ASYMPTOTIC APPROXIMATIONS OF FIRST INTEGRALS FOR A
NONLINEAR OSCILLATOR

S. B. Waluya T and W.T. van Horssen

Department of Applied Mathematical Analysis, Faculty of Information Technology
and Systems, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands
(stevanus@dv.twi.tudelft.nl, W.T.vanHorssen@math.tudelft.nl)

Abstract. In this paper a generalized Rayleigh oscillator will be studied. It will be shown that
the recently developed perturbation method based on integrating factors can be used to approxi-
mate first integrals and periodic solutions. The existence, uniqueness and stability of time-periodic
solutions are obtained by using the approximations for the first integrals.
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1. Introduction. The fundamental concept to reduce a first order ordinary dif-
ferential equation to an exact one by means of integrating factors has been extended in
[9] to systems of first order ordinary differential equations. In [10, 11] a perturbation
method based on these integrating factors has been presented for regularly perturbed
ordinary differential equations (ODEs). When approximations of integrating factors
have been obtained an approximation of a first integral can be given. Also an error-
estimate for this approximation of a first integral can be given on a time-scale. It
has also been shown in [10] how the existence and stability of time-periodic solutions
for weakly nonlinear problems can be obtained from these approximations for the
first integrals. In this paper the recently developed perturbation method based on
integrating factors is used to approximate first integrals and periodic solutions for a
generalized, nonlinear Rayleigh oscillator of the form

. 72\ .
(1.1) Z+Z+b22c<1?>Z,

where Z = Z(t), and where b and c are constants. The dot represents differentiation
with respect to t. In this paper we consider two cases: (i) b = O(e) and ¢ = €2, and
(ii) b = O(1) and ¢ = €, where € is a small parameter satisfying 0 < ¢ << 1. In this
paper not only asymptotic approximations of first integrals are constructed but also
asymptotic approximations of periodic solutions and their periods are determined.
The presented results include existence, uniqueness, and stability properties of the
periodic solutions. In [3] van der Beek uses (1.1) with b = O(¢) and ¢ = €2 as
mathematical model to describe flow-induced vibrations of an oscillator with one
degree of freedom in a uniform windfield. The oscillator and the frame are shown
in Figure 1.1. The cylinder with ridge is rigidly attached to two shafts. These two
shafts can simultaneously move within two air-bearings in the z-direction. The springs
provide the restoring forces in the z-direction. The constant windflow is in y-direction.
The mathematical model that describes the flow-induced vibrations of the oscillator
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with one degree of freedom in a uniform wind-field can be given by

. 72\ .
(1.2) Z+ 7 +eaZ?=é (1 ?> Z,

where € is a small parameter and where a is a constant of order one. In [3] it has
been shown how € and a depend on the physical quantities such as the windvelocity,
the aerodynamic drag and lift forces acting on the cylinder, and so on. When the
four springs are assumed to be nonlinear springs we can take (1.1) with b = O(1) and
¢ = € as a mathematical model to describe the flow-induced vibrations of the oscilla-
tor. Doelman and Verhulst [1], Wiggins [7], and many others used the Melnikov or
Poincare-return map technique to study similar equations. In fact (1.1) has also been
considered in [1] using the Poincare-return map technique. However, it has not been
shown in [1] that (1.1) has at most two limit cycles. Using the perturbation method
based on integrating vectors and some numerical calculations we will give strong nu-
merical evidence that equation (1.1) has at most two limit cycles. Moreover, we will
give in this paper explicit approximations of the periods of the periodic solutions.
In this paper we show that straightforward expansions in € can be used to construct
asymptotic results on long time-scales. To obtain these results no classical perturba-
tion techniques (such as averaging (see [2], [4]), or multiple (time) scales (see [6], [11]),
or Melnikov/Poincare-return map techniques (see [1], [5], [7], [8])) are used. This pa-
per is organized as follows. In section 2 of this paper the perturbation methods based
on integrating factors and an asymptotic theory will be given briefly. It will be shown
in section 3 of this paper how approximations of first integrals can be constructed. In
section 4 it will be shown how the existence and stability of time-periodic solutions
can be obtained. Finally in section 5 of this paper some conclusions will be drawn
and some remarks will be made.
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2. Integrating factors and an asymptotic theory. In this section we briefly

outline the perturbation method based on integrating factors as given in [9, 10, 11].
We consider the system of n first order ODEs (n > 1)

(2.1) — = f(y:1),

where f = (f1, f2,..., fn)T,g = (y1,92,---,Yn)T, and where the superscript 7" indi-
cates the transposed. For each i, 1 <i < n,y; = y;(t), and f; = fi(y1, 2, ., Yn,t).

