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Byzantine-robust Federated Learning (FL) aims to counter malicious clients and train an accurate global model

while maintaining an extremely low attack success rate. Most existing systems, however, are only robust

when most of the clients are honest. FLTrust (NDSS ’21) and Zeno++ (ICML ’20) do not make such an honest

majority assumption but can only be applied to scenarios where the server is provided with an auxiliary

dataset used to filter malicious updates. FLAME (USENIX ’22) and EIFFeL (CCS ’22) maintain the semi-honest

majority assumption to guarantee robustness and the confidentiality of updates. It is, therefore, currently

impossible to ensure Byzantine robustness and confidentiality of updates without assuming a semi-honest

majority. To tackle this problem, we propose a novel Byzantine-robust and privacy-preserving FL system,

called MUDGUARD, to capture malicious minority and majority for server and client sides, respectively. Our

experimental results demonstrate that the accuracy of MUDGUARD is practically close to the FL baseline using

FedAvg without attacks (≈0.8% gap on average). Meanwhile, the attack success rate is around 0%-5% even

under an adaptive attack tailored to MUDGUARD. We further optimize our design by using binary secret sharing

and polynomial transformation, leading to communication overhead and runtime decreases of 67%-89.17%

and 66.05%-68.75%, respectively.

CCS Concepts: • Computing methodologies→Machine learning; • Security and privacy→ Privacy-
preserving protocols; Distributed systems security.
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FLTrust [15] % " " % % 𝑂 (𝑛) 𝑂 (𝑛𝑑)
FLAME [49] % % " " " 𝑂 (𝑑 (𝑆2 + 𝑛2)) 𝑂 (𝑑2 + 𝑆𝑛2)
EIFFeL [55] %1 % " " " 𝑂 ((𝑛 + 𝑑)𝑛 log

2 𝑛 log log𝑛 +𝑚𝑑 min(𝑛,𝑚2)) 𝑂 (𝑛2 +𝑚𝑑 min(𝑛,𝑚2))
MUDGUARD (Ours) " " " " " 𝑂 (𝑑 + 𝑛3) 𝑂 (𝑆 (𝑑 + 𝑛2))

1
EIFFeL considers a malicious server to be one that infers privacy information from other parties, which is equivalent

to a semi-honest server in our context.

Table 1. Comparison of FL systems. 𝑑 stands for the dimension of a model. 𝑛,𝑚, and 𝑆 represent the number
of clients, malicious clients, and servers, respectively.

1 INTRODUCTION
Thanks to its privacy properties, Federated Learning (FL) [43] has been widely applied in real-

world applications, e.g., prediction of the future oxygen requirements of symptomatic patients

with COVID-19 [19]. Despite its attractive benefits, FL is vulnerable to Byzantine attacks. For

example, attackers may choose to deteriorate the testing accuracy of models in an untargeted attack.

Alternatively, they might fool models into predicting an attack-chosen label without downgrading

the testing accuracy in a targeted attack. Many research works [23, 59, 62] have proved the

vulnerability of FL via well-designed attack methods, e.g., poisoning training data or manipulating

updates. Other studies [9, 15, 36, 44, 49, 55, 63, 64] have been dedicated to strengthening FL assuming

that a minority of the clients can be malicious and that the server is honest. Beyond Byzantine

attacks, FL could put clients at high risk of privacy breach [26, 65] even if clients’ datasets are

maintained locally. Several studies [49, 55, 57] have applied secure tools, e.g., Additive Homomorphic

Encryption (AHE) [50], Differential Privacy (DP) [20, 60], and Secure Multiparty Computation

(MPC), to protect clients’ updates
1
. However, these works only guarantee security when all servers

are (semi-)honest and when a minority of the clients are malicious.

To the best of our knowledge, there does not exist any FL system that is capable of withstanding

the presence of a majority of Byzantine clients, as well as malicious servers, while also guaranteeing

the confidentiality of updates. One may think that existing Byzantine-robust solutions could be

trivially extended to address the above challenge. However, that is not the case because they either

violate privacy preservation requirements or are only effective in the honest majority scenario.

For example, FLTrust [15] and Zeno++ [63] require an auxiliary dataset that is independently

and identically distributed (iid) with the clients’ training datasets to rectify malicious updates,

which evidently violates the clients’ privacy. As for FLAME [49], it clusters updates and considers

the smallest cluster as a malicious group, which makes sense in the malicious minority context.

However, in the case of a malicious majority, it is difficult to assert if a given large/small-size cluster

is malicious. EIFFeL [55] shows similar infeasibility, since it combines existing Byzantine-robust

methods (e.g., FLTrust [15]) with secure aggregation [10].

Contributions.We propose a practical and secure Byzantine-robust FL system, MUDGUARD, that
defends against malicious entities (i.e., malicious minority for servers and malicious majority for

clients) with privacy preservation.

We summarize the advantages of MUDGUARD on the SOTA FL systems in Table 1. For a theoret-

ical and empirical analysis of complexity, please refer to Appendix D and Section 5.2. Our main

contributions can be described as follows.

1
Note AHE and MPC require onerous computation over ciphertexts so that the computational complexity could naturally

increase.
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•We formulate a new aggregation strategy, Model Segmentation, for Byzantine-robust FL to effec-

tively avoid poisoning attacks from a majority of malicious clients without requiring the servers to

own an auxiliary dataset. It posits that the utilization of complex algorithms for the detection of

malicious updates is not necessary. Instead, it only suggests implementing measures to prevent the

co-existence of malicious and semi-honest clients in one aggregation.

•We propose a new method to improve the accuracy of updates clustering under non-iid scenarios.

Instead of using the updates directly for clustering, we first compute the pairwise adjusted cosine

similarity of updates (featured by different directions and magnitudes of updates between every

two clients). Then, we input the results to DBSCAN.

• We design a secure FL system to be compatible with the cryptographic tools under the mali-

cious context. To protect the updates on the server side and guarantee all clients receive correct

aggregations, we construct a secure DBSCAN clustering that leverages cryptographic tools and

secure aggregation with Homomorphic Hash Function (HHF) [24]. We further optimize the secure

computations on the server side based on binary secret sharing and polynomial transformation.

• We provide a formal security proof for MUDGUARD in the UC framework. This proof captures

dynamic security requirements, making MUDGUARD more practical than theoretical in security.

MUDGUARD is the first UC-secure type in the research line of privacy-preserving FL.

•We implement MUDGUARD and perform evaluations on (F)MNIST and CIFAR-10 to quantify its

accuracy under untargeted attacks, the Attack Success Rate (ASR) under targeted attacks or under

an adaptive attack tailored to MUDGUARD, as well as its runtime and communication costs. Our exper-

imental results show that the model trained by MUDGUARD maintains comparable testing accuracy

with the FL baseline - a “no-attack-and-protection" FL with only honest parties (≈0.8% gap on

average under untargeted attacks). The ASR under the targeted attacks is as low as 0%-5%. After

optimizing the cryptographic computations, the runtime and communication costs are reduced by

about 66.05%-68.75% and 67%-89.17%, respectively. For example, in the training of ResNet-18 using

CIFAR-10, our optimization strategy can reduce training time from 95 seconds to 48 seconds and

communication costs from 16331MB to 5909MB, whereas a vanilla FL takes nearly 24 seconds and

758MB per round.

2 BACKGROUND AND RELATEDWORK
2.1 Attacks against Federated Learning
Byzantine Attacks.Malicious clients may attempt to deteriorate the testing accuracy of the global

model by intentionally uploading poisoned updates (i.e., untargeted attacks). Instead of harming

the accuracy, the attackers may also intentionally use samples with triggers to launch attacks that

make the model misclassify (i.e., targeted attacks). In the following, we review some classical and

SOTA untargeted attacks (Gaussian Attack [23], Label Flipping Attack [8], Krum Attack and Trim

Attack [23]) and targeted attacks (Backdoor Attack [3] and Edge-case Attack [59]).

• Gaussian Attack (GA).Malicious clients degrade the model accuracy by uploading local updates

randomly sampled from a Gaussian distribution.

• Label Flipping Attack (LFA). Malicious clients flip the local data labels to generate faulty

gradients. In particular, the label of each sample is flipped from 𝑦 to 𝐿 − 1 − 𝑦,𝑦 ∈ [𝐿], where 𝐿 is

the total number of classes.

• Krum and Trim Attacks. These two untargeted local model poisoning attacks are optimized

for Krum [9] and Trim-mean/Median [64] aggregation strategies, respectively. They aim to pull the

global model toward the opposite direction of the honest gradient when it is updated. Besides, they

also have attack efficacy on FedAvg.
• Backdoor Attack (BA). Byzantine clients embed triggers to training samples and change their
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labels to targeted labels. Their goal is to make the global model misclassify the correct labels to the

targeted ones when testing samples with triggers.

• Edge-case Attack (EA). The attack aims to misclassify seemingly similar inputs that are unlikely

to be part of the training or testing data. For example, by labeling Ardis
2
“7” images as “1” and

adding them to training data, EA can easily backdoor an MNIST classifier. Similarly, the attack can

use a Southwest airplanes dataset labeled “truck” to inject a backdoor into a CIFAR-10 classifier.

Note that the attack relies on a restricted assumption that an extra dataset resemblance to the

training dataset should be given.

Inference Attacks.Although local datasets are not directly revealed during the FL training process,
the updates are still subject to privacy leakage if the server is semi-honest or even malicious [42,

47, 65]. For instance, Zhu et al. [65] investigated a method of training data reconstruction via

optimizing the 𝐿2 distance between uploaded gradients and gradients trained from dummy samples

using an L-BFGS solver. This approach allows servers to easily reconstruct the local datasets and

achieves even pixel-wise accuracy for images and token-wise matching accuracy for texts.

Differential Attack.We use DBSCAN in conjunction with Model Segmentation to separate benign

and malicious updates. Features extraction with adjusted cosine similarity greatly decreases the

likelihood of false positives. However, we cannot guarantee that the clustering results are 100%

correct. A benign update may be erroneously clustered with malicious updates due to a marginal

probability, resulting from its potentially lower similarity to benign updates compared to malicious

updates. In particular, this case happens more frequently in SignSGD, where only taking signs of

gradients to update themodel because the algorithm computing adjusted cosine similarity disregards

the magnitude of the gradients, resulting in the same effect as calculating cosine similarity. The

above phenomenon triggers the differential attack in the following cases. Assuming that, at 𝑡-th

round, if a benign update is incorrectly clustered with malicious updates during aggregation, the

server combines them. Subsequently, by subtracting the malicious updates from the returned

aggregation, the benign update becomes easily revealed, facilitating the launch of an inference

attack. Another more common case is that a malicious adversaryA compromises𝑚 clients and then

makes one of them perform correct operations, i.e., acting benignly. This malicious-but-act-benign

client, being assigned to a benign group, can get benign aggregation from each round and then

conduct an inference attack.

2.2 Defenses against Federated Learning
Byzantine-robust Federated Learning. Blanchard et al. [9] proposed Krum to select 1 out of

𝑛 (local updates) as a global update for each round, where the selected updates should have

the smallest 𝐿2 distance from others. Yin et al. [64] introduced Trim-mean and Median to resist

Byzantine attacks. The former uses a coordinate-wise aggregation strategy. The server calculates

𝑛 − 2𝑧 values for each model parameter as the global update, wherein the largest and smallest 𝑧

values are filtered. Unlike FedAvg [43] computing the weighted average of all parameters, the latter

calculates the median of parameters. This median serves as an update to the global model. A major

drawback of the aforementioned mechanism is that it is effective only under a majority of honest

clients working with an honest server. In Median [64], the median calculated by the server can

easily be malicious if malicious clients control a large proportion of updates. This similarly applies

to Trim-mean and Krum. Cao et al. [15] proposed FLTrust to protect against a malicious majority

at the client side, assuming an honest server holds a small auxiliary dataset. The server treats the

gradients trained from this small dataset as the root of trust. By comparing these trusted results

2
A dataset extracted from 15,000 Swedish church records written by different priests with various handwriting styles in the

nineteenth and twentieth centuries.
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with the updates sent by clients, the server can easily rule out malicious updates. Under the same

assumption, Zeno++ [63] uses an auxiliary dataset to calculate the loss value of each local model. A

client is determined to be honest if the loss value is beyond the preset threshold. While using an

auxiliary dataset could be intriguing, such approaches are not feasible in the context of FL as they

violate the fundamental premise of FL in which local datasets are not to be shared with any parties.

Privacy-preserving Federated Learning. Truex et al. [57] proposed a solution enabling clients

to use AHE and DP to secure gradients in the semi-honest context (for both clients and the server).

Since DP noise is applied on gradients, the accuracy of the global model is deteriorated. In the

scenario of honest majority clients with two semi-honest servers, Thien et al. [49] proposed FLAME
using an MPC protocol to protect gradients from the servers and enabling the servers to perform

clustering for Byzantine robustness. Specifically, the clients can securely share their updates to

the servers cryptographically, e.g., via secret sharing, and the servers can filter out malicious

updates without knowing their concrete values. By expressing existing Byzantine-robust solutions

(e.g., FLTrust) as arithmetic circuits, EIFFeL [55] enables secure aggregation of verified updates.

Although FLAME and EIFFeL capture both Byzantine robustness and privacy preservation (i.e.,

update confidentiality), the accuracy of the global model could become equivalent to a random

guess if the proportion of malicious clients is ≥50%.
Cryptographic Tools. Secret Sharing (SS) is a method for splitting a secret among multiple clients

such that no individual can reconstruct the secret without a subset of the shares. Shamir Secret

Sharing (SSS) is one such scheme, with linear properties enabling efficient computations in FL that

allow 𝑡 out of 𝑛 to reconstruct the secret. Homomorphic Encryption (HE) is a privacy-preserving

technique that allows computations on ciphertexts without exposing plaintexts. It supports either

partial (addition or multiplication) or full (both operations) homomorphic properties. Homomorphic

Hash Functions (HHF) use a collision-resistant hash function supporting additive homomorphism,

used for verifying the correctness of aggregation. Oblivious Transfer (OT) ensures that a receiver

can learn only one of several sender-held strings without the sender learning which string is

selected. Garbled Circuits (GC) enable two servers to securely evaluate a Boolean circuit, where the

garbler generates a garbled version of the circuit, and the evaluator computes the output without

revealing intermediate values. Due to the page limit, we review machine learning and the detailed

definitions of security tools in Appendix C.

3 PROBLEM FORMULATION
3.1 System Model
Before proceeding, we provide some assumptions about MUDGUARD. We assume training is conducted

on a dataset D with 𝐾 data samples composed with feature space X (each sample containing all

features) and a label setY. Additionally,D is horizontally partitioned among 𝑛 clients, indicated as

X𝑖 = X𝑗 ,Y𝑖 = Y𝑗 ,I𝑖∩I𝑗 = ∅,∀D𝑖 ,D𝑗 , 𝑖 ≠ 𝑗,where all clients share the same feature space and labels

but differ in sample index space I. FL aims to optimize a loss function: arg min

w

𝑛∑
𝑖=1

𝑘𝑖
𝐾
L𝑖 (w,D𝑖 ),

where L𝑖 (·) and 𝑘𝑖 are the loss function and local data size of 𝑖-th client.

For reasons that relate to the versatility of the FL system, we also consider 𝑆 (> 2) servers to
carry out clustering and aggregation (e.g., FedAvg). This allows us to protect from malicious servers

who cannot reconstruct the secrets so long as their number is less than 𝑆/2 by using cryptographic

tools, in which clients send updates in secret-shared format. We state that our Byzantine solution

can also be executed by only one server. In this case, considering privacy, we have to assume that

the server must be fully trusted or semi-honest. Note that our focus here is on the existence of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 40. Publication date: December 2024.



40:6 Rui Wang et al.

malicious servers. In this research line [39, 46], secure computation is considered among multiple

servers. Due to page limit, we summarize frequently used notations in Table 6 (see Appendix A).

3.2 Threat Model
Attackers’ goal.We assume that two different entities are involved in the training: semi-honest

and dynamic malicious parties (including servers and clients), in which both try to infer the

privacy (updates) information of others from the received messages. Unlike the former, which

strictly follows the designed algorithms, the malicious clients additionally aim to deteriorate the

performance or boost the ASR of the global model through untargeted or targeted poisoning attacks,

respectively.

