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Abstract 
 

Programmers usually write test cases to test onboard software. However, this 
procedure is time-consuming and needs sufficient prior knowledge. As a result, 
small satellite developers may not be able to test the software thoroughly.  
  
A promising direction to solve this problem is reinforcement learning (RL) based 
testing. It searches testing commands to maximise the return, which represents 
the testing goal. Testers need not specify prior knowledge besides the reward 
function and hyperparameters. Reinforcement learning has matured in software 
testing scenarios, such as GUI testing. However, migration from such scenarios 
to onboard software testing is still challenging because of different environments. 
  
This work is the first research to apply reinforcement learning in real onboard 
software testing and one of few studies that perform RL-based testing on 
embedded software without a GUI. In this work, the RL agent observes current 
code coverage and the interaction history, selects a pre-defined command, or 
organises a command from pre-defined parameters to maximise cumulative 
reward. The reward function can be code coverage (coverage testing) or 
estimated CPU load (stress testing). Three RL algorithms, including the tabular 
Q-Learning, Double Duelling Deep Q Network (D3QN), and Proximal Policy 
Optimization (PPO), are compared with a random testing baseline and a genetic 
algorithm baseline in the experiments. 
  
This study also performs regression testing with a trained RL agent, i.e., to test a 
version of onboard software that it has never seen before. To do that, the agent 
processes graph input with code coverage information. The graph is extracted 
from the onboard software source code via static code analysis. The work tries 
two graph neural network architectures (GGNN and GAT) with several graph 
pooling mechanisms to process the graph input. 
  
Apart from the test command generation algorithms, some middleware is also 
implemented, including a command/response parser, a state identification 
module, a branch coverage collection tool, and a tool to extract the graph 
representation and node features. During onboard software testing, the onboard 
computer (OBC) or the electrical group support equipment (EGSE) can be the 
master of the bus. The command generation algorithms can run on a lab PC or a 
cloud server.  
  
The research reveals the advantages and drawbacks of using reinforcement 
learning to test onboard software. On the one hand, RL-based testing performs 
well in non-deterministic environments (e.g., stress testing) and regression 
testing. On the other hand, more straightforward methods like random testing and 
the genetic algorithm are more useful in deterministic environments. 
  
This document also introduces relative background knowledge. It leaves many 
recommendations for future work, such as improving sampling efficiency, 
generalization, and learning a model for fault detection in satellite operation. 
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Acronyms 
 
A2C   Asynchronous Advantage Actor-Critic, an RL algorithm 
A3C   Synchronous Advantage Actor-Critic, an RL algorithm 
ACER  Actor Critic with Experience Replay, an RL algorithm 
ACKTR Actor Critic using Kronecker-Factored Trust Region 
ADCS  The Attitude Determination and Control Subsystem 
ADB   Antenna Deployment Board 
AI   Artificial Intelligence 
API   Application Programming Interface 
APP   Application program 
CFG   Control Flow Graph 
COMMS  Communication System 
COTS  Commercial Off the Shelf 
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CubeSat  A form factor of small satellites. The size of 1U is 10*10*10cm 
COVID  Coronavirus. I hope young readers to be unfamiliar with it. 
DDPG  Deep Deterministic Policy Gradient, an RL algorithm 
Delfi-PQ  The first PocketQube Satellite of Delft University of Technology 
DQN   Deep Q Network, an RL algorithm 
D3QN  Double Dueling DQN, a variant of the DQN algorithm 
EGSE  Electrical Ground Support Equipment 
EPS   Electrical Power System 
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FDIR   Fault Detection, Isolation, and Recovery 
FLASH  A type of non-volatile computer memory 
FRAM  Ferroelectric Random Access Memory 
GAT   Graph Attention Network, a type of GNN 
GGNN  Gated Graph Neural Network, a kind of GNN 
GNN   Graph Neural Network 
GPS   Global Positioning System 
GUI   Graphic User Interface 
I2C   Inter-IC-bus 
IDE   Integrated Development Environment 
IMU   Inertial Measurement Unit 
JSON   JavaScript Object Notation 
LOBE-P  Low frequency radio payload 
MBSE  Model-based system engineering 
MC/DC  Modified condition/decision coverage 
MD5   Message-digest algorithm, a cryptographic protocol 
MDP   Markov Decision Process 
ML   Machine Learning 
MLP   Multi-Layer Perceptron 
MPPT  Max Power Point Tracker 
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NASA  US space agency 
NOS3   NASA Operational Simulation for Small Satellites 
OBC   On Board Computer 
PC   Personal Computer 
PocketQube A form factor of small satellites. The size of 1P is 5*5*5cm  
PPO   Proximal Policy Optimization, an RL algorithm 
PQ   Shorter abbreviation of Delfi-PQ 
RAM   Random-Access Memory 
RL   Reinforcement Learning 
RX   Receiver 
SAC   Soft Actor-Critic, an RL algorithm 
SatNOGS  An open-source global network of satellite ground stations 
SPI   Serial Peripheral Interface 
SRAM  Static Random Access Memory 
SUT   System Under Test 
SWD   Serial Wire Debug interface 
TD3   Twin Delayed DDPG, a variant of the DDPG algorithm 
TRPO  Trust Region Policy Optimization 
TX   Transceiver 
UCB   The Upper Confidence Bound algorithm 
XML   Extensible Markup Language 
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Nomenclature 
 
𝐴   A set of actions 

𝐴𝜋   Advantage function under the policy 𝜋 

𝑎   An action 

𝑐   A constant 

𝑐𝑙𝑜𝑜𝑝   Number of clock cycles per loop in the scheduler 

𝑐𝑖   Coverage status of node 𝑖 
𝑓   Frequency of the CPU 

𝐺   Return (discounted cumulative reward) of an episode 

𝑔   Environmental Model 

ℎ(𝑙)   Output from layer 𝑙 of a neural network 

𝐿   Total number of hidden layers in a neural network 

𝑚(𝑙)   Node embedding after 𝑙 message passes in a GNN 

𝑛𝑙𝑜𝑜𝑝   Number of loops recorded during the sampled time inteval 

𝑁𝑠   The number of times that state 𝑠 has been visited 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡  Frequency to update the target network (D3QN algorithm) 

𝑁𝜏   Number of transitions in the replay buffer (D3QN algorithm) 

𝑜   A vector extracted from node embeddings of a graph 

𝑃   State transition probability function 

𝑄   Action-Value function 

𝑅   Reward function 

𝑟   A reward 

𝑆   A set of states 

𝑠   A state 

𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  Length of the sampled interval in the stress testing 

𝑇   Length of an episode 

𝑉   State-Value function 

𝑉𝑖   Feature vector of node 𝑖, 𝑉𝑖 = [𝜇𝑖 , 𝑐𝑖] 
𝑤   Weights of a function approximator, e.g., neural network 

𝑦   A vector that contains previous actions 

𝛼   Learning rate in Q-Learning and its variants 

𝛼𝑣,𝑢 Self-attention factor of GAT, where 𝑣 is the query node and 𝑢 is 

the key node 
𝜀   The probability to select a random action in Q-Learning 

𝛿   TD residual 

𝛾   Discount factor in the return 

𝜆 A hyperparameter in the GAE method to estimate advantage 
function 

𝜏   A transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) 

𝒩   Neighbors of a node in a graph 

𝜉   A hyperparameter to control policy update magnitude in PPO 

𝜇𝑖   Feature vector of node 𝑖 generated by Word2Vec 

𝜋   A policy 
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General Superscripts 
 
∎′   A variable that has been updated 

∎−   A variable that has a lag in update 

∎̂   Estimation of a variable 

∎𝜋   A function conditional on the policy 𝜋 
 
General Subscripts 
 
∎𝑡   The t-th time step 

∎𝑤   Function approximator with weights 𝑤 

∎𝑠𝑡𝑎𝑟𝑡   Variable at the beginning 

∎𝑒𝑛𝑑   Variable at the end 
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1 Introduction 
 

“Quality is free, but only to those who are willing to pay heavily for it.” 
—Tom DeMarco and Timothy Lister 

 
Sufficient testing is important for the reliability of small satellites. However, this procedure can be 
time-consuming and needs enough prior knowledge about the system design. This research tries 
reinforcement learning to solve this problem. Before introducing the whole idea, we start from the 
story of our recently launched satellite, the Delfi-PQ. 
 

1.1. A Story of the Delfi-PQ Satellite 

 
Delfi-PQ (Figure 1-1) is a 3P PocketQube and third student satellite made in TU Delft (Radu, 
Uludag, Speretta, Bouwmeester, Gill, & Foteinakis, 2018). PocketQube is a new form factor of tiny 
satellites. The size of 1P PocketQube is around 5×5×5cm, smaller than the 10×10×10cm of 1U 
CubeSat. Since they are smaller than CubeSats, PocketQubes have stricter constraints on mass, 
size, power, and communication budget. However, for some applications like education, technology 
demonstration, and gravity / magnetic / radiation multi-point measurement, PocketQubes are cheap 
and competitive (Bouwmeester et al., 2020). 
 
The goal of Delfi-PQ is to demonstrate a reliable satellite bus. If Delfi-PQ is successful and 
affordable, TU Delft will update the satellite bus and launch a PocketQube periodically with different 
payloads. At the same time, there will always be a PocketQube in the laboratory for education. In 
that case, Delfi-PQ can strongly support space-related education and research in TU Delft. 
 
The team made all subsystems, onboard software, and Delfi-PQ electric ground support equipment 
in-house. The project4 is open source, and part of the telemetry is available on the SatNOGS5 
website. As a forerunner, Delfi-PQ also helps to set a standard for PocketQube satellites 
(Bouwmeester, van der Linden, Povalac, & Gill, 2018). 
 

 
Figure 1-1: Delfi-PQ satellite 

 
4 Delfi-PQ repository: https://github.com/DelfiSpace 
5 SatNOGS is an open-source global network of satellite ground station. Their dashboard: https://dashboard.satnogs.org/ 

https://github.com/DelfiSpace
https://dashboard.satnogs.org/
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Because of the COVID-19 pandemic, the development and testing schedule was tight. When we 
transported Delfi-PQ to the launch site in October 2020, the flight software for ADCS (Attitude 
Determination and Control) and payload operation was incomplete. The GPS board just arrived in 
the Netherlands and could not work correctly. Furthermore, the engineers mainly conducted some 
basic tests, e.g., vibration and thermal vacuum tests. For each subsystem, we only specify several 
test cases to test its main functions. 
 
Although we tested the satellite in a rush, the launch was late. The original plan was to launch it with 
SpaceX’s Transporter-1 rideshare mission in January 2021. However, because of some political 
issues of  Momentus6, Delfi-PQ (along with some other satellites) was kicked off the deck. The 
satellite was stored in the United States for a year and finally launched with the Transporter-3 
mission in January 2022 (Figure 1-2). 
 

 
Figure 1-2: The launch of the Delfi-PQ satellite 

 
Fortunately, Delfi-PQ survived. Ten hours after the launch, an amateur radio user of the SatNOGS 
network recorded the first signal from the tiny satellite. We also established the link between the 
satellite and the Delft ground station the following day. The satellite is still alive and sending 
telemetry (Figure 1-3). 
 

 
Figure 1-3: Telemetry from Delfi-PQ received by SatNOGS in the past 30 days7 

 
6 https://spacenews.com/faa-rejects-payload-review-for-momentus/ 
7 From “Data Frames Decoded - 30 Days” ca. 2022. (https://db.satnogs.org/satellite/CEIC-4073-2863-5971-9670#data). In the public 

domain. 
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The team identified some problems during the operation of Delfi-PQ. The most significant is that the 
Electrical Power System (EPS) cannot support continuous downlink or software updates. After Delfi-
PQ sends 1 or 2 messages to the ground station quickly, the power bus voltage will drop under a 
threshold, and all subsystems except the EPS will lose electricity. There are two reasons for this 
problem8: 
 

- The resistance of the battery protection circuit under low temperatures is high, which was 
not expected before the launch. As a result, the batteries cannot maintain the power bus 
voltage above the threshold. 

- Theoretically, the solar panels can also maintain the power bus voltage. However, the 
max power point tracker (MPPT) responds too slowly to the load change on the bus, i.e., 
it cannot shift the max power point before the voltage drops under the threshold.  

 
Compared with other PocketQubes, Delfi-PQ is a "lucky guy." As far as we know, there were 14 
PocketQube satellites launched with the Transporter-3 mission, but only four survived in space. 
Langer and Bouwmeester (2016) fitted the data of 178 launched CubeSat and reported a failure 
rate of 40% within the first six months, as shown in Figure 1-4. Jacklin (2019) also investigated 550 
small satellite missions from 2000 to 2016, where the mass of surveyed satellites ranged from 0.5kg 
to several hundreds of kilograms. The result shows that 24.2% were total mission failures, and 
another 11% were partial ones. 
 

 
Figure 1-4: Estimation of CubeSat Reliability Based on 178 Launched Missions (Langer and 

Bouwmeester, 2016) 
 
What can we learn from this story?  
 

1.2. Lessons Learned: Keep It Simple and Test It Thoroughly 
 
Commercial off-the-shelf (COTS) components are popular in small satellites. However, in the harsh 
space environment, they often do not work as described in their datasheets. As mentioned before, 
Delfi-PQ is suffering from such a problem. If the battery protection circuit does not give us a 

 
8 This problem was fixed by a successful software update in August 2022. In summer, the tiny satellite had a higher temperature when 

it passed the Delft ground station, which raised the battery's output voltage. And then, luckily, the battery maintained the bus voltage 

above the threshold during the initialization of the software update process. 
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“surprise,” then the satellite operation will be much easier. Unfortunately, the user guide of the 
battery does not even mention the performance in low temperatures.  
 
Intuitively, engineers should add redundancy to the system since the components are unreliable. 
However, for tiny satellites like PocketQubes and CubeSat, there is not too much space to add 
redundant components. At the same time, redundancy adds complexity to the system. Developers 
need to achieve a careful balance between complexity and reliability. 
 
On this issue, we have some experience with the previous two satellites made in TU Delft. The 
Delfi-C3 CubeSat, the first student satellite of TU Delft, has a simple design: passive ADCS, no 
battery, no SD card, and the solar panels directly drive the power bus. Moreover, Delfi-C3 offers 
limited redundancy by separated controllers to switch the power of subsystems and a redundant 
radio (Bouwmeester, Aalbers, & Ubbels, 2008). As a result, Delfi-C3 was launched in 2008 and is 
still alive.  
 
The Delfi-n3xt CubeSat, the successor of Delfi-C3, puts more emphasis on redundancy. It has a 
redundant OBC, a redundant radio, redundant chains in the EPS, and a simplified backup of the 
ADCS. However, such redundancy is complex and time-consuming to implement (Bouwmeester, 
Menicucci, & Gill, 2022). In the end, Delfi-n3xt stopped transmission after only three months of 
operation9.  
 
Based on experience from previous student satellites, Delfi-PQ only keeps minimal redundancy, 
such as separated MPPTs for solar panels and a redundant IMU. The tiny satellite has many single 
points of failure, including the COMMS, the EPS, and the OBC. The PocketQube also has no more 
space for redundant hardware. 
 
According to the in-orbit situation of Delfi-PQ, our approach is successful but imperfect. A problem is 
the lack of testing. Since we cannot avoid single points of failure, we should test them heavily. If 
Delfi-PQ receives sufficient environmental testing, we can likely identify the anomaly of the battery 
protection circuit. 
 
Therefore, the take-home message of this section is to keep the tiny satellite simple and test it 
thoroughly. By Monte Carlo simulation of a failure model, (Bouwmeester et al., 2022) also found that 
improving testing is better than adding subsystem redundancy for CubeSat reliability.  
 
We plan to take a test-driven approach when developing other PocketQubes at TU Delft. 
Unfortunately, traditional manual testing needs significant human labour and prior knowledge, so we 
only wrote several test cases for each subsystem of Delfi-PQ. Conventional manual testing limits 
our testing coverage. 
 
A question comes to our mind: Can we automate the testing procedure? 
 

1.3. Use Reinforcement Learning to Test Onboard Software Thoroughly 
 
Satellites require many tests at different levels. Physical tests are usually expensive and cannot be 
performed for many times. For example, a vibration test of Delfi-PQ at a third-party organization 
takes around €10000. A thermal vacuum test has roughly the same cost. As a result, it is difficult to 
automate such physical tests in a master thesis with limited budget. 
 
By contrast, onboard software testing is much cheaper and suitable for a thesis. Note that 
developers can also test some hardware in onboard software testing and simulate some external 

 
9 After 7 years of silence, Delfi-n3xt restarted to transmit signals in 2022 for a few months and then stopped beeping again. 
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signals (hardware-in-the-loop). This type of testing can also identify many potential problems with a 
satellite. 
 
Therefore, this work focuses on testing onboard software automatically with limited prior knowledge. 
Delfi-PQ is a use case in the study.  
 
Traditionally, the following methods can generate test cases: 
 

- Model-based testing. Humans specify a model (e.g., a Finite State Machine) of the 
tested software and then use a tool to traverse the model. The tool records the traversal 
paths as test cases. However, a model written by experts with prior knowledge of the 
tested software is necessary.   

- Symbolic execution substitutes all program variables with symbolic values, simulates 
the execution of tested software step by step with constraint solving, and looks for all 
executable paths. These paths are test cases. This method can only test small-scale 
software, such as unit testing, because of the difficulty of applying constraint solving to 
the whole software. 

- Random testing, i.e., choosing testing command randomly. However, some behaviours 
of the tested software require particular command sequences. Generating such 
sequences is difficult for random testing, which does not consider any causal relation 
among commands. 

- Search-based testing transfers the test case generation problem to an optimisation 
problem. It usually uses evolutionary algorithms (e.g., the genetic algorithm) to maximise 
a human-defined objective function. Solutions of the highest objective functions are test 
cases. 

 
Among these methods, search-based testing is the most promising for Delfi-PQ onboard software. 
Random testing is too simple compared to search-based testing, and its performance cannot 
improve further. Applying model-based testing to the Delfi-PQ software is challenging because no 
model exists. Symbolic execution is also not suitable for the whole complex software.  
 
Many papers use the genetic algorithm in search-based testing, but it has some shortages: 
 
⚫ It only uses the objective function of a whole test case to guide the search and discards all 

information generated at each test case step. Such lack of information may make the genetic 
algorithm challenging to reach a good solution. The situation worsens as the test case's length 
grows because the search space size will grow exponentially. 

⚫ Moreover, the output of the genetic algorithm is a fixed solution, e.g., a fixed command 
sequence. The command sequence may not work well in a non-deterministic environment.  

⚫ Another problem is that the genetic algorithm spends a long time generating test cases for a 
specific software version. It cannot learn the pattern of a series of versions. In regression 
testing, the tester may need to run the time-consuming algorithm repeatedly. 

 
A novel approach to search-based testing is reinforcement learning (RL), which treats software 
testing as a sequential decision-making problem, or a Markov Decision Process (MDP). Figure 1-5 
shows an intuitive example of reinforcement learning. It generates testing commands according to 
the observed system state and learns the system behaviour automatically. Thus, RL can utilise 
information generated at each test case step. 
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Figure 1-utilisetest case step in Dog Training10  

 
 
RL has shown promising performance on some complex decision-making problems which the 
genetic algorithm cannot solve. A famous example is the AlphaGo (Silver et al., 2016) of DeepMind. 
AlphaGo beat the best human players in the Go game, which was never achieved before because 
of the enormous search space. 
 
Therefore, RL-based software testing has attracted more attention recently, especially in GUI 
testing. Bytedance, the mother company of TikTok, uses an RL agent Fastbot as the primary 
stability and compatibility testing tool for more than 20 applications, locating more than 100 crashes 
daily (Cai, Zhang, & Yang, 2020). Electronic Arts, who made Need for Speed and Call of Duty, also 
uses RL to test first-person shooter games (Bergdahl, Gordillo, Tollmar, & Gisslén, 2020). Some 
commercial RL-based testing tools are already available, such as Test.AI for GUI testing of mobile 
apps (Test.ai, 2021) and Diffblue cover for unit testing of Java (Lodge, 2021). 
 
However, no one has migrated RL-based testing to the space industry or onboard software testing. 
The migration is challenging because of different environments and software behaviours. 
 
This research is the first work to apply reinforcement learning in integration tests of satellite onboard 
software: 
 

⚫ Unlike previous research that relies on GUI information, it utilises near real-time code 
coverage information from the software under test to compute states and rewards.  

⚫ A tool is written to retrieve the code coverage data and can be easily modified to adapt 
other embedded software. 

⚫ The research considers two types of testing goals, maximising code coverage and 
maximising the CPU load (stress testing). 

⚫ Experiments are carried out in two environments: a toy problem and the COMMS 
onboard software. 

⚫ It tries three reinforcement learning algorithms, including the Q-Learning, the Double 
Duelling Q Network (D3QN), and the Proximal Policy Optimization (PPO) algorithm to 
learn. Each algorithm has several configurations. 

⚫ Different state and action representations are tried. The RL testing agent can send 
human-specified commands or organise command parameters. 

⚫ Different neural network architectures (multi-Layer Perceptron MLP, Gated Graph 
Neural Network GGNN, and Graph Attention Network GAT) are tested. We also analyse 
several design details in the neural network architecture, such as the selection of the 
graph pooling layer. 

 
10 From “Three Things to Know About Reinforcement Learning,” by By Emmanouil Tzorakoleftherakis, 2019. 

(https://www.kdnuggets.com/2019/10/mathworks-reinforcement-learning.html). In the public domain. 



       

18 

 

⚫ In the end, the performance of RL algorithms is compared with two baselines: random 
command generation and the genetic algorithm. 

 

1.4. Structure 
 
In the rest of this thesis, chapter 2 will introduce the related works, including basic concepts of 
software testing, a brief overview of embedded software testing and onboard software testing. It 
also discusses traditional test case generation methods and RL-based testing in detail. The end of 
this chapter lists research questions and assumptions. 
 
Chapter 3 will analyse the onboard software of Delfi-PQ and formulate it as a Markov Decision 
Process (MDP). It also compares the Delfi-PQ flight software with other onboard software. At the 
same time, this chapter introduces the hardware and software tools used in this research, such as  
 

- The tool to retrieve near real-time code coverage information. 
- The means to extract graphs from the source code of onboard software 
- The telemetry/telecommand parser  
- The means to transfer messages between an online training server and the satellite 

hardware.  
 
Chapter 4 describes the reinforcement learning algorithms used in the work, including the Q-
Learning algorithm, the Double Duelling Deep Q Network (D3QN), and the Proximal Policy 
Optimization (PPO) algorithm. Note that each algorithm may have several configurations with 
different neural network architectures or state/action representations. The chapter also describes 
the random testing baseline and the genetic algorithm baseline.  
 
Chapters 5, 6, 7, and 8 describe the designs of the experiments and the results. There are four 
types of experiments: a “filling grid” toy problem, stress testing, coverage testing, and regression 
testing. 
 
Chapter 9 gives conclusions of this research, threats to validity, and recommendations for future 
works. 
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2 State of the Art 
 
This section briefly reviews related works and provides definitions of some concepts. More 
specifically,  
 

⚫ Section 2.1 introduces some basic concepts in software testing. It also reviews some 
trends in embedded software testing and onboard software testing. 

⚫ Section 2.2 introduces and compares traditional test case generation techniques. 
⚫ Section 2.3 briefly explains the Markov process and reinforcement algorithms. It also 

reviews progress in RL-based software testing, particularly the formulations of states, 
actions, and rewards. 

⚫ Section 2.4 gives the assumptions and research questions in this work. 
⚫ Section 2.5 is a summary of this chapter. 

 

2.1. A Bite on Software Testing 
 

Traditionally, software testing has the following steps: 
 

- Step 1: Analyse the requirement document. 
- Step 2: Make a test plan, including testing methods and environment settings. 
- Step 3: Set the testing environment.  
- Step 4: Write test cases, execute them, and detect faults.  
- Step 5: Record the faults and let software engineers debug. 

 
Some concepts and definitions are listed in the following subsection. 
 

2.1.1 Basic Concepts and Definitions 

 
In the field of software testing,  
 

- A test case is a pre-written sequence of testing commands which will be executed 
during a test. A test suite is a set of test cases. 

- A test oracle is a set of conditions to determine whether the system under test behaves 
correctly or not. 

- Test coverage is a metric that shows the amount of testing performed. Different 
coverage types include code coverage (e.g., line coverage, branch coverage, MC/DC 
coverage), state coverage, and requirement coverage. Developers usually pursue high 
test coverage.  

- Functional testing verifies whether the system under test (SUT) behaves as 
expected. Non-functional testing examines non-functional parameters of the SUT, 
such as performance and security.  

- Black box testing compares software output with expected values and sometimes 
reduces the number of test cases by pairwise testing, equivalence partitioning, and 
boundary analysis. White box testing drives test cases from the source code of SUT 
(manually or automatically). 

 
Software testing has different levels. As shown by Figure 2-1 (Nakkasem, 2020), there are 
usually unit testing, integration testing, system testing and acceptance testing. For higher-
level tests, the SUT becomes more complex, and it is usually more difficult for testers to access 
internal information of the SUT. 
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Before coding, we may also need to test requirements and system design, which technologies like 
model checking can do. After the acceptance test, if the software is updated and has some new 
capabilities, it needs regression tests to ensure the original capabilities are not affected. We can 
reuse test cases in regression tests. 
 

 
Figure 2-1: V Model of Software Development (Nakkasem, 2020) 

 

2.1.2 Embedded Software Testing 

 

Onboard software is embedded software that runs on a target board and does not have a direct 
user interface. A target board usually communicates with other target boards or a host 
computer with a direct user interface and a software development kit. The target board may also 
sense external signals like temperature, acceleration, and light intensity. 
 
The following things make embedded software testing different from, and sometimes more complex 
than, conventional software testing (e.g., PC, web or mobile applications): 
 

- The target board only has limited computing resources. 
- It is more challenging to get information from the target board when the microcontrollers 

do not support debug capabilities like tracing. It raises a need for sophisticated 
instrumentation and probing when testing embedded systems. 

- External signals like temperature will affect a test, and sometimes testers must provide 
such signals during the test. 

- Embedded software is usually developed in parallel with hardware. There may be only a 
few new hardware available for software testing. 

- Embedded software is closely integrated with hardware. A fault may come from 
hardware rather than software. 

 
Such challenges have led to the wide adoption of simulation-based testing in the embedded 
software industry. Some simulators can simulate all or part of embedded hardware, so engineers do 
not always perform tests on target boards. Depending on which part is under simulation, this 
approach can be called X-in-the-loop, e.g., hardware-in-the-loop (HiL), software-in-the-loop (Sil), 
model-in-the-loop (MiL), processor-in-the-loop (PiL). Examples of such simulators include Qemu, 
Tina, and some simulation capabilities in embedded software IDEs. There are also simulators used 
as mocks of sensors or subsystems. 
 
However, configuring such simulators may take much effort, especially when configuring different 
peripherals. Likewise, any simulator cannot 100% mimic real hardware or environment. Many 
embedded software tests are still performed on real hardware (Garousi, Felderer, Karapıçak, & 
Yılmaz, 2018), as shown in Figure 2-2. 
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Figure 2-2: Papers in terms of using simulated or real SUTs (Garousi et al., 2018) 

 

2.1.3 Testing Onboard Software of Satellites 

 

Like other embedded software, simulators are popular in onboard software testing, especially for 
large spacecraft. They can simulate hardware, environment, or dynamic models of satellites. 
Theoretically, it is possible to build a virtual satellite. An example is the NASA Operational 
Simulation for Small Satellites (NOS3) used in the STF-1 CubeSat mission, which includes (Geletko 
et al., 2019), as shown in Figure 2-3: 
 

- NASA Operational Simulator (NOS), which simulates hardware busses. 
- core Flight System (cFS), an open-source flight software used by NASA since 1992. 
- Custom hardware simulators, including a processor simulator. 
- COSMOS is an open-source ground station software that sends telecommands to the 

system. 
- OIPP, a planning tool that acknowledges the ground station when the satellite will be in 

view/sunshine. 
- 42, an open-source simulator for spacecraft attitude and orbital dynamics. 
- Vagrant helps to set up a virtual machine to run the applications in the NOS3 suite. 

 

 
Figure 2-3: Architecture of NOS3 (Geletko et al., 2019) 

 

While NASA can invest heavily in a “virtual satellite”, this approach is not feasible for many other 
developers. For example, the Delfi-PQ uses the Texas Instrument MSP432 microcontrollers, which 
do not have an available simulator. It is also tricky to create simulators for peripherals on the 
boards. Some developers only use limited simulation in onboard software testing as a compromise. 
The OpenSatKit only includes the core Flight System, COSMOS, and 42, which form a minimal 
simulated environment (McComas, 2021). 
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As a product of model-based system engineering (MBSE), automated code generation is getting 
prevalent in onboard software development. In this approach, developers define software 
architectures with graphic models, which include software behaviour with sequence diagrams and 
message passing among program modules. After that, low-level embedded code will be generated 
and tested automatically (Jacklin, 2015). An example of this approach is F Prime (Bocchino, 
Canham, Watney, Reder, & Levison, 2018), a famous open-source onboard software architecture of 
NASA Jet Propulsion Laboratory, as shown in Figure 2-4. F Prime generates boiler-plate code of 
components and ports from XML or SysML specifications. It can also automatically generate test 
classes for unit testing and provide a Python API for integration testing. 
 

 
Figure 2-4: F Prime Generates Application Code from Models (Bocchino et al., 2018) 

 
Automated code generation makes onboard software development less prone to errors and 
automated test generation possible. However, some developers argue that it is less flexible than 
hand-written code. The learning curve of such tools may also be higher (Jacklin, 2015). 
 