We assume that fi, fs,..., fn are sufficiently smooth such that a twice continuously
differentiable first integral
(2.2) F(y1,y2,--«yYn,t;¢) =0

exists, where c is an arbitrary constant. Furthermore, we assume that there exist
continuously differentiable integrating factors 1, o, . . ., t, with

wi = wi(Y1,92, -y Yn,t), Vi, ¢ = 1,2,... n. To obtain the relationships between the
first integral and the integrating factors we multiply each i-th ODE in (2.1) with the
integrating factor u;, and we then add the so-obtained equations, yielding

(23) Y rw
: By T B LYY,
where pt = (pu1, pt2, . . ., ptn) T In fact p can be considered as an integrating vector. This

exact ODE should be the same equation as the equation obtained by differentiating
(2.2) with respect to ¢t. That is,

B Y2, B (4 f) =0, and

(2.4)
oF . d oF _ d OF  dyn | OF _
Syt Ty dt Tt oy, a T =0
are equivalent, and we can write
VF =y,
(2.5)
5 = el
T
where V = (6%1, 6%2, cee 6161) ) . Eliminating F' from (2.5) by differentiations, we
obtain
i Oy . .
5% - 6_y15 1 S 1<y S n,
(2.6)
op
an = Vi)

All integrating vectors pu for the system of ODEs (2.1) have to satisfy the system of

in(n + 1) first order, linear PDEs (2.6). Now we consider the following system of n
first order ODEs

(2.7) — = fy. t;e),
where ¢ is a small parameter, and where the function f has the form

(2.8) fy.tie) = f (g 1) +ef (y: 1)



ASYMPTOTIC APPROXIMATIONS OF FIRST INTEGRALS 4

An integrating vector u = u(y, t; €) for system (2.7) has to satisfy (2.6). Assume that
4 can be expanded in a power series in ¢, that is,

(2.9) wy tie) =p (y,t) +ep (y, 1) +...+€n (y,t)+....

We determine an integrating vector up to O(¢™). An approximation Fg,, of F'in the
first integral F' = constant can be obtained from:

VFapp = potep, +...+€e"p .

(2.10) ,
Fapp — m
oo~ (g rren) o]

where the * indicates that terms of order €™ %! and higher have been neglected. Then
we obtain

(2.11) Fopp(y,t;€) = Fo(y,t) +eFi(y, t) + ...+ €™ F(y, ).

It should be observed that an approximation up to O(e™) of an integrating vector u
has been used to obtain an exact ODEs up to O(e"™+1), that is,

dF, d
TPP = E(F0+6F1+...+e’”Fm)
dy  OF,
= VE,, — —
g T o
— (e +oremn,) £]
(2.12) = MR (Yt gy 56,

kok m—+1

where the indicates that only terms of order € and higher are included. Let
initial values for problem (2.7) be given for ¢ = 0. Then for ¢ — 0 it follows from
(2.12) that( when R,,4+1 is bounded):

t
Fapp(g(t),t; €) — Fapp(g((]), 0;¢) = eerl/ Ryg1(..)dt =
0

(2.13) Fopp(y, t;€) = constant + O(e™1!), 0 <t < T,
or

m L
(2.14) Fapp(y,t;€) = constant + O(e™), 0 <t < =

where T' and L are e-independent constants.

3. Approximations of First Integrals. In this section we will show how the
perturbation method based on integrating factors can be applied to approximate first
integrals for a generalized Rayleigh oscillator. In the first part of this section we will
consider the linear, perturbed case and in the second part the nonlinear, perturbed
case.
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3.1. The case b = O(¢) and ¢ = €. Consider the mathematical model which
describes the flow-induced vibrations of an oscillator with one degree of freedom in a
uniform windfield

. 72\ .
(3.1) Z+Z+eaZ?=¢ <1— ?> Z,

where 0 < € << 1 and a > 0. To analyze equation (3.1), the equation is first written
as a system of first order ODEs. Let X1 = Z, Xo = Z, from (3.1) we obtain

Xl = X2)
(3.2) | 2
X2 = -Xi-eaXi+e (1- )X

In polar coordinates r and 6 (where X; = rcosf and Xo = rsinf) system (3.2)
becomes

v = —ear?cos®fsinf + ¢ (1 _ Zein® s;rﬁe) rsin®@ = fi(r,0),
(3.3)
b = —1-—earcos®d+e (17T25i3—“29) cosfsinf = fo(r,0).

