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Abstract
Tumor heterogeneity complicates mutational signa-
ture analysis at the single-cell level, where sparse
catalogues and uneven mutation burdens can desta-
bilise exposure estimates. This study quantifies
the robustness of fitted mutational signatures in
single-cell RNA-seq data from 688 breast-cancer
cells. Known COSMIC v3.4 SBS96 signatures
were assigned with SigProfilerAssignment and the
input data was systematically perturbed by ran-
domly deleting 5%, 10%, 20% and 40% of mu-
tations, repeating each perturbation twenty times.
Robustness was assessed with four complementary
metrics: (i) persistence of each signature in the
dataset, (ii) stability of the number of cells contain-
ing each signature, (iii) mean relative error of per-
signature exposures, and (iv) per-cell cosine simi-
larity between original and perturbed exposure vec-
tors.
Six signatures (SBS1, 5, 12, 26, 40c and 54) were
consistently recovered, even after 40% deletion,
demonstrating that core biological signals may sur-
vive substantial data loss. Nevertheless, higher
deletion levels triggered progressive overfitting: the
number of additional signatures rose from three at
5% deletion to eighteen at 40%. Exposures seemed
to shift between highly similar signature pairs (e.g.,
SBS12 and SBS26, SBS5 and SBS40c), and merg-
ing such pairs halved the mean relative error. Sig-
nature SBS54, detected in only eight cells and sus-
pected to be artefactual, showed the poorest stabil-
ity. Across cells, robustness scaled positively with
the number of mutations per cell (ρ ≈ 0.38 to 0.59)
and negatively with entropy of the exposure vectors
(ρ ≈ −0.27 to –0.53), indicating that abundant or
signature-dominated catalogues resist perturbation,
whereas sparse or evenly distributed ones are more
fragile. Together, our results indicate that while
some signatures and cells can survive substantial
data loss, signature exposures in sparse single-cell
catalogues must be interpreted with caution.

1 Introduction
Not all cancer cells of a tumor are genetically identical, as
different cells may carry different somatic mutations. Mu-
tations are changes in the DNA sequence of a cell [1]. This
genomic diversity within a single tumor is referred to as intra-
tumor heterogeneity [2] and plays a central role in treatment
resistance. Therapies that act on specific mutations may fail
if those mutations are present only in a subset of tumor cells,
allowing other subclones to survive. It is therefore important
to understand heterogeneity in order to improve cancer treat-
ments [3].

Cancer cells accumulate mutations caused by both ex-
ogenous sources, such as UV light and chemotherapy,
and endogenous sources, including cellular processes like
metabolism. These factors lead to DNA damage, which is

normally corrected by DNA repair processes; however, if
these repair processes are defective, the damage can persist.
This, in turn, shapes the resulting pattern of mutations in the
cancer genome. Mutational signatures are patterns of mu-
tations that describe which mutational process generated a
particular combination of mutations; e.g., tobacco smoking
leaves a different imprint on the cancer genome than defec-
tive DNA mismatch repair does. A cancer’s mutational cat-
alogue is therefore a mixture of multiple signatures, and the
number of mutations caused by a specific signature is called
the signature exposure [4].

Mutational signatures can be extracted from genomic data
using non-negative matrix factorization [5]. This de novo
extraction technique can even discover previously unknown
signatures [6]. Alternatively, a numerical optimization ap-
proach can assign a set of known signatures to a sample; in
this case the signatures are being fitted to the data [7]. Such
analyses have traditionally relied on bulk sequencing data,
which aggregates mutations from an entire tumor sample so
that it is impossible to determine which mutations occurred
in which individual cells. Recently, however, mutations have
been called at the single-cell level using single-cell RNA se-
quencing (scRNA-seq) data [8], promising deeper insights
into tumor heterogeneity. It nevertheless remains uncertain
whether the current mutational signature methodology works
effectively on single-cell data [9]. The paper by Alexandrov
et al. [4] already examined factors that influence the ability
of extracting signatures; such as the number of genomes, the
number of mutations per genome and the strength of expo-
sure, but those experiments were limited to bulk data.