A helpful testing method for high-safety onboard software is model checking. As shown by Figure 
2-5 (Chen, & Wu, 2010), developers must represent the flight software in a finite state machine. 
Then a model checker will search every possible path to prove that the software satisfies some 
properties expressed in temporal logic. Instead of looking for a bug, model checking tends to prove 
that the software satisfies the requirements. 
 

 
Figure 2-5: The Flow Chart of Model Checking (Chen, & Wu, 2010) 

 
There are some challenges of model checking: 
 

- It is challenging to represent onboard software as a finite state machine, especially when 
there are continuous parameters.  

- The number of states may be too large to search.  
- Not all requirements can be written in temporal logic, a precise mathematical 

specification.  
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Because of these challenges, model checking is helpful for some safety-critical software instead of 
the whole onboard software. As a use case, ESA has used its COMPASS toolset to perform model 
checking on a satellite's FDIR (Fault Detection, Isolation, and Recovery) software. There are 
thousands of requirements for the checked software, but only 106 can be described in temporal 
logic. The team chose 26 requirements and constructed a model of 4000 lines of code and around 
50 million states. In the end, the engineers only successfully verified 16 requirements, and others 
took too much computing time to find a result (Esteve, Katoen, Nguyen, Postma, & Yushtein, 
2012).  
 
It is worth mentioning that onboard software testing may follow some standards, including: 
 

- NASA-STD-8739.8A, the NASA Software Assurance and Software Safety Standard 
requirements. 

- ECSS-Q-80, Software product assurance. ECSS means the European Cooperation for 
Space Standardization. 

- ECSS-E-40, Space Software Engineering, which evolved from ISO 12207, Software life 
cycle processes. 

- QJ 3027A-2016 5.7.22, Software Testing Standard for Spacecrafts in China.  
 
For more information about onboard software testing, (Jacklin, 2015) is a comprehensive survey. 
Figure 2-6 also shows the popularity of some open-source onboard software architectures, which 
usually include testing tools.  
 

 
Figure 2-6: GitHub Star History of Popular Onboard Software Frameworks 

 
While onboard software testing has its focuses and toolsets, its nature is not different from general 
software testing. Therefore, the next section will introduce automated test case generation from the 
point of view of general software testing. 
 

2.2. Automated Test Case/Command Generation Techniques 
 
Before introducing traditional test case generation techniques, it is helpful to understand goals of test 
cases. 
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2.2.1 Goals of Test Case/Command Generation 

 

Test case generation means looking for test cases, i.e., sequences of testing commands before a 
test starts. During the test, these fixed test cases will be executed. On the other hand, test 
command generation means selecting testing commands during a test, according to the current 
state of SUT. The techniques introduced in this section are mainly for test case generation, while 
search-based testing with reinforcement learning can generate commands during a test.   
 
There are many types of testing goals, but most of the methods in this section only support several 
of them: 
 

- Model-based methods are suitable for the goals represented by a model, e.g., state 
coverage, transition coverage and requirement coverage.  

- Symbolic execution is usually used to maximize code coverage. 
- Random testing does not adapt to specific testing goals, but some researchers use code 

coverage to measure its performance. 
- Search-based testing supports the testing goals that can be quantitatively represented 

as objective functions (Harman, Jia, & Zhang, 2015). 
 
This section uses code coverage to compare different test case generation techniques. It is the only 
testing goal supported by all techniques mentioned here. 
 

2.2.2 Model-Based Test Case Generation 

 

In model-based test case generation, humans specify a model (e.g., a Finite State Machine) of 
the tested software and then use a tool to traverse the model. The test cases are the traverse paths 
(Shirole & Kumar, 2013). On the other hand, testers can also use mutated models to generate 
wrong test cases, which verify the fault handling mechanisms of SUT (Belli, Budnik, Hollmann, 
Tuglular, & Wong, 2016). 
 
If there is a model available before testing (e.g., F Prime), this approach is convenient. It can find 
every path in the model. However, writing them can be time-consuming if a model is unavailable. 
Some testing tools can learn a model of SUT from execution traces, and we will discuss them in 
section 2.3. 
 
The model-based testing process is summarized in Figure 2-7 by (Garousi, Felderer, Karapıçak, & 
Yılmaz, 2018). 
 

 
Figure 2-7: Process of Model-Based Testing (Garousi et al., 2018) 
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2.2.3 Symbolic Execution 

 
Symbolic execution analyses source code to generate test data that can achieve high code 
coverage. In the process of code analysis, it uses symbolic variables to simulate the execution of 
the software. At any point during symbolic execution, it maintains current symbolic variables, a path 
constraint on the symbolic variables, and a program counter. This path is feasible only when 
software inputs can satisfy the path constraint. This way, symbolic execution can find all feasible 
paths, their path constraints and test inputs. Figure 2-8 shows an example of symbolic execution 
(Anand et al., 2013). 
 

 
Figure 2-8: An Example of Symbolic Execution (Anand et al., 2013) 

 
Although King proposed symbolic execution in 1975, the method only became feasible in the 21st 
century because of more powerful constraint solvers and computers. It still has some fundamental 
problems: 
 
      - Path explosion: Most real-world software has many paths, and many of these paths are 
infeasible. It takes too much time to execute all the paths symbolically. 
      - Path divergence: Most real-world software uses multiple programming languages, and parts of 
them may be available only in binary form. Users need to provide models for the problematic parts.  
      - Complex constraints: some path constraints include non-linear operations like multiplication 
and division and mathematical functions like sin and log, which available constraint solvers cannot 
solve. 
 
For example, NASA used its Symbolic Java Pathfinder to perform symbolic execution on a Java 
model of an ascent abort handling software (Pǎsǎreanu et al., 2008). To deal with path divergence 
and complex constraints, it used concrete executions of SUT to gather information for symbolic 
execution. The Pathfinder generated 200 test cases to cover all aborts and flight rules within 2 
minutes. However, the Java model under test only contained ~600 lines of code and was not actual 
flight software.  
 

2.2.4 Random Testing 

 

Random testing means choosing testing commands randomly. The idea behind random testing is 
to let test cases spread evenly across the input domain. On the other hand, it is also the 
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disadvantage of random testing: sometimes, test cases should not be evenly spread in the input 
domain. For example, random testing only covered a few flight rules and no aborts of the Java 
model (Pǎsǎreanu et al., 2008). 
 
A famous random testing tool is the Monkey, provided by the Android SDK (Patel, Srinivasan, 
Rahaman & Neamtiu, 2018). It can quickly generate and execute test cases because it does not 
contain complex logic. 
 

2.2.5 Search-Based Testing 

 

Unlike random testing, search-based testing searches for test cases that maximise a pre-defined 
objective function. In other words, it transfers the test case generation problem to an optimisation 
problem. Many search algorithms are available (Utting, Pretschner, & Legeard, 2012), including 
metaheuristic search, simulated annealing, and evolutionary algorithms (the genetic algorithm).  
 
Much of the literature on search-based testing focuses on the genetic algorithm (Harman, 2011). 
However, it has some disadvantages: 
 

- It only uses the objective function to guide the search, which may be challenging to 
reach a good solution. The situation worsens as the test case's length grows because 
the search space size will grow exponentially.  

- It generates a fixed test case unsuitable for non-deterministic software under test.  
- If the software under test is modified, the genetic algorithm must be rerun to generate 

new test cases, which can be time-consuming. 
 
An example of a search-based testing tool is the Sapienz (Mao, Harman & Jia, 2016). UCL first 
developed it as a research program, but Facebook massively deployed it after 17 months (Mao, 
2018). Sapienz uses a multi-objective genetic algorithm to generate test cases with maximal 
objective functions. If the source code of the Android app is available, Sapienz measures statement 
coverage as the objective function during the app's execution. When the source code is unavailable, 
Sapienz measures method coverage or activity coverage instead. Figure 2-9 shows the workflow of 
Sapienz. 
 

 
Figure 2-9: Sapienz Workflow (Mao, Harman & Jia, 2016) 

 

2.2.6 Comparison 

 
As a summary, Table 2-1 compares these techniques for test case generation. 
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It is also interesting to look at some statistics. Garousi, Felderer, Karapıçak, and Yılmaz (2018) 
reviewed 312 papers about embedded software testing. Among them, 150 papers are model-based, 
followed by 24 papers about search-based testing, 23 papers about random testing, and a few 
papers about symbolic execution. The survey shows that model-based testing is the most heavily 
researched for embedded software testing, and other techniques are less popular.  
 
Why do we see this trend? Garousi et al. (2018) thought these papers on model-based test case 
generation are for requirement-based testing, i.e., using functional requirement coverage as the 
testing goal. For most software under test, it is necessary to perform tests against functional 
requirements. Encoding such requirements into a state transition model is straightforward (e.g., do 
X in state Y), so model-based test case generation is suitable for the general software development 
process. However, it has some disadvantages. For example, model-based testing needs sufficient 
prior knowledge to specify a model, and we do not have such a model for Delfi-PQ. 
 

Table 2-1: Comparison of Methods for Test Case Generation11 

Method Prior Knowledge 
Needed 

Code Coverage Testing Level Adapt to Other 
Testing Goals 

Model-
based 

Usually need 
manual specification 
of the model (states 
and transitions) 

Cover every transition 
of the model, instead 
of branches of source 
code 

Usually in high level tests 
(e.g., system testing) 
because such models 
from requirements exist 

Yes, if the 
goals can be 
represented in 
a model 

Symbolic 
Execution 

Automatically 
extract information 
from the source 
code 

Can cover every path 
if constraint solving is 
feasible 

Usually in low level tests 
(e.g., unit testing) 
because of limited 
constraint solving 
capability 

No, it’s mainly 
for code 
coverage 

Random 
Testing 

Not needed Cannot cover every 
path if the SUT is 
complex 

All levels Cannot adapt 
to a specific 
goal 

Search-
based 

Need specifications 
of the objective 
function 

Better than random 
testing, the limited by 
the capability of the 
search algorithm 

All levels Yes, if the 
goals can be 
represented in 
an objective 
function 

 
Search-based testing is less prevalent in the survey, but it is a promising option for testing goals 
that can be represented as an objective function. Therefore, search-based testing is an ideal tool to 
verify non-functional requirements. Table 2-1 shows that search-based testing does not have a 
“bad” property. Though the genetic algorithm may have some shortages (section 2.2.5), this 
approach with other search algorithms may perform better. 
 

2.3. Use Reinforcement Learning to Generate Testing Commands 
 
Reinforcement learning can be seen as a search-based testing method. Most reinforcement 
learning (RL) algorithms are developed for MDP. Therefore, before applying reinforcement learning 
to command generation, it is necessary to construct the problem as a Markov Decision Process 
(MDP). 
 

2.3.1 Software Testing as a Markov Decision Process 

 
An MDP is a 4-tuple (𝑆, 𝐴, 𝑃, 𝑅), where (Howard, 1960): 

 
11 Meaning of colors in the table: green (helpful), yellow (acceptable), red (bad).  
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 - 𝑆 is a set of states. 

 - 𝐴 is a set of actions. 
 - 𝑃(𝑠′|𝑠, 𝑎) is the probability that action 𝑎 in state 𝑠 will lead to state 𝑠′. 
 - 𝑅(𝑠′|𝑠, 𝑎) is the reward received after state transition. 
 
An MDP needs to satisfy the Markov property, which means the state transition probability is only 
related to the current state and action instead of the entire history of the agent’s interaction with the 
environment. Some MDP also assumes the current state is fully observable. These assumptions 
simplify the problem a lot. 
 
We need to represent states, actions, and rewards for constructing software testing as an MDP. 
Figure 2-10 shows these elements and 𝑡 is the time step.   
 

 
Figure 2-10: A Markov Decision Problem at Step t and t+1 

 
There are three ways to represent states in RL-based testing: graphical user interface (GUI) 
information, parameters in the program, or code coverage information. Here are some examples: 
 

- Adamo, Khan, Koppula, and Bryce (2018) extracted states from the GUI of Android 
applications. It used the Appium and UIAutomator tools to retrieve XML representations 
of the app's GUI, including widgets and the types of actions (e.g., click, long press) 
enabled on them. A state includes all actions available on all widgets.n 

- Bergdahl et al. (2020) used parameters of the games under test to construct state 
vectors. A state vector contains the player's position relative to the goal, velocity, 
rotation, and jump cool-down time. Such practice is common for game AI. 

- Dai, Li, Wang, Singh, Huang, and Kohli (2019) represented a state as a graph. A node in 
a graph is a program branch. It contained a node feature vector 𝑉 and a coverage mask 
𝐶 → {0,1}, indicating whether the node had been covered. Edges showed relations 
among branches. The structure of such a graph can be static or changing during testing 
(if new program branches are found). 

 
RL-based testing can use many types of actions. For example, the actions space can be discrete, 
i.e., it contains a limited number of actions like clicks and long presses (Adamo et al., 2018). An 
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action can also be a vector with discrete values (multi-Discrete action space) or a vector with 
continuous values (continuous action space). For example, Dai et al. (2019) used a sequence of 
characters or a 2D array of characters as an action of the RL agent.  
 
Rewards of RL-based testing are usually new state coverage, code coverage, risk, or load of the 
SUT. Testers can also use other metrics to calculate rewards. RL-based GUI testing usually 
maximizes state coverage. One problem with this approach is determining if a new state has been 
reached. For example, there may be other news on the same home page of a GUI, as shown in 
Figure 2-11. Traditional methods may think that the home page contains many states, but Pan, 
Huang, Wang, Zhang, and Li (2020) used a curiosity module to recognize the page as a single 
state. 

 
Figure 2-11: A Curiosity Module in RL-Based GUI Testing (Pan et al., 2020) 

 
Few works, like (Dai et al., 2019), used code coverage to compute rewards, i.e., receive a reward 
when covering new program branches. By contrast, many papers used final code coverage as the 
metric to evaluate their RL agents, such as (Vuong & Takada, 2018), (Adamo et al., 2018), and 
(Pan et al., 2021). The reason behind such a phenomenon is the difficulty of getting “real-time” code 
coverage of software under test, i.e., measuring the code coverage growth caused by taking action. 
It is technically feasible, but most code coverage tools only generate a code coverage report after 
the software stops running. 
 
Several papers included the risk or performance of the SUT in rewards. Reichstaller, Eberhardinger, 
Knapp, Reif, and Gehlen (2016) used a behaviour model of the SUT to evaluate the risk of given 
failure situations. The risk was then used as a reward for the reinforcement learning algorithm. 
Moreover, Ahmad, Ashraf, Truscan, and Porres (2019) calculated rewards with elapsed execution 
time. 
 
Defining states, actions, and rewards do not mean the problem is a standard Markov process. For 
example, (Adamo et al., 2018) formulated the reward as: 
 

 𝑅 =
1

𝑁𝑠 + 𝑐
 (2-1) 

 
where 𝑁𝑠 is the number of times that state 𝑠 has been visited, and 𝑐 is a constant. Reward (2-1) 
decreases as 𝑁𝑠 increase, so the rewards of the same transitions change with the interaction 
history. In this case, the problem is an online MDP (Even-Dar, Kakade, & Mansour, 2009), an 
extension to the standard MDP. Although the Q-Learning algorithm is not designed for online MDPs, 
it reached good code coverage in (Adamo et al., 2018). 
 

2.3.2 Brief Introduction to Reinforcement Learning Algorithms 
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This section cannot introduce reinforcement learning algorithms in detail due to length constraints. 
For further information and detailed derivation of the formulas, please refer to the literature study 
document in the appendix. However, it is helpful to understand some basic concepts in 
reinforcement learning (Sutton & Barto, 2018): 
 

A return 𝐺𝑡 is a cumulated reward from time step 𝑡 to horizon 𝑇: 
 

 𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ + 𝛾𝑇−𝑡−1𝑟𝑇 (2-2) 

 
where 𝛾 ∈ (0,1) is the discount factor. 

 
A policy function 𝜋(𝑎|𝑠) =  𝑃(𝑎|𝑠) determines the probability that the agent will select action 𝑎 in 
state 𝑠. Under a policy 𝜋, an action-value function 𝑄𝜋(𝑠, 𝑎) shows the expected return of state 𝑠 if 

action 𝑎 is selected (𝑄𝜋 is time-independent): 
 

 𝑄𝜋(𝑠, 𝑎) = 𝔼[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (2-3) 

 
Likewise, under a policy 𝜋, a state-value function 𝑉𝜋(𝑠) shows the expected return of state 𝑠 
(time-independent): 
 

 𝑉𝜋(𝑠) = 𝔼[𝐺𝑡|𝑠𝑡 = 𝑠] = ∑  𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)

𝑎∈𝐴

 (2-4) 

 
The task of reinforcement learning is to approximate these functions to maximize the return. The 
approximators can be tables or neural networks. Using tables as approximators suits problems with 
small, discrete states and action space. On the other hand, if there are many (or continuous) states 
and actions, it is more suitable to use approximators like neural networks. 
 

In the early days, reinforcement learning algorithms could be value-based or policy-based, 
depending on which function they approximated. Value-based RL algorithms only learn the action-
value function 𝑄𝜋(𝑠, 𝑎). After training, they will select the action with maximal 𝑄𝜋(𝑠, 𝑎). Typical 
tabular value-based algorithms are SARSA (Rummery & Niranjan, 1994) and Q-Learning (Watkins 
& Dayan, 1992), which use a Q table to record 𝑄𝜋(𝑠, 𝑎). Deep Q Network DQN (Mnih et al., 2015) 
and its variants use a neural network to approximate 𝑄𝜋(𝑠, 𝑎). On the other hand, policy-based 

RL algorithms only learn the policy function 𝜋(𝑎|𝑠), such as REINFORCE (Williams, 1992). 
 

Both approaches have some disadvantages. For example, value-based algorithms are not good at 
problems with ample action space, and policy-based algorithms use basic Monte Carlo sampling 
with high variance and long sampling time. As a compromise, many later algorithms learn both the 
policy function, approximated by an actor network and the state-value function, approximated by 
a critic network. Examples of such algorithms are PPO (Schulman, Wolski, Dhariwal, Radford, & 
Klimov, 2017), A3C/A2C (Mnih et al., 2016), DDPG (Lillicrap et al., 2015), TD3 (Fujimoto, Hoof, & 
Meger, 2018), and SAC (Haarnoja, Zhou, Abbeel, & Levine, 2018). 
 

Some RL algorithms also learn an environmental model 𝑔(𝑠𝑡 , 𝑎𝑡) = 𝑠𝑡+1, 𝑟𝑡, which predicts future 
states and rewards. A model can be approximated by a neural network or represented by a finite 
state machine. Such algorithms are called model-based RL and may improve the sampling 
efficiency. Several examples are the world model(Ha & Schmidhuber, 2018), MuZero (Schrittwieser 
et al., 2020), and EfficientZero (Ye, Liu, Kurutach, Abbeel, & Gao, 2021). 
 
It is important to note that learning a finite state machine has been an old topic in computer 
science since the 1960s (Mohri, Rostamizadeh & Talwalkar, 2018). Whether it can be classified as 
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reinforcement learning remains to be a question. A state machine can be learnt passively or 
actively: 
 

- Passive learning simply records states and transitions and can be easily integrated with 
RL algorithms like Q-Learning. An example is (Zheng et al., 2021) in web testing. 

- Active learning chooses actions to infer the structure of state machines. An active 
learning algorithm called L* (Angluin, 1987) has been widely used in domains from 
network protocol inference to functional confirmation testing of circuits. However, L* 
requires a frequent reset to the initial state. L* only learns a model (state machine) and 
does not approximate a policy function or an action-value function. 

 

2.3.3 Reinforcement Learning Algorithms in Software Testing 

 
Table 2-2 summarizes some papers and projects about RL-based software testing. There are many 
other similar works in this field. 
 

Table 2-2 Part of Papers and Projects on RL-based Software Testing 

Paper Field RL Algorithm Learn a 
Model of SUT 

Testing Goal Maturity 

(Sant, Souter, 
& Greenwald, 
2005) 

Web 
Application 
Testing 

Passive learning 
of state machine 

Yes Simply transfer 
user log to a 
model 

Research at 
university 

(Veanes, Roy, 
& Campbell, 
2006) 

Test programs 
with .NET 
languages 

Like Q-Learning No, it already 
has a (implicit) 
model written 
by developers 

Action coverage 
(cover all actions 
in all states) 

Research at 
Microsoft 

(Bauersfeld & 
Vos, 2012) 

GUI Testing Q-Learning No Action coverage Research at 
university 

(Groce et al., 
2012) 

API Testing SARSA No State coverage Research at 
university 

(Choi, Necula, 
& Sen, 2013) 

Android GUI 
Testing 

Active learning of 
state machine 

Yes State coverage Research at 
university 

(Reichstaller, 
Eberhardinger, 
Knapp, Reif, & 
Gehlen, 2016) 

Interoperability 
testing 

Q-Learning No, it already 
has a model to 
calculate risk 

Risk Research at 
university 

(Spieker, 
Gotlieb, 
Marijan, & 
Mossige, 2017) 

Test Case 
Prioritization 
(Not test 
command 
generation, but 
has similarities) 

Like DQN No Failure number 
of test cases 

Research at 
company 

(Su et al., 
2017) 

Android GUI 
Testing 

Like Q-Learning 
(learn a model and 
then mutate it to 
get test cases) 

Yes State coverage 
(learn the model) 
Code coverage 
(mutate the 
model) 

Research at 
university 

(Adamo, Khan, 
Koppula, & 
Bryce, 2018) 

Android GUI 
Testing 

Q-Learning No Action coverage Research at 
university 

(Groz, Simao, 
Bremond, & 
Oriat, 2018) 

Embedded 
System Testing 
(C++ 
microcontroller) 

Active learning of 
state machine 

Yes, up to 
1000 states 

Find all states Research at 
university 

(Vuong, & 
Takada, 2018) 

Android GUI 
Testing 

Q-Learning No Action coverage Research at 
university 
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(Ahmad, 
Ashraf, 
Truscan, & 
Porres, 2019) 

Stress Testing 
of Server 

DDQN (a variant 
of DQN) 

No System 
response time 

Research at 
university 

(Dai, Li, Wang, 
Singh, Huang, 
& Kohli, 2019) 

Test GUI and 
programs in 
domain specific 
languages 

A2C with Gated 
Graph Neural 
Network (GGNN) 

No Code coverage Research at 
Google 
DeepMind 

(Zheng et al., 
2019) 

Game Testing A2C+Evolutionary 
Algorithm 

No Game score and 
state coverage 

Research at 
Netease and 
apply in real 
world 

(Bergdahl, 
Gordillo, 
Tollmar, & 
Gisslén, 2020) 

Game Testing PPO No Game score and 
state coverage 

Research at 
Electronic 
Arts 

(Cai, Zhang, & 
Yang, 2020) 

Android/IOS 
GUI Testing 

UCB 
/Monte Carlo Tree 
Search 
/Q-Learning 

Yes Action coverage Massively 
deployed in 
Bytedance 

(Harries, 2020) Windows GUI 
Testing 

DQN with Graph 
Attention Network 
(GAT) 

No Multiple goals 
can be 
calculated 

Research at 
Microsoft 

(Pan, Huang, 
Wang, Zhang, 
& Li, 2020) 

Android GUI 
Testing 

Q-Learning with a 
curiosity module 

No Action coverage Research at 
university 

(Bagherzadeh, 
Kahani, & 
Briand, 2021) 

Test Case 
Prioritization 
(Not test 
command 
generation, but 
has similarities) 

Compare DQN, 
DDPG, A2C, 
ACER, ACKTR, 
TD3, SAC, 
PPO1/2, TRPO. 
Also uses (Spieker 
et al., 2017) as a 
baseline 

No Failure number 
of test cases, 
execution time of 
test cases, 
deviation from 
optimal solution 
of datasets 

Research at 
university 

(Lodge, 2021) Java Unit 
Testing 

The design details of the Diffblue Cover tool are 
unknown. They claim to use RL that can work on a 
developer laptop with 8GB memory and 2 Intel CPU 
core. 

Commercial 
RL testing 
tool 

(Moghadam et 
al., 2021) 

Stress Testing Q-Learning/DQN No Maximize 
response time 
and error rate 

Research at 
institute 

(Schwartz, & 
Kurniawati, 
2021) 

Penetration 
Testing 

Q-Learning/DQN No Minimize exploit 
cost and find 
more sensitive 
machines 

Research at 
university 

(Tran et al., 
2021) 

Penetration 
Testing 

Hierarchical 
DDQN (a variant 
of DQN) 

No Attack every host 
and finally find 
the flag 

Research at 
university 

(Test.AI, 2021) GUI Testing The details of the tool are unknown, but they claim to 
use RL which looks like Q-Learning based GUI testing 
mentioned above. The tool uses image recognition 
techniques to detect labels and icons of GUI. 

Commercial 
RL testing 
tool 

(Zheng et al., 
2021) 

Web Testing Q-Learning with a 
curiosity module 

Yes Action coverage Research at 
university 

(Romdhana, 
Merlo, 
Ceccato, & 
Tonella, 2022) 

Android GUI 
Testing 

Compare Q-
learning, DDPG, 
SAC, TD3 

No, but it has 
a state 
machine 
written by 
developers 

Action coverage 
and number of 
crashes 

Research at 
university 
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In Table 2-2, the most popular approach to RL-based testing is using the Q-Learning algorithm to 
perform GUI testing. There are several reasons: 
 

- As mentioned in section 2.3.1, it’s easy to extract state information from GUI. It can be 
easily achieved by image recognition or tools like Automator. 

- For a GUI application, the number of states and actions is usually limited if you properly 
filter equivalent states and actions. For example, (Choi, Necula, & Sen, 2013) tested 10 
Android applications and could only find up to ~200 states in an APP. In this situation, it’s 
suitable to use simple RL algorithms with tables as approximators. 

 
RL algorithms with neural network approximators, or Deep Reinforcement Learning (DRL), came to 
the software testing field around 2017. (Spieker et al., 2017) was a remarkable success because it 
just used a very simple neural network (with one hidden layer) and achieved good performance on 
its dataset. (Bagherzadeh et al., 2021) Compared multiple DRL algorithms and found trust region 
methods like PPO, TRPO and ACER performed well in their settings. (Dai et al., 2019) and (Harries, 
2020) were the first works to use graphs to represent states and use a graph neural network to 
process the states. 
 
It’s interesting that these papers only learn finite state machine models of the system under test 
(SUT) instead of neural network models. Two survey papers (Durelli et al., 2019) and (Omri & Sinz, 
2021) showed that some researchers did model the SUT with neural networks, but no one 
combined it with reinforcement learning. This may be a research gap. 
 
Several RL-based testing tools have been deployed since 2020. However, their design details are 
mostly unknown to the academic community. An exemption is the Fastbot of Bytedance (Cai et al., 
2020), which uses Q-Learning and image recognition to perform GUI tests. 

2.4. Formulate the Research 
 

This work aims to find a way to test onboard software automatically with limited prior knowledge. 
Previous sections show random testing, and the genetic algorithm are the traditional ways to do 
that, but both have some disadvantages. Reinforcement learning, as a new approach in software 
testing, may solve these problems.  
 
Based on the discussion above, this section formally formulates the research with assumptions, 
research questions, and opposite opinions. 
 

2.4.1 Assumptions 

 

Assumption-1 The onboard software testing process can be seen as an MDP, i.e., it 
satisfies the Markov property, and all state variables are observable. 

 
The performance of the RL algorithm can verify this assumption. 

 
Assumption-2 Performance of software testing algorithms can be measured by metrics like 

code coverage (in correctness testing) and CPU load (in stress testing). 
 

This assumption is difficult to verify. There is no direct relation between test 
coverage and the number of identified bugs. However, most of the papers in 
this field used this assumption. 
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Assumption-3 Prior knowledge in software testing is human-defined problem-specific 
knowledge, such as: 

 
- How to encode/decode commands and telemetry 
- Rules are used to identify the current state from the telemetry or the 

interaction history. 
- What action should be taken in the current state. 
- Whether the current state contains an anomaly. 
- A model is used to predict the system's future state under test. 
- Design of the objective function or the reward function.  

 
On the other hand, problem-independent knowledge, like the algorithms in the 
testing tools, is not thought of as prior knowledge in this study. 
Hyperparameters in the algorithms can be tuned by grid search or other 
methods, so they are not prior knowledge. 

 
This assumption is intuitively valid.  

 
Assumption-4 The amount of prior knowledge cannot be directly measured. However, we 

can list types of prior knowledge in a testing method and compare them 
based on experience.  

 
Assumption-5 Other onboard software, especially software of CubeSats and PocketQubes, 

share similarities with Delfi-PQ flight software. Therefore, the conclusions and 
recommendations of this study can be partly generalized. 

 
                                   This assumption will be further discussed in chapter 3. 
 

2.4.2 Research Questions 

 

The main research question is 
 
Can a reinforcement learning-based testing tool generate testing commands for small 
satellites with limited prior knowledge? 
 
We divide it into the following sub-questions: 
 
RQ-1   What is the goal of testing command generation? 
 

As mentioned above, the testing goal can be maximizing state/action 
coverage, code coverage, system response time, or the number of failures. 
Since reinforcement learning uses a reward function to guide the search, we 
can measure the testing goal quantitatively. 

 
RQ-2   What type of prior knowledge needs to be encoded? 
 

Assumption-3 lists several types of prior knowledge. 
 
RQ-3   Which RL algorithm is suitable for testing command generation? 
 

It includes the selection of the RL algorithm and the implementation details, 
including the toolchain, representations of states and actions, and the neural 
network architecture. 
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RQ-4   What kind of testing environment should be used? 
 

It includes the hardware and software settings of the test, such as 
communication between the host computer and the tested board, testing 
multiple boards simultaneously, and whether a simulator is needed. Note that 
we must ensure the testing commands will not damage the satellite. 

