

Use Reinforcement Learning to
Generate Testing Commands for

Onboard Software of Small Satellites
Zhuoheng Li

2

Use Reinforcement Learning to Generate Testing
Commands for Onboard Software of Small

Satellites
By

Zhuoheng Li

to obtain the degree of Master of Science
at the Delft University of Technology.

to be defended publicly on Wednesday November 30, 2022 at 14:00.

Student Number:
5003636

Supervisor:
Dr. Alessandra Menicucci

Thesis committee:
Dr. Jian Guo, Space System Engineering (SSE)
Dr. Alessandra Menicucci, Space System Engineering (SSE)
Dr. Annibale Panichella, Software Engineering Research Group (SERG)

The frontpage figure “testing a spacecraft” is generated by DALL-E, an AI artist of OpenAI.

3

Acknowledgement

I would like to thank the development team of the Delfi-PQ satellite. My
supervisor Alessandra Menicucci gave me a great flexibility to explore. She also
advised me to try stress testing with RL, which turned out to be a wonderful idea.
Stefano Speretta is a great teacher and developer who wants to do something
cool. We usually discussed interesting ideas until midnights. At first, I thought
collecting near real-time code coverage from MSP432 controllers was difficult
because COTS tools could not do that. Stefano disagreed, and now he is correct:
we can write our own tool to achieve that. Mehmet Şevket Uludag, Casper
Broekhuizen, and previous developers also provided good software and
hardware platforms for this research. Besides, I thank my friends Johan Monster
and Tom Hendrix, who developed the onboard computer code with me.

Many other people provided help to this research. I sought many useful
suggestions from Jian Guo and his PhD student Ruipeng Liu. Annibale
Panichella from the EEMCS faculty evaluated the basic research idea at the
beginning. Chengyu Jiang from Exponential Deep Space and the Tsinghua
university helped me to contact other researchers in this field for advice. I also
learnt a lot from the experience in the National Space Science Centre of Chinese
Academy of Sciences, where I developed scheduling algorithms for a CNSA-ESA
space telescope, the Einstein Probe.

I thank my parents, Jian Wang and Daoqing Li, and other family members for
supporting me in this long journey. Particularly, thank my girlfriend Xiaodan Yin
for maintaining a long-distance relationship for such a long time.

I truly appreciate all my long-term friends for maintaining connections with me. I
am very sorry that this page is too short to list all your names. However, without
your encouragement, I can hardly move forward. It is my honour to have you as
my friends. There are also many nice people in Delft, like my roommates and the
shopkeepers at Eastern Snack house.

At the end, I want to thank you, the readers, for spending time to read this
document. I hope this work is a little bit useful for you and promise that the results
are real. The code is open source123. If you have any question, please drop me a
message

1 https://github.com/StarCycle/TestCommandGeneration
2 https://github.com/StarCycle/CodeCoverage
3 https://github.com/StarCycle/GraphExtract

Note: the emoji “Thanks!” by Teang, 2021 (http://m.weibo.cn/u/5564930684). In the public domain.

https://github.com/StarCycle/GraphExtract
http://m.weibo.cn/u/5564930684

4

Abstract

Programmers usually write test cases to test onboard software. However, this
procedure is time-consuming and needs sufficient prior knowledge. As a result,
small satellite developers may not be able to test the software thoroughly.

A promising direction to solve this problem is reinforcement learning (RL) based
testing. It searches testing commands to maximise the return, which represents
the testing goal. Testers need not specify prior knowledge besides the reward
function and hyperparameters. Reinforcement learning has matured in software
testing scenarios, such as GUI testing. However, migration from such scenarios
to onboard software testing is still challenging because of different environments.

This work is the first research to apply reinforcement learning in real onboard
software testing and one of few studies that perform RL-based testing on
embedded software without a GUI. In this work, the RL agent observes current
code coverage and the interaction history, selects a pre-defined command, or
organises a command from pre-defined parameters to maximise cumulative
reward. The reward function can be code coverage (coverage testing) or
estimated CPU load (stress testing). Three RL algorithms, including the tabular
Q-Learning, Double Duelling Deep Q Network (D3QN), and Proximal Policy
Optimization (PPO), are compared with a random testing baseline and a genetic
algorithm baseline in the experiments.

This study also performs regression testing with a trained RL agent, i.e., to test a
version of onboard software that it has never seen before. To do that, the agent
processes graph input with code coverage information. The graph is extracted
from the onboard software source code via static code analysis. The work tries
two graph neural network architectures (GGNN and GAT) with several graph
pooling mechanisms to process the graph input.

Apart from the test command generation algorithms, some middleware is also
implemented, including a command/response parser, a state identification
module, a branch coverage collection tool, and a tool to extract the graph
representation and node features. During onboard software testing, the onboard
computer (OBC) or the electrical group support equipment (EGSE) can be the
master of the bus. The command generation algorithms can run on a lab PC or a
cloud server.

The research reveals the advantages and drawbacks of using reinforcement
learning to test onboard software. On the one hand, RL-based testing performs
well in non-deterministic environments (e.g., stress testing) and regression
testing. On the other hand, more straightforward methods like random testing and
the genetic algorithm are more useful in deterministic environments.

This document also introduces relative background knowledge. It leaves many
recommendations for future work, such as improving sampling efficiency,
generalization, and learning a model for fault detection in satellite operation.

5

Acronyms

A2C Asynchronous Advantage Actor-Critic, an RL algorithm
A3C Synchronous Advantage Actor-Critic, an RL algorithm
ACER Actor Critic with Experience Replay, an RL algorithm
ACKTR Actor Critic using Kronecker-Factored Trust Region
ADCS The Attitude Determination and Control Subsystem
ADB Antenna Deployment Board
AI Artificial Intelligence
API Application Programming Interface
APP Application program
CFG Control Flow Graph
COMMS Communication System
COTS Commercial Off the Shelf
CPU Processor
CRC Cyclic Redundancy Check
CSV Comma-separated values, a file format
CubeSat A form factor of small satellites. The size of 1U is 10*10*10cm
COVID Coronavirus. I hope young readers to be unfamiliar with it.
DDPG Deep Deterministic Policy Gradient, an RL algorithm
Delfi-PQ The first PocketQube Satellite of Delft University of Technology
DQN Deep Q Network, an RL algorithm
D3QN Double Dueling DQN, a variant of the DQN algorithm
EGSE Electrical Ground Support Equipment
EPS Electrical Power System
ESA European space agency
FDIR Fault Detection, Isolation, and Recovery
FLASH A type of non-volatile computer memory
FRAM Ferroelectric Random Access Memory
GAT Graph Attention Network, a type of GNN
GGNN Gated Graph Neural Network, a kind of GNN
GNN Graph Neural Network
GPS Global Positioning System
GUI Graphic User Interface
I2C Inter-IC-bus
IDE Integrated Development Environment
IMU Inertial Measurement Unit
JSON JavaScript Object Notation
LOBE-P Low frequency radio payload
MBSE Model-based system engineering
MC/DC Modified condition/decision coverage
MD5 Message-digest algorithm, a cryptographic protocol
MDP Markov Decision Process
ML Machine Learning
MLP Multi-Layer Perceptron
MPPT Max Power Point Tracker

6

NASA US space agency
NOS3 NASA Operational Simulation for Small Satellites
OBC On Board Computer
PC Personal Computer
PocketQube A form factor of small satellites. The size of 1P is 5*5*5cm
PPO Proximal Policy Optimization, an RL algorithm
PQ Shorter abbreviation of Delfi-PQ
RAM Random-Access Memory
RL Reinforcement Learning
RX Receiver
SAC Soft Actor-Critic, an RL algorithm
SatNOGS An open-source global network of satellite ground stations
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
SUT System Under Test
SWD Serial Wire Debug interface
TD3 Twin Delayed DDPG, a variant of the DDPG algorithm
TRPO Trust Region Policy Optimization
TX Transceiver
UCB The Upper Confidence Bound algorithm
XML Extensible Markup Language

7

Nomenclature

𝐴 A set of actions

𝐴𝜋 Advantage function under the policy 𝜋

𝑎 An action

𝑐 A constant

𝑐𝑙𝑜𝑜𝑝 Number of clock cycles per loop in the scheduler

𝑐𝑖 Coverage status of node 𝑖
𝑓 Frequency of the CPU

𝐺 Return (discounted cumulative reward) of an episode

𝑔 Environmental Model

ℎ(𝑙) Output from layer 𝑙 of a neural network

𝐿 Total number of hidden layers in a neural network

𝑚(𝑙) Node embedding after 𝑙 message passes in a GNN

𝑛𝑙𝑜𝑜𝑝 Number of loops recorded during the sampled time inteval

𝑁𝑠 The number of times that state 𝑠 has been visited

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 Frequency to update the target network (D3QN algorithm)

𝑁𝜏 Number of transitions in the replay buffer (D3QN algorithm)

𝑜 A vector extracted from node embeddings of a graph

𝑃 State transition probability function

𝑄 Action-Value function

𝑅 Reward function

𝑟 A reward

𝑆 A set of states

𝑠 A state

𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 Length of the sampled interval in the stress testing

𝑇 Length of an episode

𝑉 State-Value function

𝑉𝑖 Feature vector of node 𝑖, 𝑉𝑖 = [𝜇𝑖 , 𝑐𝑖]
𝑤 Weights of a function approximator, e.g., neural network

𝑦 A vector that contains previous actions

𝛼 Learning rate in Q-Learning and its variants

𝛼𝑣,𝑢 Self-attention factor of GAT, where 𝑣 is the query node and 𝑢 is

the key node
𝜀 The probability to select a random action in Q-Learning

𝛿 TD residual

𝛾 Discount factor in the return

𝜆 A hyperparameter in the GAE method to estimate advantage
function

𝜏 A transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1)

𝒩 Neighbors of a node in a graph

𝜉 A hyperparameter to control policy update magnitude in PPO

𝜇𝑖 Feature vector of node 𝑖 generated by Word2Vec

𝜋 A policy

8

General Superscripts

∎′ A variable that has been updated

∎− A variable that has a lag in update

∎̂ Estimation of a variable

∎𝜋 A function conditional on the policy 𝜋

General Subscripts

∎𝑡 The t-th time step

∎𝑤 Function approximator with weights 𝑤

∎𝑠𝑡𝑎𝑟𝑡 Variable at the beginning

∎𝑒𝑛𝑑 Variable at the end

9

Contents

1 Introduction
1.1. A Story of the Delfi-PQ Satellite ..12

1.2. Lessons Learned: Keep It Simple and Test It Thoroughly ...14

1.3. Use Reinforcement Learning to Test Onboard Software Thoroughly15

1.4. Structure ...18

2 State of the Art
2.1. A Bite on Software Testing ..19

2.1.1 Basic Concepts and Definitions ...19

2.1.2 Embedded Software Testing ...20

2.1.3 Testing Onboard Software of Satellites ...21

2.2. Automated Test Case/Command Generation Techniques ..23

2.2.1 Goals of Test Case/Command Generation ..24

2.2.2 Model-Based Test Case Generation ...24

2.2.3 Symbolic Execution ...25

2.2.4 Random Testing ..25

2.2.5 Search-Based Testing ...26

2.2.6 Comparison ...26
2.3. Use Reinforcement Learning to Generate Testing Commands27

2.3.1 Software Testing as a Markov Decision Process...27

2.3.2 Brief Introduction to Reinforcement Learning Algorithms29

2.3.3 Reinforcement Learning Algorithms in Software Testing31

2.4. Formulate the Research ..33

2.4.1 Assumptions ..33

2.4.2 Research Questions ..34

2.5. Brief Summary of the Chapter ...35

3 Testing Environment
3.1. Overview of Delfi-PQ Subsystems ..36

3.2. Onboard Software of Delfi-PQ ..39

3.2.1 Workflow of Onboard Software ..39

3.2.2 Important Concepts of DelfiPQCore ..40

3.2.3 Tasks and Services in Each Subsystem ..42

3.2.4 Safety Measurements in the Onboard Software ..43

3.2.5 Compare with Other Onboard Software ..44

3.3. Test Set-Up ...46

3.3.1 Hardware Set-Up ...46

3.3.2 Software Set-Up ..47

3.4. Extract Information from Source Code of Onboard Software49

3.4.1 Code Coverage Collection ...49

3.4.2 Several Ways to Feed Code Coverage into Neural Networks53

3.4.3 Extract Graph Representations of Programs from Execution Traces54

3.4.4 Extract Graph Representations of Programs by Static Code Analysis55

3.5. Brief Summary of the Chapter ...57

4 Algorithm Designs
4.1. Q-Learning ..59

10

4.1.1 Brief Introduction ...59

4.1.2 States and Actions ...60

4.2. Deep Q Network..60

4.2.1 Brief Introduction ...60

4.2.2 D3QN with State Vectors and Discrete Actions (D3QN-Discrete-MLP)62

4.2.3 D3QN with State Graphs and Discrete Actions (D3QN-Discrete-GGNN)63

4.2.4 D3QN with State Graphs and Discrete Actions (D3QN-Discrete-GAT)64

4.3. Proximal Policy Optimization ...64

4.3.1 Brief Introduction ...65

4.3.2 PPO with State Vectors and Discrete Actions (PPO-Discrete-MLP)67

4.3.3 PPO with State Vectors and Action Vectors (PPO-MultiDiscrete-MLP)67

4.3.4 PPO with State Graphs and Discrete Actions (PPO-Discrete-GGNN)68

4.3.5 PPO with State Graphs and Discrete Actions (PPO-Discrete-GAT)68

4.3.6 PPO with State Graphs and Action Vectors (PPO-MultiDiscrete-GGNN)68

4.4. Baselines ..68

4.4.1 Random Testing ...68

4.4.2 Testing with the Genetic Algorithm ..68

4.5. Implementation Details ..69

4.6. Brief Summary of the Chapter ...70

5 Filling Grid Test
5.1. About the Experiment ..71

5.2. Results of D3QN-Discrete-MLP ..72

5.3. Results of D3QN-Discrete-GGNN ...73

5.4. Results of D3QN-Discrete-GAT ..74

5.5. Results of PPO-Discrete-MLP ...76

5.6. Results of PPO-MultiDiscrete-MLP ...79

5.7. Results of PPO-Discrete-GGNN ...81

5.8. Results of PPO-Discrete-GAT ...83

5.9. Discussions ...85

6 Stress Testing
6.1. About the Experiment ..88

6.2. Random Baseline ..90

6.3. Genetic Algorithm Baseline ...90

6.4. Results of Q-Learning ...93

6.5. Results of D3QN-Discrete-MLP ..94

6.6. Results of PPO-Discrete-MLP ...95

6.7. Results of PPO-MultiDiscrete-MLP ...97

6.8. Results of PPO-Discrete-GGNN ...99

6.9. Results of PPO-MultiDiscrete-GGNN ..102

6.10. Bugs Identified in Stress Testing ...103

6.11. Discussions ...103

7 Coverage Testing
7.1. About the Experiment ..106

7.2. Random Baseline ..107

7.3. Genetic Algorithm Baseline ...107

7.4. Results of Q-Learning ...109

7.5. Results of D3QN-Discrete-MLP ..109

11

7.6. Results of D3QN-Discrete-GGNN ...110

7.7. Results of PPO-Discrete-MLP ...111

7.8. Results of PPO-MultiDiscrete-MLP ...113

7.9. Results of PPO-Discrete-GGNN ...114

7.10. Bugs Found in the Coverage Testing ..117

7.11. Discussions ...117

8 Regression Testing
8.1. About the Experiment ..119

8.2. Genetic Algorithm with Best Solution from Previous Test120

8.3. Results of PPO-MultiDiscrete-GGNN ..121

8.4. Discussions ...121

9 Conclusions and Recommendations
9.1. Answers to the Research Questions ...123

9.1.1 Testing Goals ..123

9.1.2 Prior Knowledge ..124

9.1.3 Algorithm Designs ...125

9.1.4 Testing Environment ..129

9.1.5 Reuse a Trained Agent ..129

9.1.6 A Brief Answer to Main Research Question ..130

9.2. Threats to Validity ...130

9.3. Contributions to the Academic Field ..132

9.4. Recommendations for Future Research ...132

Bibliography ..134

12

1 Introduction

“Quality is free, but only to those who are willing to pay heavily for it.”
—Tom DeMarco and Timothy Lister

Sufficient testing is important for the reliability of small satellites. However, this procedure can be
time-consuming and needs enough prior knowledge about the system design. This research tries
reinforcement learning to solve this problem. Before introducing the whole idea, we start from the
story of our recently launched satellite, the Delfi-PQ.

1.1. A Story of the Delfi-PQ Satellite

Delfi-PQ (Figure 1-1) is a 3P PocketQube and third student satellite made in TU Delft (Radu,
Uludag, Speretta, Bouwmeester, Gill, & Foteinakis, 2018). PocketQube is a new form factor of tiny
satellites. The size of 1P PocketQube is around 5×5×5cm, smaller than the 10×10×10cm of 1U
CubeSat. Since they are smaller than CubeSats, PocketQubes have stricter constraints on mass,
size, power, and communication budget. However, for some applications like education, technology
demonstration, and gravity / magnetic / radiation multi-point measurement, PocketQubes are cheap
and competitive (Bouwmeester et al., 2020).

The goal of Delfi-PQ is to demonstrate a reliable satellite bus. If Delfi-PQ is successful and
affordable, TU Delft will update the satellite bus and launch a PocketQube periodically with different
payloads. At the same time, there will always be a PocketQube in the laboratory for education. In
that case, Delfi-PQ can strongly support space-related education and research in TU Delft.

The team made all subsystems, onboard software, and Delfi-PQ electric ground support equipment
in-house. The project4 is open source, and part of the telemetry is available on the SatNOGS5
website. As a forerunner, Delfi-PQ also helps to set a standard for PocketQube satellites
(Bouwmeester, van der Linden, Povalac, & Gill, 2018).

Figure 1-1: Delfi-PQ satellite

4 Delfi-PQ repository: https://github.com/DelfiSpace
5 SatNOGS is an open-source global network of satellite ground station. Their dashboard: https://dashboard.satnogs.org/

https://github.com/DelfiSpace
https://dashboard.satnogs.org/

13

Because of the COVID-19 pandemic, the development and testing schedule was tight. When we
transported Delfi-PQ to the launch site in October 2020, the flight software for ADCS (Attitude
Determination and Control) and payload operation was incomplete. The GPS board just arrived in
the Netherlands and could not work correctly. Furthermore, the engineers mainly conducted some
basic tests, e.g., vibration and thermal vacuum tests. For each subsystem, we only specify several
test cases to test its main functions.

Although we tested the satellite in a rush, the launch was late. The original plan was to launch it with
SpaceX’s Transporter-1 rideshare mission in January 2021. However, because of some political
issues of Momentus6, Delfi-PQ (along with some other satellites) was kicked off the deck. The
satellite was stored in the United States for a year and finally launched with the Transporter-3
mission in January 2022 (Figure 1-2).

Figure 1-2: The launch of the Delfi-PQ satellite

Fortunately, Delfi-PQ survived. Ten hours after the launch, an amateur radio user of the SatNOGS
network recorded the first signal from the tiny satellite. We also established the link between the
satellite and the Delft ground station the following day. The satellite is still alive and sending
telemetry (Figure 1-3).

Figure 1-3: Telemetry from Delfi-PQ received by SatNOGS in the past 30 days7

6 https://spacenews.com/faa-rejects-payload-review-for-momentus/
7 From “Data Frames Decoded - 30 Days” ca. 2022. (https://db.satnogs.org/satellite/CEIC-4073-2863-5971-9670#data). In the public

domain.

14

The team identified some problems during the operation of Delfi-PQ. The most significant is that the
Electrical Power System (EPS) cannot support continuous downlink or software updates. After Delfi-
PQ sends 1 or 2 messages to the ground station quickly, the power bus voltage will drop under a
threshold, and all subsystems except the EPS will lose electricity. There are two reasons for this
problem8:

- The resistance of the battery protection circuit under low temperatures is high, which was
not expected before the launch. As a result, the batteries cannot maintain the power bus
voltage above the threshold.

- Theoretically, the solar panels can also maintain the power bus voltage. However, the
max power point tracker (MPPT) responds too slowly to the load change on the bus, i.e.,
it cannot shift the max power point before the voltage drops under the threshold.

Compared with other PocketQubes, Delfi-PQ is a "lucky guy." As far as we know, there were 14
PocketQube satellites launched with the Transporter-3 mission, but only four survived in space.
Langer and Bouwmeester (2016) fitted the data of 178 launched CubeSat and reported a failure
rate of 40% within the first six months, as shown in Figure 1-4. Jacklin (2019) also investigated 550
small satellite missions from 2000 to 2016, where the mass of surveyed satellites ranged from 0.5kg
to several hundreds of kilograms. The result shows that 24.2% were total mission failures, and
another 11% were partial ones.

Figure 1-4: Estimation of CubeSat Reliability Based on 178 Launched Missions (Langer and

Bouwmeester, 2016)

What can we learn from this story?

1.2. Lessons Learned: Keep It Simple and Test It Thoroughly

Commercial off-the-shelf (COTS) components are popular in small satellites. However, in the harsh
space environment, they often do not work as described in their datasheets. As mentioned before,
Delfi-PQ is suffering from such a problem. If the battery protection circuit does not give us a

8 This problem was fixed by a successful software update in August 2022. In summer, the tiny satellite had a higher temperature when

it passed the Delft ground station, which raised the battery's output voltage. And then, luckily, the battery maintained the bus voltage

above the threshold during the initialization of the software update process.

15

“surprise,” then the satellite operation will be much easier. Unfortunately, the user guide of the
battery does not even mention the performance in low temperatures.

Intuitively, engineers should add redundancy to the system since the components are unreliable.
However, for tiny satellites like PocketQubes and CubeSat, there is not too much space to add
redundant components. At the same time, redundancy adds complexity to the system. Developers
need to achieve a careful balance between complexity and reliability.

On this issue, we have some experience with the previous two satellites made in TU Delft. The
Delfi-C3 CubeSat, the first student satellite of TU Delft, has a simple design: passive ADCS, no
battery, no SD card, and the solar panels directly drive the power bus. Moreover, Delfi-C3 offers
limited redundancy by separated controllers to switch the power of subsystems and a redundant
radio (Bouwmeester, Aalbers, & Ubbels, 2008). As a result, Delfi-C3 was launched in 2008 and is
still alive.

The Delfi-n3xt CubeSat, the successor of Delfi-C3, puts more emphasis on redundancy. It has a
redundant OBC, a redundant radio, redundant chains in the EPS, and a simplified backup of the
ADCS. However, such redundancy is complex and time-consuming to implement (Bouwmeester,
Menicucci, & Gill, 2022). In the end, Delfi-n3xt stopped transmission after only three months of
operation9.

Based on experience from previous student satellites, Delfi-PQ only keeps minimal redundancy,
such as separated MPPTs for solar panels and a redundant IMU. The tiny satellite has many single
points of failure, including the COMMS, the EPS, and the OBC. The PocketQube also has no more
space for redundant hardware.

According to the in-orbit situation of Delfi-PQ, our approach is successful but imperfect. A problem is
the lack of testing. Since we cannot avoid single points of failure, we should test them heavily. If
Delfi-PQ receives sufficient environmental testing, we can likely identify the anomaly of the battery
protection circuit.

Therefore, the take-home message of this section is to keep the tiny satellite simple and test it
thoroughly. By Monte Carlo simulation of a failure model, (Bouwmeester et al., 2022) also found that
improving testing is better than adding subsystem redundancy for CubeSat reliability.

We plan to take a test-driven approach when developing other PocketQubes at TU Delft.
Unfortunately, traditional manual testing needs significant human labour and prior knowledge, so we
only wrote several test cases for each subsystem of Delfi-PQ. Conventional manual testing limits
our testing coverage.

A question comes to our mind: Can we automate the testing procedure?

1.3. Use Reinforcement Learning to Test Onboard Software Thoroughly

Satellites require many tests at different levels. Physical tests are usually expensive and cannot be
performed for many times. For example, a vibration test of Delfi-PQ at a third-party organization
takes around €10000. A thermal vacuum test has roughly the same cost. As a result, it is difficult to
automate such physical tests in a master thesis with limited budget.

By contrast, onboard software testing is much cheaper and suitable for a thesis. Note that
developers can also test some hardware in onboard software testing and simulate some external

9 After 7 years of silence, Delfi-n3xt restarted to transmit signals in 2022 for a few months and then stopped beeping again.

16

signals (hardware-in-the-loop). This type of testing can also identify many potential problems with a
satellite.

Therefore, this work focuses on testing onboard software automatically with limited prior knowledge.
Delfi-PQ is a use case in the study.

Traditionally, the following methods can generate test cases:

- Model-based testing. Humans specify a model (e.g., a Finite State Machine) of the
tested software and then use a tool to traverse the model. The tool records the traversal
paths as test cases. However, a model written by experts with prior knowledge of the
tested software is necessary.

- Symbolic execution substitutes all program variables with symbolic values, simulates
the execution of tested software step by step with constraint solving, and looks for all
executable paths. These paths are test cases. This method can only test small-scale
software, such as unit testing, because of the difficulty of applying constraint solving to
the whole software.

- Random testing, i.e., choosing testing command randomly. However, some behaviours
of the tested software require particular command sequences. Generating such
sequences is difficult for random testing, which does not consider any causal relation
among commands.

- Search-based testing transfers the test case generation problem to an optimisation
problem. It usually uses evolutionary algorithms (e.g., the genetic algorithm) to maximise
a human-defined objective function. Solutions of the highest objective functions are test
cases.

Among these methods, search-based testing is the most promising for Delfi-PQ onboard software.
Random testing is too simple compared to search-based testing, and its performance cannot
improve further. Applying model-based testing to the Delfi-PQ software is challenging because no
model exists. Symbolic execution is also not suitable for the whole complex software.

Many papers use the genetic algorithm in search-based testing, but it has some shortages:

⚫ It only uses the objective function of a whole test case to guide the search and discards all

information generated at each test case step. Such lack of information may make the genetic
algorithm challenging to reach a good solution. The situation worsens as the test case's length
grows because the search space size will grow exponentially.

⚫ Moreover, the output of the genetic algorithm is a fixed solution, e.g., a fixed command
sequence. The command sequence may not work well in a non-deterministic environment.

⚫ Another problem is that the genetic algorithm spends a long time generating test cases for a
specific software version. It cannot learn the pattern of a series of versions. In regression
testing, the tester may need to run the time-consuming algorithm repeatedly.

A novel approach to search-based testing is reinforcement learning (RL), which treats software
testing as a sequential decision-making problem, or a Markov Decision Process (MDP). Figure 1-5
shows an intuitive example of reinforcement learning. It generates testing commands according to
the observed system state and learns the system behaviour automatically. Thus, RL can utilise
information generated at each test case step.

17

Figure 1-utilisetest case step in Dog Training10

RL has shown promising performance on some complex decision-making problems which the
genetic algorithm cannot solve. A famous example is the AlphaGo (Silver et al., 2016) of DeepMind.
AlphaGo beat the best human players in the Go game, which was never achieved before because
of the enormous search space.

Therefore, RL-based software testing has attracted more attention recently, especially in GUI
testing. Bytedance, the mother company of TikTok, uses an RL agent Fastbot as the primary
stability and compatibility testing tool for more than 20 applications, locating more than 100 crashes
daily (Cai, Zhang, & Yang, 2020). Electronic Arts, who made Need for Speed and Call of Duty, also
uses RL to test first-person shooter games (Bergdahl, Gordillo, Tollmar, & Gisslén, 2020). Some
commercial RL-based testing tools are already available, such as Test.AI for GUI testing of mobile
apps (Test.ai, 2021) and Diffblue cover for unit testing of Java (Lodge, 2021).

However, no one has migrated RL-based testing to the space industry or onboard software testing.
The migration is challenging because of different environments and software behaviours.

This research is the first work to apply reinforcement learning in integration tests of satellite onboard
software:

⚫ Unlike previous research that relies on GUI information, it utilises near real-time code
coverage information from the software under test to compute states and rewards.

⚫ A tool is written to retrieve the code coverage data and can be easily modified to adapt
other embedded software.

⚫ The research considers two types of testing goals, maximising code coverage and
maximising the CPU load (stress testing).

⚫ Experiments are carried out in two environments: a toy problem and the COMMS
onboard software.

⚫ It tries three reinforcement learning algorithms, including the Q-Learning, the Double
Duelling Q Network (D3QN), and the Proximal Policy Optimization (PPO) algorithm to
learn. Each algorithm has several configurations.

⚫ Different state and action representations are tried. The RL testing agent can send
human-specified commands or organise command parameters.

⚫ Different neural network architectures (multi-Layer Perceptron MLP, Gated Graph
Neural Network GGNN, and Graph Attention Network GAT) are tested. We also analyse
several design details in the neural network architecture, such as the selection of the
graph pooling layer.

10 From “Three Things to Know About Reinforcement Learning,” by By Emmanouil Tzorakoleftherakis, 2019.

(https://www.kdnuggets.com/2019/10/mathworks-reinforcement-learning.html). In the public domain.

18

⚫ In the end, the performance of RL algorithms is compared with two baselines: random
command generation and the genetic algorithm.

1.4. Structure

In the rest of this thesis, chapter 2 will introduce the related works, including basic concepts of
software testing, a brief overview of embedded software testing and onboard software testing. It
also discusses traditional test case generation methods and RL-based testing in detail. The end of
this chapter lists research questions and assumptions.

Chapter 3 will analyse the onboard software of Delfi-PQ and formulate it as a Markov Decision
Process (MDP). It also compares the Delfi-PQ flight software with other onboard software. At the
same time, this chapter introduces the hardware and software tools used in this research, such as

- The tool to retrieve near real-time code coverage information.
- The means to extract graphs from the source code of onboard software
- The telemetry/telecommand parser
- The means to transfer messages between an online training server and the satellite

hardware.

Chapter 4 describes the reinforcement learning algorithms used in the work, including the Q-
Learning algorithm, the Double Duelling Deep Q Network (D3QN), and the Proximal Policy
Optimization (PPO) algorithm. Note that each algorithm may have several configurations with
different neural network architectures or state/action representations. The chapter also describes
the random testing baseline and the genetic algorithm baseline.

Chapters 5, 6, 7, and 8 describe the designs of the experiments and the results. There are four
types of experiments: a “filling grid” toy problem, stress testing, coverage testing, and regression
testing.

Chapter 9 gives conclusions of this research, threats to validity, and recommendations for future
works.

19

2 State of the Art

This section briefly reviews related works and provides definitions of some concepts. More
specifically,

⚫ Section 2.1 introduces some basic concepts in software testing. It also reviews some
trends in embedded software testing and onboard software testing.

⚫ Section 2.2 introduces and compares traditional test case generation techniques.
⚫ Section 2.3 briefly explains the Markov process and reinforcement algorithms. It also

reviews progress in RL-based software testing, particularly the formulations of states,
actions, and rewards.