A particular challenge of scRNA-seq data is its sparsity,
due to its low coverage and high dropout rate. This means
only a small fraction of the genome is sequenced per cell and
many mutations are not detected. After additional filtering to
retain only high-quality calls [8], the resulting catalogue of
mutations can be incomplete or biased, potentially destabilis-
ing signature fitting. Hence, the objective of this study is to
assess the robustness of fitted mutational signature exposures
in single-cell data under such loss of mutations. By exploring
different levels of data loss, we aim to understand the sensitiv-
ity of the signature fitting process and identify which factors
lead to greater or lesser stability of fitted signature exposures.

2 Methodology
2.1 Data
This study uses scRNA-Seq data from 688 breast cancer cells
from a female donor aged 65 [10]. Variant calling was per-
formed based on the approach described by Liu et al. [8],
and the mutations were filtered using the best practices of the
Genome Analysis Toolkit (GATK) pipeline [11]. This way,
only high quality mutations are retained, ensuring that the
analysis is done on reliable data. Both the variant calling and
filtering were performed by my supervisors. This resulted in
a dataset where each cell is represented as an individual Vari-
ant Call Format (VCF) file, containing the somatic mutations
detected in that cell. Each VCF file specifies the chromosome
number on which each mutation is located, the genomic posi-
tion on the chromosome, a quality indicator showing whether



the mutation passed quality checks, the reference nucleotide
at that genomic position, and the alternate nucleotide, which
represents the observed mutation.

At this stage, minimal data preprocessing was required by
me, consisting only of ensuring that the individual VCF files
were correctly structured to meet the input requirements of
the signature fitting tool that is described in the next section.
The processed VCF files should list each mutation with the
chromosome number, genomic position, cell identifier, refer-
ence nucleotide, and alternate nucleotide. An example of the
resulting format is:
1 629896 Breast_Cancer_3p_LT_AATCACGAGAAATTGC-1 T A
1 631946 Breast_Cancer_3p_LT_AATCACGAGAAATTGC-1 A C
1 631983 Breast_Cancer_3p_LT_AATCACGAGAAATTGC-1 A C

2.2 Signature Fitting
Mutational signatures represent characteristic patterns of mu-
tations caused by different mutational processes, such as ex-
posure to UV light or failures in DNA repair mechanisms.
The classification of mutations is based on the six types of
base substitution-C>A, C>G, C>T, T>A, T>C, T>G-and
also takes into account the nucleotides immediately 5’ and
3’ to the mutated base. This results in 96 possible mutation
types [12].

One common approach to identify these signatures is de
novo extraction, which can uncover new signatures and uses
non-negative matrix factorization (NMF) [6]. Conceptually,
NMF decomposes a matrix of mutation counts M , where
each column represents a genome and each row represents
a mutation type, into two smaller matrices: M≈P×E. P
contains the mutational signatures, defined as a discrete prob-
ability density function over the mutation types, where the
columns represent the signatures and the rows represent the
mutation types. E contains the exposures, i.e., the number
of mutations of a genome attributed to a specific signature,
where each column represents a genome and each row repre-
sents a signature [4].

In contrast, this study uses signature fitting, a different ap-
proach in which the signatures are assumed to be known in
advance. Specifically, we use SigProfilerAssignment to fit
known reference signatures to the mutational profiles of the
cells [7]. In this setting, the matrix P is fixed and represents
a set of established mutational signatures, while the goal is
to compute the matrix E, which estimates the exposure of
each signature in each sample, defined as the number of mu-
tations attributed to it. This results in a signature-by-sample
exposure matrix representing how much each known signa-
ture contributes to the observed mutations in a sample. In
our analysis, these exposures were afterwards normalized per
sample, i.e., the exposures of each sample sum up to one, thus
showing the proportion of mutations attributed to a signature.

The function in SigProfilerAssignment to assign muta-
tional signatures is the cosmic fit function. It accepts mul-
tiple input types. Since we used mutation calling files, the
parameter input type was set to "vcf" [13]. The reference
signatures used in this study come from the Catalogue Of So-
matic Mutations In Cancer (COSMIC), version 3.4, which is
the most recent version at the time of writing. These sig-
natures were extracted from large-scale cancer genome se-
quencing studies using SigProfiler [14]. We used the set

of 96 single base substitution (SBS96) signatures [15] and
the GRCh38 reference genome build, as our input mutation
data consists of single base substitutions and is aligned to the
GRCh38 reference genome.

