation the vehicle operates on a designated track, where access for other
road users is prohibited. However, at intersections other traffic can cross the
lanes of the dedicated track. Other road users, especially pedestrians, could also
unintentionally enter the track. In these situations the vehicle should be able to
detect any other road users and act accordingly. Whenever the vehicle stops at a
station, passengers can enter and exit the vehicle. In these stop-start scenarios,
the vehicle has to be able to detect and track passengers and pedestrians moving
around the vehicle, in order to ensure that it is safe to accelerate after a stop.

In mixed-traffic operation the vehicle operates in normal city traffic, and thus
encounters all types of road users. Here the vehicle should be able to detect and
track all road users in close proximity around the vehicle. In addition to normal
stop-start scenarios of mixed-traffic operation the vehicle also stops at dedicated
stations to let passengers exit and enter the vehicle. In all these scenarios, the
vehicle should be able to detect and track all, especially vulnerable, road users.

This thesis investigates and evaluates the use of multilateration for an ultra-
sonic sensor system for the detection and tracking of (vulnerable) road users. In
the introduction of this thesis, an introduction of automotive ultrasonic sensors
is presented and the challenges of automotive ultrasonic distance sensors are dis-
cussed. In Chapter 2 the research questions of this thesis are presented. Chapter
3 gives an overview of state-of-the-art methods in sensor calibration, sensor po-
sitioning, object detection, and object tracking. Chapter 4 proposes a method
to calibrate ultrasonic sensors for use in autonomous driving. Furthermore, a
method for the positioning of sensors around the vehicle is proposed. A method
for determining detailed object positions from the measurements is proposed.
And finally, clustering and tracking algorithms are proposed for use with an
ultrasonic detection system. Chapter 5 presents the results of the four different
methods proposed in Chapter 4. Finally, Chapter 6 presents the conclusion of
this thesis and gives an outlook for future work.

1.1 Ultrasound

Sound waves with frequencies above the upper audible limit of human hearing
are called ultrasound or ultrasonic sound. The frequency spectrum of ultrasound
extends from 20 kHz [1] and has no clear upper limit, as the upper limit depends
on the medium in which the ultrasonic waves propagate. Between 1910 to 1925
Paul Langevin developed ultrasonic underwater detection for the French Navy,
which was the first technological application of ultrasound [2]. Since Langevin’s
invention, ultrasound has spread to applications in the field of automotive [3], de-
fense, industrial, medical [4] and security [5]. Ultrasound can be used for object
detection, distance measurement, imaging in medicine, nondestructive testing,
cleaning, and accelerating chemical processes. The position of ultrasound within

the overall sound spectrum is shown in [Figure 1.

1.2 Ultrasonic sensors

Ultrasonic sensors “use wave-propagation phenomena in air to measure physi-
cal or chemical variables” |7]. Ultrasonic sensors can generally be divided into
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Figure 1.3: Frequency range of the sound spectrum, with an indication of several
ultrasound applications within the spectrum. Figure based on [6].

two classes: contact and non-contact sensors. Contact sensors are in direct con-
tact with the measurement subject. They utilize the propagation of ultrasonic
waves through the subject to measure certain properties of the subject, like
temperature, pressure, or density.

Non-contact ultrasonic sensors evaluate the propagation time of ultrasonic
waves to determine the distance to an ultrasonic source or an object reflecting
an ultrasonic wave. Non-contact ultrasonic sensors can be further divided into
two categories: active and passive sensors. Passive ultrasonic sensors can only
receive ultrasonic signals. Active ultrasonic distance sensors can emit ultrasonic
signals and receive their echoes, which are reflected by objects within their
measurement range.

1.3 Ultrasonic sensors in automotive applications

In the automotive field, ultrasonic distance sensors are typically found in park-
ing assistance systems or automated parking systems of vehicles. These sensors
measure distances to obstacles around the ego-vehicle. When an object appears
in the vicinity of the ego-vehicle or the time-to-collision (TTC) to the object
reaches a predefined threshold, an indication or warning is given to the driver in
case of a parking assist system or the vehicle is stopped in case of an automated
parking system. Warnings from a parking assist system are often acoustic, as
defined in [8], sometimes accompanied by a visual representation of the situation
around the vehicle on an in-vehicle display.

Due to the limited range of ultrasonic distance sensors, they are typically
used in low speed scenarios [9]. However, [10]-[12] show that ultrasonic distance
sensors can also be used at high velocities, for example in blind spot surveillance
in motorway scenarios.

In order to cover a large observation area with a limited amount of sensors,
automotive ultrasonic distance sensors have a wide field-of-view (FOV). For
example, the sensors used in this thesis have an approximate FOV of £ 60° in
the horizontal plane and £ 30° in the vertical plane [9]. shows the
effective field of view of the sensor.

1.4 Automotive ultrasonic sensor function

Figure 1.5(a)|shows a picture of an automotive ultrasonic distance sensor, with
Figure 1.5(b)|showing the different internal components of the sensor in a cross
section. [Figure 1.6] shows the different signals of the sensor when performing a
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Figure 1.4: Horizontal (blue) and vertical (black) radiation pattern of an automotive
ultrasonic distance sensor. Image from .

measurement. When the sensor receives a command to perform a measurement
from the electric control unit (ECU) of the vehicle, the sensor generates a pulse
with its piezo-ceramic element (labelled 1 in. This pulse stimulates
the oscillation of the aluminium membrane (8) at its resonant frequency. A
series of ultrasonic pulses is sent out by the alumunium membrane. Once the
ultrasonic pulses are emitted and the occilation of aluminium membrane has
decayed, the sensor turns into an ultrasonic microphone. The time it takes
for the membrane to stop oscillating defines the minimum detection range of
the sensor. When an ultrasonic pulse is reflected by an object, the aluminium
membrane is stimulated. The oscillation of the membrane is converted back
into an electric signal and compared to a predefined threshold value. If the
electric signal exceeds the threshold value, a signal is sent to the ECU. From
this signal, the ECU can calculate the time-of-flight (TOF) of the ultrasonic
pulse, by determining the duration between the measurement command and
the reception of the signal from the sensor.

(b)

Figure 1.5: @ Automotive ultrasonic sensor. @ Cross section of an automotive
ultrasonic sensor. 1: piezoceramics, 2: decoupling washer, 3: plastic housing with con-
nector, 4: integrated circuit chip, 5: printed circuit board, 6: transducer, 7: bonding
wire, 8: aluminium membrane. Images from .
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Figure 1.6: Example measurement cycle of an ultrasonic distance sensor. At t =
2.2 ms the sensor receives a command from the electronic control unit (ECU) to start
a measurement cycle. After reception of this command, the sensor sends out a short
burst of ultrasonic pulses. After this, it takes some time for the membrane to stop os-
cillating, during this time from ¢ = 2.5 ms to ¢t = 4.5 ms the sensor cannot perform any
measurements. At ¢ = 7 ms ultrasonic pulses reflected by an object hit the membrane.
The vibration of the sensor membrane is translated into an analog electric signal (blue)
by the piezoceramic element. Whenever the analog electric signal exceeds the time de-
pendent threshold (black) the sensor switches the digital input/output signal to zero.
From the time between the measurement command and switching of the I/O signal,
the ECU can compute the distance to the object causing the echo. In this example
multipath propagation (¢ = 7.7), ground echoes (¢t = 10, ¢t = 13) and background noise
do not cause a sensor output, as their amplitude is below the threshold.

The method to find the voltage of a received ultrasonic pulse is described in

. This method is summarized below, with equations (L.1)) to (1.4) cited from
. The sound pressure level (SPL) of the ultrasonic pulses generated by the
sensor are given by

SPL = 20logy, (p““s) (1.1)

ref

where pyms and prer are the RMS sound pressure and the reference sound pres-
sure, respectively. The SPL depends on the distance between sensor and target,
as the pressure of the sound level p is inversely proportional to the distance d

1
X = 1.2
pox (1.2)
Besides this loss in pressure, additional losses occur due to absorption of the
energy of the ultrasonic pulse in air and absorption by the object. The SPL of
the echo received at the sensor can be approximated by

2-d
SPLccho = SPLtransmittcd —-20 10g10 <30> *2'a'd*SPLabsorbcd by object (13)



where « is the absorption coefficient of air. Given a known receiver sensitivity,
the voltage produced by the receiver can be found

30
2.d-100-1-ad
with K as constant gain. shows the relation between receiver voltage
and distance to the object. The voltage of the received signal strongly depends
on the distance between the sensor and object. Therefore, the threshold value
of automotive ultrasonic distance sensors is usually varied over time, following

the shape of the curve in This ensures an even detection probability
over the entire range of the sensor for a given object.

Yecho rms = K- DPref - (14)

0.8

o
3
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Figure 1.7: Example receiver voltage of an automotive ultrasonic sensor as function
of distance. Given an ultrasonic pulse with a transmission SPL of 106 dB at 30 cm, air
absorption of 1.3dBm™"! and receiver sensitivity of —85dB. Figure based on [13]

Given TOF t of the ultrasonic pulse, the distance to the object causing the
echo can be found by

T =

(1.5)

with ¢ the speed of sound propagating through air. The speed of sound in
air depends on temperature 7', humidity %RH and air pressure p.¢ and is
appriximated by [9]

c-t
2

c=3315+06-T (1.6)

A more accurate approximation of the speed of sound in air is given by [14],
here the speed of sound is described as a function of temperature, pressure,
humidity, and COy concentration. Python code for this approximation is given
in Unless stated otherwise, this work uses the latter method to
determine the speed of sound in air.

1.5 Problem description

While the wide aperture angle of automotive ultrasonic distance sensors is useful
to cover a large observation area with one sensor, it also poses a challenge in the



detection of an object. shows a situation where an ultrasonic sensor
is mounted on a vehicle. Area T (red) represents the trajectory of the base hull
of the vehicle. This is the area the vehicle will occupy when it travels along
its trajectory. If an object is present within 7', it is assumed to be detected
by the sensor in order to stop the vehicle or take evasive action. Object O is
positioned outside area T'. Since O is positioned within the FOV of the sensor the
sensor measures distance r; to the object, producing hypothesis H;, as shown
in Hypothesis H; states that an object could be present within F'
at distance 1 from the sensor. From H; it follows that O could possibly be in
the path of the vehicle, since H; intersects trajectory T, although the object is
positioned outside T'. This situation causes a false positive detection and leads
to an unnecessary stop of the vehicle, possibly causing passenger discomfort.

A conventional solution to prevent these false positive detections, is reducing
the effective range of the sensor to the boundary of the trajectory of the base
hull of the vehicle. This solution is shown in and prevents the false
positive detection of object O.

Figure 1.10] also shows this solution, but now object O’ is placed inside the
trajectory of the base hull of the vehicle. Due to the reduction of the effective
detection range of the sensor, O’ is not detected. This results in a false negative
detection of object O’, which could lead to a collision of the vehicle with object
O'. This is an event that should be avoided at all costs, as it may cause damage
or harm.