Attackers’ capabilities. The malicious servers (in a minority proportion) and clients (in a majority

proportion) can deviate from the designed protocols. For example, the malicious servers can perform

an incorrect aggregation and send it back to the semi-honest group. Moreover, malicious parties

(servers and clients) can collude with each other to infer benign aggregations and maximize the

efficacy of poisoning attacks (e.g., the Krum attack). To resist outside adversaries, secret-shared

messages are transmitted by private communication channels. Other messages are transmitted

through public communication channels, where outsiders are allowed to eavesdrop on these

channels and try to infer clients’ (updates) privacy during the whole training phase.

Attackers’ knowledge.We assume that the loss function, data distributions, Byzantine-robust

aggregation strategy, and public parameters (including training and security parameters) are

revealed to all parties. The malicious clients can exploit this information to design and cast adaptive

attacks tailored to MUDGUARD. For privacy reasons, the local updates and datasets of semi-honest

clients are not revealed to malicious parties.

4 MUDGUARD OVERVIEW AND DESIGN
4.1 Overview
The first goal of this work is to maintain the Byzantine robustness such that malicious updates

should be excluded properly. To do so, the servers must separate the malicious clients from the

semi-honest clients. DBSCAN helps the servers to perform clustering. Since the main difference

between the malicious and the benign is in the direction and magnitude of the updates, we use

the adjusted cosine similarity of updates as feature extraction to obtain better clustering accuracy.

Under the (semi-)honest majority, the clustering result directly links to the group size. However,

for a dynamic malicious majority, we cannot judge if a cluster is malicious only based on its size.

To address this issue, we propose Model Segmentation. Unlike traditional FL generating “a unique"

global model, our proposed algorithm can yield multiple aggregation results. It does not require

the servers to know whether a given group is malicious or not. Moreover, it only aggregates the

updates within the same cluster and then returns the results to the corresponding clients. We thus

guarantee that the semi-honest will not be aggregated with the malicious.

As far as fighting against inference attacks is concerned, we should protect the confidentiality of

the updates. For this, we use SS to wrap the updates into a secret shared format in the sense that

individual secret shares cannot reveal the underlying information of the updates. By doing so, we

guarantee that the updates are secured from eavesdroppers, semi-honest, or even malicious servers

and can further be used on secure multiplication, comparison, and aggregation via cryptographic

tools. However, using SS alone is not sufficient to defend against differential attacks. To thwart the

attack, we apply DP to prevent the attackers from extracting benign updates from the semi-honest

group. Since injecting noise has a negative influence on the accuracy of the training model, we

enable clients to perform denoising before wrapping the results into shares. Note that this does

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 40. Publication date: December 2024.
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Fig. 1. Optimization on the calculation of adjusted cosine similarity. : optimized process: by binary
SS, [[CosM]] is computed via bit-XOR. : unoptimized process: taking gradients or weights as updates
to compute [[CosM]].

not invalidate DP due to the post-processing nature [20]. We also consider the malicious minority

servers and thus leverage HHF to prevent malicious servers from performing incorrect aggregation,

e.g., merging the gradients from two different groups.

4.2 Byzantine-robust Aggregation Strategy with Cryptographic Computations
Our workflow for the Byzantine-robust aggregation strategy is as follows. Firstly, the clients upload

the gradients of the local models to the server side. Secondly, servers extract features of gradients

and split gradients into multiple clusters via DBSCAN. Finally, servers aggregate the gradients in

the clusters separately and send aggregations to the corresponding clients. In the following, we

complete the strategy over secure cryptographic computations.

Gradients Upload. Consider computing pairwise adjusted cosine similarity matrix (CosM) as the

inputs of DBSCAN. Client 𝑖 first subtracts updates with their mean values 𝑔𝑖,0 − 𝑔𝑖 , where 𝑜 ∈ 𝑂 is

the index of updates and uploads them to the servers. Servers compute the pairwise dot product

and 𝐿2 norm to derive the numerator and denominator, respectively. Then for any two clients 𝑖, 𝑗 ,

servers can calculate CosM := {CosM𝑖 𝑗 =
∑

𝑜∈𝑂 (𝑔𝑖,𝑜−𝑔𝑖 ) (𝑔𝑗,𝑜−𝑔𝑗 )√∑
𝑜∈𝑂 (𝑔𝑖,𝑜−𝑔𝑖 )2 ·

√∑
𝑜∈𝑂 (𝑔𝑗,𝑜−𝑔𝑗 )2

} from the division. The

use of the CosM as a method for extracting features is motivated by the fact that it measures both

the difference in directions and magnitudes of updates. This is particularly useful when dealing

with clients exhibiting various behaviors and non-iid cases. In this context, CosM and 𝐿2 distance

are used as input and the metric of DBSCAN, respectively.

Beyond Straightforward Cryptographic Combinations. Recall that one of our goals is to

preserve the privacy of clients. Trivially applying cryptographic building blocks to realize the goal

will easily yield expensive computation and communication complexity, as the costs performed over

ciphertext inherently demand a substantial amount of resources compared to plaintext counterparts.

Furthermore, the arithmetic operations involve substantial (non-)linear computations. The servers

should perform the computations of shared mean, numerator, denomination, and then division

to finally get the shared adjusted cosine similarity matrix [[CosM]]. To optimize the efficiency of

the above, we consider the denoised gradients of client 𝑖 at 𝑡-th round ĝ𝑖𝑡 as updates and perform

binary secret sharing via SignSGD. Note that SignSGD only takes the signs of gradients to the

update model, resulting in benign and malicious having the same magnitudes. Thus, in this case,

we can easily compute the adjusted cosine similarity via simple bit-wise XORing. Figure 1 depicts

this optimization procedure. The empirical comparison will be presented in Section 5.2.

Therefore, in each training round (of the optimization), client 𝑖 derives the gradients using

SGD [11]. Considering the upcoming cryptographic clustering, one needs to compute the signs of

gradients sign(ĝ𝑖𝑡 ) ∈ {−1, +1} as SignSGD [6] and then encodes to Boolean representation, which is

compatible with binary SS and XOR operations. Without loss of generality, we implement a widely
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used encoding/decoding method as

ECD(sign(ĝ𝑖𝑡 )) =
{

1, sign(ĝ𝑖𝑡 ) = +1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,DCD(ECD(sign(ĝ𝑖𝑡 ))) = 2ECD(sign(ĝ𝑖𝑡 )) − 1.

This method guaranteesDCD(ECD(sign(ĝ𝑖𝑡 ))) = sign(ĝ𝑖𝑡 ). Each client sends the encoded updates
to the servers via binary SS and broadcasts the hash results of unencoded updates for future

verification. Although SignSGD is lightweight, it has a negative impact on the accuracy of clustering.

Section 5.1 provides a detailed analysis of this impact. Note that SignSGD has the natural capability

of defending against scaling attacks [3] since it only takes signs as updates and clips the magnitude

of gradients. An attacker can still easily deteriorate the global model by constructing updates in

the opposite direction of benign updates.

Clustering. As a crucial variable in FL, updates determine the directions and magnitudes of

updating in themodel, while Byzantine attackers introduce abnormal updates. Traditional clustering

approaches directly use updates as inputs and cosine similarity as metric [49], causing informative

redundancy and blurring obvious features, especially in deep models (e.g., ResNet [30]), thereby

producing frequent false positives and negatives. Since the adjusted cosine similarity measures the

difference in directions and magnitudes of updates at the same time, we use the pairwise adjusted

cosine similarity CosM as a method for extracting features, i.e., CosM and 𝐿2 distance, used as

the input and the main metric of DBSCAN, respectively. We find that this method is effective

in distinguishing the updates because 1) calculating CosM (feature extraction) is equivalent to

reducing the informative redundancy of updates to improve the clustering accuracy. 2) Using

it to calculate the pairwise 𝐿2 distance can expand the pairwise differences that are not clearly

computed by CosM. Thus, there is a more clear density difference between honest and malicious

updates. 3) By subtracting the mean updates, CosM helps to account for reducing the influence of

non-iid, allowing for a more accurate comparison of clients’ updates. 4) When the model converges,

using cosine similarity is inappropriate because even semi-honest clients have updates in different

directions. For example, under a Gaussian Attack (GA), the malicious and semi-honest clients

become indistinguishable. The accuracy of the global model drops sharply to the level of the initial

training. We provide concrete examples in Appendix I.2 to demonstrate the advantages of using

CosM. Note that this advantage is more notable when the cryptographic tools are not optimized.

Since the proposed optimization uses SignSGD to align the magnitudes of updates, computing

cosine similarity on it naturally provides the same effect on clustering as adjusted cosine similarity.

Next, we describe the process of our clustering. We first extract features (different updates

directions with magnitudes) - calculating the CosM ← g𝑖𝑡 ⊕ g𝑗𝑡 , 𝑖, 𝑗 ∈ [𝑛], and then use it as the

input for clustering, thereby reducing the rate of false positives. Commonly, the adjusted cosine

similarity of two vectors is obtained by first calculating the dot product of the vectors and then

dividing them by the product of their respective 𝐿2 norm. Since encoding updates ĝ𝑖𝑡 ∈ {−1, +1}𝑑
to g𝑖𝑡 ∈ {0, +1}𝑑 is inspired by [53], we compute XOR of g𝑖𝑡 with 𝑑 − 2𝑝 bits, which is equivalent to

the result of the dot product of ĝ𝑖𝑡 , where 𝑝 is the counted number of set bits.

After that, the servers collaboratively compute pairwise 𝐿2 distance matrix EucM using secure

multiplications (𝑣𝑒𝑐𝑡𝑜𝑟𝑖 𝑗 ← CosM𝑖 − CosM𝑗 , 𝑖, 𝑗 ∈ [𝑛], 𝑥𝑖 𝑗 ← 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 𝑗 · 𝑣𝑒𝑐𝑡𝑜𝑟𝑖 𝑗 , and EucM𝑖 𝑗 ←
1 + 𝑥𝑖 𝑗−1

2
− (𝑥𝑖 𝑗−1)2

8
+ (𝑥𝑖 𝑗−1)3

16
) and compare with density 𝛼 to derive an indication matrix IndM,

where IndM = 1 if EucM ≤ 𝛼 , otherwise IndM = 0. Then, by applying the DBSCAN, one can derive

cluster labels. Note that the main focus of this paper is not on optimizing DBSCAN, we thus do not

describe how to retrieve cluster labels from IndM. We refer interested readers to [22].

We see that 𝛼 has a crucial influence on clustering accuracy. Huang et al. [32] concluded that a

well-trained model follows an alike-Gaussian distribution. We use this finding to guide the selection
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of this hyperparameter and formally derive its upper bound of selection (see Theorem 4.1 and its

proof in Appendix G).

Theorem 4.1 (Density Selection). Suppose the distribution of benign and malicious updates
obeys the normal distribution; setting 𝛼 <

√
2 guarantees that malicious clients conducting a poisoning

attack will not be grouped together with benign clients.

Note that taking 𝛼 <
√

2 only allows malicious clients to be identified as noise points, which is

not a 100% guarantee that all semi-honest clients are clustered together. Due to the difference in

training data, it could happen that the distances between a semi-honest client and other semi-honest

clients are greater than

√
2 by chance, resulting in the semi-honest client being identified as a noise

point.

Model Segmentation. To deal with Byzantine-majority attacks, after obtaining the cluster labels,

the servers aggregate the updates within the same cluster and return the results (and their hash

values) to the corresponding clients. In our design, unless a malicious client acts honestly, then it

will not be grouped into a cluster with the semi-honest clients, with a relatively large probability.

This protects benign clients by keeping poisonous updates from global model updates computed

for benign clusters. Note here we do not further explore the case in which malicious clients choose

to act honestly during training. In fact, if malicious clients behave semi-honestly, we will obtain

a more accurate global model. In a sense, this is a bonus for semi-honest clients. After all, in the

context of Model Segmentation, it is not required to identify malicious groups via any verification

algorithms, which is a positive thing since it removes the processing burden from the servers as

the latter do not need to run verification over “encrypted-and-noised" updates. Compared with the

method of FLAME, Model Segmentation does not need to assume that most clients in the FL system

are (semi-)honest. When integrated with an optimized clustering method, Model Segmentation can

also enhance the Byzantine robustness of the MUDGUARD.
Resistance against Malicious Servers. To further prevent malicious servers from casting and

sending incorrect aggregation, we use HHF so that every client can verify if the received aggregation

is correct. Specifically, the proposed method involves a pre-upload step in which client 𝑖 broadcasts

hash values of signs of gradients H𝛿,𝜙 (sign(ĝ𝑡𝑖 )) to the remaining parties before uploading secret-

shared updates to the server side. The servers use additive homomorphism of HHF to calculate hash

values of aggregations

∏
𝑖∈𝑐 𝑗 H𝛿,𝜙 (sign(ĝ𝑡𝑖 )) = H𝛿,𝜙 (G𝑗

𝑡 ) based on the clustering results, where

𝑐 𝑗 refers to a cluster 𝑗 containing client indexes. After receiving the aggregations G𝑗
𝑡 , the clients

can calculate H𝛿,𝜙 (G𝑗
𝑡 ) and

∏
𝑖∈𝑐 𝑗 H𝛿,𝜙 (sign(ĝ

𝑖
𝑡 )) based on the cluster labels and the received hash

values, and subsequently verify whether these two values are equal or not. Note that this method

considers the possibility of malicious servers that may send incorrect aggregations and IndM to

the semi-honest clients. However, since only a minority of servers are assumed to be malicious, the

semi-honest clients take the most consistent results as the real results.

Comparison with FLAME. Intuitively, systems that use clustering, like FLAME [49], could experience
misclassification problems under non-iid cases. Different from FLAME using the updates directly for

clustering, we first compute the pairwise adjusted cosine similarity of updates. Then, we push the

results to DBSCAN. This is a crucial step in feature extraction, improving the accuracy of clustering

(see Table 4). We further optimize communication and computation complexity. In our design,

MPC impacts three main stages: computations of CosM, 𝐿2 distance, and element-wise comparison.

Since the 1st stage (i.e., computations of CosM) is the most computationally expensive, we focus

on its optimization (see above). After the optimization, the servers avoid using “heavy" tools, like

HE and Beaver’s multiplication, to calculate CosM so that communication and computational

overheads are reduced. Specifically, MUDGUARD calculates CosM by doing XOR locally on servers,
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and the matrix size reduces from the number of clients × the number of model updates (𝑛 × 𝑑) to
𝑛 × 𝑛 after calculation. Then, this 𝑛 × 𝑛 matrix is used to calculate the pairwise-𝐿2 distance (where

only multiplication is involved). While in FLAME, directly calculating cosine similarity requires

multiplication, division, and the square root of the 𝑛 × 𝑑 matrix, which are relatively intensive,

expensive operations in MPC.

4.3 System Design

Assume client 𝑖 ∈ [𝑛] holds a horizontally partitioned dataset D𝑖 satisfying D =
𝑛⋃
𝑖=1

D𝑖 , at 𝑡-th
round, MUDGUARD works as follows.

Protocol MUDGUARD
➊ Local Training. For each local minibatch, each client conducts SGD and takes gradients g𝑖𝑡 as
updates.

➋ Noise Injection. Each client adds noise into g𝑖𝑡 to satisfy DP: g̃𝑖𝑡 ← g𝑖𝑡/max(1, ||g𝑖𝑡 ||2/Δ) +
N (0,Δ2𝜎2).
➌ Denoising. To improve accuracy, each client denoises g̃𝑖𝑡 by ĝ

𝑖
𝑡 ← KS(g̃𝑖𝑡 ,N) · g̃

𝑖
𝑡 , where KS(·)

is the KS distance.

➍ SS. Each client splits g𝑖𝑡 ← ECD(sign(ĝ𝑖𝑡 )) into 𝑆 shares by binary SS with Tiny Oblivious

Transfer (OT) and sends the shares to 𝑆 servers: [[g𝑖𝑡 ]]
𝑆𝑆←− g𝑖𝑡 . Besides, by running HHF, all

clients broadcast H𝛿,𝜙 (sign(ĝ𝑖𝑡 )).
➎ Feature Extraction. After receiving 𝑛 shares, each server locally computes a pairwise adjusted

cosine similarity matrix by bit-XOR: [[CosM𝑖 𝑗 ]] ← [[g𝑖𝑡 ]] ⊕ [[g
𝑗
𝑡 ]], 𝑖, 𝑗 ∈ [𝑛]. To further compute

𝐿2 distance, all servers convert Boolean shares to arithmetic shares by correlated randomness.