 
RQ-5   Can we use a trained RL agent to test other software versions? 
 

Testers may want to reuse an RL agent in regression testing. This study will 
measure the performance of such reuse and compare it with training an agent 
from scratch (cold start).  

 

2.5. Brief Summary of the Chapter 
 

⚫ Compared with conventional software testing, embedded software testing has a series of 
challenges because of limited hardware capability and communication. 
Therefore, simulation-based testing is widely adopted. However, it is difficult to 100% 
mimic the behaviour of actual hardware. 

⚫ Onboard software testing is a type of embedded software testing. Some engineers use 
simulation or a virtual satellite to test the onboard software. Unfortunately, this 
approach is usually infeasible for small satellite programs with a limited budget. Another 
trend in onboard software development is model-based automated code generation, 
which makes the software safer and model-based testing easier. Moreover, model-
checking tries to prove the SUT has the correct behaviour instead of testing it. Model 
checking requires a model of the SUT. 

⚫ Traditional automated testing approaches are model-based testing, symbolic 
execution, random testing, and search-based testing. It is convenient to use model-
based testing to verify whether the SUT satisfies functional requirements. On the other 
hand, model-based testing heavily relies on prior knowledge specified in the models. At 
the same time, search-based testing is a powerful tool for verifying non-functional 
requirements and usually requires less prior knowledge. 

⚫ The most popular search-based testing algorithm is the genetic algorithm, but it has 
some disadvantages. It relies on the objective function to guide the search and discards 
other information from the execution. Furthermore, the time-consuming algorithm may 
need to be run repeatedly in regression testing. 

⚫ Reinforcement learning-based testing may compensate for the shortcomings of the 
genetic algorithm. It utilizes both the state and reward information during the testing. 
Moreover, it may learn a pattern of similar SUTs and not need to run again in regression 
testing. RL-based testing has been researched for about 15 years. In the recent 2~3 
years, it has been deployed in production scenarios.  

⚫ No one has used reinforcement learning in onboard software testing yet. Few 
researchers use RL to test embedded software without a GUI. There are still some 
fundamental challenges in this field. 
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3 Testing Environment 
 
This section introduces the testing environment used in the study. More specifically,  
 

⚫ Section 3.1 gives an overview of the functions of subsystems of Delfi-PQ, especially the 
hardware configuration. 

⚫ Section 3.2 introduces the onboard software of Delfi-PQ. It also compares the Delfi-PQ 
onboard software with open-source onboard software, e.g., NASA’s core Flight System. 

⚫ Section 3.3 introduces the hardware and software tools used in testing. 
⚫ Section 3.4 explains how to extract information from the source code of onboard 

software, such as collecting code coverage, generating a graph representation of the 
program, and using the representation as input to a neural network. 

⚫ Section 3.5 is a summary of this chapter. 
 

3.1. Overview of Delfi-PQ Subsystems 
 
The first Delfi-PQ has 7 subsystems: 
 

- On-Board Computer (OBC) 
- Communication System (COMMS) 
- Antenna Deployment Board (ADB) 
- Electrical Power System (EPS) 
- Attitude Determination and Control System (ADCS) 
- A low frequency radio payload (LOBE-P) 
- A redundant on-board computer.  

 
The stack of these subsystems is shown in Figure 3-1. 
 

 
Figure 3-1 Stack of Delfi-PQ Subsystems 
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Each subsystem has a Texas Instrument MSP432P4111 microcontroller, which controls how the 
subsystem works. All these microcontrollers are connected to an RS-485 bus with a speed of 
115.2kbps. The OBC is the master of the bus except during testing. Only the OBC can actively send 
frames over the bus, and other subsystems only reply passively. The bus only allows half-duplex 
communication; each frame has up to 253 bytes of payload. Each microcontroller also has SWD 
pins, which can be connected to a PC via a JLINK connector.  
 
The 48MHz microcontroller has 2MB Flash and 256KB SRAM. There is also a 512KB FRAM for 
each microcontroller. Information in a FRAM will not be lost after a reset. However, only the OBC 
has a 2GB SD card to store telemetry.  
 
Every microcontroller should kick an external watchdog on the board at least once every 2.5 
seconds. Otherwise, the board will be reset. At the same time, a microcontroller should kick an 
internal watchdog at least once every 178 seconds. Otherwise, the controller will be reset. These 
are basic measures to deal with space radiation. 
 
The OBC controls how the subsystems work. It has a state machine which covers the fundamental 
operations of the satellite. Figure 3-2 shows that the state machine has five modes: initial mode, 
antenna deployment mode, safe mode, ADCS mode, and normal operation mode. In the normal 
operations mode, the OBC will periodically request telemetry from every subsystem, save the 
telemetry in its SD card, and send it to the ground via COMMS. OBC will also periodically request 
ground commands from the COMMS. If the command is for OBC itself, it will deal with it and reply to 
the ground station. If the command is for another subsystem, OBC will forward the command to that 
subsystem, wait for the reply, and send a reply to the ground. 
 

 
Figure 3-2: The State Machine in OBC 

 
The EPS consists of the battery board (1500mAh, two batteries of 3.7V), the main EPS board and 
solar panels. EPS manages four power lines, and each line has some subsystems on it. According 
to commands from the OBC, EPS can enable, disable, reset, or power cycle a power line. EPS is 
designed to be constantly running after the deployer releases the Delfi-PQ. Therefore, a reset of the 
EPS leads to resetting the whole satellite. If the battery voltage is below 3.6V, the OBC should 
commend the EPS for disabling the power lines of unnecessary subsystems. 
 
The COMMS receives and decodes the signal from the ground station. It automatically puts the 
ground commands into the RX (receiver) queue. If the OBC requests ground commands from the 
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queue, COMMS will take a ground command from the queue and send the command to the OBC. 
Furthermore, if the OBC needs to send a message to the ground station, it will command COMMS 
to put the message into the TX (transceiver) queue. COMMS will automatically send all messages in 
the TX queue to the ground. The RX/TX queue can store up to ~200 messages. The communication 
is full-duplex with a nominal speed of 1200 bps or a higher speed of 9600 bps at 2W power 
consumption. In an emergent case, if the COMMS receives a special command from the ground, it 
will raise a special line to reset the EPS, which will reset the whole satellite. 
 
Another critical subsystem is the ADCS. It has an integrated sensor chip, including a gyroscope, an 
accelerometer, and a geomagnetic sensor. It also has three house-made coils as magnetometers to 
control the rotational speed of the satellite. If the rotation speed exceeds 5 deg/second, the OBC will 
command the ADCS to slow down the rotation. 
 
ADB is used to deploy the antennas after the satellite is released from the deployer. The payload is 
another radio which will generate scientific data. The redundant onboard computer board only has 
an MSP432 and some essential components. 
 
Table 3-1 summarizes part of the hardware of Delfi-PQ subsystems. 
 

Table 3-1 Part of Hardware of Delfi-PQ Subsystems 

Shared by every 
subsystem 

Texas Instrument MSP432P4111 
microcontroller 

48MHz, 2MB Flash, 256KB SRAM, 65mW 
Internal watchdog period:178s 

Cypress CY15B104QN 
Ferroelectric RAM (FRAM) 

512KB, controlled by on-board SPI bus 

Texas Instrument TMP100 
temperature sensor 

Controlled by on-board I2C bus 

Texas Instrument INA226 current 
and voltage sensor 

Controlled by on-board I2C bus 

Texas Instrument TPS3813 
external watchdog 

Period: 2.5s 

STBB1-A DC-DC Converter  

Analog Devices LTC4368 surge 
protector 

 

Protection trip  

Current limiting resistor  

RS-485 inter-board bus Speed: 115.2kbps 
Payload size of a frame: 256 bytes 

SWD pins for debug  

OBC specific 
hardware 

SD card 2GB 

EPS specific 
hardware 

AW 16340 ICR123 750mAh 
battery * 2 

1500mAh in total, 3.7V 
Integrated with protection circuits and gas 
gauges 

4 Solar panels Each panel has an MPPT, a temperature 
sensor, and a voltage/current sensor 
Orbital average power: 1W 

4 Unregulated power lines With monitoring + latch-up protection 

COMMS 
specific 
hardware 

Main radio board with SX1278 
LoRa Module 

Full control of the radio  
Multiple protocols 
Full duplex 
Data rate: 1200bps~9600bps 

RF front end with a power 
amplifier and a low-noise amplifier 

Max power consumption: 2W 

Special line to reset EPS  

UHF/VHF antennae  

ADCS specific 
hardware 

Integrated sensor chip Bosch 
BMX-055 

Include a gyroscope, an accelerometer, 
and a geomagnetic sensor 
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Magnetorquer With 3 house-made coils 

Other hardware A low frequency radio payload 
(LOBE-P) 

 

A laser reflector  

A board with MSP432 for students It’s the GPS board in the original plan, but 
the GPS module didn’t work before 
integration 

Antenna Deployment Board 
(ADB) 

 

 

3.2. Onboard Software of Delfi-PQ 
 

The onboard software has three parts: 
 

⚫ Drivers, i.e., driver functions of peripherals. 
⚫ DelfiPQcore, a lightweight operating system with some helper functions. 
⚫ asks and services. All subsystems share some tasks and services. On the other hand, 

some tasks and services are written for a specific subsystem. 
 
The onboard software is edited, compiled, and loaded to the microcontroller by the Texas 
Instrument Code Composer Studio IDE. We use the old TI ARM C/C++ compiler (TI v20.2.0LTS), 
though TI has a new compiler based on Clang. 
 
We will discuss the general workflow of the onboard software in section 3.2.1, the basic concepts of 
DelfiPQcore in section 3.2.2, and tasks and services in section 3.2.3. This section is based on 
internal reports by Stefano Speretta and Casper Broekhuizen. 
 

3.2.1 Workflow of Onboard Software 

 
The general workflow of the programs can be described as a sequence of initialization steps, after 
which the program will go into a continuous task loop, as shown in Figure 3-3. In this loop, it does 
the following: 
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Figure 3-3: Workflow of Onboard Software of Delfi-PQ by Casper Broekhuizen 

 
Step 1 
Initialize Hardware This step should initialize the critical components of the subsystem, 

including general hardware in the MCU and specific hardware for the 
subsystem.  

 
Step 2 
Execute Bootloader One of the software's core features is the possibility of loading 

different software versions from the flash memory of the MCU. 
 
Step 3 
Get Hardware Status Critical hardware status indicators should be collected and stored. 

These critical status indicators include the reset status (the reason for 
the last reboot) and possible clock faults. 

 
Step 4 
Execute Task After the operating system has completed its boot steps, it starts a 

continuous task execution routine, which can be considered a simple 
non-pre-emptive, non-prioritized, linear scheduler (round-robin). 

 

3.2.2 Important Concepts of DelfiPQCore 

 
In this section, we introduce some basic concepts and functions of the DelfiPQCore, a 
straightforward operating system made in house. 
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Task                                       After the operating system starts, tasks can be executed. Any 

processing/data collection or other action executed by the device is a 
task.  

 
A task consists of an initializer function, a function executed once 
during the initialization of the scheduler (called task manager), and a 
user function that executes every iteration of the task.  

 
Every task has an execution flag. Raising this flag will tell the task 
manager that this task is ready for execution. If the execution flag is 
not raised, the task will not be executed and will be skipped by the 
task manager. The execution flag can be raised either externally by 
another task or using any interrupt routine. This action will henceforth 
be called "notifying a task". 

 
PeriodicTask Some tasks require periodic execution, and there might not be any 

clear external trigger available to notify such tasks (such as a 
telemetry collection task). Such a task is a periodic task, which 
includes another parameter which contains the required amount of 
'counts' for the task to be notified (1 'count' is approximately 0.1 
seconds). An external object, the task notifier, will notify the period 
tasks assigned to it in an interrupt routine. 

 
Service The most common source of notifying a task is from an external 

trigger over the satellite bus. The satellite bus driver will receive bytes 
over the bus using a hardware interrupt routine. If a complete frame is 
received, a command handler task will be notified, and copy the 
received frame into its buffer.  

 
Then, the scheduler will execute the command handler task since its 
execution flag is raised. The command handler will read the data 
frame and 'poll' so-called services registered.  

 
When a service detects that the received frame is for itself, it will 
process the received frame, set a response frame, and tell the 
command handler that the service has processed the received frame. 
The command handler will stop polling other services and reply over 
the bus.  

 
A user should create a service for every functionality required over the 
satellite bus. 

 
PQ9Frame Though the command handler handles any frame it receives, the 

services used are frame-specific. The frame (PQ9Frame) is built in the 
following way: 

 
Table 3-2 PQ9Frame Definition 
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Whereas the frame Payload is described as follows: 
 

Table 3-3 PQ9Frame Payload Definition 

 
     
    PQ9Frame has CRC verification. 
 
Software Update As mentioned earlier, one of the core functionalities of the DelfiPQcore 

is to execute a different software version from the FLASH. The 
bootloader handles this functionality. This bootloader requires an 
external memory (FRAM) that holds non-volatile information regarding 
which memory slot needs to be executed, whether the last execution 
was successful, and the number of reboots. If this information tells the 
bootloader that the target slot is broken or has issues (or if the 
external FRAM is unavailable), it will fall back on the default slot (Slot 
0).  

 
The device has three slots available, Slot 0, the default slot protected 
in the FLASH and cannot be reprogrammed, and Slot 1 & Slot 2, 
which can be reprogrammed. SoftwareUpdateService allows a binary 
file transfer of a new software version over the bus to reprogram the 
FLASH. Thus, a module can be reprogrammed externally and even in 
orbit. Note that the FRAM needs to be present for this functionality to 
work. 

3.2.3 Tasks and Services in Each Subsystem 

 
Table 3-4 summarizes the tasks and services of Delfi-PQ subsystems.  
 

Table 3-4 Tasks and Services of Delfi-PQ subsystems 
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 Task Service 

DelfiPQcore 
(For all 
subsystems) 

Timer task  
(a periodic task which collects 
telemetry of the subsystem every 
second) 

Ping service 
(Reply to the Ping command) 

Command handler task 
(Process received frames and replies) 

Reset service 
(Reset or power cycle the controller) 

 FRAM service 
(Read, write, or erase the FRAM) 

 Housekeeping service 
(Send the telemetry collected by the timer task 
as a response) 

 Software update service 
(Handle software update commands, and new 
binary software is the payload of some software 
update commands) 

Only for ADB Burn task Burn service 
(Burn the wire that locks the antenna, so the 
antenna is deployed) 

Only for 
ADCS 

None Coil service 
(Set states of the magnetorquers) 

Only for 
COMMS 

CommRadio task Radio service 
(A set of functions to interact with COMMS) 

Only for EPS None Power bus handler 
(Set states of the power lines) 

Only for 
LOBE-P 

lobepRadio task 
(Like the CommRadio task, but work in 
lower frequency) 

lobep service 
(Like the radio service, but working on lower 
frequency) 

Only for OBC State Machine task 
(A periodic task that runs the simple 
state machine in section 3.2.1) 

State machine service 
(Get / set the current state; enable beacon or 
reset the state machine) 

File system task 
(Raised by the telemetry request 
service to retrieve telemetry from the 
SD card asynchronously, or raised by 
the state machine to store telemetry in 
the SD card) 

Telemetry request service 
(Request telemetry file from the SD card or 
format the SD card) 

 Bootloader override service 
(Command the microcontroller to jump to a 
specific slot. It should be a service shared by 
multiple subsystems but is only an OBC service 
at this moment.) 

 

3.2.4 Safety Measurements in the Onboard Software 

 

Delfi-PQ does not have complex fault-handling mechanisms. It only has some fundamental safety 
measurements, including: 
 

- If there is no response from a subsystem, OBC will resend the command. 
- The microcontroller kicks the external watchdog when receiving a PQ9Frame. The board 

will be reset if no frame is received, or the controller does not kick the watchdog during 
the 178 seconds. Therefore, if OBC does not send commands to EPS during the period, 
EPS will be reset, leading to a complete satellite reset. 

- The microcontroller kicks the internal watchdog in the main loop. If the controller is stuck 
and does not kick the watchdog during the 2.5 seconds, the controller will be reset. 

- With a special command from the ground station, COMMS can directly reset EPS via a 
special line. 
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- CRC checking of the PQ9Frame. 
- MD5 checking of binary source code. 
- Multiple software images in the flash of a microcontroller. 
- Important program variables have backups in the FRAM. 
- We carefully design the state machine of OBC, which includes sensor check and a 

degraded safe mode. 
 
For more information about radiation hardening and safety measurements on CubeSat/PocketQube 
platforms, the readers can refer to (Yuen & Sima, 2019). 

3.2.5 Compare with Other Onboard Software 

 

The Delfi-PQ software has a similar architecture to the onboard software of the bigger satellites. For 
example, the NASA core Flight System (cFS) has three layers: user applications, the core Flight 
Executive (cFE), and the platform abstraction layer (McComas, 2021). The Delfi-PQ has three 
similar layers: user applications (subsystem-specific tasks & services), the DelfiPQcore, and the 
hardware abstraction layer (drivers).  
 

 
Figure 3-4 Architecture of NASA Core Flight System (McComas, 2021) 

 
The DelfiPQcore offers some functionalities of a real-time operating system and the cFE. It provides 
a bootloader, task creation and scheduling, bus command handling, and software update capability. 
Although operating systems like FreeRTOS can support more, such as dynamic memory allocating 
and queues for inter-task communication, the current functionalities of DelfiPQcore are enough to 
use in a PocketQube mission.  
 
Table 3-5 compares the tasks of Delfi-PQ with the open-source set of cFS applications (Timmons, 
2020). The Delfi-PQ tasks and services offer some basic functionalities of the cFS applications, like 
command uplink and telemetry downlink. However, it does not support fault handling, memory 
integrity checking, or processor address sampling. The Delfi-PQ software is also incompatible with 
the standards of the CCSDS committee, which can be very time-consuming. cFS has many 
mission-specific applications, such as data processing, attitude control, navigation, and instrument 
calibration, which are much more complex than current Delfi-PQ applications. 
 

Table 3-5 Compare cFS Open-Source Applications with Delfi-PQ Applications 
Application in cFS Explanation Similar Functionality in Delfi-PQ 

Health and Safety 
App 

Kick watchdog, monitor applications 
and events, take table-defined actions 

Kick watchdogs, but do not monitor 
tasks and take recovery actions 

Housekeeping App Collects and re-packages telemetry 
from other applications 

Housekeeping service 

Data Storage App Record housekeeping, engineering. 
and science data onboard for downlink 

OBC state machine does it 

File Manager App Interfaces to the ground for managing 
files 

No 
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Limit Checker App Compare the telemetry with thresholds 
and take table-defined actions 

OBC state machine checks some 
telemetry parameters 

Memory Dwell App Sample data at any process address No 

Scheduler App Schedule onboard applications DelfiPQcore scheduler can do it 

Stored Command 
App 

Executes preloaded command 
sequences at predetermined time 

No. Delfi-PQ execute all ground 
commands immediately 

Software Bus 
Network 

Passes Software Bus messages over 
various “plug-in” network protocols 

No. Delfi-PQ has some dirty ways for 
inter-task communication, such as call 
back functions and global viriables 

Checksum APP Performs data integrity checking of 
memory, tables, and files 

Delfi-PQ will check MD5 of binary code 
during software update, but it won’t 
check that in normal operation 

Memory Manager 
App 

Provides the ability to load and dump 
memory 

No 

CFDP App Transfers/receives file data to/from the 
ground according to CCSDS CFDF 
protocol 

The telemetry service can transfer 
telemetry data from the SD card to the 
ground station. It doesn’t follow the 
CFDF protocol 

Command Ingest Lab Accepts CCSDS telecommand packets 
over a UDP/IP port 

OBC state machine and the radio 
service accept ground commands. It 
doesn’t follow the CCSDS standard 

Telemetry Output 
Lab 

Sends CCSDS telemetry packets over 
a UDP/IP port 

OBC state machine and the radio 
service send telemetry to the ground. It 
doesn’t follow the CCSDS standard. 

 
We can also look at onboard software developed by other universities. California Polytechnic State 
University (Cal Poly) was one of the universities that proposed the CubeSat standard. Their first-
generation onboard software was developed from scratch and had similar functionalities to Delfi-
PQ. However, this software has no hierarchy, and all source code is put in a single file. Their 
second-generation software was based on Linux (Manyak, 2011). Compared with the Delfi-PQ 
software, it only adds a system manager (like cFS Health and Safety App) and inter-process 
communication API (based on Linux UDP/IP tool).  
 
Table 3-6 compares the lines of code of several open-source onboard software repositories 
(measured by cloc), which is a metric to measure their complexity. Note that this metric is inaccurate 
because some source codes may be duplicated. 
 

Table 3-6. Lines of Code of Some Open-Source Onboard Software Repositories 
Onboard Software Repository Number of Lines of Code Languages 

Delfi-PQ Flight Software12 20107 C, C++ 

NASA Core Flight System13 100132 C, C++, Python, Perl 

NASA JPL F Prime14 82915 C, C++, Python 

KubOS15 57968 Rust, C, Python 

ESA Nanosat-MO-Framework16 543396 Java 

Cal Poly libproc17 for CubeSat 25649 C, C++ 

FossaSat-1 Pocosatellite18 1534 C++ 

EASAT-2 PocketQube19 1816 C 

MelbourneSpaceProgram20 21668 C, C++ 

 
12 https://github.com/DelfiSpace/FlightSoftwareWorkspace 
13 https://github.com/nasa/cFS 
14 https://github.com/nasa/fprime 
15 https://github.com/kubos/kubos 
16 https://github.com/esa/nanosat-mo-framework 
17 https://github.com/PolySat/libproc 
18 https://github.com/FOSSASystems/FOSSASAT-1 
19 https://github.com/AMSAT-EA/easat-2 
20 https://github.com/MelbourneSpaceProgram/msp_flight_software_public 
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As a summary of this section, the Delfi-PQ onboard software is simpler than professional onboard 
software made by space agencies. However, it has a similar complexity to other educational 
CubeSats/PocketQubes and is even more complex than others. 
 
Let us look at them using a hierarchical perspective. The DelfiPQcore provides similar capabilities to 
the professional onboard software, though it does not have a formal inter-task communication 
function or complex fault-handling mechanism. On the other hand, in the application layer, Delfi-PQ 
software is much simpler than professional onboard software.  
 
As an educational program, Delfi-PQ does not strictly meet relevant standards. It makes the 
implementation simpler. 

3.3. Test Set-Up 
 
In this section, the hardware and software set-up used in this research will be discussed. 
 

3.3.1 Hardware Set-Up 

 
The subsystem boards can be placed on the Electrical Ground Support Equipment (EGSE) board 
during testing. The EGSE board transfers messages between the RS485 bus (of Delfi-PQ) and the 
USB stream. Moreover, the lab computer is also connected to the SWD pins of the microcontrollers 
on the subsystem boards. The SWD connection can be used to modify the onboard software code.  
 
This study does not use an RF checkbox to communicate with the subsystems wirelessly. However, 
as shown in Figure 3-5, TX and RX antennae are connected to the COMMS board. If the 
transceiver and receiver in COMMS are set to the same data rate and frequency, the COMMS can 
“hear” the signal sent by itself and check the wireless communication channel. 
 
The experiments can be conducted remotely. The testing command generation tool can run on the 
lab computer with a Windows 10 environment. The lab computer has an Intel E5-1620 CPU 
(released in 2014) with 8GB RAM. The computing power of the lab PC is low, but the 
communication speed between the lab PC and the EGSE board is quick.  
 
On the other hand, the command generation tool can also run on cloud servers. Some experiments 
use a cloud server of Alibaba Cloud in Frankfurt. The server has an Intel Xeon 8163 CPU (released 
in 2017) with 31GB RAM and an Nvidia T4 GPU with 16GB memory (released in 2018). A ngrok 
server and the lab PC will transfer messages between the EGSE board and the cloud server. The 
computing power of the cloud server is relatively low, but the communication speed is slightly slower 
(shown in Figure 3-13). 
 



       

47 

 

 
Figure 3-5: Hardware Set-up for the Testing 

 

There are two ways for the lab computer to put a command over the bus: 
 

- Single subsystem testing. The subsystem under test is put on the EGSE. The lab 
computer sends commands to the subsystem and gets responses via the EGSE. When 
testing the OBC, the OBC software is set to a “passive” mode, i.e., it waits for external 
commands rather than actively sends commands over the bus. 

- Multiple subsystems testing. Several subsystems are put on the EGSE, and the OBC 
is the master of the bus. The testing tool mimics the behaviours of the COMMS 
subsystem, so it also has an RX and TX queue. The tool puts the “fake ground 
command” in the RX queue to send a command to a specific subsystem. The OBC will 
periodically request commands in the RX queue and transfer them to destinations 
according to the heads of the frames. After that, the OBC will collect replies to these 
frames and put them in the TX queue, which will be read by the testing tool. 

 
Limited by time and resources, this work only tests the COMMS and OBC in the “single subsystem 
testing” scenario.  
 

3.3.2 Software Set-Up 

 
The basic software set-up is shown in Figure 3-6. The decision-making, IO processing, and code 
coverage collection components need to be implemented in this research.  
 



       

48 

 

 
Figure 3-6: Software Set-up for the Testing 

 
The Delfi-PQ team specifies the telemetry of Delfi-PQ in an XML file according to the XTCE 
standard (CCSDS 660). We can also use an open-source XTCETOOLS21 to visualize the XML file. 
However, the XTCE standard does not include telecommand definitions. It is also challenging to use 
the XTCETOOLS to edit the XML file. Therefore, SUT parameters, telecommands, and responses 
are specified in CSV files in this study, as shown in Figures 3-7, Figure 3-8, and Figure 3-9. 
 

 
Figure 3-7: An Example of SUT Parameter Definition 

 

 
Figure 3-8: An Example of Telecommand Definition 

 

 
Figure 3-9: An Example of Response Definition 

 
Based on these definitions, an IO processing module is implemented in this work. It includes a 
parser and a state identifier, as shown in Figure 3-6. The parser maintains a list of all 
telecommands. The decision-making module can select a command (e.g., the 12nd command) and 
send it over the bus. According to the previous command and the raw response from the bus, the 
parser can translate the response into a dictionary of interpretable parameters. After that, a state 
identifier will update the current system state, according to human-defined rules. 

 
21 https://gitlab.com/dovereem/xtcetools 
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Figure 3-10: The IO Processing Module  

(Some algorithms in this work only use part of this module or even do not use it) 

 
The IO processing module contains much prior knowledge, including: 
 

- The definitions of parameters, telecommands and responses used by the parser. 
- The human-defined rules used by the state identifier. 

 
Too much prior knowledge is undesired in this work. To reduce the use of prior knowledge, some 
algorithms in this study only use part of the IO processing module or even do not use it at all. The 
following section will discuss how to extract information from the source code of the onboard 
software, which does not need human-defined prior knowledge. 

3.4. Extract Information from Source Code of Onboard Software 
 
This section discusses collecting code coverage and generating a graph representation of the 
source code. As mentioned in chapter 2, code coverage can represent a current state or evaluate 
the amount of testing. On the other hand, code coverage can be added to the graph representation 
and become input to a graph neural network. 

3.4.1 Code Coverage Collection 

 
There are several types of code coverage metrics (Pani, 2014), such as: 
 

- Line coverage. 100% line coverage means covering every line of the source code.  
- Branch coverage. 100% branch coverage means covering every branch of the source 

code. 
- Condition coverage (or decision coverage). 100% condition coverage means every 

condition has been True and False at least once. 
- Modified condition/decision coverage (MC/DC coverage). 100% MC/DC coverage 

means every condition has been True & False for at least one, and its value determines 
the result independently. 

 
Among these metrics, measuring line coverage takes more memory footprint because it needs to 
record the execution status of every line of code. MC/DC coverage is also complex to measure. By 
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contrast, branch coverage is relatively easy to measure since it just needs to record whether 
branched are executed.  
 
Some safety-critical software requires all these metrics to reach 100%. For example, in the ECSS-
E-ST-40C standard (2009), suppliers of space system software with the criticality “A” must achieve 
100% statement coverage, decision coverage and MC/DC coverage, as shown in Table 3-7. 
 

Table 3-7. Code Coverage Requirement in ECSS-E-ST-40C (2009) 

 
 

Code coverage collection can be intrusive or non-intrusive (Pani, 2014). Intrusive 
measurement needs instrumentation, i.e., adding additional program code that does not change 
the behaviours of SUT. Such additional code can be added to the source, assembly, or binary code. 
By contrast, non-intrusive measurement utilizes the tracing capability of processors and usually 
needs special hardware. Intrusive measurement usually has more influence on the performance of 
SUT. 
 
Several commercial off-the-shelf coverage measurement tools were tried for Delfi-PQ: 
 

⚫ Theoretically, the old TI ARM C/C++ compiler supports branch coverage collection. It 
will instrument the source code during compilation if an option in the Code Composer 
Studio is selected. When executing a particular command in the source code, a code 
coverage file will be sent from the microcontroller to the host PC. The compiler must be 
rerun to transfer the code coverage file to a readable report. 

 
However, this coverage collection functionality does not work for Delfi-PQ flight 
software. Even if it can work, it needs to manually rerun the compiler to get a coverage 
report, which is not convenient. The new TI Clang compiler does better in coverage 
collection, but we do not want to migrate to a new compiler. 

 
⚫ Segger J-Trace Pro hardware supports real-time non-intrusive code coverage collection. 

However, the MSP432 P series microcontrollers do not support tracing, which is 
necessary for J-Trace. 

 
⚫ Suppliers of other coverage measurement tools were also consulted. However, their 

prices are too high. In 2021, a Tessy license cost €8000, an LDRAcover cost €12000, 
and a VectorCAST cost €15000. Such high prices are not affordable for a thesis. 