⚫ Section 2.4 gives the assumptions and research questions in this work.
⚫ Section 2.5 is a summary of this chapter.

2.1. A Bite on Software Testing

Traditionally, software testing has the following steps:

- Step 1: Analyse the requirement document.
- Step 2: Make a test plan, including testing methods and environment settings.
- Step 3: Set the testing environment.
- Step 4: Write test cases, execute them, and detect faults.
- Step 5: Record the faults and let software engineers debug.

Some concepts and definitions are listed in the following subsection.

2.1.1 Basic Concepts and Definitions

In the field of software testing,

- A test case is a pre-written sequence of testing commands which will be executed
during a test. A test suite is a set of test cases.

- A test oracle is a set of conditions to determine whether the system under test behaves
correctly or not.

- Test coverage is a metric that shows the amount of testing performed. Different
coverage types include code coverage (e.g., line coverage, branch coverage, MC/DC
coverage), state coverage, and requirement coverage. Developers usually pursue high
test coverage.

- Functional testing verifies whether the system under test (SUT) behaves as
expected. Non-functional testing examines non-functional parameters of the SUT,
such as performance and security.

- Black box testing compares software output with expected values and sometimes
reduces the number of test cases by pairwise testing, equivalence partitioning, and
boundary analysis. White box testing drives test cases from the source code of SUT
(manually or automatically).

Software testing has different levels. As shown by Figure 2-1 (Nakkasem, 2020), there are
usually unit testing, integration testing, system testing and acceptance testing. For higher-
level tests, the SUT becomes more complex, and it is usually more difficult for testers to access
internal information of the SUT.

20

Before coding, we may also need to test requirements and system design, which technologies like
model checking can do. After the acceptance test, if the software is updated and has some new
capabilities, it needs regression tests to ensure the original capabilities are not affected. We can
reuse test cases in regression tests.

Figure 2-1: V Model of Software Development (Nakkasem, 2020)

2.1.2 Embedded Software Testing

Onboard software is embedded software that runs on a target board and does not have a direct
user interface. A target board usually communicates with other target boards or a host
computer with a direct user interface and a software development kit. The target board may also
sense external signals like temperature, acceleration, and light intensity.

The following things make embedded software testing different from, and sometimes more complex
than, conventional software testing (e.g., PC, web or mobile applications):

- The target board only has limited computing resources.
- It is more challenging to get information from the target board when the microcontrollers

do not support debug capabilities like tracing. It raises a need for sophisticated
instrumentation and probing when testing embedded systems.

- External signals like temperature will affect a test, and sometimes testers must provide
such signals during the test.

- Embedded software is usually developed in parallel with hardware. There may be only a
few new hardware available for software testing.

- Embedded software is closely integrated with hardware. A fault may come from
hardware rather than software.

Such challenges have led to the wide adoption of simulation-based testing in the embedded
software industry. Some simulators can simulate all or part of embedded hardware, so engineers do
not always perform tests on target boards. Depending on which part is under simulation, this
approach can be called X-in-the-loop, e.g., hardware-in-the-loop (HiL), software-in-the-loop (Sil),
model-in-the-loop (MiL), processor-in-the-loop (PiL). Examples of such simulators include Qemu,
Tina, and some simulation capabilities in embedded software IDEs. There are also simulators used
as mocks of sensors or subsystems.

However, configuring such simulators may take much effort, especially when configuring different
peripherals. Likewise, any simulator cannot 100% mimic real hardware or environment. Many
embedded software tests are still performed on real hardware (Garousi, Felderer, Karapıçak, &
Yılmaz, 2018), as shown in Figure 2-2.

21

Figure 2-2: Papers in terms of using simulated or real SUTs (Garousi et al., 2018)

2.1.3 Testing Onboard Software of Satellites

Like other embedded software, simulators are popular in onboard software testing, especially for
large spacecraft. They can simulate hardware, environment, or dynamic models of satellites.
Theoretically, it is possible to build a virtual satellite. An example is the NASA Operational
Simulation for Small Satellites (NOS3) used in the STF-1 CubeSat mission, which includes (Geletko
et al., 2019), as shown in Figure 2-3:

- NASA Operational Simulator (NOS), which simulates hardware busses.
- core Flight System (cFS), an open-source flight software used by NASA since 1992.
- Custom hardware simulators, including a processor simulator.
- COSMOS is an open-source ground station software that sends telecommands to the

system.
- OIPP, a planning tool that acknowledges the ground station when the satellite will be in

view/sunshine.
- 42, an open-source simulator for spacecraft attitude and orbital dynamics.
- Vagrant helps to set up a virtual machine to run the applications in the NOS3 suite.

Figure 2-3: Architecture of NOS3 (Geletko et al., 2019)

While NASA can invest heavily in a “virtual satellite”, this approach is not feasible for many other
developers. For example, the Delfi-PQ uses the Texas Instrument MSP432 microcontrollers, which
do not have an available simulator. It is also tricky to create simulators for peripherals on the
boards. Some developers only use limited simulation in onboard software testing as a compromise.
The OpenSatKit only includes the core Flight System, COSMOS, and 42, which form a minimal
simulated environment (McComas, 2021).

22

As a product of model-based system engineering (MBSE), automated code generation is getting
prevalent in onboard software development. In this approach, developers define software
architectures with graphic models, which include software behaviour with sequence diagrams and
message passing among program modules. After that, low-level embedded code will be generated
and tested automatically (Jacklin, 2015). An example of this approach is F Prime (Bocchino,
Canham, Watney, Reder, & Levison, 2018), a famous open-source onboard software architecture of
NASA Jet Propulsion Laboratory, as shown in Figure 2-4. F Prime generates boiler-plate code of
components and ports from XML or SysML specifications. It can also automatically generate test
classes for unit testing and provide a Python API for integration testing.

Figure 2-4: F Prime Generates Application Code from Models (Bocchino et al., 2018)

Automated code generation makes onboard software development less prone to errors and
automated test generation possible. However, some developers argue that it is less flexible than
hand-written code. The learning curve of such tools may also be higher (Jacklin, 2015).

A helpful testing method for high-safety onboard software is model checking. As shown by Figure
2-5 (Chen, & Wu, 2010), developers must represent the flight software in a finite state machine.
Then a model checker will search every possible path to prove that the software satisfies some
properties expressed in temporal logic. Instead of looking for a bug, model checking tends to prove
that the software satisfies the requirements.

Figure 2-5: The Flow Chart of Model Checking (Chen, & Wu, 2010)

There are some challenges of model checking:

- It is challenging to represent onboard software as a finite state machine, especially when
there are continuous parameters.

- The number of states may be too large to search.
- Not all requirements can be written in temporal logic, a precise mathematical

specification.

23

Because of these challenges, model checking is helpful for some safety-critical software instead of
the whole onboard software. As a use case, ESA has used its COMPASS toolset to perform model
checking on a satellite's FDIR (Fault Detection, Isolation, and Recovery) software. There are
thousands of requirements for the checked software, but only 106 can be described in temporal
logic. The team chose 26 requirements and constructed a model of 4000 lines of code and around
50 million states. In the end, the engineers only successfully verified 16 requirements, and others
took too much computing time to find a result (Esteve, Katoen, Nguyen, Postma, & Yushtein,
2012).

It is worth mentioning that onboard software testing may follow some standards, including:

- NASA-STD-8739.8A, the NASA Software Assurance and Software Safety Standard
requirements.

- ECSS-Q-80, Software product assurance. ECSS means the European Cooperation for
Space Standardization.

- ECSS-E-40, Space Software Engineering, which evolved from ISO 12207, Software life
cycle processes.

- QJ 3027A-2016 5.7.22, Software Testing Standard for Spacecrafts in China.

For more information about onboard software testing, (Jacklin, 2015) is a comprehensive survey.
Figure 2-6 also shows the popularity of some open-source onboard software architectures, which
usually include testing tools.

Figure 2-6: GitHub Star History of Popular Onboard Software Frameworks

While onboard software testing has its focuses and toolsets, its nature is not different from general
software testing. Therefore, the next section will introduce automated test case generation from the
point of view of general software testing.

2.2. Automated Test Case/Command Generation Techniques

Before introducing traditional test case generation techniques, it is helpful to understand goals of test
cases.

24

2.2.1 Goals of Test Case/Command Generation

Test case generation means looking for test cases, i.e., sequences of testing commands before a
test starts. During the test, these fixed test cases will be executed. On the other hand, test
command generation means selecting testing commands during a test, according to the current
state of SUT. The techniques introduced in this section are mainly for test case generation, while
search-based testing with reinforcement learning can generate commands during a test.

There are many types of testing goals, but most of the methods in this section only support several
of them:

- Model-based methods are suitable for the goals represented by a model, e.g., state
coverage, transition coverage and requirement coverage.

- Symbolic execution is usually used to maximize code coverage.
- Random testing does not adapt to specific testing goals, but some researchers use code

coverage to measure its performance.
- Search-based testing supports the testing goals that can be quantitatively represented

as objective functions (Harman, Jia, & Zhang, 2015).

This section uses code coverage to compare different test case generation techniques. It is the only
testing goal supported by all techniques mentioned here.

2.2.2 Model-Based Test Case Generation

In model-based test case generation, humans specify a model (e.g., a Finite State Machine) of
the tested software and then use a tool to traverse the model. The test cases are the traverse paths
(Shirole & Kumar, 2013). On the other hand, testers can also use mutated models to generate
wrong test cases, which verify the fault handling mechanisms of SUT (Belli, Budnik, Hollmann,
Tuglular, & Wong, 2016).

If there is a model available before testing (e.g., F Prime), this approach is convenient. It can find
every path in the model. However, writing them can be time-consuming if a model is unavailable.
Some testing tools can learn a model of SUT from execution traces, and we will discuss them in
section 2.3.

The model-based testing process is summarized in Figure 2-7 by (Garousi, Felderer, Karapıçak, &
Yılmaz, 2018).

Figure 2-7: Process of Model-Based Testing (Garousi et al., 2018)

25

2.2.3 Symbolic Execution

Symbolic execution analyses source code to generate test data that can achieve high code
coverage. In the process of code analysis, it uses symbolic variables to simulate the execution of
the software. At any point during symbolic execution, it maintains current symbolic variables, a path
constraint on the symbolic variables, and a program counter. This path is feasible only when
software inputs can satisfy the path constraint. This way, symbolic execution can find all feasible
paths, their path constraints and test inputs. Figure 2-8 shows an example of symbolic execution
(Anand et al., 2013).

Figure 2-8: An Example of Symbolic Execution (Anand et al., 2013)

Although King proposed symbolic execution in 1975, the method only became feasible in the 21st
century because of more powerful constraint solvers and computers. It still has some fundamental
problems:

 - Path explosion: Most real-world software has many paths, and many of these paths are
infeasible. It takes too much time to execute all the paths symbolically.
 - Path divergence: Most real-world software uses multiple programming languages, and parts of
them may be available only in binary form. Users need to provide models for the problematic parts.
 - Complex constraints: some path constraints include non-linear operations like multiplication
and division and mathematical functions like sin and log, which available constraint solvers cannot
solve.

For example, NASA used its Symbolic Java Pathfinder to perform symbolic execution on a Java
model of an ascent abort handling software (Pǎsǎreanu et al., 2008). To deal with path divergence
and complex constraints, it used concrete executions of SUT to gather information for symbolic
execution. The Pathfinder generated 200 test cases to cover all aborts and flight rules within 2
minutes. However, the Java model under test only contained ~600 lines of code and was not actual
flight software.

2.2.4 Random Testing

Random testing means choosing testing commands randomly. The idea behind random testing is
to let test cases spread evenly across the input domain. On the other hand, it is also the

26

disadvantage of random testing: sometimes, test cases should not be evenly spread in the input
domain. For example, random testing only covered a few flight rules and no aborts of the Java
model (Pǎsǎreanu et al., 2008).

A famous random testing tool is the Monkey, provided by the Android SDK (Patel, Srinivasan,
Rahaman & Neamtiu, 2018). It can quickly generate and execute test cases because it does not
contain complex logic.

2.2.5 Search-Based Testing

Unlike random testing, search-based testing searches for test cases that maximise a pre-defined
objective function. In other words, it transfers the test case generation problem to an optimisation
problem. Many search algorithms are available (Utting, Pretschner, & Legeard, 2012), including
metaheuristic search, simulated annealing, and evolutionary algorithms (the genetic algorithm).

Much of the literature on search-based testing focuses on the genetic algorithm (Harman, 2011).
However, it has some disadvantages:

- It only uses the objective function to guide the search, which may be challenging to
reach a good solution. The situation worsens as the test case's length grows because
the search space size will grow exponentially.

- It generates a fixed test case unsuitable for non-deterministic software under test.
- If the software under test is modified, the genetic algorithm must be rerun to generate

new test cases, which can be time-consuming.

An example of a search-based testing tool is the Sapienz (Mao, Harman & Jia, 2016). UCL first
developed it as a research program, but Facebook massively deployed it after 17 months (Mao,
2018). Sapienz uses a multi-objective genetic algorithm to generate test cases with maximal
objective functions. If the source code of the Android app is available, Sapienz measures statement
coverage as the objective function during the app's execution. When the source code is unavailable,
Sapienz measures method coverage or activity coverage instead. Figure 2-9 shows the workflow of
Sapienz.

Figure 2-9: Sapienz Workflow (Mao, Harman & Jia, 2016)

2.2.6 Comparison

As a summary, Table 2-1 compares these techniques for test case generation.

27

It is also interesting to look at some statistics. Garousi, Felderer, Karapıçak, and Yılmaz (2018)
reviewed 312 papers about embedded software testing. Among them, 150 papers are model-based,
followed by 24 papers about search-based testing, 23 papers about random testing, and a few
papers about symbolic execution. The survey shows that model-based testing is the most heavily
researched for embedded software testing, and other techniques are less popular.

Why do we see this trend? Garousi et al. (2018) thought these papers on model-based test case
generation are for requirement-based testing, i.e., using functional requirement coverage as the
testing goal. For most software under test, it is necessary to perform tests against functional
requirements. Encoding such requirements into a state transition model is straightforward (e.g., do
X in state Y), so model-based test case generation is suitable for the general software development
process. However, it has some disadvantages. For example, model-based testing needs sufficient
prior knowledge to specify a model, and we do not have such a model for Delfi-PQ.

Table 2-1: Comparison of Methods for Test Case Generation11

Method Prior Knowledge
Needed

Code Coverage Testing Level Adapt to Other
Testing Goals

Model-
based

Usually need
manual specification
of the model (states
and transitions)

Cover every transition
of the model, instead
of branches of source
code

Usually in high level tests
(e.g., system testing)
because such models
from requirements exist

Yes, if the
goals can be
represented in
a model

Symbolic
Execution

Automatically
extract information
from the source
code

Can cover every path
if constraint solving is
feasible

Usually in low level tests
(e.g., unit testing)
because of limited
constraint solving
capability

No, it’s mainly
for code
coverage

Random
Testing

Not needed Cannot cover every
path if the SUT is
complex

All levels Cannot adapt
to a specific
goal

Search-
based

Need specifications
of the objective
function

Better than random
testing, the limited by
the capability of the
search algorithm

All levels Yes, if the
goals can be
represented in
an objective
function

Search-based testing is less prevalent in the survey, but it is a promising option for testing goals
that can be represented as an objective function. Therefore, search-based testing is an ideal tool to
verify non-functional requirements. Table 2-1 shows that search-based testing does not have a
“bad” property. Though the genetic algorithm may have some shortages (section 2.2.5), this
approach with other search algorithms may perform better.

2.3. Use Reinforcement Learning to Generate Testing Commands

Reinforcement learning can be seen as a search-based testing method. Most reinforcement
learning (RL) algorithms are developed for MDP. Therefore, before applying reinforcement learning
to command generation, it is necessary to construct the problem as a Markov Decision Process
(MDP).

2.3.1 Software Testing as a Markov Decision Process

An MDP is a 4-tuple (𝑆, 𝐴, 𝑃, 𝑅), where (Howard, 1960):

11 Meaning of colors in the table: green (helpful), yellow (acceptable), red (bad).

28

 - 𝑆 is a set of states.

 - 𝐴 is a set of actions.
 - 𝑃(𝑠′|𝑠, 𝑎) is the probability that action 𝑎 in state 𝑠 will lead to state 𝑠′.
 - 𝑅(𝑠′|𝑠, 𝑎) is the reward received after state transition.

An MDP needs to satisfy the Markov property, which means the state transition probability is only
related to the current state and action instead of the entire history of the agent’s interaction with the
environment. Some MDP also assumes the current state is fully observable. These assumptions
simplify the problem a lot.

We need to represent states, actions, and rewards for constructing software testing as an MDP.
Figure 2-10 shows these elements and 𝑡 is the time step.

Figure 2-10: A Markov Decision Problem at Step t and t+1

There are three ways to represent states in RL-based testing: graphical user interface (GUI)
information, parameters in the program, or code coverage information. Here are some examples:

- Adamo, Khan, Koppula, and Bryce (2018) extracted states from the GUI of Android
applications. It used the Appium and UIAutomator tools to retrieve XML representations
of the app's GUI, including widgets and the types of actions (e.g., click, long press)
enabled on them. A state includes all actions available on all widgets.n

- Bergdahl et al. (2020) used parameters of the games under test to construct state
vectors. A state vector contains the player's position relative to the goal, velocity,
rotation, and jump cool-down time. Such practice is common for game AI.

- Dai, Li, Wang, Singh, Huang, and Kohli (2019) represented a state as a graph. A node in
a graph is a program branch. It contained a node feature vector 𝑉 and a coverage mask
𝐶 → {0,1}, indicating whether the node had been covered. Edges showed relations
among branches. The structure of such a graph can be static or changing during testing
(if new program branches are found).

RL-based testing can use many types of actions. For example, the actions space can be discrete,
i.e., it contains a limited number of actions like clicks and long presses (Adamo et al., 2018). An

29

action can also be a vector with discrete values (multi-Discrete action space) or a vector with
continuous values (continuous action space). For example, Dai et al. (2019) used a sequence of
characters or a 2D array of characters as an action of the RL agent.

Rewards of RL-based testing are usually new state coverage, code coverage, risk, or load of the
SUT. Testers can also use other metrics to calculate rewards. RL-based GUI testing usually
maximizes state coverage. One problem with this approach is determining if a new state has been
reached. For example, there may be other news on the same home page of a GUI, as shown in
Figure 2-11. Traditional methods may think that the home page contains many states, but Pan,
Huang, Wang, Zhang, and Li (2020) used a curiosity module to recognize the page as a single
state.

Figure 2-11: A Curiosity Module in RL-Based GUI Testing (Pan et al., 2020)

Few works, like (Dai et al., 2019), used code coverage to compute rewards, i.e., receive a reward
when covering new program branches. By contrast, many papers used final code coverage as the
metric to evaluate their RL agents, such as (Vuong & Takada, 2018), (Adamo et al., 2018), and
(Pan et al., 2021). The reason behind such a phenomenon is the difficulty of getting “real-time” code
coverage of software under test, i.e., measuring the code coverage growth caused by taking action.
It is technically feasible, but most code coverage tools only generate a code coverage report after
the software stops running.

Several papers included the risk or performance of the SUT in rewards. Reichstaller, Eberhardinger,
Knapp, Reif, and Gehlen (2016) used a behaviour model of the SUT to evaluate the risk of given
failure situations. The risk was then used as a reward for the reinforcement learning algorithm.
Moreover, Ahmad, Ashraf, Truscan, and Porres (2019) calculated rewards with elapsed execution
time.

Defining states, actions, and rewards do not mean the problem is a standard Markov process. For
example, (Adamo et al., 2018) formulated the reward as:

 𝑅 =
1

𝑁𝑠 + 𝑐
 (2-1)

where 𝑁𝑠 is the number of times that state 𝑠 has been visited, and 𝑐 is a constant. Reward (2-1)
decreases as 𝑁𝑠 increase, so the rewards of the same transitions change with the interaction
history. In this case, the problem is an online MDP (Even-Dar, Kakade, & Mansour, 2009), an
extension to the standard MDP. Although the Q-Learning algorithm is not designed for online MDPs,
it reached good code coverage in (Adamo et al., 2018).

2.3.2 Brief Introduction to Reinforcement Learning Algorithms

30

This section cannot introduce reinforcement learning algorithms in detail due to length constraints.
For further information and detailed derivation of the formulas, please refer to the literature study
document in the appendix. However, it is helpful to understand some basic concepts in
reinforcement learning (Sutton & Barto, 2018):

A return 𝐺𝑡 is a cumulated reward from time step 𝑡 to horizon 𝑇:

 𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ + 𝛾𝑇−𝑡−1𝑟𝑇 (2-2)

where 𝛾 ∈ (0,1) is the discount factor.

A policy function 𝜋(𝑎|𝑠) = 𝑃(𝑎|𝑠) determines the probability that the agent will select action 𝑎 in
state 𝑠. Under a policy 𝜋, an action-value function 𝑄𝜋(𝑠, 𝑎) shows the expected return of state 𝑠 if

action 𝑎 is selected (𝑄𝜋 is time-independent):

 𝑄𝜋(𝑠, 𝑎) = 𝔼[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (2-3)

Likewise, under a policy 𝜋, a state-value function 𝑉𝜋(𝑠) shows the expected return of state 𝑠
(time-independent):

 𝑉𝜋(𝑠) = 𝔼[𝐺𝑡|𝑠𝑡 = 𝑠] = ∑ 𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)

𝑎∈𝐴

 (2-4)

The task of reinforcement learning is to approximate these functions to maximize the return. The
approximators can be tables or neural networks. Using tables as approximators suits problems with
small, discrete states and action space. On the other hand, if there are many (or continuous) states
and actions, it is more suitable to use approximators like neural networks.

In the early days, reinforcement learning algorithms could be value-based or policy-based,
depending on which function they approximated. Value-based RL algorithms only learn the action-
value function 𝑄𝜋(𝑠, 𝑎). After training, they will select the action with maximal 𝑄𝜋(𝑠, 𝑎). Typical
tabular value-based algorithms are SARSA (Rummery & Niranjan, 1994) and Q-Learning (Watkins
& Dayan, 1992), which use a Q table to record 𝑄𝜋(𝑠, 𝑎). Deep Q Network DQN (Mnih et al., 2015)
and its variants use a neural network to approximate 𝑄𝜋(𝑠, 𝑎). On the other hand, policy-based

RL algorithms only learn the policy function 𝜋(𝑎|𝑠), such as REINFORCE (Williams, 1992).

Both approaches have some disadvantages. For example, value-based algorithms are not good at
problems with ample action space, and policy-based algorithms use basic Monte Carlo sampling
with high variance and long sampling time. As a compromise, many later algorithms learn both the
policy function, approximated by an actor network and the state-value function, approximated by
a critic network. Examples of such algorithms are PPO (Schulman, Wolski, Dhariwal, Radford, &
Klimov, 2017), A3C/A2C (Mnih et al., 2016), DDPG (Lillicrap et al., 2015), TD3 (Fujimoto, Hoof, &
Meger, 2018), and SAC (Haarnoja, Zhou, Abbeel, & Levine, 2018).

Some RL algorithms also learn an environmental model 𝑔(𝑠𝑡 , 𝑎𝑡) = 𝑠𝑡+1, 𝑟𝑡, which predicts future
states and rewards. A model can be approximated by a neural network or represented by a finite
state machine. Such algorithms are called model-based RL and may improve the sampling
efficiency. Several examples are the world model(Ha & Schmidhuber, 2018), MuZero (Schrittwieser
et al., 2020), and EfficientZero (Ye, Liu, Kurutach, Abbeel, & Gao, 2021).

It is important to note that learning a finite state machine has been an old topic in computer
science since the 1960s (Mohri, Rostamizadeh & Talwalkar, 2018). Whether it can be classified as

31

reinforcement learning remains to be a question. A state machine can be learnt passively or
actively:

- Passive learning simply records states and transitions and can be easily integrated with
RL algorithms like Q-Learning. An example is (Zheng et al., 2021) in web testing.

- Active learning chooses actions to infer the structure of state machines. An active
learning algorithm called L* (Angluin, 1987) has been widely used in domains from
network protocol inference to functional confirmation testing of circuits. However, L*
requires a frequent reset to the initial state. L* only learns a model (state machine) and
does not approximate a policy function or an action-value function.

2.3.3 Reinforcement Learning Algorithms in Software Testing

Table 2-2 summarizes some papers and projects about RL-based software testing. There are many
other similar works in this field.

Table 2-2 Part of Papers and Projects on RL-based Software Testing

Paper Field RL Algorithm Learn a
Model of SUT

Testing Goal Maturity

(Sant, Souter,
& Greenwald,
2005)

Web
Application
Testing

Passive learning
of state machine

Yes Simply transfer
user log to a
model

Research at
university

(Veanes, Roy,
& Campbell,
2006)

Test programs
with .NET
languages

Like Q-Learning No, it already
has a (implicit)
model written
by developers

Action coverage
(cover all actions
in all states)

Research at
Microsoft

(Bauersfeld &
Vos, 2012)

GUI Testing Q-Learning No Action coverage Research at
university

(Groce et al.,
2012)

API Testing SARSA No State coverage Research at
university

(Choi, Necula,
& Sen, 2013)

Android GUI
Testing

Active learning of
state machine

Yes State coverage Research at
university

(Reichstaller,
Eberhardinger,
Knapp, Reif, &
Gehlen, 2016)

Interoperability
testing

Q-Learning No, it already
has a model to
calculate risk

Risk Research at
university

(Spieker,
Gotlieb,
Marijan, &
Mossige, 2017)

Test Case
Prioritization
(Not test
command
generation, but
has similarities)

Like DQN No Failure number
of test cases

Research at
company

(Su et al.,
2017)

Android GUI
Testing

Like Q-Learning
(learn a model and
then mutate it to
get test cases)

Yes State coverage
(learn the model)
Code coverage
(mutate the
model)

Research at
university

(Adamo, Khan,
Koppula, &
Bryce, 2018)

Android GUI
Testing

Q-Learning No Action coverage Research at
university

(Groz, Simao,
Bremond, &
Oriat, 2018)

Embedded
System Testing
(C++
microcontroller)

Active learning of
state machine

Yes, up to
1000 states

Find all states Research at
university

(Vuong, &
Takada, 2018)

Android GUI
Testing

Q-Learning No Action coverage Research at
university

32

(Ahmad,
Ashraf,
Truscan, &
Porres, 2019)

Stress Testing
of Server

DDQN (a variant
of DQN)

No System
response time

Research at
university

(Dai, Li, Wang,
Singh, Huang,
& Kohli, 2019)

Test GUI and
programs in
domain specific
languages

A2C with Gated
Graph Neural
Network (GGNN)

No Code coverage Research at
Google
DeepMind

(Zheng et al.,
2019)

Game Testing A2C+Evolutionary
Algorithm

No Game score and
state coverage

Research at
Netease and
apply in real
world

(Bergdahl,
Gordillo,
Tollmar, &
Gisslén, 2020)

Game Testing PPO No Game score and
state coverage

Research at
Electronic
Arts

(Cai, Zhang, &
Yang, 2020)

Android/IOS
GUI Testing

UCB
/Monte Carlo Tree
Search
/Q-Learning

Yes Action coverage Massively
deployed in
Bytedance

(Harries, 2020) Windows GUI
Testing

DQN with Graph
Attention Network
(GAT)

No Multiple goals
can be
calculated

Research at
Microsoft

(Pan, Huang,
Wang, Zhang,
& Li, 2020)

Android GUI
Testing

Q-Learning with a
curiosity module

No Action coverage Research at
university

(Bagherzadeh,
Kahani, &
Briand, 2021)

Test Case
Prioritization
(Not test
command
generation, but
has similarities)

Compare DQN,
DDPG, A2C,
ACER, ACKTR,
TD3, SAC,
PPO1/2, TRPO.
Also uses (Spieker
et al., 2017) as a
baseline

No Failure number
of test cases,
execution time of
test cases,
deviation from
optimal solution
of datasets

Research at
university

(Lodge, 2021) Java Unit
Testing

The design details of the Diffblue Cover tool are
unknown. They claim to use RL that can work on a
developer laptop with 8GB memory and 2 Intel CPU
core.

Commercial
RL testing
tool

(Moghadam et
al., 2021)

Stress Testing Q-Learning/DQN No Maximize
response time
and error rate

Research at
institute

(Schwartz, &
Kurniawati,
2021)

Penetration
Testing

Q-Learning/DQN No Minimize exploit
cost and find
more sensitive
machines

Research at
university

(Tran et al.,
2021)

Penetration
Testing

Hierarchical
DDQN (a variant
of DQN)

No Attack every host
and finally find
the flag

Research at
university

(Test.AI, 2021) GUI Testing The details of the tool are unknown, but they claim to
use RL which looks like Q-Learning based GUI testing
mentioned above. The tool uses image recognition
techniques to detect labels and icons of GUI.

Commercial
RL testing
tool

(Zheng et al.,
2021)

Web Testing Q-Learning with a
curiosity module

Yes Action coverage Research at
university

(Romdhana,
Merlo,
Ceccato, &
Tonella, 2022)

Android GUI
Testing

Compare Q-
learning, DDPG,
SAC, TD3

No, but it has
a state
machine
written by
developers

Action coverage
and number of
crashes

Research at
university

33

In Table 2-2, the most popular approach to RL-based testing is using the Q-Learning algorithm to
perform GUI testing. There are several reasons:

- As mentioned in section 2.3.1, it’s easy to extract state information from GUI. It can be
easily achieved by image recognition or tools like Automator.

- For a GUI application, the number of states and actions is usually limited if you properly
filter equivalent states and actions. For example, (Choi, Necula, & Sen, 2013) tested 10
Android applications and could only find up to ~200 states in an APP. In this situation, it’s
suitable to use simple RL algorithms with tables as approximators.

RL algorithms with neural network approximators, or Deep Reinforcement Learning (DRL), came to
the software testing field around 2017. (Spieker et al., 2017) was a remarkable success because it
just used a very simple neural network (with one hidden layer) and achieved good performance on
its dataset. (Bagherzadeh et al., 2021) Compared multiple DRL algorithms and found trust region
methods like PPO, TRPO and ACER performed well in their settings. (Dai et al., 2019) and (Harries,
2020) were the first works to use graphs to represent states and use a graph neural network to
process the states.

It’s interesting that these papers only learn finite state machine models of the system under test
(SUT) instead of neural network models. Two survey papers (Durelli et al., 2019) and (Omri & Sinz,
2021) showed that some researchers did model the SUT with neural networks, but no one
combined it with reinforcement learning. This may be a research gap.

Several RL-based testing tools have been deployed since 2020. However, their design details are
mostly unknown to the academic community. An exemption is the Fastbot of Bytedance (Cai et al.,
2020), which uses Q-Learning and image recognition to perform GUI tests.