Multiplying the first equation in (3.3) by w1 and the second one by s respectively,
it follows from (2.6) that the integrating factors p1 and po have to satisfy

O _ Opa
0 or
(3.4) G = —E(ufr+ pafo),

% = _%(lel + p2 fa).

Expanding p1 and po in power series in e, that is,

pa(r,0,t5€) = p1o(r,0,t) +eura(r,0,t) + 2pra(r,0,t) + ...,
(3.5)
pa(r,0,t5e) = poo(r,0,t) + euoa(r,0,t) + 2uaa(r,0,t) + ...,

substituting f1, fo and the expansions for p1 and p9 into (3.4), and by taking together
terms of equal powers in ¢, we finally obtain

Opio . Opzo
00 - or
0y . Opio0 . Ouao
(3.6) O(€):q Tt = =5
Opz0 . Opzo
ot - 06
o1 _ Oua2
a6 - or
o .
(3.7) O(e') : Bt = % (11,0ar? cos® Osin @ + pa1 + poar cos® §)
op2,1

ot % (M1,0a7“2 cos? 0sin 0 + pio1 + pi2,0ar cos® 9) ,
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and O(e") with n > 2:

Opin . Ouzn
20 or
6%1571 = % (Ml,n—IGTQ cos® Osinf — 1 n 2 (1 - @) rsin? 0
(3.8) +p2,n + pon_1ar cos® 6 — 12 n—2 (1 — ’”25‘3—’“29) cos® 0'sin 9) ,
6%2571 = % (“1771—1“7“2 cos? Osinf — 1 2 (1 - TQS‘B—HZB) rsin? 0
+p2,n + H2,n—1a7 €08% 0 — fi2n 2 (1 — ’”2513—“20) cos® 0sin 9) .

The O(e")-problem (3.6) can be solved, yielding p10 = hi0(r,0 + t) and pso =
6h1 0 Oha o

ho,o(r,0 +t), with = —5=%. The functions hi o and hg are still arbitrary and
will now be chosen as snnple as possible. We choose h1 ¢ =1 and he g =0, and so
(39) /Ll,O = 1, /JJ210 = 0
The O(e')-problem (3.7) then becomes:
6#1,1 _ 6#2,1
a0 —  Tor
(3.10) 91— 2ay cos? fsin 2421
ot or
Opaz,1

o —2ar? cos 0sin” 0 + ar? cos® 9%.

The O(e!)-problem (3.10) can also readily be solved, yielding

pia = hia(r,0+1t)+ 2arcos® 6,
(3.11)
pai1 = hoi(r,0+t) —ar?sin + ar? sin® 0,

with 6h1 1 — agj’l. The functions h;; and hg; are still arbitrary. We choose these

functlons as simple as possible: h; 1 = ho 1 = 0. And we obtain

Hi1 = %ar cos® 6,
(3.12)

H21 = —ar?sinf + ar?sin’ 6.

The O(e?)-problem (3.8) now becomes

ot _ Ouapz
a6 - or

dme  _ 9 2a?r3 cos® O sinf — 1 — rZsin’6 S‘n ) rsin? 0
ot or

Dz _ 2 (2a2r3 cos® 0 sin ) —

5 1 r’sin’0 5‘“ e)rsin29

(3.13) (—ar2 sin® 6 + ar? sin® 9) ar cos® 0 + o, 2)
)

(—ar2 sin® 0 + ar? sin® 0) ar cos3 0 + o, 2)
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The solution of (3.13) is given by
pre = hia(r,0+1t)+ (=5 + 3r%) 0 — ;sin260 — 1r?sin 26

+%a 72 cos 20 + —r 25in 46 + —a 72 cos 46 + 19—2a r2 cos 66,

(3.14)
_ r 1,3 5 2,3 g
p22 = haa(r,0 +1t) — 5 cos20 + gr’ cos20 + gza’r’ sin 20

——400549+ 4a r sm49+—a 3 sin 66,

Ohi 2 Oha 2

with (5 — gr ) + 55 = 5 The functions hi 2 and ho o are still arbitrary. We

choose these functions as simple as possible

1 1
(3.15) h12=0, ha2 = o7~ §T3a
and we obtain
P12 = (—% + %7‘2) 0 — sm29 — —r 2sin 260 + 4a r2 cos 20
+3—2r sin 40 + —a2r2 cos 46 + 192a r2 cos 66,
(3.16)
oo = (%r — %r?’) — 5 cos20 + %r?’ cos 20 + 5’—6a2r3 sin 26

r3 1,23 1 .23
—55 cos40 + s1a°r sm49+%a 7° sin 66.