 
To solve the problem, a simple Python tool called pq9cov22 has been implemented. It’s inspired by a 
straightforward coverage collection tool GeCov23. Figure 3-11 briefly shows how pq9cov works. 
 

 
22 https://github.com/StarCycle/CodeCoverage 
23 https://github.com/EDI-Systems/G2T01_GeCov 
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Figure 3-11: How PQ9cov Works 

 
Testers first use pq9cov to add probes at the entry point of every branch. A probe is a function 
called CodeCount(). CodeCount is a global function to set a bit of the code coverage array to 1. For 
example, CodeCount(66) will set the 66th bit of the array to 1. Note that this step has no input 
parameter in the CodeCount(). 
 
PQ9cov automatically identifies entry points of branches. Traditional coverage tools achieve this by 
static code analysis, i.e., building abstract syntax trees of the source code. This approach is 
relatively complex. Hence, pq9cov use carefully designed regular expressions to locate conditional 
statements such as “if”, “for”, and “while”.  
 
Nevertheless, regular expressions are still inaccurate and may ignore some edge cases. Testers 
can delete or add CodeCount() in the source code to compensate for this shortcoming. This step is 
optional. For Delfi-PQ flight software, such manual modification is usually not needed. 
 
Then, testers need to use pq9cov to add labels to these CodeCount(). It will transfer CodeCount() to 
CodeCount(n), where n is the label of the entry point. After that, the instrumented source code will 
be compiled and run in the target MCU. During execution, the CodeCount(n) function calls will 
record branch coverage in an array. Testers can retrieve the array from the MCU with a special 
command or other ways. 
 
Based on the code coverage array and the instrumented source code, pq9cov can generate a code 
coverage report in a CSV file and visualize the coverage result in the source code. Testers can also 
use pq9cov to automatically remove all probes in the source code. 
 
Figure 3-12 shows the instrumentation process in detail. 
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Figure 3-12: Details of Instrumentation in PQ9cov 

 
PQ9cov only takes a small memory footprint. Each probe result is stored in 1 bit of the array. For 
onboard software of the COMMS and the OBC, there are about 716 probes (take 90 bytes) and 
1329 probes (take 167 bytes), respectively. It is easy to store the code coverage array in an 
MSP432  MCU with 2MB SRAM and retrieve it by a PQ9Frame with 253 bytes of payload size. 
 
Transmission of the array takes more time than the expected response. This is because the size of 
a typical payload is smaller than the size of the coverage array. Figure 3-13 shows the response 
time of a typical command and a coverage collection command. Nevertheless, the transmission time 
is still acceptable. 
 

 
Figure 3-13: Response Time of a Normal Command and a Coverage Collection Command 

 
Although the memory footprint and the transmission time are acceptable, this approach is still 
intrusive. The instrumented program needs to call CodeCount() at the start of every branch, which 
makes the program run slower. Such influence is difficult to measure, but we did observe it. For 
example, the instrumented COMMS software missed some commands from the lab PC, which was 
rare for non-instrumented software. 
 
PQ9cov supports instrumentation of C/C++ source code but can adapt to other languages quickly. It 
only has ~150 lines of code to achieve all functions mentioned above. Table 3-8 summarizes the 
Pros and Cons of the coverage tool. 
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Table 3-8: Pros and Cons of PQ9cov 
Pros Cons 

Adapt to any MCU with slight modification Only support branch coverage 

Testers can modify the probes before labelling Inaccurate instrumentation 

Simple (~150 lines) and easy to understand. 
You can modify the regular expressions to 
adapt to other languages 

Only support C/C++ now 

Low memory footprint and collection time Calling CodeCount() makes the program 
slower. Such influence is difficult to measure. 

Coverage visualization in source code & 
coverage report 

 

 

3.4.2 Several Ways to Feed Code Coverage into Neural Networks  

 
After we collect code coverage, we need to feed it into a neural network. There are several ways to 
achieve this: use a plain coverage vector as input, use the source code with coverage result as 
input, or combine the graph representation of the program with coverage result as input. Figure 3-14 
briefly explains these three ideas. 
 

 
Figure 3-14: 3 Ways to Use Code Coverage as Neural Network Input 

 
Using a plain vector as input is the most straightforward idea, but it also has a primary challenge. As 
explained by Figure 3-15, if programmers modify the source code of SUT and instrument it again, 
they may find that the number and order of the probes are changed. That is to say, the length of the 
coverage vector, and the corresponding branch of every element in the vector, are both changed 
after source code modification. As a result, the original neural network becomes useless. 
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Figure 3-15: A Challenge of Using Coverage Vector as Input to a Neural Network 

 
To make a trained neural network reusable after source code modification, we can put coverage 
results in the source code, as shown in Figure 3-15. Then the neural network directly uses the 
source code files as input. Nevertheless, such input can be very long and challenging to process. 
 
The third idea is to use a graph to represent the source code of SUT and then combine the 
coverage information with the graph. Theoretically, a trained graph neural network can be reused 
for similar programs with similar graph representations. (Dai et al., 2019) took this approach in RL-
based testing. However, they only tested some toy programs in domain-specific languages and did 
not explain how to build the graph. 
 
This study will try the first approach (plain vector) and the third approach (graph) to generate input 
for neural networks. In the following sections, the readers can see how to generate a graph 
representation of a C/C++ program and combine it with code coverage information. 

3.4.3 Extract Graph Representations of Programs from Execution Traces 

 
We hope to generate a directed graph of the program under test. Some nodes of the graph 
represent probes, i.e., CodeCount(i). Furthermore, the graph's directed edges show the nodes' 
relations. Each node should have a feature vector and a coverage mask, indicating which nodes 
have been covered. 
 
The straightforward idea is to generate the graph during the program's execution. Apart from writing 
the coverage array, the CodeCount(n) function call can also record the transition from the previous 
probe to the current probe. In the end, testers can build a graph with these nodes and transitions. 
Figure 3-16 explains this idea in detail: the instrumented program maintains an array to record the 
transition from the previous CodeCount() to the current CodeCount(). This array is sampled 
periodically, and new transitions will be added to the graph. 
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Figure 3-16: Generate the Graph Representation during Program Execution 

 
This approach has been implemented. Figure 3-17 shows the generated graph for the COMMS 
software. In that version of COMMS software, there are 716 CodeCount probes, but only 299 are 
executed. Hence, there are only 299 nodes in the graph. 
 
Moreover, this method's communication load and memory footprint are more severe. The transition 
array is larger than the coverage array because every element is a LONG variable with 4 bytes. 
Assuming there are 2024 probes in the source code, the size of the coverage array will be 
2024/8=253 bytes, while the transition array will have 2024*4=8096 bytes. In the end, we must use 
multiple frames to retrieve the transition array to the lab PC. 
 

 
Figure 3-17: Graph of the COMMS Software Extracted from Execution Traces 

 
In addition to performance effects and incompleteness of the graph, this method cannot generate 
feature vectors of nodes, which are needed by graph neural networks. Consequently, another graph 
generation approach needs to be taken. 
 

3.4.4 Extract Graph Representations of Programs by Static Code Analysis 

 
Another way to generate the graph is static code analysis. For example, there are tools to generate 
control flow graphs from source code. A control flow graph (CFG) records possible paths in a 
program, as shown on the right side of Figure 29. Theoretically, if we get a control flow graph of the 
SUT, we can combine it with code coverage information. 
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Like the story in section 3.4.1, several off-the-shelf tools were tried: 
 

- TI Code Composer Studio can extract calling trees of the source code. However, the 
trees include too many low-level functions in the libraries used by Delfi-PQ software. 
Function names in the trees are also modified. It is challenging to combine these trees 
into a graph. 

- Other tools, like CodeViz, rely on output from compilers like GCC and Clang. 
Unfortunately, they do not support the old TI ARM compiler we use. 

 
An open-source code parser called Joern24 is selected. Joern supports languages like C/C++, 
Python, and Java. Moreover, Joern can even parse the code with errors. These properties mean 
Joern can quickly adapt to different programs. 
 
After parsing the source code, Joern can generate a CFG for every function in the program. 
However, it cannot generate a single CFG for the whole program. In other words, Joern cannot find 
the link between a function call and the called function. For example, if there is a Reset() call in the 
program, we cannot directly find where the definition of Reset() is. 
 
This study implements a tool to generate a graph representation based on the output from Joern. 
We first use Joern to generate CFGs for functions in the programs with the following command: 
 
cpg.method.isExternal(false).nameNot(".*<.*>.*").map(node => (node.id, 
node.methodReturn.id, node.name, node.filename, node.lineNumber.l, 
node.dotCfg.l)).toJsonPretty |> "methods.txt" 
 
The command will generate the following information for every function in the source code: 
 

- ID of the “start” node of the method, given by Joern 
- ID of the “return” node of the method, given by Joern 
- Method name 
- Name of the file which contains the method 
- Line number of the method 
- Control flow graph of the method in JSON format 

 
Based on this information, the tool traverses control flow graphs of all methods and connects 
method calls to method “start” nodes with the same method names, as shown in Figure 3-18. This 
step also connects separated control flow graphs into a complete control flow graph. Although such 
connections do not represent actual control flows, similar programs will still have similar graph 
structures, which makes the neural network reusable (section 3.4.2). 
 

 
Figure 3-18: Connecting Method Call to Method 

 
There are only three types of nodes in the complete control flow graph: “start” nodes of methods, 
“return” nodes of methods and CodeCount nodes. Figure 3-19 is the extracted graph structure from 
the COMMS software, which contains 1517 nodes and 3925 edges. When deleting all 

 
24 https://joern.io/ 
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“start”/“return” nodes and directly connecting the CodeCount nodes, the number of edges will grow 
to a ~100,000 level. 
 

 
Figure 3-19: Graph of the COMMS Software by Static Analysis 

 
The tool also generates feature vectors for nodes in the complete control flow graph. It first trains a 
Word2Vec model (Mikolov, Chen, Corrado, & Dean, 2013) with all source code files of the Delfi-PQ 
software. After that, the tool gives the following feature vector for node i: 
 

 𝜇𝑖 = (𝑡𝑦𝑝𝑒𝐼𝐷𝑖, 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐(𝑚𝑒𝑡ℎ𝑜𝑑𝑁𝑎𝑚𝑒𝑖), 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐(𝑓𝑖𝑙𝑒𝑁𝑎𝑚𝑒𝑖)) (3-1) 

 
The 𝑡𝑦𝑝𝑒𝐼𝐷𝑖 is 0 for a method “start” node, 0.5 for a method “return” node, or 1 for a CodeCount 

node. The length of a feature vector 𝜇𝑖 is 127, plus a coverage mask 𝑐𝑖 ∈ {0,1}. The tool uses the 
Gensim25 library to train the Word2Vec model. 
 
This method is better than the approach in section 3.4.3 since it does not affect the performance of 
SUT. It can also find all CodeCount probes and generate corresponding feature vectors. 
 

3.5. Brief Summary of the Chapter 
 
⚫ The Delfi-PQ satellite consists of several subsystems. They have some standard hardware and 

unique components. Each subsystem has a microcontroller, and its onboard software runs on 
the microcontroller. These controllers are connected to an RS-485 bus, and the onboard 
computer (OBC) is the master of the bus.  

⚫ Onboard software of each subsystem shares the same DelfiPQcore, which acts as a lightweight 
operating system and relative middleware. The software also has applications depending on its 
functions. 

⚫ We compared the Delfi-PQ flight software with other onboard software. We found that the 
software of other PocketQubes and educational CubeSats have a similar (or lower) complexity 
as Delfi-PQ. The DelfiPQcore provides most of the mission-independent functions of a famous 
onboard software architecture, NASA core Flight System (cFS), although it does not follow 

 
25 https://radimrehurek.com/gensim/ 
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some standards. However, the apps of Delfi-PQ are much simpler than some mission-specific 
applications developed for cFS. 

⚫ The testing command generation tool can run on a lab computer or a cloud server. The 
command will be put on the RS-485 bus by the Electrical Ground Support Equipment (EGSE) 
board. However, the bus only has one master, i.e., the EGSE or the OBC. To avoid potential 
bus contention, we can set the OBC to a “passive” mode that only receives commands from the 
bus and replies. Another approach is to let the EGSE mimic the COMMS subsystem. The OBC 
will poll the “fake COMMS system” to retrieve the “fake ground commands”. This research uses 
the first method. 

⚫ An IO processing module is implemented in this work. The IO processing module consists of a 
parser and a state identifier. The module can list all subsystem commands and extract symbolic 
state variables from the response. However, the module needs a significant amount of prior 
knowledge specified by the testers. Thus, some command generation algorithms in this work 
only use part of the module or even do not use it. 

⚫ A code coverage measurement tool is implemented in this work. The tool can instrument 
C/C++ source code automatically. A code coverage collection command is defined in the Delfi-
PQ flight software. Moreover, the tool can analyse the response of the coverage collection 
command and generate a coverage report.  

⚫ We can directly use the code coverage vector as input to the neural network. However, the 
corresponding branch of each element in the vector may change after source code 
modification. It makes the trained RL algorithm unable to test a new software version 
(regression testing). 

⚫ To make the algorithm useful in regression testing, we can represent the code coverage in a 
graph (e.g., control flow graph). In the research, we use Joern to generate control flow graphs 
for every method in the source code of the onboard software. After that, we use an algorithm to 
connect these graphs and form a graph representation of the full software.  

⚫ In the graph, each node has a feature vector (3-1). The vector is embedded by a Word2Vec 
model from the method and file names. The edges do not have feature vectors. 
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4 Algorithm Designs 
 
This section introduces the algorithms used in this study. Representative reinforcement learning 
algorithms in Table 2-2 are implemented, including: 
 

- The tabular Q-Learning algorithm. 
- The Deep Q Network (DQN) algorithm. We choose the Dueling Double Deep Q Network 

(D3QN). It is a value-based algorithm. 
- The Proximal Policy Optimization (PPO) algorithm is an actor-critic algorithm. 

 
The D3QN and PPO implementations also have different configurations. For example, they may 
have different types of neural networks, including: 
 

- The MLP network, i.e., fully-connected layers. 
- The Gated Graph Neural Network (GGNN). 
- The Graph Attention Layers (GAT). 
- Graph pooling layer (optional). 

 
On the other hand, two baselines are used to compare with the RL-based testing. The first baseline 
is random testing, and the second is search-based testing with the genetic algorithm. 

4.1. Q-Learning  
 
Q-Learning is one of the simplest reinforcement learning algorithms, but it is widely used in software 
testing, especially GUI testing (Table 2-2). As a reference, this work tries to use Q-Learning to test 
the onboard software. 
 

4.1.1 Brief Introduction 

 
As mentioned in section 2.3.2, the Q-Learning algorithm uses a Q table to record estimations 

�̂�𝜋(𝑠, 𝑎) of the action-value function 𝑄𝜋(𝑠, 𝑎). To that end, states and actions in the Q-Learning 
algorithm should be discrete scalars. Figure 4-1 is an example of the Q table. 
 

 
Figure 4-1: A Q Table to Store �̂�𝜋(𝑠, 𝑎) 

 
The Q-Learning algorithm has an ε-greedy behavior policy and a greedy target policy: 
 

- During training, the agent selects the action 𝑎 with the highest �̂�(𝑠, 𝑎) with probability 1 – 
ε, or it selects a random action with probability ε. ε is a small value (e.g., 0.1) and usually 
decreases over time. 

- When performing the task, the agent simply selects the action 𝑎𝑖 with the highest �̂�(𝑠, 𝑎). 
 
In every time step 𝑡 + 1, the agent updates the Q table by: 
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 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) ← �̂�𝜋(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 ∙ 𝑚𝑎𝑥�̂�𝜋(𝑠𝑡+1, 𝑎) − �̂�𝜋(𝑠𝑡 , 𝑎𝑡)] (4-1) 

 
Where 𝛼 is the learning rate, 𝛾 is the discount factor, and 𝑟𝑡+1 is the reward at step 𝑡 + 1. 
 

4.1.2 States and Actions 

 
We need to summarize the observation to a discrete scalar with the help of the IO processing 
module in section 3.3.2. After sending a command and getting a response, the state identifier 
generates a dictionary of the parameters of SUT. If the dictionary is never seen, it will be assigned a 
scalar index and a new column in the Q table. Otherwise, the Q learning agent will find the original 
index and column assigned to the dictionary. 
 
At the same time, the parser lists all commands according to the CSV input files. The agent chooses 
the following command during training according to the ε-greedy behaviour policy. 
 
Although Q-Learning is simple, it has many disadvantages. As discussed in section 3.3.2, the IO 
processing module needs much prior knowledge. Moreover, the Q-Learning algorithm can only 
handle scalar input/output instead of high-dimensional input/output like code coverage vectors or 
command vectors. It limits the usage of the algorithm. 
 

4.2. Deep Q Network 
 
The Deep Q Network (DQN) improves the basic Q-Learning algorithm. The idea is to use a neural 
network to replace the Q table. It is easy to develop this idea, but the algorithm with a Q network is 
not stable for a long time. Ultimately, this problem was solved with some tricks (Mnih et al., 2015). 
 

4.2.1 Brief Introduction 

 
To make the training more stable, the basic DQN algorithm has 2 neural networks: a value network 

with weights 𝑤 to calculate �̂�𝜋(𝑠𝑡 , 𝑎𝑡), and a target network with weights 𝑤− to compute 

�̂�𝜋(𝑠𝑡+1, 𝑎). The value network and the target network share the same parameters at the beginning. 
In the training process, the optimizer only updates the weights in the value network. At every 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 

steps, the target network will be set equal to the value network. In other words, 𝑤− has a lag in 

weight updates compared with 𝑤. 
 
At every time step 𝑡, DQN selects action 𝑎𝑡 according to 𝑠𝑡 and the ε-greedy behaviour policy. After 

that, it saves the transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in a replay buffer. When update the value network, the 
algorithm will randomly sample some transitions in the replay buffer and minimize the following loss 
function: 
 

 𝐿𝑜𝑠𝑠 = −
1

𝑁𝜏
∑[𝑟𝑡+1 + 𝛾 ∙ 𝑚𝑎𝑥�̂�𝑤−

𝜋 (𝑠𝑡+1, 𝑎) − �̂�𝑤
𝜋 (𝑠𝑡 , 𝑎𝑡)]

2

𝜏

 (4-2) 

 

Where 𝑁𝜏 is the number of transitions 𝜏 sampled from the replay buffer. �̂�𝑤−
𝜋 (𝑠𝑡+1, 𝑎) is the output of 

the target network, whose inputs are 𝑠𝑡+1 and 𝑎. �̂�𝑤
𝜋 (𝑠𝑡 , 𝑎𝑡) is the output of the value network, whose 

inputs are 𝑠𝑡 and 𝑎𝑡. These two networks share the same architecture and number of neurons, but 
their weights are different. 
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The basic DQN algorithm tends to overestimate 𝑄𝜋(𝑠, 𝑎). To alleviate this problem, Van Hasselt, 
Guez and Silver (2015) proposed the Double DQN algorithm. Its loss function is expressed as: 
 

 𝐿𝑜𝑠𝑠 = −
1

𝑁𝜏
∑ [𝑟𝑡+1 + 𝛾 ∙ �̂�𝑤−

𝜋 (𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥�̂�𝑤
𝜋 (𝑠𝑡+1, 𝑎)) − �̂�𝑤

𝜋 (𝑠𝑡, 𝑎𝑡)]
2

𝜏

 (4-3) 

 

In the second term, we select the action with the maximal �̂�𝜋(𝑠𝑡+1, 𝑎) using the value network and 

recalculate its �̂�𝜋(𝑠𝑡+1, 𝑎) using the target network. Since the 2 network has different weights, it is 
unlikely that they overestimate the same action. However, double DQN becomes more vulnerable to 
noise. 
 
Another improvement to the DQN algorithm is the Dueling DQN (Wang et al., 2016). It estimates 
𝑄𝜋(𝑠, 𝑎) by 2 sub-networks: one estimates the state-value function 𝑉𝜋(𝑠), and the other estimate the 
advantage function 𝐴𝜋(𝑠, 𝑎). Estimations from the sub-networks can be combined: 
 

 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) = �̂�𝜋(𝑠𝑡) + �̂�𝜋(𝑠𝑡 , 𝑎𝑡) (4-4) 

 
In this case, the loss function is still calculated by the value network and the target network, and 
each of them has 2 sub-networks. In other words, the dueling DQN only changes the architecture of 
the neural networks, which makes the estimation more accurate. 
 
This study tries the Double Dueling DQN (D3QN) algorithm, i.e., combining the tricks mentioned 
above with the basic DQN algorithm. A forward propagation process of the D3QN algorithm is 
shown in Figure 4-2. 
 

 
Figure 4-2: A Forward Propagation of the D3QN Algorithm 

 
There are some hyperparameters in the D3QN algorithm, as shown in Table 4-1. 
 

Table 4-1: Hyperparameters of D3QN 

Hyperparameter Explanation 

𝛾 Discount factor of rewards 

Buffer size How many transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) the replay buffer can store 

Mini-batch size Transitions are grouped into mini-batches and then used to update the neural 
networks 

Learning rate Learning rate of the neural network optimizer 

Learning starts From which time steps the optimizer starts to update the value network 
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Training frequency How many steps the agent interacts with the environment before updating neural 
networks 

Total time steps How many steps the agent interacts with the environment in the whole training 
process 

𝜀𝑠𝑡𝑎𝑟𝑡 The initial ε at the beginning of exploration 

𝜀𝑒𝑛𝑑 The ε at the end of exploration 

Exploration fraction A ratio to control the length of exploration. For example, if the training process 
runs 200000 steps in total and the exploration fraction is 0.5, then the exploration 

starts from step 1 to 100000. During the exploration, ε decreases from 𝜀𝑠𝑡𝑎𝑟𝑡 to 

𝜀𝑒𝑛𝑑 linearly. 

Epoch length How many steps the agent interacts with the environment before resetting the 
environment 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 The frequency to set the target network to be equal to the value network 

Neural Network 
Design 

Network structure, neuron number, activation function, etc. 

Network 
Initialization 

Initialization method of each neural network layer 

 
According to the state/action representation and neural network architecture, there are several 
configurations of D3QN algorithms in this study. The following subsections explain these 
configurations in detail. 
 

4.2.2 D3QN with State Vectors and Discrete Actions (D3QN-Discrete-MLP) 

 

In the most basic configuration, the parser outputs a list of all available commands (section 3.3.2). 
Each action is a scalar index of a pre-defined command in the list. It is called Discrete action space 
in reinforcement learning research. 
 
At the same time, it uses a plain vector as state input and selects a discrete scalar as the following 
action. The state vector is a concatenation of 2 vectors: 
 

- The code coverage vector (section 3.4.2). The length of this vector is the number of 
probes in the source code. Each element indicates whether the probe has been 
triggered.  

- A vector that contains actions in previous k steps. The length of this vector is the number 
of actions listed by the parser. Each element indicates how often the action has been 
taken in previous k steps. 

 
The neural network architecture to calculate �̂�𝜋(𝑠) is expressed by: 
 

 

ℎ(0) = 𝑠 

ℎ(𝑙+1) = 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ(𝑙))) 

�̂�𝜋(𝑠) = 𝑀𝐿𝑃(ℎ(𝐿)) 

(4-5) 

 

Here ℎ(𝑙) is the output of layer 𝑙, and 𝐿 is the number of hidden layers. 𝑀𝐿𝑃(∙) is a fully connected 

layer and 𝑅𝑒𝐿𝑈(∙) is an activation function. Similarly, the network to calculate �̂�𝜋(𝑠, 𝑎) is 
 

 

ℎ(0) = 𝑠 

ℎ(𝑙+1) = 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ(𝑙))) 

�̂�𝜋(𝑠) = 𝑀𝐿𝑃(ℎ(𝐿)) 

(4-6) 

 

Here [∙] means concatenation of vectors. �̂�𝜋(𝑠) is a vector which can be expressed by 
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 �̂�𝜋(𝑠) = [�̂�𝜋(𝑠, 𝑎1), �̂�𝜋(𝑠, 𝑎2), �̂�𝜋(𝑠, 𝑎3), … ] (4-7) 

 

Then, �̂�𝜋(𝑠, 𝑎) and �̂�𝜋(𝑠) are combined by (4-4) to calculate �̂�𝜋(𝑠, 𝑎). The subsequent computation 
is the same as the previous section. 
 
This configuration is represented by D3QN-Discrete-MLP in this study. 
 

4.2.3 D3QN with State Graphs and Discrete Actions (D3QN-Discrete-GGNN) 

 
This configuration use graphs as input states. The graphs are constructed by static code analysis in 
section 3.4.4, and the node features include code coverage information. Furthermore, we use the 
Gated Graph Neural Network GGNN (Li, Tarlow, Brockschmidt, & Zemel, 2015) to process the 
graphs. Unlike the Graph Convolutional Network GCN (Kipf & Welling, 2016) and the GraphSAGE, 
the GGNN can handle models with more than 20 layers and is helpful for complex network 
representation, e.g., program control flow (Hamilton, Ying, & Leskovec, 2017). 
 

Let ℎ𝑣
(𝑙+1)

 to be the hidden embedding vector of node 𝑣 in the layer 𝑙 + 1 of a GGNN, it can be 

expressed by: 
 

 

ℎ𝑣
(0)

= [𝜇𝑣 , 𝑐𝑣 , 𝑐𝑣 , 𝑐𝑣 , … ] 

𝑚𝑣
(𝑙+1)

= 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 ({𝑀𝐿𝑃 (ℎ𝑢
(𝑙)

)}
𝑢∈𝒩(𝑣)

) 

ℎ𝑣
(𝑙+1)

= 𝐺𝑅𝑈(ℎ𝑣
(𝑙)

, 𝑚𝑣
(𝑙+1)

) 

(4-8) 

 
Here, 𝜇𝑣 is the feature vector of node 𝑣 acquired by equation (3-1), and 𝑐𝑣 ∈ {0,1} is the coverage 

mask to indicate whether the node has been covered. Note that the length of ℎ𝑣
(0)

, called number of 

channels, can be equal to or larger than the length of [𝜇𝑣 , 𝑐𝑣]. If the number of channels is larger, it 

will be padded with 𝑐𝑣.  
 
𝒩(𝑣) is all neighbors of the node 𝑣 on the graph, including node 𝑣 itself. The aggregation method 

can be {𝑠𝑢𝑚, 𝑚𝑒𝑎𝑛, 𝑚𝑎𝑥}. According to our experience, 𝑠𝑢𝑚 has the best performance in the 
problem. Moreover, 𝐺𝑅𝑈 means a Gated Recurrent Unit (Chung, Gulcehre, Cho, & Bengio, 2014), a 
type of recurrent neural network layer. 
 
The output from the GGNN is embedding vectors of all nodes in the graph. Since there are many 
nodes, the sum of the lengths of these vectors can be very large. It’s not feasible to directly 

concatenate these vectors and use a fully connected layer to process [ℎ1
(𝐿)

, ℎ2
(𝐿)

, ℎ3
(𝐿)

, … ]. Otherwise, 

the fully connected layer will contain too many weights and need significant time to train.  
 

Thus, we need to find a way to extract information from node embeddings ℎ𝑣
(𝑙+1)

. There are 2 

options to solve the problem. The first option is using a graph pooling layer. For example, the 
simplest pooling methods are 𝑠𝑢𝑚, 𝑚𝑒𝑎𝑛, and 𝑚𝑎𝑥 of all node embeddings. (Dai et al., 2019) used 
a node selection pooling method in their RL-based testing. Zhou, Liu, Siow, Du, and Liu (2019) used 
a 1D convolution layer to aggregate information in node embeddings. The Pytorch Geometric library 
(Fey & Lenssen, 2019) also provides several graph pooling layers.  
 
However, in our own tests, the following attentive pooling layer (Li et al., 2015) has the best 
performance, i.e.,  
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 𝑜 = 𝑅𝑒𝐿𝑈 (∑ (𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃1 (ℎ𝑣
(𝐿)

, 𝜇𝑣)) ⨀𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃2 (ℎ𝑣
(𝐿)

, 𝜇𝑣)))

𝑣

) (4-9) 

 
Here, 𝑜 is the information extracted from the node embeddings, and 𝐿 is the final layer of the 

GGNN. 𝑀𝐿𝑃1 and 𝑀𝐿𝑃2 are the MLP that take the concatenation of ℎ𝑣
(𝐿)

 and 𝜇𝑣 as input and output 

real-valued vectors. ⨀ mean dot product between two vectors. 
 
The second option is to use an MLP to reduce node embeddings to scalars and then organize these 
scalars into a graph feature vector, i.e., 
 

 𝑜 = [𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ1
(𝐿)

)) , 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ2
(𝐿)

)) , 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ3
(𝐿)

)) , … ] (4-10) 

 
In this study, we call this approach as feature compression.  
 
As mentioned in section 3.4.2, we hope the same graph neural network can process similar graphs 
with different node number. However, in the feature compression approach, the length of the graph 
feature vector 𝑜 depends on the node number. Therefore, the GNN with feature compression cannot 
process graphs with different node numbers. This study compares the performance of attentive 
pooling and feature compression to illustrate the influence of the graph pooling layer. 
 
After that, we construct the state vector 𝑠 based on the output 𝑜 and the history vector 𝑦: 
 

 𝑠 = [𝑜, 𝑦] (4-11) 

 

At the end, 𝑠 will be substituted into equation (4-5) and (4-6). The subsequent computation is the 
same as the D3QN-Discrete-MLP. 
 