Figure 1.8: Object O is positioned outside trajectory 7" of the base hull of the vehicle
and inside the field-of-view of the sensor Fi. The sensor measures distance 71 to the
object. Since only distance r; is known, the object could be present at any point within
Py with at distance r1 from the sensor, producing hypothesis H;. From hypothesis H;
it follows that object O could also be present in the trajectory of the base hull, as H;
intersects with trajectory T'.

A

|

Figure 1.9: In order to prevent false positive detections of object O by the sensor as

shown in the effective range rmax of the sensor can be reduced as not to
extend trajectory T of the base hull of the vehicle.
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Figure 1.10: Object O’ is placed inside the trajectory T of the base hull of the vehicle.

With the effective sensor range of [Figure 1.9] object O’ cannot be detected, resulting
in a false negative detection of O’.

T

A possible solution to this problem is the use of multilateration , with



multilateration the position of an object can be found using distance measure-
ments of multiple sensors to the object. This means that instead of only having
a known range r from sensor to object, the position of the object can be deter-
mined in the (z,y)-plane.

In[Figure T.1T]a second sensor is introduced. This sensor measures distance 7o
to object O, from which hypothesis Hs is constructed. Hypothesis Hj states that
there could be an object present within Fs at distance ro. With hypotheses H;
and Hs, the position of object O’ can be found by determining the intersection
of Hy and H,. This solution allows the sensors to operate at their maximum
detection range, while still being able to detect if the object is positioned inside
or outside the trajectory of the base hull of the vehicle.

Figure 1.11: Adding a second sensor, similar to we measure the distance to
the object with both sensors. This results in ranges 1 and r2, producing hypotheses
H1 and Hs respectively. The position of the object can be found at point p, the
intersection of Hy, and Ho.

shows the effective range of an ultrasonic detection system using
the conventional method of using only single distance measurements.
shows the effective range of the same ultrasonic detection system, now using
multiple sensor measurements, as required for the multilateration method. The
effective range in direction of driving z, is nearly doubled for the system using
the multilateration compared to using the conventional method.

10



Figure 1.12: Effective range (green) of the ultrasonic system using single distance
measurements. The effective range of the sensors has to be reduced to the boundary
of the trajectory of the base hull of the vehicle, in order to prevent false positive
detections.

Figure 1.13: Effective range (green) of the ultrasonic system using distance measure-
ments from multiple sensors simultaneously. The effective range of the sensors can be
the maximum detection range of the sensor, as the object position can be determined
in (z,y) coordinates.
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Chapter 2

Research questions

In this chapter the research questions of this thesis are presented. The main
question this thesis is intended to answer is:

Can ultrasonic sensors be used as a complement to conventional
sensors for close-range detection and tracking in automated and au-
tonomous vehicles?

To answer this question, additional sub questions are formulated. These re-
search questions are divided into four parts: sensor calibration, sensor position-
ing, object detection, and object tracking, and will be presented in the following
sections.

2.1 Sensor calibration

This thesis uses automotive grade ultrasonic range sensors. These sensors are
typically calibrated to function in park assist systems or automated parking sys-
tems. As the requirements for autonomous driving in a public transport domain
might differ from the requirements of a parking system, the following questions
were formulated:

1. Can the detection performance of automotive ultrasonic sensors be im-
proved for the operational design domain of the vehicle, by calibration
with reference objects as ground truth, when compared to the conven-
tional calibration method of only eliminating the ground echoes from the
sensor detection?

(a) Which parameters of the sensor can/should be calibrated to optimize
the detection performance of the sensor?

(b) What calibration methods can be used?

2.2 Sensor positioning

Similar to the previous question, the current sensor positions of the vehicle are
evaluated in a case study. A method to improve the detection and tracking
performance of the system, specifically the performance of multilateration, by
repositioning of the sensors is evaluated.

13



1. Can the detection performance of the system be improved by position-
ing the sensors using an algorithm that searches for a global optimum,
when compared to the conventional method of an engineer positioning the
sensors based on their field-of-view?

(a) Which algorithms are available for positioning sensors to improve the
detection and tracking performance of the system?

(b) What metrics are available to evaluate the detection and tracking
performance of the system?

2.3 Object detection

As presented in the introduction, the use of multilateration could improve the
detection range and precision of the ultrasonic detection system.

1. Which methods of multilateration could be used for an ultrasonic detection
and tracking system?

2. What is the performance of these methods in terms of detection accuracy
and runtime efficiency?

3. We propose a method intended to decrease runtime of the multilateration,
how does this method influence performance in terms of detection accuracy
and runtime efficiency?

4. Which methods can be used to remove noise from the ultrasonic detec-
tions?

5. Which methods can be used for the clustering of ultrasonic detections?

2.4 Object tracking

1. Which object tracking method has the best tracking performance of the
detections obtained by multilateration of the ultrasonic measurements?

14



Chapter 3

Related work

This chapter provides an overview of the work related to this thesis. The related
work is divided into four sections, each related to one of the four topics that
this thesis covers.

3.1 Sensor calibration

As presented in the introduction, when an ultrasonic pulse is received by an
automotive ultrasonic distance sensor, the amplitude of the resulting electric
signal is compared to a threshold. This threshold is typically varied over time to
allow for an even detection performance, as the energy of the reflected ultrasonic
pulse from an object varies in time, as shown in

Instead of a threshold curve that is variable in time, [13] presents a method to
obtain a fixed threshold value for an automotive ultrasonic distance sensor. The
calibration of the threshold values is done by the manufacturer of the sensor,
typically automotive ultrasonic range sensors do not require further calibration
[16] or require limited calibration to ensure the functioning of the sensor after
repair or replacement [17].

As automotive ultrasonic distance sensors are typically used in tasks related
to parking, such as parking assist systems or automated parking systems, the
sensors are calibrated for these tasks. Requirements for parking assist systems
and automated parking systems are given in [§].

In [18] the performance of several OEM and after-market systems for “back-
over prevention” is evaluated. These systems consisted of eight “sensor-based”
systems and three “visual” systems. Six out of eight “sensor-based” systems con-
tained ultrasonic sensors, of which three solely use ultrasonic sensors and three
use a combination of either radar or video sensors in combination with ultra-
sonic sensors. Several static and dynamic tests were performed with vehicles
equipped with these systems. The test objects consisted of several generic ob-
jects, plus dummies representing a one year old child, a three year old child, and
an adult male. According to the study “sensor-based systems generally exhibited
poor ability to detect pedestrians, particularly children, located behind the ve-
hicle. Systems’ detection performance for children was inconsistent, unreliable,
and in nearly all cases quite limited in range”. Further finding include that the
“response times of sensor-based systems ranged from 0.18 to 1.01 seconds”. Four

15



out of seven systems were found to have a response time above the ISO limit
of 0.35s [8]. This lead to the conclusion that “detection ranges exhibited by the
systems were not sufficient to prevent many collisions with pedestrians or other
objects”.

3.2 Sensor positioning

The effect of sensor position on detection and tracking performance is a topic
studied in various fields. The detection and tracking performance of sensor sys-
tems can be quantified with several metrics.

A straightforward approach to sensor positioning, is covering the entire ob-
servation area of the system with a predetermined amount of sensors. In [19]
an algorithm is described to determine position and orientation of directional
sensors, such that an observation area or set of target points is fully covered by
at least k sensors, this metric is introduced as k-coverage by the authors.

In |20] the effect of radar sensor position on the covariance of the position
found by multilateration of measurements is evaluated. The resulting location
dependent covariances are used in a target tracker.

The Cramer-Rao lower bound (CRLB) can be used to quantify the tracking
performance limits of sensors, and combinations of sensors, in autonomous driv-
ing [21]. The CRLB is a theoretical lower limit on the variance of an unbiased
estimator, and can be used as a benchmark to compare the mean square error of
positioning algorithms [15]. In [22] the CRLB is used to optimize the positions
of acoustic underwater range sensors in a system for target localization.

An optimization method wherein a cost function is minimized is proposed
in [23]. The cost function consists of several elements: coverage of the region-
of-interest, k-cover as described in [19], dilution of position, and point spread
function. If needed, a penalty can be added to the cost function to limit the
area wherein the sensors can be positioned.

3.3 Object detection

To obtain qualitative detections from the range measurements of ultrasonic sen-
sors, several steps need to be taken into consideration. Multilateration, as de-
scribed in the introduction, is a method of obtaining a detection in 7 —1 dimen-
sions from a sensor set of n sensors. Several general solutions to obtain a target
position from time or distance based sensor measurements are summarized in
[15]. In [24] an exact solution for obtaining the target position from ultrasonic
range sensors is implemented in a perception algorithm for a mobile robot.

Van Kleef, et al. |[20] describe the data association problem that arises when
two radar sensors detect multiple objects simultaneously. The proposed solution
to solve this data association problem, is to increase the number of sensors from
two to three, and extend the used multiple hypothesis tracking (MHT) algorithm
with hypotheses for false detections.

In order to simultaneously reduce the number of detections and separate
noise from detections, clustering algorithms can be used. DBSCAN [25], HDB-
SCAN [26], and OPTICS [27] are three popular density-based clustering algo-
rithms, which can differentiate between detections and noise. These algorithms
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all identify dense regions of data points based on their proximity to one another.
However, there are several differences between these algorithms that make them
suitable for different types of datasets.

DBSCAN identifies dense regions of data points based on their proximity to
one another. DBSCAN uses two parameters, € and minimum number of samples.
These parameters control the size of the neighborhood around a point and the
minimum number of points required to form a dense region.

HDBSCAN is an improvement on DBSCAN, and also takes the density vari-
ation among different dimensions of the dataset into account. This means that
it can handle datasets with varying levels of density across different dimen-
sions [28]. HDBSCAN requires at least one parameter, the minimum number of
samples.

Similar to DBSCAN and HDBSCAN, OPTICS also identifies dense regions
of data points based on their proximity to one another. However, instead of using
a fixed size neighborhood, it uses a variable-size neighborhood that adapts to
the local density of the dataset. The £ parameter in OPTICS determines the
cluster boundaries based on the minimum steepness of the reachability plot. The
minimum number of samples determines the required amount of samples in a
neighborhood to be considered as a core point. [27], [29]

3.4 Object tracking

Assuming the state of the tracked object is a random variable with a Gaussian
distribution we can use several object tracking methods. Several object tracking
methods are described in [30]. Although this study primarily focuses on tracking
of features in computer vision, a subset of tracking methods described are meth-
ods for tracking of point features. The point tracking methods are divided into
two categories: deterministic and probabilistic. Probabilistic tracking methods
for point features are the Kalman filter, joint probabilistic data association filter
(JPDAF), and probabilistic multi hypothesis tracking (PMHT).