2.4. Formulate the Research

This work aims to find a way to test onboard software automatically with limited prior knowledge.
Previous sections show random testing, and the genetic algorithm are the traditional ways to do
that, but both have some disadvantages. Reinforcement learning, as a new approach in software
testing, may solve these problems.

Based on the discussion above, this section formally formulates the research with assumptions,
research questions, and opposite opinions.

2.4.1 Assumptions

Assumption-1 The onboard software testing process can be seen as an MDP, i.e., it
satisfies the Markov property, and all state variables are observable.

The performance of the RL algorithm can verify this assumption.

Assumption-2 Performance of software testing algorithms can be measured by metrics like

code coverage (in correctness testing) and CPU load (in stress testing).

This assumption is difficult to verify. There is no direct relation between test
coverage and the number of identified bugs. However, most of the papers in
this field used this assumption.

34

Assumption-3 Prior knowledge in software testing is human-defined problem-specific
knowledge, such as:

- How to encode/decode commands and telemetry
- Rules are used to identify the current state from the telemetry or the

interaction history.
- What action should be taken in the current state.
- Whether the current state contains an anomaly.
- A model is used to predict the system's future state under test.
- Design of the objective function or the reward function.

On the other hand, problem-independent knowledge, like the algorithms in the
testing tools, is not thought of as prior knowledge in this study.
Hyperparameters in the algorithms can be tuned by grid search or other
methods, so they are not prior knowledge.

This assumption is intuitively valid.

Assumption-4 The amount of prior knowledge cannot be directly measured. However, we

can list types of prior knowledge in a testing method and compare them
based on experience.

Assumption-5 Other onboard software, especially software of CubeSats and PocketQubes,

share similarities with Delfi-PQ flight software. Therefore, the conclusions and
recommendations of this study can be partly generalized.

 This assumption will be further discussed in chapter 3.

2.4.2 Research Questions

The main research question is

Can a reinforcement learning-based testing tool generate testing commands for small
satellites with limited prior knowledge?

We divide it into the following sub-questions:

RQ-1 What is the goal of testing command generation?

As mentioned above, the testing goal can be maximizing state/action
coverage, code coverage, system response time, or the number of failures.
Since reinforcement learning uses a reward function to guide the search, we
can measure the testing goal quantitatively.

RQ-2 What type of prior knowledge needs to be encoded?

Assumption-3 lists several types of prior knowledge.

RQ-3 Which RL algorithm is suitable for testing command generation?

It includes the selection of the RL algorithm and the implementation details,
including the toolchain, representations of states and actions, and the neural
network architecture.

35

RQ-4 What kind of testing environment should be used?

It includes the hardware and software settings of the test, such as
communication between the host computer and the tested board, testing
multiple boards simultaneously, and whether a simulator is needed. Note that
we must ensure the testing commands will not damage the satellite.

RQ-5 Can we use a trained RL agent to test other software versions?

Testers may want to reuse an RL agent in regression testing. This study will
measure the performance of such reuse and compare it with training an agent
from scratch (cold start).

2.5. Brief Summary of the Chapter

⚫ Compared with conventional software testing, embedded software testing has a series of
challenges because of limited hardware capability and communication.
Therefore, simulation-based testing is widely adopted. However, it is difficult to 100%
mimic the behaviour of actual hardware.

⚫ Onboard software testing is a type of embedded software testing. Some engineers use
simulation or a virtual satellite to test the onboard software. Unfortunately, this
approach is usually infeasible for small satellite programs with a limited budget. Another
trend in onboard software development is model-based automated code generation,
which makes the software safer and model-based testing easier. Moreover, model-
checking tries to prove the SUT has the correct behaviour instead of testing it. Model
checking requires a model of the SUT.

⚫ Traditional automated testing approaches are model-based testing, symbolic
execution, random testing, and search-based testing. It is convenient to use model-
based testing to verify whether the SUT satisfies functional requirements. On the other
hand, model-based testing heavily relies on prior knowledge specified in the models. At
the same time, search-based testing is a powerful tool for verifying non-functional
requirements and usually requires less prior knowledge.

⚫ The most popular search-based testing algorithm is the genetic algorithm, but it has
some disadvantages. It relies on the objective function to guide the search and discards
other information from the execution. Furthermore, the time-consuming algorithm may
need to be run repeatedly in regression testing.

⚫ Reinforcement learning-based testing may compensate for the shortcomings of the
genetic algorithm. It utilizes both the state and reward information during the testing.
Moreover, it may learn a pattern of similar SUTs and not need to run again in regression
testing. RL-based testing has been researched for about 15 years. In the recent 2~3
years, it has been deployed in production scenarios.

⚫ No one has used reinforcement learning in onboard software testing yet. Few
researchers use RL to test embedded software without a GUI. There are still some
fundamental challenges in this field.

36

3 Testing Environment

This section introduces the testing environment used in the study. More specifically,

⚫ Section 3.1 gives an overview of the functions of subsystems of Delfi-PQ, especially the
hardware configuration.

⚫ Section 3.2 introduces the onboard software of Delfi-PQ. It also compares the Delfi-PQ
onboard software with open-source onboard software, e.g., NASA’s core Flight System.

⚫ Section 3.3 introduces the hardware and software tools used in testing.
⚫ Section 3.4 explains how to extract information from the source code of onboard

software, such as collecting code coverage, generating a graph representation of the
program, and using the representation as input to a neural network.

⚫ Section 3.5 is a summary of this chapter.

3.1. Overview of Delfi-PQ Subsystems

The first Delfi-PQ has 7 subsystems:

- On-Board Computer (OBC)
- Communication System (COMMS)
- Antenna Deployment Board (ADB)
- Electrical Power System (EPS)
- Attitude Determination and Control System (ADCS)
- A low frequency radio payload (LOBE-P)
- A redundant on-board computer.

The stack of these subsystems is shown in Figure 3-1.

Figure 3-1 Stack of Delfi-PQ Subsystems

37

Each subsystem has a Texas Instrument MSP432P4111 microcontroller, which controls how the
subsystem works. All these microcontrollers are connected to an RS-485 bus with a speed of
115.2kbps. The OBC is the master of the bus except during testing. Only the OBC can actively send
frames over the bus, and other subsystems only reply passively. The bus only allows half-duplex
communication; each frame has up to 253 bytes of payload. Each microcontroller also has SWD
pins, which can be connected to a PC via a JLINK connector.

The 48MHz microcontroller has 2MB Flash and 256KB SRAM. There is also a 512KB FRAM for
each microcontroller. Information in a FRAM will not be lost after a reset. However, only the OBC
has a 2GB SD card to store telemetry.

Every microcontroller should kick an external watchdog on the board at least once every 2.5
seconds. Otherwise, the board will be reset. At the same time, a microcontroller should kick an
internal watchdog at least once every 178 seconds. Otherwise, the controller will be reset. These
are basic measures to deal with space radiation.

The OBC controls how the subsystems work. It has a state machine which covers the fundamental
operations of the satellite. Figure 3-2 shows that the state machine has five modes: initial mode,
antenna deployment mode, safe mode, ADCS mode, and normal operation mode. In the normal
operations mode, the OBC will periodically request telemetry from every subsystem, save the
telemetry in its SD card, and send it to the ground via COMMS. OBC will also periodically request
ground commands from the COMMS. If the command is for OBC itself, it will deal with it and reply to
the ground station. If the command is for another subsystem, OBC will forward the command to that
subsystem, wait for the reply, and send a reply to the ground.

Figure 3-2: The State Machine in OBC

The EPS consists of the battery board (1500mAh, two batteries of 3.7V), the main EPS board and
solar panels. EPS manages four power lines, and each line has some subsystems on it. According
to commands from the OBC, EPS can enable, disable, reset, or power cycle a power line. EPS is
designed to be constantly running after the deployer releases the Delfi-PQ. Therefore, a reset of the
EPS leads to resetting the whole satellite. If the battery voltage is below 3.6V, the OBC should
commend the EPS for disabling the power lines of unnecessary subsystems.

The COMMS receives and decodes the signal from the ground station. It automatically puts the
ground commands into the RX (receiver) queue. If the OBC requests ground commands from the

38

queue, COMMS will take a ground command from the queue and send the command to the OBC.
Furthermore, if the OBC needs to send a message to the ground station, it will command COMMS
to put the message into the TX (transceiver) queue. COMMS will automatically send all messages in
the TX queue to the ground. The RX/TX queue can store up to ~200 messages. The communication
is full-duplex with a nominal speed of 1200 bps or a higher speed of 9600 bps at 2W power
consumption. In an emergent case, if the COMMS receives a special command from the ground, it
will raise a special line to reset the EPS, which will reset the whole satellite.

Another critical subsystem is the ADCS. It has an integrated sensor chip, including a gyroscope, an
accelerometer, and a geomagnetic sensor. It also has three house-made coils as magnetometers to
control the rotational speed of the satellite. If the rotation speed exceeds 5 deg/second, the OBC will
command the ADCS to slow down the rotation.

ADB is used to deploy the antennas after the satellite is released from the deployer. The payload is
another radio which will generate scientific data. The redundant onboard computer board only has
an MSP432 and some essential components.

Table 3-1 summarizes part of the hardware of Delfi-PQ subsystems.

Table 3-1 Part of Hardware of Delfi-PQ Subsystems

Shared by every
subsystem

Texas Instrument MSP432P4111
microcontroller

48MHz, 2MB Flash, 256KB SRAM, 65mW
Internal watchdog period:178s

Cypress CY15B104QN
Ferroelectric RAM (FRAM)

512KB, controlled by on-board SPI bus

Texas Instrument TMP100
temperature sensor

Controlled by on-board I2C bus

Texas Instrument INA226 current
and voltage sensor

Controlled by on-board I2C bus

Texas Instrument TPS3813
external watchdog

Period: 2.5s

STBB1-A DC-DC Converter

Analog Devices LTC4368 surge
protector

Protection trip

Current limiting resistor

RS-485 inter-board bus Speed: 115.2kbps
Payload size of a frame: 256 bytes

SWD pins for debug

OBC specific
hardware

SD card 2GB

EPS specific
hardware

AW 16340 ICR123 750mAh
battery * 2

1500mAh in total, 3.7V
Integrated with protection circuits and gas
gauges

4 Solar panels Each panel has an MPPT, a temperature
sensor, and a voltage/current sensor
Orbital average power: 1W

4 Unregulated power lines With monitoring + latch-up protection

COMMS
specific
hardware

Main radio board with SX1278
LoRa Module

Full control of the radio
Multiple protocols
Full duplex
Data rate: 1200bps~9600bps

RF front end with a power
amplifier and a low-noise amplifier

Max power consumption: 2W

Special line to reset EPS

UHF/VHF antennae

ADCS specific
hardware

Integrated sensor chip Bosch
BMX-055

Include a gyroscope, an accelerometer,
and a geomagnetic sensor

39

Magnetorquer With 3 house-made coils

Other hardware A low frequency radio payload
(LOBE-P)

A laser reflector

A board with MSP432 for students It’s the GPS board in the original plan, but
the GPS module didn’t work before
integration

Antenna Deployment Board
(ADB)

3.2. Onboard Software of Delfi-PQ

The onboard software has three parts:

⚫ Drivers, i.e., driver functions of peripherals.
⚫ DelfiPQcore, a lightweight operating system with some helper functions.
⚫ asks and services. All subsystems share some tasks and services. On the other hand,

some tasks and services are written for a specific subsystem.

The onboard software is edited, compiled, and loaded to the microcontroller by the Texas
Instrument Code Composer Studio IDE. We use the old TI ARM C/C++ compiler (TI v20.2.0LTS),
though TI has a new compiler based on Clang.

We will discuss the general workflow of the onboard software in section 3.2.1, the basic concepts of
DelfiPQcore in section 3.2.2, and tasks and services in section 3.2.3. This section is based on
internal reports by Stefano Speretta and Casper Broekhuizen.

3.2.1 Workflow of Onboard Software

The general workflow of the programs can be described as a sequence of initialization steps, after
which the program will go into a continuous task loop, as shown in Figure 3-3. In this loop, it does
the following:

40

Figure 3-3: Workflow of Onboard Software of Delfi-PQ by Casper Broekhuizen

Step 1
Initialize Hardware This step should initialize the critical components of the subsystem,

including general hardware in the MCU and specific hardware for the
subsystem.

Step 2
Execute Bootloader One of the software's core features is the possibility of loading

different software versions from the flash memory of the MCU.

Step 3
Get Hardware Status Critical hardware status indicators should be collected and stored.

These critical status indicators include the reset status (the reason for
the last reboot) and possible clock faults.

Step 4
Execute Task After the operating system has completed its boot steps, it starts a

continuous task execution routine, which can be considered a simple
non-pre-emptive, non-prioritized, linear scheduler (round-robin).

3.2.2 Important Concepts of DelfiPQCore

In this section, we introduce some basic concepts and functions of the DelfiPQCore, a
straightforward operating system made in house.

41

Task After the operating system starts, tasks can be executed. Any

processing/data collection or other action executed by the device is a
task.

A task consists of an initializer function, a function executed once
during the initialization of the scheduler (called task manager), and a
user function that executes every iteration of the task.

Every task has an execution flag. Raising this flag will tell the task
manager that this task is ready for execution. If the execution flag is
not raised, the task will not be executed and will be skipped by the
task manager. The execution flag can be raised either externally by
another task or using any interrupt routine. This action will henceforth
be called "notifying a task".

PeriodicTask Some tasks require periodic execution, and there might not be any

clear external trigger available to notify such tasks (such as a
telemetry collection task). Such a task is a periodic task, which
includes another parameter which contains the required amount of
'counts' for the task to be notified (1 'count' is approximately 0.1
seconds). An external object, the task notifier, will notify the period
tasks assigned to it in an interrupt routine.

Service The most common source of notifying a task is from an external

trigger over the satellite bus. The satellite bus driver will receive bytes
over the bus using a hardware interrupt routine. If a complete frame is
received, a command handler task will be notified, and copy the
received frame into its buffer.

Then, the scheduler will execute the command handler task since its
execution flag is raised. The command handler will read the data
frame and 'poll' so-called services registered.

When a service detects that the received frame is for itself, it will
process the received frame, set a response frame, and tell the
command handler that the service has processed the received frame.
The command handler will stop polling other services and reply over
the bus.

A user should create a service for every functionality required over the
satellite bus.

PQ9Frame Though the command handler handles any frame it receives, the

services used are frame-specific. The frame (PQ9Frame) is built in the
following way:

Table 3-2 PQ9Frame Definition

42

Whereas the frame Payload is described as follows:

Table 3-3 PQ9Frame Payload Definition

 PQ9Frame has CRC verification.

Software Update As mentioned earlier, one of the core functionalities of the DelfiPQcore

is to execute a different software version from the FLASH. The
bootloader handles this functionality. This bootloader requires an
external memory (FRAM) that holds non-volatile information regarding
which memory slot needs to be executed, whether the last execution
was successful, and the number of reboots. If this information tells the
bootloader that the target slot is broken or has issues (or if the
external FRAM is unavailable), it will fall back on the default slot (Slot
0).

The device has three slots available, Slot 0, the default slot protected
in the FLASH and cannot be reprogrammed, and Slot 1 & Slot 2,
which can be reprogrammed. SoftwareUpdateService allows a binary
file transfer of a new software version over the bus to reprogram the
FLASH. Thus, a module can be reprogrammed externally and even in
orbit. Note that the FRAM needs to be present for this functionality to
work.

3.2.3 Tasks and Services in Each Subsystem

Table 3-4 summarizes the tasks and services of Delfi-PQ subsystems.

Table 3-4 Tasks and Services of Delfi-PQ subsystems

43

 Task Service

DelfiPQcore
(For all
subsystems)

Timer task
(a periodic task which collects
telemetry of the subsystem every
second)

Ping service
(Reply to the Ping command)

Command handler task
(Process received frames and replies)

Reset service
(Reset or power cycle the controller)

 FRAM service
(Read, write, or erase the FRAM)

 Housekeeping service
(Send the telemetry collected by the timer task
as a response)

 Software update service
(Handle software update commands, and new
binary software is the payload of some software
update commands)

Only for ADB Burn task Burn service
(Burn the wire that locks the antenna, so the
antenna is deployed)

Only for
ADCS

None Coil service
(Set states of the magnetorquers)

Only for
COMMS

CommRadio task Radio service
(A set of functions to interact with COMMS)

Only for EPS None Power bus handler
(Set states of the power lines)

Only for
LOBE-P

lobepRadio task
(Like the CommRadio task, but work in
lower frequency)

lobep service
(Like the radio service, but working on lower
frequency)

Only for OBC State Machine task
(A periodic task that runs the simple
state machine in section 3.2.1)

State machine service
(Get / set the current state; enable beacon or
reset the state machine)

File system task
(Raised by the telemetry request
service to retrieve telemetry from the
SD card asynchronously, or raised by
the state machine to store telemetry in
the SD card)

Telemetry request service
(Request telemetry file from the SD card or
format the SD card)

 Bootloader override service
(Command the microcontroller to jump to a
specific slot. It should be a service shared by
multiple subsystems but is only an OBC service
at this moment.)

3.2.4 Safety Measurements in the Onboard Software

Delfi-PQ does not have complex fault-handling mechanisms. It only has some fundamental safety
measurements, including:

- If there is no response from a subsystem, OBC will resend the command.
- The microcontroller kicks the external watchdog when receiving a PQ9Frame. The board

will be reset if no frame is received, or the controller does not kick the watchdog during
the 178 seconds. Therefore, if OBC does not send commands to EPS during the period,
EPS will be reset, leading to a complete satellite reset.

- The microcontroller kicks the internal watchdog in the main loop. If the controller is stuck
and does not kick the watchdog during the 2.5 seconds, the controller will be reset.

- With a special command from the ground station, COMMS can directly reset EPS via a
special line.

44

- CRC checking of the PQ9Frame.
- MD5 checking of binary source code.
- Multiple software images in the flash of a microcontroller.
- Important program variables have backups in the FRAM.
- We carefully design the state machine of OBC, which includes sensor check and a

degraded safe mode.

For more information about radiation hardening and safety measurements on CubeSat/PocketQube
platforms, the readers can refer to (Yuen & Sima, 2019).

3.2.5 Compare with Other Onboard Software

The Delfi-PQ software has a similar architecture to the onboard software of the bigger satellites. For
example, the NASA core Flight System (cFS) has three layers: user applications, the core Flight
Executive (cFE), and the platform abstraction layer (McComas, 2021). The Delfi-PQ has three
similar layers: user applications (subsystem-specific tasks & services), the DelfiPQcore, and the
hardware abstraction layer (drivers).

Figure 3-4 Architecture of NASA Core Flight System (McComas, 2021)

The DelfiPQcore offers some functionalities of a real-time operating system and the cFE. It provides
a bootloader, task creation and scheduling, bus command handling, and software update capability.
Although operating systems like FreeRTOS can support more, such as dynamic memory allocating
and queues for inter-task communication, the current functionalities of DelfiPQcore are enough to
use in a PocketQube mission.

Table 3-5 compares the tasks of Delfi-PQ with the open-source set of cFS applications (Timmons,
2020). The Delfi-PQ tasks and services offer some basic functionalities of the cFS applications, like
command uplink and telemetry downlink. However, it does not support fault handling, memory
integrity checking, or processor address sampling. The Delfi-PQ software is also incompatible with
the standards of the CCSDS committee, which can be very time-consuming. cFS has many
mission-specific applications, such as data processing, attitude control, navigation, and instrument
calibration, which are much more complex than current Delfi-PQ applications.

Table 3-5 Compare cFS Open-Source Applications with Delfi-PQ Applications
Application in cFS Explanation Similar Functionality in Delfi-PQ

Health and Safety
App

Kick watchdog, monitor applications
and events, take table-defined actions

Kick watchdogs, but do not monitor
tasks and take recovery actions

Housekeeping App Collects and re-packages telemetry
from other applications

Housekeeping service

Data Storage App Record housekeeping, engineering.
and science data onboard for downlink

OBC state machine does it

File Manager App Interfaces to the ground for managing
files

No

45

Limit Checker App Compare the telemetry with thresholds
and take table-defined actions

OBC state machine checks some
telemetry parameters

Memory Dwell App Sample data at any process address No

Scheduler App Schedule onboard applications DelfiPQcore scheduler can do it

Stored Command
App

Executes preloaded command
sequences at predetermined time

No. Delfi-PQ execute all ground
commands immediately

Software Bus
Network

Passes Software Bus messages over
various “plug-in” network protocols

No. Delfi-PQ has some dirty ways for
inter-task communication, such as call
back functions and global viriables

Checksum APP Performs data integrity checking of
memory, tables, and files

Delfi-PQ will check MD5 of binary code
during software update, but it won’t
check that in normal operation

Memory Manager
App

Provides the ability to load and dump
memory

No

CFDP App Transfers/receives file data to/from the
ground according to CCSDS CFDF
protocol

The telemetry service can transfer
telemetry data from the SD card to the
ground station. It doesn’t follow the
CFDF protocol

Command Ingest Lab Accepts CCSDS telecommand packets
over a UDP/IP port

OBC state machine and the radio
service accept ground commands. It
doesn’t follow the CCSDS standard

Telemetry Output
Lab

Sends CCSDS telemetry packets over
a UDP/IP port

OBC state machine and the radio
service send telemetry to the ground. It
doesn’t follow the CCSDS standard.

We can also look at onboard software developed by other universities. California Polytechnic State
University (Cal Poly) was one of the universities that proposed the CubeSat standard. Their first-
generation onboard software was developed from scratch and had similar functionalities to Delfi-
PQ. However, this software has no hierarchy, and all source code is put in a single file. Their
second-generation software was based on Linux (Manyak, 2011). Compared with the Delfi-PQ
software, it only adds a system manager (like cFS Health and Safety App) and inter-process
communication API (based on Linux UDP/IP tool).

Table 3-6 compares the lines of code of several open-source onboard software repositories
(measured by cloc), which is a metric to measure their complexity. Note that this metric is inaccurate
because some source codes may be duplicated.

Table 3-6. Lines of Code of Some Open-Source Onboard Software Repositories
Onboard Software Repository Number of Lines of Code Languages

Delfi-PQ Flight Software12 20107 C, C++

NASA Core Flight System13 100132 C, C++, Python, Perl

NASA JPL F Prime14 82915 C, C++, Python

KubOS15 57968 Rust, C, Python

ESA Nanosat-MO-Framework16 543396 Java

Cal Poly libproc17 for CubeSat 25649 C, C++

FossaSat-1 Pocosatellite18 1534 C++

EASAT-2 PocketQube19 1816 C

MelbourneSpaceProgram20 21668 C, C++

12 https://github.com/DelfiSpace/FlightSoftwareWorkspace
13 https://github.com/nasa/cFS
14 https://github.com/nasa/fprime
15 https://github.com/kubos/kubos
16 https://github.com/esa/nanosat-mo-framework
17 https://github.com/PolySat/libproc
18 https://github.com/FOSSASystems/FOSSASAT-1
19 https://github.com/AMSAT-EA/easat-2
20 https://github.com/MelbourneSpaceProgram/msp_flight_software_public

46

As a summary of this section, the Delfi-PQ onboard software is simpler than professional onboard
software made by space agencies. However, it has a similar complexity to other educational
CubeSats/PocketQubes and is even more complex than others.

Let us look at them using a hierarchical perspective. The DelfiPQcore provides similar capabilities to
the professional onboard software, though it does not have a formal inter-task communication
function or complex fault-handling mechanism. On the other hand, in the application layer, Delfi-PQ
software is much simpler than professional onboard software.

As an educational program, Delfi-PQ does not strictly meet relevant standards. It makes the
implementation simpler.

3.3. Test Set-Up

In this section, the hardware and software set-up used in this research will be discussed.

3.3.1 Hardware Set-Up

The subsystem boards can be placed on the Electrical Ground Support Equipment (EGSE) board
during testing. The EGSE board transfers messages between the RS485 bus (of Delfi-PQ) and the
USB stream. Moreover, the lab computer is also connected to the SWD pins of the microcontrollers
on the subsystem boards. The SWD connection can be used to modify the onboard software code.

This study does not use an RF checkbox to communicate with the subsystems wirelessly. However,
as shown in Figure 3-5, TX and RX antennae are connected to the COMMS board. If the
transceiver and receiver in COMMS are set to the same data rate and frequency, the COMMS can
“hear” the signal sent by itself and check the wireless communication channel.

The experiments can be conducted remotely. The testing command generation tool can run on the
lab computer with a Windows 10 environment. The lab computer has an Intel E5-1620 CPU
(released in 2014) with 8GB RAM. The computing power of the lab PC is low, but the
communication speed between the lab PC and the EGSE board is quick.

On the other hand, the command generation tool can also run on cloud servers. Some experiments
use a cloud server of Alibaba Cloud in Frankfurt. The server has an Intel Xeon 8163 CPU (released
in 2017) with 31GB RAM and an Nvidia T4 GPU with 16GB memory (released in 2018). A ngrok
server and the lab PC will transfer messages between the EGSE board and the cloud server. The
computing power of the cloud server is relatively low, but the communication speed is slightly slower
(shown in Figure 3-13).

47

Figure 3-5: Hardware Set-up for the Testing

There are two ways for the lab computer to put a command over the bus:

- Single subsystem testing. The subsystem under test is put on the EGSE. The lab
computer sends commands to the subsystem and gets responses via the EGSE. When
testing the OBC, the OBC software is set to a “passive” mode, i.e., it waits for external
commands rather than actively sends commands over the bus.

- Multiple subsystems testing. Several subsystems are put on the EGSE, and the OBC
is the master of the bus. The testing tool mimics the behaviours of the COMMS
subsystem, so it also has an RX and TX queue. The tool puts the “fake ground
command” in the RX queue to send a command to a specific subsystem. The OBC will
periodically request commands in the RX queue and transfer them to destinations
according to the heads of the frames. After that, the OBC will collect replies to these
frames and put them in the TX queue, which will be read by the testing tool.

Limited by time and resources, this work only tests the COMMS and OBC in the “single subsystem
testing” scenario.

3.3.2 Software Set-Up

The basic software set-up is shown in Figure 3-6. The decision-making, IO processing, and code
coverage collection components need to be implemented in this research.

48

Figure 3-6: Software Set-up for the Testing

The Delfi-PQ team specifies the telemetry of Delfi-PQ in an XML file according to the XTCE
standard (CCSDS 660). We can also use an open-source XTCETOOLS21 to visualize the XML file.
However, the XTCE standard does not include telecommand definitions. It is also challenging to use
the XTCETOOLS to edit the XML file. Therefore, SUT parameters, telecommands, and responses
are specified in CSV files in this study, as shown in Figures 3-7, Figure 3-8, and Figure 3-9.

Figure 3-7: An Example of SUT Parameter Definition

Figure 3-8: An Example of Telecommand Definition

Figure 3-9: An Example of Response Definition

Based on these definitions, an IO processing module is implemented in this work. It includes a
parser and a state identifier, as shown in Figure 3-6. The parser maintains a list of all
telecommands. The decision-making module can select a command (e.g., the 12nd command) and
send it over the bus. According to the previous command and the raw response from the bus, the
parser can translate the response into a dictionary of interpretable parameters. After that, a state
identifier will update the current system state, according to human-defined rules.

21 https://gitlab.com/dovereem/xtcetools

49

Figure 3-10: The IO Processing Module

(Some algorithms in this work only use part of this module or even do not use it)

The IO processing module contains much prior knowledge, including:

- The definitions of parameters, telecommands and responses used by the parser.
- The human-defined rules used by the state identifier.

Too much prior knowledge is undesired in this work. To reduce the use of prior knowledge, some
algorithms in this study only use part of the IO processing module or even do not use it at all. The
following section will discuss how to extract information from the source code of the onboard
software, which does not need human-defined prior knowledge.

3.4. Extract Information from Source Code of Onboard Software

This section discusses collecting code coverage and generating a graph representation of the
source code. As mentioned in chapter 2, code coverage can represent a current state or evaluate
the amount of testing. On the other hand, code coverage can be added to the graph representation
and become input to a graph neural network.

3.4.1 Code Coverage Collection

There are several types of code coverage metrics (Pani, 2014), such as:

- Line coverage. 100% line coverage means covering every line of the source code.
- Branch coverage. 100% branch coverage means covering every branch of the source

code.
- Condition coverage (or decision coverage). 100% condition coverage means every

condition has been True and False at least once.
- Modified condition/decision coverage (MC/DC coverage). 100% MC/DC coverage

means every condition has been True & False for at least one, and its value determines
the result independently.

Among these metrics, measuring line coverage takes more memory footprint because it needs to
record the execution status of every line of code. MC/DC coverage is also complex to measure. By

50

contrast, branch coverage is relatively easy to measure since it just needs to record whether
branched are executed.

Some safety-critical software requires all these metrics to reach 100%. For example, in the ECSS-
E-ST-40C standard (2009), suppliers of space system software with the criticality “A” must achieve
100% statement coverage, decision coverage and MC/DC coverage, as shown in Table 3-7.

Table 3-7. Code Coverage Requirement in ECSS-E-ST-40C (2009)

Code coverage collection can be intrusive or non-intrusive (Pani, 2014). Intrusive
measurement needs instrumentation, i.e., adding additional program code that does not change
the behaviours of SUT. Such additional code can be added to the source, assembly, or binary code.
By contrast, non-intrusive measurement utilizes the tracing capability of processors and usually
needs special hardware. Intrusive measurement usually has more influence on the performance of
SUT.

Several commercial off-the-shelf coverage measurement tools were tried for Delfi-PQ:

⚫ Theoretically, the old TI ARM C/C++ compiler supports branch coverage collection. It
will instrument the source code during compilation if an option in the Code Composer
Studio is selected. When executing a particular command in the source code, a code
coverage file will be sent from the microcontroller to the host PC. The compiler must be
rerun to transfer the code coverage file to a readable report.

However, this coverage collection functionality does not work for Delfi-PQ flight
software. Even if it can work, it needs to manually rerun the compiler to get a coverage
report, which is not convenient. The new TI Clang compiler does better in coverage
collection, but we do not want to migrate to a new compiler.

⚫ Segger J-Trace Pro hardware supports real-time non-intrusive code coverage collection.

However, the MSP432 P series microcontrollers do not support tracing, which is
necessary for J-Trace.

⚫ Suppliers of other coverage measurement tools were also consulted. However, their

prices are too high. In 2021, a Tessy license cost €8000, an LDRAcover cost €12000,
and a VectorCAST cost €15000. Such high prices are not affordable for a thesis.

To solve the problem, a simple Python tool called pq9cov22 has been implemented. It’s inspired by a
straightforward coverage collection tool GeCov23. Figure 3-11 briefly shows how pq9cov works.

22 https://github.com/StarCycle/CodeCoverage
23 https://github.com/EDI-Systems/G2T01_GeCov

51

Figure 3-11: How PQ9cov Works

Testers first use pq9cov to add probes at the entry point of every branch. A probe is a function
called CodeCount(). CodeCount is a global function to set a bit of the code coverage array to 1. For
example, CodeCount(66) will set the 66th bit of the array to 1. Note that this step has no input
parameter in the CodeCount().