As this configuration is more complex, it’s important to mention the initialization methods of the 
parameters. The weights of the MLP network in equation (4-8) are initialized to a uniform 
distribution. The GRU in (4-8) and the MLP in (4-9) take the default initialization. The weights of the 

MLP in equation (4-10) takes a normal distribution with a standard deviation of √2. 
 

4.2.4 D3QN with State Graphs and Discrete Actions (D3QN-Discrete-GAT) 

 
This configuration is like the D3QN-Discrete-GGNN but uses the Graph Attention Network GAT 
(VELIČKOVIĆ and Petar, 2017) to process the graphs. Each layer of the GAT updates node 
embeddings by: 
 

 ℎ𝑣
(𝑙+1)

= 𝛼𝑣,𝑣ℎ𝑣
(𝑙)

+ ∑ 𝛼𝑣,𝑢ℎ𝑢
(𝑙)

𝑢∈𝒩(𝑣)

 (4-12) 

 
Where 𝛼𝑣,𝑢 represents the self-attention with 𝑣 being the index of the query node and 𝑢 being the 

index of the key node (Harries, 2020). The subsequent processing is the same as the D3QN-
Discrete-GGNN configuration. The GAT layers take the default initialization in Pytorch Geometric. 
 

4.3. Proximal Policy Optimization 
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This study also selects the Proximal Policy Optimization (PPO) algorithm to implement. PPO is a 
popular deep reinforcement learning in recent years and the baseline RL algorithm of OpenAI. Many 
works in Table 2-2 used PPO or similar algorithms like A2C and A3C.  
 

4.3.1 Brief Introduction 

 
A PPO agent has 2 neural networks: the actor network and the critic network： 

 
⚫ The inputs of the actor network are state 𝑠 and action 𝑎. The output of the network is 

𝜋𝑤(𝑎|𝑠), i.e., the probability to take the action 𝑎 under state 𝑠 with policy parameters 𝑤.  

⚫ The input of the critic network is state 𝑠. The output of the critic network is 𝑉(𝑠), which 
estimates the state-value function of state 𝑠.  

 

Every 𝑁 step, the PPO agent interacts with the environment and stores observations, actions, and 

rewards in the memory. The length of the memory is 𝑁. After that, the agent minimizes the following 
loss function by updating parameters of neural networks for several times: 
 

 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑝𝑔 − 𝑐𝑒𝑛𝑡𝐿𝑜𝑠𝑠𝑒𝑛𝑡 + 𝑐𝑣𝑓𝐿𝑜𝑠𝑠𝑣𝑓 (4-13) 

 

The 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 contains 3 items: the policy gradient loss 𝐿𝑜𝑠𝑠𝑝𝑔, the action entropy loss 𝐿𝑜𝑠𝑠𝑒𝑛𝑡, and 

the value loss 𝐿𝑜𝑠𝑠𝑣𝑓. There coefficients are 1, 𝑐𝑒𝑛𝑡, and 𝑐𝑣𝑓, respectively.  

 
The policy gradient loss 𝐿𝑜𝑠𝑠𝑝𝑔 is: 

 

 𝐿𝑜𝑠𝑠𝑝𝑔 = −
1

𝑁𝜏

∑ 𝑚𝑖𝑛 {
𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
�̂�𝜋(𝑠𝑡 , 𝑎𝑡), 𝑐𝑙𝑖𝑝 [

𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
, 1 − 𝜉, 1 + 𝜉] �̂�𝜋(𝑠𝑡 , 𝑎𝑡)}

(𝑠𝑡,𝑎𝑡)

 (4-14) 

 
This loss item uses importance sampling, which makes it look complex. In the expression, 
𝐴𝜋(𝑠𝑡 , 𝑎𝑡) is the advantage function and shows how good action 𝑎𝑡 is, comparing with other 

actions under state 𝑠𝑡. Note that the parameters of the actor network will change after updates. 𝑤′ 
are the parameters when the actions were taken and 𝑤 are the current parameters. 𝜉 is a 
hyperparameter to control the magnitude of policy update and usually has a small value (like 0.2). 
𝑁𝜏 is the number of transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) stored, depending on the environmental steps 
(Table 4-2). 
 

Let 𝛿𝑡
𝑉 to be the TD residual: 

 

 𝛿𝑡
𝑉 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) (4-15) 

 
Where 𝑟𝑡 is the reward of step 𝑡, 𝑉(𝑠𝑡) and 𝑉(𝑠𝑡+1) are the values of 𝑠𝑡 and 𝑠𝑡+1 estimated by the 
critic network. Based on this definition, the advantage function 𝐴𝜋(𝑠𝑡 , 𝑎𝑡) is computed by the GAE 
method (Schulman, Moritz, Levine, Jordan, & Abbeel, 2015): 
 

 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) = ∑(𝛾𝜆)𝑙

∞

𝑙=0

𝛿𝑡+𝑙
𝑉

 (4-16) 

 
The action entropy loss 𝐿𝑜𝑠𝑠𝑒𝑛𝑡 is： 
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 𝐿𝑜𝑠𝑠𝑒𝑛𝑡 = −
1

𝑁𝜏

∑ ∑ 𝜋𝑤(𝑎|𝑠𝑡) ∙ log (𝜋𝑤(𝑎|𝑠𝑡))

𝑎𝑠𝑡

 (4-17) 

 
If this term is higher, the policy 𝜋𝑤 will be more random. Note that 𝑐𝑒𝑛𝑡𝐿𝑜𝑠𝑠𝑒𝑛𝑡 is subtracted from 

equation (4-13). That’s to say, (4-13) encourages the policy 𝜋𝑤 to explore the environment. By 
tuning the coefficient 𝑐𝑒𝑛𝑡, we make a balance between exploration and exploitation.  
 
The value loss 𝐿𝑜𝑠𝑠𝑣𝑓 can be calculated with: 

 

 𝐿𝑜𝑠𝑠𝑣𝑓 = −
1

𝑁𝜏

∑
1

2
𝑠𝑡

(𝑉(𝑠𝑡) − 𝐺�̂�)
2 (4-18) 

 

In (4-18), the 𝐺𝑡 is estimated by: 
 

 𝐺𝑡 = �̂�𝜋(𝑠𝑡 , 𝑎𝑡) + 𝑉(𝑠𝑡) (4-19) 

 
We can use the Kullback-Leibler divergence indicates the magnitude of policy update, or in other 
words, how different the updated policy 𝜋𝑤 is from the old policy 𝜋𝑤′. After updating the neural 
network, the agent will estimate the Kullback-Leibler divergence using the following expression 
(Schulman, 2020): 
 

 𝐾�̂�(𝜋𝑤 , 𝜋𝑤′) =
1

𝑁𝜏

∑ [(
𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
− 1) − 𝑙𝑜𝑔 (

𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
)]

(𝑠𝑡,𝑎𝑡)

 (4-20) 

 
If the divergence is too small, it means the policy update is too slow and the training may take a 
long time. On the other hand, if the policy update is too quick, some assumptions of importance 
sampling may be invalid, and the training process will become unstable. 
 
There are 2 ways to control the magnitude of policy update. One approach is carefully selecting 𝜉 in 
equation (4-14) to limit 𝐿𝑜𝑠𝑠𝑝𝑔. However, sometimes this approach does not work well. Another 

approach is setting a limitation 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡. If the estimated 𝐾�̂�(𝜋𝑤, 𝜋𝑤′) > 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡, the agent will 

reduce the learning rate of the neural network optimizer. This learning rate annealing is not 
common in standard PPO implementation but makes the training process more stable. 
 
Although PPO is simple and robust, it’s still sensitive to hyperparameters. Table 4-2 lists some 
important hyperparameters of this algorithm: 
 

Table 4-2: Hyperparameters of PPO 
Hyperparameter Explanation 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 If 𝐾�̂�(𝜋𝑤 , 𝜋𝑤′) > 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡, the algorithm will reduce the learning rate 

Mini-batch size Observations, actions, and rewards are grouped into mini-batches, and then 
used to update the neural networks 

Initial learning rate Initial learning rate of the neural network optimizer 

𝛾 Discount factor of rewards 

𝑐𝑒𝑛𝑡 Coefficient of 𝐿𝑜𝑠𝑠𝑒𝑛𝑡 in the total loss 

𝑐𝑣𝑓 Coefficient of 𝐿𝑜𝑠𝑠𝑣𝑓  in the total loss 

Total time steps How many steps the agent interacts with the environment in the whole training 
process 

Epoch length How many steps the agent interacts with the environment before resetting the 
environment in an epoch 

Environment steps How many steps the agent interacts with the environment before updating neural 
networks 
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Update steps How many times the optimizer updates the neural networks after interaction 

𝜆 A coefficient of GAE in (4-15) 

𝜉 A coefficient of importance sampling in (4-13) 

Maximal norm of 
gradient 

The gradient larger than this limit will be clipped 

Neural Network 
Design 

Network structure, neuron number, activation function, etc. 

Network 
Initialization 

Initialization method of each neural network layer 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 Initial standard deviation of the output layer of the critic network 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 Initial standard deviation of the output layer of the actor network 

 
Limited by pages, this section does not explain why the algorithm has adopted this design. The 
readers can refer to (Schulman et al., 2017) and (Huang, Julien, Antonin, Anssi, & Wang, 2022).  
 
According to the state/action representation and neural network architecture, there are several 
configurations of PPO algorithms in this study. The following subsections explain these 
configurations in detail. 
 

4.3.2 PPO with State Vectors and Discrete Actions (PPO-Discrete-MLP) 

 
The input and output of this configuration are like D3QN-Discrete-MLP. The actor network to 
compute 𝜋𝑤(𝑎|𝑠) can be expressed by: 
 

 

ℎ(0) = 𝑠 

ℎ(𝑙+1) = 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ(𝑙))) 

𝜋𝑤(𝑎|𝑠) = 𝑀𝐿𝑃(ℎ(𝐿)) 

(4-20) 

 
As mentioned above, 𝜋𝑤(𝑎|𝑠) is a vector whose length is the number of actions provided by the 

parser. Each element of the vector indicates the probability to take an action under the policy 𝜋𝑤. 
One of the actions will be sampled according to the probability distribution. 
 
The critic network to calculate 𝑉(𝑠) is: 
 

 

ℎ(0) = 𝑠 

ℎ(𝑙+1) = 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ(𝑙))) 

𝑉(𝑠) = 𝑀𝐿𝑃(ℎ(𝐿)) 

(4-21) 

 
Here, 𝑉(𝑠) is a scalar. The actor network and the critic network are independent. 
 

4.3.3 PPO with State Vectors and Action Vectors (PPO-MultiDiscrete-MLP) 

 
Unlike previous configurations, this configuration sends command vectors like [25, 1, 13, 1] to the 
SUT. It’s usually called the MultiDiscrete action space. 
 
In this configuration, the parser lists all possible values of all parameters in a single list. Let the 
length of the command vector to be 𝐿𝑣 and the number of parameter values to be 𝑛𝑝. The actor 

network will generate a probability distribution vector with the length of 𝐿𝑣 × 𝑛𝑝. According to the 

probability distribution, the agent samples 𝐿𝑣 values, which are concatenated to a command vector. 
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The state vector only contains code coverage information without historical actions. In fact, 
integrating interaction history with the state vector is possible, but there is not enough time to try this 
function. 
 
This configuration uses less prior knowledge about encoding of commands. On the other hand, it 
may send invalid or even dangerous commands to the SUT.  
 

4.3.4 PPO with State Graphs and Discrete Actions (PPO-Discrete-GGNN) 

 
This configuration is like the D3QN-Discrete-GGNN configuration. It firstly generates the state vector 
𝑠 with the Gated Graph Neural Network (GGNN), and then substitutes 𝑠 into (4-20) and (4-21). In 
other words, the actor network and the critic network share the same GGNN in this configuration. 
 

4.3.5 PPO with State Graphs and Discrete Actions (PPO-Discrete-GAT) 

 
This configuration uses the Graph Attention Network, instead of a GGNN, to process graphs. The 
subsequent process is the same as PPO-Discrete-GGNN. 
 

4.3.6 PPO with State Graphs and Action Vectors (PPO-MultiDiscrete-GGNN) 

 
This configuration uses the Gated Graph Neural Network (GGNN). Its actor network generates a 
probability distribution vector with the length of 𝐿𝑣 × 𝑛𝑝, from which a command vector with 𝐿𝑣 

values is sampled. 
 

4.4. Baselines 
 
We use the following two baselines in the study. 
 

4.4.1 Random Testing 

 
In this research, the random testing baseline means selecting a random command from the 
command list, like PPO-Discrete-MLP. 
 
The random testing baseline uses the same episode length as the reinforcement algorithms. 
 

4.4.2 Testing with the Genetic Algorithm 

 

This research uses the standard genetic algorithm (Holland, 1992) as another baseline. The genetic 
algorithm has four steps in an iteration:  
 

- Calculate the objective function of every solution. 
- Select good solutions. 
- Perform the “crossover” operation on the good solutions, i.e., randomly swap some 

segments in the solution vectors. 
- Perform the “mutation” operation on the good solutions, i.e., randomly change some 

elements in the solution vectors. 
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The genetic algorithm generates two types of solutions: 
 

- A sequence of scalars in which each scalar represents a command in the command list. 
- A sequence of command vectors, like the PPO-MultiDiscrete-MLP configuration. 

 
The sequence length is equal to the episode length of the reinforcement learning algorithms. 
Furthermore, the genetic algorithm uses the sum of rewards as the objective function of the 
sequence. 

4.5. Implementation Details 
 
The Q-Learning algorithm in this research is written from scratch. The D3QN and PPO algorithms 
are modified from CleanRL (Huang, Dossa, Ye, & Braga, 2021). CleanRL is a repository including 
single-file implementations of deep reinforcement learning algorithms. These algorithms use Pytorch 
to perform low-level operations of neural networks like backpropagation. 
 
The graph neural networks in the study are implemented with the Pytorch Geometric library (Fey & 
Lenssen, 2019), which is built on Pytorch. The library includes the implementation of GAT layers. 
However, we must implement the GGNN layers with the low-level APIs of the library. Our GGNN 
implementation takes from Longa and Pellegrini’s tutorial (2022). 
 
The implementation in this study is lightweight. Table 4-3 shows the number of lines of code in each 
file. 
 

Table 4-3 Number of Lines of Code in Our Implementation 
Configuration File Name Number of 

Lines of Code 
Note 

Q-Learning QLearningAgent.py 40 Store and process the Q table 

Main.py 85 Main loop 

StateIdentification.py 92  Can only identify several states 

D3QN-Discrete-
MLP 

D3qn.py 170 Include the D3qn algorithm and neural 
network in a single file 

D3QN-Discrete-
GGNN 

D3qn.py 153 Include the D3qn algorithm 

GNN_Agent.py 100 The Gated Graph Neural Network 

D3QN-Discrete-
GAT 

D3qn.py 153 Include the D3qn algorithm 

GNN_Agent.py 100 The Graph Attention Network 

PPO-Discrete-
MLP 

PPO.py 200 Include the PPO algorithm and neural 
network in a single file 

PPO-
MultiDiscrete-
MLP 

PPO.py 203 Include the PPO algorithm and neural 
network in a single file 

PPO-Discrete-
GGNN 

PPO.py 166 Include the PPO algorithm 

GNN_Agent.py 103 The Gated Graph Neural Network 

PPO-Discrete-
GGNN 

PPO.py 164 Include the PPO algorithm 

GNN_Agent.py 87 The Graph Attention Network 

PPO-
MultiDiscrete-
GGNN 

PPO.py 166 Include the PPO algorithm 

GNN_Agent.py 124 The Graph Attention Network 

Random 
Testing 
Baseline 

Piece of code in 
MyEnv.py 

10 Randomly select commands and 
execute them 

Genetic 
Algorithm 
Baseline 

GA.py 89 The genetic algorithm 

PQ9Client.py 81 Handle low-level communication 
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Shared 
functions 

MyEnv.py ~100 Provide high-level APIs for the Delfi-
PQ testing environment  

MyEnv_toy.py ~30 Provide high-level APIs for the toy 
problem 

Parser.py 210 Parse raw response and generate 
command list (Many algorithms only 
use the command list) 

PQ9cov.py 153 Instrument source code and generate 
coverage report 

GraphExtract.py 143 Extract a graph from the source code 

MyWord2Vec.py 20 Generate feature vectors for nodes 

 
Moreover, the implementation can run in the CPU or GPU mode of Pytorch. However, as mentioned 
in section 3.1, the lab computer is relatively outdated and cannot support the GPU mode of Pytorch. 
Running deep reinforcement learning algorithms in the CPU mode may take much longer. 
 

4.6. Brief Summary of the Chapter 
 
⚫ Three RL algorithms are implemented in this work, i.e., the Q-Learning algorithm, the D3QN 

algorithm, and the PPO algorithm. 
⚫ The Q-Learning algorithm is one of the most basic RL algorithms. It receives a scalar 

observation, updates a Q table, and gives a scalar action. However, it cannot adapt to other 
types of inputs or outputs. If the state space or action space is large, we may not have enough 
memory to store the Q table. 

⚫ The Deep Q Network (DQN) is an improvement over the original Q-learning algorithm. It uses 
a neural network to fit the action-value function 𝑄(𝑠, 𝑎). It also adopts some tricks to improve the 
stability of the algorithm. The Double Duelling Deep Q Network (D3QN) algorithm is a good 
and simple variant of DQN. 

⚫ The Proximal Policy Optimization (PPO) has a policy network to give probability 𝜋𝑤(𝑎|𝑠) of 

each action under current state 𝑠. It also has a value network to fit the state-value function 𝑉(𝑠). 
Compared with the standard PPO implementation, we add learning rate annealing to make the 
training process more stable. 

⚫ We implement three types of neural network structures for both the D3QN and the PPO 
algorithms, including the MLP network (fully connected layers), the Gated Graph Neural 
Network (GGNN), and the Graph Attention Network (GAT).  

⚫ For the graph neural networks, a challenge is how to extract a graph embedding vector from the 
node feature vectors. We can use a graph pooling layer or the feature compression 
technique. We compare different types of graph pooling layers in a supervised task and find the 
attentive sum pooling layer has the best performance. 

⚫ Unlike other configurations, the PPO-MultiDiscrete-MLP configuration can generate a command 
vector. Thus, it does not have to use human-specified commands. 

⚫ Random testing and the genetic algorithm are implemented as the baselines of this study. 
⚫ The RL algorithms in this study are light-weight. Each algorithm contains up to two files and 

less than 300 lines of code. They only use Pytorch and Pytorch Geometric, instead of some 
complex reinforcement learning libraries (like RLlib) and distributed computing middleware (like 
Ray). 
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5 Filling Grid Testing 
 
It is difficult to debug if a deep reinforcement learning algorithm goes wrong. This study implements 
a toy problem called “grid filling” to make the debugging effortless. The RL algorithms are first tested 
on the toy problem. If everything looks well, the algorithms will run in the environment with the Delfi-
PQ hardware. Furthermore, we can compare the training curves in the toy problem and the curves 
in the actual environment. Such comparison helps us to understand the training process better.  
 
In this chapter, 
 

⚫ Section 5.1 introduces the design of the “grid filling” problem. 
⚫ Section 5.2~5.8 shows the results of different configurations, including D3QN-Discrete-

MLP, D3QN-Discrete-GGNN, D3QN-Discrete-GAT, PPO-Discrete-MLP, PPO-
MultiDiscrete-MLP, PPO-Discrete-GGNN, PPO-Discrete-GAT. 

⚫ Section 5.9 compares the performance of these configurations and mentions some 
interesting findings. 

 

5.1. About the Experiment 
 
There are grids in the problem, and the RL algorithms should fill all grids as soon as possible. To 
the end, a state is represented by a vector of length or a graph with nodes. The state indicates 
which grids have been filled. An action can be a scalar (i.e., fill a specific grid) or a vector (i.e., fill a 
group of grids). The RL agent will receive a reward of 1 if it fills a blank grid or a reward of -1 if it fills 
a filled grid. Figure 5-1 explains the toy problem in detail. 
 
If a deep reinforcement learning algorithm goes wrong, debugging is not easy. This study 
implements a toy problem called “grid filling” to make the debugging effortless. The RL algorithms 
are first tested on the toy problem. If everything looks well, the algorithms will be run in the actual 
environment with the Delfi-PQ hardware. Furthermore, we can compare the training curves in the 
toy problem and the curves in the actual environment. Such comparison helps us to understand the 
training process better.  
 
There are 𝑁 grids in the problem, and the RL algorithms should fill all grids as soon as possible. To 
the end, a state is represented by a vector of length 𝑁 or a graph with nodes 𝑁. The state indicates 
which grids have been filled. An action can be a scalar (i.e., fill a specific grid) or a vector (i.e., fill a 
group of grids). The RL agent will receive a reward of 1 if it fills a blank grid or a reward of -1 if it fills 
a filled grid. Figure 5-1 explains the toy problem in detail. 
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Figure 5-1: The “Filling Grid” Toy Problem 

 
We can change the difficulty of the toy problem by modifying 𝑁, which is beneficial for debugging RL 
algorithms. If 𝑁 increases, the RL algorithms usually need more time to learn. On the other hand, 

the toy problem become easier with a small 𝑁. 
 
We only test the D3QN and PPO algorithms on the toy problem. It’s difficult to apply the Q-Learning 

algorithm on this problem, since 𝑁 grids have 2𝑁 possible states. A Q table cannot deal with too 
many states. 
 
In this experiment, we set 𝑁 = 36. We will compare the cumulative rewards of different algorithms. 

 

5.2. Results of D3QN-Discrete-MLP 

 
In this experiment, an action is a scalar, and the episode length is 36. Table 5-1 shows the 
hyperparameters of the algorithm in this experiment. 
 

Table 5-1: Hyperparameters of D3QN-Discrete-MLP in Filling Grid Test 

Hyperparameter Value 

𝛾 0.9 

Buffer size 20000 

Mini-batch size 128 

Learning rate 2.5e-4 

Learning starts 128 

Training frequency 10 

Total time steps 20000 

𝜀𝑠𝑡𝑎𝑟𝑡 1 

𝜀𝑒𝑛𝑑 0 

Exploration fraction 0.5 

Epoch length 36 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500 

Neural Network Design Value network: 
Input->MLP->ReLU->MLP->ReLU->MLP->value 
 
Advantage network: 
Input->MLP->ReLU->MLP->ReLU->MLP->advantage 
 
Every hidden layer has 512 neurons. 

Network Initialization Orthogonal initialization of weights.  
Initial biases are set to 0. 

Initial std of hidden layers is √2. 
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Figure 5-2 shows the performance of this configuration. The cumulative reward and estimated Q 
value grow stably and quickly reach the maximum, i.e., fill all 36 grids. 
 

 
Figure 5-2: Results of D3QN-Discrete-MLP in the Toy Problem 

 

5.3. Results of D3QN-Discrete-GGNN 
 
The section shows the results of the D3QN algorithm with the Gated Graph Neural Network 
(GGNN). As mentioned in section 4.2.3, one problem is extracting information from node features, 
which GGNN has processed.  
 
There are two design options to solve the problem. The first option is using an attentive sum pooling 
layer. The second option is to use an MLP to reduce node feature vectors to scalars and then 
organize these scalars into a graph feature vector (feature compression). We compare the 
performance of these two approaches in this section. 
 
Table 5-2 shows the hyperparameters of the D3QN-Discrete-GGNN algorithm in this experiment: 
 

Table 5-2: Hyperparameters of D3QN-Discrete-GGNN in Filling Grid Test 

Hyperparameter Value 

𝛾 0.9 

Buffer size 100000 

Mini-batch size 128 

Learning rate 2.5e-4 (feature compression) / 5e-4 (attentive pooling) 

Learning starts 128 

Training frequency 10 

Total time steps 200000 

𝜀𝑠𝑡𝑎𝑟𝑡 1 

𝜀𝑒𝑛𝑑 0.05 

Exploration fraction 0.8 (feature compression) / 0.9 (sum pooling) 

Epoch length 36 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500 

Neural Network 
Design 

Shared network: 
Input->GGNN(5 layers)->MLP->ReLU->Attentive 
pooling/concatenation of node vectors->ReLU->Graph embedding 
 
Compute value: 
Graph embedding->MLP->value 
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Compute advantage: 
Graph embedding->MLP->advantage 

Network Initialization GGNN initialization is mentioned in section 4.2.4.  
Initial std of the MLP for value or advantage computation is 0.01.  
Other layers are initialized in the same way as D3QN-Discrete-MLP 

 
Figure 5-3 shows the performance of the attentive pooling approach. It performs similarly to the 
D3QN-Discrete-MLP configuration (Figure 5-2). The cumulative reward curve converges around 35. 
 

  
Figure 5-3: Results of D3QN-Discrete-GGNN with Attentive Pooling 

 
By contrast, Figure 5-4 shows the results of the feature compression approach. Its Q value curve 
converges much more quickly. Note that in this test 𝜀𝑒𝑛𝑑 = 0.05, and the cumulative reward curve 
sometimes drops below 0. The average cumulative reward at the end of training is also around 35. 
 

  
Figure 5-4: Results of D3QN-Discrete-GGNN with Feature Compression 

 

5.4. Results of D3QN-Discrete-GAT 
 
This configuration is like the D3QN-Discrete-GGNN but uses the Graph Attention Network (GAT) to 
process the graph. Table 5-3 shows the hyperparameters of this configuration in the experiment. 
The configuration only uses 2 GAT layers, and more GAT layers do not improve the performance in 
this test. 
 

Table 5-3: Hyperparameters of D3QN-Discrete-GAT in Filling Grid Test 
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Hyperparameter Value 

𝛾 0.9 

Buffer size 100000 

Mini-batch size 128 

Learning rate 2.5e-4 (feature compression) / 5e-4 (attentive pooling) 

Learning starts 128 

Training 
frequency 

10 

Total time steps 200000 

𝜀𝑠𝑡𝑎𝑟𝑡 1 

𝜀𝑒𝑛𝑑 0.05 

Exploration 
fraction 

0.8 (feature compression) / 0.9 (sum pooling) 

Epoch length 36 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500 

Neural Network 
Design 

Shared network: 
Input->GAT->ReLU->GAT->ReLU->MLP->ReLU->Attentive 
pooling/concatenation of node vectors->ReLU->Graph embedding 
 
Compute value: 
Graph embedding->MLP->value 
 
Compute advantage: 
Graph embedding->MLP->advantage 

Network 
Initialization 

GAT uses default initialization. Initial std of output layers is 1. Other 
networks are initialized in the same way as D3QN-Discrete-MLP 

 
Figures 5-5 and Figure 5-6 show the result with attentive pooling and feature compression, 
respectively. The Q value estimated by feature compression converges more quickly than the Q 
value estimated by attentive pooling. Unfortunately, both configurations have a lower cumulative 
reward (around 32) at the end of training. 
 

 
Figure 5-5: Results of D3QN-Discrete-GAT with Attentive Pooling 
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Figure 5-6: Results of D3QN-Discrete-GAT with Feature Compression 

 

5.5. Results of PPO-Discrete-MLP 
 
Now we consider the PPO algorithm. Table 5-4 shows the hyperparameters of the algorithm in this 
experiment. 
 

Table 5-4: Hyperparameters of PPO-Discrete-MLP in Filling Grid Test 

Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.05 

Mini-batch size 32 

Initial learning rate 5e-4 

𝛾 0.9 

𝑐𝑒𝑛𝑡 0.001 

𝑐𝑣𝑓 0.5 

Total time steps 200000 

Epoch length 36 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2/0.1/0.05/0.02 

Maximal norm of gradient 0.5 

Neural Network Design Critic network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠) 

 
Actor network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎) 

 
Every hidden layer has 512 neurons. 

Network Initialization Orthogonal initialization of weights.  
Initial biases are set to 0. 

Initial std of hidden layers is √2 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

 
As mentioned in section 4.3.1, the policy update of PPO should not be too quick, otherwise the 
training process will become unstable. There are 2 ways to control the Kullback-Leibler divergence: 
policy gradient clipping with 𝜉 or learning rate annealing with 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡.  
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We first check the performance of the first approach. Figure 5-7 shows the estimated Kullback-
Leibler divergence without learning rate annealing. Note that we use a sliding average filter to make 
this result more readable. The divergence starts from a small value at the beginning and then 
increase. Reducing the clipping ratio 𝜉 does limit the KL divergence when 𝜉 > 0.1. However, such 

effect is not obvious when 𝜉 < 0.1. At the same time, the KL divergence is usually under 0.2 when 
𝜉 < 0.1. 
 

 
Figure 5-7: KL Divergence of PPO-Discrete-MLP without Learning Rate Annealing 

 
Figure 5-8 shows the cumulative rewards per episode. Although the KL divergence is limited by the 
clipping with 𝜉,  the algorithm without learning rate annealing is still unstable: its cumulative reward 
increases and then suddenly drops. Another problem is that the cumulative rewards do not reach 
the up limit of the toy problem, i.e., 36.  
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Figure 5-8: Cumulative Reward (per episode) without Learning Rate Annealing 

 
Another metric is the entropy of the action probability distribution under the policy. The entropy of a 
probability distribution is computed by: 
 

 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝜋𝑤(𝑎|𝑠𝑡) ∙ log (𝜋𝑤(𝑎|𝑠𝑡))

𝑎

 (5-1) 

 
In this experiment, the number of actions is 36. Assume the policy is fully random, 𝜋𝑤(𝑎|𝑠𝑡) should 
be 1/36, and the entropy is about 3.58. Figure 5-9 shows the average entropy of episodes without 
learning rate annealing, which starts from 3.58 and then decreases to 0.5. It means the policy 
becomes more deterministic. 
 

 
Figure 5-9 Average Entropy of PPO-Discrete-MLP without Learning Rate Annealing 

 
Figure 5-10 shows the algorithm's performance with learning rate annealing. In the experiment, the 
clip ratio 𝜉 is set to 0.2 and the 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 is set to 0.05. Unlike Figure 5-7, the results are not filtered.  