An important subset of objects to track are vulnerable road users, like pedes-
trians and cyclists. Since especially pedestrians are likely to come in close prox-
imity of the ego-vehicle, it is important to track them precisely and accurately.
The nonlinear motion of pedestrians is described in [31], [32]. As the mounting
height of automotive ultrasonic distance sensors is generally between 40 cm and
65 cm [33], primarily the legs of a pedestrian will reflect the ultrasonic pulses
of the sensor and cause detections. The nonlinear motion of the different body
parts of a pedestrian is described in [34]. This infers that a tracking method
with a nonlinear transition might be required.

The extended Kalman filter (EKF) [35] and unscented Kalman Filters (UKF)
[36] are Kalman filters that can track nonlinear systems. The EKF linearizes
the system about a nominal state estimate, while the UKF uses the unscented
transformation to approximate the probability density function of the state vec-
tor [37] without linearizing the system. In [38] the performance of an extended
Kalman filter (EKF) and unscented Kalman filter (UKF) for tracking of moving
objects with data from a linear array of eight ultrasonic sensors is evaluated.
The input data for the tracking algorithms is the range measurements of the
Sensors.

The GM-PHD filter is a probabilistic data association (PDA) filter that uses
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a Gaussian mixture model (GMM) to represent the probability density function
of the target states [39]. The GM-PHD filter can handle situations where the
number of targets is unknown and can adapt to changes in the number of targets
over time [40], [41].

In [42] a survey of data association methods in multiple object tracking of ve-
hicles and pedestrians is presented. Here probabilistic data association methods
are divided into two global categories: Kalman filters and Particle Filters. The
joint probablistic data association filter (JPDAF) [|43] is often used in Kalman
filters for data association. Being a multi-target extension of the probablistic
data association filter (PDAF), the JPDAF uses a weighted average of all mea-
surements within a tracks validation region to update the tracks state [42].

The global nearest neighbor (GNN) data association method is a straight-
forward data association method. The GNN does not use a probabilistic method
evaluate different hypotheses, but instead assigns a single most likely hypothesis
on a frame-by-frame basis [42].
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Chapter 4

Methodology

4.1 Sensor calibration

In order to measure the distance between the sensor and an object, automotive
ultrasonic distance sensors measure time-of-flightof an ultrasonic pulse. When
the ultrasonic pulse is received by the sensor, it is converted into an electric
signal. The voltage of the signal is measured and compared to a time depen-
dent threshold voltage. When the measured voltage exceeds the time dependent
threshold, the sensor gives an output, indicating a valid measurement. In this
section, a method is proposed to optimize this time dependent threshold voltage
curve based on measurement data.

Conventionally, the calibration of the time dependent threshold curve tries to
suppress false positive detections caused by ground echoes, while keeping a high
detection probability of the reference object. As automotive ultrasonic distance
sensors are mainly used in parking systems, they are calibrated according to
the requirements defined in [8]. These requirements state that the system must
detect the reference object as defined by [8] for 90 % of the area from 0.2m up
to 0.6 m behind the vehicle, and 87 % for the area from 0.6 m up to 1 m behind
the vehicle.

As stated in [18], the default calibration of automotive ultrasonic sensors
might not suffice the requirements of a SAE level 4 or 5 system. In the pro-
posed method, the goal of the sensor calibration is to maximize the detection
probability of a ground truth object up to the maximum detection range of the
sensor, which is 2.5 m. In order to achieve this, the threshold curve is adjusted
such, that over the entire detection range the maximum detection probability
is achieved. The proposed method aims to maximize the trade-off between true
positive and false positive detections of the ground truth object. The elimina-
tion of ground echoes of the sensor signal are thus merely a byproduct of this
optimization, and not a goal.

In order to optimize the time dependent threshold curve, the performance
for each threshold level is determined. This allows for the selection of the most
suitable threshold level for each range. The detection probability is measured
by the ability of the sensor to detect a ground truth object. The ground truth
object is a known object, and has a known distance to the sensor.
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4.1.1 Datasets

In order to evaluate the detection probability of an object type, measurements
of the object are collected and compared to the ground truth position of the
object.

Object types

The ground truth objects are of the type ISO pole and 2gt object. The ISO
pole object is a cylinder of diameter 75 mm and 1000 mm length and is used as
standard reference object for ultrasonic parking systems [8]. The 2¢t¢ object is
introduced as a more realistic representation of the leg of a child. The 2¢t object
is a pole of diameter 75 mm and 160 mm length, covered in cloth material. While
maintaining the same shape as the ISO pole object, due to its smaller size the
2gt object will reflect less energy to the sensor. The cloth material of the 2¢t
object adds a layer of material absorbing the energy of ultrasonic pulses, similar
to the clothing of a pedestrian. Figure 3.2 and 3.3 show the ISO pole and 2gt
object respectively.

Figure 4.1: ISO pole ground truth object

Data collection
Since the exact field-of-viewof the sensor is unknown, area Apgy is defined in
polar coordinates as
r=10.1,3.0] m
A = 4~1
rov {¢ = [10, 170] } (1)

with radial distance r and azimuth ¢. The sensor positioned at the origin of the
coordinate frame, as shown in[Figure 4.4] A set of positions Xpoy within Apoy
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Figure 4.2: 2¢gt ground truth object

is defined at which ground truth object O is positioned.

o _fr={0102..30} m (4.2)
FOVT 6 = (10,20,...,170}  ° ‘

In order to collect measurement data, the ground truth object is positioned at
each position z(r,¢) in Xpoy and for each sensor threshold level L, N = 100
measurement cycles are performed by the sensor. The resulting time-of-flight
values are stored with the associated ground truth position. For each threshold
level L, N = 100 measurement cycles without a ground truth object present are
also performed by the sensor.

Ambient air temperature T, relative humidity %RH, and pressure p are
measured by environmental sensor E and stored for calculation of the distance
from the time-of-flight measurements. shows a top-down schematic
of the measurement setup.

4.1.2 Data classification

The collected time-of-flight measurements are converted into distance measure-
ments r [14], [44], [45]. The distances measured by the ultrasonic sensor are
assumed to be normal distributed around ground truth object distance rg, due
to local measurement noise. The measurement value lies in the interval [0, 7max],
with 7pax the maximum detection range of the sensor .

In order to measure sensor performance, distance measurements r are com-
pared to the reference distance to the ground truth object r4. For the detection
of the ground truth, three different situations can occur: true positive detec-
tion, false positive detection, false negative detection. For a situation without
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Measurement setup

90°
110° 70°

17071

Figure 4.3: Top-down view of the measurement setup. Ultrasonic distance sensor S
is positioned at the origin. Object O is positioned at (r = 2.5m, ¢ = 110°). The set
of possible object positions X, is represented by the grid, as O is positioned at each
intersection point of the grid. At each position N = 100 time-of-flight measurements
are taken by the sensor. The ambient air temperature T, relative humidity % RH, and
pressure p are measured by environmental sensor E and stored for compensation of
the time-of-flight measurements.

ground truth object either a false positive detection or true negative detection
can occur. [Table 4.1l shows the confusion matrix for a detection.

Table 4.1: Confusion matrix for the detection of the ground-truth object

True condition

True condition  False condition

False positive

Positive  True positive (Type I error)

Predicted condition

False negative

(Type I error)  [Tu€ negative

Negative

Since the detection performance of the sensor is not uniformly distributed
over its entire field-of-view, a subset of the field-of-view is defined in which
the sensor is expected to have reliable detection of objects. This subset of the
field-of-view is the region-of-interest. shows the area Aror of the
region-of-interest.

Since Agrop is a subset of Apoy it follows that the ground truth object
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Measurement setup

— Field-of-view F
Region-of-interest R

170

Figure 4.4: Area of the field-of-view Arov (blue) and region-of-interest Aror (or-
ange).

positions inside the region-of-interest, Xgro1 are a subset of Xpov

_ [r={02,03,...,25} m
XROI_{¢:{—50,—40,...,50} }

True positive detection

A true positive detection is when the ground truth object is positioned at 74
within the region-of-interest R of the sensor, and the sensor measures range r
which falls within a predefined interval around 7.

(4.4)

TP — 1 if |7'gt — 7"‘ < dmax : Tgt(r? ¢) € AROI
0 otherwise

False positive detection

A false positive detection is when there is a detection r by the sensor, but no
ground truth object is present within the interval around r:

(4.5)

FP = Lif Tgt ¢ [T — dmax, T + dmax] cx € Arov
0 otherwise
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False negation detection

A false negative detection is when a ground truth object located at 4 is within
the region-of-interest R of the sensor, but is not detected by the sensor in the
interval around 7.

FN — {1 if r ¢ [Tgt - dmaxﬂ"gt + dmax] DTt €R (46)

0 otherwise

True negative detection

A true negative detection is when there is no detection by the sensor, and there
is no object present in the region-of-interest R of the sensor.

1 ifr=
TN — { if r {} and gy ¢ R @)
0 otherwise

The validity interval around rg is defined as a function of the distance
between sensor and ground truth.

dimax = 0.057; (4.8)

4.1.3 Threshold curve optimization

Given the collected datasets from and definitions from [Section 4.1.2]

each range measurement r can be classified as either a true positive, false pos-
itive, false negative, or true negative detection. Each series of measurements
r(r, ¢, L) thus gives the true positive rate (TPR), false positive rate (FPR), and
false negative rate (FNR), for position (r, ¢) and threshold level L.

Since only the range to the object (and not the azimuth) is known to the
sensor, the threshold curve is range dependent. Thus, the data for each range
r has to be combined. A false positive detection is relevant for the entire field-
of-view F of the sensor. On the other hand, true positive and false negative
detections are only relevant to the region-of-interest R of the sensor.

N
TP(r,L)=Y_ > TP(r,¢,n L) (4.9)

peRNn=0

N
FP(r,.L)=Y_ Y FP(r,¢,n,L) (4.10)

PEF n=0

N
FN(r,L)=>_ Y FN(r,¢,n,L) (4.11)

peER n=0
N
TN(L)=>_ TN(n,L) (4.12)
n=0

Equation (4.9)—(4.11) gives the total amount of true positive, false positive,
false negative, and true negative detections for each range r and threshold level
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L, respectively. From this the true positive rate (TPR) and false positive rate
(FPR) can be found for each threshold level.

TPR(r, L) = TP(’I“,CZZ—;)PS-T 7151)\7(7«, L) (4.13)
FPR(r, L) = — L2 L) (4.14)

FP(r,L) + TN(L)

The TPR and FPR are performance metrics for classifiers. For an ideal clas-
sifier TPR = 1 and FPR = 0. With the TPR and FPR metrics a receiver
operating characteristic ROC curve can be plotted. The ROC curve is a graphi-
cal representation of the classifier performance for different threshold levels. For
each threshold level, the ROC curve plots the TPR against the FPR.

By evaluating the TPR and FPR of each threshold level, the optimized
threshold level Loy can be found. The optimized threshold level corresponds to
the threshold level where TPR — 1, FPR — 0, this corresponds to the point on
the ROC curve closest to the top-left corner (1,0).

The optimized threshold curve is found, by finding the optimized threshold
level Loyt for each range r.