The O(e™)-problems (3.8) with n > 2 can be solved in a similar way. An approxima-
tion Fy of a first integral F' = constant can be obtained from (3.9), (3.12), (3.16) and
(2.10), yielding

1 1 1
Fi(r,0,t;¢) = r+ear®cos®f+ ¢ { (57’ - §7’3> 0 — yd sin 26
1 5 1
+—73sin 20 — ——a?r3 cos 20 — — 13 sin 46
12 192 96
1 1
(3.17) —%a%‘g cos46 — %a%g cos 69} .

How well F approximates F in a first integral F = constant follows from (2.12)-
(2.14). In this case we have

dFy . m m
T [ sn) o) o]
= [fitemafi+Epafi+epoafot Epsafa],,
(3.18) = &Rs(r,0),

where f1, fa, 1,1, 2,1, 1,2, pl2,2 are given by (3.3),(3.12) and (3.16). From the exis-
tence and uniqueness theorems for ODEs we know that an initial-value problem for
system (3.2) is well-posed on a time-scale of order % This implies that also an initial-
value problem for system (3.3) is well-posed on this time-scale. From (3.3) it then
follows on this time-scale that if (0) is bounded then r(t) is bounded and 6(t) is
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bounded by a constant plus ¢. Since |Rs| < ¢g + 1t on a time scale of order %, where
¢o, ¢1 are constants, it follows from (3.18) that

¢
(3.19) Fi(r(t),0(t),t; €) = constant + 63/ Rs(r(s),0(s), s;€)ds,
0
and so,
Fi(r(t),0(t),t;¢) = constant + O(e®), 0 <t < Ty < oo,
L
(3.20) Fi(r(t),0(t),t;¢) = constant + Ofe), 0 <t < —,

where Ty and L are e-independent constants. In a similar way we can construct a
second (functionally independent) approximation Fs of a first integral by putting

(321) H1i,0 = 0, H2.0 = 1
in (3.6) instead of (3.9),

M1 = —asinf+ %sin3 0,
(3.22)

pe1 = —arcos®o,

in (3.7) instead of (3.12), and so on. After some elementary calculations we then find

Fy(r,0,t;e) = O+t+e (—ar sinf + gr sin® 9) +é2 {%aQTQG

1 1 23 1
+ﬂr2 cos 20 — 1 cos 20 + %a2r2 sin 260 — %72 cos 46

1 1
(3.23) —I—EaQrQ sin 46 + @aQTQ sin 69} .

3.2. The case b = O(1) and ¢ = e. We consider in this subsection
. 72\ .
(3.24) Z+Z+b7%=¢ 1-= 12

where b > 0, and 0 < e << 1. Let Z = X1, Z = Xy, from (3.24) we obtain

X=X = g1(X1, X2),
(3.25) . .
XQ:*lebX12+€(1*%) XQ = gg(Xl,XQ).

Multiplying the first equation in (3.25) by the integrating factor pq and the second
one by pa, it follows from (2.6) that the integrating factors p; and pe have to satisfy

Op _ Opa
X, 09Xy
3
(3.26) = _6;)9(1 (191 + p1292)
Oz _

G2 = % (g1 + p2g2) -
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For a time-independent first integral, the integrating factors p; and po have to satisty

ni1g1 + p2ge =0,

(3.27)
Oy _ Opo
90X, 0X1

where p1 = p1 (X1, Xo;€) and ps = po(Xi, Xo;e). We assume that the integrating
factors p1 and po can be expanded in power series in €, that is,

w1 = p,0(X1, Xo) Fepr (X, Xo) + ..,
(3.28)
p2 = p20(X1, Xo) + €p21 (X1, Xo) + ...

The expansions (3.28) are substituted into (3.27) and terms of equal power in ¢ are
taken together, yielding

Opi0 _ 92,0
0Xo, T 09Xy

(3.29) O(e)
p1,0X2 + poo(—X1 —bX7) =0,

Opi,1 _ Opa
X2 — 0X1>

(3.30)  O(e') :
9 x2
11 Xs + po1 (—X1 — bXE) + piao (1 .S ) X, =0,

and the O(e™)-terms with n > 2 are

Opi,n _ Opan
0X> ~  0X1?