PQ9cov automatically identifies entry points of branches. Traditional coverage tools achieve this by
static code analysis, i.e., building abstract syntax trees of the source code. This approach is
relatively complex. Hence, pq9cov use carefully designed regular expressions to locate conditional
statements such as “if”, “for”, and “while”.

Nevertheless, regular expressions are still inaccurate and may ignore some edge cases. Testers
can delete or add CodeCount() in the source code to compensate for this shortcoming. This step is
optional. For Delfi-PQ flight software, such manual modification is usually not needed.

Then, testers need to use pq9cov to add labels to these CodeCount(). It will transfer CodeCount() to
CodeCount(n), where n is the label of the entry point. After that, the instrumented source code will
be compiled and run in the target MCU. During execution, the CodeCount(n) function calls will
record branch coverage in an array. Testers can retrieve the array from the MCU with a special
command or other ways.

Based on the code coverage array and the instrumented source code, pq9cov can generate a code
coverage report in a CSV file and visualize the coverage result in the source code. Testers can also
use pq9cov to automatically remove all probes in the source code.

Figure 3-12 shows the instrumentation process in detail.

52

Figure 3-12: Details of Instrumentation in PQ9cov

PQ9cov only takes a small memory footprint. Each probe result is stored in 1 bit of the array. For
onboard software of the COMMS and the OBC, there are about 716 probes (take 90 bytes) and
1329 probes (take 167 bytes), respectively. It is easy to store the code coverage array in an
MSP432 MCU with 2MB SRAM and retrieve it by a PQ9Frame with 253 bytes of payload size.

Transmission of the array takes more time than the expected response. This is because the size of
a typical payload is smaller than the size of the coverage array. Figure 3-13 shows the response
time of a typical command and a coverage collection command. Nevertheless, the transmission time
is still acceptable.

Figure 3-13: Response Time of a Normal Command and a Coverage Collection Command

Although the memory footprint and the transmission time are acceptable, this approach is still
intrusive. The instrumented program needs to call CodeCount() at the start of every branch, which
makes the program run slower. Such influence is difficult to measure, but we did observe it. For
example, the instrumented COMMS software missed some commands from the lab PC, which was
rare for non-instrumented software.

PQ9cov supports instrumentation of C/C++ source code but can adapt to other languages quickly. It
only has ~150 lines of code to achieve all functions mentioned above. Table 3-8 summarizes the
Pros and Cons of the coverage tool.

53

Table 3-8: Pros and Cons of PQ9cov
Pros Cons

Adapt to any MCU with slight modification Only support branch coverage

Testers can modify the probes before labelling Inaccurate instrumentation

Simple (~150 lines) and easy to understand.
You can modify the regular expressions to
adapt to other languages

Only support C/C++ now

Low memory footprint and collection time Calling CodeCount() makes the program
slower. Such influence is difficult to measure.

Coverage visualization in source code &
coverage report

3.4.2 Several Ways to Feed Code Coverage into Neural Networks

After we collect code coverage, we need to feed it into a neural network. There are several ways to
achieve this: use a plain coverage vector as input, use the source code with coverage result as
input, or combine the graph representation of the program with coverage result as input. Figure 3-14
briefly explains these three ideas.

Figure 3-14: 3 Ways to Use Code Coverage as Neural Network Input

Using a plain vector as input is the most straightforward idea, but it also has a primary challenge. As
explained by Figure 3-15, if programmers modify the source code of SUT and instrument it again,
they may find that the number and order of the probes are changed. That is to say, the length of the
coverage vector, and the corresponding branch of every element in the vector, are both changed
after source code modification. As a result, the original neural network becomes useless.

54

Figure 3-15: A Challenge of Using Coverage Vector as Input to a Neural Network

To make a trained neural network reusable after source code modification, we can put coverage
results in the source code, as shown in Figure 3-15. Then the neural network directly uses the
source code files as input. Nevertheless, such input can be very long and challenging to process.

The third idea is to use a graph to represent the source code of SUT and then combine the
coverage information with the graph. Theoretically, a trained graph neural network can be reused
for similar programs with similar graph representations. (Dai et al., 2019) took this approach in RL-
based testing. However, they only tested some toy programs in domain-specific languages and did
not explain how to build the graph.

This study will try the first approach (plain vector) and the third approach (graph) to generate input
for neural networks. In the following sections, the readers can see how to generate a graph
representation of a C/C++ program and combine it with code coverage information.

3.4.3 Extract Graph Representations of Programs from Execution Traces

We hope to generate a directed graph of the program under test. Some nodes of the graph
represent probes, i.e., CodeCount(i). Furthermore, the graph's directed edges show the nodes'
relations. Each node should have a feature vector and a coverage mask, indicating which nodes
have been covered.

The straightforward idea is to generate the graph during the program's execution. Apart from writing
the coverage array, the CodeCount(n) function call can also record the transition from the previous
probe to the current probe. In the end, testers can build a graph with these nodes and transitions.
Figure 3-16 explains this idea in detail: the instrumented program maintains an array to record the
transition from the previous CodeCount() to the current CodeCount(). This array is sampled
periodically, and new transitions will be added to the graph.

55

Figure 3-16: Generate the Graph Representation during Program Execution

This approach has been implemented. Figure 3-17 shows the generated graph for the COMMS
software. In that version of COMMS software, there are 716 CodeCount probes, but only 299 are
executed. Hence, there are only 299 nodes in the graph.

Moreover, this method's communication load and memory footprint are more severe. The transition
array is larger than the coverage array because every element is a LONG variable with 4 bytes.
Assuming there are 2024 probes in the source code, the size of the coverage array will be
2024/8=253 bytes, while the transition array will have 2024*4=8096 bytes. In the end, we must use
multiple frames to retrieve the transition array to the lab PC.

Figure 3-17: Graph of the COMMS Software Extracted from Execution Traces

In addition to performance effects and incompleteness of the graph, this method cannot generate
feature vectors of nodes, which are needed by graph neural networks. Consequently, another graph
generation approach needs to be taken.

3.4.4 Extract Graph Representations of Programs by Static Code Analysis

Another way to generate the graph is static code analysis. For example, there are tools to generate
control flow graphs from source code. A control flow graph (CFG) records possible paths in a
program, as shown on the right side of Figure 29. Theoretically, if we get a control flow graph of the
SUT, we can combine it with code coverage information.

56

Like the story in section 3.4.1, several off-the-shelf tools were tried:

- TI Code Composer Studio can extract calling trees of the source code. However, the
trees include too many low-level functions in the libraries used by Delfi-PQ software.
Function names in the trees are also modified. It is challenging to combine these trees
into a graph.

- Other tools, like CodeViz, rely on output from compilers like GCC and Clang.
Unfortunately, they do not support the old TI ARM compiler we use.

An open-source code parser called Joern24 is selected. Joern supports languages like C/C++,
Python, and Java. Moreover, Joern can even parse the code with errors. These properties mean
Joern can quickly adapt to different programs.

After parsing the source code, Joern can generate a CFG for every function in the program.
However, it cannot generate a single CFG for the whole program. In other words, Joern cannot find
the link between a function call and the called function. For example, if there is a Reset() call in the
program, we cannot directly find where the definition of Reset() is.

This study implements a tool to generate a graph representation based on the output from Joern.
We first use Joern to generate CFGs for functions in the programs with the following command:

cpg.method.isExternal(false).nameNot(".*<.*>.*").map(node => (node.id,
node.methodReturn.id, node.name, node.filename, node.lineNumber.l,
node.dotCfg.l)).toJsonPretty |> "methods.txt"

The command will generate the following information for every function in the source code:

- ID of the “start” node of the method, given by Joern
- ID of the “return” node of the method, given by Joern
- Method name
- Name of the file which contains the method
- Line number of the method
- Control flow graph of the method in JSON format

Based on this information, the tool traverses control flow graphs of all methods and connects
method calls to method “start” nodes with the same method names, as shown in Figure 3-18. This
step also connects separated control flow graphs into a complete control flow graph. Although such
connections do not represent actual control flows, similar programs will still have similar graph
structures, which makes the neural network reusable (section 3.4.2).

Figure 3-18: Connecting Method Call to Method

There are only three types of nodes in the complete control flow graph: “start” nodes of methods,
“return” nodes of methods and CodeCount nodes. Figure 3-19 is the extracted graph structure from
the COMMS software, which contains 1517 nodes and 3925 edges. When deleting all

24 https://joern.io/

57

“start”/“return” nodes and directly connecting the CodeCount nodes, the number of edges will grow
to a ~100,000 level.

Figure 3-19: Graph of the COMMS Software by Static Analysis

The tool also generates feature vectors for nodes in the complete control flow graph. It first trains a
Word2Vec model (Mikolov, Chen, Corrado, & Dean, 2013) with all source code files of the Delfi-PQ
software. After that, the tool gives the following feature vector for node i:

 𝜇𝑖 = (𝑡𝑦𝑝𝑒𝐼𝐷𝑖, 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐(𝑚𝑒𝑡ℎ𝑜𝑑𝑁𝑎𝑚𝑒𝑖), 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐(𝑓𝑖𝑙𝑒𝑁𝑎𝑚𝑒𝑖)) (3-1)

The 𝑡𝑦𝑝𝑒𝐼𝐷𝑖 is 0 for a method “start” node, 0.5 for a method “return” node, or 1 for a CodeCount

node. The length of a feature vector 𝜇𝑖 is 127, plus a coverage mask 𝑐𝑖 ∈ {0,1}. The tool uses the
Gensim25 library to train the Word2Vec model.

This method is better than the approach in section 3.4.3 since it does not affect the performance of
SUT. It can also find all CodeCount probes and generate corresponding feature vectors.

3.5. Brief Summary of the Chapter

⚫ The Delfi-PQ satellite consists of several subsystems. They have some standard hardware and

unique components. Each subsystem has a microcontroller, and its onboard software runs on
the microcontroller. These controllers are connected to an RS-485 bus, and the onboard
computer (OBC) is the master of the bus.

⚫ Onboard software of each subsystem shares the same DelfiPQcore, which acts as a lightweight
operating system and relative middleware. The software also has applications depending on its
functions.

⚫ We compared the Delfi-PQ flight software with other onboard software. We found that the
software of other PocketQubes and educational CubeSats have a similar (or lower) complexity
as Delfi-PQ. The DelfiPQcore provides most of the mission-independent functions of a famous
onboard software architecture, NASA core Flight System (cFS), although it does not follow

25 https://radimrehurek.com/gensim/

58

some standards. However, the apps of Delfi-PQ are much simpler than some mission-specific
applications developed for cFS.

⚫ The testing command generation tool can run on a lab computer or a cloud server. The
command will be put on the RS-485 bus by the Electrical Ground Support Equipment (EGSE)
board. However, the bus only has one master, i.e., the EGSE or the OBC. To avoid potential
bus contention, we can set the OBC to a “passive” mode that only receives commands from the
bus and replies. Another approach is to let the EGSE mimic the COMMS subsystem. The OBC
will poll the “fake COMMS system” to retrieve the “fake ground commands”. This research uses
the first method.

⚫ An IO processing module is implemented in this work. The IO processing module consists of a
parser and a state identifier. The module can list all subsystem commands and extract symbolic
state variables from the response. However, the module needs a significant amount of prior
knowledge specified by the testers. Thus, some command generation algorithms in this work
only use part of the module or even do not use it.

⚫ A code coverage measurement tool is implemented in this work. The tool can instrument
C/C++ source code automatically. A code coverage collection command is defined in the Delfi-
PQ flight software. Moreover, the tool can analyse the response of the coverage collection
command and generate a coverage report.

⚫ We can directly use the code coverage vector as input to the neural network. However, the
corresponding branch of each element in the vector may change after source code
modification. It makes the trained RL algorithm unable to test a new software version
(regression testing).

⚫ To make the algorithm useful in regression testing, we can represent the code coverage in a
graph (e.g., control flow graph). In the research, we use Joern to generate control flow graphs
for every method in the source code of the onboard software. After that, we use an algorithm to
connect these graphs and form a graph representation of the full software.

⚫ In the graph, each node has a feature vector (3-1). The vector is embedded by a Word2Vec
model from the method and file names. The edges do not have feature vectors.

59

4 Algorithm Designs

This section introduces the algorithms used in this study. Representative reinforcement learning
algorithms in Table 2-2 are implemented, including:

- The tabular Q-Learning algorithm.
- The Deep Q Network (DQN) algorithm. We choose the Dueling Double Deep Q Network

(D3QN). It is a value-based algorithm.
- The Proximal Policy Optimization (PPO) algorithm is an actor-critic algorithm.

The D3QN and PPO implementations also have different configurations. For example, they may
have different types of neural networks, including:

- The MLP network, i.e., fully-connected layers.
- The Gated Graph Neural Network (GGNN).
- The Graph Attention Layers (GAT).
- Graph pooling layer (optional).

On the other hand, two baselines are used to compare with the RL-based testing. The first baseline
is random testing, and the second is search-based testing with the genetic algorithm.

4.1. Q-Learning

Q-Learning is one of the simplest reinforcement learning algorithms, but it is widely used in software
testing, especially GUI testing (Table 2-2). As a reference, this work tries to use Q-Learning to test
the onboard software.

4.1.1 Brief Introduction

As mentioned in section 2.3.2, the Q-Learning algorithm uses a Q table to record estimations

�̂�𝜋(𝑠, 𝑎) of the action-value function 𝑄𝜋(𝑠, 𝑎). To that end, states and actions in the Q-Learning
algorithm should be discrete scalars. Figure 4-1 is an example of the Q table.

Figure 4-1: A Q Table to Store �̂�𝜋(𝑠, 𝑎)

The Q-Learning algorithm has an ε-greedy behavior policy and a greedy target policy:

- During training, the agent selects the action 𝑎 with the highest �̂�(𝑠, 𝑎) with probability 1 –
ε, or it selects a random action with probability ε. ε is a small value (e.g., 0.1) and usually
decreases over time.

- When performing the task, the agent simply selects the action 𝑎𝑖 with the highest �̂�(𝑠, 𝑎).

In every time step 𝑡 + 1, the agent updates the Q table by:

60

 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) ← �̂�𝜋(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 ∙ 𝑚𝑎𝑥�̂�𝜋(𝑠𝑡+1, 𝑎) − �̂�𝜋(𝑠𝑡 , 𝑎𝑡)] (4-1)

Where 𝛼 is the learning rate, 𝛾 is the discount factor, and 𝑟𝑡+1 is the reward at step 𝑡 + 1.

4.1.2 States and Actions

We need to summarize the observation to a discrete scalar with the help of the IO processing
module in section 3.3.2. After sending a command and getting a response, the state identifier
generates a dictionary of the parameters of SUT. If the dictionary is never seen, it will be assigned a
scalar index and a new column in the Q table. Otherwise, the Q learning agent will find the original
index and column assigned to the dictionary.

At the same time, the parser lists all commands according to the CSV input files. The agent chooses
the following command during training according to the ε-greedy behaviour policy.

Although Q-Learning is simple, it has many disadvantages. As discussed in section 3.3.2, the IO
processing module needs much prior knowledge. Moreover, the Q-Learning algorithm can only
handle scalar input/output instead of high-dimensional input/output like code coverage vectors or
command vectors. It limits the usage of the algorithm.

4.2. Deep Q Network

The Deep Q Network (DQN) improves the basic Q-Learning algorithm. The idea is to use a neural
network to replace the Q table. It is easy to develop this idea, but the algorithm with a Q network is
not stable for a long time. Ultimately, this problem was solved with some tricks (Mnih et al., 2015).

4.2.1 Brief Introduction

To make the training more stable, the basic DQN algorithm has 2 neural networks: a value network

with weights 𝑤 to calculate �̂�𝜋(𝑠𝑡 , 𝑎𝑡), and a target network with weights 𝑤− to compute

�̂�𝜋(𝑠𝑡+1, 𝑎). The value network and the target network share the same parameters at the beginning.
In the training process, the optimizer only updates the weights in the value network. At every 𝑁𝑡𝑎𝑟𝑔𝑒𝑡

steps, the target network will be set equal to the value network. In other words, 𝑤− has a lag in

weight updates compared with 𝑤.

At every time step 𝑡, DQN selects action 𝑎𝑡 according to 𝑠𝑡 and the ε-greedy behaviour policy. After

that, it saves the transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in a replay buffer. When update the value network, the
algorithm will randomly sample some transitions in the replay buffer and minimize the following loss
function:

 𝐿𝑜𝑠𝑠 = −
1

𝑁𝜏
∑[𝑟𝑡+1 + 𝛾 ∙ 𝑚𝑎𝑥�̂�𝑤−

𝜋 (𝑠𝑡+1, 𝑎) − �̂�𝑤
𝜋 (𝑠𝑡 , 𝑎𝑡)]

2

𝜏

 (4-2)

Where 𝑁𝜏 is the number of transitions 𝜏 sampled from the replay buffer. �̂�𝑤−
𝜋 (𝑠𝑡+1, 𝑎) is the output of

the target network, whose inputs are 𝑠𝑡+1 and 𝑎. �̂�𝑤
𝜋 (𝑠𝑡 , 𝑎𝑡) is the output of the value network, whose

inputs are 𝑠𝑡 and 𝑎𝑡. These two networks share the same architecture and number of neurons, but
their weights are different.

61

The basic DQN algorithm tends to overestimate 𝑄𝜋(𝑠, 𝑎). To alleviate this problem, Van Hasselt,
Guez and Silver (2015) proposed the Double DQN algorithm. Its loss function is expressed as:

 𝐿𝑜𝑠𝑠 = −
1

𝑁𝜏
∑ [𝑟𝑡+1 + 𝛾 ∙ �̂�𝑤−

𝜋 (𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥�̂�𝑤
𝜋 (𝑠𝑡+1, 𝑎)) − �̂�𝑤

𝜋 (𝑠𝑡, 𝑎𝑡)]
2

𝜏

 (4-3)

In the second term, we select the action with the maximal �̂�𝜋(𝑠𝑡+1, 𝑎) using the value network and

recalculate its �̂�𝜋(𝑠𝑡+1, 𝑎) using the target network. Since the 2 network has different weights, it is
unlikely that they overestimate the same action. However, double DQN becomes more vulnerable to
noise.

Another improvement to the DQN algorithm is the Dueling DQN (Wang et al., 2016). It estimates
𝑄𝜋(𝑠, 𝑎) by 2 sub-networks: one estimates the state-value function 𝑉𝜋(𝑠), and the other estimate the
advantage function 𝐴𝜋(𝑠, 𝑎). Estimations from the sub-networks can be combined:

 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) = �̂�𝜋(𝑠𝑡) + �̂�𝜋(𝑠𝑡 , 𝑎𝑡) (4-4)

In this case, the loss function is still calculated by the value network and the target network, and
each of them has 2 sub-networks. In other words, the dueling DQN only changes the architecture of
the neural networks, which makes the estimation more accurate.

This study tries the Double Dueling DQN (D3QN) algorithm, i.e., combining the tricks mentioned
above with the basic DQN algorithm. A forward propagation process of the D3QN algorithm is
shown in Figure 4-2.

Figure 4-2: A Forward Propagation of the D3QN Algorithm

There are some hyperparameters in the D3QN algorithm, as shown in Table 4-1.

Table 4-1: Hyperparameters of D3QN

Hyperparameter Explanation

𝛾 Discount factor of rewards

Buffer size How many transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) the replay buffer can store

Mini-batch size Transitions are grouped into mini-batches and then used to update the neural
networks

Learning rate Learning rate of the neural network optimizer

Learning starts From which time steps the optimizer starts to update the value network

62

Training frequency How many steps the agent interacts with the environment before updating neural
networks

Total time steps How many steps the agent interacts with the environment in the whole training
process

𝜀𝑠𝑡𝑎𝑟𝑡 The initial ε at the beginning of exploration

𝜀𝑒𝑛𝑑 The ε at the end of exploration

Exploration fraction A ratio to control the length of exploration. For example, if the training process
runs 200000 steps in total and the exploration fraction is 0.5, then the exploration

starts from step 1 to 100000. During the exploration, ε decreases from 𝜀𝑠𝑡𝑎𝑟𝑡 to

𝜀𝑒𝑛𝑑 linearly.

Epoch length How many steps the agent interacts with the environment before resetting the
environment

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 The frequency to set the target network to be equal to the value network

Neural Network
Design

Network structure, neuron number, activation function, etc.

Network
Initialization

Initialization method of each neural network layer

According to the state/action representation and neural network architecture, there are several
configurations of D3QN algorithms in this study. The following subsections explain these
configurations in detail.

4.2.2 D3QN with State Vectors and Discrete Actions (D3QN-Discrete-MLP)

In the most basic configuration, the parser outputs a list of all available commands (section 3.3.2).
Each action is a scalar index of a pre-defined command in the list. It is called Discrete action space
in reinforcement learning research.

At the same time, it uses a plain vector as state input and selects a discrete scalar as the following
action. The state vector is a concatenation of 2 vectors:

- The code coverage vector (section 3.4.2). The length of this vector is the number of
probes in the source code. Each element indicates whether the probe has been
triggered.

- A vector that contains actions in previous k steps. The length of this vector is the number
of actions listed by the parser. Each element indicates how often the action has been
taken in previous k steps.

The neural network architecture to calculate �̂�𝜋(𝑠) is expressed by:

ℎ(0) = 𝑠

ℎ(𝑙+1) = 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ(𝑙)))

�̂�𝜋(𝑠) = 𝑀𝐿𝑃(ℎ(𝐿))

(4-5)

Here ℎ(𝑙) is the output of layer 𝑙, and 𝐿 is the number of hidden layers. 𝑀𝐿𝑃(∙) is a fully connected

layer and 𝑅𝑒𝐿𝑈(∙) is an activation function. Similarly, the network to calculate �̂�𝜋(𝑠, 𝑎) is

ℎ(0) = 𝑠

ℎ(𝑙+1) = 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ(𝑙)))

�̂�𝜋(𝑠) = 𝑀𝐿𝑃(ℎ(𝐿))

(4-6)

Here [∙] means concatenation of vectors. �̂�𝜋(𝑠) is a vector which can be expressed by

63

 �̂�𝜋(𝑠) = [�̂�𝜋(𝑠, 𝑎1), �̂�𝜋(𝑠, 𝑎2), �̂�𝜋(𝑠, 𝑎3), …] (4-7)

Then, �̂�𝜋(𝑠, 𝑎) and �̂�𝜋(𝑠) are combined by (4-4) to calculate �̂�𝜋(𝑠, 𝑎). The subsequent computation
is the same as the previous section.

This configuration is represented by D3QN-Discrete-MLP in this study.

4.2.3 D3QN with State Graphs and Discrete Actions (D3QN-Discrete-GGNN)

This configuration use graphs as input states. The graphs are constructed by static code analysis in
section 3.4.4, and the node features include code coverage information. Furthermore, we use the
Gated Graph Neural Network GGNN (Li, Tarlow, Brockschmidt, & Zemel, 2015) to process the
graphs. Unlike the Graph Convolutional Network GCN (Kipf & Welling, 2016) and the GraphSAGE,
the GGNN can handle models with more than 20 layers and is helpful for complex network
representation, e.g., program control flow (Hamilton, Ying, & Leskovec, 2017).

Let ℎ𝑣
(𝑙+1)

 to be the hidden embedding vector of node 𝑣 in the layer 𝑙 + 1 of a GGNN, it can be

expressed by:

ℎ𝑣
(0)

= [𝜇𝑣 , 𝑐𝑣 , 𝑐𝑣 , 𝑐𝑣 , …]

𝑚𝑣
(𝑙+1)

= 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 ({𝑀𝐿𝑃 (ℎ𝑢
(𝑙)

)}
𝑢∈𝒩(𝑣)

)

ℎ𝑣
(𝑙+1)

= 𝐺𝑅𝑈(ℎ𝑣
(𝑙)

, 𝑚𝑣
(𝑙+1)

)

(4-8)

Here, 𝜇𝑣 is the feature vector of node 𝑣 acquired by equation (3-1), and 𝑐𝑣 ∈ {0,1} is the coverage

mask to indicate whether the node has been covered. Note that the length of ℎ𝑣
(0)

, called number of

channels, can be equal to or larger than the length of [𝜇𝑣 , 𝑐𝑣]. If the number of channels is larger, it

will be padded with 𝑐𝑣.

𝒩(𝑣) is all neighbors of the node 𝑣 on the graph, including node 𝑣 itself. The aggregation method

can be {𝑠𝑢𝑚, 𝑚𝑒𝑎𝑛, 𝑚𝑎𝑥}. According to our experience, 𝑠𝑢𝑚 has the best performance in the
problem. Moreover, 𝐺𝑅𝑈 means a Gated Recurrent Unit (Chung, Gulcehre, Cho, & Bengio, 2014), a
type of recurrent neural network layer.

The output from the GGNN is embedding vectors of all nodes in the graph. Since there are many
nodes, the sum of the lengths of these vectors can be very large. It’s not feasible to directly

concatenate these vectors and use a fully connected layer to process [ℎ1
(𝐿)

, ℎ2
(𝐿)

, ℎ3
(𝐿)

, …]. Otherwise,

the fully connected layer will contain too many weights and need significant time to train.

Thus, we need to find a way to extract information from node embeddings ℎ𝑣
(𝑙+1)

. There are 2

options to solve the problem. The first option is using a graph pooling layer. For example, the
simplest pooling methods are 𝑠𝑢𝑚, 𝑚𝑒𝑎𝑛, and 𝑚𝑎𝑥 of all node embeddings. (Dai et al., 2019) used
a node selection pooling method in their RL-based testing. Zhou, Liu, Siow, Du, and Liu (2019) used
a 1D convolution layer to aggregate information in node embeddings. The Pytorch Geometric library
(Fey & Lenssen, 2019) also provides several graph pooling layers.

However, in our own tests, the following attentive pooling layer (Li et al., 2015) has the best
performance, i.e.,

64

 𝑜 = 𝑅𝑒𝐿𝑈 (∑ (𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃1 (ℎ𝑣
(𝐿)

, 𝜇𝑣)) ⨀𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃2 (ℎ𝑣
(𝐿)

, 𝜇𝑣)))

𝑣

) (4-9)

Here, 𝑜 is the information extracted from the node embeddings, and 𝐿 is the final layer of the

GGNN. 𝑀𝐿𝑃1 and 𝑀𝐿𝑃2 are the MLP that take the concatenation of ℎ𝑣
(𝐿)

 and 𝜇𝑣 as input and output

real-valued vectors. ⨀ mean dot product between two vectors.

The second option is to use an MLP to reduce node embeddings to scalars and then organize these
scalars into a graph feature vector, i.e.,

 𝑜 = [𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ1
(𝐿)

)) , 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ2
(𝐿)

)) , 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ3
(𝐿)

)) , …] (4-10)

In this study, we call this approach as feature compression.

As mentioned in section 3.4.2, we hope the same graph neural network can process similar graphs
with different node number. However, in the feature compression approach, the length of the graph
feature vector 𝑜 depends on the node number. Therefore, the GNN with feature compression cannot
process graphs with different node numbers. This study compares the performance of attentive
pooling and feature compression to illustrate the influence of the graph pooling layer.

After that, we construct the state vector 𝑠 based on the output 𝑜 and the history vector 𝑦:

 𝑠 = [𝑜, 𝑦] (4-11)

At the end, 𝑠 will be substituted into equation (4-5) and (4-6). The subsequent computation is the
same as the D3QN-Discrete-MLP.

As this configuration is more complex, it’s important to mention the initialization methods of the
parameters. The weights of the MLP network in equation (4-8) are initialized to a uniform
distribution. The GRU in (4-8) and the MLP in (4-9) take the default initialization. The weights of the

MLP in equation (4-10) takes a normal distribution with a standard deviation of √2.

4.2.4 D3QN with State Graphs and Discrete Actions (D3QN-Discrete-GAT)

This configuration is like the D3QN-Discrete-GGNN but uses the Graph Attention Network GAT
(VELIČKOVIĆ and Petar, 2017) to process the graphs. Each layer of the GAT updates node
embeddings by:

 ℎ𝑣
(𝑙+1)

= 𝛼𝑣,𝑣ℎ𝑣
(𝑙)

+ ∑ 𝛼𝑣,𝑢ℎ𝑢
(𝑙)

𝑢∈𝒩(𝑣)

 (4-12)

Where 𝛼𝑣,𝑢 represents the self-attention with 𝑣 being the index of the query node and 𝑢 being the

index of the key node (Harries, 2020). The subsequent processing is the same as the D3QN-
Discrete-GGNN configuration. The GAT layers take the default initialization in Pytorch Geometric.

4.3. Proximal Policy Optimization

65

This study also selects the Proximal Policy Optimization (PPO) algorithm to implement. PPO is a
popular deep reinforcement learning in recent years and the baseline RL algorithm of OpenAI. Many
works in Table 2-2 used PPO or similar algorithms like A2C and A3C.

4.3.1 Brief Introduction

A PPO agent has 2 neural networks: the actor network and the critic network：

⚫ The inputs of the actor network are state 𝑠 and action 𝑎. The output of the network is

𝜋𝑤(𝑎|𝑠), i.e., the probability to take the action 𝑎 under state 𝑠 with policy parameters 𝑤.

⚫ The input of the critic network is state 𝑠. The output of the critic network is 𝑉(𝑠), which
estimates the state-value function of state 𝑠.

Every 𝑁 step, the PPO agent interacts with the environment and stores observations, actions, and

rewards in the memory. The length of the memory is 𝑁. After that, the agent minimizes the following
loss function by updating parameters of neural networks for several times:

 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑝𝑔 − 𝑐𝑒𝑛𝑡𝐿𝑜𝑠𝑠𝑒𝑛𝑡 + 𝑐𝑣𝑓𝐿𝑜𝑠𝑠𝑣𝑓 (4-13)

The 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 contains 3 items: the policy gradient loss 𝐿𝑜𝑠𝑠𝑝𝑔, the action entropy loss 𝐿𝑜𝑠𝑠𝑒𝑛𝑡, and

the value loss 𝐿𝑜𝑠𝑠𝑣𝑓. There coefficients are 1, 𝑐𝑒𝑛𝑡, and 𝑐𝑣𝑓, respectively.