➏ 𝐿2 Distance Computation. After conversion, deriving multiplicative SS, each server uses

HE or OT to produce a triple, satisfying further multiplications. Therefore, each server takes

[[CosM]] as the inputs of DBSCAN and then computes [[EucM]] by (a) pairwise subtrac-

tion: [[𝑣𝑒𝑐𝑡𝑜𝑟𝑖 𝑗 ]] ← [[CosM𝑖 ]] − [[CosM𝑗 ]], 𝑖, 𝑗 ∈ [𝑛], (b) dot product: [[𝑥𝑖 𝑗 ]] ← [[𝑣𝑒𝑐𝑡𝑜𝑟𝑖 𝑗 ]] ·
[[𝑣𝑒𝑐𝑡𝑜𝑟𝑖 𝑗 ]], and (c) approximated square root: [[EucM𝑖 𝑗 ]] ← 1+ [[𝑥𝑖 𝑗 ]]−1

2
− ( [[𝑥𝑖 𝑗 ]]−1)2

8
+ ( [[𝑥𝑖 𝑗 ]]−1)3

16
.

➐ Element-wise Comparison. By comparing each element of EucM with density parameter 𝛼 ,

each server can derive shares of indicator matrix [[IndM]], {IndM𝑖 𝑗 = 1 | EucM𝑖 𝑗 ≤ 𝛼}.
➑ Reconstruction. All servers run a reconstruction algorithm to reveal IndM: IndM

recon←−
[[IndM]] and broadcast it to the client side. By DBSCAN, one can derive cluster labels. Based on
these labels, the clients learn about clustering information to perform aggregation verification

in step ➓.

➒ Model Segmentation. The servers aggregate shares (based on the number of labels 𝑐) with

the same labels after decoding: {[[G𝑗
𝑡 ]] ←

∑
𝑖∈𝑐 𝑗 DCD( [[g

𝑖
𝑡 ]]) | 𝑐 𝑗 = {𝑖 | 𝑖 ∈ [𝑛]}, 𝑗 ∈ [𝑐], } and

send to the corresponding clients.

➓ Aggregation Verification. After reconstructing aggregation, according to cluster labels, each

client verifies aggregation by

∏
𝑖∈𝑐 𝑗 H𝛿,𝜙 (sign(ĝ

𝑖
𝑡 ))

?

= H𝛿,𝜙 (G𝑗
𝑡 ). If the equation holds, clients

accept the aggregation results; otherwise, reject and abort.

We note that the corresponding implementation-level algorithms of MUDGUARD are given in

Appendix B and will be used in the experiments.
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4.4 Privacy Preservation Guarantee
Differential attack resistance. As shown in step ➋ and ➌ of Protocol 4.3, each client 𝑖 can add

differentially private noise into gradients and perform denoising later. Like [48], we use KS distance

(of noised gradients and noise distribution) as a metric to denoise by multiplying noised gradients.

Differentially private updates are first denoised, taken signs, and encoded before being secretly

shared.

Binary SS. Unlike arithmetic SS in domain Z
2
𝑏 , binary SS works with 𝑏 = 1, where 𝑏 is the bit

length. To resist malicious clients deviating from SS specifications, we apply OT in our design (step

➍ of Protocol 4.3). However, this brings a considerable increase in communication costs. Furukawa

et al. [25] used TinyOT to generalize multi-party shares with communication complexity linear in

the security parameter. We follow this method so that each client 𝑖 binary shares its updates to 𝑆

servers. The SS scheme guarantees that a malicious server cannot reconstruct the secret even if

colluding with the rest of the servers under a malicious minority setting.

XOR. In step ➎ of Protocol 4.3, after receiving shares, each server can compute the pairwise dot

product independently. Assume a server 𝑠 has [[g𝑖𝑡 ]]𝑠 , where 𝑠 ∈ [𝑆]. Since g
𝑖
𝑡 = [[g

𝑖
𝑡 ]]1⊕· · ·⊕ [[g

𝑖
𝑡 ]]𝑆 ,

we have g𝑖𝑡 ⊕ g𝑗𝑡 = [[g𝑖𝑡 ]]1 ⊕ [[g
𝑗
𝑡 ]]1 · · · ⊕ [[g

𝑖
𝑡 ]]𝑆 ⊕ [[g

𝑗
𝑡 ]]𝑆 ,∀𝑖, 𝑗 ∈ 𝑛. Therefore, in this case, each

server 𝑠 can compute [[𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡]] by {[[𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖 𝑗 ]]𝑠 = [[g𝑖𝑡 ]]𝑠 ⊕ [[g
𝑗
𝑡 ]]𝑠 | ∀𝑖, 𝑗 ∈ [𝑛]} locally

and without interactions with other servers. By multiplying a constant, one can derive shares of

adjusted cosine similarity. Using binary SS can help us to save element multiplication and division

operations.

Bit to Arithmetic Conversion. The servers also need to convert the shares in Z2 to arithmetic

shares (Z
2
𝑏 ) to support the subsequent linear operations and multiplications. We implement the

conversion by following [54]. A common method is to use correlated randomness in these two

domains (doubly-authenticated bits) and extend them. After this, the servers can derive arithmetic

shares of the dot product. Note some works [2, 45] leverage straightforward transformation under

the cases with only semi-honest parties.

Multiplication. As shown in step ➏ of Protocol 4.3, multiplications are necessary in DBSCAN.

Considering the semi-honest majority setting on the server side, the replicated SS and SSS can be

applied here since both satisfy the multiplicative property, in which two share multiplications can

be computed locally without any interaction. For the existence of malicious servers, we consider

the protocol proposed by Lindell et al. [40], modifying SPDZ [18] to the setting of multiplicative

secret sharing modulo a prime (including replicated SS and SSS). Furukawa et al. [25] also proposed
a similar variant for TinyOT. Both are based on the observation that the optimistic triple production

using HE or OT can be replaced by producing a triple using multiplicative secret sharing instead.

Secure Comparison with Density 𝛼 .With arithmetic shares, the comparison (step ➐ of Proto-

col 4.3) requires extra correlated randomness, especially secret random bits in the larger domains.

For the semi-honest majority servers, we follow the protocol [16] with Z2 to implement compari-

son efficiently. Under the malicious minority, we should check if the output is actually a bit. We

follow [17] to multiply a secret random bit with comparison output and then reconstruct it. If the

reconstructed value is a bit, it proves that the malicious servers do not deviate from the comparison

protocol.

4.5 Security Analysis
MUDGUARD achieves security properties under malicious majority clients and malicious minority
servers. Malicious parties may arbitrarily deviate from the protocol, while the rest of the parties

are semi-honest, trying to infer information as much as possible (but following the protocol). We

assume malicious clients and servers may collude with each other.
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A secure FL system satisfies correctness, privacy, and soundness. The latter two are security

requirements. Informally, the requirements are: (1) the adversary learns nothing but the differentially

private output; (2) the adversary cannot provide an invalid result accepted by a benign client. We

first define the security in the UC framework [14]. This allows the system to remain secure and

capable of being arbitrarily combined with other UC secure instances. In such a framework, security

is defined by a well-designed ideal functionality that captures several properties simultaneously,

including correctness, privacy, and soundness. Specifically, Figure E (Appendix E) shows our ideal

functionality FMUDGUARD. The definition captures all required security properties except DP and

soundness against malicious clients. Appendix E will discuss the remaining.

We analyze the security in an F -hybrid model, where F denotes a set of ideal functionalities

that the protocol can access. Our protocol adopts three ideal functionalities: FRO, FSS and FB2A. The
FRO is an ideal functionality that models a random oracle. The latter two, F SS and FB2A, are ideal
functionalities representing a secure SSS [25] and a bit-to-arithmetic conversion [54], respectively.

These functionalities model the secure handling of shared secrets, bit-to-arithmetic operations, and

random oracle queries. Furthermore, the works in [25] and [54] provide concrete constructions that

can securely realize FSS and FB2A, demonstrating the practical feasibility of our proposed model.

With these ideal functionalities in place, we present the following theorem to formally state the UC

security of MUDGUARD:

Theorem 4.2. Assuming the existence of a secret sharing scheme that can UC-realize FSS and a
bit-to-arithmetic conversion scheme that can UC-realize FB2A, the protocol MUDGUARD is UC-secure in
the random oracle model. Specifically, MUDGUARD securely realizes FMUDGUARD in the (FRO, FSS, FB2A)-
hybrid model, in the presence of a malicious-majority of clients and a malicious-minority of servers,
allowing for arbitrary collusions between malicious parties.

The remaining two properties are related to data output, which is not concerned with the

cryptographic view. Specifically, DP is provided by adding noise (Appendix E), and soundness

against malicious clients is provided by Model Segmentation.
Note our well-designed functionality captures as many attacks as possible. In other words,

soundness against malicious clients and DP cannot be achieved under the UC model. On the one

hand, recognizing malicious clients is quite a subjective task since they do not deviate from the

protocol in cryptographic ways. There might be a benign client providing similar inputs that seem

to be malicious, with a non-negligible possibility. On the other hand, the output with DP can be

obtained by the adversary in our definition. Hence, differential attacks should not be captured in

the functionality.

4.6 Adaptive attack
Recall that in Section 3.2, a Byzantine-robust aggregation strategy is available to attackers. Malicious

clients can adapt their attacks to nullify the robustness of the system. Note that untargeted attacks

(e.g., Krum and Trim attacks) solve an optimization problem to maximize the efficacy of attacks,

meaning the strategies of untargeted attacks are already optimal. Therefore, we design and evaluate

an adaptive backdoor attack for MUDGUARD. Specifically, the attack is formulated by adding a sub-task

to the attack optimization problem. Given the fact that MUDGUARD achieves Byzantine-robustness
by aggregating only benign updates as much as possible based on adjusted cosine distance, the

sub-task of this attack is to try to minimize the adjusted cosine distance of malicious updates from

that of benign updates. Formally, a malicious client 𝑖 first derives benign and malicious updates (w𝑖𝑡
and w𝑖′𝑡 ) with owned unpoisoned and poisoned data (D𝑖 and D

′
𝑖 ), respectively, at the 𝑡-th round:

w𝑖𝑡 ← w𝑡−1 − 𝜂∇L(w𝑡−1,D𝑖 ),w𝑖
′
𝑡 ← w𝑡−1 − 𝜂∇L(w𝑡−1,D

′
𝑖 ).
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Then, client 𝑖 solves the optimization problem:

arg min

w𝑖′
𝑡

𝜆L𝑖 (w𝑡−1,D
′
𝑖 ) + (1 − 𝜆)∥w𝑖𝑡 − w𝑖

′
𝑡 ∥𝐶𝑂𝑆 ,

where ∥·∥𝐶𝑂𝑆 refers to adjusted cosine distance. 𝜆 ∈ (0, 1] is a hyperparameter to balance the

efficacy and stealthiness of an attack. A smaller 𝜆 makes the attack harder to be filtered, but its

efficacy is less to be upheld. Section 5.1 gives a detailed analysis.

5 EVALUATION
We use MNIST [38] and FMNIST [61] to train CNN same with [15] and CIFAR-10 [35] to train

ResNet-18 [30]. Please refer to Appendix H.1 for a detailed description. To conduct a fair comparison

against existing Byzantine-robust methods, we follow the training settings of [15, 49]. Based on

the number of classes 𝐿, the clients are divided into 𝐿 groups. Non-iid degree 𝑞 determines the

heterogeneity of data distribution. For example, if we use MNIST with 10 classes and 𝑞 = 0.5, the

samples with label “0" are allocated to the group “0" with probability 0.5 (but to other groups with

probability
1−0.5
10−1

).

Byzantine-attacks settings.We consider six poisoning attacks aforementioned in Section 2.1. For

GA, Krum, and Trim attacks, we adopt the default settings in [23]. To achieve a fair comparison, we

follow the settings of BA [49], where a white rectangle with size 6×6 is seen as a trigger embedded

on the left side of the image. The Poisoning Data Rate (PDR) is also aligned with the settings of [49].

Wang et al. [? ] did not provide a dataset for FMNIST. In the experiments, we do not consider

launching EA to FMNIST. To balance the main and attack tasks, we set 𝜆 as 0.5.

Dataset MNIST FMNIST CIFAR-10

#clients [10, 100, 500]

clients subsampling rate 1

non-iid degree [0.1, 0.5, 0.9]

#local epochs 1

#global epochs 250 1200

learning rate 0.01

0.01 with 1𝑒−5

weight decay

proportion of malicious clients 𝜉 [0.1, 0.6, 0.9]

𝜆 [0.1, 0.5, 1.0]

𝛼 1

#edge-case 300 / 300

DP’s (𝜖, 𝛿,Δ) (5, 1𝑒−5
, 5)

Table 2. FL system settings. The parameters’ range and default values are in the form of “[min, default, max]".

FL system settings. Table 2 gives the detailed parameters. We follow the parameters setting

of [6, 43], set the minibatch size to 128, and use the Adam optimizer [34] for training LeNet and

ResNet-18. In the experiments, all the clients participate in the training from beginning to end. By

default, we assume that there exist 100 clients splitting the training data with non-iid degree q=0.5;

the proportion of malicious clients is set to 𝜉=0.6. We inject triggers into the whole testing dataset

to inspect the ASR of BA. The Ardis and Southwest airplanes datasets with changed labels are used

to inspect the ASR of EA in MNIST and CIFAR-10, respectively. In the clustering and robustness

comparison, we define weights-MUDGUARD as a variant of MUDGUARD, which uses SGD to update

models and takes pairwise adjusted cosine similarity of updates as inputs and 𝐿2 norm as clustering

metric, without applying any security tools.
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Attacks baseline GA LFA Krum Trim AA BA EA

𝜉

0.5 0.975 0.973 0.967 0.955 0.965 0.979 / 0 0.972 / 0.002 0.966 / 0.03

0.6 0.977 0.975 0.974 0.952 0.96 0.979 / 0.002 0.968 / 0.001 0.968 / 0.023

0.7 0.975 0.971 0.971 0.956 0.953 0.977 / 0 0.963 / 0.002 0.953 / 0.07

0.8 0.969 0.968 0.964 0.942 0.944 0.976 / 0.003 0.961 / 0.005 0.965 / 0.085

0.9 0.969 0.968 0.968 0.943 0.937 0.971 / 0.005 0.963 / 0.002 0.963 / 0.093

𝑛

10 0.978 0.978 0.965 0.961 0.962 0.976 / 0 0.976 / 0 0.975 / 0

50 0.975 0.97 0.958 0.96 0.949 0.975 / 0 0.975 / 0 0.967 / 0.02

100 0.977 0.975 0.974 0.952 0.96 0.979 / 0.002 0.968 / 0.001 0.968 / 0.023

200 0.962 0.962 0.948 0.951 0.943 0.963 / 0.002 0.961 / 0 0.962 / 0.042

500 0.763 0.762 0.72 0.722 0.735 0.738 / 0.004 0.762 / 0.001 0.756 / 0.007

𝑞

0.1 0.976 0.975 0.978 0.975 0.975 0.978 / 0 0.975 / 0.003 0.976 / 0.031

0.3 0.974 0.973 0.974 0.966 0.972 0.98 / 0 0.978 / 0.002 0.978 / 0.026

0.5 0.977 0.975 0.974 0.952 0.96 0.979 / 0.002 0.968 / 0.001 0.968 / 0.023

0.7 0.898 0.894 0.872 0.887 0.906 0.89 / 0.013 0.876 / 0.011 0.883 / 0.039

0.9 0.709 0.682 0.705 0.694 0.689 0.689 / 0.017 0.707 / 0.025 0.72 / 0.06

Table 3. Comparison of accuracy with baseline and ASR by an increasing proportion of malicious clients
(𝜉 ≥ 0.5), #clients 𝑛 and non-iid degree 𝑞, where MNIST is used. The results under targeted attacks are in the
form of “testing accuracy / ASR".

5.1 Evaluation on Accuracy
We set the baseline as a “no-attack-and-defense" FL, which means it excludes the use of any

cryptographic tools as well as Byzantine-robust solutions but only trains with fully honest parties.

This reaches the highest accuracy and fastest convergence speed for FL training.We then set #clients

participating in the baseline training equal to the number of semi-honest clients in the malicious

existence case. We conduct each experiment for 10 independent trials and further calculate the

average to achieve smooth and precise accuracy performance. We evaluate MUDGUARD’s accuracy
and ASR by varying the total number of clients, the proportion of malicious clients, and the degree

of non-iid; and further compare the performance with the baseline.