4.2 Sensor positioning

Given a sensor with known parameters, as found in it is possible
to optimize the overall detection performance of a system consisting of multiple
of these sensors. This section describes an algorithmic strategy for determining
the optimal positioning of these sensors in order to maximize the detection
performance of the system.

4.2.1 Positioning algorithm

The objective of the sensor placement algorithm is to maximize overall detection
performance, precision, and accuracy of the system. Since the detection process
of the system depends on the multilateration method, ideally each point in the
ROI of the system should be covered by at least two sensors (N > 2). Increasing
the coverage with even more sensors can improve detection accuracy.

The mean absolute error of the object position found by multilateration gives
an indication on the accuracy, while the variance of the object position found
by multilateration gives an indication on the precision. The Cramér-Rao lower
bound (CRLB) determines the theoretical limit on the variance of any unbiased
estimator.

Combining these metrics gives function f, which should be maximized.

f=[Nror>2 MAE™' CRLB'] (4.15)

As the CRLB is the inverse of the Fisher Information Matrix (FIM) I, the
cost functino can also be written as

f=[Nror>2 MAE™' I (4.16)
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The region-of-interest of the system is represented as a grid with 1cm x 1cm
cells. Nror, MAE, and I are computed for each cell in the region-of-interest of
the system.

NRor represents the k-cover of a cell in the ROI, where

N {n if covered by n sensors with each at least 95 % detection rate
ROI =

0 otherwise
(4.17)
The mean absolute error is the absolute error of the estimated position for the
cell. The estimated position for the cell is found by the nonlinear least estimate
of the position of the cell
% = argmin J(x) (4.18)

with

169 =Y" (- m? - wp?) (419)

1=1
where L is the total amount of sensors having a valid measurement to the

position of the cell.
The FIM is found by [15]

I(x) = [8f(x)r o {af(x)} (4.20)

ox ox
with ) . . }
T—Ty  x—xy Y=Y _ y=—wy1
d; d1 d’l d;
wfwé _ x—x y*yé _ Y=y
dt d a5 a
|:8f(X):| — L_:L;J _ z—x1 y—tyfu _ YU (4 21)
dr d dt d :
ox M, 1 M, 1
T—Ty x—xy Y=Y1 _ Y—y2
dt s at s
r—t t
'L_:'IM _ rx—xp y_tyM _ Y—yL
L diy dr iy dr |
where x! are the transmitting sensors with distance d* to the cell, and x; are

the receiving sensors with distance d to the cell. C' is the covariance matrix. The
CRLB for z and y are given by

CRLB, = [I""]1,1y CRLBy =[]z (4.22)

Input data

Given a threshold curve L(r) and the dataset found in the input
data for the sensor can be determined. This input data consists of mean range
1, standard deviation of the range ., TPR, FPR, and FNR.

A model of the vehicle is used in order to determine valid sensor positions.
Since the sensors in the system are typically positioned at approximately the
same height, a 2 dimensional outline of the vehicle hull at this height is used.
Optionally, areas where it is physically not possible to mount a sensor can be
identified as such.
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The region-of-interest of the system is defined as an area around the vehicle.
The region-of-interest is represented as a grid with 1cm x 1cm cells.

Parameters

The adjustable parameters are the sensor (x, y)-position and orientation around
the z-axis.

Constraints

The sensors can be positioned anywhere along the outline of the vehicle hull,
with exception of aforementioned areas identified as “keep-out” area. The orien-
tation of the sensors can be set to fixed around their z-axis, i.e. perpendicular
to the vehicle hull, variable within bounds, or fully variable. A perpendicular
orientation of the sensor to the vehicle hull, or orientation of the sensor with
limited angle to the normal of the vehicle hull, can be required for aesthetic
reasons.

Algorithm description

Initially a set of N sensors is evenly distributed along the outline of the vehicle
hull. The initial orientation angle of the sensors is perpendicular to the vehicle
outline. The optimization variable f is computed for this configuration as an
initial value.

Sensor positions and, if allowed, orientations are adjusted for the next it-
eration. Using gradient descent the algorithm iterates to find a maximum for
f. If the stop conditions are met on reaching the maximum for f, results are
stored and the algorithm is terminated. If the conditions to stop the algorithm
are not met or a maximum for f is not found, an extra sensor is added to the
configuration and the optimization process is continued.

Stop conditions

The condition to stop the algorithm is if a minimum coverage of two sensors for
at least 95 % of the region-of-interest is reached.

4.3 Detection algorithm

For rudimentary obstacle detection, the range measurements of the ultrasonic
sensors can be used without further postprocessing. However, if more detailed
precision is required additional postprocessing steps will be required.

4.3.1 Multilateration

As explained in the introduction, multilateration is a method of estimating a
position based on range measurements from multiple transmitters or receivers.
Given n measurements, multilateration allows to find a position in 7 — 1 dimen-
sions (or n dimensions if ambiguities are allowed).
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Multilateration using direct echo

Given two ultrasonic sensors, positioned at P; and Ps, as shown in
Each sensor performs a measurement to object O, resulting in ranges r; and
r9, respectively. From ry and 7o hypotheses C; and Cs can be formulated, each
describing a circle on which object O could be present. By finding the point(s)
of intersection of the hypotheses, Py and P;, an estimation of the position of
object O in the (x,y)-plane is found.

AO

~
< -

h

P,
e

2 Ab\P>
e

&

Figure 4.5: Multilateration using range measurements r; and r2 from two sensors
positioned at P; and P», respectively. The position of the object at P; can be estimated
by finding the intersection of circles C; and C5.

Nonlinear least squares solution A method of finding the estimated object
position X, based on a set of independent range measurements r from a set of L
sensors with known position, is solving the nonlinear least squares problem

% = argmin J(x) (4.23)
with

L 2
J6) =Y (n= Vw0 +y—w)) (4:24)
=1
where r; is the range measurement from the sensor positioned at (z;,y;), and
Given an initial estimated position, the nonlinear least squares problem should
converge to an estimated object position.

Exact solution The estimated object position can also be found using an

exact solution , . Given circles C7 and Cy from |Figure 4.5 the aim is to

find intersections P, and P;. Given distance d between the circle centers
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d=|P— P (4.25)

The number of intersections is found by

0 ifd>ri+mr circles are separate
0 ifd<|r +mr one circle contained in other
Nintersection = § 00 if d =0 and rg =r; coincident circles
1 ifd=ri+mr circles touch
2 otherwise
(4.26)
Using the triangles formed by Py P3Py and Py, P3Py
a=|P3-Pl, b=|P3- P2, h = || P4 — P3|
a®> +h? =7r? and b* + h? = r3 (4.27)
solving for h gives h = \/r? —a?. Usingd =a+b
2_ .2 2
r{ —rs+d
=== 4.28
Now the coordinates of P3 can be found by
a
T3 =21+ g(l”z — 1)
a (4.29)
ys =y + 5 (y2 = 1)

if Nintersections = 1, P3 is the point of the intersection of circles C; and Cs. If
Nintersections = 2 the coordinates of intersection points Py and Pj are found by

h
Ty = XT3 + E(IQ — 1’1)
L (4.30)
Ya =ys £ E(yz = 1)
This method finds two points of intersection Py and Pj;. This ambiguity is
easily solved since the sensors are directional. Only the point present in the
intersection of the area of both sensors regions-of-interest is kept

P:{P47P41}

Piptersection = P € R where R=R,UR;

(4.31)

where R; and R are the regions-of-interest of sensor 1 and sensor 2, respectively.
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Multilateration using cross echo

Multilateration can also be performed on dependent measurements, i.e. cross
echo measurements. As shown in the sensor positioned at P; emits
an ultrasonic pulse. The ultrasonic pulse is reflected by object O and received
by sensors positioned at P, and P3;. Measurement 715 creates a hypothesis
which represents ellipse F; with foci P, and P, and the relation r15 = 2a; =
|Po — P1|| + ||[Po — P»|| where a; is semi-major axis of E;. Measurement r13
creates a hypothesis which represents ellipse Ey with foci P, and Ps3, and the
relation ro3 = 2a9 = ||Po — Pi||+||Po — Ps|| where as is the semi-major axis of
Es.

The use of cross echo eliminates the need for multiple consecutive mea-
surements from different sensors. This means that the object position can be
estimated in one measurement cycle.

Figure 4.6: Multilateration using cross echo with an ultrasonic system consisting of
three sensors positioned at Pi, P>, and Ps respectively. The sensor at P; emits an
ultrasonic pulse, which is reflected by object O. The echo received by the sensor at
P> creates a hypothesis consisting of ellipse F1 with foci P1 and P>, and the relation
riz = 2a1 = ||Po — P1|| + ||Po — P2|| where a; is semi-major axis of E;. The echo
received by the sensor at P; creates a hypothesis consisting of ellipse F> with foci Py
and Ps, and the relation ro3 = 2a2 = ||Po — Pi| + ||Po — Ps|| where a2 is semi-major
axis of Es. The position of object O can be estimated by determining the intersection
of F1 and Es.

Nonlinear least squares solution The estimated object position X can be
found by solving the nonlinear least squares problem

% = argmin J(x) (4.32)

where x is the set of known sensor positions and r the set of range measurements,
and

769 =33 (rui ~ V= w0 5P P+ )

m=1[=1
(4.33)
where m is the set of transmitting sensors, and [ is the set of corresponding
receiving sensors. Given an initial estimate of the object position, the nonlinear
least squares problem should converge to an estimate of the object position.
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Exact solution An exact solution for the intersection of two ellipses also
exists. As ellipses are conics, the general solution of finding the intersection
points of two conics, as shown in [48], can be used. The intersection points can
be found by combining the quadratic equations of both ellipses into a quartic
equation (polynomial equation of fourth degree) and finding its roots.

This solution also works for circles (and combinations of ellipses and circles),
as a circle is a type of ellipse with focal points F; = F5. The full solution for

finding the intersection points of two ellipses is provided in

Simplified exact solution The simplified exact method is based on the exact
solution, but assumes r << d where r = ||P} — Pol| + ||P> — Pol| and d =
||P> — P1||, with Py and P; the foci of the ellipse and Pp any point on the ellipse.
In other words, the foci of the ellipse are positioned close together compared to
the size of the ellipse. From this assumption it follows that the definition of an
ellipse with r << d, approaches the definition of a circle.

Therefore, this method converts any ellipse into a circle, where

1
Peo = 3 (P + P>) (4.34)
is the center of the circle, and the radius of the circle is given by

(1P = Poll + [P = Pol)) (4.35)

Te =

N =

The estimated object position can then be found by the method from
ftion 4.3.11

The main goal of this approach is the reduction of floating point operations
for finding the intersection points, when compared to the exact ellipse approach.
As the exact ellipse solution has a maximum of 650 floating point operations,
where the exact circle solution has a maximum of 55 floating point operations.

