
Tydi-lang: a language for
typed streaming hardware

A manual for future Tydi-lang
compiler developers

Yongding Tian

Tydi-lang: a
language for

typed
streaming
hardware

A manual for future Tydi-lang compiler
developers

by

Yongding Tian
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday July 5, 2022 at 9:00 AM.

Student number: 5355710
Project duration: November 1, 2021 – July 5, 2022
Thesis committee: Dr. Zaid Al-Ars, Technische Universiteit Delft, supervisor

Prof. Peter Hofstee, Technische Universiteit Delft
Dr. Nick van der Meijs, Technische Universiteit Delft
Dr. Johan Peltenburg, Technische Universiteit Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Transferring composite data structures with variable-length fields often requires designing non-trivial pro-
tocols that are not compatible between hardware designs. When each project designs its own data format
and protocols the ability to collaborate between hardware developers is diminished, which is an issue espe-
cially in the open-source community. Because the high-level meaning of a protocol is often lost in translation
to low-level languages when a custom protocol needs to be designed, extra documentation is required, the
interpretation of which introduces new opportunities for errors.

The Tydi specification (Tydi-spec) was proposed to address the above issues by codifying the composite
and variable-length data structures in a type and providing a standard protocol to transfer typed data among
hardware components. The Tydi intermediate representation (Tydi-IR) extends the Tydi-spec by defining
typed interfaces, typed components, and connections among typed components.

In this paper, we propose Tydi-lang, a high-level hardware description language (HDL) for streaming de-
signs. The language incorporates Tydi-spec to describe typed streams and provides templates to describe
abstract reusable components. We also implement an open-source compiler from Tydi-lang to Tydi-IR. We
leverage a Tydi-IR to VHDL compiler, and also present a simulator blueprint to identify streaming bottlenecks.
We show several Tydi-lang examples to translate high-level SQL to VHDL to demonstrate that Tydi-lang can
efficiently raise the level of abstraction and reduce design effort.

iii

Preface

First of all, I would like to express my gratitude to my supervisors, Peter Hofstee and Zaid Al-Ars, for their
suggestions and deep insights in hardware design. Furthermore, I would like to thank Matthijs A. Reukers
for implementing the Tydi-IR backend, and many people who previously worked on the Tydi project, such
as Johan Peltenburg, Jeroen van Straten, and Matthijs Brobbel. Their contribution to the Tydi specification is
the foundation of Tydi-lang.

Secondly, I want to express my Memory of Eelco Visser (1966-2022). He was the head of the Programming
Languages Group in TUDelft and the professor who led me to the programming languages field. I recom-
mend all readers to take the Compiler Construction course in TUDelft (if possible) and spend some time on
the concepts and ideas in Spoofax [8].

In addition, I would like to express my deepest appreciation to my parents, Guiyu Tian and Xiaolu Cheng,
for their emotional and financial support, as well as their many suggestions for my academic career.

Finally, I would like to thank you, the future Tydi toolchain developer. Tydi-lang, as well as Tydi-IR and
Tydi-spec, is a small milestone of a large toolchain. The final toolchain should provide an integrated solution
for designing hardware accelerators, from reading host memory to performing calculations on them, with
only a few low-level HDL lines (zero is the best). Tydi-lang might also be a generic high-level language for
general-purpose streaming hardware design in the future, but that is a longer road.

During my bachelor’s study, a professor told me that we write code today because we will not write it
again tomorrow. This sentence also describes the Tydi project: we design Tydi today because we do not need
to struggle with designing complicated hardware tomorrow.