Table 3 shows that, under GA, AA, BA, and EA, the testing accuracy is on par with the baseline

(with only a 0.008 gap on average) in MNIST. However, compared with the baseline, the results

of MUDGUARD under LFA, Krum, and Trim attacks show slight drops (on average, 0.025 in MNIST).

This is so because MUDGUARD has slow convergence and large fluctuation. This is incurred by two

factors. To reduce the overheads of secure computations, we apply binary SS in SignSGD. SignSGD

could cause negative impacts on clustering. Only taking the signs of the gradients can ignore

the effect of the magnitudes of the malicious gradients. This makes the clustering a bit prone to

inaccuracy. The other factor is that the LFA and Krum/Trim attacks either poison the training data

and further poison updates or the local model to optimize the attacks. In the early stage of training,

the malicious models do not perfectly fit the poisoned training data and local models yet. Thus, the

semi-honest and malicious clients could be classified into the same cluster.

Figure 2 presents an overview of the testing accuracy (of baseline and semi-honest and malicious

groups) and ASR (of the two groups) under Byzantine attacks in the default settings of Table 2,

where MNIST is used.
3
We see that semi-honest clients can obtain comparable accuracy to the

baseline at the end of the training. In Figure 2a-d, the accuracy of the semi-honest group and the

baseline sharply increase from 0.1 at epoch 0 to around 0.95 at epoch 25, then gradually converge

to 0.97. In the GA, since the malicious group can only receive aggregation of noise, their accuracy

always fluctuates around 0.1, equalling a random guess probability. As for LFA, the model accuracy

3
The lines refer to average cases, while the shadow outlines the max and min accuracy of each epoch.
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(a) Gaussian Attack (b) Label Flipping Attack (c) Krum Attack

(d) Trim Attack (e) Adaptive Attack (f) Backdoor Attack

(g) Edge-case Attack

Fig. 2. Comparison of testing accuracy among baseline, semi-honest, and malicious groups under untargeted
attacks (a-d) and ASR between the groups under targeted attacks (e-f), where we train MNIST by the default
settings in Table 2.

gradually drops from 0.1 (at the beginning) to 0. This is because their models are trained on label-

flipped datasets, while the labels of the testing set are not flipped. If the testing set is used to detect

a poisoned model, the result should be flipped labels and failing to match the labels in the testing

set, which results in 0. Since semi-honest and malicious clients can be classified into the same

cluster at the beginning of the training, the accuracy of their models, w.r.t. malicious clients, is

larger than 0.1 in some trials.

As shown in Figure 2b-e, the accuracy of the semi-honest group under these attacks converges

slightly slower than the baseline. LFA, Krum, and Trim attacks aim to either train poisoned data

or optimize local poisoned models to deteriorate the global model’s testing accuracy. Due to the

attacks being relatively slow and not as direct as GA, malicious updates cannot deviate 100% from

benign updates at the beginning of the training (which means that malicious and semi-honest

clients could be clustered together). However, with more training rounds, the deviation becomes

clearer. Thus, MUDGUARD separates the two groups easily.

AA, BA, and EA have no impact on the model’s testing accuracy since their main purpose is

to improve the ASR (nearly equal to 1 without defense). Under MUDGUARD, the final ASR is well
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suppressed. The ASR of AA and BA are close to 0 in MNIST (see Figure 2f-g). However, the ASR of

EA is much higher than that of AA and BA, reaching an average of 0.041. This is because, in EA,

the edge-case training sets owned by attackers are very similar to the training sets with the target

labels. If the discriminative capability of the model is not strong enough, the update directions

of semi-honest and malicious gradients are also very close, making it difficult for MUDGUARD to

distinguish them. The experimental results in FMNIST, CIFAR-10 and Shakespeare dataset [12]

show the same trends as those in MNIST under the tested attacks. Due to space limitations, we

present these results in Appendix H.2.

Impact of the proportion of malicious clients.We evaluate testing accuracy and ASR when the

proportion of malicious clients 𝜉 ≥ 0.5. In Tables 3, 7, and 8, we can see that all accuracy results

show a slightly downward trend with the increase of 𝜉 in three datasets. For the baseline, the

accuracy on average drops 0.008, 0.057, and 0.084 in MNIST, FMNIST, and CIFAR-10, respectively.

Under GA, AA, BA, and EA, this kind of decline is on par with the baseline, whether in MNIST

(0.003-0.009), FMNIST (0.059-0.66), or CIFAR-10 (0.078-0.093). Under the LFA, Krum, and Trim

attacks, affected by the slow convergence and fluctuation, the testing accuracy of MUDGUARD also
declines a bit more than the baseline, which is 0.012-0.028, 0.035-0.055, and 0.089-0.107 in MNIST,

FMINST, and CIFAR-10, respectively. Recall that malicious clients hold a portion of the benign

dataset but do not contribute to the global model (note this equals to the case where the portion of

the benign dataset is missing). From this perspective, the accuracy should be related to the number

of semi-honest clients, where the maximum accuracy we achieve could correspond to the case

when the clients are all semi-honest. Beyond the accuracy, the ASR of EA has an upward trend

while the number of malicious clients is increasing, rising by 0.005 and 0.048 in MNIST and FMNIST.

Since EA is not perfectly distinguished by MUDGUARD, the ASR naturally grows with the increase in

the number of malicious clients.

Impact of the total number of clients. Tables 3, 7 and 8, show the comparable testing accuracy

of MUDGUARD under different attacks, as well as ASR of BA and EA when the total number of clients

is set from 10 to 500. We observe that the accuracy appears to fall whilst the client number is

increasing, especially when #clients = 500, it descends by about 0.2, 0.25, and 0.4 in MNIST, FMINST,

and CIFAR-10, respectively. The decline in accuracy in FL is due to the reduced amount of data

allocated to each client, increasing the likelihood of local models overfitting. However, MUDGUARD
is not affected by this factor, and it can further defend against all untargeted attacks to maintain

accuracy at the same level as the baseline. The ASR of AA and BA are controlled to nearly 0%.

Although EA provides a higher ASR (than AA and BA), it drops to nearly 0 when #clients = 500,

which confirms that its effectiveness relies on how well the model learns.

Impact of the degree of non-iid. We further present the testing accuracy and ASR for the cases

where the degree of non-iid ranges from 0.1 to 0.9 in Tables 3, 7, and 8. We can see that in the

presence of attacks, MUDGUARD can still remain at the same level of performance as the baseline,

dropping only 0.018 on average. The largest decrease is 0.067 when 𝑞 = 0.5, which happens under

the Krum attack on training LeNet with FMNIST. Note the accuracy and the degree of non-iid show

a negative correlation with/without attacks, which is also in line with the conclusion of [43] that

FedAvg performs not well in the case of heterogeneous data distribution. The ASR of BA appears to

have a slight growth as 𝑞 ascends in (F)MNIST. This is because, with the high degree of non-iid, the

distances among semi-honest clients also raise. For targeted attacks like AA and BA, the directions

of updates are closer to those of benign updates than those of untargeted attacks. At the beginning

of training, there are cases when the distances between malicious clients and semi-honest clients

are similar to those between semi-honest clients, making it difficult for MUDGUARD to capture subtle

differences. For the ASR of EA, as concluded in analyzing the impact of total clients, EA performs

poorly when the model’s accuracy is low.
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𝜉 =0.6
MNIST FMNIST CIFAR-10

TPR TNR TPR TNR TPR TNR

GA

FLAME 0.821 0.846 0.848 0.847 0.879 0.928

weights-MUDGUARD 1 1 1 1 1 1

MUDGUARD 0.957 1 0.94 1 0.966 1

LFA

FLAME 0.653 0.612 0.634 0.655 0.742 0.711

weights-MUDGUARD 0.974 0.987 0.975 0.977 0.98 0.985

MUDGUARD 0.929 0.924 0.927 0.916 0.943 0.967

Krum

FLAME 0.587 0.622 0.521 0.63 0.527 0.578

weights-MUDGUARD 0.974 0.953 0.973 0.968 0.971 0.966

MUDGUARD 0.916 0.929 0.96 0.933 0.967 0.959

Trim

FLAME 0.691 0.679 0.699 0.664 0.646 0.615

weights-MUDGUARD 0.976 0.964 0.975 0.965 0.973 0.988

MUDGUARD 0.938 0.944 0.927 0.913 0.964 0.958

AA

FLAME 0.591 0.573 0.612 0.625 0.766 0.719

weights-MUDGUARD 0.998 0.982 0.99 0.982 0.984 0.982

MUDGUARD 0.971 0.943 0.941 0.935 0.943 0.96

BA

FLAME 0.777 0.763 0.794 0.83 0.856 0.897

weights-MUDGUARD 0.957 0.969 0.965 0.97 0.963 0.979

MUDGUARD 0.936 0.928 0.926 0.931 0.947 0.928

EA

FLAME 0.313 0.32 _ _ 0.248 0.288

weights-MUDGUARD 0.899 0.903 _ _ 0.893 0.921

MUDGUARD 0.856 0.876 _ _ 0.827 0.83

Table 4. Effectiveness of clustering among FLAME method, weights-MUDGUARD, and MUDGUARD.

Effectiveness of clustering. To investigate the effectiveness of our clustering approach, we

present the impact on True Positives Rate (TPR) and True Negatives Rate (TNR) under all attacks

of 𝜉 = 0.6 in Table 4 and compare against the method of FLAME.
We consider false positives to occur if semi-honest clients are groupedwith themalicious. On aver-

age, under GA, the TPR and TNR improve from 0.151 and 0.126 in FLAME to 1 in weights-MUDGUARD,
respectively. Since MUDGUARD is based on SignSGD, only the signs of updates are taken. Ignoring

the magnitude effect, there is a reduction in TPR (an average reduction of 0.046 as compared to

weights-MUDGUARD). Furthermore, TNR does not drop as we set the appropriate parameters accord-

ing to Theorem 4.1. The same changes can be captured in the case of LFA: weights-MUDGUARD has

an average increase of 0.3 and 0.324 in TPR and TNR, respectively, as compared to FLAME. Compared

with weights-MUDGUARD, MUDGUARD drops by 0.04 and 0.05. We see that under other attacks (LFA,

Krum, Trim, AA, BA, and EA), TPR and TNR are lower than the case under GA. Because they

launch attacks on either training data or optimizing poisoned models, all updates at the beginning

of training have high similarities, yielding those updates being clustered together and the cases

of misclustering. The true rates of CIFAR-10 are higher than those of (F)MNIST, because we can

set more rounds to train ResNet-18. After the model converges, the true rates reach almost 100%.

Therefore, MUDGUARD obtains more correct clusters.

From the above analysis, we conclude that TNR and TPR are related to the number of training

rounds, attack type, and the values of updates. Because MUDGUARD groups high similarity updates

into one cluster and does not need to identify malicious/semi-honest clusters, the performance of

clustering is less affected by the proportion of malicious clients. Similar results, like Table 4, can be

captured even in the case when 𝜉 >0.6. Through Figure 2, Table 4, and the above discussion, we state

that although TNR and TPR are affected to a certain extent by binary SS, from the view of testing
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(a) MNIST (b) FMNIST (c) CIFAR-10

Fig. 3. Impact of 𝜆 on Adaptive Attack, where backdoor attack and default settings are used.

accuracy and ASR, MUDGUARD achieves higher TPR and TNR than FLAME. Since our clustering

cannot achieve 100% TPR and TNR in most cases, one may think that benign clients could be

classified in the malicious clusters (i.e., always receiving malicious aggregations). However, this is

not necessarily the case. Misclassification typically occurs in the early training stages before the

model converges. Since the data distribution and updates between benign clients are closer than

those between benign and malicious clients, early misclassifications are corrected as the model

converges. The divergence between benign and malicious updates grows over time, preventing

long-term misclassification. The experimental results show that our method significantly improves

clustering accuracy (see Table 4), with misclassification having a sight effect on convergence speed

and no impact on the final model accuracy (see Figure 2).

Impact of 𝜆 onAdaptive Attack. Figure 3 shows how the ASR varies in semi-honest and malicious

groups when we adapt BA to MUDGUARD, where (F)MNIST, CIFAR-10 and default settings in Table 2

are used. In MNIST (Figure 3a), the ASR of the semi-honest group remains at a low level (nearly 0%)

while that of the malicious group raises from 0.23 to 1 as 𝜆 grows from 0.1 to 0.3. This is so because

when the value of 𝜆 is low, the malicious clients using AA focus more on evading filtering (i.e.,

inducing a drop in clustering accuracy). Even if malicious clients are grouped with semi-honest

clients, they cannot produce practical attack effectiveness. When the value of 𝜆 gradually increases,

the malicious clients will focus more on attack performance. In this way, MUDGUARD will easily

distinguish the malicious from the semi-honest. It thus can resist AA. Note the experimental results

with FMNIST and CIFAR-10 (Figure 3b and c) share the same trend with MNIST (Figure 3a). In

terms of other analyses of hypeparameters (i.e., 𝛼), please refer to Appendix H.2. Appendix F shows

the detailed convergence analysis of MUDGUARD.
Robustness comparison against other methods.We present a comparison among MUDGUARD
and SOTA methods (FLTrust, FLAME, Zeno++, and EIFFeL) in terms of robustness, as shown in

Figure 4, where MNIST is used. Several Byzantine-robust FL systems can easily and directly

apply to EIFFeL. We select the two of them (please refer to [55]) for comparison, namely FLTrust

and Zeno++. For brevity, we refer to them as EIFFeL-FLtrust and EIFFeL-Zeno++ hereafter. To
demonstrate the advantages of MUDGUARD (based on SignSGD), we also compare its robustness with

both SignSGD and FedAvg w/o defense. To investigate the impact of the cryptographic tools on

testing accuracy and ASR, we also compare MUDGUARD with weights-MUDGUARD. One may see that

MUDGUARD, countering the case of the malicious majority on the client side, does outperform most

existing approaches.

In Figure 4a-d, the accuracy of (weights-)MUDGUARD and EIFFeL-(FLTrust/Zeno++) can be

maintained at the same level as the baseline (about 0.97). Due to the impacts of misclustering,

weights-MUDGUARD has a 0.02 accuracy gap with EIFFeL-FLTrust. MUDGUARD (with DP noise)
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commits a roughly 0.01 accuracy loss as compared to weights-MUDGUARD. The accuracy of oth-

ers decreases with the increase in malicious clients, especially when 𝜉 ≥ 0.5, the accuracy

drops abruptly to the same level of FedAvg without defense. For the ASR of AA and BA, apart

from EIFFeL-(FLTrust/Zeno++), MUDGUARD and weights-MUDGUARD, all the remaining meth-

ods suddenly increase to 1 at 𝜉=0.4/0.5. Since EA has better attack ability (than AA and BA),

weights-MUDGUARD and MUDGUARD suffer from a nearly 0.08 gap to EIFFeL-FLTrust. The ASR of

others can raise from 𝜉 = 0.1 and finally reach 1.0 at 𝜉 = 0.5. SignSGD only limits the magnitude

of malicious updates rather than filtering them out. Still, it can provide a certain level of defense

(Figure 4) when there is a low malicious proportion (𝜉=0.1-0.2) (compared to FedAvg having an

average of 0.3 higher testing accuracy under untargeted attacks, and an average lower ASR of 0.4

under targeted attacks). As the number of malicious clients rises, its robustness drops to the level

of FedAvg w/o defense.

FLAME indicates that a small-size cluster should be a malicious group. Thus, it is easy to confirm

malicious clients via clustering. In the case of the malicious majority, it is hard to identify the

malicious/semi-honest via group size. FLTrust assumes that before training, an honest server

collects and trains on a small dataset. In each round, the server takes the updates trained by this

small dataset as the root of trust. The “trusted" results are then compared to the updates sent by

the clients. If the cosine similarity between them is too small, the updates will be filtered out. With

this approach, the accuracy of the global model remains equivalent to that of the baseline. We

state that MUDGUARD is on par with FLTrust, but it does not suffer from the restriction that the

servers need to collect an auxiliary dataset ahead of training. We also see that when the proportion

of malicious clients rises, the accuracy of MUDGUARD shows a slight decline. When clients upload

their updates, MUDGUARD can only aggregate them with similar directions. If there is only a small

percentage of semi-honest clients in the system, we naturally have an incomplete training set,

causing a loss in accuracy. Note the same trends as those in MNIST can be seen in FMNIST (Figure 7)

and CIFAR-10 (Figure 8). We also compare MUDGUARD with two extra Byzantine-robust FL systems

in Appendix H.2.