Evaluation

All multilateration methods are evaluated on a theoretical scenario. A set of
two sensors positioned at P; and P is defined, as well as a region-of-interest R.
Each point in R is taken as ground truth, a range measurement to the ground
truth with additional Gaussian noise is generated for both sensors. From these
range measurements, the estimated position of the ground truth is computed
according to the respective method. This estimated position is compared to the
ground truth by computing the absolute error. Furthermore, the computation
times of all methods are compared.

4.3.2 Measurement association

The approaches described in perform well when there is a single
object present reflecting a single echo. However, when two or more objects are
present in the field-of-view (or one object produces multiple echoes), a data
association problem is introduced.

Given a system of two sensors and two objects, if both sensors receive an echo

from each object, the number of combinations of measurements is (2‘52) = 4.
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Given that two measurements can have multiple points of intersection, positive

detections can occur. shows an example of this.

Figure 4.7: Multilateration using an ultrasonic system consisting of two sensors posi-
tioned at P1, and Pa, respectively. The sensor at P, emits an ultrasonic pulse, which is
reflected by objects O1 and Os. The echoes are received by both sensors, which creates
two sets of two hypotheses each. Finding the estimated positions of the objects results
in three false positive detections for this case.

The ambiguity resulting from the false positive detections can be reduced
by adding a third sensor to the system. This adds two additional hypotheses, as
shown in [Figure 4.8 Instead of relying on the intersection of two measurements,
the intersection of three measurements is considered as an estimated object
position, which better corresponds to the actual object positions.

Since the range measurements may contain noise, the intersections of three
circles or ellipses might occur at slightly different points, as shown in [Figure 4.9
Nonlinear least squares solutions can still estimate the intersection point of
three measurements with noise, but they do so for any arbitrary set of range
measurements. To obtain a proper estimate of the object position, the range
measurements provided as input to the nonlinear least squares solution can be
filtered.

Filtering of range measurements on the input of the least squares solution
is done by grouping range measurements with similar values together in a set.
The least squares solution is then applied to each set of measurements. Filtering
of results of the linear least squares solution is done by rejecting the solution
if the residual sum of squared errors (SSE) exceeds a predetermined threshold
SSEmax-

When three noisy range measurements are provided as input to the exact
(ellipse and circle) solutions, they will produce multiple intersection points. The
validity of the intersection points can be assessed by the distance matrix of
all intersection points. If a point does not have at least n neighbors within a
predefined range r around it, the point could be rejected as a valid measurement.

32



Another approach is the use of clustering algorithms which are able to filter
noise, such algorithms are DBSCAN, HDBSCAN, and OPTICS.

Figure 4.8: Multilateration using an ultrasonic system consisting of three sensors
positioned at P;, P», and Ps respectively. The sensor at P; emits an ultrasonic pulse,
which is reflected by objects O; and Oz. The echoes are received by all three sensors,
which creates three sets of two hypotheses each. Finding the estimated positions of
the objects results in three false positive detections.

Figure 4.9: Multilateration using an ultrasonic system consisting of three sensors
positioned at Pi, P, and Ps respectively. Due to (exaggerated) noise in the range
measurements, the intersections to not occur in the exact same point.

Evaluation

Given the proposed methods, three different approaches are proposed for eval-
uation:
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e Nonlinear least squares solution with filtered input and filtered output
e Exact ellipse solution with distance matrix filter
e Exact ellipse solution with noise filtering by clustering algorithms

Each approach is evaluated on a real-world dataset in order to measure its
performance. Before comparing the different approaches, the variables in each
approach will be optimized.

Nonlinear least squares solution For the filtered input a value for the
interval for which to group measurements together has to be determined. For
the filtered output a value for the residual SSE has to be found.

Exact ellipse solution with distance matrix In order to filter noise based
on their distance to other points, the values of number of points n that fall
within radius r have to be determined.

Exact ellipse solution with DBSCAN In DBSCAN, ¢ determines the size
of the neighborhood around each point. It controls how far away from a point
a new point can be and still be considered part of the cluster. |25]

In order to find the optimized values for the different variables, precision
and recall will be used as evaluation metrics.

TP
preCiSiOn = W (436)
TP
recall = m (437)

Precision and recall are performance metrics for classifiers. In order to find the
optimal value for the variable to optimize, both precision and recall need to
be maximized simultaneously. This can be achieved by finding the point on
the precision-recall curve, where the two metrics are equal. The precision-recall
curve visualizes the relation between the precision and recall metrics and the
threshold level.

Precision and recall are calculated from true positive, false positive, and
false negative detections. A true positive detection is classified as a detection P
which is positioned within a predefined range to a point belonging to the set of
ground truth points Q.

(4.38)

1 f < max i h = i P_
p if d < dpax with d Inle” Qkll
0 otherwise

A false positive detection is when there is a detection, but no ground truth point
is present within the predefined range around the point:

1 ifd > dpax with d = min || P — Q]|
FP = k (4.39)

0 otherwise
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A false negative detection is when a ground truth point does not have a detection
point present within the predefined range.

(4.40)

1 ifd> dpax with d = min | P, —
FP_{ in 1P, — Q)

0 otherwise

The precision and recall values are also used to compare the performance of
the different data association methods.

4.4 Clustering

The 2d point clouds with object hypotheses, which are obtained by the methods
described in [Section 4.3.1] and [Section 4.3.1] can contain multiple points per
object. Clustering groups the detections into different groups. Clustering the
detection points could improve the performance of the tracker by reducing the
amount of points per object. Also, as mentioned in the point
clouds could still contain noise, induced by the multilateration of measurements.
Some clustering algorithms are able to distinguish noise from detections, these
clustering algorithms are DBSCAN, HDBSCAN and OPTICS. The performance
of these clustering algorithms is evaluated on a dataset.

The performance is compared to K-Means clustering as baseline. K-Means
clustering is a clustering algorithm without noise filtering, thus K-Means clus-
tering is combined with the distance matrix based noise filter from [Section 4.3.2}
K-Means clusters data into k groups, minimizing the within-cluster-sum-of-
squares. As K-Means requires the amount of clusters in the data as input, this
number is found by using the method proposed in [49].

The resulting clusters from each clustering method are compared to a ground
truth. This ground truth is obtained from point cloud data of the roof mounted
lidar sensor of the Twizy R&D vehicle. For evaluation of the clustering per-
formance, the cumulative Euclidean distance of each cluster centroid P to the
nearest ground truth cluster centroid @ is computed, and vice versa

K L L K
d= 1 — P i — P 4.41
I;mlmllQl k||+;m,§n\\Ql Al (4.41)

with K the total number of clusters and L the total number of ground truth
clusters. This metric measures how much the clustering deviates from the ground
truth clusters.

The ground truth clusters are obtained by Euclidean cluster extraction of
the lidar point cloud data [50]. The clusters are projeced on the (x,y)-plane
and all clusters not present in the region-of-interest of the ultrasonic detection
system are discarded. All points belonging to the cluster are saved, as well as
the centroid of the cluster, which is the average position of all points belonging
to the cluster

N N
Zn:l Tn Yo = Zn:l Yn (442)

N ¢ N
with N the total number of points belonging to the cluster.

e =
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4.5 Tracking

Three different tracking methods are evaluated on the clusters found by the
OPTICS clustering algorithm from The features which are tracked
are the centroids of the clusters. The following three tracking algorithms will be
evaluated:

e Unscented Kalman filter (UKF) with nearest neighbor track association

e Unscented Kalman filter with joint-probabilistic data association (UKF-
JPDA) of detections to tracks

e Gaussian mixture probability hypothesis density (GM-PHD) filter

4.5.1 Unscented Kalman filter (UKF)
The UKF tracks the state

x=[z & y y]T (4.43)
where the initial state is defined as
%0=1[0 0 0 0]" (4.44)
The state transition matrix is given by
1 At 0 O
F= 8 (1) (1) Aot (4.45)
0 0 0 1

Since the measurements are the positions of the points in the clusters, or the
cluster centroids the measurement function is straightforward

1 0 00
H-= {O 0 1 O] (4.46)
The measurement noise covariance matrix is given by
02 0
R= [ 0 0.2} (4.47)

The process noise is modeled by the discrete white noise model
LA 1A
— 2 2
Q= [3At3 A2 } 7
With these definitions the predict and update steps of the UKF [37] can be
followed.

(4.48)

4.5.2 Gaussian mixture probability hypothesis density fil-
ter (GM-PHD)

The GM-PHD tracks the same state as the UKF

x=[z @ y y]T (4.49)
Similarly the same strate transition matrix, measurement function, noise covari-
ance matrix, and process noise are used. The merging and pruning thresholds

are set at 5 and 1 x 1079 respectively.
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4.5.3 Evaluation

The tracks generated by the different tracking algorithms are evaluated by com-
puting the optimal sub-pattern assignment (OSPA) metric [51] from the gener-
ated tracks and ground truth tracks. The ground truth tracks are collected by
the roof mounted lidar sensor of the Twizy R&D vehicle.
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Chapter 5

Experiments

In this chapter the experiments and results are presented.

5.1 Sensor calibration

In order to obtain the best detection performance of the sensor, the calibration
method described in was performed.

5.1.1 Datasets
Data collection

To collect data, the measurement setup from is setup in a controlled
indoor environment. The radial lines of the polar grid from are pro-
jected on the ground plane with a laser level and marked on the ground with
masking tape. The radial distances, with 0.1 m interval, are marked on the mask-
ing tape. The ultrasonic sensor is positioned at the origin of the polar grid at a
height of 0.35m, which corresponds to the mounting height of the sensor in the
GRT vehicle.

As shown in an ultrasonic distance sensor and a BME280 sensor
[52] are connected to a Arduino Uno development board [53]. The BME280
sensor measures temperature, relative humidity, and pressure of the air. The
Arduino Uno is able to program both sensors and collect their measurement
values, which are sent via a USB serial connection to a laptop. The laptop stores
the received values in a database. An external power supply provides 12V to
the Arduino and ultrasonic sensor, the BME280 sensor receives its power from
the Arduino.

The ISO pole and 2gt object are used as ground truth objects and sequen-
tially positioned at each reference position on the polar grid. For each reference
position the measurement sequence is as follows:

1. The ground truth object is manually positioned at the reference position
on the grid

2. From the laptop a command to start the measurement sequence is sent to
the Arduino development board via the serial connection
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3. For each threshold voltage level ¢ of the ultrasonic sensor, the Arduino
development board:

(a) Programs the ultrasonic sensor to use threshold value £

(b) For a number of N measurement cycles, the Arduino development
board:

i. Instructs the ultrasonic sensor to perform a measurement cycle
ii. Receives the sensor output
iii. Calculates the time-of-flight for the detections in the sensor out-
put
(c) Collects the temperature, relative humidity, and pressure measure-
ments from the BME280 sensor

(d) Sends the time-of-flight, and ambient air measurements to the laptop

4. The laptop stores the received time-of-flight and ambient air measurements
with the corresponding reference position and threshold level in a database

Each row in the resulting database contains the result of one measurement
cycle. One row contains the measurements of the ambient air, the number of
the measurement cycle n, and up to 10 time-of-flight measurements. The key for
each row, i.e. measurement cycle, is the combination of the reference position
and measurement cycle number. shows an example of the data stored
in the database.