(3.31) 2
1, X2 + 2 n—1 (1 - %) Xo+ pan (_Xl - bX12) =0.

From (3.29) it follows that

onsp 1
00X, Xo

0 1
H2,0 T

(3.32) e

(X1 + bX7) (X1 + bX7) poo = 0.
Using the method of characteristics we easily find the general solution of the PDE

(3.32)

1

1 1
(3.33) p20 = f (—X22 + X7+ 3

5 5 bxf) Xo,

where f is an arbitrary function. From (3.29) p1,0 then also easily follows. Now take
t2.0 and pg o as simple as possible, for instance

oo = Xo,
(3.34)
Hi0 = X1 + bX12

Using (3.34) the O(e')-problem (3.30) can then be rewritten as

Opa, 1
a)?; e (X1 +0X2) popy + (1 - X3) =0.

Opgn 1 2
X, X, (X1 +bX7)

(3.35)
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The corresponding characteristic ODEs of this PDE (3.35) are

mo- 1
(3.36) = L (X +bXD),

das —xz (X0 +bX7) pay — (1 - X3).
It follows from (3.36) that

dX; —-X3 oo, Los 1,

3.37 - X2+ SbXP 4+ 2X2 =k
(3:37) dXs X, 1bxz 2or Tttt ia =i

d/L211 1
(3.38) X, = X2 (X1 +6X7) poy — (1 - X3),

where ky is a constant of integration. Using (3.37) it follows from (3.38) that the
solution of the homogeneous equation (3.38) is

1 1
(3.39) H2,1, = C\/(kl - §X12 - ngf>7

where C' is constant. The general solution of the inhomogeneous equation (3.38) then
easily follows by applying the method of variation of parameter, yielding

X1 (14 2k — 2 — 23
H21 = / ( - k )d7‘+k2
0

V(b1 — 32— 20r2)

1 1
(3.40) \/<k1 — o XP - gbxf),

where ko is a constant of integration. From (3.30) we obtain

€
Xo
/X1 (—1 + 2k — 12— gbrg)

0 \/(kl —1r2— %br3)
X3

(3.41) %\/5 (X1 +bX7) — <X2 —~ ?> :

2 X3
M1 (X1 4+ bX7) pog — | Xo— 22

3

dr + ko

In (3.40) and (3.41) k2 can be considered as an arbitrary function of k1 and so ke =
g (%X% + %bX13 + %X%), where g is an arbitrary function. We will take g = 0 since we
are interested in approximations of first integrals that are as simple as possible. An
approximation F; ; of F' in a time-independent first integral F(X1, Xo;€) = constant
can be obtained from (3.34), (3.40), (3.41) and (2.5), and

VFi1 = pytep,
(3.42)

OF: 1

ot

0,
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yielding
F11(Xa, Xose) =
1 1 1 1 —14+2ky —r® — —b
SXT+ SbXP+ S XS +e|=V2 / ( ke T)dr
2 3 2 4 0 Wﬂ — 12— 2pp8)
1 1 1 142k —r° — —b
+2V2 <k1 +oX2 4 —bxf) / = g,
2 2 3 0 \/(kl—%r2—§br3)
X
! 1 1 1
+/ 2 kg —=r2—=br3 Z 2k — 1% = Zbr3 dr
A 3 3
(3.43)

How well F} 1 approximates F' can be shown by differentiating F ; with respect to ¢,
that is,

dF Xt 142k — 1% — 2b 3
(3.44) LLL _ 2 \/_X2<X2 >/ R S

dt / 7,2 1 bT’3

From the existence and uniqueness theorems for ODEs we know that initial value
problems for system (3.25) are well-posed on 0 < ¢ < Ty < oo. This implies that
system (3.44) is well-posed on 0 < t < Ty. So, we have

(3.45) F11(X1, X2) = constant + (’)(62), 0<t<Ty,

where Tj is an e-independent constant.

4. Approximations for time-periodic solutions. In section 3 we constructed
asymptotic approximations of first integrals. In this section we will show how the
existence, the stability, and the approximations of non-trivial, time-periodic solutions
can be determined from these asymptotic approximations of the first integrals.