2.3 Simulating Data Loss
To simulate the effects of data loss, i.e. a reduced number
of mutations per cell, we performed controlled perturbation
experiments. For each level of perturbation, specifically 5%,
10%, 20%, and 40%, the specified percentage of mutations
was randomly deleted independently in each cell. These per-
centages were chosen as a compromise between covering a
broad range of data loss and maintaining sufficient resolution
at lower levels. The 5% and 10% thresholds allow us to ob-
serve more fine-grained effects of mild perturbations, while
20% and 40% simulate more substantial data loss. This range
provides a practical way to simulate varying degrees of miss-
ingness in single-cell data.

The procedure was as follows:

1. Baseline fit. Signature fitting was first performed on the
original, unperturbed dataset to serve as a baseline for
comparison.

2. Perturb-and-refit loop. For each deletion fraction d ∈
{5, 10, 20, 40}%:

(a) Randomly delete d% of mutations independently in
every cell.

(b) Refit signature exposures to the perturbed input
data.

(c) Repeat steps (a)–(b) 20 times, each time with a dif-
ferent random seed to ensure stochastic variability.
This yields 20 independent replicates for that dele-
tion level.

2.4 Robustness Metrics
Signature Presence in the Dataset
We defined four metrics to evaluate the robustness of the fit-
ted mutational signature exposures. The first metric assesses
which signatures are detected in the dataset, i.e., across all
cells, irrespective of its fitted exposure magnitude. For every
perturbation run, the exposure matrix obtained from SigPro-
filerAssignment is converted to a binary indicator: an expo-
sure value greater than zero is recoded as 1 (the signature is
present in that cell) and 0 otherwise. A signature is consid-
ered present in the dataset if at least one cell carries a non-
zero exposure. Repeating this procedure for the 20 indepen-
dent runs at each deletion level yields, for each signature, the
fraction of perturbation runs in which that signature is de-
tected. To see which signatures are present in the unperturbed
dataset, one can simply inspect the tumor mutational burden
plot produced by SigProfilerAssignment. This plot shows ex-
actly the set of signatures that are active in at least one cell.
Additionally, this plot shows how many cells a signature is
active in. That brings us to the next metric.

Consistency of Signature Presence across Cells
The second metric measures, for every mutational signature,
how many single cells actually contain that signature and how



consistently that number is preserved when mutations are ran-
domly deleted. Again, if a signature’s exposure in a cell is
greater than zero it is marked as active, otherwise inactive.
For each signature, we compute the average number of cells
in which the signature is active across the 20 runs of each
deletion level, along with the standard deviation to capture
run-to-run variability. This metric, like the first one, gives a
high-level overview of the stability of the assigned signatures,
but it definitely has limitations. The metric captures presence
of signatures, but not magnitude of exposures. A signature
might seem stable while its exposure value fluctuates widely.
Conversely, a signature might appear unstable even if its ex-
posure only changes a relatively small amount, e.g., from zero
to just a tiny positive exposure. Although these metrics are
a convenient starting point, its results should be interpreted
alongside magnitude-sensitive measures to avoid over- or un-
derestimating true robustness.

Per-Signature MRE Relative to Original Exposures
The third metric is such a magnitude-sensitive metric. It
quantifies how much a signature’s exposure deviates from the
original exposure value as mutation loss increases. Per sig-
nature and per deletion level, we compute for each cell the
mean relative error (MRE) between the original exposure and
the 20 exposures obtained after the 20 perturbation runs. This
MRE is then aggregated across all cells by taking the average
and the standard deviation. The average will tell us, for this
signature, how much the exposures deviate from the origi-
nal on average across all cells. The standard deviation will
tell us, for this signature, how much that deviation varies be-
tween cells. Specifically, for each signature and each cell, the
MRE is defined as the average absolute difference between
the original exposure and the refitted exposures across the 20
perturbation runs, divided by the original exposure:

MREs,c =
1

20

20∑
i=1

|xi − y|
y

The error is thus expressed as a proportion of the original
exposure, making it independent of the scale of the original
exposure. This was preferred over the mean absolute error,
which is scale-dependent. However, that does mean that this
metric can only be used on cells in which the signature has
an original exposure not equal to zero. Because it ignores
cells where a signature is initially absent, a complementary
measure is still needed to capture how frequently and to what
extent new exposures emerge when they were originally zero.
Nevertheless, the MRE is still useful as it provides a concise,
scale-independent view of how the exposures of a core sig-
nature shift in magnitude; specifically in the set of cells in
which that signature was originally detected.