{ BME280

USB serial
connection B
I O
8 Arduino
uUno
Laptop
O ! : Ultrasonic
sensor

Power supply

Figure 5.1: Diagram of the measurement setup, which consists of an ultrasonic dis-
tance sensor and a BME280 sensor [52] connected to an Arduino Uno development
board . The ultrasonic distance sensor measures the distance to the ground truth
object, while the BME280 sensor measures the temperature, relative humidity, and
pressure during the ultrasonic measurement. The Arduino Uno development board
communicates with the sensors and collects all measurements, which are sent to a
laptop over a USB serial connection.
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Table 5.1: Example of the data stored in the database. Each row contains the reference
position and number of the measurement cycle as index, information on the ambient
air properties, and the time-of-flight values of the measurement cycle.

Refence Measurement Ambient air Time-of-flight
position number measurement measurements
T d) n T %RH P tl tg . th

Data postprocessing

Once the data for each reference position on the polar grid is collected, the
measured distances are derived from the time-of-flight measurements, taking
into account the temperature, humidity, and pressure at the time of recording.
From the definitions proposed in the measurements are either
classified as TP, FP, FN or TN, depending on the type of measurement. From
these values the ROC curve for each distance r is calculated.

Results

[Figure 5.2)shows the resulting ROC curves for the ground truth target positioned
at 7oy = 0.5,1.0,1.5,2.0,2.5, and 3.0m respectively. The values next to the
ROC curve are the corresponding threshold values of the ultrasonic sensor,
defining the threshold voltage level. From this data the optimal threshold value
for each distance can be determined, the optimized threshold value being the
point closest to the (100% TPR, 0%FPR). shows the resulting ROC
curves for each reference distance. For each curve the optimized threshold value
is indicated. For curves where multiple optimized values are found, the average
value is shown.

Based on these values, shows the resulting optimal range for
the threshold curve, as well as a polynomial fit of the data and the threshold
curve as used in the remainder of this document. For the polynomial fit, the
fifth degree polynomial was found to have the lowest mean squared error. The
proposed threshold curve follows the polynomial fit, but is defined at fixed
discrete intervals.

[Figure 5.5|and [Figure 5.6]show the resulting field of views for both the initial
threshold curve and the optimized threshold curve for object types ISO pole and
2gt object, respectively.
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Figure 5.2: Reciever operating characteristic (ROC) curves for the ISO pole
ground truth object at distances zg = {0.5,1.0,1.5,2.0,2.5,3.0} m respectively. The
threshold values corresponding to the points on the ROC curve are indicated by their
value.
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ROC curve

True positive rate (%)

Distance (m) 100

NY 50
O o
False positive rate (%)

Figure 5.3: Reciever operating characteristic (ROC) curves for the ISO pole
ground truth object for each measurement distance. For each curve the point closest
to (0% FPR, 100 % TPR) is indicated, with its corresponding threshold value. Where

there are multiple consecutive points closest to (0 % FPR, 100 % TPR), the mean value
of the points is shown.
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Figure 5.4: Range of optimized threshold values for each measurement range with
proposed optimal threshold curve.
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Figure 5.5: The true positive rate for detection of the ISO pole object for|(a)| default
threshold curve of the sensor and I@ optimized threshold curve from
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Figure 5.6: The true positive rate for detection of the 2gt object for @ default

threshold curve and @ optimized threshold curve from [Figure 5.4

5.2 Sensor positioning

[Figure 5.7] and |Figure 5.8| show the initial, intermediate steps and final results
of the proposed sensor positioning algorithm of a case study on a front bumper
of a vehicle. shows the k-cover of the ROI, while shows the
blind spot areas if multilateration were to be used with this ultrasonic detection
system.

Results of the optimization are shown in
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Figure 5.7: Sensor coverage for @ the initial configuration, and optimized configu-
ration for @ seven to eleven sensors
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Figure 5.8: Areas where k-Cover < 2 forl@lthe initial configuration, and optimized
configuration for seven to|(f)| eleven sensors. Since multilateration requires at least
two range measurements from different sensors, areas which are covered with less than
two sensors are considered blind spots of the system.
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Table 5.2: Results of the optimization process.

Initial Optimized Optimized
configuration 7 sensors 8 sensors
k-cover > 1 sensor (%) 99.6 100.0 99.6
k-cover > 2 sensor (%) 74.8 88.3 94.7
k-cover > 3 sensor (%) 32.0 41.6 42.2
Mean absolute error after
multilateration x 107! [m] 0.83 1.17 1.36
CRLB x1073 1.30 2.09 1.91
Optimized Optimized Optimized
9 sensors 10 sensors 11 sensors
k-cover > 1 sensor (%) 100.0 99.2 100.0
k-cover > 2 sensor (%) 97.5 98.0 99.9
k-cover > 3 sensor (%) 58.4 67.5 85.0
Mean absolute error after
multilateration x 10~ [m] 1.13 1.68 1.01
CRLB x1073 2.23 2.02 1.89

5.3 Detection algorithm

5.3.1 Multilateration using direct echo

In two methods for obtaining an estimated object position us-
ing direct echo measurements are presented: a nonlinear least squares solution

and an exact solution. In this section these two methods are compared using
simulated data.

Given two ultrasonic sensors s and sy positioned at (0,—0.2) m and (0,0.2)
m, as shown in The effective region-of-interest of the system consist
of the intersection of the regions-of-interest of the respective sensors. For each
point p; in the effective region-of-interest, distances r; and ro to s; and s
are calculated, respectively. With Gaussian noise added to distances r; and 79,
the position of p; is estimated using both the nonlinear least squares solution
and the exact solution. The difference between the linear least squares estimate
and the exact estimate are compared, as well as the runtime of both methods.
Table 5.3] shows that while the position estimate of p; results in similar errors,
the the average runtime of the nonlinear least squares method is higher than
the exact solution.
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Simulation setup for direct echo
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Figure 5.9: A system consisting of two ultrasonic sensors s; and sz, with an effective
region-of-interest as defined by the intersection of the regions-of-interest of the respec-
tive sensors.

Table 5.3: Results for multilateration methods from m on a scenario with
three sensors and additional white noise

Average error Maximum error Average runtime

Method «10~2 [m] ] [ms]
Non-linear least squares 7.01 £6.01 0.55 1.01 +£0.31
Circle 7.13+6.01 0.55 0.04 £0.01

5.3.2 Multilateration using cross echo

In three methods for obtaining an estimated object position using
cross echo measurements are presented: a nonlinear least squares solution, an

exact ellipse solution, and an exact circle solution. The exact circle solution is
a simplified version of the exact ellipse solution.

The simulation of is extended with an additional sensor, as
shown in Three ultrasonic sensors s1, s2, and sz are positioned at
(=0.2,0), (0,0), and (0.2,0) m, respectively. For each point p; in the effective
region-of-interest of the system, distances rq, ro, and r3 from p; to sensors sy,
So, and sz are calculated.

With Gaussian noise added to distance measurements ry, r9, and r3, the
position of p; is estimated using the three different multilateration methods.
Again, the positional error is defined as the Euclidean distance between the
estimated position of p; and the actual position of p;. shows the
positional error of the three different methods, as well as the average runtime.

shows the positional error of simulation of the exact circle solu-
tion without Gaussian noise added to the distance measurements. This shows
that making the assumption of using circles instead of ellipses introduces a max-
imum positional error of 0.04m for this scenario, while reducing the average
runtime when compared to the other methods.
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Table 5.4: Results for multilateration methods from [Section 4.3.1] on a scenario with
three sensors and additional white noise

Average error Maximum error Average runtime

Method x10-2 [m] [] [uus]
Nonlinear least squares 3.61 + 3.07 0.28 1.09 £0.34
Ellipse 3.63 + 3.06 0.28 0.08 +£0.01
Circle 3.944+2.94 0.27 0.04 +£0.01

Error for circle method
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Figure 5.10: A simulation of a system consisting of three ultrasonic sensors s1, s2, and
s3, with an effective region-of-interest as defined by the intersection of the regions-of-
interest of the respective sensors. The effective region-of-interest shows the error for the
target position as estimated by the circle method. The error is defined as the Euclidean
distance between the estimated position and the actual position. The maximum error
inside the effective region-of-interest is 0.04 m.

5.3.3 Data association

This section describes the optimization of several parameters for the proposed
noise filtering methods.

5.3.4 Dataset

In order to improve the performance of the system, this optimization is done
using real-world data. This data is recorded with the Twizy R&D vehicle,
shows the vehicle. The Twizy R&D vehicle is a small manually driven
vehicle, equipped with various state-of-the-art sensors for automated and au-
tonomous driving, which include:

e One roof mounted lidar sensor
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One front facing lidar sensor

Three front facing radar sensor

Front facing camera

GNSS and IMU sensor

e 16 ultrasonic range sensors

The data from all sensors is recorded and stored locally, after which it can be
offloaded for further analysis. The recorded datasets consist of the data from
these sensors, and is accompanied by a description of the recorded scenario.

Since detection and tracking of pedestrians is a key element of the intended
use of the system, a collection of datasets pedestrian_pattern was recorded
where a pedestrian moves inside the ROI of the ultrasonic detection system of
the Twizy. The pedestrian moves back and forth along a predefined trajectory,
as shown in

Ground truths are extracted from the data of the roof mounted lidar. First
the ground plane in the lidar data is detected, any points not belonging to
the ground plane are extracted and clustered. If the clusters meet predefined
thresholds on their size, the clusters are saved as ground truth. The saved ground
truth data consist of the number of clusters, their points, bounding boxes and
centroids.

The performance of the data association methods will be done on the
pedestrian_pattern_05 dataset from the pedestrian_pattern dataset collec-
tion.
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Lidar

Side radar + camera
Side ultrasonic sensors
Front camera

Front rodar

Front lidar

Front ultrasonic sensors

Figure 5.11: Front view of the Twizy R&D vehicle. The Twizy R&D vehicle is a man-
ually driven vehicle equipped with state-of-the-art automotive sensors, which allows it
to record datasets of its environment. The sensor set of the Twizy R&D vehicle consist
of a roof-mounted lidar, GNSS receiver, front and side facing camera, front and side
facing radar, front facing lidar and front and side facing ultrasonic sensors.
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Figure 5.12: A top-down overview of the pedestrian_pattern_05 dataset. The
dataset consists of a parked ego-vehicle with a pedestrian walking back and forth
along a predefined track. The pattern was created by connecting a set of randomly
picked points on a grid with 0.5 m resolution.
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5.3.5 Parameter optimization
NLLS solution: SSFE,ax and r optimization

Optimization of the nonlinear least squares solution, yields the results shown in
This figure shows the precision-recall curve of the NLLS for various
values of » and SSFE,,ax.