4.1. Time-periodic solutions when b = O(¢) and ¢ = ¢2. Using these ap-
proximations it is possible to study the existence and stablhty of tlme periodic solu-
tions. Let T < oo be the period of a periodic solution and let ¢; be a constant in
the first integral F'(r, 0, t; €) = constant for which a periodic solution exists. Consider
F=c fort=nT and t = (n —1)T with n € N, then

F (r(nT),0(T),nT;e€) = c1,
(4.1)
F(r(n=1T),0((n—1T),(n—1)T5¢) = ci1.

For the autonomous equation (3.3) we may assume without loss of generality that
6(0) = 0. From (3.3) it follows that

r(nT) = r((n—1T)+ O(e),
(4.2)
O(nT) = 6((n—1)T)—T+ O(e).
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Approximating F' by Fy (given by (3.17)), eliminating ¢; from (4.1) and using (4.2),
we obtain

r(nT) = r((n—1T)+e*2r (%T ((n—1)T)
(4.3) —%r3((n _ 1)T)) + o).

on a time scale of order 1. In fact (4.3) defines a map Q : v — Q(r) < r, = Q(rn—1)
with 7, = r(nT). We define a new map P by neglecting the term of O(e3t) in (4.3).
That is, P : 7 — P(7) & 7 = P(fp—1) with 7, = #(nT). It will be shown that for
r>0:
(i) If |ro — 7o| = OC(e) for € | 0 then |r, — 7| = O(e) for n = O (1), that is, for
n~ % and € | 0, r,, and 7,, remain ”e-close”.
(ii) The map P has a unique, hyperbolic fixed point 7 = 2, which is asymptotically
stable.
(iii) There exists an €y > 0 such that for all 0 < € < ¢p the map @ has a unique
hyperbolic fixed point r = 2 4+ O(e) with the same stability property as the
fixed point 7 = 2 of the map P.
Proof of (i): From |rg — 79| = O(e) for € | 0 it follows that there exists a positive
constant My such that |rg — 79| = Mpe. We have

[P(rn-1) = P(fn-1) + O(’n))|
|P(rn_1) — P(fn_1)| + Mien
L|T’n,1 — fn,1| + M1€37’L,

|Tn _7:71|

<
(4.4) <

where M, and L are positive constants, with L = 1 +e2Ms and M, a positive constant.
So we have

IN

(1 + 62M2)|7“n_1 - 'Fn—1| + M1€37’L <...
e(My + 62n2M1)e€2”M2,

|Tn _fn|

(4.5)

IN

and so for n = O(1) we conclude that |r, — 7| = O(e).
Proof of (ii): The fixed points of the map P follow from 7, = P(7,—-1) for n — oo
or equivalent from 7 = 7 + €227 (37 — §7°) < 37(1 — 72) = 0. For 7 > 0 we have a
unique fixed point 7 = 2. The fixed point of the map P is hyperbolic if the linearized
map around this fixed point has no eigenvalues of unit modulus. Let DP be this
linearized map, then DP = 1 — ¢227. Since 0 < € << 1, we have |\| < 1, and so the
fixed point is hyperbolic and stable.

Proof of (iii): For the proof of (iii) we refer to [10] for a similar proof.

So far we conclude that there exists a unique, asymptotically stable, nontrivial, 7T-
periodic solution for system (3.1). We can approximate the form and the period T of
the limit cycle of system (3.1) from F(r,0,t;€) = ¢1, where F is approximated by Fj.
For the periodic solution we have r(0) = »(T) and 6(T) = 6(0) — 2. Without loss
of generality we assume that #(0) = 0, and since the system (3.1) is autonomous we
know that a time-independent first integral exists. So we have to solve the following
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system of two non-linear equations

F(r(0),05¢) = a,
(4.6)
F(r(T),—2me) = e,

where 7(0) = r(T"), T and ¢; are three unknown constants. Now it should be observed
that Fy given by (3.17) approximates this time-independent first integral up to O(e?)
for 0 < ¢t < T. Without loss of generality it can be assumed that the unknown
constants 7(0) = r(T) and c¢; can be approximated by ro + er1 + €*r2 + ... and
c10 +€c11 + €2c12 + . . . respectively. By substituting these approximations for r(0) =
r(T) and ¢; into (4.6), and by collecting terms of equal powers in €, we obtain the

constants rg,71,...,C10,C11, - - - after some elementary calculations, yielding
) = r(T)=2+¢(-%)+e (3a?) +O(E)

(4.7)
¢ = 246 (Ea%) +0(e).