Per-Cell Cosine Similarity between Exposure Vectors
The fourth metric shifts the perspective from signatures to
cells, summarising stability per cell instead of per signature.
For every cell, we treat its exposures as a single vector that
captures how its mutations are distributed across signatures.
At each deletion level, we take the cell’s original exposure
vector and compare it with each of the 20 perturbed vectors

Figure 1: Tumor mutational burden (TMB) plot of the unperturbed
dataset. Each column represents a mutational signature. In addition
to showing which signatures are active in the dataset overall, it also
illustrates how many cells each signature is active in; i.e., in how
many cells a given signature has an exposure greater than zero. The
y-axis is the somatic mutations per megabase.

using cosine similarity1. This gives 20 similarity scores per
cell, which we then average to obtain one mean cosine simi-
larity for that cell at that deletion level. Because cosine simi-
larity ranges from 0 (completely different pattern) to 1 (iden-
tical pattern) and ignores scaling, a high mean value indicates
that the cell’s overall signature composition remains stable af-
ter mutation loss, whereas a low value shows that its exposure
profile is easily reshuffled by perturbation.

3 Results and Discussion
3.1 Signature Presence in the Dataset
Six signatures are detected in the unperturbed dataset (Fig-
ure 1): SBS1 (deamination of 5-methylcytosine, clock-like),
SBS5 (unknown aetiology, clock-like), SBS12 (unknown ae-
tiology), SBS26 (defective DNA mismatch repair), SBS40c
(unknown aetiology), and SBS54 (possible sequencing arte-
fact) [15]. This indicates that the mutational activity in this
tumor is likely driven by a limited set of biological processes,
with the remaining COSMIC signatures playing no detectable
role.

This baseline is now compared to the perturbed datasets to
assess how signature presence changes under increasing lev-
els of data loss. The results show that the 6 originally active
signatures remain present in all perturbation runs at all dele-
tion levels, including up to 40% mutation loss (Table 1). This
demonstrates that SigProfilerAssignment is consistently able
to detect the core signatures. This consistent detection sug-
gests that strong biological signal can still be recovered even
under substantial data loss.

1We also evaluated Jensen–Shannon divergence and L2 distance,
but both metrics showed nearly identical trends to cosine similarity
(Pearson r >0.9), so only cosine results are presented.



Deletion level: 5% 10% 20% 40%

SBS1 100% 100% 100% 100%
SBS5 100% 100% 100% 100%
SBS12 100% 100% 100% 100%
SBS26 100% 100% 100% 100%
SBS40c 100% 100% 100% 100%
SBS54 100% 100% 100% 100%
SBS87 35% 45% 100% 100%
SBS93 5% 10% 50% 95%
SBS37 15% 20% 50% 95%
SBS17a 30% 100%
SBS51 10% 40%
SBS21 5% 55%
SBS57 15% 90%
SBS19 5% 70%
SBS31 10%
SBS7d 50%
SBS23 15%
SBS33 15%
SBS32 15%
SBS88 20%
SBS7a 5%
SBS11 5%
SBS92 5%
SBS7b 5%

Table 1: Fraction of perturbation runs in which each signature is
detected at the indicated deletion levels. Each row corresponds to
a signature and the columns represent the different deletion levels.
Each value shows the percentage of runs in which that signature
is active in the dataset; i.e., it has a non-zero exposure in at least
one cell. Signatures active in the original dataset are shaded green.
Signatures that are never detected are excluded from the table for
clarity.