 
In Figure 5-10, the divergence with learning rate annealing is always below 0.14 and usually around 
0.025 (half of 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡). The learning rate starts from 5e-4 and decreases to 5e-5. As a result, the 

cumulative reward per episode grows stably and does not crash like in Figure 5-8. The annealing 
mechanism controls the KL divergence and makes the training process more stable. 
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Surprisingly, the final entropy in Figure 5-10 (around 2.2) is higher than in Figure 5-9 (around 0.5). If 
we reduce the learning rate to 1e-5 and do not adopt annealing, the final entropy is also around 2.2 
(the result is not shown here). That is to say, the policy learned with a small learning rate or the 
learning rate annealing mechanism is more random than the policy with a constant high learning 
rate. However, the cumulative reward obtained by the policy is equal to or even slightly higher than 
the more deterministic policy. 
 
One possible reason is that if the policy is too deterministic, a minor update to the weights of the 
actor-network can cause a significant change in the action probability distribution 𝜋𝑤(𝑎|𝑠𝑡). It will 
lead to a high KL divergence and an unstable training process. To avoid that, the annealing 
mechanism reduces the learning rate before 𝜋𝑤(𝑎|𝑠𝑡) becomes too sharp. A constant small learning 
rate may also have the same effect, but we should run the algorithm several times to find a 
reasonable learning rate. 
 
To avoid repeated tuning of the learning rate during the study, we adopt the learning rate annealing 
mechanism in the following experiments. 
 

  

  
Figure 5-10: Results of PPO-Discrete-MLP without Learning Rate Annealing 

 

5.6. Results of PPO-MultiDiscrete-MLP 
 
In this experiment, an action is a vector of length 4, and the episode length is 9. The PPO-
MultiDiscrete-MLP algorithm uses the following hyperparameters:  
 

Table 5-5: Hyperparameters of PPO-MultiDiscrete-MLP in Filling Grid Test 

Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.05 

Mini-batch size 32 
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Initial learning rate 5e-4 

𝛾 0.9 

𝑐𝑒𝑛𝑡 0.001 

𝑐𝑣𝑓 0.5 

Total time steps 200000 

Epoch length 36 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2 

Maximal norm of gradient 0.5 

Neural Network Design Critic network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠) 

 
Actor network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎) 

 
Every hidden layer has 512 neurons. 

Network Initialization Orthogonal initialization of weights.  
Initial biases are set to 0. 

Initial std of hidden layers is √2 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

 
The results are shown in Figure 5-11. In the “filling grid” environment, the algorithm has the similar 
performance as the PPO-Discrete-MLP algorithm. The entropy is higher because the action vector 
is longer, equivalent to having more moves to choose from. 
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Figure 5-11: Results of PPO-MultiDiscrete-MLP on the Toy Problem 

 

5.7. Results of PPO-Discrete-GGNN 
 
The section shows the results of the PPO algorithm with the Gated Graph Neural Network (GGNN). 
Table 5-6 shows the hyperparameters of the PPO-Discrete-GGNN algorithm in this experiment: 
 

Table 5-6: Hyperparameters of PPO-Discrete-GGNN in Filling Grid Test 

Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.05 

Mini-batch size 32 

Initial learning rate 5e-4 

𝛾 0.9 

𝑐𝑒𝑛𝑡 0.001 

𝑐𝑣𝑓 0.5 

Total time steps 200000 (Feature Compression) / 1M (Attentive Pooling)  

Epoch length 36 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2 

Maximal norm of 
gradient 

0.5 

Neural Network 
Design 

Shared network: 
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Input->GGNN(3 layers)->MLP->ReLU->Attentive 
pooling/concatenation of node vectors->ReLU->Graph 
embedding 
 
Critic: 

Graph embedding->MLP->�̂�𝜋(𝑠, 𝑎) 

 
Actor: 
Graph embedding->MLP->advantage 

Network Initialization GGNN initialization is mentioned in section 4.2.4. Other 
networks are initialized in the same way as PPO-Discrete-MLP 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

 
Figure 5-12 shows the performance of the attentive pooling approach. Like the D3QN-Discrete-
GGNN configuration (Figure 5-3), the cumulative reward (per episode) increases slowly and takes 
about 700k steps to converge. When testing the real Delfi-PQ hardware, this approach may need 
significant time.  
 

  

  
Figure 5-12: Results of PPO-Discrete-GGNN with Attentive Pooling on the Toy Problem 

 
By contrast, Figure 5-13 shows the results of the feature compression approach. It converges much 
more quickly. In both cases, the entropy also drops to about 0.5, which means the agent learns a 
relatively deterministic policy.  
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Figure 5-13: Results of PPO-Discrete-GGNN with Feature Compression on the Toy Problem 

 

5.8. Results of PPO-Discrete-GAT 
 
This configuration is like the PPO-Discrete-GGNN but uses the Graph Attention Network (GAT) to 
process the graph. Table 5-7 shows the hyperparameters of this configuration in the experiment. 
The configuration only uses 3 GAT layers, and more GAT layers do not improve the performance in 
this test. 
 

Table 5-7: Hyperparameters of PPO-Discrete-GAT in Filling Grid Test 

Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.05 

Mini-batch size 32 

Initial learning rate 5e-4 

𝛾 0.9 

𝑐𝑒𝑛𝑡 0.001 

𝑐𝑣𝑓 0.5 

Total time steps 200000 

Epoch length 36 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2 

Maximal norm of gradient 0.5 

Neural Network Design Shared network: 
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Input->GAT->ReLU->GAT->ReLU->MLP->ReLU->Attentive 
pooling/concatenation of node vectors->ReLU->Graph 
embedding 
 
Critic: 

Graph embedding->MLP->�̂�𝜋(𝑠, 𝑎) 

 
Actor: 
Graph embedding->MLP->advantage 

Network Initialization GAT adopts the default initialization. Other networks are 
initialized in the same way as PPO-Discrete-MLP 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

 
Figure 5-14 shows the results of the configuration with attentive pooling. The cumulative reward 
does not reach the up limit (36 per episode) after 1 million steps. Using attentive pooling in this 
configuration may not be a good idea. 
 

 

 
Figure 5-14: Results of PPO-Discrete-GAT with Attentive Pooling on the Toy Problem 

 
Figure 5-15 shows the performance of feature compression. Compared with PPO-Discrete-GGNN, 
this configuration needs more time steps to converge. Moreover, when the cumulative curve 
reaches the up limit (36 per episode), the curve begins to oscillate violently and sometimes drops 
under 0. Such instability is not desired by software testing. 
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Figure 5-15: Results of PPO-Discrete-GAT with Feature Compression on the Toy Problem 

 

5.9. Discussions 
 
Table 5-8 summarizes all experiments in this chapter. Note that there are 36 grids in the toy 
problem. 
 

Table 5-8: Brief Summary of Results in Filling Grid Test 

Configuration Number of Steps Needed 
by Convergence of 
Cumulative Reward 

Fill All 
Grids? 

Note 

D3QN-Discrete-MLP 10k Yes (36)  

D3QN-Discrete-GGNN 
(Attentive Pooling) 

170k ~35 
grids 

Its Q value curve converges more 
slowly than the feature compression 
approach. 

D3QN-Discrete-GGNN 
(Feature 
Compression) 

155k ~35 
grids 

The cumulative reward curve 
fluctuates. Sometimes it drops 
below 0. 

D3QN-Discrete-GAT 
(Attentive Pooling) 

160k ~32 
grids 

Its Q value curve converges more 
slowly than the feature compression 
approach. 

D3QN-Discrete-GGNN 
(Feature 
Compression) 

150k ~32 
grids 

The cumulative reward curve 
fluctuates. Sometimes it drops 
below 0. 

PPO-Discrete-MLP 
(Without Annealing) 

200k ~30 
grids 

KL divergence ranges between 0.1 
and 0.5. The cumulative reward 
curve fluctuates or even crashes. 
The entropy drops from 3.5 to 0.5. 

PPO-Discrete-MLP 
(With Annealing) 

150k ~33 
grids 

KL divergence around 0.025. The 
cumulative reward curve grows 
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stably. The entropy drops from 3.5 
to 2.2. 

PPO-MultiDiscrete-
MLP 
(With Annealing) 

150k ~33 
grids 

The cumulative reward curve grows 
stably. The entropy drops from 14 
to 6 (different action space). 

PPO-Discrete-GGNN 
(With Annealing, 
Attentive Pooling) 

700k ~35 
grids 

The cumulative reward curve grows 
stably. The entropy drops from 3.5 
to 0.2. 

PPO-Discrete-GGNN 
(With Annealing, 
Feature Compression) 

60k ~35 
grids 

The cumulative reward curve grows 
stably. The entropy drops from 3.5 
to 0.5. 

PPO-Discrete-GAT 
(With Annealing, 
Attentive Pooling) 

Not yet after 1M steps ~30 
grids 

The cumulative reward curve grows 
stably. The entropy drops from 3.5 
to 0.7. 

PPO-Discrete-GAT 
(With Annealing, 
Feature Compression) 

120k Yes (36) The cumulative reward curve 
fluctuates. Sometimes it drops 
under 0. The entropy drops from 
3.5 to 0.2. 

 
The D3QN-Discrete-MLP configuration converges most quickly in the toy problem. It only needs 10k 
steps to reach the up limit, while the PPO-Discrete-MLP configuration needs about 150k steps. 
Other configurations usually need 60k~200k steps to converge, while the PPO configurations with 
attentive pooling take much more training steps. 
 
On the other hand, the D3QN algorithm cannot directly generate a command vector as PPO-
MultiDiscrete-MLP does. In other words, it cannot adapt to the MultiDiscrete action space. Assume 
the length of the command vector is 𝐿𝑣, and each element of the vector can be selected from 𝑁 

values. The D3QN algorithm needs computer 𝑁𝐿𝑣 state-action values in every step, which is 
computationally expensive. By contrast, the actor-network in the PPO-MultiDiscrete-MLP only needs 
to generate a matrix with a size of 𝑁 × 𝐿𝑣. It is much easier. 
 
From our experience, the D3QN algorithm is not very sensitive to hyperparameters in the filling grid 
problem. An important consideration is to control the rate at which 𝜀 falls by tuning 𝜀𝑠𝑡𝑎𝑟𝑡, 𝜀𝑒𝑛𝑑, total 
time steps, and exploration fraction. If 𝜀 falls too quickly, the exploration will stops before the agent 

learns a good policy. If 𝜀 falls too slowly, the training process will take too much time. 
 
The learning rate annealing mechanism can make PPO more stable, but it may also increase the 
final entropy of the action probability distribution. When the action probability distribution is too 
“sharp” (low entropy), the KL divergence of a single policy update can be huge, triggering the 
learning rate annealing mechanism. However, it is unclear why high-entropy and low-entropy 
policies have similar performance in the toy problem. 
 
From a neural network architecture point of view, the simplest MLP (with only two hidden layers) is 
the fastest option. However, it only accepts a plain vector as input. The length of the vector and the 
meaning of each element may change after programmers modify the code (section 3.4.2). We shall 
use a graph neural network to process graph input to solve the problem. 
 
The Gated Graph Neural Network (GGNN) performs similarly to the Graph Attention Network (GAT) 
in both the D3QN and PPO algorithms. However, the GGNN can have more layers (5 layers in our 
case), while the GAT usually has 2~3 layers. In our experiment, if the GAT has more layers, its 
performance will drop significantly.  
 
There are two options to extract information from the node features processed by the graph neural 
network: graph pooling or feature compression. Table 5-8 shows that feature compression leads to 
the cumulative reward curve oscillation for both the D3QN and PPO algorithms. At the same time, 
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the neuron number of its graph MLP layer depends on the node number of the graph. This may also 
cause problems when the SUT is modified and the number of probes changes.  
 
Another approach to extract information is attentive pooling. It does not have the oscillation 
phenomenon of the feature compression approach. Furthermore, the neuron number does not 
depend on the node number of the graph. However, it usually needs more time steps to be trained. 
 
We will use these configurations in the following sections to test actual Delfi-PQ software. 
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6 Stress Testing 
 
This section introduces the stress testing and its results: 
 

⚫ Section 6.1 explains the design of the experiment. 
⚫ Section 6.2~6.9 shows the results of different configurations, including the random 

baseline, the genetic baseline, Q-Learning, D3QN-Discrete-MLP., PPO-Discrete-MLP, 
PPO-MultiDiscrete-MLP, PPO-Discrete-GGNN, PPO-MultiDiscrete-GGNN. 

⚫ Section 6.10 introduces some bugs of the onboard software identified during the stress 
testing. 

⚫ Section 6.11 compares results of these configuration and gives a brief summary. 
 

6.1. About the Experiment 

 
We try to maximize the CPU load of the COMMS subsystem of Delfi-PQ in this experiment. More 
specifically, we estimate number of clock cycles required by each loop in the scheduler: 
 

 𝑐𝑙𝑜𝑜𝑝 = 𝑓𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙/𝑛𝑙𝑜𝑜𝑝  (6-1) 

 
Where 𝑓 is the clock frequency of the CPU. For MSP432, 𝑓 = 48000000. 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is the time interval 
being sampled, and 𝑛𝑙𝑜𝑜𝑝 is the number of loops executed by the scheduler during the time interval. 

We set the reward of each step as 𝑐𝑙𝑜𝑜𝑝/1000. 

 
Figure 6-1 shows the time interval used in the experiment. The time interval is not precisely the 
interval that recording 𝑛𝑙𝑜𝑜𝑝. However, since the length of time to send 2 “retrieve loop count” 

commands should be the same, the length of the 2 intervals should also be the same. 
 

 
Figure 6-1: A Time Step in the Stress Testing 
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The processor is not always busy during the time interval. As shown by Figure 6-1, it usually gets 
busy for a while after receiving a command. On the other hand, we can only calculate the average 
𝑐𝑙𝑜𝑜𝑝 during the time interval. Assume the communication speed decreases, 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 to send the 3 

commands will get longer, but the CPU load triggered by the 3 commands will roughly remain the 
same. As a result, 𝑐𝑙𝑜𝑜𝑝 will be smaller. To avoid the influence of communication speed on the 

conclusions, we only compare the 𝑐𝑙𝑜𝑜𝑝 computed by the same machine, i.e., the lab PC or the 

server. 
 
In Figure 6-1, one may notice that we always retrieve code coverage after sending a testing 
command. The coverage information is useless for some algorithms, e.g., the genetic algorithm. 
Why do we do this? Firstly, if the agent retrieves the loop count just after sending a testing 
command, it measures instantaneous CPU load with a very high variance. In practice, we want a 
high average CPU load rather than a high instantaneous load. Secondly, instead of delaying 50ms 
before checking the loop count, collecting code coverage is useful (for RL) and has the same time-
delay effect.  
 
Figure 6-2 shows an example of a time step in the experiment of PPO-MultiDiscrete-GGNN (section 
6.9). 
 

 
Figure 6-2: Example of a Time Step in Stress Testing (from Lab PC) 

 
We also find unpredictable load peaks in the experiment, which means the stress testing 
environment is a non-deterministic environment for an RL agent. For example, if testers send the 
same testing command to the COMMS board 1000 times, they can record different CPU loads. 
Figure 6-3 shows the phenomenon. 
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Figure 6-3: CPU Load of Send the Same Command for 1000 Times (from Lab PC) 

 
When we perform the test, there are 630 probes in the source code and 58 commands specified by 
the tester. 
 

6.2. Random Baseline 

 
In the random baseline, the agent randomly selects a command from the command list and send it. 
Figure 6-4 shows the results of the baseline.  
 

 
Figure 6-4: Results of Random Baseline in Stress Testing of COMMS  

(Left: Commands from Lab PC; Right: from the Cloud Server) 
 
The CPU load peaks may be triggered by specific commands or unpredictable events. For the 
commands send by the lab PC, 𝑐𝑙𝑜𝑜𝑝 ≈ 900. For the commands send from the cloud server, 𝑐𝑙𝑜𝑜𝑝 ≈

700. Obviously, the performance of the baseline will not improve during a test. 
 

6.3. Genetic Algorithm Baseline 

 
The genetic algorithm maintains a group of solutions called chromosomes and modifies them to get 
a higher cumulative reward. Table 6-1 shows the hyperparameters of the algorithm. 
 

Table 6-1: Hyperparameters of the Genetic Algorithm in Stress Testing of COMMS 
Total iteration number 100 

Length of a solution 128 (Discrete) / 512 (MultiDiscrete) 

Population 20 

Crossover probability 0.4 

Mutation probability 0.01 
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Figure 6-5: Results of the Genetic Algorithm (Discrete, from Lab PC) 

 
In Figure 6-5, the genetic algorithm selects pre-defined commands from the parser, i.e., each 
element in the chromosome is an index of a human-defined command. As mentioned before, such 
action space is discrete. The testing commands come from the lab PC, and it takes 10.3 hours to 
complete the test. The curve converges after 40 iterations and 4.1 hours. 
 
The average CPU load of the solutions in an iteration increases from 1600 to around 4500. The best 
command sequence found by the algorithm reaches a CPU load of 18360. However, when we 
repeat the command sequence ten times, we get the following results: 
 

 
Figure 6-6: Repeat the “Best Command Sequence (Discrete)” for 10 Times 
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As shown by Figure 6-6, the performance of the best command sequence is not repeatable. It is 
because the stress testing is non-deterministic.  
 
In contrast, Figure 6-7 shows the algorithm's performance in the MultiDiscrete action space. In such 
action space, the length of a chromosome is 512. Every four elements in the chromosome form a 
command vector, in which the first element is the service number, and the following three elements 
are the command payload. 
 

 
Figure 6-7: Results of the Genetic Algorithm (MultiDiscrete, from Lab PC) 

 
The testing commands come from the lab PC, and it takes 12.9 hours to complete the test. The 
curve converges after 70 iterations and 9 hours. The average CPU load of an iteration increases 
from 2000 to about 15000, which is much higher than the CPU load in the discrete action space. It 
means the human-defined commands are not good at triggering a high CPU load. 
 
We ran the best solution ten times and got the following result: 
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Figure 6-8: Repeat the “Best Command Sequence (MultiDiscrete)” for 10 Times 

 
The performance of the best command sequence is still not repeatable. 
 

6.4. Results of Q-Learning 

 
Table 6-2 shows the hyperparameters in the tabular Q-Learning algorithm in this test, and the 
results are shown in Figure 6-9. 
 

Table 6-2: Hyperparameters of the Q-Learning in Stress Testing for COMMS 
Hyperparameter Value 

𝛾 0.9 

Learning rate 0.01 

Total time steps 65000 

Episode length 128 

𝜀 0.9 
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Figure 6-9: Performance of Q-Learning in the Stress Test of COMMS (from Lab PC) 

 
The Q-Learning algorithm found 21 states during the test using the hyperparameters and state 
identification rules. However, the CPU load does not increase in the training process. One possible 
reason is that the state identification rules are not effective enough. 
 

6.5. Results of D3QN-Discrete-MLP 

 
Now we perform the stress testing with the D3QN-Discrete-MLP configuration. The 
hyperparameters are shown in Table 6-3, and the results are shown in Figure 6-10.  
 
According to our experience in the “filling grid” experiment, the D3QN algorithm usually converges in 
fewer time steps when the training frequency is 1. However, frequently updating the neural network 
requires more computing time. Thus, we run the algorithm on the cloud server to reduce the 
computing time. 
 

Table 6-3: Hyperparameters of D3QN-Discrete-MLP in the Stress Testing for COMMS 
Hyperparameter Value 

𝛾 0.9 

Buffer size 50000 

Mini-batch size 128 

Learning rate 5e-4/1e-4 

Learning starts 128 

Training frequency 1 

Total time steps 50000 

𝜀𝑠𝑡𝑎𝑟𝑡 1 

𝜀𝑒𝑛𝑑 0.01 

Exploration fraction 0.8 

Epoch length 128 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500 

Neural Network Design Value network: 
Input->MLP->ReLU->MLP->ReLU->MLP->value 
 
Advantage network: 
Input->MLP->ReLU->MLP->ReLU->MLP->advantage 
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Every hidden layer has 2048 neurons. 

Network Initialization Orthogonal initialization of weights.  
Initial biases are set to 0. 

Initial std of hidden layers is √2. 

 

 

  
Figure 6-10: Performance of D3QN-Discrete-MLP in the Stress Test of COMMS (from Server) 

 
The CPU load in Figure 6-10 first increases and then decreases. At the same time, the estimated Q 
value diverges at the end of the training process. Reducing the learning rate makes the situation 
even worse.  
 
There are several possible reasons for the phenomenon. Firstly, the neural network may be 
overfitting. To avoid over-fitting, we can add an L2 regulation term to the loss function (4-3) or add 
dropout layers to the neural network. Secondly, such instability may be an inherent property of 

value-based RL algorithms because minor updates to �̂�𝜋(𝑠, 𝑎) may significantly change the policy 
and the data distribution.  
 
The D3QN-Discrete-MLP is the most basic configuration of the D3QN algorithm. Since it does not 
work well in stress testing, we will not try other configurations based on the D3QN algorithm. To 
some extent, this is also a result of the limited time available for the work. 
 

6.6. Results of PPO-Discrete-MLP 
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We try the PPO-Discrete-MLP configuration in this section. Table 6-4 lists the hyperparameters 
used, and Figure 6-11 shows the results. In the experiment, we find that the configuration can 
converge quickly without frequent network updates, so we run the algorithm on the lab PC. 
 
The D3QN-Discrete-MLP is the most basic configuration of the D3QN algorithm. Since it does not 
work well in stress testing, we will not try other configurations based on the D3QN algorithm. To 
some extent, this is also a result of the limited time available for the work. 
 

Table 6-4: Hyperparameters of PPO-Discrete-MLP in the Stress Testing for COMMS 
Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02 

Mini-batch size 32 

Initial learning rate 5e-4 

𝛾 0.9 

𝑐𝑒𝑛𝑡 0.01 

𝑐𝑣𝑓 0.5 

Total time steps 15000 

Epoch length 128 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2 

Maximal norm of gradient 0.5 

Neural Network Design Critic network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠) 

 
Actor network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎) 

 
Every hidden layer has 2048 neurons. 

Network Initialization Orthogonal initialization of weights.  
Initial biases are set to 0. 

Initial std of hidden layers is √2 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

 

 



       

97 

 

 
Figure 6-11: Performance of PPO-Discrete-MLP in the Stress Test of COMMS (from Lab PC) 

 
The performance of this configuration is prospective. It only takes 52 minutes to get the result on the 
lab PC, and the CPU load maintains a level of around 4000 after 30 minutes. By contrast, the 
genetic algorithm in discrete action space performs similarly after 30 iterations, i.e., about 3 hours. 
At the same time, the genetic algorithm can only generate several good command sequences. It 
has non-deterministic performance under a non-deterministic environment. In contrast, the PPO 
algorithm generates a policy which has relatively stable performance in a non-deterministic 
environment. 
 
Since the PPO-Discrete-MLP configuration works well, we keep trying other configurations based on 
the PPO algorithm. 
 

6.7. Results of PPO-MultiDiscrete-MLP 
 
We try the PPO-MultiDiscrete-MLP configuration in this section. Table 6-5 shows the 
hyperparameters. Figures 6-12 and 6-13 show the results. 
 

Table 6-5: Hyperparameters of PPO-MultiDiscrete-MLP in the Stress Testing for COMMS 
Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02 

Mini-batch size 32 

Initial learning rate 5e-4 

𝛾 0.9 

𝑐𝑒𝑛𝑡 0.001 

𝑐𝑣𝑓 0.5 

Total time steps 50000 

Epoch length 36 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2 

Maximal norm of gradient 0.5 

Neural Network Design Critic network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠) 

 
Actor network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎) 

 
Every hidden layer has 2048 neurons. 
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Network Initialization Orthogonal initialization of weights.  
Initial biases are set to 0. 

Initial std of hidden layers is √2 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

Command Vector Length 4/11 

 

 

 
Figure 6-12: Performance of PPO-MultiDiscrete-MLP (Command Vector Length=4, from Lab PC) 

 
In Figure 6-12, the configuration achieves a similar CPU load as the genetic algorithm in 
MultiDiscrete action space. However, the genetic algorithm takes 12.9 hours, while the PPO-
MultiDiscrete-MLP configuration only takes 59 minutes on the lab PC. If we only consider the time 
needed for the curve to converge, the genetic algorithm converges after 9 hours, and PPO-
MultiDiscrete-MLP converges after 44 minutes. 
 
After convergence, the trained policy can achieve a 𝑐𝑙𝑜𝑜𝑝 between 14000 and 16000. By contrast, 

the best chromosome from the genetic algorithm can achieve a 𝑐𝑙𝑜𝑜𝑝 between 13000 and 17000. 

The policy from the PPO algorithm has relatively more stable performance. 
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Figure 6-13: Performance of PPO-MultiDiscrete-MLP (Command Vector Length=11, from Lab PC) 

 
Figure 6-13 shows the same configuration results, but the command vector length is set to 11. The 
lab PC takes 2 hours and 6 minutes to get the results. Although the CPU load does increase and 
the entropy does drop, its CPU load is much lower than in Figure 6-12. Why does this happen? 
 
A possible reason is that it takes many attempts for the agent to get a valid command. In another 
experiment, after sending 200000 testing commands to the COMMS board, we only find valid 
command vectors with 4~5 parameters in the interaction record. If a valid command has more 
parameters, the probability of this command being attempted becomes very small. In other words, 
the action space for the PPO algorithm becomes too large to try. 
 

6.8. Results of PPO-Discrete-GGNN 
 
This section tries the PPO-Discrete-GGNN configuration. Note that the PPO-Discrete-GAT 
configuration performs worst in the filling grid test, so we do not try it in a real environment.  
 

Table 6-6: Hyperparameters of PPO-Discrete-GGNN in the Stress Testing for COMMS 
Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02 

Mini-batch size 32 

Initial learning rate 5e-4 

𝛾 0.9 
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𝑐𝑒𝑛𝑡 0.001 

𝑐𝑣𝑓 0.5 

Total time steps 25000 

Epoch length 36 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2 

Maximal norm of 
gradient 

0.5 

Neural Network 
Design 

Shared network: 
Input->GGNN(3 layers)->MLP->ReLU->Attentive 
pooling/concatenation of node vectors->ReLU->Graph 
embedding 
 
Critic: 

Graph embedding->MLP->�̂�𝜋(𝑠, 𝑎) 

 
Actor: 
Graph embedding->MLP->advantage 

Network Initialization GGNN initialization is mentioned in section 4.2.4. Other 
networks are initialized in the same way as PPO-Discrete-MLP 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

 
Figure 6-14 shows the results with feature compression. It takes 2 hours and 47 minutes on the lab 
PC to get the result. The average 𝑐𝑙𝑜𝑜𝑝 ≈ 3500, which is lower than the 𝑐𝑙𝑜𝑜𝑝 of PPO-Discrete-MLP 

(Figure 5-23). The performance is also more unstable: sometimes 𝑐𝑙𝑜𝑜𝑝 drops under 1500. 
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Figure 6-14: Performance of PPO-Discrete-GGNN with Feature Compression (from Lab PC) 

 
By contrast, Figure 6-15 includes the results with attentive pooling. It takes 1 hour and 51 minutes 
on the lab PC to get the results. The configuration converges after about 3000 steps (26 minutes). 
Its average 𝑐𝑙𝑜𝑜𝑝 ≈ 4500, which is higher than the performance of PPO-Discrete-MLP configuration. 

It also shows that attentive pooling performs better than feature compression in stress testing.  
 
However, compared with the basic PPO-Discrete-MLP configuration, the CPU load curve in Figure 
6-15 is still more unstable. Sometimes 𝑐𝑙𝑜𝑜𝑝 drops under 2000. This phenomenon may be caused 

by the Gated Graph Neural Network. 
 

 

 
Figure 6-15: Performance of PPO-Discrete-GGNN with Attentive Pooling (from Lab PC) 
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6.9. Results of PPO-MultiDiscrete-GGNN 
 
Based on experience of previous experiments, we also implement the PPO-MultiDiscrete-GGNN 
configuration. Note that this configuration has not been tested in the filling grid environment. It uses 
attentive pooling to extract the graph feature. Table 6-7 shows the hyperparameters. 
 

Table 6-7: Hyperparameters of PPO-MultiDiscrete-GGNN in the Stress Testing for COMMS 
Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02 

Mini-batch size 32 

Initial learning rate 5e-4 

𝛾 0.9 

𝑐𝑒𝑛𝑡 0.001 

𝑐𝑣𝑓 0.5 

Total time steps 25000 

Epoch length 36 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2 

Maximal norm of 
gradient 

0.5 

Neural Network Design Shared network: 
Input->GGNN(3 layers)->MLP->ReLU->Attentive 
pooling/concatenation of node vectors->ReLU->Graph embedding 
 
Critic: 

Graph embedding->MLP->�̂�𝜋(𝑠, 𝑎) 

 
Actor: 
Graph embedding->MLP->advantage 

Network Initialization GGNN initialization is mentioned in section 4.2.4. Other networks 
are initialized in the same way as PPO-Discrete-MLP 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

Command Vector Length 4 

 
Figure 6-16 shows the performance of this configuration. It takes 3 hours and 9 minutes on the lab 
PC to get the results. The 𝑐𝑙𝑜𝑜𝑝 curve converges after 13000 steps and 123 minutes. In fact, this is 

the best performance that we have ever seen. It achieves a 𝑐𝑙𝑜𝑜𝑝 around 20000. Moreover, after 

17000 steps, the 𝑐𝑙𝑜𝑜𝑝 curve only ranges from 19000 and 23000. 