The policy gradient loss 𝐿𝑜𝑠𝑠𝑝𝑔 is:

 𝐿𝑜𝑠𝑠𝑝𝑔 = −
1

𝑁𝜏

∑ 𝑚𝑖𝑛 {
𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
�̂�𝜋(𝑠𝑡 , 𝑎𝑡), 𝑐𝑙𝑖𝑝 [

𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
, 1 − 𝜉, 1 + 𝜉] �̂�𝜋(𝑠𝑡 , 𝑎𝑡)}

(𝑠𝑡,𝑎𝑡)

 (4-14)

This loss item uses importance sampling, which makes it look complex. In the expression,
𝐴𝜋(𝑠𝑡 , 𝑎𝑡) is the advantage function and shows how good action 𝑎𝑡 is, comparing with other

actions under state 𝑠𝑡. Note that the parameters of the actor network will change after updates. 𝑤′
are the parameters when the actions were taken and 𝑤 are the current parameters. 𝜉 is a
hyperparameter to control the magnitude of policy update and usually has a small value (like 0.2).
𝑁𝜏 is the number of transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) stored, depending on the environmental steps
(Table 4-2).

Let 𝛿𝑡
𝑉 to be the TD residual:

 𝛿𝑡
𝑉 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) (4-15)

Where 𝑟𝑡 is the reward of step 𝑡, 𝑉(𝑠𝑡) and 𝑉(𝑠𝑡+1) are the values of 𝑠𝑡 and 𝑠𝑡+1 estimated by the
critic network. Based on this definition, the advantage function 𝐴𝜋(𝑠𝑡 , 𝑎𝑡) is computed by the GAE
method (Schulman, Moritz, Levine, Jordan, & Abbeel, 2015):

 �̂�𝜋(𝑠𝑡 , 𝑎𝑡) = ∑(𝛾𝜆)𝑙

∞

𝑙=0

𝛿𝑡+𝑙
𝑉

 (4-16)

The action entropy loss 𝐿𝑜𝑠𝑠𝑒𝑛𝑡 is：

66

 𝐿𝑜𝑠𝑠𝑒𝑛𝑡 = −
1

𝑁𝜏

∑ ∑ 𝜋𝑤(𝑎|𝑠𝑡) ∙ log (𝜋𝑤(𝑎|𝑠𝑡))

𝑎𝑠𝑡

 (4-17)

If this term is higher, the policy 𝜋𝑤 will be more random. Note that 𝑐𝑒𝑛𝑡𝐿𝑜𝑠𝑠𝑒𝑛𝑡 is subtracted from

equation (4-13). That’s to say, (4-13) encourages the policy 𝜋𝑤 to explore the environment. By
tuning the coefficient 𝑐𝑒𝑛𝑡, we make a balance between exploration and exploitation.

The value loss 𝐿𝑜𝑠𝑠𝑣𝑓 can be calculated with:

 𝐿𝑜𝑠𝑠𝑣𝑓 = −
1

𝑁𝜏

∑
1

2
𝑠𝑡

(𝑉(𝑠𝑡) − 𝐺�̂�)
2 (4-18)

In (4-18), the 𝐺𝑡 is estimated by:

 𝐺𝑡 = �̂�𝜋(𝑠𝑡 , 𝑎𝑡) + 𝑉(𝑠𝑡) (4-19)

We can use the Kullback-Leibler divergence indicates the magnitude of policy update, or in other
words, how different the updated policy 𝜋𝑤 is from the old policy 𝜋𝑤′. After updating the neural
network, the agent will estimate the Kullback-Leibler divergence using the following expression
(Schulman, 2020):

 𝐾�̂�(𝜋𝑤 , 𝜋𝑤′) =
1

𝑁𝜏

∑ [(
𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
− 1) − 𝑙𝑜𝑔 (

𝜋𝑤(𝑎𝑡|𝑠𝑡)

𝜋𝑤′(𝑎𝑡|𝑠𝑡)
)]

(𝑠𝑡,𝑎𝑡)

 (4-20)

If the divergence is too small, it means the policy update is too slow and the training may take a
long time. On the other hand, if the policy update is too quick, some assumptions of importance
sampling may be invalid, and the training process will become unstable.

There are 2 ways to control the magnitude of policy update. One approach is carefully selecting 𝜉 in
equation (4-14) to limit 𝐿𝑜𝑠𝑠𝑝𝑔. However, sometimes this approach does not work well. Another

approach is setting a limitation 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡. If the estimated 𝐾�̂�(𝜋𝑤, 𝜋𝑤′) > 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡, the agent will

reduce the learning rate of the neural network optimizer. This learning rate annealing is not
common in standard PPO implementation but makes the training process more stable.

Although PPO is simple and robust, it’s still sensitive to hyperparameters. Table 4-2 lists some
important hyperparameters of this algorithm:

Table 4-2: Hyperparameters of PPO
Hyperparameter Explanation

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 If 𝐾�̂�(𝜋𝑤 , 𝜋𝑤′) > 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡, the algorithm will reduce the learning rate

Mini-batch size Observations, actions, and rewards are grouped into mini-batches, and then
used to update the neural networks

Initial learning rate Initial learning rate of the neural network optimizer

𝛾 Discount factor of rewards

𝑐𝑒𝑛𝑡 Coefficient of 𝐿𝑜𝑠𝑠𝑒𝑛𝑡 in the total loss

𝑐𝑣𝑓 Coefficient of 𝐿𝑜𝑠𝑠𝑣𝑓 in the total loss

Total time steps How many steps the agent interacts with the environment in the whole training
process

Epoch length How many steps the agent interacts with the environment before resetting the
environment in an epoch

Environment steps How many steps the agent interacts with the environment before updating neural
networks

67

Update steps How many times the optimizer updates the neural networks after interaction

𝜆 A coefficient of GAE in (4-15)

𝜉 A coefficient of importance sampling in (4-13)

Maximal norm of
gradient

The gradient larger than this limit will be clipped

Neural Network
Design

Network structure, neuron number, activation function, etc.

Network
Initialization

Initialization method of each neural network layer

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 Initial standard deviation of the output layer of the critic network

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 Initial standard deviation of the output layer of the actor network

Limited by pages, this section does not explain why the algorithm has adopted this design. The
readers can refer to (Schulman et al., 2017) and (Huang, Julien, Antonin, Anssi, & Wang, 2022).

According to the state/action representation and neural network architecture, there are several
configurations of PPO algorithms in this study. The following subsections explain these
configurations in detail.

4.3.2 PPO with State Vectors and Discrete Actions (PPO-Discrete-MLP)

The input and output of this configuration are like D3QN-Discrete-MLP. The actor network to
compute 𝜋𝑤(𝑎|𝑠) can be expressed by:

ℎ(0) = 𝑠

ℎ(𝑙+1) = 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ(𝑙)))

𝜋𝑤(𝑎|𝑠) = 𝑀𝐿𝑃(ℎ(𝐿))

(4-20)

As mentioned above, 𝜋𝑤(𝑎|𝑠) is a vector whose length is the number of actions provided by the

parser. Each element of the vector indicates the probability to take an action under the policy 𝜋𝑤.
One of the actions will be sampled according to the probability distribution.

The critic network to calculate 𝑉(𝑠) is:

ℎ(0) = 𝑠

ℎ(𝑙+1) = 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(ℎ(𝑙)))

𝑉(𝑠) = 𝑀𝐿𝑃(ℎ(𝐿))

(4-21)

Here, 𝑉(𝑠) is a scalar. The actor network and the critic network are independent.

4.3.3 PPO with State Vectors and Action Vectors (PPO-MultiDiscrete-MLP)

Unlike previous configurations, this configuration sends command vectors like [25, 1, 13, 1] to the
SUT. It’s usually called the MultiDiscrete action space.

In this configuration, the parser lists all possible values of all parameters in a single list. Let the
length of the command vector to be 𝐿𝑣 and the number of parameter values to be 𝑛𝑝. The actor

network will generate a probability distribution vector with the length of 𝐿𝑣 × 𝑛𝑝. According to the

probability distribution, the agent samples 𝐿𝑣 values, which are concatenated to a command vector.

68

The state vector only contains code coverage information without historical actions. In fact,
integrating interaction history with the state vector is possible, but there is not enough time to try this
function.

This configuration uses less prior knowledge about encoding of commands. On the other hand, it
may send invalid or even dangerous commands to the SUT.

4.3.4 PPO with State Graphs and Discrete Actions (PPO-Discrete-GGNN)

This configuration is like the D3QN-Discrete-GGNN configuration. It firstly generates the state vector
𝑠 with the Gated Graph Neural Network (GGNN), and then substitutes 𝑠 into (4-20) and (4-21). In
other words, the actor network and the critic network share the same GGNN in this configuration.

4.3.5 PPO with State Graphs and Discrete Actions (PPO-Discrete-GAT)

This configuration uses the Graph Attention Network, instead of a GGNN, to process graphs. The
subsequent process is the same as PPO-Discrete-GGNN.

4.3.6 PPO with State Graphs and Action Vectors (PPO-MultiDiscrete-GGNN)

This configuration uses the Gated Graph Neural Network (GGNN). Its actor network generates a
probability distribution vector with the length of 𝐿𝑣 × 𝑛𝑝, from which a command vector with 𝐿𝑣

values is sampled.

4.4. Baselines

We use the following two baselines in the study.

4.4.1 Random Testing

In this research, the random testing baseline means selecting a random command from the
command list, like PPO-Discrete-MLP.

The random testing baseline uses the same episode length as the reinforcement algorithms.

4.4.2 Testing with the Genetic Algorithm

This research uses the standard genetic algorithm (Holland, 1992) as another baseline. The genetic
algorithm has four steps in an iteration:

- Calculate the objective function of every solution.
- Select good solutions.
- Perform the “crossover” operation on the good solutions, i.e., randomly swap some

segments in the solution vectors.
- Perform the “mutation” operation on the good solutions, i.e., randomly change some

elements in the solution vectors.

69

The genetic algorithm generates two types of solutions:

- A sequence of scalars in which each scalar represents a command in the command list.
- A sequence of command vectors, like the PPO-MultiDiscrete-MLP configuration.

The sequence length is equal to the episode length of the reinforcement learning algorithms.
Furthermore, the genetic algorithm uses the sum of rewards as the objective function of the
sequence.

4.5. Implementation Details

The Q-Learning algorithm in this research is written from scratch. The D3QN and PPO algorithms
are modified from CleanRL (Huang, Dossa, Ye, & Braga, 2021). CleanRL is a repository including
single-file implementations of deep reinforcement learning algorithms. These algorithms use Pytorch
to perform low-level operations of neural networks like backpropagation.

The graph neural networks in the study are implemented with the Pytorch Geometric library (Fey &
Lenssen, 2019), which is built on Pytorch. The library includes the implementation of GAT layers.
However, we must implement the GGNN layers with the low-level APIs of the library. Our GGNN
implementation takes from Longa and Pellegrini’s tutorial (2022).

The implementation in this study is lightweight. Table 4-3 shows the number of lines of code in each
file.

Table 4-3 Number of Lines of Code in Our Implementation
Configuration File Name Number of

Lines of Code
Note

Q-Learning QLearningAgent.py 40 Store and process the Q table

Main.py 85 Main loop

StateIdentification.py 92 Can only identify several states

D3QN-Discrete-
MLP

D3qn.py 170 Include the D3qn algorithm and neural
network in a single file

D3QN-Discrete-
GGNN

D3qn.py 153 Include the D3qn algorithm

GNN_Agent.py 100 The Gated Graph Neural Network

D3QN-Discrete-
GAT

D3qn.py 153 Include the D3qn algorithm

GNN_Agent.py 100 The Graph Attention Network

PPO-Discrete-
MLP

PPO.py 200 Include the PPO algorithm and neural
network in a single file

PPO-
MultiDiscrete-
MLP

PPO.py 203 Include the PPO algorithm and neural
network in a single file

PPO-Discrete-
GGNN

PPO.py 166 Include the PPO algorithm

GNN_Agent.py 103 The Gated Graph Neural Network

PPO-Discrete-
GGNN

PPO.py 164 Include the PPO algorithm

GNN_Agent.py 87 The Graph Attention Network

PPO-
MultiDiscrete-
GGNN

PPO.py 166 Include the PPO algorithm

GNN_Agent.py 124 The Graph Attention Network

Random
Testing
Baseline

Piece of code in
MyEnv.py

10 Randomly select commands and
execute them

Genetic
Algorithm
Baseline

GA.py 89 The genetic algorithm

PQ9Client.py 81 Handle low-level communication

70

Shared
functions

MyEnv.py ~100 Provide high-level APIs for the Delfi-
PQ testing environment

MyEnv_toy.py ~30 Provide high-level APIs for the toy
problem

Parser.py 210 Parse raw response and generate
command list (Many algorithms only
use the command list)

PQ9cov.py 153 Instrument source code and generate
coverage report

GraphExtract.py 143 Extract a graph from the source code

MyWord2Vec.py 20 Generate feature vectors for nodes

Moreover, the implementation can run in the CPU or GPU mode of Pytorch. However, as mentioned
in section 3.1, the lab computer is relatively outdated and cannot support the GPU mode of Pytorch.
Running deep reinforcement learning algorithms in the CPU mode may take much longer.

4.6. Brief Summary of the Chapter

⚫ Three RL algorithms are implemented in this work, i.e., the Q-Learning algorithm, the D3QN

algorithm, and the PPO algorithm.
⚫ The Q-Learning algorithm is one of the most basic RL algorithms. It receives a scalar

observation, updates a Q table, and gives a scalar action. However, it cannot adapt to other
types of inputs or outputs. If the state space or action space is large, we may not have enough
memory to store the Q table.

⚫ The Deep Q Network (DQN) is an improvement over the original Q-learning algorithm. It uses
a neural network to fit the action-value function 𝑄(𝑠, 𝑎). It also adopts some tricks to improve the
stability of the algorithm. The Double Duelling Deep Q Network (D3QN) algorithm is a good
and simple variant of DQN.

⚫ The Proximal Policy Optimization (PPO) has a policy network to give probability 𝜋𝑤(𝑎|𝑠) of

each action under current state 𝑠. It also has a value network to fit the state-value function 𝑉(𝑠).
Compared with the standard PPO implementation, we add learning rate annealing to make the
training process more stable.

⚫ We implement three types of neural network structures for both the D3QN and the PPO
algorithms, including the MLP network (fully connected layers), the Gated Graph Neural
Network (GGNN), and the Graph Attention Network (GAT).

⚫ For the graph neural networks, a challenge is how to extract a graph embedding vector from the
node feature vectors. We can use a graph pooling layer or the feature compression
technique. We compare different types of graph pooling layers in a supervised task and find the
attentive sum pooling layer has the best performance.

⚫ Unlike other configurations, the PPO-MultiDiscrete-MLP configuration can generate a command
vector. Thus, it does not have to use human-specified commands.

⚫ Random testing and the genetic algorithm are implemented as the baselines of this study.
⚫ The RL algorithms in this study are light-weight. Each algorithm contains up to two files and

less than 300 lines of code. They only use Pytorch and Pytorch Geometric, instead of some
complex reinforcement learning libraries (like RLlib) and distributed computing middleware (like
Ray).

71

5 Filling Grid Testing

It is difficult to debug if a deep reinforcement learning algorithm goes wrong. This study implements
a toy problem called “grid filling” to make the debugging effortless. The RL algorithms are first tested
on the toy problem. If everything looks well, the algorithms will run in the environment with the Delfi-
PQ hardware. Furthermore, we can compare the training curves in the toy problem and the curves
in the actual environment. Such comparison helps us to understand the training process better.

In this chapter,

⚫ Section 5.1 introduces the design of the “grid filling” problem.
⚫ Section 5.2~5.8 shows the results of different configurations, including D3QN-Discrete-

MLP, D3QN-Discrete-GGNN, D3QN-Discrete-GAT, PPO-Discrete-MLP, PPO-
MultiDiscrete-MLP, PPO-Discrete-GGNN, PPO-Discrete-GAT.

⚫ Section 5.9 compares the performance of these configurations and mentions some
interesting findings.

5.1. About the Experiment

There are grids in the problem, and the RL algorithms should fill all grids as soon as possible. To
the end, a state is represented by a vector of length or a graph with nodes. The state indicates
which grids have been filled. An action can be a scalar (i.e., fill a specific grid) or a vector (i.e., fill a
group of grids). The RL agent will receive a reward of 1 if it fills a blank grid or a reward of -1 if it fills
a filled grid. Figure 5-1 explains the toy problem in detail.

If a deep reinforcement learning algorithm goes wrong, debugging is not easy. This study
implements a toy problem called “grid filling” to make the debugging effortless. The RL algorithms
are first tested on the toy problem. If everything looks well, the algorithms will be run in the actual
environment with the Delfi-PQ hardware. Furthermore, we can compare the training curves in the
toy problem and the curves in the actual environment. Such comparison helps us to understand the
training process better.

There are 𝑁 grids in the problem, and the RL algorithms should fill all grids as soon as possible. To
the end, a state is represented by a vector of length 𝑁 or a graph with nodes 𝑁. The state indicates
which grids have been filled. An action can be a scalar (i.e., fill a specific grid) or a vector (i.e., fill a
group of grids). The RL agent will receive a reward of 1 if it fills a blank grid or a reward of -1 if it fills
a filled grid. Figure 5-1 explains the toy problem in detail.

72

Figure 5-1: The “Filling Grid” Toy Problem

We can change the difficulty of the toy problem by modifying 𝑁, which is beneficial for debugging RL
algorithms. If 𝑁 increases, the RL algorithms usually need more time to learn. On the other hand,

the toy problem become easier with a small 𝑁.

We only test the D3QN and PPO algorithms on the toy problem. It’s difficult to apply the Q-Learning

algorithm on this problem, since 𝑁 grids have 2𝑁 possible states. A Q table cannot deal with too
many states.

In this experiment, we set 𝑁 = 36. We will compare the cumulative rewards of different algorithms.

5.2. Results of D3QN-Discrete-MLP

In this experiment, an action is a scalar, and the episode length is 36. Table 5-1 shows the
hyperparameters of the algorithm in this experiment.

Table 5-1: Hyperparameters of D3QN-Discrete-MLP in Filling Grid Test

Hyperparameter Value

𝛾 0.9

Buffer size 20000

Mini-batch size 128

Learning rate 2.5e-4

Learning starts 128

Training frequency 10

Total time steps 20000

𝜀𝑠𝑡𝑎𝑟𝑡 1

𝜀𝑒𝑛𝑑 0

Exploration fraction 0.5

Epoch length 36

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500

Neural Network Design Value network:
Input->MLP->ReLU->MLP->ReLU->MLP->value

Advantage network:
Input->MLP->ReLU->MLP->ReLU->MLP->advantage

Every hidden layer has 512 neurons.

Network Initialization Orthogonal initialization of weights.
Initial biases are set to 0.

Initial std of hidden layers is √2.

73

Figure 5-2 shows the performance of this configuration. The cumulative reward and estimated Q
value grow stably and quickly reach the maximum, i.e., fill all 36 grids.

Figure 5-2: Results of D3QN-Discrete-MLP in the Toy Problem

5.3. Results of D3QN-Discrete-GGNN

The section shows the results of the D3QN algorithm with the Gated Graph Neural Network
(GGNN). As mentioned in section 4.2.3, one problem is extracting information from node features,
which GGNN has processed.

There are two design options to solve the problem. The first option is using an attentive sum pooling
layer. The second option is to use an MLP to reduce node feature vectors to scalars and then
organize these scalars into a graph feature vector (feature compression). We compare the
performance of these two approaches in this section.

Table 5-2 shows the hyperparameters of the D3QN-Discrete-GGNN algorithm in this experiment:

Table 5-2: Hyperparameters of D3QN-Discrete-GGNN in Filling Grid Test

Hyperparameter Value

𝛾 0.9

Buffer size 100000

Mini-batch size 128

Learning rate 2.5e-4 (feature compression) / 5e-4 (attentive pooling)

Learning starts 128

Training frequency 10

Total time steps 200000

𝜀𝑠𝑡𝑎𝑟𝑡 1

𝜀𝑒𝑛𝑑 0.05

Exploration fraction 0.8 (feature compression) / 0.9 (sum pooling)

Epoch length 36

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500

Neural Network
Design

Shared network:
Input->GGNN(5 layers)->MLP->ReLU->Attentive
pooling/concatenation of node vectors->ReLU->Graph embedding

Compute value:
Graph embedding->MLP->value

74

Compute advantage:
Graph embedding->MLP->advantage

Network Initialization GGNN initialization is mentioned in section 4.2.4.
Initial std of the MLP for value or advantage computation is 0.01.
Other layers are initialized in the same way as D3QN-Discrete-MLP

Figure 5-3 shows the performance of the attentive pooling approach. It performs similarly to the
D3QN-Discrete-MLP configuration (Figure 5-2). The cumulative reward curve converges around 35.

Figure 5-3: Results of D3QN-Discrete-GGNN with Attentive Pooling

By contrast, Figure 5-4 shows the results of the feature compression approach. Its Q value curve
converges much more quickly. Note that in this test 𝜀𝑒𝑛𝑑 = 0.05, and the cumulative reward curve
sometimes drops below 0. The average cumulative reward at the end of training is also around 35.

Figure 5-4: Results of D3QN-Discrete-GGNN with Feature Compression

5.4. Results of D3QN-Discrete-GAT

This configuration is like the D3QN-Discrete-GGNN but uses the Graph Attention Network (GAT) to
process the graph. Table 5-3 shows the hyperparameters of this configuration in the experiment.
The configuration only uses 2 GAT layers, and more GAT layers do not improve the performance in
this test.

Table 5-3: Hyperparameters of D3QN-Discrete-GAT in Filling Grid Test

75

Hyperparameter Value

𝛾 0.9

Buffer size 100000

Mini-batch size 128

Learning rate 2.5e-4 (feature compression) / 5e-4 (attentive pooling)

Learning starts 128

Training
frequency

10

Total time steps 200000

𝜀𝑠𝑡𝑎𝑟𝑡 1

𝜀𝑒𝑛𝑑 0.05

Exploration
fraction

0.8 (feature compression) / 0.9 (sum pooling)

Epoch length 36

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500

Neural Network
Design

Shared network:
Input->GAT->ReLU->GAT->ReLU->MLP->ReLU->Attentive
pooling/concatenation of node vectors->ReLU->Graph embedding

Compute value:
Graph embedding->MLP->value

Compute advantage:
Graph embedding->MLP->advantage

Network
Initialization

GAT uses default initialization. Initial std of output layers is 1. Other
networks are initialized in the same way as D3QN-Discrete-MLP

Figures 5-5 and Figure 5-6 show the result with attentive pooling and feature compression,
respectively. The Q value estimated by feature compression converges more quickly than the Q
value estimated by attentive pooling. Unfortunately, both configurations have a lower cumulative
reward (around 32) at the end of training.

Figure 5-5: Results of D3QN-Discrete-GAT with Attentive Pooling

76

Figure 5-6: Results of D3QN-Discrete-GAT with Feature Compression

5.5. Results of PPO-Discrete-MLP

Now we consider the PPO algorithm. Table 5-4 shows the hyperparameters of the algorithm in this
experiment.

Table 5-4: Hyperparameters of PPO-Discrete-MLP in Filling Grid Test

Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.05

Mini-batch size 32

Initial learning rate 5e-4

𝛾 0.9

𝑐𝑒𝑛𝑡 0.001

𝑐𝑣𝑓 0.5

Total time steps 200000

Epoch length 36

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2/0.1/0.05/0.02

Maximal norm of gradient 0.5

Neural Network Design Critic network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠)

Actor network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎)

Every hidden layer has 512 neurons.

Network Initialization Orthogonal initialization of weights.
Initial biases are set to 0.

Initial std of hidden layers is √2

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

As mentioned in section 4.3.1, the policy update of PPO should not be too quick, otherwise the
training process will become unstable. There are 2 ways to control the Kullback-Leibler divergence:
policy gradient clipping with 𝜉 or learning rate annealing with 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡.

77

We first check the performance of the first approach. Figure 5-7 shows the estimated Kullback-
Leibler divergence without learning rate annealing. Note that we use a sliding average filter to make
this result more readable. The divergence starts from a small value at the beginning and then
increase. Reducing the clipping ratio 𝜉 does limit the KL divergence when 𝜉 > 0.1. However, such

effect is not obvious when 𝜉 < 0.1. At the same time, the KL divergence is usually under 0.2 when
𝜉 < 0.1.

Figure 5-7: KL Divergence of PPO-Discrete-MLP without Learning Rate Annealing

Figure 5-8 shows the cumulative rewards per episode. Although the KL divergence is limited by the
clipping with 𝜉, the algorithm without learning rate annealing is still unstable: its cumulative reward
increases and then suddenly drops. Another problem is that the cumulative rewards do not reach
the up limit of the toy problem, i.e., 36.

78

Figure 5-8: Cumulative Reward (per episode) without Learning Rate Annealing

Another metric is the entropy of the action probability distribution under the policy. The entropy of a
probability distribution is computed by:

 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝜋𝑤(𝑎|𝑠𝑡) ∙ log (𝜋𝑤(𝑎|𝑠𝑡))

𝑎

 (5-1)

In this experiment, the number of actions is 36. Assume the policy is fully random, 𝜋𝑤(𝑎|𝑠𝑡) should
be 1/36, and the entropy is about 3.58. Figure 5-9 shows the average entropy of episodes without
learning rate annealing, which starts from 3.58 and then decreases to 0.5. It means the policy
becomes more deterministic.

Figure 5-9 Average Entropy of PPO-Discrete-MLP without Learning Rate Annealing

Figure 5-10 shows the algorithm's performance with learning rate annealing. In the experiment, the
clip ratio 𝜉 is set to 0.2 and the 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 is set to 0.05. Unlike Figure 5-7, the results are not filtered.

In Figure 5-10, the divergence with learning rate annealing is always below 0.14 and usually around
0.025 (half of 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡). The learning rate starts from 5e-4 and decreases to 5e-5. As a result, the

cumulative reward per episode grows stably and does not crash like in Figure 5-8. The annealing
mechanism controls the KL divergence and makes the training process more stable.

79

Surprisingly, the final entropy in Figure 5-10 (around 2.2) is higher than in Figure 5-9 (around 0.5). If
we reduce the learning rate to 1e-5 and do not adopt annealing, the final entropy is also around 2.2
(the result is not shown here). That is to say, the policy learned with a small learning rate or the
learning rate annealing mechanism is more random than the policy with a constant high learning
rate. However, the cumulative reward obtained by the policy is equal to or even slightly higher than
the more deterministic policy.

One possible reason is that if the policy is too deterministic, a minor update to the weights of the
actor-network can cause a significant change in the action probability distribution 𝜋𝑤(𝑎|𝑠𝑡). It will
lead to a high KL divergence and an unstable training process. To avoid that, the annealing
mechanism reduces the learning rate before 𝜋𝑤(𝑎|𝑠𝑡) becomes too sharp. A constant small learning
rate may also have the same effect, but we should run the algorithm several times to find a
reasonable learning rate.

To avoid repeated tuning of the learning rate during the study, we adopt the learning rate annealing
mechanism in the following experiments.

Figure 5-10: Results of PPO-Discrete-MLP without Learning Rate Annealing

5.6. Results of PPO-MultiDiscrete-MLP

In this experiment, an action is a vector of length 4, and the episode length is 9. The PPO-
MultiDiscrete-MLP algorithm uses the following hyperparameters:

Table 5-5: Hyperparameters of PPO-MultiDiscrete-MLP in Filling Grid Test

Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.05

Mini-batch size 32

80

Initial learning rate 5e-4

𝛾 0.9

𝑐𝑒𝑛𝑡 0.001

𝑐𝑣𝑓 0.5

Total time steps 200000

Epoch length 36

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2

Maximal norm of gradient 0.5

Neural Network Design Critic network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠)

Actor network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎)

Every hidden layer has 512 neurons.

Network Initialization Orthogonal initialization of weights.
Initial biases are set to 0.

Initial std of hidden layers is √2

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

The results are shown in Figure 5-11. In the “filling grid” environment, the algorithm has the similar
performance as the PPO-Discrete-MLP algorithm. The entropy is higher because the action vector
is longer, equivalent to having more moves to choose from.

81

Figure 5-11: Results of PPO-MultiDiscrete-MLP on the Toy Problem

5.7. Results of PPO-Discrete-GGNN

The section shows the results of the PPO algorithm with the Gated Graph Neural Network (GGNN).
Table 5-6 shows the hyperparameters of the PPO-Discrete-GGNN algorithm in this experiment:

Table 5-6: Hyperparameters of PPO-Discrete-GGNN in Filling Grid Test

Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.05

Mini-batch size 32

Initial learning rate 5e-4

𝛾 0.9

𝑐𝑒𝑛𝑡 0.001

𝑐𝑣𝑓 0.5

Total time steps 200000 (Feature Compression) / 1M (Attentive Pooling)

Epoch length 36

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2

Maximal norm of
gradient

0.5

Neural Network
Design

Shared network:

82

Input->GGNN(3 layers)->MLP->ReLU->Attentive
pooling/concatenation of node vectors->ReLU->Graph
embedding

Critic:

Graph embedding->MLP->�̂�𝜋(𝑠, 𝑎)

Actor:
Graph embedding->MLP->advantage

Network Initialization GGNN initialization is mentioned in section 4.2.4. Other
networks are initialized in the same way as PPO-Discrete-MLP

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

Figure 5-12 shows the performance of the attentive pooling approach. Like the D3QN-Discrete-
GGNN configuration (Figure 5-3), the cumulative reward (per episode) increases slowly and takes
about 700k steps to converge. When testing the real Delfi-PQ hardware, this approach may need
significant time.

Figure 5-12: Results of PPO-Discrete-GGNN with Attentive Pooling on the Toy Problem

By contrast, Figure 5-13 shows the results of the feature compression approach. It converges much
more quickly. In both cases, the entropy also drops to about 0.5, which means the agent learns a
relatively deterministic policy.

83

Figure 5-13: Results of PPO-Discrete-GGNN with Feature Compression on the Toy Problem

5.8. Results of PPO-Discrete-GAT

This configuration is like the PPO-Discrete-GGNN but uses the Graph Attention Network (GAT) to
process the graph. Table 5-7 shows the hyperparameters of this configuration in the experiment.
The configuration only uses 3 GAT layers, and more GAT layers do not improve the performance in
this test.

Table 5-7: Hyperparameters of PPO-Discrete-GAT in Filling Grid Test

Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.05

Mini-batch size 32

Initial learning rate 5e-4

𝛾 0.9

𝑐𝑒𝑛𝑡 0.001

𝑐𝑣𝑓 0.5

Total time steps 200000

Epoch length 36

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2

Maximal norm of gradient 0.5

Neural Network Design Shared network:

84

Input->GAT->ReLU->GAT->ReLU->MLP->ReLU->Attentive
pooling/concatenation of node vectors->ReLU->Graph
embedding

Critic:

Graph embedding->MLP->�̂�𝜋(𝑠, 𝑎)

Actor:
Graph embedding->MLP->advantage

Network Initialization GAT adopts the default initialization. Other networks are
initialized in the same way as PPO-Discrete-MLP

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

Figure 5-14 shows the results of the configuration with attentive pooling. The cumulative reward
does not reach the up limit (36 per episode) after 1 million steps. Using attentive pooling in this
configuration may not be a good idea.