However, as the level of mutation deletion increases, a
growing number of additional signatures begin to appear in
the fitted exposures. At 5% and 10% deletion, only 3 ex-
tra signatures emerge. At 20% deletion, this number rises to
8, and at 40%, a total of 18 non-original signatures are de-
tected in the dataset. Underlying this pattern is the way Sig-
ProfilerAssignment minimises reconstruction error. In sim-
ple terms, the algorithm iteratively selects which signatures
to include with fixed relative error thresholds. A signature is
dropped if removing it raises the relative error by less than
0.01, and a signature is re-added if including it lowers the er-
ror by more than 0.05 [7]. In a sparse catalogue each remain-
ing mutation accounts for a disproportionately large share of
the 96-context profile, so deleting a signature that explains
even a single mutation can breach the 1% drop limit, while
adding a new signature to explain that mutation easily clears
the 5 % add threshold. As mutation counts fall, the algorithm
will become more eager to keep and add a signature to mini-
mize the error, even if it contributes only a handful of muta-
tions. From a statistical standpoint, this is similar to fitting a
complex model with many parameters to a very small dataset,
many different models could explain the data, and without a
strict penalty for complexity, the optimizer chooses a com-

Figure 2: For each of the six originally active signatures, the average
number of cells in which the signature is active across the 20 pertur-
bation runs of each deletion level, with standard deviation across
runs.

Figure 3: The distribution of normalized exposures in the original
data, per signature.

plex model that almost perfectly explains the few data points.
The consequence is overfitting: the additional signatures im-
prove the fit on the given sample but are likely modeling sam-
pling noise rather than real signal.

Additionally, several of the extra signatures have muta-
tional profiles that are moderately similar to one of the six
original signatures, e.g., SBS87 shares a cosine similarity of
0.75 with SBS1, while SBS37 is close to both SBS12 (0.82)
and SBS26 (0.77). When mutations are removed, distinguish-
ing contexts can disappear, allowing the model to swap a few
remaining mutations onto another, similar signature while
still improving the residual.

Future analyses could cross-check the biological plausibil-
ity of any newly fitted signature, e.g., SBS87 is known to be
caused by thiopurine chemotherapy, so its presence in sam-
ples with no history of that treatment would likely indicate a
false positive assignment.

3.2 Consistency of Signature Presence across Cells
In the original data, the six identified signatures are not nec-
essarily active in all cells, e.g., SBS26 is active in 574 cells,
while SBS54 is active in only 8 cells (Figure 1). We were
interested to see whether these numbers remain similar to
the original or if they change drastically when mutations are
deleted. The obtained results show that this depends on the



Figure 4: The fraction of 40% perturbation runs in which SBS26
disappeared plotted against mutational burden. Every point repre-
sents one cell that originally contained SBS26. The x-axis measures
the total number of mutations that cell carried in the unperturbed
data. The y-axis shows how often SBS26 vanished at the 40% dele-
tion level (as a fraction of the 20 perturbation runs). The LOWESS
(locally weighted scatterplot smoothing) curve is also shown.

Figure 5: Mutational profile of SBS5 [16]

Figure 6: Mutational profile of SBS1 [17]

signature (Figure 2).
For example, SBS1 remains remarkably consistent across

all deletion levels. The number of cells in which it is de-
tected falls from 688 in the unperturbed dataset to an average
of 672 after the 40% mutation dropout, which is only a 2%
decrease. This may be explained by the fact that SBS1 has
a relatively distinct mutational profile, especially compared
to the other five original signatures, which all have a cosine
similarity with SBS1 of less than 0.19. Perhaps this makes
the signature less likely to be confused or replaced during
fitting. One might expect signatures whose exposures are al-
ready near zero to be the first to drop below detection after
downsampling; yet SBS1 actually has the lowest non-zero ex-
posure levels among the six signatures (Figure 3), suggesting
that profile distinctiveness may outweigh exposure magnitude
in determining robustness.