 
In the first 10000 steps, the 𝑐𝑙𝑜𝑜𝑝 curve does not significantly increase, and the entropy decreases 

slowly. In fact, you can find similar pattern at the beginning of training process in Figures 5-12 and 
6-15. Perhaps the attentive pooling layer was adapting to the problem in the initial training phase. 
Another possible reason is that the initial learning rate may be too high, and training becomes more 
effective when the learning rate decreases. 
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Figure 6-16: Performance of PPO-MultiDiscrete-GGNN (Command Vector Length=4, from Lab PC) 

 

6.10. Bugs Identified in Stress Testing 
 
Although there is no testing oracle in the experiment, we still find an anomaly during the stress 
testing. When running the algorithms in the MultiDiscrete action space, sometimes the COMMS 
board gets stuck and cannot reply. This phenomenon may disappear later or continue.  
 
Limited by time, we have not found the root of the anomaly. However, it is possible to find 
anomalies in a phenomenon like a late response, no response, and unexpected response. 
 

6.11. Discussions 
 
Table 6-8 summarizes the results in stress testing. 
 

Table 6-8: Brief Summary of Results in Stress Testing 

Config. Running Time Average CPU 
Load at the end 

Range of CPU 
Load at the end 

Note 

Random - 900 (lab PC), 
700 (cloud 
server) 

There are spikes 
(up to 30k) in the 
𝑐𝑙𝑜𝑜𝑝 curve 

Its average CPU load does 
not increase, so we do not 
record the running time. 
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Genetic 
(Discrete) 

4.1 hour to 
roughly 
converge, 10.1 
hour in total 

4500 (lab PC) The “best” 
solution reaches 
18360. Average  
𝑐𝑙𝑜𝑜𝑝 ranges from 

2500 to 6000. 

Performance of the “best” 
solution is not repeatable. It 
only achieves 𝑐𝑙𝑜𝑜𝑝 

between 2000 and 4000. 

Genetic 
(MultiDiscrete) 

9 hours to 
roughly 
converge, 12.9 
hour in total 

15000 (lab PC) The “best” 
solution reaches 
16000. Average  
𝑐𝑙𝑜𝑜𝑝 ranges from 

14500 to 15500. 

Performance of the “best” 
solution is not repeatable. It 
only achieves 𝑐𝑙𝑜𝑜𝑝 

between 13200 and 17000. 

Q-Learning - 1400 (lab PC) There are spikes 
(up to 2400) in the 
𝑐𝑙𝑜𝑜𝑝 curve 

Its average CPU load does 
not increase, so we do not 
record the running time. 

D3QN-
Discrete-MLP 

- 900 (cloud 
server) 

700~1100, but not 
converge 

𝑐𝑙𝑜𝑜𝑝 increases and then 

decreases. The Q value 
curve diverges at the end. 

PPO-Discrete-
MLP 

30 minutes to 
roughly 
converge, 52 
minutes in total 

4000 (lab PC) 3500~4500  

PPO-
MultiDiscrete-
MLP 
(Cmd Vector 
Length = 4) 

44 minutes to 
roughly 
converge, 59 
minutes in total 

15000 (lab PC) 14000~16000  

PPO-
MultiDiscrete-
MLP 
(Cmd Vector 
length = 11) 

79 minutes to 
roughly 
converge, 126 
minutes in total 

1300 (lab PC) 1280~1320  

PPO-Discrete-
GGNN 
(Feature 
Compression) 

33 minutes to 
roughly 
converge, 167 
minutes in total 

3500 (lab PC) 1500~4500  

PPO-Discrete-
GGNN 
(Attentive 
Pooling) 

26 minutes to 
roughly 
converge, 111 
minutes in total 

4500 (lab PC) 2000~6500  

PPO-
MultiDiscrete-
GGNN 
(Attentive 
Pooling, Cmd 
Vector Length 
= 4) 

123 minutes to 
roughly 
converge, 189 
minutes in total 

20000 (lab PC) 19000~23000 Best performance in stress 
testing 

 
Because of unpredictable load peaks, stress testing is a non-deterministic environment. Testers will 
get different average CPU loads if they send a fixed command sequence several times. Therefore, 
we shall evaluate how high a CPU load an algorithm can achieve and whether it has stable 
performance. 
 
Random testing and the Q learning algorithm fail in both respects. Their CPU load does not 
increase during the test and remains unstable. We guess the Q-learning algorithm's human-defined 
state identification rules are ineffective. On the other hand, it also takes more human labour to 
design good state identification rules. 
 
We try the genetic algorithm in the discrete and multi-discrete action spaces, i.e., selecting human-
defined commands or organizing command vectors. The genetic algorithm does work in both cases 
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and triggers a higher CPU load in the multi-discrete action space. Nevertheless, we cannot get the 
same performance when we run the "best" solutions several times. The 𝑐𝑙𝑜𝑜𝑝 of the "best solution" in 

discrete action space ranges between 2000 and 4000. The 𝑐𝑙𝑜𝑜𝑝 of the "best solution" in multi-

discrete action space ranges between 13000 and 17000. 
 
Unlike the filling grid test results, the DQN algorithm does not perform well in stress testing. Its 𝑐𝑙𝑜𝑜𝑝 

curve firstly increases and then decreases, while its entropy diverges at the end of the training 
process. Reducing the learning rate does not improve the situation but worsens it. Adding L2 
regularization to the loss function or dropout layers to the neural network may be helpful, but we 
have not tried these options. 
 
The PPO algorithm is the winner of the stress testing. In the discrete action space, the PPO-
Discrete-GGNN configuration with attentive pooling has an average 𝑐𝑙𝑜𝑜𝑝 ≈ 4500, but the curve 

sometimes drops under 2000. By contrast, the PPO-Discrete-MLP configuration has a lower 𝑐𝑙𝑜𝑜𝑝 ≈

4500, but its curve in Figure 6-10 looks more stable than the curve in Figure 6-15. 
 
In the MultiDiscrete action space, PPO with GGNN achieves a higher CPU load but more robust 
oscillation. The PPO-MultiDiscrete-MLP configuration (command vector length is 4) has an average 
𝑐𝑙𝑜𝑜𝑝 ≈ 15000, and the value ranges between 14000 and 16000 most of the time after convergence. 

In contrast, the PPO-MultiDiscrete-GGNN configuration with the same command vector length has a  
lower 𝑐𝑙𝑜𝑜𝑝 ≈ 20000, and the value ranges between 19000 and 23000.  

 
Thus, the gated graph neural network (GGNN) can process graph input and improve the algorithm's 
performance. As a price, the performance of the algorithm may be more unstable. Moreover, 
attentive pooling works better than feature compression in GGNN, but it also makes the agent learn 
slowly during the initial training phase. 
 
The PPO and genetic algorithm trigger higher CPU load with lower variance in the MultiDiscrete 
action space. This may be because the human-defined commands are unsuitable for stress testing. 
However, if the length of the command vector becomes larger (e.g., 11), the search space will be 
too large for the algorithm. In this case, the PPO algorithm will converge at a low 𝑐𝑙𝑜𝑜𝑝, as shown in 

Figure 6-13. 
 
All experiments in the chapter, except the D3QN-Discrete-MLP configuration, run on the lab PC. 
Among these experiments, the genetic algorithm takes the longest, and the PPO algorithm is much 
quicker. To some extent, this is not in line with our impression that "reinforcement learning takes 
longer training time". For example, the genetic algorithm in the multi-discrete action space 
converges after 9 hours. The PPO-MultiDiscrete-MLP configuration achieves similar performance in 
44 minutes, and the PPO-MultiDiscrete-configuration converges at a higher CPU load after 123 
minutes. 
 
The most crucial finding in this section is the excellent performance of the PPO-MultiDiscrete-GGNN 
configuration. Suppose the command vector is not too long and attentive pooling is used. In that 
case, the configuration can achieve the highest CPU load within a limited time and maintain 
performance in a non-deterministic environment. Since the configuration organizes the commands 
and does not need to parse the reply, it also needs much less prior knowledge. These are precisely 
the properties we want to achieve in the research. 
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7 Coverage Testing 
 
This section introduces the coverage testing and its results: 
 

⚫ Section 7.1 explains the design of the experiment. 
⚫ Section 7.2~7.9 shows the results of different configurations, including the random 

baseline, the genetic baseline, Q-Learning, D3QN-Discrete-MLP, D3QN-Discrete-
GGNN, PPO-Discrete-MLP, PPO-MultiDiscrete-MLP, PPO-Discrete-GGNN. 

⚫ Section 7.10 introduces some bugs of the onboard software identified during the 
coverage testing. 

⚫ Section 7.11 compares results of these configuration and gives a brief summary. 
 

7.1. About the Experiment 

 
We try to maximize the code coverage of the COMMS flight software of Delfi-PQ in this experiment. 
When performing the test, there are 630 probes in the source code and 58 commands specified by 
the tester. 
 
When the agent executes a probe that is never triggered before in an episode, the agent will receive 
a positive reward of +1. On the other hand, if the agent does not trigger any new probes after 
sending a command, it will receive a negative reward of -1. Section 4.2.2 shows the formulations of 
states and actions. 
 
To collect the code coverage (status of probes), the agent will send a code coverage collection 
command after a testing command. In the previous chapter, the genetic algorithm sends a coverage 
collection command after every testing command. This is because we want to be the same for all 
algorithms running on the same machine. By contrast, in coverage testing, the genetic algorithm 
only needs to collect the code coverage at the end of an episode, which reduces the testing time. 
 
Like the previous chapter, we send the same command 1000 times to verify whether the 
environment is deterministic: 
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Figure 7-1: Branch Coverage of Send the Same Command for 1000 Times (from Lab PC) 

 
Figure 7-1 shows that the coverage testing is also non-deterministic. In section 7.3, we will evaluate 
such uncertainty's impact by repeating the genetic algorithm's optimal command sequence. 
 

7.2. Random Baseline 
 
In the random baseline, the agent randomly selects a command from the command list and sends it. 
Table 7-1 shows the average branch coverage achieved by the baseline in 10 runs. 
 

Table 7-1 Average Branch Coverage of Random Baseline in 10 Runs 

Episode 
Length 

Average 
Coverage 

Max Coverage Min Coverage Time for 10 runs 

128 224.6/630 236/630 210/630 395s 

256 240/630 263/630 225/630 792s 

512 241.8/630 267/630 229/630 1566s 

1024 251/630 267/630 225/630 3150s 

 
The coverage results of the random testing are also “random”. If the episode length is 1024, it may 
get a branch coverage from 225/630 to 267/630. A simple random policy does not always get high 
coverage.  
 
At the same time, increasing the episode length can improve the average coverage. If testers can 
run random testing for more than 30 minutes, they will probably get the maximum branch coverage 
of the COMMS software because the COMMS software is relatively simple. 
 

7.3. Genetic Algorithm Baseline 
 
Table 7-2 and Figure 7-2 show the hyperparameters and coverage curve of the genetic algorithm, 
respectively. In this section, we only run the genetic algorithm in the discrete action space, i.e., 
selecting human-defined commands. Each element in the chromosome is an index of a pre-defined 
command in a list. 
 

Table 7-2: Hyperparameters of the Genetic Algorithm in Coverage Testing for COMMS 
Total iteration number 100 

Length of a solution 128 

Population 10 

Crossover probability 0.4 

Mutation probability 0.01 
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Figure 7-2: Coverage Curve of the Genetic Algorithm (from Lab PC) 

 
In the end, the genetic algorithm reaches a branch coverage of 269/630, slightly higher than the 
best coverage in the random baseline. It takes 72.6 minutes for the algorithm to complete 100 
iterations on the lab PC. The best solution is found after 80 iterations and 57 minutes. To speed up 
the algorithm, we only send the coverage collection command after all commands in a chromosome 
have been sent. 
 
Like section 6.3, now we repeat the best chromosome ten times and get the following result: 
 

 
Figure 7-3: Repeat the “Best Command Sequence (Discrete)” for 10 Times 

 
We can compare it with Figure 6-6 in the stress testing. Although the branch coverages differ, their 
variance is much smaller than the CPU load in Figure 6-6. On the other hand, the branch coverage 
triggered by a single command varies between 8 and 18 in Figure 7-1, but the coverage triggered 
by a command sequence only varies between 256 and 266 in Figure 7-3. That is to say, though the 
coverage of a single command is uncertain, the coverage of a command sequence is roughly the 
same. Since we use the final coverage of an episode as the performance metric, coverage testing 
seems to be more “deterministic” than stress testing. 
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7.4. Results of Q-Learning 
 
Table 7-3 shows the hyperparameters in the tabular Q-Learning algorithm in this test, and the 
results are shown in Figure 7-4. 
 

Table 7-3: Hyperparameters of the Q-Learning in Coverage Testing for COMMS 
Hyperparameter Value 

𝛾 0.9 

Learning rate 0.01 

Total time steps 45000 

Episode length 128 

𝜀 0.9 

 

 
Figure 7-4: Coverage Curve of the Q-Learning Algorithm (from Lab PC) 

 
Given the hyperparameters and state identification rules, the Q-Learning algorithm found 22 states 
during the test. However, the code coverage does not increase in the training process. The code 
coverage of Q-Learning (~170/630) is even worse than random testing, which has an average 
branch coverage of 224.6/630 with the same episode length.  
 
Like stress testing, a possible reason is that the human-specified state identification rules 
significantly affect the performance of the Q-Learning algorithm. 
 

7.5. Results of D3QN-Discrete-MLP 
 
Now we test the COMMS software with the D3QN-Discrete-MLP configuration. Its hyperparameters 
are shown in Table 7-4.  
 

Table 7-4: Hyperparameters of D3QN-Discrete-MLP in the Coverage Testing for COMMS 
Hyperparameter Value 

𝛾 0.9 

Buffer size 200000 

Mini-batch size 128 

Learning rate 1e-4 

Learning starts 128 

Training frequency 1 

Total time steps 200000 

𝜀𝑠𝑡𝑎𝑟𝑡 1 
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𝜀𝑒𝑛𝑑 0.01 

Exploration fraction 0.6 

Epoch length 128 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500 

Neural Network Design Value network: 
Input->MLP->ReLU->MLP->ReLU->MLP->value 
 
Advantage network: 
Input->MLP->ReLU->MLP->ReLU->MLP->advantage 
 
Every hidden layer has 2048 neurons. 

Network Initialization Orthogonal initialization of weights.  
Initial biases are set to 0. 

Initial std of hidden layers is √2. 

 
Figure 7-5 shows the results of the configuration. The lab PC takes 9 hours and 51 minutes to get the 
results—the average Q value estimated by the network increases and decreases to a level. The average 
branch coverage increases from 225/630 to 260/630. However, the final branch coverage is not very 

stable with 𝜀𝑒𝑛𝑑 = 0.01. Sometimes it even drops under 220/630. We have seen such instability in 
section 6.5, which may be an inherent property of value-based RL algorithms. 
 

  
Figure 7-5: Results of the D3QN-Discrete-MLP in the Coverage Testing for COMMS (from Lab PC) 

 

7.6. Results of D3QN-Discrete-GGNN 
 
This section uses the D3QN-Discrete-GGNN configuration instead. We only use the feature 
compression approach to get a graph representation from node features. It is because we 
performed this experiment early in the research when we had not found attentive pooling as an 
effective way to extract graph embedding.  
 
On the other hand, we also had not set up the cloud server then. To reduce the training time on the 
lab PC, we reduced the length of the node feature vectors from 127 to 7. Word2Vec generated 
these short node feature vectors from the source code of COMMS software.  
 
The hyperparameters of this configuration are in Table 7-5, and the results are in Figure 7-6. 
 

Table 7-5: Hyperparameters of D3QN-Discrete-GGNN in the Coverage Testing for COMMS 
Hyperparameter Value 

𝛾 0.9 
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Buffer size 500000 

Mini-batch size 128 

Learning rate 2.5e-4 

Learning starts 128 

Training frequency 10 

Total time steps 500000 

𝜀𝑠𝑡𝑎𝑟𝑡 1 

𝜀𝑒𝑛𝑑 0.01 

Exploration fraction 0.9 

Epoch length 36 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500 

Neural Network 
Design 

Shared network: 
Input->GGNN(3 layers)->MLP->ReLU->Concatenation of node 
vectors->ReLU->Graph embedding 
 
Compute value: 
Graph embedding->MLP->value 
 
Compute advantage: 
Graph embedding->MLP->advantage 

Network Initialization GGNN initialization is mentioned in section 4.2.4. Initial std of 
output layers is 0.01. Other networks are initialized in the same 

way as D3QN-Discrete-MLP 

 

 
Figure 7-6: Results of the D3QN-Discrete-GGNN in the Coverage Testing for COMMS (from Lab PC) 

 
It takes 26 hours and 1 minute to get the curves in Figure 7-6. Unfortunately, the branch coverage 
per episode does not increase even after we tried several sets of hyperparameters. It even drops 
during the training process. It may be caused by the configuration itself, unsuitable 
hyperparameters, or the short node feature vectors.  
 

7.7. Results of PPO-Discrete-MLP 
 
In this section, we use the PPO algorithm instead. Table 7-6 shows the hyperparameters of the 
PPO-Discrete-MLP configuration in this test. Figure 7-7 shows the performance of the configuration. 
 

Table 7-6: Hyperparameters of PPO-Discrete-MLP in the Coverage Testing for COMMS 
Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02 

Mini-batch size 32 
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Initial learning rate 1e-4 

𝛾 0.9 

𝑐𝑒𝑛𝑡 0.01 

𝑐𝑣𝑓 0.5 

Total time steps 200000 

Epoch length 128 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2 

Maximal norm of gradient 0.5 

Neural Network Design Critic network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠) 

 
Actor network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎) 

 
Every hidden layer has 2048 neurons. 

Network Initialization Orthogonal initialization of weights.  
Initial biases are set to 0. 

Initial std of hidden layers is √2 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

 

 

 
Figure 7-7: Results of the PPO-Discrete-MLP in the Coverage Testing for COMMS (from Lab PC) 
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It takes 6 hours and 12 minutes to get the curves in Figure 7-7. The branch coverage curve 
converges after roughly 100000 steps and 186 minutes. Like the D3QN-Discrete-MLP configuration, 
the branch coverage of this configuration also increases from 220/630 to around 260/630. The final 
code coverage is more stable than the curve of the D3QN algorithm. On the other hand, the KL 
divergence is under control, and the entropy drops from 3.75 to 2.9. These results show similar 
patterns to the results in the filling grid test. 
 

7.8. Results of PPO-MultiDiscrete-MLP 
 
Unlike previous configurations in this section, PPO-MultiDiscrete-MLP does not use the 58 
commands specified by the testers. It organizes the commands by itself (section 4.3.3). The length 
of a command vector is 4, in which the first element is the service number, and the following three 
elements are the command payload. Table 7-7 and Figure 7-8 show the hyperparameter and 
performance of the configuration, respectively. 
 

Table 7-7: Hyperparameters of PPO-MultiDiscrete-MLP in the Coverage Testing for COMMS 
Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02 

Mini-batch size 32 

Initial learning rate 5e-4 

𝛾 0.9 

𝑐𝑒𝑛𝑡 0.01 

𝑐𝑣𝑓 0.5 

Total time steps 200000 

Epoch length 36 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2 

Maximal norm of gradient 0.5 

Neural Network Design Critic network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠) 
 
Actor network: 

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎) 

 
Every hidden layer has 2048 neurons. 

Network Initialization Orthogonal initialization of weights.  
Initial biases are set to 0. 

Initial std of hidden layers is √2 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

Command Vector Length 4 
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Figure 7-8: Results of the PPO-MultiDiscrete-MLP in the Coverage Testing for COMMS (from Lab PC) 

 
It takes 7 hours and 12 minutes to get the results in Figure 7-8. Although the branch coverage does 
increase and the entropy does drop, its coverage is lower than the PPO-Discrete-MLP 
configuration.  
 
The performance here is very different from the performance of the same configuration in stress 
testing. As mentioned in section 6.7, the PPO algorithm in the MultiDiscrete action space is not 
good at looking for valid long command vectors. Therefore, we set the command vector length as 4. 
Short command vectors trigger high CPU load but do not trigger good code coverage in our 
experiments. 
 
Another problem is that the agent may try some “dangerous” commands to damage the board. 
Stress testing is acceptable because we want to “destroy” the system. However, it may not be 
suitable for other testing scenarios. 
 

7.9. Results of PPO-Discrete-GGNN 
 
We try both the feature compression and attentive pooling approach for this configuration. Table 7-8 
shows the hyperparameters. In the feature compression configuration, the length of node feature 
vectors is only seven because the experiment was performed earlier (just like in section 7.6). By 
contrast, in the attentive pooling configuration, the node feature vector length is 127.  
 

Table 7-8: Hyperparameters of PPO-Discrete-GGNN in the Coverage Testing for COMMS 
Hyperparameter Value 

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02 (feature compression) / 0.05 (attentive pooling) 
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Mini-batch size 32 

Initial learning rate 1e-4 

𝛾 0.9 

𝑐𝑒𝑛𝑡 0.01 (feature compression) / 0.001 (attentive pooling) 

𝑐𝑣𝑓 0.5 

Total time steps 500000 

Epoch length 36 

Environment steps 128 

Update steps 4 

𝜆 0.95 

𝜉 0.2 

Maximal norm of 
gradient 

0.5 

Neural Network 
Design 

Shared network: 
Input->GGNN(3 layers)->MLP->ReLU->Attentive 
pooling/concatenation of node vectors->ReLU->Graph 
embedding 
 
Critic: 

Graph embedding->MLP->�̂�𝜋(𝑠, 𝑎) 
 
Actor: 
Graph embedding->MLP->advantage 

Network Initialization GGNN initialization is mentioned in section 4.2.4. Other 
networks are initialized in the same way as PPO-Discrete-MLP 

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1 

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01 

 
Figure 7-9 shows results of the feature compression approach. It takes 21 hours and 7 minutes on 
the lab PC to get the results. The average branch coverage does converge around 255, but the 
curve fluctuates strongly.  
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Figure 7-9: Results of the PPO-Discrete-GGNN with Feature Compression (from Lab PC) 

 
Figure 7-10 shows results of the attentive pooling approach. It takes 18 hours and 21 minutes on 
the cloud server to get the results. Compared with the feature compression method, its average 
coverage is only 245/630. The curve also fluctuates strongly. 
 

 

  
Figure 7-10: Results of the PPO-Discrete-GGNN with Attentive Pooling (from Server) 
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7.10. Bugs Found in the Coverage Testing 
 
We found several bugs in the COMMS flight software during the coverage testing: 
 

- The microcontroller sometimes gets stuck in an indefinite loop in a low-level library 
provided by Texas Instruments. It is because we do not set the UART module correctly. 

- The “get metadata” command sometimes does not get a proper response because of a 
mistake in the software update service. 

- The “erase slot” command does not have the correct response because of another 
mistake in the software update service. 

 
The first bug was identified when no response was received. The following two bugs were identified 
because the parser could not parse the replies. 
 
Finding more bugs in this chapter does not mean that coverage testing is more powerful than stress 
testing. We started coverage testing earlier, so it was more likely to detect some anomalies.  
 

7.11. Discussions 
 
Table 7-9 summarizes the results in coverage testing. Note that the total number of probes is 630. 
 

Table 7-9: Brief Summary of Results in Coverage Testing 

Config. Running Time Average Branch 
Coverage at the 
End 

Range of Branch 
Coverage at the 
end 

Note 

Random 26 min per run 
(when episode 
length is 512) 

251 (10 runs) 267 (highest 
coverage in the 
10 runs) 

 

Genetic 
(Discrete) 

57 minutes to 
roughly 
converge, 73 
minutes in total 

260 The “best” 
solution reaches 
269. Average 
coverage ranges 
from 255 to 265. 

Repeating the “best” 
solution gets coverage 
from 256 to 266. 

Q-Learning - 170 145~198 Its average coverage does 
not increase, so we do not 
record the running time. 

D3QN-
Discrete-MLP 

384 minutes to 
roughly 
converge, 591 
minutes in total 

260 220~270 The coverage curve 
strongly oscillates. 

D3QN-
Discrete-
GGNN 

1561 minutes in 
total. Not 
converge. 

180 - The Q value curve first 
increases and then 
decreases. 

PPO-Discrete-
MLP 

186 minutes to 
roughly 
converge, 372 
minutes in total 

260 255~265  

PPO-
MultiDiscrete-
MLP 
(Cmd Vector 
Length = 4) 

206 minutes to 
roughly 
converge, 412 
minutes in total 

220 210~230  

PPO-Discrete-
GGNN 

633 minutes to 
roughly 

255 220~265 The coverage curve 
strongly oscillates. 
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(Feature 
Compression) 

converge, 1267 
minutes in total 

PPO-Discrete-
GGNN 
(Attentive 
Pooling) 

660 minutes to 
roughly 
converge, 1101 
minutes in total 

245 210~265 The coverage curve 
strongly oscillates. 

 
The coverage testing environment is also non-deterministic. If testers send the same command 
sequence several times, they will not always get the same coverage result. However, compared 
with the stress testing environment, it has less uncertainty because the coverage results have 
smaller variance than the average CPU load. 
 
Random testing seems to be the best option to maximize code coverage of the COMMS onboard 
software. It is straightforward. Given enough time (e.g., 26 minutes), random testing may reach a 
good branch coverage of 267/630. 
 
The genetic algorithm here performs much better than in the previous chapter. It finds a good 
solution that can reach branch coverage between 256/630 and 266/630 within 1 hour. There are two 
reasons. Firstly, as mentioned above, coverage testing has less uncertainty, making coverage of 
the best chromosome more repeatable. Secondly, we only collect code coverage after sending the 
command sequence, significantly reducing communication time26. 
 
The tabular Q-Learning algorithm still does not work. If the state identification rules are ineffective, 
the algorithm will not work well in coverage and stress testing. 
 
The D3QN-Discrete-MLP configuration converges in coverage testing. Its average branch coverage 
increases from 225/630 to 260/630. However, the coverage of the configuration is unstable. It 
usually drops under 220/630. On the other hand, the D3QN-Discrete-GGNN configuration does not 
converge in this chapter. Its Q value curve first increases and then crashes. 
 
The PPO-Discrete-MLP configuration converges in 186 minutes and achieves a stable coverage of 
around 260/630. Such performance is acceptable but takes more time than the genetic algorithm. At 
the same time, PPO-MultiDiscrete-MLP does not perform well in coverage testing. When the 
command vector length is 4, the configuration converges around 220/630. Short commands cannot 
trigger high code coverage in the COMMS onboard software. 
 
We try PPO-Discrete-GGNN with both feature compression and attentive pooling. However, the 
coverage curve of both methods strongly fluctuates.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
26 There are some considerations for collecting code coverage frequently in stress testing. See section 6.1. 
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8 Regression Testing 
 
This section introduces the regression testing and its results: 
 

⚫ Section 8.1 explains the design of the experiment. 
⚫ Section 8.2 shows the results of the genetic algorithm baseline. 
⚫ Section 8.3 shows the results of the PPO-MultiDiscrete-GGNN configuration. 
⚫ Section 8.4 compare the PPO-MultiDiscrete-GGNN configuration with the baseline. 

 

8.1. About the Experiment 

 
We perform regression testing in this section. That is to say, we train an RL agent with a version of 
onboard software and then use the agent to test another version of onboard software. More 
specifically, the PPO-MultiDiscrete-GGNN agent trained in section 6.9 performs stress testing on 
another version of COMMS software. As mentioned in section 3.4.2, the configuration can process 
graph input with different node numbers. Thus, it may work in regression testing when the number 
of probes (CodeCount) changes. 
 
Table 8-1 shows the two versions used in the experiment. Note that the SUT under test has 21.7% 
fewer probes in the source code.  
 

Table 8-1: 2 Versions of Onboard Software Used in Regression Testing 

SUT to Train the Agent SUT to be Tested by the Agent Differences 

Name/Hash Edit Time Name / Hash Edit Time 

COMMS/32f35c5 2020-5-11 COMMS/dc3a952 2020-1-30 1523 insertions, 2659 deletions 

DelfiPQcore/9e15f6c 2020-7-23 DelfiPQcore/7155318 2020-1-30 982 insertions, 2379 deletions 

DSPI/43d195c 2020-9-7 DSPI/8757a37 2019-12-20 12 insertions, 67 deletions 

DWire/8acd7b3 2020-7-7 DWire/bf514fb 2020-1-1 214 insertions, 10 deletions 

INA226/a6ce237 2020-9-11 INA226/e6ef01c 2019-11-29 54 insertions, 72 deletions 

MB85RS/2711fac 2020-9-8 MB85RS/1b6e934 2019-12-20 16 insertions, 73 deletions 

PQ9Bus/680f461 2020-8-15 PQ9Bus/53de707 2020-1-15 59 insertions, 122 deletions 

SX1276/6ea873e 2020-10-2 SX1276/36d9e38 2019-12-11 68 insertions, 98 deletions 

TMP100/cf62dae 2020-9-12 TMP100/0b47229 2019-11-24 61 insertions, 69 deletions 

Total Number of Probes: 630 Total Number of Probes: 493 21.7% 

 
Figure 8-1 is the graph representation extracted from the version under test. It has a different 
structure compared with Figure 3-19. 
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Figure 8-1: Graph Extracted from the COMMS Software under the Regression Test 

 
The genetic algorithm in the MultiDiscrete action space is the baseline of this chapter. We set the 
best chromosome in section 6.3 as one of the initial chromosomes of the algorithm, so the algorithm 
has “experience” from the previous test. 
 

8.2. Genetic Algorithm with Best Solution from Previous Test 

 
This section uses the same hyperparameters as section 6.3. Figure 8-2 shows the CPU load 
triggered by the genetic algorithm. 
 