As shown in the figure, increasing the value of r has a positive effect on
precision and recall, but only up to a certain point, after which both precision
and recall decrease with increasing r. This is probably a result of adding too
much unrelated measurements into one set of NNLS equations. Varying the level
of SSFE.x has far little effect on precision, when compared to 7.

The variant with The highest Fj-score of 0.433 is the NLLS with SSE .« =
0.1 and r = 0.04.

NNLS precision-recall curve for varying r and SSEpax
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Figure 5.13: Precision-recall plot of NLLS solution with for various values of r with
increasing S.S Emax-

Exact ellipse solution with distance matrix: n and r optimization

The precision-recall curves for the optimization of n and r for the exact ellipse
solution, with filtering using a distance matrix is shown in Here
an increase of n has a decremental effect on recall, while an increase of r has a
decremental effect on precision.

The highest Fj-score of 0.493 is achieved with n = 2 and r = 0.3.
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Distance matrix
precision-recall for varying n and r
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Figure 5.14: Precision recall plot for distance matrix solution. For each value of n
neighboring points an increase of radius r is shown.

Exact ellipse solution with DBSCAN: minimum sample size and ¢
optimization

shows the precision-recall curve of the exact ellipse solution with
DBSCAN clustering for different sample sizes and increasing € values. An in-
crease of € results in an increase in recall, but a decrease in precision.

The highest F}-score of 0.5284 is achieved with a minimum sample size of 2
and € = 0.45.
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Figure 5.15: Precision recall plot for DBSCAN. For each minimum sample size an
increase of € is shown.

Exact ellipse solution with HDBSCAN: minimum cluster size opti-
mization

shows the precision-recall curve of the exact ellipse solution with
HDBSCAN clustering for various minimum cluster size values. Increasing the
minimum cluster size has a decremental effect on recall.

The highest Fj-score of 0.336 is achieved with a minimum cluster size value
of 2.

55



HDBSCAN precision-recall for varying min. cluster size

0.600

0.575 A

0.550 A

o
w
N
w
L
N
g
|
|
|
|
|
|
|
|
|
|
'Y
3
8

Precision
Y
8

0.500{ &
0.475 |
0.450 |

0.425

0.05 0.10 0.15 0.20 0.25
Recall

Figure 5.16

Exact ellipse solution with OPTICS: minimum sample size, £, and
minimum cluster fraction optimization

shows the precision-recall curve of the exact ellipse solution with
OPTICS clustering. Each line plot gives the precision and recall for increasing
minimum cluster fraction for different values of minimum sample size and &.
Increasing the minimum sample size has a decremental effect of recall. Increasing
& does not seem to influence precision nor recall. Increasing the minimum cluster
fraction has a positive effect on precision.

The highest Fj-score of 0.556 is achieved with a minimum sample size of 2,
& =0.25, and a minimum cluster fraction of 0.35.
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Figure 5.17: Precision-recall plot for OPTICS method. For each combination of sam-
ple size s and £ an increasing minimum cluster fraction is shown.

5.3.6 Results

A comparison of the variant with the highest F-score of each method is shown in
Except for the NNLS solution, all other methods use the detections
from the exact ellipse solution as input. The clustering methods most robust
to the noise of the ultrasonic detections are DBSCAN and OPTICS. OPTICS
achieves the highest F}-score, and has the second highest value for precision and
the highest value for recall.
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Figure 5.18: Comparison of the precision, recall, and F}-score of the best performing
variant of each noise filtering method.



5.4 Clustering

This section further evaluates the performance of the clustering algorithms from
the previous section. The clustering algorithms evaluated are K-Means cluster-
ing with distance matrix noise removal, DBSCAN, HDBSCAN, and OPTICS.
All clustering algorithms use the detections from the exact ellipse solution as
input data. The clustering algorithms in this section will use their respective
optimized parameters as found in the previous section.

5.4.1 Dataset

The dataset used to evaluate the clustering algorithms is the

pedestrian_pattern_05 dataset, as described in

5.4.2 Results

The clusters found by the respective clustering methods are compared to ground
truth clusters extracted from the data of the roof-mounted lidar sensor. The
cumulative error from Equation (3.34) is used for evaluation of the different
clustering methods. shows the results.

DBSCAN and OPTICS have the lowest cumulative error, indicating the
clusters produced by these method most closely represent the ground truth
clusters.
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Figure 5.19: Cumulative error of the clustering algorithms compared with the ground
truth. A lower error indicates that the clusters have a higher similarity with the ground
truth clusters.

5.5 Tracking

In this section the results of the UKF, UKF-JPDA and GM-PHD tracking
methods are evaluated and compared. The tracking methods are evaluated on
the pedestrian_pattern dataset collection, pedestrian_crossing dataset col-
lection, iso_pole_stop_bkmh dataset collection, and iso_pole_driveby_5kmh
dataset collection.
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5.5.1 Datasets

The tracking methods are evaluated on 4 different types of datasets.

pedestrian pattern

The pedestrian_pattern dataset collection contains 10 recordings. As de-
scribed in the pedestrian_pattern contains recordings of a
pedestrian walking back and forth along a predefined track inside the ROI of
the ultrasonic system.

pedestrian crossing

The pedestrian_crossing dataset collection contains 1 recording. In this record-
ing the ego-vehicle is stopped at a station platform, a pedestrian walks back and
forth 10 times over a crosswalk in front of the vehicle. The direction of the pedes-
trian is perpendicular to the heading of the vehicle. The distance between the
vehicle and pedestrian is approximately 1.5 m.

iso_pole_ stop 5kmh

The iso_pole_stop_5kmh dataset collection contains 10 recordings. In these
recordings the ego-vehicle approaches a target of the type “ISO pole” at 5 kmh~!
and performs an emergency stop. The “ISO pole” target is positioned in the
center of the trajectory of the ego-vehicle.

iso_pole driveby 5kmh

The iso_pole_driveby_bkmh dataset collection contains 10 recordings. In these
recordings the ego-vehicle approaches a target of the type “ISO pole” at 5 kmh~!
and drives past the target at a constant velocity. The “ISO pole” target is po-
sitioned outside of the trajectory of the ego-vehicle, with a distance of approxi-
mately 0.5 m between the target and ego-vehicle.

5.5.2 Results

The results of the tracking are the tracks themselves and the OSPA metric.
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pedestrian _pattern

UKF tracker shows the tracks from the UKF tracker and the
OSPA metric over time.
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Figure 5.20: The @ tracks and @ OSPA metric of the UKF tracker for the
pedestrian_pattern_05 dataset.
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UKF-JPDA tracker shows the tracks from the UKF-JPDA
tracker and the OSPA metric over time.
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Figure 5.21: The@ tracks and@ OSPA metric of the UKF-JPDA tracker for the
pedestrian_pattern_05 dataset.
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GM-PHD tracker shows the tracks from the GM-PHD tracker
and the OSPA metric over time.
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Figure 5.22: The @ tracks and @ OSPA metric of the GM-PHD tracker for the
pedestrian_pattern_05 dataset.
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Table 5.5: Resulting OSPA values for each tracker for the pedestrian_pattern
dataset collection. The tracked features are the cluster centroids.

Recording UKF UKF-JPDA GM-PHD
pedestrian_pattern_01  4.87 4.02 5.05
pedestrian_pattern_02  6.26 6.82 7.19
pedestrian_pattern_03  4.32 3.42 4.55
pedestrian_pattern_04  6.01 6.85 7.28
pedestrian_pattern_05  4.88 4.03 4.51
Average 5.27 5.08 5.72

64



pedestrian crossing

UKF tracker shows the tracks from the UKF tracker and the
OSPA metric over time.
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Figure 5.23: The @ tracks and @ OSPA metric of the UKF tracker for the
pedestrian_crossing dataset.
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UKF-JPDA tracker shows the tracks from the UKF-JPDA
tracker and the OSPA metric over time.
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Figure 5.24: The @ tracks and @ OSPA metric of the UKF-JPDA tracker for the
pedestrian_crossing dataset.
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GM-PHD tracker shows the tracks from the GM-PHD tracker
and the OSPA metric over time.
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Figure 5.25: The @ tracks and @ OSPA metric of GM-PHD tracker for the
pedestrian_crossing dataset.

Table 5.6: Resulting average OSPA values for each tracker for the
pedestrian_pattern dataset collection.

Recording UKF UKF-JPDA GM-PHD

pedestrian_crossing  8.96 8.94 8.94
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iso_pole stop

UKF tracker shows the tracks from the UKF tracker and the
OSPA metric over time.
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Figure 5.26: The @ tracks and @ OSPA metric of the UKF tracker for the
iso_pole_stop_05kmh_01 dataset.
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UKF-JPDA tracker shows the tracks from the UKF-JPDA
tracker and the OSPA metric over time.
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Figure 5.27: The @ tracks and @ OSPA metric of the UKF-JPDA tracker for the
iso_pole_stop_05kmh_01 dataset.
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GM-PHD tracker shows the tracks from the GM-PHD tracker
and the OSPA metric over time.

GM-PHD tracks

3 p

2 p

1 p

E 01 - A
_1 .
_2 .
_3 .
-3 =2 -1 0 1 2 3
[m]
(a)
GM-PHD OSPA

OSPA distance

00 25 50 75 100 125 150 175
Time [s]

(b)

Figure 5.28: The @ tracks and @ OSPA metric of the GM-PHD tracker for the
iso_pole_stop_05kmh_01 dataset.
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Table 5.7: Resulting OSPA values for each tracker for the iso_pole_stop dataset
collection.

Recording UKF UKF-JPDA GM-PHD
iso_pole_stop_05kmh_01  9.14 8.65 8.66
iso_pole_stop_05kmh_02  6.15 5.57 5.58
iso_pole_stop_05kmh_03  8.48 7.79 7.50
iso_pole_stop_0bkmh_04  7.22 6.79 6.96
iso_pole_stop_05kmh_05  8.22 7.69 .77
Average 7.84 7.30 7.29
iso_pole_stop_10kmh_01  5.42 5.42 5.22
iso_pole_stop_10kmh_02  8.61 8.61 8.48
iso_pole_stop_10kmh_03  8.79 9.04 9.11
iso_pole_stop_10kmh_04  7.08 6.40 6.52
iso_pole_stop_10kmh_05  6.40 6.01 5.96
Average 7.26 7.08 7.06
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iso _pole driveby

UKF tracker shows the tracks from the UKF tracker and the
OSPA metric over time.
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Figure 5.29: The @ tracks and @ OSPA metric of the UKF tracker for the
iso_pole_driveby_O5kmh_01 dataset.
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UKF-JPDA tracker shows the tracks from the UKF-JPDA
tracker and the OSPA metric over time.
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Figure 5.30: The @ tracks and @ OSPA metric of the UKF-JPDA tracker for the
iso_pole_driveby_O5kmh_01 dataset.
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GM-PHD tracker shows the tracks from the GM-PHD tracker
and the OSPA metric over time.
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Figure 5.31: The @ tracks and @ OSPA metric of the GM-PHD tracker for the
iso_pole_driveby_O5kmh_01 dataset.
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Table 5.8: Resulting OSPA values for each tracker for the iso_pole_driveby dataset
collection.