5.2 Evaluation on Overheads

Threat Model

Server-side Client-side

Semi-honest Malicious Minority Semi-honest Malicious Majority

Training Model LeNet ResNet-18 LeNet ResNet-18 LeNet ResNet-18 LeNet ResNet-18

Runtime(Second) 0.43±0.07/1.3±0.12 1.28±0.25/3.15±0.31 4.54±0.84/14.41±1.49 24.03±2.83/70.74±2.83 14.33±0.74 23.71±3.45 14.56±1.61 23.93 ±4.31
Communication Costs (MB) 16.20/53.46 34.82/314.45 873.23/2776.38 5151.18/15572.68 16.34 758.48 16.34 758.48

Table 5. Comparison of overheads among different threat models over LeNet & ResNet-18. The results on the
server side are in the form of "optimized/unoptimized".

We conduct overheads assessment together with the evaluation of accuracy. The overheads

presented in Table 5 capture the runtime and communication costs incurred by the implemented

cryptographic tools on the server side and model training on the client side. Recall that we propose

an optimization in Figure 1 (Section 4). We present the average overheads of each round of training

so as to illustrate the optimized and unoptimized results in terms of different training models

and honest/malicious contexts on the server side. We use LeNet and ResNet as models, and the

overheads are related to their dimensionality (instead of the training data).

Runtime. In general, we see that providing robustness in the malicious context should require

more runtime than in the semi-honest. This is because extra operations for verification are taken,

e.g., using HHF to verify whether a received aggregation is correct. The unoptimized ResNet-18
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(a) Gaussian Attack (b) Label Flipping Attack (c) Krum Attack

(d) Trim Attack (e) Adaptive Attack (f) Backdoor Attack

(g) Edge-case Attack

Fig. 4. Comparison with Byzantine-robust methods by varying 𝜉 from 0.1 to 0.9.

takes 3.15s per round in the semi-honest context while costing 70.74s (approx. an increase of 22

times) in the malicious minority. ResNet-18 has more model parameters than LeNet, leading to

extra computational operations on cryptographic tools, which can be seen, in the malicious context,

70.74s v.s. 14.41s. By binary SS and polynomial transformation, Table 5 shows that the runtime

of LeNet and ResNet-18 are reduced by 68.75% (4.54s) and 66.05% (24.03s), respectively, under

malicious-minority servers.

Communication costs. Similar to runtime, malicious-minority servers consume a considerable

amount of communication cost compared to semi-honest ones. Table 5 shows that after optimization,

the communication costs drop to 33% in the malicious minority and 10.83% in the semi-honest

with ResNet-18. In the worst case, we consume 15,572.68MB bandwidth per round under malicious

minority, but we optimize the cost to 5,151.18MB. In the semi-honest context, LeNet achieves the

best performance, requiring 16MB with optimization, which is 30.19% of the unoptimized cost

(53.46MB).

Under the same contexts, we present the overheads of the client side for FL training in Table 5.

Note the use of advanced FL techniques, such as those outlined in [28, 29], can be employed to

enhance computing and communication efficiency in MUDGUARD. Since applying those is straight-
forward, we will not go into further detail on this matter.
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6 CONCLUSION
We have proposed a novel Byzantine-robust and privacy-preserving FL system. To defend against

malicious majority clients, we have put introduced a new approach called Model Segmentation
and realized it using a modified DBSCAN algorithm in which we have improved the accuracy of

clustering by using pairwise cosine similarity. Leveraging cryptographic tools and DP, our design

enables training to be performed correctly without breaching privacy. Our experimental results

have demonstrated that the proposed protocol effectively deals with various malicious settings for

both the server and client sides and outperforms most existing solutions. Our protocols introduce

reasonable overheads, which we decrease by at least 3× via appropriate optimizations. In addition

to theoretical and empirical analysis, we also provide extensive discussions on model accuracy,

advantages of MUDGUARD, and its limitations. Due to page limits, please refer to Appendix I.

ACKNOWLEDGEMENT
This work was partly supported by the European Union’s Horizon Europe Research and Innovation

Program under Grant No. 101073920 (TENSOR), No. 101070052 (TANGO), No.101070627 (REWIRE)

and No.101092912 (MLSysOps). Nikolaos Laoutaris was supported by the MLEDGE project (RE-

GAGE22e00052829516), funded by the Ministry of Economic Affairs and Digital Transformation

and the European UnionNextGenerationEU/PRTR.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016.

Deep learning with differential privacy. In CCS. 308–318.
[2] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lindell, Kazuma Ohara, and Hikaru Tsuchida. 2018.

Generalizing the SPDZ Compiler For Other Protocols. In CCS.
[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. 2020. How to backdoor

federated learning. In AISTATS. 2938–2948.
[4] Gilad Baruch, Moran Baruch, and Yoav Goldberg. 2019. A Little Is Enough: Circumventing Defenses For Distributed

Learning. In NIPS.
[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of garbled circuits. In CCS. 784–796.
[6] Jeremy Bernstein, Yu-XiangWang, Kamyar Azizzadenesheli, andAnimashree Anandkumar. 2018. signSGD: Compressed

optimisation for non-convex problems. In ICML. 560–569.
[7] Jean-Paul Berrut and Lloyd N Trefethen. 2004. Barycentric lagrange interpolation. SIAM review (2004), 501–517.

[8] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against support vector machines. In ICML.
1467–1474.

[9] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. 2017. Machine learning with adversaries:

Byzantine tolerant gradient descent. In NIPS. 118–128.
[10] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ramage,

Aaron Segal, and Karn Seth. 2017. Practical secure aggregation for privacy-preserving machine learning. In CCS.
1175–1191.

[11] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent. In COMPSTAT. 177–186.
[12] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith,
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A NOTATION
The frequently used notations are in Table 6.

B IMPLEMENTATION ALGORITHMS
In the evaluation, we implement the proposed MUDGUARD (with optimization) mainly based on

Algorithms 1 and 2.

C TOOLS
C.1 Federated Learning
Federated Learning (FL) enables 𝑛 clients to train a global modelw collaboratively without revealing

local datasets. Unlike centralized learning, FL requires clients to upload the weights of local models

({w𝑖 | 𝑖 ∈ 𝑛}) to a parametric server. It aims to optimize a loss function: arg min

w

𝑛∑
𝑖=1

𝑘𝑖
𝐾
L𝑖 (w,D𝑖 ),

where L𝑖 (·) and 𝑘𝑖 are the loss function and local data size of 𝑖-th client. At 𝑡-th round, the FL

training can usually be divided into the following steps.

• Global model download: The server selects partial clients engaging in training. All connected

clients download the global model w𝑡−1 from the server.

• Local training: Each client updates its local model by training with its own dataset: g𝑖𝑡−1
←

𝜕L(w𝑡−1,D𝑖 )
𝜕w𝑡−1

.

• Aggregation: After the local updates {g𝑖𝑡−1
| 𝑖 ∈ 𝑛} are uploaded, the server updates the global

model by aggregation: w𝑡 ← w𝑡−1 − 𝜂
𝑛∑
𝑖=1

𝑘𝑖
𝐾
g𝑖𝑡−1

, where 𝜂 refers to the learning rate.
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Notation Description

g𝑖𝑡 gradients of 𝑖-th client at 𝑡-th round

w𝑖𝑡 weights of 𝑖-th client at 𝑡-th round

𝑇 the number of rounds

𝑛 the number of clients

𝑆 the number of servers

𝑚 the number of malicious clients

𝑘𝑖 the number of data instances of 𝑖-th client

𝑐 the number of clusters

𝑙 the cluster labels

𝐸 the number of epochs

D𝑖 the dataset of 𝑖-th client

𝜂 learning rate

G𝑧 the aggregation of gradients of 𝑧-th cluster

[𝑛] a set of numbers ranging from 1 to n

[[·]] secret shared format

CosM pairwise adjusted cosine similarity matrix

EudM pairwise 𝐿2 distance matrix

IndM indicator matrix

𝛿, 𝜙 secret keys of homomorphic hash function

Δ, 𝜎, 𝜖 parameters of differential privacy

N Gaussian noise

𝛼 density parameter

ECD(·) encoding algorithm

DCD(·) decoding algorithm

Table 6. Notation summary

C.2 DBSCAN
Unlike traditional clustering algorithms (e.g., k-means, k-means++, bi-kmeans), which need to

pre-define the number of clusters, Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) [22] is proposed to cluster data points dynamically. Based on density-based clustering,

DBSCAN guarantees that clusters of any shape can always be identified. Besides, it can recognize

noise points effectively. Basically, after setting the density parameter (𝛼) and the minimum cluster

size (𝑚𝑃𝑡𝑠), DBSCAN can conduct effective clustering. We note HDBSCAN [13] could also be used

for clustering. Its main difference fromDBSCAN is the multiple densities clustering. In this work, we

assume that malicious clients may only conduct one kind of attack during the whole training, e.g., a

group of malicious clients conducting a Label Flipping Attack together. The malicious updates could

only derive one density. Like [49], we may apply HDBSCAN in the clustering. However, DBSCAN,

in general, requires less computational complexity than HDBSCAN in algorithmic constructions.

And further, we will conduct the clustering with cryptographic operations. Considering efficiency,

we choose DBSCAN over HDBSCAN.

C.3 Cryptographic Tools
The secure Multiparty Computation (MPC) framework aims to enable multiple parties to evaluate

a function over ciphertexts securely. The parties conducting MPC can access inputs via protection

approaches, e.g., in a secret-shared format. It does not leak any information besides the final output

unless these shares are combined to derive plaintexts.

Secret Sharing (SS). It refers to a type of tool for splitting a secret among multiple parties, each

of whom is assigned a share of the secret. The security of an SS scheme guarantees that one

can distinguish shares and randoms with a negligible probability. Apart from that, no one can
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Algorithm 1: MUDGUARD.

Input: training dataset D =
𝑛⋃
𝑖=1

D𝑖

Output: global models {w𝑖 | 𝑖 ∈ [𝑛]}
1 ServerAggregation:
2 Initialize global model w0

3 for each global epoch 𝑡 = 1,2,· · · ,𝑇 do
4 for client 𝑖 ∈ 𝑛 in parallel do
5 [[g𝑖𝑡 ]] ← ClientUpdate(𝑖,w𝑖

𝑡−1
)

6 end
7 [[G𝑗𝑡 ]] ←Algorithm 2
8 return [[G𝑗𝑡 ]],H𝛿,𝜙 ( [[G

𝑗
𝑡 ]]) to clients

9 end
10 ClientUpdate(𝑖, w𝑖

𝑡−1
):

11 B ←(split D𝑖 into batches of size 𝑏)

12 IndM←MajorityVote({IndM𝑖 | 𝑖 ∈ [𝑠]})
13 𝑙 ←DBSCAN(IndM)

14 reconstruct G𝑖
𝑡−1

by [[G𝑖
𝑡−1
]]

15 if
∏

H𝛿,𝜙 (ĝ𝑖𝑡−1
) = H𝛿,𝜙 (G𝑖𝑡−1

) then
16 accept and continue

17 else
18 refuse and break

19 end
20 w𝑖𝑡 ← w𝑖

𝑡−1
− 𝜂 · sign(G𝑖

𝑡−1
)

21 g𝑖𝑡 ←LocalTraining(w𝑖𝑡 ;𝑏𝑎𝑡𝑐ℎ; 𝑙𝑜𝑠𝑠)
22 g̃𝑖𝑡 ← g𝑖𝑡/max(1, ||g𝑖𝑡 ||2/Δ) + N (0,Δ2𝜎2)
23 ĝ𝑖𝑡 ← KS(g̃𝑖𝑡 ,N) · g̃𝑖𝑡
24 g𝑖𝑡 ← ECD(sign(ĝ𝑖𝑡 ))
25 send [[g𝑖𝑡 ]] to servers

26 broadcast H𝛿,𝜙 (sign(ĝ𝑖𝑡 ))

reconstruct the secret unless holding all (or a subset) of shares. Let us consider Shamir Secret

Sharing (SSS) [56] (𝑡, 𝑛)-threshold scheme as an example. Assume one chooses a polynomial

𝑓 (𝑥) = ∑𝑡−1

𝑖=0
𝑎𝑖 ·𝑥𝑖 over Z𝑞 and a secret 𝑎0 = 𝑓 (0). The secret can be split into 𝑛 shares by randomly

selecting 𝑛 values: {𝑟 𝑗 ← Z∗𝑞 | 𝑗 ∈ 𝑛}, and then calculating shares {𝑓 (𝑟 𝑗 ) | 𝑗 ∈ 𝑛}. Given a subset

of any 𝑡 out of 𝑛 shares, the secret can by reconstructed by Lagrange interpolation [7]:𝑓 (0) =∑𝑡−1

𝑗=0
𝑓 (𝑟 𝑗 ) ·

∏𝑡−1

𝑧=0,𝑧≠𝑗
𝑟𝑧

𝑟𝑧−𝑟 𝑗 . Except for SSS, other schemes like additive SS and replicated SS are

used in the MPC framework [17, 33]. Note these schemes have a linear property. Even if each party

performs linear combinations locally with shares, the combined secret matches the result obtained

by these linear calculations. This saves significant communication costs in the FL context, where

servers are only required to aggregate shares of gradients.

Homomorphic Hash Functions (HHF). Given a message 𝑥 ∈ Z𝑞 , a collision-resistant HHF [24]
H: G1 × G2 ← Z𝑞 can be indicated as H(𝑥) = (𝑔H

′
𝛿,𝜙
(𝑥)
, ℎ

H
′
𝛿,𝜙
(𝑥) ), where 𝛿 and 𝜙 are secret keys

randomly and independently selected from Z𝑞 . H
′
is a hash function, and G1 and G2 are two

different groups. Similar to other one-way hash functions, the security of the HHF requires that one

can find a collision with a negligible probability. Based on additive homomorphism: H(𝑥1 + 𝑥2) ←
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Algorithm 2: Secure clustering.
Input: shares of gradients: {[[g𝑖𝑡 ]] | 𝑖 ∈ [𝑛]}
Output: shares of aggregation {[[G𝑧𝑡 ]] | 𝑧 ∈ 𝑐}

1 for each 𝑖, 𝑗 ∈ 𝑛 do
2 [[𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖 𝑗 ]] ← [[g𝑖𝑡 ]] ⊕ [[g

𝑗
𝑡 ]]

3 convert binary sharing ([[𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖 𝑗 ]], [[g𝑖𝑡 ]]) to arithmetic sharing by B2A

4 [[CosM𝑖 𝑗 ]] ← 1 − 2

𝑛𝑝

∑[[𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖 𝑗 ]]
5 end
6 for each 𝑖, 𝑗 ∈ 𝑛 do
7 [[𝑥𝑖 𝑗 ]] ← ([[CosM𝑖 ]] − [[CosM𝑗 ]])2

8 [[EucM𝑖 𝑗 ]] ← 1 + [[𝑥𝑖 𝑗 ]]−1

2
− ( [[𝑥𝑖 𝑗 ]]−1)2

8
+ ( [[𝑥𝑖 𝑗 ]]−1)3

16

9 if EucM𝑖 𝑗 ≤ 𝛼 then
10 [[IndM𝑖 𝑗 ]] == [[1]]
11 else
12 [[IndM𝑖 𝑗 ]] == [[0]]
13 end
14 end
15 reconstruct IndM
16 each server broadcasts IndM
17 𝑙 ← DBSCAN(IndM)

18 for each 𝑧 ∈ 𝑐 all servers in parallel do
19 [[G𝑧𝑡 ]] ←

∑
𝑙𝑖=𝑧 DCD( [[g

𝑖
𝑡 ]]), 𝑖 ∈ 𝑛

20 return [[G𝑧𝑡 ]] to clients {𝑖 | 𝑙𝑖 = 𝑧}
21 end

(𝑔H
′
𝛿,𝜙
(𝑥1)+H

′
𝛿,𝜙
(𝑥2) , ℎH

′
𝛿,𝜙
(𝑥1)+H

′
𝛿,𝜙
(𝑥2) ), in this work, we will use this tool as a verification of the

correctness of aggregation.