From F(r,0,t;¢) = ¢1, where F is approximated by the time-independent function
Fy, given by (3.17), the radius r of the limit cycle can be approximated as function
of 0, yielding

4 37 16
rd) = 2+e {—gacos?’H} + €2 {%aQ + gacos‘O’H

1 2 5 1
—5 sin 260 — 3 sin 260 + ﬁaQ cos 20 + 12 sin 460

L o L 5 3
(4.8) +12a cos 46 + 0 COSGG} + O(e”).
By substituting (4.8) into (3.3), and by expanding 0(¢) in 0o(t) + €61 (t) + €202(t) + . ..

and then by expanding the right hand side of (3.3) in €, the functions 0y(t), 6 (¢), . ..
can be calculated, yielding

3 1 75
0t) = —t+e {—iasint — EsiDSt} 4 ¢2 {—3—2 + Za%
1 1
+ga2 sin 2t — ZaQ sin 4t — EaQ sin 6¢
(4.9) +2 cos2t + —cosdt b + O(e?)
' 24 96 '

The period T of the limit cycle can be approximated from 6(T) = —27. Now let
T =Ty + €Ty + 2Ty + ... and substituting 0(T) = —27 into (4.9), we obtain

(4.10) T=2m+ Za2(2ﬂ')62 +O(e%).

We also can approximate the periodic solution of (3.1), that is, Z(t) = r(¢) cos(6(¢)),
where 7(t) and 6(t) are approximated by (4.8) and (4.9).

4.2. Time-periodic solutions when b = O(1) and ¢ = e. Let T < oo be
the period of a periodic solution and let ¢; be the constant in the first integral F' =
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constant for which a periodic solution exists. Consider F = ¢y fort =0 and t = T.
Approximating F by F1 1 (given by 3.43) and eliminating ¢, by subtraction, we obtain

Xl(T)
{ o) k1 - —r2 - ger) (3 (2k1 —r? - gbr ) — 1) dr} = O(e%)

(4.11)

& el(k1;b) + O(e?) = 0, where

(4.12) I(k1;b 72/ \/ kl—r2—br3)( <2k1r —br>1>dr,

with A = X1(0) and B = X1(37). To have a periodic solution for (3.24) we have
to find a constant k; such that I(k1;b) is equal to zero. To find this constant k; we
rewrite I(kq;b) in

Ig(kl;b)
413 I(k1;b) = —L (ka3 b) (1 —
( ) ( 1, ) 1( 1 )( Il(kl,b)),
where
Lkib) = 2[5 (2 — 12— 26%) 2 dr > 0,
(4.14)
3
Lkib) = 2 [0 2k —r% = 20r%)2 dr > 0.

Now it should be observed that the unperturbed equation (3.24) with € = 0 has two
equilibrium points: a center point in (Z, Z) = (0,0) and a saddle point in (Z, Z) =
(f%, 0). The center point "trajectory” and the saddle point loop are represented by
k1 =0and k; = 6% respectively. It should be observed that if k; | 0 then A 70 and
B |0, and

B 3
L(ki;b) i 20 2k — 72— 2br%)2 dr

(4.15) s = — =0.
k=0 Li(ki3b) — m=0g (B (g, 42 2p3)F g,
And if k1 T gz then A | —1 and B | o, and
: LB (g — 2p3) % dr
h 12(k17b) — hm 3 fA ( 1 r v )
kg 11 (F1; b) k1= gz ff (2k:1 —r2 — br3) dr

IR e g
[+ d) (S tar T

_1
b

(4.16) =

Let Q(kq1;b) = ﬁgzizg Then it can be shown analytically that

aQ

4.1

(0;6) = 5 >0,

2

and

d
(4.18) dg <6b2,b) = —c0.
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For several values of b (see Figure 4.1) we have calculated Q(k1;b) numerically. The
integrals I (k1;b) and I2(k1;b) have been determined by using an adaptive recursive
Simpson rule and the boundary points (A and B) have been determined by using a
Newton rule. The phase plane portraits are given for several values of b in Figure 4.2.

09995

099961

09934

2 4 [ H 10 2 14 % % 2124 2125 2128 2127 2128 2129 213

(@) =01 (b) 5=0.2796952632

099981

09994

09994 7

2124 2125 2126 2127 BES 212 B ik 1 15 2k

(c) b=0.2797061632 (d) 6=0.29

Fi1c. 4.1. Plot of Q(k1;b) as function of k1 for several values of b.