Figure 5-14: Results of PPO-Discrete-GAT with Attentive Pooling on the Toy Problem

Figure 5-15 shows the performance of feature compression. Compared with PPO-Discrete-GGNN,
this configuration needs more time steps to converge. Moreover, when the cumulative curve
reaches the up limit (36 per episode), the curve begins to oscillate violently and sometimes drops
under 0. Such instability is not desired by software testing.

85

Figure 5-15: Results of PPO-Discrete-GAT with Feature Compression on the Toy Problem

5.9. Discussions

Table 5-8 summarizes all experiments in this chapter. Note that there are 36 grids in the toy
problem.

Table 5-8: Brief Summary of Results in Filling Grid Test

Configuration Number of Steps Needed
by Convergence of
Cumulative Reward

Fill All
Grids?

Note

D3QN-Discrete-MLP 10k Yes (36)

D3QN-Discrete-GGNN
(Attentive Pooling)

170k ~35
grids

Its Q value curve converges more
slowly than the feature compression
approach.

D3QN-Discrete-GGNN
(Feature
Compression)

155k ~35
grids

The cumulative reward curve
fluctuates. Sometimes it drops
below 0.

D3QN-Discrete-GAT
(Attentive Pooling)

160k ~32
grids

Its Q value curve converges more
slowly than the feature compression
approach.

D3QN-Discrete-GGNN
(Feature
Compression)

150k ~32
grids

The cumulative reward curve
fluctuates. Sometimes it drops
below 0.

PPO-Discrete-MLP
(Without Annealing)

200k ~30
grids

KL divergence ranges between 0.1
and 0.5. The cumulative reward
curve fluctuates or even crashes.
The entropy drops from 3.5 to 0.5.

PPO-Discrete-MLP
(With Annealing)

150k ~33
grids

KL divergence around 0.025. The
cumulative reward curve grows

86

stably. The entropy drops from 3.5
to 2.2.

PPO-MultiDiscrete-
MLP
(With Annealing)

150k ~33
grids

The cumulative reward curve grows
stably. The entropy drops from 14
to 6 (different action space).

PPO-Discrete-GGNN
(With Annealing,
Attentive Pooling)

700k ~35
grids

The cumulative reward curve grows
stably. The entropy drops from 3.5
to 0.2.

PPO-Discrete-GGNN
(With Annealing,
Feature Compression)

60k ~35
grids

The cumulative reward curve grows
stably. The entropy drops from 3.5
to 0.5.

PPO-Discrete-GAT
(With Annealing,
Attentive Pooling)

Not yet after 1M steps ~30
grids

The cumulative reward curve grows
stably. The entropy drops from 3.5
to 0.7.

PPO-Discrete-GAT
(With Annealing,
Feature Compression)

120k Yes (36) The cumulative reward curve
fluctuates. Sometimes it drops
under 0. The entropy drops from
3.5 to 0.2.

The D3QN-Discrete-MLP configuration converges most quickly in the toy problem. It only needs 10k
steps to reach the up limit, while the PPO-Discrete-MLP configuration needs about 150k steps.
Other configurations usually need 60k~200k steps to converge, while the PPO configurations with
attentive pooling take much more training steps.

On the other hand, the D3QN algorithm cannot directly generate a command vector as PPO-
MultiDiscrete-MLP does. In other words, it cannot adapt to the MultiDiscrete action space. Assume
the length of the command vector is 𝐿𝑣, and each element of the vector can be selected from 𝑁

values. The D3QN algorithm needs computer 𝑁𝐿𝑣 state-action values in every step, which is
computationally expensive. By contrast, the actor-network in the PPO-MultiDiscrete-MLP only needs
to generate a matrix with a size of 𝑁 × 𝐿𝑣. It is much easier.

From our experience, the D3QN algorithm is not very sensitive to hyperparameters in the filling grid
problem. An important consideration is to control the rate at which 𝜀 falls by tuning 𝜀𝑠𝑡𝑎𝑟𝑡, 𝜀𝑒𝑛𝑑, total
time steps, and exploration fraction. If 𝜀 falls too quickly, the exploration will stops before the agent

learns a good policy. If 𝜀 falls too slowly, the training process will take too much time.

The learning rate annealing mechanism can make PPO more stable, but it may also increase the
final entropy of the action probability distribution. When the action probability distribution is too
“sharp” (low entropy), the KL divergence of a single policy update can be huge, triggering the
learning rate annealing mechanism. However, it is unclear why high-entropy and low-entropy
policies have similar performance in the toy problem.

From a neural network architecture point of view, the simplest MLP (with only two hidden layers) is
the fastest option. However, it only accepts a plain vector as input. The length of the vector and the
meaning of each element may change after programmers modify the code (section 3.4.2). We shall
use a graph neural network to process graph input to solve the problem.

The Gated Graph Neural Network (GGNN) performs similarly to the Graph Attention Network (GAT)
in both the D3QN and PPO algorithms. However, the GGNN can have more layers (5 layers in our
case), while the GAT usually has 2~3 layers. In our experiment, if the GAT has more layers, its
performance will drop significantly.

There are two options to extract information from the node features processed by the graph neural
network: graph pooling or feature compression. Table 5-8 shows that feature compression leads to
the cumulative reward curve oscillation for both the D3QN and PPO algorithms. At the same time,

87

the neuron number of its graph MLP layer depends on the node number of the graph. This may also
cause problems when the SUT is modified and the number of probes changes.

Another approach to extract information is attentive pooling. It does not have the oscillation
phenomenon of the feature compression approach. Furthermore, the neuron number does not
depend on the node number of the graph. However, it usually needs more time steps to be trained.

We will use these configurations in the following sections to test actual Delfi-PQ software.

88

6 Stress Testing

This section introduces the stress testing and its results:

⚫ Section 6.1 explains the design of the experiment.
⚫ Section 6.2~6.9 shows the results of different configurations, including the random

baseline, the genetic baseline, Q-Learning, D3QN-Discrete-MLP., PPO-Discrete-MLP,
PPO-MultiDiscrete-MLP, PPO-Discrete-GGNN, PPO-MultiDiscrete-GGNN.

⚫ Section 6.10 introduces some bugs of the onboard software identified during the stress
testing.

⚫ Section 6.11 compares results of these configuration and gives a brief summary.

6.1. About the Experiment

We try to maximize the CPU load of the COMMS subsystem of Delfi-PQ in this experiment. More
specifically, we estimate number of clock cycles required by each loop in the scheduler:

 𝑐𝑙𝑜𝑜𝑝 = 𝑓𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙/𝑛𝑙𝑜𝑜𝑝 (6-1)

Where 𝑓 is the clock frequency of the CPU. For MSP432, 𝑓 = 48000000. 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is the time interval
being sampled, and 𝑛𝑙𝑜𝑜𝑝 is the number of loops executed by the scheduler during the time interval.

We set the reward of each step as 𝑐𝑙𝑜𝑜𝑝/1000.

Figure 6-1 shows the time interval used in the experiment. The time interval is not precisely the
interval that recording 𝑛𝑙𝑜𝑜𝑝. However, since the length of time to send 2 “retrieve loop count”

commands should be the same, the length of the 2 intervals should also be the same.

Figure 6-1: A Time Step in the Stress Testing

89

The processor is not always busy during the time interval. As shown by Figure 6-1, it usually gets
busy for a while after receiving a command. On the other hand, we can only calculate the average
𝑐𝑙𝑜𝑜𝑝 during the time interval. Assume the communication speed decreases, 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 to send the 3

commands will get longer, but the CPU load triggered by the 3 commands will roughly remain the
same. As a result, 𝑐𝑙𝑜𝑜𝑝 will be smaller. To avoid the influence of communication speed on the

conclusions, we only compare the 𝑐𝑙𝑜𝑜𝑝 computed by the same machine, i.e., the lab PC or the

server.

In Figure 6-1, one may notice that we always retrieve code coverage after sending a testing
command. The coverage information is useless for some algorithms, e.g., the genetic algorithm.
Why do we do this? Firstly, if the agent retrieves the loop count just after sending a testing
command, it measures instantaneous CPU load with a very high variance. In practice, we want a
high average CPU load rather than a high instantaneous load. Secondly, instead of delaying 50ms
before checking the loop count, collecting code coverage is useful (for RL) and has the same time-
delay effect.

Figure 6-2 shows an example of a time step in the experiment of PPO-MultiDiscrete-GGNN (section
6.9).

Figure 6-2: Example of a Time Step in Stress Testing (from Lab PC)

We also find unpredictable load peaks in the experiment, which means the stress testing
environment is a non-deterministic environment for an RL agent. For example, if testers send the
same testing command to the COMMS board 1000 times, they can record different CPU loads.
Figure 6-3 shows the phenomenon.

90

Figure 6-3: CPU Load of Send the Same Command for 1000 Times (from Lab PC)

When we perform the test, there are 630 probes in the source code and 58 commands specified by
the tester.

6.2. Random Baseline

In the random baseline, the agent randomly selects a command from the command list and send it.
Figure 6-4 shows the results of the baseline.

Figure 6-4: Results of Random Baseline in Stress Testing of COMMS

(Left: Commands from Lab PC; Right: from the Cloud Server)

The CPU load peaks may be triggered by specific commands or unpredictable events. For the
commands send by the lab PC, 𝑐𝑙𝑜𝑜𝑝 ≈ 900. For the commands send from the cloud server, 𝑐𝑙𝑜𝑜𝑝 ≈

700. Obviously, the performance of the baseline will not improve during a test.

6.3. Genetic Algorithm Baseline

The genetic algorithm maintains a group of solutions called chromosomes and modifies them to get
a higher cumulative reward. Table 6-1 shows the hyperparameters of the algorithm.

Table 6-1: Hyperparameters of the Genetic Algorithm in Stress Testing of COMMS
Total iteration number 100

Length of a solution 128 (Discrete) / 512 (MultiDiscrete)

Population 20

Crossover probability 0.4

Mutation probability 0.01

91

Figure 6-5: Results of the Genetic Algorithm (Discrete, from Lab PC)

In Figure 6-5, the genetic algorithm selects pre-defined commands from the parser, i.e., each
element in the chromosome is an index of a human-defined command. As mentioned before, such
action space is discrete. The testing commands come from the lab PC, and it takes 10.3 hours to
complete the test. The curve converges after 40 iterations and 4.1 hours.

The average CPU load of the solutions in an iteration increases from 1600 to around 4500. The best
command sequence found by the algorithm reaches a CPU load of 18360. However, when we
repeat the command sequence ten times, we get the following results:

Figure 6-6: Repeat the “Best Command Sequence (Discrete)” for 10 Times

92

As shown by Figure 6-6, the performance of the best command sequence is not repeatable. It is
because the stress testing is non-deterministic.

In contrast, Figure 6-7 shows the algorithm's performance in the MultiDiscrete action space. In such
action space, the length of a chromosome is 512. Every four elements in the chromosome form a
command vector, in which the first element is the service number, and the following three elements
are the command payload.

Figure 6-7: Results of the Genetic Algorithm (MultiDiscrete, from Lab PC)

The testing commands come from the lab PC, and it takes 12.9 hours to complete the test. The
curve converges after 70 iterations and 9 hours. The average CPU load of an iteration increases
from 2000 to about 15000, which is much higher than the CPU load in the discrete action space. It
means the human-defined commands are not good at triggering a high CPU load.

We ran the best solution ten times and got the following result:

93

Figure 6-8: Repeat the “Best Command Sequence (MultiDiscrete)” for 10 Times

The performance of the best command sequence is still not repeatable.

6.4. Results of Q-Learning

Table 6-2 shows the hyperparameters in the tabular Q-Learning algorithm in this test, and the
results are shown in Figure 6-9.

Table 6-2: Hyperparameters of the Q-Learning in Stress Testing for COMMS
Hyperparameter Value

𝛾 0.9

Learning rate 0.01

Total time steps 65000

Episode length 128

𝜀 0.9

94

Figure 6-9: Performance of Q-Learning in the Stress Test of COMMS (from Lab PC)

The Q-Learning algorithm found 21 states during the test using the hyperparameters and state
identification rules. However, the CPU load does not increase in the training process. One possible
reason is that the state identification rules are not effective enough.

6.5. Results of D3QN-Discrete-MLP

Now we perform the stress testing with the D3QN-Discrete-MLP configuration. The
hyperparameters are shown in Table 6-3, and the results are shown in Figure 6-10.

According to our experience in the “filling grid” experiment, the D3QN algorithm usually converges in
fewer time steps when the training frequency is 1. However, frequently updating the neural network
requires more computing time. Thus, we run the algorithm on the cloud server to reduce the
computing time.

Table 6-3: Hyperparameters of D3QN-Discrete-MLP in the Stress Testing for COMMS
Hyperparameter Value

𝛾 0.9

Buffer size 50000

Mini-batch size 128

Learning rate 5e-4/1e-4

Learning starts 128

Training frequency 1

Total time steps 50000

𝜀𝑠𝑡𝑎𝑟𝑡 1

𝜀𝑒𝑛𝑑 0.01

Exploration fraction 0.8

Epoch length 128

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500

Neural Network Design Value network:
Input->MLP->ReLU->MLP->ReLU->MLP->value

Advantage network:
Input->MLP->ReLU->MLP->ReLU->MLP->advantage

95

Every hidden layer has 2048 neurons.

Network Initialization Orthogonal initialization of weights.
Initial biases are set to 0.

Initial std of hidden layers is √2.

Figure 6-10: Performance of D3QN-Discrete-MLP in the Stress Test of COMMS (from Server)

The CPU load in Figure 6-10 first increases and then decreases. At the same time, the estimated Q
value diverges at the end of the training process. Reducing the learning rate makes the situation
even worse.

There are several possible reasons for the phenomenon. Firstly, the neural network may be
overfitting. To avoid over-fitting, we can add an L2 regulation term to the loss function (4-3) or add
dropout layers to the neural network. Secondly, such instability may be an inherent property of

value-based RL algorithms because minor updates to �̂�𝜋(𝑠, 𝑎) may significantly change the policy
and the data distribution.

The D3QN-Discrete-MLP is the most basic configuration of the D3QN algorithm. Since it does not
work well in stress testing, we will not try other configurations based on the D3QN algorithm. To
some extent, this is also a result of the limited time available for the work.

6.6. Results of PPO-Discrete-MLP

96

We try the PPO-Discrete-MLP configuration in this section. Table 6-4 lists the hyperparameters
used, and Figure 6-11 shows the results. In the experiment, we find that the configuration can
converge quickly without frequent network updates, so we run the algorithm on the lab PC.

The D3QN-Discrete-MLP is the most basic configuration of the D3QN algorithm. Since it does not
work well in stress testing, we will not try other configurations based on the D3QN algorithm. To
some extent, this is also a result of the limited time available for the work.

Table 6-4: Hyperparameters of PPO-Discrete-MLP in the Stress Testing for COMMS
Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02

Mini-batch size 32

Initial learning rate 5e-4

𝛾 0.9

𝑐𝑒𝑛𝑡 0.01

𝑐𝑣𝑓 0.5

Total time steps 15000

Epoch length 128

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2

Maximal norm of gradient 0.5

Neural Network Design Critic network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠)

Actor network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎)

Every hidden layer has 2048 neurons.

Network Initialization Orthogonal initialization of weights.
Initial biases are set to 0.

Initial std of hidden layers is √2

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

97

Figure 6-11: Performance of PPO-Discrete-MLP in the Stress Test of COMMS (from Lab PC)

The performance of this configuration is prospective. It only takes 52 minutes to get the result on the
lab PC, and the CPU load maintains a level of around 4000 after 30 minutes. By contrast, the
genetic algorithm in discrete action space performs similarly after 30 iterations, i.e., about 3 hours.
At the same time, the genetic algorithm can only generate several good command sequences. It
has non-deterministic performance under a non-deterministic environment. In contrast, the PPO
algorithm generates a policy which has relatively stable performance in a non-deterministic
environment.

Since the PPO-Discrete-MLP configuration works well, we keep trying other configurations based on
the PPO algorithm.

6.7. Results of PPO-MultiDiscrete-MLP

We try the PPO-MultiDiscrete-MLP configuration in this section. Table 6-5 shows the
hyperparameters. Figures 6-12 and 6-13 show the results.

Table 6-5: Hyperparameters of PPO-MultiDiscrete-MLP in the Stress Testing for COMMS
Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02

Mini-batch size 32

Initial learning rate 5e-4

𝛾 0.9

𝑐𝑒𝑛𝑡 0.001

𝑐𝑣𝑓 0.5

Total time steps 50000

Epoch length 36

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2

Maximal norm of gradient 0.5

Neural Network Design Critic network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠)

Actor network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎)

Every hidden layer has 2048 neurons.

98

Network Initialization Orthogonal initialization of weights.
Initial biases are set to 0.

Initial std of hidden layers is √2

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

Command Vector Length 4/11

Figure 6-12: Performance of PPO-MultiDiscrete-MLP (Command Vector Length=4, from Lab PC)

In Figure 6-12, the configuration achieves a similar CPU load as the genetic algorithm in
MultiDiscrete action space. However, the genetic algorithm takes 12.9 hours, while the PPO-
MultiDiscrete-MLP configuration only takes 59 minutes on the lab PC. If we only consider the time
needed for the curve to converge, the genetic algorithm converges after 9 hours, and PPO-
MultiDiscrete-MLP converges after 44 minutes.

After convergence, the trained policy can achieve a 𝑐𝑙𝑜𝑜𝑝 between 14000 and 16000. By contrast,

the best chromosome from the genetic algorithm can achieve a 𝑐𝑙𝑜𝑜𝑝 between 13000 and 17000.

The policy from the PPO algorithm has relatively more stable performance.

99

Figure 6-13: Performance of PPO-MultiDiscrete-MLP (Command Vector Length=11, from Lab PC)

Figure 6-13 shows the same configuration results, but the command vector length is set to 11. The
lab PC takes 2 hours and 6 minutes to get the results. Although the CPU load does increase and
the entropy does drop, its CPU load is much lower than in Figure 6-12. Why does this happen?

A possible reason is that it takes many attempts for the agent to get a valid command. In another
experiment, after sending 200000 testing commands to the COMMS board, we only find valid
command vectors with 4~5 parameters in the interaction record. If a valid command has more
parameters, the probability of this command being attempted becomes very small. In other words,
the action space for the PPO algorithm becomes too large to try.

6.8. Results of PPO-Discrete-GGNN

This section tries the PPO-Discrete-GGNN configuration. Note that the PPO-Discrete-GAT
configuration performs worst in the filling grid test, so we do not try it in a real environment.

Table 6-6: Hyperparameters of PPO-Discrete-GGNN in the Stress Testing for COMMS
Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02

Mini-batch size 32

Initial learning rate 5e-4

𝛾 0.9

100

𝑐𝑒𝑛𝑡 0.001

𝑐𝑣𝑓 0.5

Total time steps 25000

Epoch length 36

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2

Maximal norm of
gradient

0.5

Neural Network
Design

Shared network:
Input->GGNN(3 layers)->MLP->ReLU->Attentive
pooling/concatenation of node vectors->ReLU->Graph
embedding

Critic:

Graph embedding->MLP->�̂�𝜋(𝑠, 𝑎)

Actor:
Graph embedding->MLP->advantage

Network Initialization GGNN initialization is mentioned in section 4.2.4. Other
networks are initialized in the same way as PPO-Discrete-MLP

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

Figure 6-14 shows the results with feature compression. It takes 2 hours and 47 minutes on the lab
PC to get the result. The average 𝑐𝑙𝑜𝑜𝑝 ≈ 3500, which is lower than the 𝑐𝑙𝑜𝑜𝑝 of PPO-Discrete-MLP

(Figure 5-23). The performance is also more unstable: sometimes 𝑐𝑙𝑜𝑜𝑝 drops under 1500.

101

Figure 6-14: Performance of PPO-Discrete-GGNN with Feature Compression (from Lab PC)

By contrast, Figure 6-15 includes the results with attentive pooling. It takes 1 hour and 51 minutes
on the lab PC to get the results. The configuration converges after about 3000 steps (26 minutes).
Its average 𝑐𝑙𝑜𝑜𝑝 ≈ 4500, which is higher than the performance of PPO-Discrete-MLP configuration.

It also shows that attentive pooling performs better than feature compression in stress testing.

However, compared with the basic PPO-Discrete-MLP configuration, the CPU load curve in Figure
6-15 is still more unstable. Sometimes 𝑐𝑙𝑜𝑜𝑝 drops under 2000. This phenomenon may be caused

by the Gated Graph Neural Network.

Figure 6-15: Performance of PPO-Discrete-GGNN with Attentive Pooling (from Lab PC)

102

6.9. Results of PPO-MultiDiscrete-GGNN

Based on experience of previous experiments, we also implement the PPO-MultiDiscrete-GGNN
configuration. Note that this configuration has not been tested in the filling grid environment. It uses
attentive pooling to extract the graph feature. Table 6-7 shows the hyperparameters.

Table 6-7: Hyperparameters of PPO-MultiDiscrete-GGNN in the Stress Testing for COMMS
Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02

Mini-batch size 32

Initial learning rate 5e-4

𝛾 0.9

𝑐𝑒𝑛𝑡 0.001

𝑐𝑣𝑓 0.5

Total time steps 25000

Epoch length 36

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2

Maximal norm of
gradient

0.5

Neural Network Design Shared network:
Input->GGNN(3 layers)->MLP->ReLU->Attentive
pooling/concatenation of node vectors->ReLU->Graph embedding

Critic:

Graph embedding->MLP->�̂�𝜋(𝑠, 𝑎)

Actor:
Graph embedding->MLP->advantage

Network Initialization GGNN initialization is mentioned in section 4.2.4. Other networks
are initialized in the same way as PPO-Discrete-MLP

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

Command Vector Length 4

Figure 6-16 shows the performance of this configuration. It takes 3 hours and 9 minutes on the lab
PC to get the results. The 𝑐𝑙𝑜𝑜𝑝 curve converges after 13000 steps and 123 minutes. In fact, this is

the best performance that we have ever seen. It achieves a 𝑐𝑙𝑜𝑜𝑝 around 20000. Moreover, after

17000 steps, the 𝑐𝑙𝑜𝑜𝑝 curve only ranges from 19000 and 23000.

In the first 10000 steps, the 𝑐𝑙𝑜𝑜𝑝 curve does not significantly increase, and the entropy decreases

slowly. In fact, you can find similar pattern at the beginning of training process in Figures 5-12 and
6-15. Perhaps the attentive pooling layer was adapting to the problem in the initial training phase.
Another possible reason is that the initial learning rate may be too high, and training becomes more
effective when the learning rate decreases.

103

Figure 6-16: Performance of PPO-MultiDiscrete-GGNN (Command Vector Length=4, from Lab PC)

6.10. Bugs Identified in Stress Testing

Although there is no testing oracle in the experiment, we still find an anomaly during the stress
testing. When running the algorithms in the MultiDiscrete action space, sometimes the COMMS
board gets stuck and cannot reply. This phenomenon may disappear later or continue.

Limited by time, we have not found the root of the anomaly. However, it is possible to find
anomalies in a phenomenon like a late response, no response, and unexpected response.

6.11. Discussions

Table 6-8 summarizes the results in stress testing.

Table 6-8: Brief Summary of Results in Stress Testing

Config. Running Time Average CPU
Load at the end

Range of CPU
Load at the end

Note

Random - 900 (lab PC),
700 (cloud
server)

There are spikes
(up to 30k) in the
𝑐𝑙𝑜𝑜𝑝 curve

Its average CPU load does
not increase, so we do not
record the running time.

104

Genetic
(Discrete)

4.1 hour to
roughly
converge, 10.1
hour in total

4500 (lab PC) The “best”
solution reaches
18360. Average
𝑐𝑙𝑜𝑜𝑝 ranges from

2500 to 6000.

Performance of the “best”
solution is not repeatable. It
only achieves 𝑐𝑙𝑜𝑜𝑝

between 2000 and 4000.

Genetic
(MultiDiscrete)

9 hours to
roughly
converge, 12.9
hour in total

15000 (lab PC) The “best”
solution reaches
16000. Average
𝑐𝑙𝑜𝑜𝑝 ranges from

14500 to 15500.

Performance of the “best”
solution is not repeatable. It
only achieves 𝑐𝑙𝑜𝑜𝑝

between 13200 and 17000.

Q-Learning - 1400 (lab PC) There are spikes
(up to 2400) in the
𝑐𝑙𝑜𝑜𝑝 curve

Its average CPU load does
not increase, so we do not
record the running time.

D3QN-
Discrete-MLP

- 900 (cloud
server)

700~1100, but not
converge

𝑐𝑙𝑜𝑜𝑝 increases and then

decreases. The Q value
curve diverges at the end.

PPO-Discrete-
MLP

30 minutes to
roughly
converge, 52
minutes in total

4000 (lab PC) 3500~4500

PPO-
MultiDiscrete-
MLP
(Cmd Vector
Length = 4)

44 minutes to
roughly
converge, 59
minutes in total

15000 (lab PC) 14000~16000

PPO-
MultiDiscrete-
MLP
(Cmd Vector
length = 11)

79 minutes to
roughly
converge, 126
minutes in total

1300 (lab PC) 1280~1320

PPO-Discrete-
GGNN
(Feature
Compression)

33 minutes to
roughly
converge, 167
minutes in total

3500 (lab PC) 1500~4500

PPO-Discrete-
GGNN
(Attentive
Pooling)

26 minutes to
roughly
converge, 111
minutes in total

4500 (lab PC) 2000~6500

PPO-
MultiDiscrete-
GGNN
(Attentive
Pooling, Cmd
Vector Length
= 4)

123 minutes to
roughly
converge, 189
minutes in total

20000 (lab PC) 19000~23000 Best performance in stress
testing

Because of unpredictable load peaks, stress testing is a non-deterministic environment. Testers will
get different average CPU loads if they send a fixed command sequence several times. Therefore,
we shall evaluate how high a CPU load an algorithm can achieve and whether it has stable
performance.

Random testing and the Q learning algorithm fail in both respects. Their CPU load does not
increase during the test and remains unstable. We guess the Q-learning algorithm's human-defined
state identification rules are ineffective. On the other hand, it also takes more human labour to
design good state identification rules.

We try the genetic algorithm in the discrete and multi-discrete action spaces, i.e., selecting human-
defined commands or organizing command vectors. The genetic algorithm does work in both cases

105

and triggers a higher CPU load in the multi-discrete action space. Nevertheless, we cannot get the
same performance when we run the "best" solutions several times. The 𝑐𝑙𝑜𝑜𝑝 of the "best solution" in

discrete action space ranges between 2000 and 4000. The 𝑐𝑙𝑜𝑜𝑝 of the "best solution" in multi-

discrete action space ranges between 13000 and 17000.

Unlike the filling grid test results, the DQN algorithm does not perform well in stress testing. Its 𝑐𝑙𝑜𝑜𝑝

curve firstly increases and then decreases, while its entropy diverges at the end of the training
process. Reducing the learning rate does not improve the situation but worsens it. Adding L2
regularization to the loss function or dropout layers to the neural network may be helpful, but we
have not tried these options.

The PPO algorithm is the winner of the stress testing. In the discrete action space, the PPO-
Discrete-GGNN configuration with attentive pooling has an average 𝑐𝑙𝑜𝑜𝑝 ≈ 4500, but the curve

sometimes drops under 2000. By contrast, the PPO-Discrete-MLP configuration has a lower 𝑐𝑙𝑜𝑜𝑝 ≈

4500, but its curve in Figure 6-10 looks more stable than the curve in Figure 6-15.

In the MultiDiscrete action space, PPO with GGNN achieves a higher CPU load but more robust
oscillation. The PPO-MultiDiscrete-MLP configuration (command vector length is 4) has an average
𝑐𝑙𝑜𝑜𝑝 ≈ 15000, and the value ranges between 14000 and 16000 most of the time after convergence.

In contrast, the PPO-MultiDiscrete-GGNN configuration with the same command vector length has a
lower 𝑐𝑙𝑜𝑜𝑝 ≈ 20000, and the value ranges between 19000 and 23000.

Thus, the gated graph neural network (GGNN) can process graph input and improve the algorithm's
performance. As a price, the performance of the algorithm may be more unstable. Moreover,
attentive pooling works better than feature compression in GGNN, but it also makes the agent learn
slowly during the initial training phase.

The PPO and genetic algorithm trigger higher CPU load with lower variance in the MultiDiscrete
action space. This may be because the human-defined commands are unsuitable for stress testing.
However, if the length of the command vector becomes larger (e.g., 11), the search space will be
too large for the algorithm. In this case, the PPO algorithm will converge at a low 𝑐𝑙𝑜𝑜𝑝, as shown in

Figure 6-13.

All experiments in the chapter, except the D3QN-Discrete-MLP configuration, run on the lab PC.
Among these experiments, the genetic algorithm takes the longest, and the PPO algorithm is much
quicker. To some extent, this is not in line with our impression that "reinforcement learning takes
longer training time". For example, the genetic algorithm in the multi-discrete action space
converges after 9 hours. The PPO-MultiDiscrete-MLP configuration achieves similar performance in
44 minutes, and the PPO-MultiDiscrete-configuration converges at a higher CPU load after 123
minutes.

The most crucial finding in this section is the excellent performance of the PPO-MultiDiscrete-GGNN
configuration. Suppose the command vector is not too long and attentive pooling is used. In that
case, the configuration can achieve the highest CPU load within a limited time and maintain
performance in a non-deterministic environment. Since the configuration organizes the commands
and does not need to parse the reply, it also needs much less prior knowledge. These are precisely
the properties we want to achieve in the research.

106

7 Coverage Testing

This section introduces the coverage testing and its results:

⚫ Section 7.1 explains the design of the experiment.
⚫ Section 7.2~7.9 shows the results of different configurations, including the random

baseline, the genetic baseline, Q-Learning, D3QN-Discrete-MLP, D3QN-Discrete-
GGNN, PPO-Discrete-MLP, PPO-MultiDiscrete-MLP, PPO-Discrete-GGNN.

⚫ Section 7.10 introduces some bugs of the onboard software identified during the
coverage testing.

⚫ Section 7.11 compares results of these configuration and gives a brief summary.

7.1. About the Experiment

We try to maximize the code coverage of the COMMS flight software of Delfi-PQ in this experiment.
When performing the test, there are 630 probes in the source code and 58 commands specified by
the tester.

When the agent executes a probe that is never triggered before in an episode, the agent will receive
a positive reward of +1. On the other hand, if the agent does not trigger any new probes after
sending a command, it will receive a negative reward of -1. Section 4.2.2 shows the formulations of
states and actions.

To collect the code coverage (status of probes), the agent will send a code coverage collection
command after a testing command. In the previous chapter, the genetic algorithm sends a coverage
collection command after every testing command. This is because we want to be the same for all
algorithms running on the same machine. By contrast, in coverage testing, the genetic algorithm
only needs to collect the code coverage at the end of an episode, which reduces the testing time.