Homomorphic Encryption (HE). This tool is an interesting privacy-preserving technology that

enables users to evaluate polynomial computations on ciphertexts without revealing underlying

plaintexts. An encryption scheme is called partial HE if it only supports addition [50] or multiplica-

tion [21], while fully HE [27] can support both. An HE scheme usually includes the following steps.

• Key Generation: (pk, sk) ← KGen (1
𝜆
), where based on security level parameter 𝜆, public key pk

and secret key sk can be generated.

• Encryption: (𝑐1, 𝑐2) ← Enc(pk,𝑚1,𝑚2). By using pk, the probabilistic algorithm encrypts mes-

sages𝑚1,𝑚2 to ciphertexts 𝑐1, 𝑐2.

• Homomorphic evaluation: Eval(𝑐1, 𝑐2) = 𝑐1 ◦ 𝑐2 = Enc(pk,𝑚1) ◦ Enc(pk,𝑚2) = Enc(pk,𝑚1 ◦𝑚2),
where ◦ refers to an operator, e.g., addition or multiplication.

• Decryption:𝑚1 ◦𝑚2 ← Dec(sk, Enc(pk,𝑚1 ◦𝑚2)). Using sk, the operational results of𝑚1 and𝑚2

can be derived.

Oblivious Transfer (OT). OT [52] is one of the crucial building blocks for MPC. In an OT protocol

(involving two parties), a sender holds 𝑛 different strings 𝑠𝑖 , 𝑖 = 1 · · ·𝑛, and a receiver has an index

(𝑖𝑛𝑑) and wants to learn 𝑠𝑖𝑛𝑑 . At the end of the protocol, the receiver cannot get information about

strings rather than 𝑠𝑖𝑛𝑑 , while the sender learns nothing about 𝑖𝑛𝑑 selected by the receiver. For

example, a 1-out-of-2 OT protocol only inputs two strings and a 1-bit index.

Garbled Circuits (GC) [5]. The protocol is run between two parties called the garbler and evaluator.
The garbler generates the GC corresponding to the Boolean circuit to be evaluated securely by
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associating two random keys per wire representing the bit values 0, 1. The garbler then sends the

GC together with the keys for the inputs to the evaluator. The evaluator obliviously obtains the

keys for his inputs via OT and evaluates the circuit to obtain the output key. Finally, the evaluator

maps the output key to the real output.

C.4 Differential Privacy
Differential Privacy (DP) [20] is a data protection approach enabling one to publish statistical

information of datasets while keeping individual data private. The security of DP requires that

adversaries cannot statistically distinguish the changes between two datasets where an arbitrary

data point is different. The most widely used DP mechanism is called (𝜖, 𝛿)-DP defined below,

requiring less injection noise than the 𝜖-DP but standing at the same privacy level.

Definition C.1 ((𝜖, 𝛿) - Differential Privacy [20]). Given two real positive numbers (𝜖, 𝛿) and a

randomized algorithmA:D𝑛 → Y, the algorithmA provides (𝜖, 𝛿) - DP if for all data sets D,D
′ ∈

D𝑛
differing in only one data sample, and allS ⊆ Y: 𝑃𝑟 [A(D) ∈ S] ≤ 𝑒𝑥𝑝 (𝜖) ·𝑃𝑟 [A(D′) ∈ S]+𝛿.

Note that the Gaussian noise N ∼ 𝑁 (0,Δ2𝜎2) should be added to the output of the algorithm,

whereΔ is 𝐿2 sensitivity ofD and𝜎=
√︁

2 ln(1.25/𝛿) [1]. The robustness of post-processing guarantees
for any probabilistic/deterministic functions F , if A satisfies (𝜖, 𝛿)-DP, so does F (A).

D COMPLEXITY ANALYSIS
We use 𝑑 to denote the dimension of the model. 𝑛, 𝑆 , and 𝑐 refer to the number of clients, servers,

and clusters, respectively.

• Computation cost. Each client’s computation cost can be computed as binary SS with Tiny OT

− 𝑂 (𝑑). The server’s computation cost consists of 4 parts: (1) computing pairwise XOR − 𝑂 (𝑛2);
(2) bit to arithmetic conversion − 𝑂 (𝑑); (3) multiplication for 𝐿2 distance − 𝑂 (𝑛3); (4) comparison

with 𝛼 − 𝑂 (𝑛2); (5) calculating results of HHF based on the number of clusters 𝑐 − 𝑂 (𝑛𝑐). Thus,
the total computation complexity of each server is 𝑂 (𝑛3).
• Communication cost. For a client in MUDGUARD, the communication cost can be divided into

two parts: (1) sending updates to 𝑆 servers with binary SS and Tiny OT − 𝑂 (𝑆𝑑); (2) broadcasting
hash results of updates to the rest of parties − 𝑂 (𝑛 + 𝑆). Thus, we have communication complexity

− 𝑂 (𝑆𝑑 + 𝑛) for each client. The servers’ communication costs include (1) receiving correlated

randomness and doubly-authenticated bits for converting a boolean shared matrix to arithmetic

one − 𝑂 (𝑛2); (2) receiving triples for multiplications − 𝑂 (𝑛2); (3) receiving correlated randomness

for element-wise comparison − 𝑂 (𝑛2); (4) sending shares and a random bit to other servers for

reconstruction − 𝑂 (𝑆𝑛2); (5) sending aggregated shares and values of HHF to all clients − 𝑂 (𝑛𝑑).
Overall, the communication cost for every server is𝑂 (𝑆𝑛2). For detailed experimental results, refer

to Section 5.2.

E SECURITY ANALYSIS
We first define the ideal functionality FMUDGUARD to execute a byzantine-robust privacy-preserving

FL, and then show that the proposed protocol MUDGUARD securely realizes the functionality. Our

security is based on the random oracle model, where the homomorphic hash function outputs a

uniformly random value for a new query and the same value for a previously answered query.

Hence, we prove the UC security in FRO-hybrid model. Besides, the security is also based on the

existence of a secret sharing protocol where the clients derive shares indistinguishable with randoms,

which securely realizes FSS (a combination of Ftriples, Fshare, Freconst [25]), and a bit-to-arithmetic

conversion protocol that securely realizes FB2A (noted as FPREP in [54]).
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Ideal Functionality Fshare
The functionality Fshare interacts with a dealer party P𝑗 , and a corrupted party P𝑖 .

Upon receiving (𝑡𝑖 , 𝑠𝑖 ) from the corrupted party P𝑖 , and receiving 𝑣 from the dealer P𝑗 , the
functionality Fshare computes (𝑡 𝑗+1, 𝑠 𝑗+1) and (𝑡 𝑗+2, 𝑠 𝑗+2) from (𝑡𝑖 , 𝑠𝑖 ) and 𝑣 , and sends the honest
P𝑖−1 and P𝑖+1 their respective shares.

Ideal Functionality Freconst
The functionality Freconst interacts with an adversary Sim and a corrupted party P𝑖 , and

receives information from P𝑖+1 and P𝑖+2.
Upon receiving (𝑡𝑖+1, 𝑠𝑖+1, 𝑗) from P𝑖+1 and (𝑡𝑖+2, 𝑠𝑖+2, 𝑗) from P𝑖+2, Freconst computes 𝑣 =

𝑠𝑖+2 ⊕ 𝑡𝑖+1 and sends 𝑣 to P𝑗 . In addition, the functionality Freconst sends (𝑡𝑖 , 𝑠𝑖 ) to the adversary
Sim, where (𝑡𝑖 , 𝑠𝑖 ) is P𝑖 ’s share as defined by the shares received from the honest parties.

Ideal Functionality Ftriples
The functionality Ftriples interacts with a corrupted party P𝑖 , and receive information from

P1, P2, P3.

Upon receiving 𝑁 triples of pairs {(𝑡 𝑗𝑎𝑖 , 𝑠
𝑗
𝑎𝑖 ), (𝑡

𝑗

𝑏𝑖
, 𝑠
𝑗

𝑏𝑖
), (𝑡 𝑗𝑐𝑖 , 𝑠

𝑗
𝑐𝑖 )}𝑁𝑗=1

from P𝑖 , the function-

ality first Ftriples chooses random 𝑎 𝑗 , 𝑏 𝑗 ∈ {0, 1} and computes 𝑎 𝑗𝑏 𝑗 , and then defines a

vector of sharings d = ( [𝑎 𝑗 ], [𝑏 𝑗 ], [𝑐 𝑗 ]), for 𝑗 = 1, ..., 𝑁 . The sharings are computed from

[(𝑡 𝑗𝑎𝑖 , 𝑠
𝑗
𝑎𝑖 ), (𝑡

𝑗

𝑏𝑖
, 𝑠
𝑗

𝑏𝑖
), (𝑡 𝑗𝑐𝑖 , 𝑠

𝑗
𝑐𝑖 )] provided by P𝑖 and the chosen 𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 . Next, Ftriples sends the

generated shares to each corresponding party.

Ideal Functionality FPrep (FB2A)
Independent copies of FMPC are identified via session identifiers sid. For each instance, FPrep

maintains a dictionary Dicsid. If a party provides input with an invalid sid, the FPrep outputs
reject to all parties and await another message.

Upon receiving (Init, F, sid) from all parties, initialize a new database of secrets Dicsid
indexed by a set Dicsid .Keys and store the field Fas Dicsid .Field, if sid is a new session identifier.

Set the flag Abortsid = false.

Upon receiving (Input, 𝑖 , id, 𝑥 , sid) from a party P𝑖 and (Input, 𝑖 , id, ⊥, sid) from all other

parties, if id ∉ Dicsid .Keys then insert it and set Dicsid [id] = 𝑥 . Then execute the procedure

Wait.
Upon receiving (Add, id𝑥 , id𝑦, id, sid), set Dicsid [id] = Dicsid [id𝑥 ] + Dicsid [id𝑦] if id𝑥 , id𝑦 ∈

Dicsid .Keys.
Upon receiving (Mult, id𝑥 , id𝑦, id, sid), set Dicsid [id] = Dicsid [id𝑥 ] ·Dicsid [id𝑦], if id𝑥 , id𝑦 ∈

Dicsid .Keys. Then execute the procedureWait.
Upon receiving (RanEle, id, sid), set Dicsid [id] to a random element in Dicsid .Field, if id ∉

Dicsid .Keys. Then execute the procedureWait.
Upon receiving (RanBit, id, sid), set Dicsid [id] to a random bit if id ∉ Dicsid .Keys. Then

execute the procedure Wait.
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Upon receiving (Open, i , id, sid) from all parties, if id ∈ Dicsid .Keys: 1) if 𝑖 = 0, send

Dicsid [id] to the adversary and executesWait. If the answer is (OK, sid), await an error 𝜖 from

the adversary. Send Dicsid [id] + 𝜖 to all honest parties. If 𝜖 ≠ 0, set the flag Abortsid = true.

2) if 𝑖 ∈ 𝐴, then send Dicsid [id] to the adversary. Then executeWait. 3) if 𝑖 ∈ [𝑛]\𝐴, execute
Wait. If not already halted, then await an error 𝜖 from the adversary. Send Dicsid [id] + 𝜖 to
party P𝑖 . If 𝜖 ≠ 0, set the flag Abortsid = true.

Upon receiving (Check, sid) from all parties, execute the procedure Wait. If not already
halted and Abortsid = true, send (Abort, sid) to the adversary and all honest parties, and

ignore further messages to FMPC with the same sid. Otherwise, send (OK, sid) and continue.

Upon receiving (daBits, id1, ..., id𝑙 , sid1, sid2) from all parties where id𝑖 ∉ Dicsid .Keys for all
𝑖 ∈ [𝑙], await a message OK or Abort from the adversary. If OK is received, sample a set of

random bit {𝑏 𝑗 } 𝑗 ∈ [𝑙], and for each 𝑗 ∈ [𝑙] set Dicsid1
[id𝑗 ] = 𝑏 𝑗 and Dicsid2

[id𝑗 ] = 𝑏 𝑗 , and
insert the set {id𝑖 }𝑖∈[𝑙 ] into Dicsid1

.Keys and Dicsid2
.Keys. Otherwise, send (Abort, sid1) and

(Abort, sid2) to the adversary and all honest parties, and ignore all further messages to FMPC)
with the same sid1 and sid2.

Procedure Wait: Await a message (OK, sid) or (Abort, sid) from the adversary. If OK is

received, then continue. Otherwise, send (Abort, sid) to all honest parties, and ignore all

further messages to FMPC with the same sid.

Remark. We use Fshare as the secret share generating algorithm, Freconst as the reconstructing
algorithm, Ftriples as the secret share multiplication algorithm, and FB2A (see FPREP in [54]) as the bit
to arithmetic conversion algorithm.

We formally define FMUDGUARD as follows.

Ideal Functionality FMUDGUARD
The functionality FMUDGUARD is parameterized with a DBSCAN algorithm with corresponding

parameters, a local training SGD algorithm with appropriate variables, Gauss noise parameters

Δ and 𝜎 , and the density parameter 𝛼 . The functionality FMUDGUARD interacts with 𝑛 clients

P1, ..., P𝑛 , 𝑠 remote servers S1, ..., S𝑠 , and an ideal adversary Sim.

Upon receiving (Init, {𝑤 𝑖
0
}𝑖∈[𝑛], {G𝑖0}𝑖∈[𝑛]) from the adversary Sim, send (Init,𝑤 𝑖

0
,G𝑖

0
) to

each P𝑖 .
Upon receiving (Update, 𝑡,𝑤 𝑖𝑡−1

,D𝑖 ) from each honest client P𝑖 , calculate𝑤 𝑖𝑡 , g
𝑖
𝑡 , g̃

𝑖
𝑡 , ĝ

𝑖
𝑡 , ḡ

𝑖
𝑡 ,

and store (𝑡, [[ḡ𝑖𝑡 ]]) for each server, and notify Sim with (Update, 𝑡, P𝑖 ). If 𝑡 = 𝑇 , terminate

the protocol. Later, when Sim replies with (Update-data, 𝑡), send (Update, 𝑡) to each server

S𝑗 for each 𝑗 ∈ [𝑠]. Upon receiving (Update, 𝑡, {[[ḡ′𝑖𝑡 ]]}𝑖∈I) from Sim for all corrupted client

index 𝑖 , where I ⊂ [𝑛], store (𝑡, [[ḡ′𝑖𝑡 ]]) for each honest server.

Upon receiving (Update, 𝑡) from a server S𝑗 , if (𝑡, [[ḡ𝑖𝑡 ]]) is stored for each 𝑖 ∈
[𝑛] and for each server, calculate IndM and {[[G𝑧𝑡 ]]}𝑧∈[𝑐 ] for each server. Then

send (Model, 𝑡, IndM, {[[G𝑧𝑡 ]]}𝑧∈[𝑐 ]) to each server. If S𝑗 is honest, upon receiving

(Update-model, 𝑡) from the simulator Sim, send (Update-model, 𝑡, [[G𝑧𝑡 ]]) to the correspond-
ing client. Otherwise, upon receiving (Update-model, 𝑡, {[[G′𝑧𝑡 ]]}) from the simulator Sim,

send (Update-model, 𝑡, [[G′𝑧𝑡 ]]) to corresponding client.

Upon receiving (Abort) from either the adversary or any client, send ⊥ to all parties and

terminate.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 40. Publication date: December 2024.



40:30 Rui Wang et al.

Remark. According to the ideal functionality, we could capture not only privacy but also soundness
against malicious corruption of servers. However, the differential attack is based on the output of each
epoch, which is published roundly and could be obtained legally. Hence, the discussion on differential
privacy is not included in this security definition. Detailed proof of differential privacy will be provided
later. Moreover, soundness against malicious corruption of clients is also not captured by the previous
definition since such security is protected by the clustering technique, which is not the concern of
cryptography.

Definition E.1 (Universally Composable security). A protocol Π UC-realizes ideal functionality F
if for any PPT adversary A there exists a PPT simulator S such that, for any PPT environment E,
the ensembles EXECΠ,A,E and EXECIDEALF ,S,E are indistinguishable.

Definition E.2 (UC security of MUDGUARD). A protocol ΠMUDGUARD is UC-secure if ΠMUDGUARD

UC-realizes F , against malicious-majority clients and malicious-minority servers, considering

arbitrary collusion between malicious parties.

Theorem E.3 (UC security of MUDGUARD). Suppose the existence of a homomorphic hash function
in a random oracle model, our protocol is UC-secure in (FRO, FSS, FB2A)-hybrid world.