In contrast, as data loss increases, SBS26 is detected in
fewer cells, while SBS12 is detected in more. Interestingly,
these two signatures share a high cosine similarity of 0.93,
indicating that mutations that were originally assigned to

SBS26 might be assigned to SBS12 instead because of lim-
ited context. Note that in the original fit every cell carries
either SBS26 or SBS12, never both. We found that 93% of
cells where SBS26 disappears in the 40% dropout level show
positive exposure for SBS12 in every run where SBS26 dis-
appears. A very similar trend can be seen for SBS40c and
SBS5: the presence of SBS40c decreases while SBS5 in-
creases; they share a cosine similarity of 0.91; every cell orig-
inally carries either one or the other; and 98% of cells where
SBS40c disappears in the 40% dropout level show positive
exposure for SBS5 in every run where SBS40c disappears.
These observations further suggest that the model may con-
fuse highly similar signatures under data loss. Future work
could confirm this “signature swapping” by tracking the ex-
act mutations that were assigned to SBS26 or SBS40c in the
original fit and verifying whether those same mutations mi-
grate to SBS12 or SBS5 after downsampling.

There could be several other factors that influence the con-
sistency of signature presence across cells. A first possibil-
ity is the number of mutations per cell. For example, at the
40% deletion level, the exposure of SBS26 tends to drop to
zero in cells with lower mutation counts more often than in
cells with higher mutation counts (Figure 4). This suggests
that low mutation counts make it harder to distinguish SBS26
from SBS12. A second possible factor is the flatness of a sig-
nature’s mutational profile. Consider for instance SBS5, its
profile is a relatively even distribution over all 96 mutation
types (Figure 5) and is therefore a flatter signature than SBS1
for instance, whose profile has most of its signal in the C>T
context (Figure 6). The hypothesis here is that flatter sig-
natures are more sensitive to data loss because they lose the
fine balance that lets the model choose one flat profile over
another, while peaked signatures keep their diagnostic spike.
This is consistent with recent benchmarking and methodolog-
ical studies showing that flat signatures such as SBS5 and
SBS40c are systematically harder to recover, especially when
mutation counts are low or when other similar flat signatures
are present, whereas sharply peaked signatures are fit more
reliably [18],[19]. Future analyses could quantify signature
flatness and its effects on the consistency of signature detec-
tion.

3.3 Per-Signature MRE Relative to Original
Exposures

As one might expect, the mean relative error increases
steadily as more mutations are deleted. Exposures deviate
only modestly after a 5% loss but grow progressively larger
at 10%, 20%, and reach their highest levels after 40% dele-
tion (Figure 7). This shows that the higher the data loss, the
more exposures deviate from their original values. Although
the standard deviation also rises as mutations are removed, it
increases more slowly than the mean relative error. Conse-
quently, the relative spread (SD / mean) is highest at the 5%
and 10% deletions, implying that, when only a small fraction
of data is missing, a signature’s exposure generally remains
close to the original but drifts more in certain cells. By the
time 20% and 40% of mutations are lost, the average error
is large but the SD accounts for a smaller proportion of that
mean, showing that deviations are now more uniformly high



Figure 7: Heatmap of mean relative error. The rows are deletion lev-
els and the columns are signatures. Per cell, the MRE is computed
across 20 perturbation runs. The values in the heatmap show the av-
erage and standard deviation across all cells.

Figure 8: Heatmap of mean relative error. SBS5 is merged with
SBS40c, and SBS12 is merged with SBS26.

across the cell population. In other words, lower data loss
keeps exposures closer to their original values on average, but
this varies more from cell to cell; higher data loss pushes ex-
posures further away on average, and this is a more consistent
shift across all cells.

Two more key points can be observed. First, the exposure
of SBS54, detected in only eight cells and suspected to be a
sequencing artefact, is noticeably less stable than that of the
other signatures. Second, when highly similar signatures are
merged and thus considered as one and the same signature
(e.g., SBS5 + 40c and SBS12 + 26), their mean relative error
drops by an average of 58% across all deletion levels (Figure
8), indicating that these signatures were often interchanged
during fitting, just like we hypothesized previously.