Recording UKF UKF-JPDA GM-PHD
iso_pole_driveby_05kmh_01  9.16 9.42 9.35
iso_pole_driveby_05kmh_02  7.84 8.20 8.67
iso_pole_driveby_05kmh_03  8.11 8.59 8.75
iso_pole_driveby_O5kmh_04  7.55 8.00 8.02
iso_pole_driveby_O5kmh_05  8.30 8.48 8.53
Average 8.19 8.54 8.66
iso_pole_driveby_10kmh_01  7.70 7.70 8.01
iso_pole_driveby_10kmh_02  6.59 6.79 6.73
iso_pole_driveby_10kmh_03  5.52 6.39 6.22
iso_pole_driveby_10kmh_04  4.64 4.49 4.52
iso_pole_driveby_10kmh_05  6.25 6.80 6.63
Average 6.14 6.43 6.42
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Chapter 6

Conclusion and future work

This thesis covered the use of ultrasonic distance sensors for object detection
and tracking in autonomous vehicles. Specifically, the use of ultrasonic distance
sensors for detection and tracking of vulnerable road users for an autonomous
vehicle intended for public transport. Due to the specific operational design
domain of the vehicle, there is a high probability that vulnerable road users
might come in close proximity to the vehicle.

Several aspects of ultrasonic sensors and several methods enabling the use ul-
trasonic distance sensors in autonomous vehicles for object detection and track-
ing were covered in the different chapters of this thesis. These topics included
optimization of sensor detection performance, optimization of sensor position-
ing on the vehicle, evaluation of object positioning methods, and evaluation of
object tracking methods.

Previous studies showed that the default detection range of automotive ul-
trasonic detection systems is limited and might not suffice in the detection of
pedestrians [18|. This study showed that optimizing the time dependent thresh-
old curve of the sensors using ground truth objects improved the detection
performance of the sensor when compared to the default threshold curve of the
sensor. This enabled better detection performance of objects within the region-
of-interest of the system, up to the maximum detection range of the sensor,
enabling the system to detect and track pedestrians inside the region-of-interest
of the system.

In a case study, the positions of the ultrasonic sensors in the front bumper of
a vehicle where optimized. It was shown that the proposed algorithm improved
the theoretical performance of the sensor system when compared to the initial
configuration. Using a cost function consisting of multiple parameters ensured
that blind spots in the region-of-interest of the system were minimized, while
maintaining detection accuracy.

The detection and tracking part of this thesis showed that the proposed mul-
tilateration methods were able to mitigate the drawbacks of the conventional
ultrasonic detection system, as presented in the A comparison of
several multilateration methods, showed that all met the requirements on the
precision and accuracy. An interesting finding was that simplifying the multi-
lateration method with the exact circle solution lead to a decrease in runtime
of the algorithm, but only a small decrease in precision and accuracy.

In a comparison of clustering algorithms, which were selected to cluster the
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data and remove noise, both DBSCAN [25] and OPTICS |27] clustering showed
good performance once their parameters were optimized to the data.

Finally, three different tracking methods were evaluated, while the GM-PHD
[39] had slightly better performance in terms of performance metrics over the
UKF-JPDA tracker [43], the latter proved to have tracks which better matched
the ground truth tracks by visual inspection. A topic that this study did not
cover was the optimization of the trackers, with optimization of the parameters
the performance could probably be improved further.

The resulting tracks of the tracking algorithms show that automotive ultra-
sonic distance sensor could be used for close-range sensing and tracking. Taking
into account the intended use of the proposed system, detection and tracking
of (vulnerable) road users in stop-start scenarios, this study showed promising
results.

6.1 Future work

During the course of exploring the different aspects of ultrasonic sensors for
use in detection and tracking in autonomous vehicles, several new problems
and ideas arose which could not be covered in this thesis. While the calibration
method proposed in this thesis is thorough, it is a time consuming task. Research
into automatic or dynamic calibration methods could be subjects beneficial in
the development and performance of ultrasonic detection systems.

In the case study on the optimization of sensor positions in the front bumper
of an autonomous vehicle, it was shown that the blind spots of the system
decreased while ensuring the theoretical performance of the system did not
decrease. A possible extension to this case study would be a verification of the
detection performance on a real vehicle.

A problem that arises in the multilateration of range measurements, namely
association of the range measurements of different sensors to the correct de-
tection. This study went for a straightforward approach by using clustering
methods, but multiple data association methods could still be explored here.

A topic that was not covered in this thesis is machine learning. The multiple
sensors of an ultrasonic detection system would be an interesting input layer for
a convolutional neural network. A comparison between the performance of such
an approach and the performance of a classical detection and tracking approach,
as presented in this thesis, would make an interesting topic for further research.
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Appendix A

Python code for speed of
sound 1n air

import numpy as np

def speed_of_sound(T: float, Rh: float, p: float) -> float:
r"""Compute speed of sound in air

Code from: ‘Dr. Richard Lord‘ -
http://www.npl.co.uk/acoustics/techguides/speedair

Based on the approximate formula found in :footcite:t:‘cramer
:1993°¢.

Saturation vapour pressure found in :footcite:t:‘davis:1992°¢,
and a

mole fraction of carbon dioxide of 0.0004.

The mole fraction is simply an expression of the number of
moles of

a compound divided by the total number of moles of all the
compounds

present in the gas.

Args:
T: Temperature :math:‘[~{\circ} \text{C}]°¢
Rh: Relative humidity :math: ¢[\%]°¢
p: pressure :math:‘[\text{Pal}]*

Returns:
speed of sound :math:‘C\:[\frac{\mathrm{m}}{\mathrm{s}}]°

footbibliography::

e = 2.71828182845904523536
T_kel = 273.15 + T

# Molecular concentration of water vapour calculated from Rh

# using Giacomos method by Davis (1991) as implemented in DTU
report 11b-1997

ENH = 3.14e-8 * p + 1.00062 + T*T * 5.6e-7

# These commented lines correspond to values used in Cramer (
Appendix)

# PSV1 = sqrt(T_kel)*1.2811805%pow(10,-5) -1.9509874*pow (10, -2)*
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T_kel ;

# PSV2 = 34.04926034-6.3536311*pow (10,3)/T_kel;

PSV1 = T_kel*T_kel * 1.2378847e-5 - 1.9121316e-2 * T_kel

PSV2 = 33.93711047 - 6.3431645e3 / T_kel

PSV = e**PSV1 * ex**PSV2

H = Rh *x ENH * PSV / p

Xw = H / 100.0

# Xc = 314.0*pow(10,-6);

Xc = 400.0e-6

# Speed calculated using the method

# of Cramer from JASA vol 93 p. 2510

Cl1 = 0.603055 * T + 331.5024 - T*T * 5.28e-4 + (0.1495874 * T +
51.471935 - T*T * 7.82e-4) * Xw

C2 = (-1.82e-7 + 3.73e-8 * T - T*T * 2.93e-10) * p + (-85.20931
- 0.228525 * T + T*T * 5.91e-5) * Xc

C3 = Xw*Xw * 2.835149 + p*p * 2.15e-13 - Xc*Xc * 29.179762 -

4.86e-4 x Xw *x p * Xc

C=¢C1+ C2 - C3

return C

Listing A.1: Python function to approximate the speed of sound in air.
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Appendix B

Finding the points of
intersection of two ellipses

For this the general quadratic form for an ellipse is created

Q(z,y) = Az> + Bey + Cy? + Dz + Ey+F =0 (B.1)
with

a=2x
=2
=y
d:rfl

A’ = cos¥b

B’ =sinf

where (z,y) is the center of the ellipse, , and 7, the radii in horizontal and
vertical direction respectively and 6 the rotation around the center. From this
follows

A/2 B/2
A=
b T
2A'B’ 2A'B’
B= -
d b
A/2 B/2
C=—+—
d b
2A'B'c — 2aA? —2aB"? —2A'B'c
D= ; + y
206 A’B' —2B"%¢ —2aA’'B' —2A"”%¢
E= ; + y
e a?A”? —2aA'B'c + B2 n a’B”? + aA'B'c + A2 1
= ; y _
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With the quadratic equations for both ellipses

q1(z,y) = a12® + by + e1y® + diz + ery + f1
@2(z,y) = ax® + boxy + coy® + dox + €2y + fo

we can construct general quartic equation

f(@) = zaz* + 232° + 202% + 217 + 20 (B.2)

where

20 = ardafi + aifs —aydidafo + a3 fi — 2a1aaf1 fo — agdida fi + asdifa

21 = agdies — arbydy fo — 2a1a3 faer — azbady fi 4 2a1bada f1 + 2aTes fo + ardier — areadids
— 2a1ases fi — asbida f1 + 2a3e1 fi — arbody fo — azdydaer + 2a2b1dy f

29 = ajes + 2aica fr — agbidaer + agbi fo — azbadier — arbiba fo — 2a1aze1e3 + 2a1badaer — arcadidy
— 2a1as¢a f1 + a1b3 fi + 2asbidies + ajel — ascidids — arbadies + 2a3¢1 fi — asbiba fi + ascad?
+ aldgcl — a1bidoes — 2aqa5¢1 fo

z3 = —2a1as¢1€2 + agb%eg + 2a9b1cody — asbacidy + albgel — a1bibses — 2a1asc0e; — asbibaeq
— aibacady + ZQ%CQGQ + 2a§clel — agbicids + 2a1bacids — a1bicads

2 2 2 2 2 2
z4 = ajCy — 2a1a2c1C2 + azc] — a1bibacy — asbibocy + a2b102 + a1b201

Now to find y, we need to find the roots of the quartic equation

zaxt + 23?4 ot iz + 20 =0 (B.3)
Dividing by z4
z
b=
24
22
c= =
z4
d="2t
24
20
e=—
2

gives x4 + b2 + c2? + dz + e = 0. Substituting (y — %) for = gives the
depressed quartic equation

v +py’ +aqy+r=0 (B.4)

where
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_ 8c— 3b2

8
_ B bt sd
= 8
 —3b* + 256¢ — 64bd + 16b%¢
= 256
Now
1
P=—=p’-
DL
Lt s 1 1,
@=—7ps” 3P g4
1 1 AN
B 2024+ — p3
U <2Q+ 462 t o7 )
. ~5p—Qs if P=0
—2p+U-— L& otherwise
wzm
R (1) +(1)\/( +2 )*2( +(1)*)
SRS by P
ST (1) +(1)\/( +2)*2( +(-1)
eI b PramoV w
s = —tpgl (1)w+(—1)\/—(p+2 )—2(p+(1)2)
3 47" 2 Y w
11
Th=—gb+ ((—1)w + (—1)\/—(p+2y) -2 (p+ (=1
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