Proof. We show the validity of the theorem by proving that the protocol ΠMUDGUARD securely

realizes F in the (FRO, FSS, FB2A)-hybrid world against any corruption pattern. We construct a simu-

lator Sim for any non-uniform PPT environment E such that EXECFRO,FSS,FB2AMUDGUARD,A,E ≈ EXECFMUDGUARD,Sim,Z .
The Sim is constructed as follows.

It writes on A’s input tape upon receiving an input value from E, as if coming from E, and
writes onZ’s output tape upon receiving an output value from A, as if from A.

Case 1: If all clients and servers are not corrupted. Since we assume private channels between client

and server, Sim could just simply randomly choose all intermediate values. There is no distinguisher

who could tell the difference between random values and real transcripts.

Case 2: If corrupted clients exist. We note the corrupted subset as I ⊂ [𝑛]. We need to simulate the

adversary’s view, which is the secret share and its corresponding hash value. For 𝑡 ∈ [𝑇 ] and 𝑖 ∈ I,
the simulator randomly chosen ḡ′𝑖𝑡 ← {0, 1}, and internally executes FSS to obtain [[ḡ′𝑖𝑡 ]]. Then,
Sim internally executes FRO to obtain H𝑖𝑡 . Because of the UC security of FSS and FRO, there is no
distinguisher that could tell the difference between ( [[ḡ′𝑖𝑡 ]],H𝑖𝑡 ) and ( [[ḡ𝑖𝑡 ]],H𝛿,𝜙 (sign(𝑔𝑖𝑡 ))).
Case 3: If corrupted servers exist. We not the corrupted subset as I ⊂ [𝑇 ]. We need to simulate the

adversary’s view, including all secret shares in the protocol. It is worth noticing that we should

not only guarantee the indistinguishability between two groups of shares but also the relationship

among elements within each group. After obtaining IndM, the Sim executes DBSCAN protocol on

IndM and acquires cluster labels 𝑙 , and executes the functionality FSS to obtain [[IndM𝑖 𝑗 ]] for each
𝑖, 𝑗 ∈ [𝑛]. Then, Sim randomly chosen |𝑙 | secret sharing values [[ḡ′𝑖𝑡 ]] such that the summation

Σ𝑙𝑖=𝑧DCD( [[ḡ′
𝑖
𝑡 ]]) equals to the given share [[G𝑧𝑡 ]]. This procedure could be easily achieved by first

randomly choosing the first |𝑙 | − 1 values and then calculating the last value. For each 𝑖 ∉ 𝑐 , the

simulator Sim simply chooses the shares of gradients randomly since those values are irrelevant to

the calculation. After acquiring all the shares of gradients [[ḡ′𝑖𝑡 ]], the simulation Sim pairwisely

calculate [[𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ′𝑖 𝑗 ]], and convert it to arithmetic sharing by executing the functionality FB2A,
and then calculate the adjusted cosine similarity matrix share [[CosM′𝑖 𝑗 ]]. Next, as in Algorithm 2,

Sim calculates [[𝑥 ′𝑖 𝑗 ]], [[EucM′𝑖 𝑗 ]] for each 𝑖, 𝑗 ∈ [𝑛]. We claim that all shares that were previously

generated are interdeducible, except between [[EucM′𝑖 𝑗 ]] and [[IndM′𝑖 𝑗 ]], since the latter two are

the input/output pair of the element-wise comparison algorithm computed by a secure comparison

algorithm in our protocol. Fortunately, the privacy of a secure comparison algorithm guarantees
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the indistinguishability between real and ideal input/output pairs. Hence, we claim that if there

exists a distinguisher that could tell the difference between the real and ideal world, it contradicts

either the UC security of FSS or the privacy of secure comparison protocol.

Case 4: If there exists both corrupted clients and servers. The situation, in this case, is simply the

combination of Case 2 and 3 since there is no extra view needed to simulate.

In summary, for any PPT adversaryA we could construct a Sim, so that for any PPT environment

E, the EXECMUDGUARD,A,E and EXECFMUDGUARD,S,E are indistinguishable. □

UC framework captures attacks on input and intermediate data. On the contrary, differential

privacy prevents the adversary from inferring about private information from outputs or updates,

and such information might also be utilized by malicious clients. When false positives clustering

exists, or malicious clients pretend to be honest, local updates have a chance to be revealed to the

adversary. The following theorem shows that these updates do not leak any individual data due to

differential privacy.

Theorem E.4. No adversary in corrupted client set A𝑐 ⊂ C, where |A𝑐 | ≤ 𝑛 − 1, can retrieve the
individual values of honest clients.

Proof. Since we apply differential privacy [20], the local updates cannot leak information

regarding the inputs. According to Def. C.1, the added differentially private noise guarantees that

the aggregation is indistinguishable whether an individual update participates or not. Therefore, it

guarantees the security of individual local updates while aggregation can be calculated. □

F CONVERGENCE ANALYSIS
Let𝑀 be the total number of clients in a semi-honest majority client cluster. Semi-honest clients and

malicious clients are indexed by {1, · · · , ℎ} and {ℎ + 1, · · · , ℎ +𝑚}, respectively, where𝑀 = ℎ +𝑚
and ℎ > 𝑚 if TNR is greater than 50%. The component 𝑗 of stochastic gradient and of true gradient

are denoted as {𝑔𝑖, 𝑗 }𝑀𝑖=1
and 𝑔 𝑗 respectively. An error probability is shown as follows.

Lemma F.1 (The bound of error probability with malicious clients). If the TNR (h/M) of the
clustering is relatively high, thenwe have the error probability P

[
Sign

[∑𝑀
𝑖=1

Sign(𝑔𝑖, 𝑗 )
]
≠ Sign(𝑔 𝑗 )

]
≤

Pℎ · O(
√︁
𝑀/ℎ), where Pℎ is the bound for the error probability without malicious clients.

Proof. Every client is a Bernoulli trial with success probability 𝑝ℎ for semi-honest clients and

𝑝𝑚 for malicious clients, respectively, to receive the true gradient signs. Let 𝑍ℎ be the number of

semi-honest clients with true signs, which therefore equals the sum of ℎ independent Bernoulli

trials, so we know 𝑍ℎ follows the binomial distribution 𝐵(ℎ, 𝑝ℎ). Similarly, we know the number

of malicious clients with correct signs 𝑍𝑚 follows the binomial distribution 𝐵(𝑚, 𝑝𝑚). Denote
𝑞ℎ = 1 − 𝑝ℎ and 𝑞𝑚 = 1 − 𝑝𝑚 .

Let 𝑍 be the total number of clients with true gradient signs, so 𝑍 = 𝑍ℎ + 𝑍𝑚 . We use the Gauss-

ian distribution to simplify the analysis. Notice that 𝐵(ℎ, 𝑝ℎ) ∼ 𝑁 (ℎ𝑝ℎ, ℎ𝑝ℎ𝑞ℎ) and 𝐵(𝑚, 𝑝𝑚) ∼
𝑁 (𝑚𝑝𝑚,𝑚𝑝𝑚𝑞𝑚), sowe get𝑍 ∼ 𝑁 (ℎ𝑝ℎ +𝑚𝑝𝑚, ℎ𝑝ℎ𝑞ℎ +𝑚𝑝𝑚𝑞𝑚) . The event Sign

[∑𝑀
𝑖=1

Sign(𝑔𝑖, 𝑗 )
]
≠

Sign(𝑔 𝑗 ) is equivalent to event 𝑍 ≤ 𝑀/2. Then the error probability equals P(𝑍 ≤ 𝑀/2). By using
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Cantelli’s inequality, we know

P [𝑍 ≤ 𝑀/2] = P[𝑍 ≥ 2(ℎ𝑝ℎ +𝑚𝑝𝑚) −𝑀/2]
= P[𝑍 − (ℎ𝑝ℎ +𝑚𝑝𝑚) ≥ (ℎ𝑝ℎ +𝑚𝑝𝑚) −𝑀/2]

≤ 1

1 + [ (ℎ𝑝ℎ+𝑚𝑝𝑚)−𝑀/2]
2

ℎ𝑝ℎ𝑞ℎ+𝑚𝑝𝑚𝑞𝑚

≤
√︁
ℎ𝑝ℎ𝑞ℎ +𝑚𝑝𝑚𝑞𝑚

2| (ℎ𝑝ℎ +𝑚𝑝𝑚) −𝑀/2|

=

√︁
𝑀𝑝ℎ𝑞ℎ

2𝑀 (𝑝ℎ − 1/2) ·
√︁
ℎ/𝑀 +𝑚/𝑀 · 𝑝𝑚𝑞𝑚/𝑝ℎ𝑞ℎ

(ℎ/𝑀 · 𝑝ℎ +𝑚/𝑀 · 𝑝𝑚 − 1)/(𝑝ℎ − 1/2)
= Pℎ · O(

√︁
𝑀/ℎ)

(1)

where the second inequality holds since
1

𝑥2+1 ≤
1

2𝑥
for 𝑥 > 0, and the last two equalities hold

since 𝑝ℎ > 1/2 by [6] and we assume ℎ𝑝ℎ > 𝑀/2 with overwhelming probability for a sufficient

large TNR. The assumption is reasonable because ℎ𝑝ℎ = 𝑀𝑝ℎ > 𝑀/2 if 𝑇𝑁𝑅 = 100%. The first

factor in Eq. (1) is the bound for the error probability without malicious clients, so we get the error

probability less than a O(
√︁
𝑀/ℎ) factor of that in the case of without malicious clients. □

Let L and 𝝈 be non-negative losses and standard deviation of stochastic gradients 𝑔 respectively.

∀𝑥 , the objective values 𝑓 (𝑥) are bounded by constants 𝑓∗ (i.e. 𝑓 (𝑥) ≥ 𝑓∗). The objective value of
0-𝑡ℎ round is referred to as 𝑓0. Under the above conditions, the results are the following.

Theorem F.2 (Non-convex convergence rate of MUDGUARD). If the TNR of the clustering is
relatively high, then the global model generated in the semi-honest cluster converges at a rate

E

[
1

𝑇

𝑇−1∑︁
𝑡=0

∥𝑔𝑡 ∥1

]
2

≤ 1

√
𝑁

[√︁
∥L∥1

(
𝑓0 − 𝑓∗ +

1

2

)
+ 2

O(
√
ℎ)
∥𝝈 ∥1

]
2

,

where 𝑁 is the cumulative number of stochastic gradient calls up to round T (𝑖 .𝑒 ., 𝑁 = O(𝑇 2)).
Therefore, the higher the rate is, the closer the convergence speed is to the case without malicious
clients.

Proof. Following the results of Theorem 2 in [6], in the distributed SignSGD with a majority

vote, we can get the non-convex convergence rate without malicious clients at

E

[
1

𝑇

𝑇−1∑︁
𝑡=0

∥𝑔𝑡 ∥1

]
2

≤ 1

√
𝑁

[√︁
∥L∥1

(
𝑓0 − 𝑓∗ +

1

2

)
+ 2

√
𝑀
∥𝝈 ∥1

]
2

(2)

from

|𝑔𝑡 |P
[
Sign

[
𝑀∑︁
𝑖=1

Sign(𝑔𝑖, 𝑗 )
]
≠ Sign(𝑔 𝑗 )

]
≤ 𝜎𝑖√

𝑀
. (3)

As Lemma F.1 proved, in the existence of the malicious clients, we get (3)≤ 𝜎𝑖√
𝑀
· O(

√︁
𝑀/ℎ) = 𝜎𝑖

O(
√
ℎ)
.

By plugging the result into (2), we have the convergence rate of MUDGUARD:

E

[
1

𝑇

𝑇−1∑︁
𝑡=0

∥𝑔𝑡 ∥1

]
2

≤ 1

√
𝑁

[√︁
∥L∥1

(
𝑓0 − 𝑓∗ +

1

2

)
+ 2

√
𝑀
∥𝝈 ∥1 · O(

√︁
𝑀/ℎ)

]
2

=
1

√
𝑁

[√︁
∥L∥1

(
𝑓0 − 𝑓∗ +

1

2

)
+ 2

O(
√
ℎ)
∥𝝈 ∥1

]
2

.

(4)

□
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G PROOF OF THEOREM 1
Proof. We denote 𝑎 = (𝑎1, · · · , 𝑎𝑑 ) and 𝑏 = (𝑏1, · · · , 𝑏𝑑 ) are two vectors uploaded by malicious

clients, where 𝑛𝑝 refers to the number of model parameters:

𝑃𝑟 (𝑎𝑖 , 𝑏𝑖 = sign) =
{

1

2
, sign = +1

1

2
, sign = −1

, ∀𝑖 ∈ [𝑑] .

The adjusted cosine similarity can be computed as:

𝐶𝑂𝑆_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑎1𝑏1 + · · · + 𝑎𝑑𝑏𝑑√︃

𝑎2

1
+ · · · + 𝑎2

𝑑
·
√︃
𝑏2

1
+ · · · + 𝑏2

𝑑

=
𝑎1𝑏1 + · · · + 𝑎𝑑𝑏𝑑

𝑑
.

Since 𝑎𝑖 and 𝑏𝑖 are relatively independent, we have:

𝑃𝑟 (𝑎𝑖 · 𝑏𝑖 = sign) =
{

1

2
, sign = +1

1

2
, sign = −1

, ∀𝑖 ∈ [𝑑] .

According to the Law of large numbers, 𝐸 (𝐶𝑂𝑆_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦) ∼ 𝐸 (𝑎𝑖𝑏𝑖 ) = 0. This conclusion can

be generalized to any two malicious clients, and malicious clients have the same distance as a

semi-honest client. Therefore, if we calculate the adjusted cosine similarity vector of two malicious

clients, there should be only two elements of difference. The 𝐿2 distance of these two vectors is√
2. □

H OTHER EXPERIMENTAL SETUP AND RESULTS
H.1 Other Experiment Setup
We implement MUDGUARD in C++ and Python. We use the MP-SPDZ library [33] to implement secure

computations and Pytorch framework [51] for training. All the experiments are conducted on a

cluster of machines with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and NVIDIA 1080 Ti GPU,

with 32GB RAM in a local area network. As for the cryptographic tools, all the parameters are set

to a 128-bit security level.

Datasets.We use MNIST and FMNIST datasets for the image classification task.

•MNIST [38]. It consists of 60,000 training samples and 10,000 testing samples, where each sample

is a 28×28 gray-scale image of handwritten digital (0-9).

• FMNIST [61]. It contains article images from Zalando and has the same size as MNIST, where

each image is a 28×28 gray-scale image associated with a label from 10 classes.

• CIFAR-10 [35]. It offers 50,000 training samples and 10,000 test samples, where each is a 32×32
color image in a label from 10 different objectives, and there are 6,000 images for each class.

Classifiers. We use LeNet and ResNet-18 to perform training and classification of the datasets.

• LeNet [37]. Containing 6 layers (including 3 convolution layers, 2 pooling layers, and 1 fully

connected layer), LeNet aims to train 44,426 parameters for image classification.

• ResNet-18 [30]. It provides 18 layers with 11 million trainable parameters to train color images.

We use a light vision of ResNet with approx. 2.07 million parameters and complete the experiments

with the CIFAR-10 dataset.
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Attacks Baseline GA LFA Krum Trim AA BA

𝜉

0.5 0.811 0.803 0.772 0.751 0.763 0.793 / 0 0.797 / 0

0.6 0.783 0.772 0.77 0.761 0.757 0.784 / 0.002 0.801 / 0

0.7 0.769 0.767 0.747 0.723 0.726 0.776 / 0.003 0.777 / 0.005

0.8 0.754 0.752 0.731 0.743 0.754 0.771 / 0.001 0.758 / 0.001

0.9 0.755 0.737 0.73 0.718 0.724 0.753 / 0.002 0.731 / 0.008

𝑛

10 0.846 0.844 0.824 0.829 0.831 0.836 / 0 0.845 / 0

50 0.834 0.829 0.829 0.829 0.827 0.827 / 0 0.836 / 0

100 0.783 0.772 0.77 0.761 0.757 0.784 / 0.002 0.801 / 0

200 0.774 0.77 0.763 0.771 0.766 0.747 / 0.002 0.771 / 0.002

500 0.61 0.601 0.61 0.599 0.602 0.615 / 0.015 0.602 / 0.003

𝑞

0.1 0.787 0.787 0.772 0.789 0.786 0.783 / 0 0.787 / 0.004

0.3 0.788 0.777 0.765 0.773 0.784 0.783 / 0 0.782 / 0.002

0.5 0.783 0.772 0.77 0.761 0.757 0.784 / 0.002 0.801 / 0

0.7 0.65 0.637 0.657 0.639 0.65 0.642 / 0.008 0.649 / 0.006

0.9 0.566 0.542 0.545 0.542 0.548 0.546 / 0.001 0.55 / 0.007

Table 7. Comparison of accuracy with baseline and ASR by an increasing proportion of malicious clients
(𝜉 ≥ 0.5), #clients 𝑛 and non-iid degree 𝑞, where FMNIST is used. The results under targeted attacks are in
the form of “testing accuracy / ASR".