3.4 Per-Cell Cosine Similarity between Exposure
Vectors

Overall, exposure vectors of cells diverge progressively from
the originals as data loss rises, yet the effect is uneven, some
cells already show low similarity at 5% deletion, whereas oth-
ers remain highly consistent even after 40% of their mutations
are removed (Figure 9). Several factors can influence why
some cells are more stable than others. One possible factor is
the number of mutations a cell contains. When we plot mean
cosine similarity against mutation count (Figure 10), we see
that cells with more mutations tend to preserve their exposure
vectors better. In fact, Spearman correlations between mu-
tational burden and mean cosine similarity are positive and
highly significant at every deletion level (ρ ≈ 0.38–0.59 and
p ≪ 10−24), indicating such a monotonic relationship. In
other words, the absolute number of mutations matters. Los-
ing 40% of 500 mutations still leaves plenty of signal to re-
cover a similar exposure vector, whereas losing 40% of just a

Figure 9: For each cell, the average cosine similarity between its
original exposure vector and the 20 perturbed exposure vectors is
computed. Per deletion level, the distribution of these mean cosine
similarities is shown, with every data point representing a cell.

hundred mutations leaves very little data points, causing the
exposures to drift.

Another possible factor is the Shannon entropy of a cell’s
original exposure vector, which measures how evenly its mu-
tations are distributed across signatures. An entropy of 0
bits would mean every mutation is assigned to a single sig-
nature, whereas higher values reflect a flatter mix in which
many signatures contribute smaller, similar fractions. Anal-
ysis shows that cells with higher-entropy exposure vectors
tend to show lower mean cosine similarity after perturbation,
and this effect strengthens as more data is removed. Spear-
man correlations support this observation, indicating a signif-
icant negative relationship, especially at higher deletion levels
(ρ ≈ −0.27 at 5% deletion and ρ ≈ −0.53 at 40% deletion;
p ≪ 10−12). If a single signature accounts for the bulk of mu-
tations in a cell, that dominant process remains obvious even
if some mutations are removed. In contrast, if a cell’s muta-
tions are divided among numerous signatures with small con-
tributions, small perturbations can lead to disproportionate
shifts: one signature might drop out or another might become
relatively more prominent. As the deletion fraction rises, the
vulnerability of high-entropy cells grows, explaining why the
correlation becomes steadily more negative at 20% and 40%
loss.

4 Responsible Research
4.1 Reproducibility
All elements required to replicate this study are specified
in detail in the Methodology section (Section 2). The ap-
proach of variant calling is described by Liu et al. [8] and
the GATK workflow for filtering is well-documented2, but the
exact pipeline is not available as this was done by my supervi-
sors. However, the resulting per-cell VCF files, along with all
scripts for preprocessing, signature fitting, data-loss perturba-
tions and metric computations, are available in this project’s

2GATK tutorial is available at gatk.broadinstitute.org

https://gatk.broadinstitute.org/hc/en-us/articles/360035531112--How-to-Filter-variants-either-with-VQSR-or-by-hard-filtering


Figure 10: Relationship between number of mutations per cell and
mean cosine similarity between exposure vectors. Each point repre-
sents one cell, plotting its number of mutations in the unperturbed
dataset against the mean cosine similarity between its original and
perturbed exposure vectors. Colours indicate the four deletion lev-
els, and the corresponding ordinary-least-squares (OLS) linear re-
gression lines highlight the correlation.

GitLab repository3 which is accessible to users authorized by
TU Delft. Signature fitting uses the open-source tool Sig-
ProfilerAssignment4 which internally provides the reference
set of COSMIC v3.4 SBS96 signatures. The same signa-
tures were also downloaded in numerical form to compute
the pairwise cosine similarities between their mutational pro-
files5. Perturbation experiments were repeated twenty times
per deletion level with random seeds uniformly drawn from
the range 10,000 to 99,999. The complete seed log is included
in the GitLab repository, ensuring that every stochastic deci-
sion can be replicated exactly.