Like the previous chapter, we send the same command 1000 times to verify whether the
environment is deterministic:

107

Figure 7-1: Branch Coverage of Send the Same Command for 1000 Times (from Lab PC)

Figure 7-1 shows that the coverage testing is also non-deterministic. In section 7.3, we will evaluate
such uncertainty's impact by repeating the genetic algorithm's optimal command sequence.

7.2. Random Baseline

In the random baseline, the agent randomly selects a command from the command list and sends it.
Table 7-1 shows the average branch coverage achieved by the baseline in 10 runs.

Table 7-1 Average Branch Coverage of Random Baseline in 10 Runs

Episode
Length

Average
Coverage

Max Coverage Min Coverage Time for 10 runs

128 224.6/630 236/630 210/630 395s

256 240/630 263/630 225/630 792s

512 241.8/630 267/630 229/630 1566s

1024 251/630 267/630 225/630 3150s

The coverage results of the random testing are also “random”. If the episode length is 1024, it may
get a branch coverage from 225/630 to 267/630. A simple random policy does not always get high
coverage.

At the same time, increasing the episode length can improve the average coverage. If testers can
run random testing for more than 30 minutes, they will probably get the maximum branch coverage
of the COMMS software because the COMMS software is relatively simple.

7.3. Genetic Algorithm Baseline

Table 7-2 and Figure 7-2 show the hyperparameters and coverage curve of the genetic algorithm,
respectively. In this section, we only run the genetic algorithm in the discrete action space, i.e.,
selecting human-defined commands. Each element in the chromosome is an index of a pre-defined
command in a list.

Table 7-2: Hyperparameters of the Genetic Algorithm in Coverage Testing for COMMS
Total iteration number 100

Length of a solution 128

Population 10

Crossover probability 0.4

Mutation probability 0.01

108

Figure 7-2: Coverage Curve of the Genetic Algorithm (from Lab PC)

In the end, the genetic algorithm reaches a branch coverage of 269/630, slightly higher than the
best coverage in the random baseline. It takes 72.6 minutes for the algorithm to complete 100
iterations on the lab PC. The best solution is found after 80 iterations and 57 minutes. To speed up
the algorithm, we only send the coverage collection command after all commands in a chromosome
have been sent.

Like section 6.3, now we repeat the best chromosome ten times and get the following result:

Figure 7-3: Repeat the “Best Command Sequence (Discrete)” for 10 Times

We can compare it with Figure 6-6 in the stress testing. Although the branch coverages differ, their
variance is much smaller than the CPU load in Figure 6-6. On the other hand, the branch coverage
triggered by a single command varies between 8 and 18 in Figure 7-1, but the coverage triggered
by a command sequence only varies between 256 and 266 in Figure 7-3. That is to say, though the
coverage of a single command is uncertain, the coverage of a command sequence is roughly the
same. Since we use the final coverage of an episode as the performance metric, coverage testing
seems to be more “deterministic” than stress testing.

109

7.4. Results of Q-Learning

Table 7-3 shows the hyperparameters in the tabular Q-Learning algorithm in this test, and the
results are shown in Figure 7-4.

Table 7-3: Hyperparameters of the Q-Learning in Coverage Testing for COMMS
Hyperparameter Value

𝛾 0.9

Learning rate 0.01

Total time steps 45000

Episode length 128

𝜀 0.9

Figure 7-4: Coverage Curve of the Q-Learning Algorithm (from Lab PC)

Given the hyperparameters and state identification rules, the Q-Learning algorithm found 22 states
during the test. However, the code coverage does not increase in the training process. The code
coverage of Q-Learning (~170/630) is even worse than random testing, which has an average
branch coverage of 224.6/630 with the same episode length.

Like stress testing, a possible reason is that the human-specified state identification rules
significantly affect the performance of the Q-Learning algorithm.

7.5. Results of D3QN-Discrete-MLP

Now we test the COMMS software with the D3QN-Discrete-MLP configuration. Its hyperparameters
are shown in Table 7-4.

Table 7-4: Hyperparameters of D3QN-Discrete-MLP in the Coverage Testing for COMMS
Hyperparameter Value

𝛾 0.9

Buffer size 200000

Mini-batch size 128

Learning rate 1e-4

Learning starts 128

Training frequency 1

Total time steps 200000

𝜀𝑠𝑡𝑎𝑟𝑡 1

110

𝜀𝑒𝑛𝑑 0.01

Exploration fraction 0.6

Epoch length 128

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500

Neural Network Design Value network:
Input->MLP->ReLU->MLP->ReLU->MLP->value

Advantage network:
Input->MLP->ReLU->MLP->ReLU->MLP->advantage

Every hidden layer has 2048 neurons.

Network Initialization Orthogonal initialization of weights.
Initial biases are set to 0.

Initial std of hidden layers is √2.

Figure 7-5 shows the results of the configuration. The lab PC takes 9 hours and 51 minutes to get the
results—the average Q value estimated by the network increases and decreases to a level. The average
branch coverage increases from 225/630 to 260/630. However, the final branch coverage is not very

stable with 𝜀𝑒𝑛𝑑 = 0.01. Sometimes it even drops under 220/630. We have seen such instability in
section 6.5, which may be an inherent property of value-based RL algorithms.

Figure 7-5: Results of the D3QN-Discrete-MLP in the Coverage Testing for COMMS (from Lab PC)

7.6. Results of D3QN-Discrete-GGNN

This section uses the D3QN-Discrete-GGNN configuration instead. We only use the feature
compression approach to get a graph representation from node features. It is because we
performed this experiment early in the research when we had not found attentive pooling as an
effective way to extract graph embedding.

On the other hand, we also had not set up the cloud server then. To reduce the training time on the
lab PC, we reduced the length of the node feature vectors from 127 to 7. Word2Vec generated
these short node feature vectors from the source code of COMMS software.

The hyperparameters of this configuration are in Table 7-5, and the results are in Figure 7-6.

Table 7-5: Hyperparameters of D3QN-Discrete-GGNN in the Coverage Testing for COMMS
Hyperparameter Value

𝛾 0.9

111

Buffer size 500000

Mini-batch size 128

Learning rate 2.5e-4

Learning starts 128

Training frequency 10

Total time steps 500000

𝜀𝑠𝑡𝑎𝑟𝑡 1

𝜀𝑒𝑛𝑑 0.01

Exploration fraction 0.9

Epoch length 36

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 500

Neural Network
Design

Shared network:
Input->GGNN(3 layers)->MLP->ReLU->Concatenation of node
vectors->ReLU->Graph embedding

Compute value:
Graph embedding->MLP->value

Compute advantage:
Graph embedding->MLP->advantage

Network Initialization GGNN initialization is mentioned in section 4.2.4. Initial std of
output layers is 0.01. Other networks are initialized in the same

way as D3QN-Discrete-MLP

Figure 7-6: Results of the D3QN-Discrete-GGNN in the Coverage Testing for COMMS (from Lab PC)

It takes 26 hours and 1 minute to get the curves in Figure 7-6. Unfortunately, the branch coverage
per episode does not increase even after we tried several sets of hyperparameters. It even drops
during the training process. It may be caused by the configuration itself, unsuitable
hyperparameters, or the short node feature vectors.

7.7. Results of PPO-Discrete-MLP

In this section, we use the PPO algorithm instead. Table 7-6 shows the hyperparameters of the
PPO-Discrete-MLP configuration in this test. Figure 7-7 shows the performance of the configuration.

Table 7-6: Hyperparameters of PPO-Discrete-MLP in the Coverage Testing for COMMS
Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02

Mini-batch size 32

112

Initial learning rate 1e-4

𝛾 0.9

𝑐𝑒𝑛𝑡 0.01

𝑐𝑣𝑓 0.5

Total time steps 200000

Epoch length 128

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2

Maximal norm of gradient 0.5

Neural Network Design Critic network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠)

Actor network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎)

Every hidden layer has 2048 neurons.

Network Initialization Orthogonal initialization of weights.
Initial biases are set to 0.

Initial std of hidden layers is √2

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

Figure 7-7: Results of the PPO-Discrete-MLP in the Coverage Testing for COMMS (from Lab PC)

113

It takes 6 hours and 12 minutes to get the curves in Figure 7-7. The branch coverage curve
converges after roughly 100000 steps and 186 minutes. Like the D3QN-Discrete-MLP configuration,
the branch coverage of this configuration also increases from 220/630 to around 260/630. The final
code coverage is more stable than the curve of the D3QN algorithm. On the other hand, the KL
divergence is under control, and the entropy drops from 3.75 to 2.9. These results show similar
patterns to the results in the filling grid test.

7.8. Results of PPO-MultiDiscrete-MLP

Unlike previous configurations in this section, PPO-MultiDiscrete-MLP does not use the 58
commands specified by the testers. It organizes the commands by itself (section 4.3.3). The length
of a command vector is 4, in which the first element is the service number, and the following three
elements are the command payload. Table 7-7 and Figure 7-8 show the hyperparameter and
performance of the configuration, respectively.

Table 7-7: Hyperparameters of PPO-MultiDiscrete-MLP in the Coverage Testing for COMMS
Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02

Mini-batch size 32

Initial learning rate 5e-4

𝛾 0.9

𝑐𝑒𝑛𝑡 0.01

𝑐𝑣𝑓 0.5

Total time steps 200000

Epoch length 36

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2

Maximal norm of gradient 0.5

Neural Network Design Critic network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠)

Actor network:

Input->MLP->ReLU->MLP->ReLU->MLP->�̂�𝜋(𝑠, 𝑎)

Every hidden layer has 2048 neurons.

Network Initialization Orthogonal initialization of weights.
Initial biases are set to 0.

Initial std of hidden layers is √2

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

Command Vector Length 4

114

Figure 7-8: Results of the PPO-MultiDiscrete-MLP in the Coverage Testing for COMMS (from Lab PC)

It takes 7 hours and 12 minutes to get the results in Figure 7-8. Although the branch coverage does
increase and the entropy does drop, its coverage is lower than the PPO-Discrete-MLP
configuration.

The performance here is very different from the performance of the same configuration in stress
testing. As mentioned in section 6.7, the PPO algorithm in the MultiDiscrete action space is not
good at looking for valid long command vectors. Therefore, we set the command vector length as 4.
Short command vectors trigger high CPU load but do not trigger good code coverage in our
experiments.

Another problem is that the agent may try some “dangerous” commands to damage the board.
Stress testing is acceptable because we want to “destroy” the system. However, it may not be
suitable for other testing scenarios.

7.9. Results of PPO-Discrete-GGNN

We try both the feature compression and attentive pooling approach for this configuration. Table 7-8
shows the hyperparameters. In the feature compression configuration, the length of node feature
vectors is only seven because the experiment was performed earlier (just like in section 7.6). By
contrast, in the attentive pooling configuration, the node feature vector length is 127.

Table 7-8: Hyperparameters of PPO-Discrete-GGNN in the Coverage Testing for COMMS
Hyperparameter Value

𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.02 (feature compression) / 0.05 (attentive pooling)

115

Mini-batch size 32

Initial learning rate 1e-4

𝛾 0.9

𝑐𝑒𝑛𝑡 0.01 (feature compression) / 0.001 (attentive pooling)

𝑐𝑣𝑓 0.5

Total time steps 500000

Epoch length 36

Environment steps 128

Update steps 4

𝜆 0.95

𝜉 0.2

Maximal norm of
gradient

0.5

Neural Network
Design

Shared network:
Input->GGNN(3 layers)->MLP->ReLU->Attentive
pooling/concatenation of node vectors->ReLU->Graph
embedding

Critic:

Graph embedding->MLP->�̂�𝜋(𝑠, 𝑎)

Actor:
Graph embedding->MLP->advantage

Network Initialization GGNN initialization is mentioned in section 4.2.4. Other
networks are initialized in the same way as PPO-Discrete-MLP

𝑠𝑡𝑑𝑐𝑟𝑖𝑡𝑖𝑐
𝑜𝑢𝑡𝑝𝑢𝑡

 1

𝑠𝑡𝑑𝑎𝑐𝑡𝑜𝑟
𝑜𝑢𝑡𝑝𝑢𝑡

 0.01

Figure 7-9 shows results of the feature compression approach. It takes 21 hours and 7 minutes on
the lab PC to get the results. The average branch coverage does converge around 255, but the
curve fluctuates strongly.

116

Figure 7-9: Results of the PPO-Discrete-GGNN with Feature Compression (from Lab PC)

Figure 7-10 shows results of the attentive pooling approach. It takes 18 hours and 21 minutes on
the cloud server to get the results. Compared with the feature compression method, its average
coverage is only 245/630. The curve also fluctuates strongly.

Figure 7-10: Results of the PPO-Discrete-GGNN with Attentive Pooling (from Server)

117

7.10. Bugs Found in the Coverage Testing

We found several bugs in the COMMS flight software during the coverage testing:

- The microcontroller sometimes gets stuck in an indefinite loop in a low-level library
provided by Texas Instruments. It is because we do not set the UART module correctly.

- The “get metadata” command sometimes does not get a proper response because of a
mistake in the software update service.

- The “erase slot” command does not have the correct response because of another
mistake in the software update service.

The first bug was identified when no response was received. The following two bugs were identified
because the parser could not parse the replies.

Finding more bugs in this chapter does not mean that coverage testing is more powerful than stress
testing. We started coverage testing earlier, so it was more likely to detect some anomalies.

7.11. Discussions

Table 7-9 summarizes the results in coverage testing. Note that the total number of probes is 630.

Table 7-9: Brief Summary of Results in Coverage Testing

Config. Running Time Average Branch
Coverage at the
End

Range of Branch
Coverage at the
end

Note

Random 26 min per run
(when episode
length is 512)

251 (10 runs) 267 (highest
coverage in the
10 runs)

Genetic
(Discrete)

57 minutes to
roughly
converge, 73
minutes in total

260 The “best”
solution reaches
269. Average
coverage ranges
from 255 to 265.

Repeating the “best”
solution gets coverage
from 256 to 266.

Q-Learning - 170 145~198 Its average coverage does
not increase, so we do not
record the running time.

D3QN-
Discrete-MLP

384 minutes to
roughly
converge, 591
minutes in total

260 220~270 The coverage curve
strongly oscillates.

D3QN-
Discrete-
GGNN

1561 minutes in
total. Not
converge.

180 - The Q value curve first
increases and then
decreases.

PPO-Discrete-
MLP

186 minutes to
roughly
converge, 372
minutes in total

260 255~265

PPO-
MultiDiscrete-
MLP
(Cmd Vector
Length = 4)

206 minutes to
roughly
converge, 412
minutes in total

220 210~230

PPO-Discrete-
GGNN

633 minutes to
roughly

255 220~265 The coverage curve
strongly oscillates.

118

(Feature
Compression)

converge, 1267
minutes in total

PPO-Discrete-
GGNN
(Attentive
Pooling)

660 minutes to
roughly
converge, 1101
minutes in total

245 210~265 The coverage curve
strongly oscillates.

The coverage testing environment is also non-deterministic. If testers send the same command
sequence several times, they will not always get the same coverage result. However, compared
with the stress testing environment, it has less uncertainty because the coverage results have
smaller variance than the average CPU load.

Random testing seems to be the best option to maximize code coverage of the COMMS onboard
software. It is straightforward. Given enough time (e.g., 26 minutes), random testing may reach a
good branch coverage of 267/630.

The genetic algorithm here performs much better than in the previous chapter. It finds a good
solution that can reach branch coverage between 256/630 and 266/630 within 1 hour. There are two
reasons. Firstly, as mentioned above, coverage testing has less uncertainty, making coverage of
the best chromosome more repeatable. Secondly, we only collect code coverage after sending the
command sequence, significantly reducing communication time26.

The tabular Q-Learning algorithm still does not work. If the state identification rules are ineffective,
the algorithm will not work well in coverage and stress testing.

The D3QN-Discrete-MLP configuration converges in coverage testing. Its average branch coverage
increases from 225/630 to 260/630. However, the coverage of the configuration is unstable. It
usually drops under 220/630. On the other hand, the D3QN-Discrete-GGNN configuration does not
converge in this chapter. Its Q value curve first increases and then crashes.

The PPO-Discrete-MLP configuration converges in 186 minutes and achieves a stable coverage of
around 260/630. Such performance is acceptable but takes more time than the genetic algorithm. At
the same time, PPO-MultiDiscrete-MLP does not perform well in coverage testing. When the
command vector length is 4, the configuration converges around 220/630. Short commands cannot
trigger high code coverage in the COMMS onboard software.

We try PPO-Discrete-GGNN with both feature compression and attentive pooling. However, the
coverage curve of both methods strongly fluctuates.

26 There are some considerations for collecting code coverage frequently in stress testing. See section 6.1.

119

8 Regression Testing

This section introduces the regression testing and its results:

⚫ Section 8.1 explains the design of the experiment.
⚫ Section 8.2 shows the results of the genetic algorithm baseline.
⚫ Section 8.3 shows the results of the PPO-MultiDiscrete-GGNN configuration.
⚫ Section 8.4 compare the PPO-MultiDiscrete-GGNN configuration with the baseline.

8.1. About the Experiment

We perform regression testing in this section. That is to say, we train an RL agent with a version of
onboard software and then use the agent to test another version of onboard software. More
specifically, the PPO-MultiDiscrete-GGNN agent trained in section 6.9 performs stress testing on
another version of COMMS software. As mentioned in section 3.4.2, the configuration can process
graph input with different node numbers. Thus, it may work in regression testing when the number
of probes (CodeCount) changes.

Table 8-1 shows the two versions used in the experiment. Note that the SUT under test has 21.7%
fewer probes in the source code.

Table 8-1: 2 Versions of Onboard Software Used in Regression Testing

SUT to Train the Agent SUT to be Tested by the Agent Differences

Name/Hash Edit Time Name / Hash Edit Time

COMMS/32f35c5 2020-5-11 COMMS/dc3a952 2020-1-30 1523 insertions, 2659 deletions

DelfiPQcore/9e15f6c 2020-7-23 DelfiPQcore/7155318 2020-1-30 982 insertions, 2379 deletions

DSPI/43d195c 2020-9-7 DSPI/8757a37 2019-12-20 12 insertions, 67 deletions

DWire/8acd7b3 2020-7-7 DWire/bf514fb 2020-1-1 214 insertions, 10 deletions

INA226/a6ce237 2020-9-11 INA226/e6ef01c 2019-11-29 54 insertions, 72 deletions

MB85RS/2711fac 2020-9-8 MB85RS/1b6e934 2019-12-20 16 insertions, 73 deletions

PQ9Bus/680f461 2020-8-15 PQ9Bus/53de707 2020-1-15 59 insertions, 122 deletions

SX1276/6ea873e 2020-10-2 SX1276/36d9e38 2019-12-11 68 insertions, 98 deletions

TMP100/cf62dae 2020-9-12 TMP100/0b47229 2019-11-24 61 insertions, 69 deletions

Total Number of Probes: 630 Total Number of Probes: 493 21.7%

Figure 8-1 is the graph representation extracted from the version under test. It has a different
structure compared with Figure 3-19.

120

Figure 8-1: Graph Extracted from the COMMS Software under the Regression Test

The genetic algorithm in the MultiDiscrete action space is the baseline of this chapter. We set the
best chromosome in section 6.3 as one of the initial chromosomes of the algorithm, so the algorithm
has “experience” from the previous test.

8.2. Genetic Algorithm with Best Solution from Previous Test

This section uses the same hyperparameters as section 6.3. Figure 8-2 shows the CPU load
triggered by the genetic algorithm.

Figure 8-2: Results of the Genetic Algorithm (MultiDiscrete, from Lab PC)

We only run the algorithm for 5 iterations, which take 44 minutes on the lab PC. The average 𝑐𝑙𝑜𝑜𝑝

at the 5th iteration is 10223, and the best solution reaches 10978.

121

8.3. Results of PPO-MultiDiscrete-GGNN

This section uses the same hyperparameters as section 6.9. Attentive pooling is used in the GGNN
network. We compare 2 cases here:

- In the first case, we train a new agent from scratch.
- In the second case, we use the agent trained in section 6.9.

Figure 8-3 shows the results. For both cases, it takes about 45 minutes to get the results on the lab
PC. The trained agent maintains a 𝑐𝑙𝑜𝑜𝑝 ≈ 15000 from the beginning, while 𝑐𝑙𝑜𝑜𝑝 of the new agent

increases from 8000 and finally reaches 15000 after 2000 steps.

The trained agent also keeps a low entropy around 2.5, which is close to the final entropy in section
6.9. Although the new agent achieves similar 𝑐𝑙𝑜𝑜𝑝 after 5000 steps, it has a much higher entropy

around 7. The reason of such phenomenon is not clear yet.

Figure 8-3: Results of the PPO-MultiDiscrete-GGNN (attentive pooling, from Lab PC)

8.4. Discussions

The results of regression testing are promising. As shown in Figure 8-3, an RL agent can learn
some common knowledge from a version of SUT and then perform well on another version of SUT.

122

Note that the two versions have many differences. As shown in section 8.1, the SUT under test has
21.7% fewer probes.

The agent also outperforms the genetic algorithm. Compared with reusing the best solution, reusing
a trained policy has better effects on stress testing.

Using RL in regression testing seems to be a promising direction for research. When two versions of
the software under test become too different, the generalization of RL can be a problem. The
trained agent may be overfitted to the previous version and cannot adapt to the next version of SUT.
Some techniques to solve the generalization problem include multi-task learning, meta-learning, and
causal reasoning.

123

9 Conclusions

This work starts with the testing problem of the Delfi-PQ satellite. It first surveys software testing,
onboard software design, and sequential decision-making algorithms (e.g., reinforcement learning).
A testing environment, a code coverage collection tool, and a graph extraction tool are built. We
also implement reinforcement learning algorithms with different neural network structures. We
compare them with two baselines in 4 types of testing scenarios (filling grid, stress, coverage, and
regression).

This chapter summarizes the study. It includes four parts:

- Answers to the research questions listed in section 2.4.2.
- Threats to validity. Assumptions in section 2.4.1 will be considered.
- Contributions to the academic field.
- Recommendations for future research.

9.1. Answers to the Research Questions

9.1.1 Testing Goals

This subsection gives answers to the following research question in section 2.4.2:

RQ-1 What’s the goal of testing command generation?

Chapter 2 lists several possible testing goals, including:

⚫ State/action coverage27
⚫ Code coverage
⚫ CPU load
⚫ Number of failures.

Before maximising state coverage, testers must define what a state is. This step may be simple for
the SUTs with graphic user interfaces. Nevertheless, for the Delfi-PQ onboard software, states are
defined by some human-defined “state identification rules” (section 3.3.2). We use the rules to
extract state information from commands and responses. Writing these rules needs prior knowledge
and significant human labour.

We try to apply these rules in the Q-Learning algorithm. Unfortunately, the Q-Learning algorithm
fails to converge in stress testing (section 6.4) and coverage testing (section 7.4). One possible
reason is that these rules are not effective enough.

Maximising code coverage is an achievable goal. For some embedded systems, retrieving code
coverage from target microcontrollers is challenging. Commercial tools exist, but they can be
expensive and not work in some scenarios.

To tackle the challenge, a branch coverage collection tool is implemented in this research (section
3.4.1). The tool can instrument the source code automatically, collect branch coverage with a
particular command, and generate easy-to-read coverage reports. It is simple (153 lines in Python)

27 Our state identification rules include information like “whether a command has been sent”. Therefore, state coverage is a superset of

action coverage in this work.

124

and easy to adapt to different programming languages/target microcontrollers. It also has a small
memory footprint (1 bit per probe) & short collection time (~60ms). To some extent, the tool is the
cornerstone of this study.

The coverage testing environment is non-deterministic, but the uncertainty is smaller than the stress
testing. That is to say, one will get different coverage results when sending the same command
sequence several times, but the variance of the results is relatively low (sections 7.1 & 7.3).

In chapter 7, the D3QN and the PPO algorithms can learn to trigger higher code coverage.
However, this does not pay off because the two baselines perform better. The random baseline, i.e.,
randomly selecting a command to send, can reach a good code coverage on the COMMS onboard
software if enough time (e.g., 26 minutes) is given. On the other hand, the genetic algorithm
baseline can also find a good command sequence in less than 1 hour. The output command
sequence can usually achieve good coverage.

We also try to maximise CPU load in this study. The CPU load metric 𝑐𝑙𝑜𝑜𝑝 means the “average

number of clock cycles required by each loop in the scheduler”. To estimate 𝑐𝑙𝑜𝑜𝑝, we record the

loop count on the microcontroller and time it on the computer. A drawback of this approach is that
𝑐𝑙𝑜𝑜𝑝 will be different when the communication time between the computer and the microcontroller

changes (section 6.1).

The stress testing environment is non-deterministic because of unpredictable load peaks (section
6.1). For example, when we repeat the best command sequence from the genetic algorithm, the
average 𝑐𝑙𝑜𝑜𝑝 ranges from 2000 to 4000 in the discrete action space and 13000 to 17000 in the

multi-discrete action space (section 6.3). Such uncertainty makes the genetic algorithm less useful
in stress testing. On the other hand, random testing cannot improve CPU load.

The deep reinforcement learning configurations based on the PPO algorithm have the best
performance in stress testing. For example, the PPO-MultiDiscrete-GGNN configuration reaches
𝑐𝑙𝑜𝑜𝑝 ≈ 20000 in 123 minutes (section 6.9), while the genetic algorithm reaches 𝑐𝑙𝑜𝑜𝑝 ≈ 15000 9

hours (section 6.3). On the other hand, the D3QN algorithm does not work well in stress testing.

We do not directly maximise the number of failures/anomalies. We only find three bugs and one
anomaly of the COMMS software during the experiments (sections 6.10 & 7.10). They cannot
provide too much information to guide the algorithms.

9.1.2 Prior Knowledge

This subsection gives answers to the following research question in section 2.4.2:

RQ-2 What type of prior knowledge needs to be encoded?

Chapter 2 lists several types of prior knowledge, including:

1. How to encode/decode commands and telemetry
2. Rules to identify the current state from the telemetry or the interaction history.
3. What action should be taken in the current state.
4. Whether the current state contains an anomaly.
5. A model used to predict the future state of the system under test.
6. Design of the objective function or the reward function.

Table 9-1 summarizes the usage of prior knowledge in this study.

125

Table 9-1: Usage of Prior Knowledge in Baselines and RL Algorithms

Algorithm Action
Space

Prior
Knowl. 1

Prior
Knowl. 2

Prior
Knowl. 3

Prior Knowl. 4 Prior
Knowl. 5

Prior
Knowl. 6

Random28 Discrete Only need
to encode
commands

No No No No No

Genetic Discrete Only need
to encode
commands

No No No No Yes

Genetic MultiDiscrete No No No No No Yes

Q-
Learning

Discrete Yes Yes No Partly.
Sometimes the
parser cannot
parse the reply
if an anomaly
exists.

No Yes

D3QN Discrete Only need
to encode
commands

No No No No Yes

PPO Discrete Only need
to encode
commands

No No No No Yes

PPO MultiDiscrete No No No No No Yes

The PPO algorithms in multi-discrete action space use the fewest types of prior knowledge but have
the best performance. Compared with sending human-defined commands (discrete action space), it
is more desirable to let the algorithms select the parameters in command vectors. Nevertheless, this
approach also has a drawback. If the command vectors are too long, the search space will become
too large for the PPO algorithm (section 6.7).

On the other hand, although the PPO algorithm is good at triggering high CPU load, it is still weak in
detecting an anomaly. Only when the target board crashes, reboots or does not reply for a while
testers will notice that there is an anomaly. To detect anomalies effectively, we may need to learn a
model of the SUT or add related prior knowledge.

Table 4-3 in section 4.5 gives an overview of the source code files of these algorithms, which also
shows prior knowledge usage.

9.1.3 Algorithm Designs

This subsection gives answers to the following research question in section 2.4.2:

RQ-3 Which RL algorithm is suitable for testing command generation?

We answer the complex question from several aspects, including state representation, action
space, reinforcement learning algorithms, neural network design, implementation, and debugging.

State Representation

Four types of state representations are available in onboard software testing.

The first representation is a discrete scalar, i.e., we use state identification rules to summarise the
current command, response, and the previous interaction as a discrete scalar. The Q-Learning

28 Random testing can run in the MultiDiscrete action space, but we have not tested this scenario.

126

algorithm needs such representation. Sections 3.1.2 and 4.1.2 discuss the details. However, as one
can imagine, much information is lost with this type of extraction. As a result, the tabular Q-Learning
algorithm does not work in the study.

The second state representation is a plain vector, a concatenation of 2 vectors (section 4.2.2): a
branch coverage vector and an interaction history vector29. This representation is simple, but
regression testing is a fundamental challenge. The length of the coverage vector and the
corresponding branch of every element in the vector will change after the SUT's source code
modification. As a result, the trained neural network becomes useless in regression testing (section
3.4.2).

We also try to represent the coverage information in a graph to solve this problem. We first build a
directed graph representation of the tested software. Each node of the graph represents a start of a
branch or the start/end of a method. It has a feature vector generated by a Word2Vec model from
the file name, the method name, and the node type. Moreover, each edge of the graph indicates a
possible transition between nodes during the execution of the tested program. To some extent, the
graph looks like a control flow graph.

We compare two methods to generate the graph: analyzing the execution trace of SUT (section
3.4.3) or performing static analysis on the source code (section 3.4.4). The second method is more
suitable than the first because it generates a complete graph and node feature vectors. The static
analysis is performed with the help of an open-source tool Joern. Joern only produces control flow
graphs of every method in the source code. We need to build a graph of the whole program based
on Joern's output.

When running RL algorithms with graph input, we concatenate node feature vectors with coverage
masks 𝑐𝑖 ∈ {0,1} (section 3.4.4). After that, a graph neural network will generate a graph embedding
vector, which will be concatenated with an interaction history vector. In the end, the vector is fed into
the following layers (section 4.2.3).

The fourth type of state representation is source code files with coverage results (section 3.4.2).
Nevertheless, such input can be very long and challenging to process. Thus, we do not try it in the
study.

Action Space

We consider two types of action space: Discrete and MultiDiscrete (sections 4.2.2 & 4.3.3). In the
Discrete action space, each action is a scalar index of a pre-defined command in a list. On the other
hand, a MultiDiscrete action is a command vector. Each vector element is an index of a pre-defined
parameter in a list.

There is more flexibility in the MultiDiscrete action space. For example, the genetic and PPO
algorithms trigger higher CPU load in the MultiDiscrete action space. They probably organize better
commands than the human-defined ones.

MultiDiscrete action space also has an unexpected benefit. The PPO algorithm has a more stable
performance in such action space. In stress testing, the variance of 𝑐𝑙𝑜𝑜𝑝 the PPO-MultiDiscrete-

MLP configuration is much smaller than the PPO-Discrete-MLP (sections 6.6 & 6.7).