Attacks Baseline GA LFA Krum Trim AA BA EA

𝜉

0.5 0.573 0.57 0.574 0.557 0.562 0.568 / 0.006 0.572 / 0.007 0.571 / 0.019

0.6 0.562 0.559 0.559 0.547 0.534 0.521 / 0.011 0.567 / 0 0.568 / 0.03

0.7 0.54 0.52 0.506 0.513 0.515 0.531 / 0.011 0.524 / 0 0.531 / 0.031

0.8 0.519 0.508 0.489 0.494 0.488 0.482 / 0.003 0.52 / 0.004 0.501 / 0.05

0.9 0.489 0.492 0.474 0.45 0.483 0.475 / 0.006 0.484 / 0.008 0.478 / 0.059

𝑛

10 0.677 0.672 0.668 0.665 0.668 0.658 / 0 0.659 / 0.001 0.66 / 0.037

50 0.641 0.637 0.635 0.653 0.634 0.639 / 0 0.647 / 0.001 0.641 / 0.068

100 0.562 0.559 0.559 0.547 0.534 0.521 / 0.011 0.567 / 0 0.568 / 0.03

200 0.46 0.453 0.474 0.457 0.45 0.468 / 0.003 0.446 / 0 0.458 / 0.028

500 0.27 0.26 0.254 0.274 0.252 0.276 / 0.004 0.262 / 0 0.242 / 0

𝑞

0.1 0.573 0.574 0.566 0.562 0.554 0.555 / 0 0.572 / 0.001 0.558 / 0.058

0.3 0.567 0.567 0.556 0.535 0.553 0.561 / 0 0.569 / 0 0.543 / 0.064

0.5 0.562 0.559 0.559 0.547 0.534 0.521 / 0.011 0.567 / 0 0.568 / 0.03

0.7 0.426 0.417 0.394 0.435 0.424 0.44 / 0.013 0.41 / 0.004 0.429 / 0.015

0.9 0.229 0.227 0.216 0.224 0.229 0.219 / 0.024 0.217 / 0.013 0.214 / 0.018

Table 8. Comparison of accuracy with baseline and ASR by an increasing proportion of malicious clients
(𝜉 ≥ 0.5), #clients 𝑛 and non-iid degree 𝑞, where CIFAR-10 is used. The results under targeted attacks are in
the form of “testing accuracy / ASR".

H.2 Other Experimental Results
In Figures 5 and 6, we present the comparison of testing accuracy among baseline, semi-honest, and

malicious groups under targeted attacks and ASR between the groups under untargeted attacks. In

addition, we also give the experimental results by varying proportion of malicious clients (𝜉 ≥ 0.5),

#clients 𝑛 and non-iid degree 𝑞 in Tables 7 and 8. We see that the results are consistent with

the analysis in Section 5.1: the untargeted attacks nearly have no impact on the accuracy of the

final model (only slightly decreasing the speed of convergence). Since GA may directly upload

noise, it can be easily detected from the beginning of the training to the end, resulting in the

same convergence as the baseline. For LFA, Krum, Trim, and AA Attacks, MUDGUARD is also difficult
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(a) Gaussian Attack (b) Label Flipping Attack (c) Krum Attack

(d) Trim Attack (e) Adaptive Attack (f) Backdoor Attack

Fig. 5. Comparison of testing accuracy among baseline, semi-honest, and malicious groups under targeted
attacks (a-e) and ASR between the groups under untargeted attack (f), where we use LeNet to train FMNIST
by default settings in Table 2.

to distinguish between semi-honest and malicious clients at the beginning. Thus, the speed of

convergence is slightly decreased. The main difference is that LeNet achieves around 78% in FMNIST,

while ResNet-18 provides approx. 56% accuracy in CIFAR-10.

We also provide comparisons with the state-of-the-art Byzantine-robust methods in Figure 7

and 8 on FMNIST and CIFAR-10, respectively. Similar to Figure 4, under the malicious majority

of untargeted attacks, the testing accuracies of FLTrust, MUDGUARD, and weights-MUDGUARD are

maintained at the same level of the baseline. Under the targeted attacks, FLTrust, MUDGUARD, and
weights-MUDGUARD can restrain ASR to about 0%-10%. For more detailed explanations, please refer

to Section 5.1.

Impact of 𝛼 on robustness of MUDGUARD. Turning back to Section 4.2 and Theorem 4.1, the

Byzantine-robustness of MUDGUARD relies on whether we can choose a desirable density 𝛼 . From the

experimental results in Section 5.1, we know that EA has a stronger stealthiness than other attacks.

Therefore, we use EA as an example in this section to analyze the influence of 𝛼 on MUDGUARD.
Figure 9 shows how the ASR and clustering accuracy varies in semi-honest and malicious groups

under EA when we change 𝛼 . Consistent with Theorem 4.1, once 𝛼 is larger than

√
2, the malicious

and semi-honest clients will cluster together, resulting in MUDGUARD loss of the effectiveness of

Byzantine-robustness. A similar situation can be found when 𝛼 is too small (in this case, all clients

will be identified as noise.). From the experiment, we found that 1 is a best practice for 𝛼 , so we set

it as the default parameter. Nevertheless, MUDGUARD cannot 100% guarantee to exclude EA because

EA has a strong stealthiness. We will leave this as future work.

Experimental results on Shakespeare dataset. We further verify the performance of MUDGUARD
by Transformer [58] trained on Shakespeare dataset [12] for the next character prediction task

under GA, Krum and Trim attacks. We adopt the same default settings for Transformer as in [58].

The rest of the settings of FL follow in Table 2. Table 9 shows that MUDGUARD can capture the
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(a) Gaussian Attack (b) Label Flipping Attack (c) Krum Attack

(d) Trim Attack (e) Adaptive Attack (f) Backdoor Attack

(g) Edge-case Attack

Fig. 6. Comparison of testing accuracy among baseline, semi-honest, and malicious groups under targeted
attacks (a-e) and ASR between the groups under untargeted attacks (f-g), where we use ResNet-18 to train
CIFAR-10 by the default settings in Table 2.

𝜉 0.5 0.6 0.7 0.8 0.9

baseline 0.467±0.004 0.459±0.004 0.453±0.005 0.442±0.001 0.428±0.005

Attacks

GA 0.467±0.002 0.458±0.005 0.448±0.002 0.44±0.004 0.422±0.005
Krum 0.466±0.003 0.46±0.01 0.446±0.006 0.443±0.003 0.427±0.004
Trim 0.467±0.005 0.459±0.006 0.451±0.003 0.439±0.003 0.432±0.005

Table 9. Comparison of the testing accuracy (mean±std) of baseline and MUDGUARD under GA, Krum, and
Trim attacks by increasing the proportion of malicious clients (𝜉 ≥ 0.5), where the Shakespeare dataset is
used to train the Transformer model.

Byzantine-robust features (i.e., under attacks, the testing accuracy can still maintain the same level

as the baseline) of the models trained on text datasets. To train these datasets, we use weights or

gradients to update the models (in the context of FL). If the models or datasets are poisoned (by

malicious clients), malicious updates have differences in updates directions from benign ones. Then

MUDGUARD can protect benign clients.
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(a) Gaussian Attack (b) Label Flipping Attack (c) Krum Attack

(d) Trim Attack (e) Adaptive Attack (f) Backdoor Attack

Fig. 7. Comparison with Byzantine-robust methods in FMNIST by 𝜉 = 0.1 − 0.9.

𝜉 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BA

Lockdown 0.646 / 0.006 0.633 / 0.113 0.62 / 0.145 0.514 / 0.372 0.467 / 0.67 0.224 / 0.963 0.129 / 0.996 0.101 / 1 0.1 / 1

MUDGUARD 0.648 / 0.002 0.645 / 0.003 0.623 / 0.007 0.614 / 0.005 0.572 / 0.007 0.567 / 0 0.524 / 0 0.52 / 0.004 0.484 / 0.008

LFA

GAS 0.644 0.625 0.634 0.607 0.598 0.542 0.54 0.528 0.505

MUDGUARD 0.646 0.634 0.63 0.613 0.593 0.572 0.549 0.545 0.534

Table 10. Comparison with other Byzantine-robust methods in CIFAR-10 by 𝜉=0.1-0.9. The results under
targeted attacks are in the form of “testing accuracy / ASR"

Robustness comparison against other methods.We compare MUDGUARD with two recent works

on Byzantine-robust FL (i.e., Lockdown [31] and GAS [41]) in CIFAR-10. Lockdown [31] presents a

defense against backdoor attacks in FL by employing isolated subspace training. This approach

involves partitioning the model training process into distinct subspaces for different clients, incor-

porating randomness in the training process, and utilizing quorum consensus. GAS [41] addresses
the challenges of Byzantine robustness in FL under non-iid settings. It involves splitting high-

dimensional gradients into low-dimensional sub-vectors, applying robust aggregation rules to these

sub-vectors to identify honest gradients, and then aggregating the identified honest gradients. Since

Lockdown and GAS are defenses against targeted and untargeted attacks, we compare them with

MUDGUARD under BA and LFA, respectively. As shown in Table 10, MUDGUARD outperforms these

defenses because they operate under the assumption of an honest majority.

I DISCUSSION
I.1 Defending Against Other Attacks
In the experiments, we consider SOTA (un)targeted attacks. We say that interested readers may

use other attacks to test MUDGUARD, in which Byzantine-robustness could not be seriously affected.

We take the Distributed Backdoor Attack (DBA) [62] as an example. DBA decomposes a global

trigger into several pieces distributed to local clients. It, however, yields significant changes to
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(a) Gaussian Attack (b) Label Flipping Attack (c) Krum Attack

(d) Trim Attack (e) Adaptive Attack (f) Backdoor Attack

(g) Edge-case Attack

Fig. 8. Comparison with Byzantine-robust methods in CIFAR-10 by 𝜉 = 0.1 − 0.9.

(a) MNIST (b) CIFAR-10

Fig. 9. Impact of 𝛼 on the robustness of MUDGUARD, where EA and default settings are used.

some dimensions of updates to maintain the ASR of the backdoor task. Since the cosine distance

between malicious and benign updates is distinguishable, MUDGUARD can still work well under

DBA. Note another attack, Little Is Enough [4], have not been considered in this work because

it requires attackers to have knowledge of the gradients of semi-honest clients, which violates

privacy preservation.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 40. Publication date: December 2024.



MUDGUARD 40:39

I.2 Advantages of Adjusted Cosine Similarity

Fig. 10. An example of calculation of adjusted cosine similarity

As shown in Figure 10, we present an example of the calculation of adjusted cosine similarity. It

is clear to see that adjusted cosine similarity can capture the magnitudes and directions of updates

by transferring updates to adjusted updates. Although𝑚1 does not have too many differences in

directions (i.e.,𝑚1 will be clustered with ℎ1 and ℎ2), its differences with ℎ1 and ℎ2 in magnitudes can

be easily captured by CosM. Furthermore, due to non-iid, the (ℎ1, ℎ2) and (ℎ3, ℎ4) will be clustered

into two groups if cosine distance is applied. However, by subtracting mean updates, this influence

can be reduced.

We also show the experimental results in Figure 11, where FMNIST is used under BA, and the

number of clients is set to 10 (the first six are benign clients, the rest are malicious clients). The

rest of the default settings follow Table 2. From Figure 10, we can see that if only cosine distance is

calculated, honest updates will be classified as noise due to the influence of non-iid. The adjusted

cosine similarity weakens this effect (Figure 10b). Calculating the 𝐿2 distance again will make the

distinction between the two groups more obvious (Figure 10c).

Furthermore, we provide a comparison when MUDGUARD uses cosine similarity and adjusted cosine

similarity for clustering in Figure 12. It is clear to see that the testing accuracy of MUDGUARD with
cosine similarity abruptly goes down when the model approaches convergence. On the contrary,

this does not happen in MUDGUARD with adjusted cosine similarity. The detailed explanation is given

in Section 4.2.

I.3 Dynamic Attacks
Recall that MUDGUARD can perform well in terms of testing accuracy under the assumption that

malicious clients consistently perform one type of attack (e.g., GA) throughout the whole training

period. It can also perform well if we allow malicious clients to perform different attacks on the

epochs, e.g., GA to the first 10 epochs and then Krum attacks to the remaining epochs. We notice

that all the attacks (we consider in this work) except GA may require several epochs of training

(as a buffer) to produce attack effects. But these buffer epochs can boost MUDGUARD’s clustering
performance. This is so because the clustering ability is enhanced with the increase of training

rounds. On the other hand, the TNR and TPR (of the clustering) could be relatively low in these

epochs. Some malicious clients can be clustered into a semi-honest group, but this will not seriously

affect the accuracy performance of the model.

One may think malicious clients are allowed to perform all the attacks in a single epoch. But so

far, it is unknown how to group those attacks together friendly and meanwhile maximize their

attack effects. In practice, the attacks may deliver an update in different directions, and further,

they may even yield influence on each other. For example, GA could easily destroy the convergence

of BA. We say that it is an interesting open problem to consider launching GA, LFA, Krum, Trim,

and AA attacks together in an epoch to evaluate the accuracy and ARS.
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(a) Pairwise cosine distance

(b) Pairwise adjusted cosine distance (CosM)

(c) Pairwise 𝐿2 distance for CosM

Fig. 11. Calculation results of pairwise distance.

I.4 Varying Clients Subsampling Rate
We assert that MUDGUARD can perform well under different clients’ subsampling rates. This benefits

from the proposed Model Segmentation that can resist malicious-majority clients. Imagine that in

the context of an honest majority (e.g., 40 out of 100 are malicious), if the subsampling rate is set
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Fig. 12. Comparison of MUDGUARD with cosine similarity and adjusted cosine similarity under GA.

relatively low (e.g., 10%), we eventually have a malicious majority case in one training epoch with

a high probability. Our experimental results have demonstrated that MUDGUARD can still achieve

Byzantine-robustness under a low subsampling rate.

I.5 Learning Rate and Local Epoch
They are subtle parameters that decide the performance of FL training. A low learning rate can

slow down the speed of convergence, and on the other hand, a high rate hinders the model’s

convergence, harming accuracy. As for the local epoch, in the case of iid, if carefully increasing the

number of epochs, we can make the model converge fast. But under a large degree of non-iid (e.g.,

q=0.5), the increase of epoch leads to updates in different directions, making the FedAvg algorithm

invalid [43]. In this work, we set these two parameters according to the recommendations given in

[6, 43]. Exploring their impacts on training is orthogonal to the main focus of this work.

I.6 Privacy-preserving DBSCAN
This is one of the core parts we used to build MUDGUARD. It can apply to other real-world domains,

e.g., anomaly detection and encrypted traffic analytics, where data should be clustered securely.

But we note that the current MUDGUARD with optimization may not scale well in these applications.

We did the optimization for the sake of efficiency by using SignSGD and binary secret sharing,

which cannot support precise floating-point arithmetic.

I.7 Limitations
Using weights as updates. To provide cost-effective secure computations, the proposed MUDGUARD
only implements the update method by SignSGD. If we use weights as updates, the secret shares

sent to the servers will be in floating-point format. In this case, we will have to downgrade the

design to the unoptimized MUDGUARD in Table 5, which could cause a considerable amount of

both communication costs and runtime. An interesting future work could be to propose a more

lightweight (than the current design) and secure MPC framework for MUDGUARD.
Performance under EA. Although MUDGUARD does achieve good performance in terms of accuracy

and (to some extent) efficiency, under the EA, MUDGUARD’s ASR cannot be eventually reduced to

nearly 0%. In future work, we will improve the TNR and TPR of the clustering algorithm so as to

recognize subtle differences between malicious and semi-honest clients.
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