 
Figure 8-2: Results of the Genetic Algorithm (MultiDiscrete, from Lab PC) 

 
We only run the algorithm for 5 iterations, which take 44 minutes on the lab PC. The average 𝑐𝑙𝑜𝑜𝑝 

at the 5th iteration is 10223, and the best solution reaches 10978. 
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8.3. Results of PPO-MultiDiscrete-GGNN 

 
This section uses the same hyperparameters as section 6.9. Attentive pooling is used in the GGNN 
network. We compare 2 cases here: 
 

- In the first case, we train a new agent from scratch. 
- In the second case, we use the agent trained in section 6.9. 

 
Figure 8-3 shows the results. For both cases, it takes about 45 minutes to get the results on the lab 
PC. The trained agent maintains a 𝑐𝑙𝑜𝑜𝑝 ≈ 15000 from the beginning, while 𝑐𝑙𝑜𝑜𝑝 of the new agent 

increases from 8000 and finally reaches 15000 after 2000 steps. 
 
The trained agent also keeps a low entropy around 2.5, which is close to the final entropy in section 
6.9. Although the new agent achieves similar 𝑐𝑙𝑜𝑜𝑝 after 5000 steps, it has a much higher entropy 

around 7. The reason of such phenomenon is not clear yet. 
 

 

 
Figure 8-3: Results of the PPO-MultiDiscrete-GGNN (attentive pooling, from Lab PC) 

 

8.4. Discussions 

 
The results of regression testing are promising. As shown in Figure 8-3, an RL agent can learn 
some common knowledge from a version of SUT and then perform well on another version of SUT. 
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Note that the two versions have many differences. As shown in section 8.1, the SUT under test has 
21.7% fewer probes.  
 
The agent also outperforms the genetic algorithm. Compared with reusing the best solution, reusing 
a trained policy has better effects on stress testing. 
 
Using RL in regression testing seems to be a promising direction for research. When two versions of 
the software under test become too different, the generalization of RL can be a problem. The 
trained agent may be overfitted to the previous version and cannot adapt to the next version of SUT. 
Some techniques to solve the generalization problem include multi-task learning, meta-learning, and 
causal reasoning. 
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9 Conclusions 
 
This work starts with the testing problem of the Delfi-PQ satellite. It first surveys software testing, 
onboard software design, and sequential decision-making algorithms (e.g., reinforcement learning). 
A testing environment, a code coverage collection tool, and a graph extraction tool are built. We 
also implement reinforcement learning algorithms with different neural network structures. We 
compare them with two baselines in 4 types of testing scenarios (filling grid, stress, coverage, and 
regression). 
 
This chapter summarizes the study. It includes four parts: 
 

- Answers to the research questions listed in section 2.4.2. 
- Threats to validity. Assumptions in section 2.4.1 will be considered. 
- Contributions to the academic field. 
- Recommendations for future research. 

9.1. Answers to the Research Questions 
 

9.1.1 Testing Goals 

 
This subsection gives answers to the following research question in section 2.4.2: 
 
RQ-1 What’s the goal of testing command generation? 
 
Chapter 2 lists several possible testing goals, including: 
 

⚫ State/action coverage27 
⚫ Code coverage 
⚫ CPU load 
⚫ Number of failures.  

 
Before maximising state coverage, testers must define what a state is. This step may be simple for 
the SUTs with graphic user interfaces. Nevertheless, for the Delfi-PQ onboard software, states are 
defined by some human-defined “state identification rules” (section 3.3.2). We use the rules to 
extract state information from commands and responses. Writing these rules needs prior knowledge 
and significant human labour. 
 
We try to apply these rules in the Q-Learning algorithm. Unfortunately, the Q-Learning algorithm 
fails to converge in stress testing (section 6.4) and coverage testing (section 7.4). One possible 
reason is that these rules are not effective enough. 
 
Maximising code coverage is an achievable goal. For some embedded systems, retrieving code 
coverage from target microcontrollers is challenging. Commercial tools exist, but they can be 
expensive and not work in some scenarios.  
 
To tackle the challenge, a branch coverage collection tool is implemented in this research (section 
3.4.1). The tool can instrument the source code automatically, collect branch coverage with a 
particular command, and generate easy-to-read coverage reports. It is simple (153 lines in Python) 

 
27 Our state identification rules include information like “whether a command has been sent”. Therefore, state coverage is a superset of 

action coverage in this work. 
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and easy to adapt to different programming languages/target microcontrollers. It also has a small 
memory footprint (1 bit per probe) & short collection time (~60ms). To some extent, the tool is the 
cornerstone of this study. 
 
The coverage testing environment is non-deterministic, but the uncertainty is smaller than the stress 
testing. That is to say, one will get different coverage results when sending the same command 
sequence several times, but the variance of the results is relatively low (sections 7.1 & 7.3). 
 
In chapter 7, the D3QN and the PPO algorithms can learn to trigger higher code coverage. 
However, this does not pay off because the two baselines perform better. The random baseline, i.e., 
randomly selecting a command to send, can reach a good code coverage on the COMMS onboard 
software if enough time (e.g., 26 minutes) is given. On the other hand, the genetic algorithm 
baseline can also find a good command sequence in less than 1 hour. The output command 
sequence can usually achieve good coverage. 
 
We also try to maximise CPU load in this study. The CPU load metric 𝑐𝑙𝑜𝑜𝑝 means the “average 

number of clock cycles required by each loop in the scheduler”. To estimate 𝑐𝑙𝑜𝑜𝑝, we record the 

loop count on the microcontroller and time it on the computer. A drawback of this approach is that 
𝑐𝑙𝑜𝑜𝑝 will be different when the communication time between the computer and the microcontroller 

changes (section 6.1). 
 
The stress testing environment is non-deterministic because of unpredictable load peaks (section 
6.1). For example, when we repeat the best command sequence from the genetic algorithm, the 
average 𝑐𝑙𝑜𝑜𝑝 ranges from 2000 to 4000 in the discrete action space and 13000 to 17000 in the 

multi-discrete action space (section 6.3). Such uncertainty makes the genetic algorithm less useful 
in stress testing. On the other hand, random testing cannot improve CPU load. 
 
The deep reinforcement learning configurations based on the PPO algorithm have the best 
performance in stress testing. For example, the PPO-MultiDiscrete-GGNN configuration reaches  
𝑐𝑙𝑜𝑜𝑝 ≈ 20000 in 123 minutes (section 6.9), while the genetic algorithm reaches 𝑐𝑙𝑜𝑜𝑝 ≈ 15000 9 

hours (section 6.3). On the other hand, the D3QN algorithm does not work well in stress testing. 
 
We do not directly maximise the number of failures/anomalies. We only find three bugs and one 
anomaly of the COMMS software during the experiments (sections 6.10 & 7.10). They cannot 
provide too much information to guide the algorithms. 
 

9.1.2 Prior Knowledge 

 
This subsection gives answers to the following research question in section 2.4.2: 
 
RQ-2     What type of prior knowledge needs to be encoded? 
 
Chapter 2 lists several types of prior knowledge, including: 
 

1. How to encode/decode commands and telemetry 
2. Rules to identify the current state from the telemetry or the interaction history. 
3. What action should be taken in the current state. 
4. Whether the current state contains an anomaly. 
5. A model used to predict the future state of the system under test. 
6. Design of the objective function or the reward function.  

 
Table 9-1 summarizes the usage of prior knowledge in this study. 
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Table 9-1: Usage of Prior Knowledge in Baselines and RL Algorithms 

Algorithm Action 
Space 

Prior 
Knowl. 1  

Prior 
Knowl. 2 

Prior 
Knowl. 3 

Prior Knowl. 4 Prior 
Knowl. 5 

Prior 
Knowl. 6 

Random28 Discrete Only need 
to encode 
commands 

No No No No No 

Genetic Discrete Only need 
to encode 
commands 

No No No No Yes 

Genetic MultiDiscrete No No No No No Yes 

Q-
Learning 

Discrete Yes Yes No Partly. 
Sometimes the 
parser cannot 
parse the reply 
if an anomaly 
exists. 

No Yes 

D3QN Discrete Only need 
to encode 
commands 

No No No No Yes 

PPO Discrete Only need 
to encode 
commands 

No No No No Yes 

PPO MultiDiscrete No No No No No Yes 

 
The PPO algorithms in multi-discrete action space use the fewest types of prior knowledge but have 
the best performance. Compared with sending human-defined commands (discrete action space), it 
is more desirable to let the algorithms select the parameters in command vectors. Nevertheless, this 
approach also has a drawback. If the command vectors are too long, the search space will become 
too large for the PPO algorithm (section 6.7). 
 
On the other hand, although the PPO algorithm is good at triggering high CPU load, it is still weak in 
detecting an anomaly. Only when the target board crashes, reboots or does not reply for a while 
testers will notice that there is an anomaly. To detect anomalies effectively, we may need to learn a 
model of the SUT or add related prior knowledge. 
 
Table 4-3 in section 4.5 gives an overview of the source code files of these algorithms, which also 
shows prior knowledge usage. 
 

9.1.3 Algorithm Designs 

 
This subsection gives answers to the following research question in section 2.4.2: 
 
RQ-3    Which RL algorithm is suitable for testing command generation? 
 
We answer the complex question from several aspects, including state representation, action 
space, reinforcement learning algorithms, neural network design, implementation, and debugging. 
 

State Representation 
 
Four types of state representations are available in onboard software testing. 
 
The first representation is a discrete scalar, i.e., we use state identification rules to summarise the 
current command, response, and the previous interaction as a discrete scalar. The Q-Learning 

 
28 Random testing can run in the MultiDiscrete action space, but we have not tested this scenario. 
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algorithm needs such representation. Sections 3.1.2 and 4.1.2 discuss the details. However, as one 
can imagine, much information is lost with this type of extraction. As a result, the tabular Q-Learning 
algorithm does not work in the study. 
 
The second state representation is a plain vector, a concatenation of 2 vectors (section 4.2.2): a 
branch coverage vector and an interaction history vector29. This representation is simple, but 
regression testing is a fundamental challenge. The length of the coverage vector and the 
corresponding branch of every element in the vector will change after the SUT's source code 
modification. As a result, the trained neural network becomes useless in regression testing (section 
3.4.2). 
 
We also try to represent the coverage information in a graph to solve this problem. We first build a 
directed graph representation of the tested software. Each node of the graph represents a start of a 
branch or the start/end of a method. It has a feature vector generated by a Word2Vec model from 
the file name, the method name, and the node type. Moreover, each edge of the graph indicates a 
possible transition between nodes during the execution of the tested program. To some extent, the 
graph looks like a control flow graph. 
 
We compare two methods to generate the graph: analyzing the execution trace of SUT (section 
3.4.3) or performing static analysis on the source code (section 3.4.4). The second method is more 
suitable than the first because it generates a complete graph and node feature vectors. The static 
analysis is performed with the help of an open-source tool Joern. Joern only produces control flow 
graphs of every method in the source code. We need to build a graph of the whole program based 
on Joern's output. 
 
When running RL algorithms with graph input, we concatenate node feature vectors with coverage 
masks 𝑐𝑖 ∈ {0,1} (section 3.4.4). After that, a graph neural network will generate a graph embedding 
vector, which will be concatenated with an interaction history vector. In the end, the vector is fed into 
the following layers (section 4.2.3). 
 
The fourth type of state representation is source code files with coverage results (section 3.4.2). 
Nevertheless, such input can be very long and challenging to process. Thus, we do not try it in the 
study. 
 

Action Space 
 
We consider two types of action space: Discrete and MultiDiscrete (sections 4.2.2 & 4.3.3). In the 
Discrete action space, each action is a scalar index of a pre-defined command in a list. On the other 
hand, a MultiDiscrete action is a command vector. Each vector element is an index of a pre-defined 
parameter in a list.  
 
There is more flexibility in the MultiDiscrete action space. For example, the genetic and PPO 
algorithms trigger higher CPU load in the MultiDiscrete action space. They probably organize better 
commands than the human-defined ones. 
 
MultiDiscrete action space also has an unexpected benefit. The PPO algorithm has a more stable 
performance in such action space. In stress testing, the variance of 𝑐𝑙𝑜𝑜𝑝 the PPO-MultiDiscrete-

MLP configuration is much smaller than the PPO-Discrete-MLP (sections 6.6 & 6.7). 
 
However, MultiDiscrete action space is only helpful when the length of command vectors is limited. 
If a valid command contains too many parameters, the probability of this command being attempted 

 
29 We do not include interaction history information when testing PPO algorithms in the MultiDiscrete action space. Theoretically it is 

possible, but we just do not have enough time to do that. 
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becomes very small (section 6.7). In other words, the MultiDiscrete action space becomes too large 
for the algorithm to search. 
 
At the same time, if short commands cannot achieve the testing goal, MultiDiscrete action space 
becomes a lousy option. For example, the PPO-MultiDiscrete-MLP configuration does not trigger 
good branch coverage in coverage testing (section 7.8).  
 
Testers may have concerns about the safety of the MultiDiscrete action space. In other words, the 
RL agent may generate a dangerous command to damage the satellite hardware. We do not worry 
too much about safety in our experiments. It is because the commands sent to the COMMS board 
will not be damaged. Other developers can only use MultiDiscrete action space in stress testing, 
where testers try to "destroy" the system. 
 
Note that value-based RL algorithms like D3QN do not directly support MultiDiscrete action space. 
They must estimate the action-value function 𝑄(𝑠, 𝑎) for every combination of the command vector 
(section 5.9). This process is costly. 
 

Reinforcement Learning Algorithms 
 
We try three reinforcement learning algorithms in the research: tabular Q-Learning, Double Duelling 
Deep Q Network (D3QN), and the Proximal Policy Optimization (PPO) algorithm. 
 
As mentioned above, the tabular Q-Learning algorithm does not work well in stress and coverage 
testing (sections 6.4 & 7.4). A reason may be that there are no effective state identification rules. 
 
The D3QN algorithm converges faster than the PPO algorithm in the "filling grid" toy problem 
(chapter 5). However, converging and maintaining stable performance is difficult when testing the 
existing onboard software. For example, the D3QN algorithm does not converge in the stress 
testing (section 6.6). The D3QN-Discrete-MLP configuration converges in the coverage testing, but 
the variance of branch coverage is significant (section 7.5). The D3QN-Discrete-GGNN 
configuration fails to converge in coverage testing (section 7.6). 
 
Some reasons may explain this phenomenon. Firstly, value-based algorithms have inherent 

instability. Minor updates to �̂�𝜋(𝑠, 𝑎) may significantly change the policy and therefore change the 
data distribution. Secondly, there is not enough time to tune the hyperparameters of the D3QN 
algorithm because we implemented the algorithm in the last few months of the research. 
 
The PPO algorithm works well in the filling grid environment, stress testing, and coverage testing. 
The PPO configurations with 2~3 layers of MLP are very robust. On the other hand, the PPO-
MultiDiscrete-GGNN configuration has the best performance in stress testing (section 6.9). 
 
Note that our PPO implementation is different from the standard one. To make the training process 
more stable, we add a learning rate annealing mechanism to control the magnitude of policy 
updates (section 4.3.1). Section 5.5 compares the performance of PPO with and without the 
annealing mechanism. It shows that the mechanism can control the Kullback-Leibler divergence (a 
metric of policy update) under a threshold. It also prevents the cumulative reward curve from 
crashing. 
 
Sometimes the annealing mechanism raises the entropy of a trained policy, but the policy still 
performs well (section 5.5). The exact reason for this phenomenon is not apparent yet. 
 

Neural Network Design 
 
We try three types of neural networks in the study: the Multi-Layer Perceptron network (MLP, i.e., 
the most straightforward fully-connected layers), the Gated Graph Neural Network (GGNN), and the 
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Graph Attention Network (GAT). For the graph neural networks, we also try different methods to 
aggregate node feature vectors into a graph embedding vector. 
 
The RL configurations with only 2~3 MLP layers are usually robust and quick to converge. For 
example, in the filling grid problem, the D3QN-Discrete-MLP configuration can converge in 10k 
steps, while D3QN configurations using other neural networks need at least 150k steps (sections 
5.2, 5.3, & 5.4). 
 
MLP can only use plain vectors as input. However, to reuse the trained neural network in regression 
testing, we hope that it can process graph inputs. Ultimately, we try graph neural networks, 
including GGNN and GAT. GGNN has better performance than GAT in the filling grid problem. 
PPO-Discrete-GGNN can fill all grids after 700k steps, while PPO-Discrete-GAT can still not fill all 
grids after 1M steps (sections 5.7 & 5.8). One possible reason is that GGNN can have up to 20 
layers, while GAT usually has fewer.  
 
Compared with the configurations with MLP, the configurations with GGNN trigger higher CPU load 
in stress testing (section 6.11). However, they also cover fewer branches in coverage testing 
(section 7.11). There is still no clue about this phenomenon. 
 
However, one thing is sure. In stress and coverage testing, GGNN will give a more considerable 
variance in the results. The CPU load or coverage curves with GGNN usually oscillate. The PPO-
MultiDiscrete-GGNN configuration is a lucky exception: the PPO algorithms in the MultiDiscrete 
action space have relatively stable performance.  
 
The graph neural network updates the node feature vectors. After that, we must aggregate the 
feature vectors into a graph embedding. We try different aggregation methods in a supervised 
learning task (not shown in the document), including: 
 

⚫ 𝑠𝑢𝑚, 𝑚𝑒𝑎𝑛, and 𝑚𝑎𝑥 of all node features. 
⚫ A node selection pooling method in (Dai et al., 2019). 
⚫ Using a 1D convolution layer to aggregate node features (Zhou et al., 2019). 
⚫ Several graph pooling layers provided by the Pytorch Geometric library (Fey & Lenssen, 

2019). 
⚫ Attentive pooling layer in (Li et al., 2015). 
⚫ Feature compression, i.e., using an MLP to reduce node embeddings to scalars and 

then concatenate these scalars into a graph feature vector 
 
In the supervised learning task, attentive pooling and feature compression perform best. Therefore, 
we try both approaches in Chapters 5, 6, and 7. According to our experience, they each perform 
better in specific scenarios. However, attentive pooling usually takes more steps to train. In the 
filling grid problem, PPO-Discrete-GGNN with feature compression only needs 60k steps to 
converge, while the attentive pooling approach needs 700k (section 5.7). 
 

Implementation and Debugging 
 
The RL implementations in this study are lightweight. For example, the most complex PPO- 
MultiDiscrete-GGNN configuration only needs 290 lines of code. For more details, Table 4-3 gives 
an overview of the source code files of our algorithms. 
 
We only use Pytorch and Pytorch Geometric to build the model without the help of reinforcement 
learning libraries like RLlib. Our implementation takes reference from CleanRL, a repository 
including many single-file implementations of reinforcement learning algorithms. 
 
A trick to debug the RL algorithm starts with simple scenarios and the most straightforward 
configurations. We started with the filling grid toy problem (section 5.1) in the study and simple 
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configurations like PPO-Discrete-MLP and D3QN-Discrete-MLP. Initially, both configurations could 
not fill the 36 grids, so we had to reduce the grid number to 4 and debug them.  
 

9.1.4 Testing Environment 

 
This subsection gives answers to the following research question in section 2.4.2: 
 
RQ-4     What kind of testing environment should be used? 
 
Section 3.3 describes the hardware and software setup in this study. The setup has the following 
features: 
 

- The test command generation tool can run on the lab PC or a remote server. 
- Both the EGSE and the OBC can be the master of the bus. 
- The radio on the COMMS board can send commands to itself to simulate the wireless 

channels. 
 
Testers need to make a trade-off between communication delay and computing power. The lab PC 
has a short communication delay with the SUT and less computing power. By contrast, the remote 
server has a longer communication delay and more computing power. Figure 3-13 shows the time 
delays of the remote server and the lab PC. 
 
Several challenges still exist:  
 

- The training process spends most of the time on communication rather than updating the 
neural networks.  

- It cannot simulate the interaction between the satellite and the space environment.  
- The RL agent may generate unsafe commands. 

 
We will discuss these challenges later. 

9.1.5 Reuse a Trained Agent 

 

This subsection gives answers to the following research question in section 2.4.2: 
 
RQ-5 Can we use a trained RL agent to test other software versions? 
 
Yes. In section 8.3, an agent trained in section 6.9 tests another version of COMMS software. The 
agent maintains a high CPU load from the beginning. Another agent, trained from scratch, only 
achieves a similar performance after 2000 steps (~18 minutes). 
 
Chapter 8 also shows that reusing a trained agent is better than using the genetic algorithm's best 
solution. 
 
There are some conditions for regression testing: 
 

- As mentioned in section 3.4.4, the neural network architecture should be independent of 
the source code's number of probes. The Gated Graph Neural Network (GGNN) with 
attentive pooling is used in section 8.3. 

- When the two versions of the software under test are too different, generalization of RL 
can be a problem. Some techniques to solve the generalization problem include multi-
task learning, meta-learning, and causal reasoning. 

 



       

130 

 

9.1.6 A Brief Answer to Main Research Question 

 
Now we can answer the main research question: 
 
Can a reinforcement learning-based testing tool generate testing commands for small 
satellites with limited prior knowledge? 
 
Yes. The PPO-MultiDiscrete-GGNN configuration in stress testing is an example. It is beneficial to 
do so under some conditions: 
 

- Testers are performing stress testing, which is a non-deterministic environment. 
Compared with other options, RL is better in such an environment. Unsafe or invalid 
commands may also not be a problem in stress testing. 

- They use the PPO algorithm. Other policy-based algorithms may perform similarly, but 
we did not try them. The D3QN algorithm, as a representative of value-based RL, does 
not perform well on Delfi-PQ software. 

- If they use the MultiDiscrete action space, a command vector should not be too long. 
PPO also has some benefits in the Discrete action space. 

- If they do not want regression testing, the PPO algorithm with 2~3 layers of MLP is a 
simple and robust option. It can converge quickly without too much computing power. 

- If they want to use the RL agent in regression testing, GGNN with attentive pooling is a 
good neural network architecture. However, it usually takes a longer time to train. 

 
There may be more scenarios and RL testing agent designs waiting to be discovered! 

9.2. Threats to Validity 
There are some threats to the validity of the conclusions. They are listed here: 
 
Threat-1 In this study, there is insufficient time to tune the hyperparameters or find the optimal 

neural network architecture. 
 
Explanation This threat cannot change the study's main conclusion, i.e., RL is more suitable for 

stress testing. 
 

Indeed, the lack of tuning may make us underestimate the performance of some RL 
configurations. For example, the D3QN algorithm may be able to perform better than 
we think. However, the performance of random testing cannot grow further. A fixed 
command sequence from the genetic algorithm still has uncertain performance in a 
non-deterministic environment like stress testing. As a result, RL-based testing is still 
a better option for stress testing. 

 
Threat-2 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 does not include the lab PC or server decision-making time. When testing 

the software, random and genetic testing spend less time on decision-making. Given 
the same period, they may be able to send more commands than RL-based 
algorithms and trigger a higher average CPU load. 

 
Explanation The computing power of the CPU strongly affects the decision-making time. To 

exclude the effect of CPU power in the comparison, we excluded the decision-
making time 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙.  

 
Although different algorithms have various decision-making times, communication is 
usually shorter. In Figure 6-1, decision-making time only takes 42ms in a time step. 
By contrast, 148ms is spent on communication. Thus, even if random testing takes a 
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short time to select a command, it still cannot send too many commands in a given 
period because of the long communication time. 

 
                       A more powerful PC will further reduce the effect of decision-making time. 
 
Threat-3 For random and genetic testing, it is unnecessary to collect code coverage after 

sending a testing command. 
 
Explanation  Section 6.1 mentions the reason. Measuring instantaneous CPU load with very high 

variance is not helpful. 
 
Threat-4  Instrumentation of the source code and code coverage collection may change the 

behaviors of the SUT. It is also difficult to predict the consequences of such 
influence. 

 
Explanation It is true. We have observed such influence in section 3.4.1. The instrumented 

program needs to call CodeCount() at the start of every branch, which makes the 
program run slower.  

 
However, the MSP432P series microcontrollers do not support non-intrusive 
coverage collection. For some other controllers, like the MSP432E series, which 
supports tracing, we can use a Segger J-Trace Pro to collect coverage without 
instrumentation. 

 
Threat-5 Assumption-2 in section 2.4.1 assumes that the performance of software testing 

algorithms can be measured by metrics like code coverage and CPU load. However, 
these metrics do not directly relate to the number of anomalies found.  

 
If RL-based testing can reach high coverage/CPU load but still needs human-defined 
rules to detect anomalies, then this approach does not reduce the usage of prior 
knowledge. 

 
Explanation At this stage, the RL-based testing detects anomalies from some phenomena like 

crashes, reboots, no response, and late responses. In practice, it may still need 
human-defined rules in fault detection. 

 
However, fault detection rules are only one type of prior knowledge. As shown by 
Figure 9-1, RL still does not need some types of prior knowledge in manual testing, 
e.g., what action should be taken under the current state. 

 
Threat-6 As mentioned by assumption-4 in section 2.4.1, we cannot directly measure the 

amount of prior knowledge. RL uses fewer types of prior knowledge, but testers may 
still spend significant time on the prior knowledge. 

 
Explanation  In this study, RL-based testing only uses one type of prior knowledge, i.e., the design 

of the reward function. However, as shown in sections 6.1 and 7.1, our reward design 
is effortless and straightforward. Designing these rewards does not take too much 
time. 

 
Other types of prior knowledge are shared by RL-based testing and traditional 
methods. The time to define this knowledge should be the same. 

 
Threat-7  The assumption-5 may not be valid. In other words, the conclusions from the 

COMMS onboard software cannot be generalized to other onboard software. 
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Explanation  Limited by time and resource, only the COMMS onboard software of the Delfi-PQ 
satellite is tested in the study. However, as mentioned in section 3.2.5, the software 
has a similar complexity to other educational CubeSat/PocketQube software. The 
conclusions here should be able to apply to these systems. 

 
The onboard software of larger satellites usually has more complex applications. The 
use of RL for testing such software is still a gap. 

 

9.3. Contributions to the Academic Field 
 
This study has the following contributions: 
 

- As far as we know, it is the first research that applies RL-based testing on onboard 
software and one of few studies that use RL to test embedded software without GUI. 

- Unlike most RL-based testing research that relies on GUI information, it utilizes near real-
time code coverage information from the software under test to compute states and 
rewards. The idea is developed by (Dai et al., 2019). 

- To the end, an open-source tool is written to retrieve the code coverage data and can be 
easily modified to adapt other embedded software. Another tool to generate a complete 
graph from the source code is also implemented. 

- It is large-scale research that covers many aspects: 
⚫ 2 types of testing goals: maximizing code coverage and maximizing the CPU 

load. 
⚫ 2 environments: a toy problem and the COMMS onboard software. 
⚫ 3 reinforcement learning algorithms, including the Q-Learning, the Double 

Duelling Q Network (D3QN), and the Proximal Policy Optimization (PPO) 
algorithm to learn. Each algorithm has several configurations. 

⚫ 2 state representations: direct vector input or graph input. 
⚫ 2 action space: Discrete and MultiDiscrete. 
⚫ Run the RL testing agent on a local PC or a remote server. 
⚫ Different neural network architectures, including multi-Layer Perceptron MLP, 

Gated Graph Neural Network GGNN, and Graph Attention Network GAT. 
⚫ Different graph aggregation methods, such as feature compression and 

attentive pooling. 
⚫ Perform both regular testing and regression testing. 
⚫ The performance of RL-based testing is compared with two baselines: random 

command generation and the genetic algorithm. 

- It reveals that RL-based testing has advantages in highly non-deterministic environments 
like stress testing under some conditions.  

- It reveals that RL-based testing with a graph neural network has advantages in regression 
testing under some conditions. 

 

9.4. Recommendations for Future Research 
 
Based on experience of this study, this section gives the following recommendations for future 
research. 
 

⚫ Improve sampling efficiency. Figure 6-1 shows that most training time is spent 
communicating with the target board. To make matters worse, there is only one target 
board, so parallel testing is not feasible. Training a more complex and powerful agent in 
this situation may take much longer. 
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It is also difficult to train the model in a simulated environment. Building a simulator for 
the microcontroller and the peripherals is more time-consuming than writing test cases if 
the manufacturer does not provide such a simulator. 
 
A possible option is to use model-based reinforcement learning, which learns a model to 
predict rewards and future states. It may need much fewer samples to train. For 
example, EfficientZero (Ye, Liu, Kurutach, Abbeel, & Gao, 2021) mastered the Atari 
game in a shorter time than humans. 
 

⚫ Apply the learned model in other fields. If a model is learned during the software test, 
engineers may apply it in other fields, e.g., fault detection in the daily operation of the 
satellite. For example, if the real telemetry from the satellite is different from the model's 
prediction, there may be an anomaly. 
 
Traditionally, the prediction model is built by engineers, which can be time-consuming. A 
large amount of telemetry data can also train the model. However, there is not much 
telemetry when the satellite is just launched. Therefore, training a model during software 
testing may be a novel and helpful approach. 
 

⚫ Simulate sensors and actuators in the test. This study does not simulate sensors and 
actuators, but such simulation is necessary in many cases, e.g., testing the ADCS 
onboard software. Note that such environment simulators can be shared by different 
satellite programs, even if these programs use different hardware. Some environment 
simulators, like 42 (Geletko et al., 2019), have been used in onboard software testing. 
 

⚫ Use reinforcement learning in regression testing. Section 8.3 shows promising 
results in regression testing. However, as far as we know, few studies use RL in 
regression testing yet, and it may be an interesting gap. 

 
One problem can be generalization capability, from which many RL algorithms suffer. It 
means the trained agent is overfitted to a specific environment and cannot adapt to 
another one. Luckily, we do not meet this challenge in chapter 8. 
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