However, MultiDiscrete action space is only helpful when the length of command vectors is limited.
If a valid command contains too many parameters, the probability of this command being attempted

29 We do not include interaction history information when testing PPO algorithms in the MultiDiscrete action space. Theoretically it is

possible, but we just do not have enough time to do that.

127

becomes very small (section 6.7). In other words, the MultiDiscrete action space becomes too large
for the algorithm to search.

At the same time, if short commands cannot achieve the testing goal, MultiDiscrete action space
becomes a lousy option. For example, the PPO-MultiDiscrete-MLP configuration does not trigger
good branch coverage in coverage testing (section 7.8).

Testers may have concerns about the safety of the MultiDiscrete action space. In other words, the
RL agent may generate a dangerous command to damage the satellite hardware. We do not worry
too much about safety in our experiments. It is because the commands sent to the COMMS board
will not be damaged. Other developers can only use MultiDiscrete action space in stress testing,
where testers try to "destroy" the system.

Note that value-based RL algorithms like D3QN do not directly support MultiDiscrete action space.
They must estimate the action-value function 𝑄(𝑠, 𝑎) for every combination of the command vector
(section 5.9). This process is costly.

Reinforcement Learning Algorithms

We try three reinforcement learning algorithms in the research: tabular Q-Learning, Double Duelling
Deep Q Network (D3QN), and the Proximal Policy Optimization (PPO) algorithm.

As mentioned above, the tabular Q-Learning algorithm does not work well in stress and coverage
testing (sections 6.4 & 7.4). A reason may be that there are no effective state identification rules.

The D3QN algorithm converges faster than the PPO algorithm in the "filling grid" toy problem
(chapter 5). However, converging and maintaining stable performance is difficult when testing the
existing onboard software. For example, the D3QN algorithm does not converge in the stress
testing (section 6.6). The D3QN-Discrete-MLP configuration converges in the coverage testing, but
the variance of branch coverage is significant (section 7.5). The D3QN-Discrete-GGNN
configuration fails to converge in coverage testing (section 7.6).

Some reasons may explain this phenomenon. Firstly, value-based algorithms have inherent

instability. Minor updates to �̂�𝜋(𝑠, 𝑎) may significantly change the policy and therefore change the
data distribution. Secondly, there is not enough time to tune the hyperparameters of the D3QN
algorithm because we implemented the algorithm in the last few months of the research.

The PPO algorithm works well in the filling grid environment, stress testing, and coverage testing.
The PPO configurations with 2~3 layers of MLP are very robust. On the other hand, the PPO-
MultiDiscrete-GGNN configuration has the best performance in stress testing (section 6.9).

Note that our PPO implementation is different from the standard one. To make the training process
more stable, we add a learning rate annealing mechanism to control the magnitude of policy
updates (section 4.3.1). Section 5.5 compares the performance of PPO with and without the
annealing mechanism. It shows that the mechanism can control the Kullback-Leibler divergence (a
metric of policy update) under a threshold. It also prevents the cumulative reward curve from
crashing.

Sometimes the annealing mechanism raises the entropy of a trained policy, but the policy still
performs well (section 5.5). The exact reason for this phenomenon is not apparent yet.

Neural Network Design

We try three types of neural networks in the study: the Multi-Layer Perceptron network (MLP, i.e.,
the most straightforward fully-connected layers), the Gated Graph Neural Network (GGNN), and the

128

Graph Attention Network (GAT). For the graph neural networks, we also try different methods to
aggregate node feature vectors into a graph embedding vector.

The RL configurations with only 2~3 MLP layers are usually robust and quick to converge. For
example, in the filling grid problem, the D3QN-Discrete-MLP configuration can converge in 10k
steps, while D3QN configurations using other neural networks need at least 150k steps (sections
5.2, 5.3, & 5.4).

MLP can only use plain vectors as input. However, to reuse the trained neural network in regression
testing, we hope that it can process graph inputs. Ultimately, we try graph neural networks,
including GGNN and GAT. GGNN has better performance than GAT in the filling grid problem.
PPO-Discrete-GGNN can fill all grids after 700k steps, while PPO-Discrete-GAT can still not fill all
grids after 1M steps (sections 5.7 & 5.8). One possible reason is that GGNN can have up to 20
layers, while GAT usually has fewer.

Compared with the configurations with MLP, the configurations with GGNN trigger higher CPU load
in stress testing (section 6.11). However, they also cover fewer branches in coverage testing
(section 7.11). There is still no clue about this phenomenon.

However, one thing is sure. In stress and coverage testing, GGNN will give a more considerable
variance in the results. The CPU load or coverage curves with GGNN usually oscillate. The PPO-
MultiDiscrete-GGNN configuration is a lucky exception: the PPO algorithms in the MultiDiscrete
action space have relatively stable performance.

The graph neural network updates the node feature vectors. After that, we must aggregate the
feature vectors into a graph embedding. We try different aggregation methods in a supervised
learning task (not shown in the document), including:

⚫ 𝑠𝑢𝑚, 𝑚𝑒𝑎𝑛, and 𝑚𝑎𝑥 of all node features.
⚫ A node selection pooling method in (Dai et al., 2019).
⚫ Using a 1D convolution layer to aggregate node features (Zhou et al., 2019).
⚫ Several graph pooling layers provided by the Pytorch Geometric library (Fey & Lenssen,

2019).
⚫ Attentive pooling layer in (Li et al., 2015).
⚫ Feature compression, i.e., using an MLP to reduce node embeddings to scalars and

then concatenate these scalars into a graph feature vector

In the supervised learning task, attentive pooling and feature compression perform best. Therefore,
we try both approaches in Chapters 5, 6, and 7. According to our experience, they each perform
better in specific scenarios. However, attentive pooling usually takes more steps to train. In the
filling grid problem, PPO-Discrete-GGNN with feature compression only needs 60k steps to
converge, while the attentive pooling approach needs 700k (section 5.7).

Implementation and Debugging

The RL implementations in this study are lightweight. For example, the most complex PPO-
MultiDiscrete-GGNN configuration only needs 290 lines of code. For more details, Table 4-3 gives
an overview of the source code files of our algorithms.

We only use Pytorch and Pytorch Geometric to build the model without the help of reinforcement
learning libraries like RLlib. Our implementation takes reference from CleanRL, a repository
including many single-file implementations of reinforcement learning algorithms.

A trick to debug the RL algorithm starts with simple scenarios and the most straightforward
configurations. We started with the filling grid toy problem (section 5.1) in the study and simple

129

configurations like PPO-Discrete-MLP and D3QN-Discrete-MLP. Initially, both configurations could
not fill the 36 grids, so we had to reduce the grid number to 4 and debug them.

9.1.4 Testing Environment

This subsection gives answers to the following research question in section 2.4.2:

RQ-4 What kind of testing environment should be used?

Section 3.3 describes the hardware and software setup in this study. The setup has the following
features:

- The test command generation tool can run on the lab PC or a remote server.
- Both the EGSE and the OBC can be the master of the bus.
- The radio on the COMMS board can send commands to itself to simulate the wireless

channels.

Testers need to make a trade-off between communication delay and computing power. The lab PC
has a short communication delay with the SUT and less computing power. By contrast, the remote
server has a longer communication delay and more computing power. Figure 3-13 shows the time
delays of the remote server and the lab PC.

Several challenges still exist:

- The training process spends most of the time on communication rather than updating the
neural networks.

- It cannot simulate the interaction between the satellite and the space environment.
- The RL agent may generate unsafe commands.

We will discuss these challenges later.

9.1.5 Reuse a Trained Agent

This subsection gives answers to the following research question in section 2.4.2:

RQ-5 Can we use a trained RL agent to test other software versions?

Yes. In section 8.3, an agent trained in section 6.9 tests another version of COMMS software. The
agent maintains a high CPU load from the beginning. Another agent, trained from scratch, only
achieves a similar performance after 2000 steps (~18 minutes).

Chapter 8 also shows that reusing a trained agent is better than using the genetic algorithm's best
solution.

There are some conditions for regression testing:

- As mentioned in section 3.4.4, the neural network architecture should be independent of
the source code's number of probes. The Gated Graph Neural Network (GGNN) with
attentive pooling is used in section 8.3.

- When the two versions of the software under test are too different, generalization of RL
can be a problem. Some techniques to solve the generalization problem include multi-
task learning, meta-learning, and causal reasoning.

130

9.1.6 A Brief Answer to Main Research Question

Now we can answer the main research question:

Can a reinforcement learning-based testing tool generate testing commands for small
satellites with limited prior knowledge?

Yes. The PPO-MultiDiscrete-GGNN configuration in stress testing is an example. It is beneficial to
do so under some conditions:

- Testers are performing stress testing, which is a non-deterministic environment.
Compared with other options, RL is better in such an environment. Unsafe or invalid
commands may also not be a problem in stress testing.

- They use the PPO algorithm. Other policy-based algorithms may perform similarly, but
we did not try them. The D3QN algorithm, as a representative of value-based RL, does
not perform well on Delfi-PQ software.

- If they use the MultiDiscrete action space, a command vector should not be too long.
PPO also has some benefits in the Discrete action space.

- If they do not want regression testing, the PPO algorithm with 2~3 layers of MLP is a
simple and robust option. It can converge quickly without too much computing power.

- If they want to use the RL agent in regression testing, GGNN with attentive pooling is a
good neural network architecture. However, it usually takes a longer time to train.

There may be more scenarios and RL testing agent designs waiting to be discovered!

9.2. Threats to Validity
There are some threats to the validity of the conclusions. They are listed here:

Threat-1 In this study, there is insufficient time to tune the hyperparameters or find the optimal

neural network architecture.

Explanation This threat cannot change the study's main conclusion, i.e., RL is more suitable for

stress testing.

Indeed, the lack of tuning may make us underestimate the performance of some RL
configurations. For example, the D3QN algorithm may be able to perform better than
we think. However, the performance of random testing cannot grow further. A fixed
command sequence from the genetic algorithm still has uncertain performance in a
non-deterministic environment like stress testing. As a result, RL-based testing is still
a better option for stress testing.

Threat-2 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 does not include the lab PC or server decision-making time. When testing

the software, random and genetic testing spend less time on decision-making. Given
the same period, they may be able to send more commands than RL-based
algorithms and trigger a higher average CPU load.

Explanation The computing power of the CPU strongly affects the decision-making time. To

exclude the effect of CPU power in the comparison, we excluded the decision-
making time 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙.

Although different algorithms have various decision-making times, communication is
usually shorter. In Figure 6-1, decision-making time only takes 42ms in a time step.
By contrast, 148ms is spent on communication. Thus, even if random testing takes a

131

short time to select a command, it still cannot send too many commands in a given
period because of the long communication time.

 A more powerful PC will further reduce the effect of decision-making time.

Threat-3 For random and genetic testing, it is unnecessary to collect code coverage after

sending a testing command.

Explanation Section 6.1 mentions the reason. Measuring instantaneous CPU load with very high

variance is not helpful.

Threat-4 Instrumentation of the source code and code coverage collection may change the

behaviors of the SUT. It is also difficult to predict the consequences of such
influence.

Explanation It is true. We have observed such influence in section 3.4.1. The instrumented

program needs to call CodeCount() at the start of every branch, which makes the
program run slower.

However, the MSP432P series microcontrollers do not support non-intrusive
coverage collection. For some other controllers, like the MSP432E series, which
supports tracing, we can use a Segger J-Trace Pro to collect coverage without
instrumentation.

Threat-5 Assumption-2 in section 2.4.1 assumes that the performance of software testing

algorithms can be measured by metrics like code coverage and CPU load. However,
these metrics do not directly relate to the number of anomalies found.

If RL-based testing can reach high coverage/CPU load but still needs human-defined
rules to detect anomalies, then this approach does not reduce the usage of prior
knowledge.

Explanation At this stage, the RL-based testing detects anomalies from some phenomena like

crashes, reboots, no response, and late responses. In practice, it may still need
human-defined rules in fault detection.

However, fault detection rules are only one type of prior knowledge. As shown by
Figure 9-1, RL still does not need some types of prior knowledge in manual testing,
e.g., what action should be taken under the current state.

Threat-6 As mentioned by assumption-4 in section 2.4.1, we cannot directly measure the

amount of prior knowledge. RL uses fewer types of prior knowledge, but testers may
still spend significant time on the prior knowledge.

Explanation In this study, RL-based testing only uses one type of prior knowledge, i.e., the design

of the reward function. However, as shown in sections 6.1 and 7.1, our reward design
is effortless and straightforward. Designing these rewards does not take too much
time.

Other types of prior knowledge are shared by RL-based testing and traditional
methods. The time to define this knowledge should be the same.

Threat-7 The assumption-5 may not be valid. In other words, the conclusions from the

COMMS onboard software cannot be generalized to other onboard software.

132

Explanation Limited by time and resource, only the COMMS onboard software of the Delfi-PQ
satellite is tested in the study. However, as mentioned in section 3.2.5, the software
has a similar complexity to other educational CubeSat/PocketQube software. The
conclusions here should be able to apply to these systems.

The onboard software of larger satellites usually has more complex applications. The
use of RL for testing such software is still a gap.

9.3. Contributions to the Academic Field

This study has the following contributions:

- As far as we know, it is the first research that applies RL-based testing on onboard
software and one of few studies that use RL to test embedded software without GUI.

- Unlike most RL-based testing research that relies on GUI information, it utilizes near real-
time code coverage information from the software under test to compute states and
rewards. The idea is developed by (Dai et al., 2019).

- To the end, an open-source tool is written to retrieve the code coverage data and can be
easily modified to adapt other embedded software. Another tool to generate a complete
graph from the source code is also implemented.

- It is large-scale research that covers many aspects:
⚫ 2 types of testing goals: maximizing code coverage and maximizing the CPU

load.
⚫ 2 environments: a toy problem and the COMMS onboard software.
⚫ 3 reinforcement learning algorithms, including the Q-Learning, the Double

Duelling Q Network (D3QN), and the Proximal Policy Optimization (PPO)
algorithm to learn. Each algorithm has several configurations.

⚫ 2 state representations: direct vector input or graph input.
⚫ 2 action space: Discrete and MultiDiscrete.
⚫ Run the RL testing agent on a local PC or a remote server.
⚫ Different neural network architectures, including multi-Layer Perceptron MLP,

Gated Graph Neural Network GGNN, and Graph Attention Network GAT.
⚫ Different graph aggregation methods, such as feature compression and

attentive pooling.
⚫ Perform both regular testing and regression testing.
⚫ The performance of RL-based testing is compared with two baselines: random

command generation and the genetic algorithm.

- It reveals that RL-based testing has advantages in highly non-deterministic environments
like stress testing under some conditions.

- It reveals that RL-based testing with a graph neural network has advantages in regression
testing under some conditions.

9.4. Recommendations for Future Research

Based on experience of this study, this section gives the following recommendations for future
research.

⚫ Improve sampling efficiency. Figure 6-1 shows that most training time is spent
communicating with the target board. To make matters worse, there is only one target
board, so parallel testing is not feasible. Training a more complex and powerful agent in
this situation may take much longer.

133

It is also difficult to train the model in a simulated environment. Building a simulator for
the microcontroller and the peripherals is more time-consuming than writing test cases if
the manufacturer does not provide such a simulator.

A possible option is to use model-based reinforcement learning, which learns a model to
predict rewards and future states. It may need much fewer samples to train. For
example, EfficientZero (Ye, Liu, Kurutach, Abbeel, & Gao, 2021) mastered the Atari
game in a shorter time than humans.

⚫ Apply the learned model in other fields. If a model is learned during the software test,
engineers may apply it in other fields, e.g., fault detection in the daily operation of the
satellite. For example, if the real telemetry from the satellite is different from the model's
prediction, there may be an anomaly.

Traditionally, the prediction model is built by engineers, which can be time-consuming. A
large amount of telemetry data can also train the model. However, there is not much
telemetry when the satellite is just launched. Therefore, training a model during software
testing may be a novel and helpful approach.

⚫ Simulate sensors and actuators in the test. This study does not simulate sensors and
actuators, but such simulation is necessary in many cases, e.g., testing the ADCS
onboard software. Note that such environment simulators can be shared by different
satellite programs, even if these programs use different hardware. Some environment
simulators, like 42 (Geletko et al., 2019), have been used in onboard software testing.

⚫ Use reinforcement learning in regression testing. Section 8.3 shows promising
results in regression testing. However, as far as we know, few studies use RL in
regression testing yet, and it may be an interesting gap.

One problem can be generalization capability, from which many RL algorithms suffer. It
means the trained agent is overfitted to a specific environment and cannot adapt to
another one. Luckily, we do not meet this challenge in chapter 8.

134

Bibliography

Adamo, D., Khan, M. K., Koppula, S., & Bryce, R. (2018, November). Reinforcement learning for android gui
testing. In Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation (pp. 2-8).

Ahmad, T., Ashraf, A., Truscan, D., & Porres, I. (2019, August). Exploratory performance testing using
reinforcement learning. In 2019 45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA) (pp. 156-163). IEEE.

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., ... & Zhu, H. (2013). An
orchestrated survey of methodologies for automated software test case generation. Journal of Systems and
Software, 86(8), 1978-2001.

Angluin, D. (1987). Learning regular sets from queries and counterexamples. Information and computation,
75(2), 87-106.

Bagherzadeh, M., Kahani, N., & Briand, L. (2021). Reinforcement learning for test case prioritization. IEEE
Transactions on Software Engineering.

Bauersfeld, S., & Vos, T. (2012, September). A reinforcement learning approach to automated gui robustness
testing. In Fast abstracts of the 4th symposium on search-based software engineering (SSBSE 2012) (pp. 7-
12).

Belli, F., Budnik, C. J., Hollmann, A., Tuglular, T., & Wong, W. E. (2016). Model-based mutation testing—
approach and case studies. Science of Computer Programming, 120, 25-48.

Bergdahl, J., Gordillo, C., Tollmar, K., & Gisslén, L. (2020, August). Augmenting automated game testing with
deep reinforcement learning. In 2020 IEEE Conference on Games (CoG) (pp. 600-603). IEEE.

Bocchino, R., Canham, T., Watney, G., Reder, L., & Levison, J. (2018). F Prime: an open-source framework
for small-scale flight software systems.

Bouwmeester, J., Aalbers, G. T., & Ubbels, W. J. (2008, August). Preliminary mission results and project
evaluation of the delfi-c3 nano-satellite. In 4S Symposium Small Satellites Systems and Services (Vol. 660, p.
25).

Bouwmeester, J., van der Linden, S. P., Povalac, A., & Gill, E. K. A. (2018). Towards an innovative electrical
interface standard for PocketQubes and CubeSats. Advances in Space Research, 62(12), 3423-3437.

Bouwmeester, J., Radu, S., Uludag, M. S., Chronas, N., Speretta, S., Menicucci, A., & Gill, E. K. A. (2020).
Utility and constraints of PocketQubes. CEAS Space Journal, 12(4), 573-586.

Bouwmeester, J., Menicucci, A., & Gill, E. K. (2022). Improving CubeSat reliability: Subsystem redundancy or
improved testing. Reliability Engineering & System Safety, 220, 108288.

Cai, T., Zhang, Z., & Yang, P. (2020, October). Fastbot: A Multi-Agent Model-Based Test Generation System
Beijing Bytedance Network Technology Co., Ltd. In Proceedings of the IEEE/ACM 1st International
Conference on Automation of Software Test (pp. 93-96).

Chen, J., & Wu, J. (2010, August). GMC: A performance model checker for concurrent systems. In 2010 3rd
International Conference on Advanced Computer Theory and Engineering (ICACTE) (Vol. 3, pp. V3-6). IEEE.

Choi, W., Necula, G., & Sen, K. (2013). Guided gui testing of android apps with minimal restart and
approximate learning. Acm Sigplan Notices, 48(10), 623-640.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint arXiv:1412.3555.

135

Dai, H., Li, Y., Wang, C., Singh, R., Huang, P. S., & Kohli, P. (2019). Learning transferable graph exploration.
Advances in Neural Information Processing Systems, 32.

Durelli, V. H., Durelli, R. S., Borges, S. S., Endo, A. T., Eler, M. M., Dias, D. R., & Guimarães, M. P. (2019).
Machine learning applied to software testing: A systematic mapping study. IEEE Transactions on Reliability,
68(3), 1189-1212.

ECSS-E-ST-40C – Software. (2009, March). ESA-ESTEC Requirements & Standards Division.

Esteve, M. A., Katoen, J. P., Nguyen, V. Y., Postma, B., & Yushtein, Y. (2012, June). Formal correctness,
safety, dependability, and performance analysis of a satellite. In 2012 34th International conference on
software engineering (ICSE) (pp. 1022-1031). IEEE.

Even-Dar, E., Kakade, S. M., & Mansour, Y. (2009). Online Markov decision processes. Mathematics of
Operations Research, 34(3), 726-736.

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric. arXiv preprint
arXiv:1903.02428.

Fujimoto, S., Hoof, H., & Meger, D. (2018, July). Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning (pp. 1587-1596). PMLR.

Garousi, V., Felderer, M., Karapıçak, Ç. M., & Yılmaz, U. (2018). Testing embedded software: A survey of the
literature. Information and Software Technology, 104, 14-45.

Geletko, D. M., Grubb, M. D., Lucas, J. P., Morris, J. R., Spolaor, M., Suder, M. D., ... & Zemerick, S. A.
(2019). Nasa operational simulator for small satellites (nos3): the stf-1 cubesat case study. arXiv preprint
arXiv:1901.07583.

Groce, A., Fern, A., Pinto, J., Bauer, T., Alipour, A., Erwig, M., & Lopez, C. (2012, November). Lightweight
automated testing with adaptation-based programming. In 2012 IEEE 23rd International Symposium on
Software Reliability Engineering (pp. 161-170). IEEE.

Groz, R., Simao, A., Bremond, N., & Oriat, C. (2018, May). Revisiting AI and testing methods to infer FSM
models of black-box systems. In 2018 IEEE/ACM 13th International Workshop on Automation of Software
Test (AST) (pp. 16-19). IEEE.

Ha, D., & Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution. Advances in neural
information processing systems, 31.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018, July). Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine learning (pp.
1861-1870). PMLR.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in
neural information processing systems, 30.

Harries, L., Clarke, R. S., Chapman, T., Nallamalli, S. V., Ozgur, L., Jain, S., ... & Ciosek, K. (2020). Drift:
Deep reinforcement learning for functional software testing. arXiv preprint arXiv:2007.08220.

Harman, M. (2011). Software engineering meets evolutionary computation. Computer, 44(10), 31-39.

Harman, M., Jia, Y., & Zhang, Y. (2015, April). Achievements, open problems and challenges for search
based software testing. In 2015 IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST) (pp. 1-12). IEEE.

Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.

Howard, R. A. (1960). Dynamic programming and markov processes.

136

Huang, S., Dossa, R. F. J., Ye, C., & Braga, J. (2021). CleanRL: High-quality Single-file Implementations of
Deep Reinforcement Learning Algorithms. arXiv preprint arXiv:2111.08819.

Huang, Shengyi, Rousslan Fernand Julien, Dossa, Antonin, Raffin, Anssi, Kanervisto, & Wang, Weixun.
(2022, March 22). The 37 Implementation Details of Proximal Policy Optimization. https://iclr-blog-
track.github.io/2022/03/25/ppo-implementation-details/. Retrieved 31 August 2022, from undefined.

Jacklin, S. A. (2015). Survey of verification and validation techniques for small satellite software development
(No. ARC-E-DAA-TN23631).

Jacklin, S. A. (2019). Small-satellite mission failure rates (No. NASA/TM-2018-220034).

King, J. C. (1975). A new approach to program testing. ACM Sigplan Notices, 10(6), 228-233.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.

Langer, M., & Bouwmeester, J. (2016). Reliability of CubeSats-statistical data, developers' beliefs and the way
forward.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D. (2015). Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2015). Gated graph sequence neural networks. arXiv
preprint arXiv:1511.05493.

Lodge, M. (2021, February 1). Reinforcement learning in diffblue cover. Diffblue. Retrieved August 1, 2022,
from https://www.diffblue.com/blog/ai/testing/reinforcement-learning-in-diffblue-cover/

Longa, A, & Pellegrini, G. (2022, May 11). Tutorial 9: Recurrent GNNs.
https://github.com/AntonioLonga/PytorchGeometricTutorial. Retrieved 13 September 2022, from Github.

Manyak, G. D. (2011). Fault tolerant and flexible cubesat software architecture.

Mao, K., Harman, M., & Jia, Y. (2016, July). Sapienz: Multi-objective automated testing for android
applications. In Proceedings of the 25th International Symposium on Software Testing and Analysis (pp. 94-
105).

Mao Ke. (2018). Sapienz: Intelligent Automated Software Testing at Scale.
https://engineering.fb.com/2018/05/02/developer-tools/sapienz-intelligent-automated-software-testing-at-
scale/

McComas, D. (2021). OpenSatKit-A Flight Software System Educational Platform.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015).
Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., ... & Kavukcuoglu, K. (2016, June).
Asynchronous methods for deep reinforcement learning. In International conference on machine learning (pp.
1928-1937). PMLR.

Moghadam, M. H., Hamidi, G., Borg, M., Saadatmand, M., Bohlin, M., Lisper, B., & Potena, P. (2021, June).
Performance testing using a smart reinforcement learning-driven test agent. In 2021 IEEE Congress on
Evolutionary Computation (CEC) (pp. 2385-2394). IEEE.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT press.

https://www.diffblue.com/blog/ai/testing/reinforcement-learning-in-diffblue-cover/

137

Nakkasem, T. (2020, April 16). V-model. Medium. Retrieved July 17, 2022, from https://medium.com/software-
engineering-kmitl/v-model-3a71622b3d82

Omri, S., & Sinz, C. (2021). Machine Learning Techniques for Software Quality Assurance: A Survey. arXiv
preprint arXiv:2104.14056.

Pan, M., Huang, A., Wang, G., Zhang, T., & Li, X. (2020, July). Reinforcement learning based curiosity-driven
testing of android applications. In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (pp. 153-164).

Pani, P. (2014). Measuring code coverage on an embedded target with highly limited resources (Doctoral
dissertation, Master’s Thesis. Graz University of Technology).

Pǎsǎreanu, C. S., Mehlitz, P. C., Bushnell, D. H., Gundy-Burlet, K., Lowry, M., Person, S., & Pape, M. (2008,

July). Combining unit-level symbolic execution and system-level concrete execution for testing NASA
software. In Proceedings of the 2008 international symposium on Software testing and analysis (pp. 15-26).

Patel, P., Srinivasan, G., Rahaman, S., & Neamtiu, I. (2018, May). On the effectiveness of random testing for
Android: or how i learned to stop worrying and love the monkey. In Proceedings of the 13th International
Workshop on Automation of Software Test (pp. 34-37).

Radu, S., Uludag, M. S., Speretta, S., Bouwmeester, J., Gill, E., & Foteinakis, N. C. (2018). Delfi-PQ: The first
pocketqube of Delft University of Technology. In 69th International Astronautical Congress, Bremen,
Germany, IAC.

Reichstaller, A., Eberhardinger, B., Knapp, A., Reif, W., & Gehlen, M. (2016, October). Risk-based
interoperability testing using reinforcement learning. In IFIP International Conference on Testing Software and
Systems (pp. 52-69). Springer, Cham.

Romdhana, A., Merlo, A., Ceccato, M., & Tonella, P. (2022). Deep reinforcement learning for black-box testing
of android apps. ACM Transactions on Software Engineering and Methodology.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems (Vol. 37, p. 20).
Cambridge, England: University of Cambridge, Department of Engineering.

Sant, J., Souter, A., & Greenwald, L. (2005, May). An exploration of statistical models for automated test case
generation. In Proceedings of the third international workshop on Dynamic analysis (pp. 1-7).

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., ... & Silver, D. (2020).
Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588(7839), 604-609.

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional continuous control
using generalized advantage estimation. arXiv preprint arXiv:1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

Schulman, John. (2020, March 7). Approximating KL Divergence. Retrieved 31 August 2022, from undefined.

Schwartz, J., & Kurniawati, H. (2019). Autonomous penetration testing using reinforcement learning. arXiv
preprint arXiv:1905.05965.

Shirole, M., & Kumar, R. (2013). UML behavioral model-based test case generation: a survey. ACM SIGSOFT
Software Engineering Notes, 38(4), 1-13.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016).
Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484-489.

138

Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017, July). Reinforcement learning for automatic test
case prioritization and selection in continuous integration. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis (pp. 12-22).

Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., ... & Su, Z. (2017, August). Guided, stochastic model-
based GUI testing of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (pp. 245-256).

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Test.ai. (2021). All Products. https://test.ai/ai-deep-dive

Timmons, E. J. (2020, April). Core Flight System (cFS) Training (No. 20205000691). NASA Technical Report.

Tran, K., Akella, A., Standen, M., Kim, J., Bowman, D., Richer, T., & Lin, C. T. (2021). Deep hierarchical
reinforcement agents for automated penetration testing. arXiv preprint arXiv:2109.06449.

Utting, M., Pretschner, A., & Legeard, B. (2012). A taxonomy of model‐based testing approaches. Software

testing, verification and reliability, 22(5), 297-312.

Van Hasselt, H., Guez, A., & Silver, D. (2016, March). Deep reinforcement learning with double q-learning. In
Proceedings of the AAAI conference on artificial intelligence (Vol. 30, No. 1).

Veanes, M., Roy, P., & Campbell, C. (2006). Online testing with reinforcement learning. In Formal Approaches
to Software Testing and Runtime Verification (pp. 240-253). Springer, Berlin, Heidelberg.

VELIČKOVIĆ, Petar, et al. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Vuong, T. A. T., & Takada, S. (2018, November). A reinforcement learning based approach to automated
testing of android applications. In Proceedings of the 9th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation (pp. 31-37).

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016, June). Dueling network
architectures for deep reinforcement learning. In International conference on machine learning (pp. 1995-
2003). PMLR.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279-292.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3), 229-256.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., & Gao, Y. (2021). Mastering atari games with limited data. Advances
in Neural Information Processing Systems, 34, 25476-25488.

Yuen, B., & Sima, M. (2019). Low-Cost Radiation Hardened Software and Hardware Implementation for
CubeSats. arXiv preprint arXiv:1902.04117.

Zheng, Y., Xie, X., Su, T., Ma, L., Hao, J., Meng, Z., ... & Fan, C. (2019, November). Wuji: Automatic online
combat game testing using evolutionary deep reinforcement learning. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (pp. 772-784). IEEE.

Zheng, Y., Liu, Y., Xie, X., Liu, Y., Ma, L., Hao, J., & Liu, Y. (2021, May). Automatic web testing using
curiosity-driven reinforcement learning. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE) (pp. 423-435). IEEE.

Zhou, Y., Liu, S., Siow, J., Du, X., & Liu, Y. (2019). Devign: Effective vulnerability identification by learning
comprehensive program semantics via graph neural networks. Advances in neural information processing
systems, 32..0

https://test.ai/ai-deep-dive