4.2 Ethical Considerations
The dataset of raw scRNA-Seq reads is publicly available.
Discovery Life Sciences [20] first procured the breast can-
cer cells from the 65-year-old female donor; those speci-
mens were then supplied to the biotechnology company 10x
Genomics, which performed the single-cell RNA-sequencing
and released the resulting dataset6. In its public ethics state-
ment, Discovery Life Sciences affirms that it “is committed to
quality and integrity with CLIA-certified labs, stringent IRB
and Ethics Committee compliance, and all of the applicable
regulations, guidelines and best practices that meet or exceed
the U.S. and international regulatory requirements” [21]. The
company further emphasises strict adherence to personal data
protection regulations, including the GDPR, and describes its
commitment to respect and protect the privacy of individuals.
These statements indicate that the biological material used in

3Repository is available at https://gitlab.ewi.tudelft.nl/
goncalveslab/bachelor-projects/bsc-rp-2425-rebecca-nys

4SigProfilerAssignment is available at https://github.com/
AlexandrovLab/SigProfilerAssignment

5COSMIC signatures are available at cancer.sanger.ac.uk
6Raw scRNA-Seq reads are available at 10xgenomics.com

Figure 11: Relationship between entropy of the original exposure
vector and mean cosine similarity between exposure vectors. Each
point represents one cell, plotting its original exposure vector en-
tropy against the mean cosine similarity between its original and
perturbed exposure vectors. Colours indicate the four deletion lev-
els, and the corresponding ordinary-least-squares (OLS) linear re-
gression lines highlight the correlation.

this study was collected through procedures that meet ethical
and legal standards.

5 Conclusions and Future Work
This study investigates how progressively removing muta-
tions affects the robustness of fitted mutational signature ex-
posures and highlights several factors that possibly influence
this robustness. After removing up to 40% of mutations Sig-
ProfilerAssignment still recovered the six signatures found
in the original data, indicating that key biological signals
can survive the sparsity typical of single-cell data. At the
same time, the number of additional signatures assigned rises
sharply with data loss, reflecting a growing risk of overfitting.
Additionally, exposure seems to shift from one signature to
another very similar signature, suggesting that distinguishing
similar signatures is difficult with little data available. With
only 5% or 10% loss, exposures generally remain close to
their original values, although this depends on the cell. When
20% or 40% of mutations are removed, the exposure distri-
butions of all cells consistently move further away from the
original distribution. Two cell-level features can explain this
behaviour. First, cells with more mutations were more stable
because the fitting algorithm has more information to work
with. Second, cells dominated by one or two signatures were
more stable than cells whose mutations were spread evenly
across many signatures.

Because the study is limited to a single tumor, employs
one fitting tool and uses uniform random dropout, these find-
ings should not be blindly generalised. A further limita-
tion stems from the reference catalogue itself: COSMIC v3.4
SBS96 signatures were extracted de novo from bulk genomes
across many cancer types, a context that differs from single-
cell data. As such, the COSMIC library may contain signa-
tures that do not accurately reflect the mutational processes
active in individual cells, or may lack signatures that do. Re-

https://gitlab.ewi.tudelft.nl/goncalveslab/bachelor-projects/bsc-rp-2425-rebecca-nys
https://gitlab.ewi.tudelft.nl/goncalveslab/bachelor-projects/bsc-rp-2425-rebecca-nys
https://github.com/AlexandrovLab/SigProfilerAssignment
https://github.com/AlexandrovLab/SigProfilerAssignment
https://cancer.sanger.ac.uk/signatures/sbs/
https://www.10xgenomics.com/datasets/750-sorted-cells-from-human-invasive-ductal-carcinoma-3-lt-v-3-1-3-1-low-6-0-0


fining the reference set by extracting de novo signatures di-
rectly from single-cell catalogues and comparing them with
COSMIC could reveal missing or mismatched profiles and
ultimately provide a more accurate and robust framework for
understanding mutational processes at the cellular level.

At least five lines of future work can follow this study:
(i) repeat the perturbation experiments on tumors of dif-
ferent types and mutational burdens; (ii) track the consis-
tency of signature exposures across perturbation runs; (iii)
investigate how SigProfilerAssignment’s reconstruction error
changes with mutation loss; (iv) delete mutations from the in-
put data in a biased way (e.g. certain chromosomes) or simu-
late noise and (v) carry out biological and clinical validation
by checking that the single-cell signatures match those seen
in bulk sequencing of the same tumor and by testing whether
cells predicted to harbour, e.g., a DNA-repair defect actually
behave accordingly. Addressing these points will strengthen
the analysis of the robustness of fitted mutational signature
exposures in single-cell data.
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