Using numerical calculations (see also Figure 4.1) we are able to find kq-values such
that I(k1;b) =0 or Q(k1;b) = 1. We obtain the following results:
(i) for b < /2 + O(?), there is only one nontrivial value of ki such that
I(k1;b) = 0. This implies that there exists only one periodic solution.

(ii) for \/> +0()<b< \/j + 0, there are two nontrivial values for k; such
that I(k1;b) = O This implies that there are two periodic solutions. It should
be remarked that § is very small; d is approximately equal to 1.09 x 1075,
(iii) for b > \/%—i— d, there are no values of k; such that I(kq;b) = 0, and so there
are no periodic solutions.

To determine the stability of the time-periodic solutions we consider the approxima-
tion F; of a first integral

Fii = SXP4obXPiixiy /Xl Dy — 12 — Zby3
SR S S S A I A S
Lok 203) —1) La
3 — 3r r
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T/
)

>\
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ffj

};/

(a) b=0.1 (b) 5=0.2796952632

—
f/

(

(c) 5=0.2797061632 () 5=0.29

F1G. 4.2. Sketch of the trajectories of system (8.25) in the phase plane for several values of b.

1 1 1 . I
4.19 = X4+ X3+ X2 L [1-=
( ) ! + 3041 + 5 %2 +e 1 T )
where
- X1(t) 9 3
L = / (le —r? - —br3) dr,
X1(0) 3
5 1 rX@® ) 3
(4.20) L, = —/ (2k:1 —r? - —br?’) dr.
3 Jx.(0) 3

In the (X3, X2)-phase plane we now define the positive X;-axis to be a Poincare
section. At ¢ = 0 we start in (X71(0),0) with X;(0) > 0. After some time (t = to) we
return to the Poincare section, that is, (X1 (t0), X2(t0)) = (X1(t0),0) with Xy (¢o) > 0.
From (4.11) and (4.19) , we know that

(21) X3+ %be’(t) XD =k e (11 (1 - %)) +O).

For a periodic solution @ = % should be 1, and (4.21) then becomes

1 1 1
(4.22) 5Xf(zf) + §be(t) + 5Xg(t) =k* + O(€%),
where k* is assumed to be the constant in the approximation of a first integral for
which a periodic solution exists. From the numerical calculations of Q) = % (see also

Figure 4.1) it follows that there are two possibilities:
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(i) # <1 for ki <k*and 2 > 1 for ky > k*, or
(i) 2 > 1 for ky < k* and 2 <1 for ky > k*.

In the first case (i) it follows from (4.21) that if % < 1lfork; < k*thene (2[1 ( - %)) >

0, and so Xy (fo) > X1(0). And similarly if 22 > 1 for ky > &* then ¢ (211 ( - ﬁ)) <
0, and so X1 (to) < X1(0). So in the first case (i) the periodic solution is stable. In

case (ii) it can be shown similarly that the periodic solution is unstable. The period
T of the periodic solution can be determined from

X, . L v 2. s
(4.23) o XQ\/<21; Xp - gx7 ),

or from

2dX;

B
T:/ ,
A2k - X7 - 2bx)

where —3 < A < B < 3;and where A, B satisfy $X{ + $bX} = k*. It should be

observed that if k* — 6% then A | f% and B 1 % )

(4.24)

. 2dX,
lim

B
k*ﬂﬁ/A V (2h = X7 - 20X7)

T

1

_ /—b 2dX,
) (3 )

2 1\?
(4.25) = [—4 tanh ™! (—gb?‘ + g)

|

L
2b

I
8

o=

Using (4.24) we have determined 7T'(b) numerically (see Figure 4.3).

5. Conclusions and remarks. In this paper it has been shown that the per-
turbation method based on integrating factors can be used efficiently to approximate
first integrals for a generalized Rayleigh oscillator. The method can also be applied
to other nonlinear oscillator equations that are integrable when the small param-
eter is zero. In section 2 (and 3) of this paper an asymptotic justification of the
presented perturbation method has been given. For a generalized Rayleigh oscil-
lator it has been shown how the existence and stability of time-periodic solutions
can be deduced from the approximations of the first integrals. For the nonlinear
Rayleigh oscillator it has been shown that there exists one stable periodic solution

if 0 <b< /2 + O(e?), that there are two periodic solutions (one stable and one
unstable) if /& + O(e?) < b < /2 + 6 (8 is approximately 1.09 x 107°), and that

there are no periodic solutions if b > \/% + 4.
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F1G. 4.3. Plot of the period T of the stable and unstable periodic solutions as functions of b.
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