Yongding Tian
Delft, June 2022

v

Contents

1 Introduction 1
1.1 Context . 1
1.2 Challenge . 2
1.3 Problem statement and research questions . 2
1.4 Contributions . 2
1.5 Outline . 3

2 Background 5
2.1 Tydi Specification (Tydi-spec) and Tydi intermediate representation (Tydi-IR) 5
2.2 C++ compiler and Rust compiler . 6

2.2.1 typename keyword in C++ . 6
2.2.2 Multi-file analysis in Rust . 7

2.3 Apache Arrow and Fletcher . 8

3 Tydi language 9
3.1 Introduction to Tydi language (Tydi-lang). 9
3.2 Tydi language features . 10

3.2.1 High level design. 10
3.2.2 Hardware description by variables . 11
3.2.3 Abstract hardware templates. 11
3.2.4 Generative syntax . 11

3.3 Tydi language specification . 11
3.3.1 Comments and space . 12
3.3.2 Scope and name resolution . 12
3.3.3 Constant variable . 14
3.3.4 Logical type . 15
3.3.5 Package and cross-package reference . 17
3.3.6 Streamlet and port . 18
3.3.7 Implementation, instance and connection. 19
3.3.8 Array . 21
3.3.9 If and for block . 21
3.3.10 Template . 22
3.3.11 Use components as template arguments. 25
3.3.12 Assertion. 26

4 Tydi language compiler frontend 27
4.1 Introduction to Tydi-lang frontend . 27
4.2 Overall work flow . 27
4.3 Mutable memory structure in Rust . 28
4.4 Parsing . 29

4.4.1 Parsed code structure . 29
4.4.2 Multi-thread and multi-file parsing . 30
4.4.3 Limitations for PEST . 30

4.5 Value and target evaluation . 30
4.5.1 Evaluated code structure. 31
4.5.2 Lazy evaluation . 34
4.5.3 Multi-thread evaluation . 34

4.6 Tydi standard library . 34
4.7 Sugaring . 35
4.8 Design rule check . 36

vii

viii Contents

5 Tydi simulator 37
5.1 Introduction to Tydi simulator . 37
5.2 Tydi simulation syntax . 37
5.3 Tydi simulator structure. 39
5.4 Generate testbench . 39
5.5 Current simulator implementation and circuit representation 40

6 Result and evaluation 41

7 Conclusion 53

A Appendix 55
A.1 Known issues in the Tydi-lang compiler. 55

A.1.1 Wrong precedence for unary operator . 55
A.1.2 Duplicated identifier issue in for/if expansion . 55

A.2 Proposals about future work . 56

Bibliography 59

1
Introduction

1.1. Context
In the last ten years, the rate of performance improvements in general purpose processors has not been able
to keep up with the growth rate of data. Researchers and engineers proposed several solutions. The first so-
lution uses heterogeneous computing devices such as graphic process units (GPUs) and field-programmable
gate arrays (FPGAs). A GPU can accelerate highly parallel operations such as matrix operations due to its
execution unit (SM unit in CUDA) uses single-instruction-multiple-data (SIMD) design. Nvidia developed
the CUDA toolkit [10] to provide a general and abstract interface to design GPU-accelerated applications. An
FPGA can directly use gate arrays to compute the result without using traditional instructions-data-based
architecture. FPGAs can be effective accelerators in memory-intensive applications [7, 14, 16] because CPUs
need several stages, such as fetching data, fetching instructions, and execution, to perform computations,
while FPGAs can directly use logic gates to compute and store the values [6]. However, the clock frequency of
FPGAs is much lower than the frequency of most CPUs. The frequency advantage on CPUs can compensate
for the disadvantages in CPUs’ fetch-execution structure. GPUs usually have lower frequencies than CPUs
in order to control the power introduced by parallelizing the execution unit. The memory for GPUs is also
designed with higher bandwidth but higher latency compared with memory for CPUs. Above all, the accel-
eration performance of hardware is very application-specific. Hardware designers usually need to consider
algorithm parallelism, arithmetic intensity, and frequency. Meanwhile, designing an FPGA-based accelerator
consumes much more time than designing GPU-based acceleration algorithms because the hardware design
flow is much longer than the software design flow. There are also more abstraction layers in the software area,
such as abstraction layers for processors with different instruction sets and abstraction layers for different
operating systems. However, the abstraction level for designing hardware is much lower. For example, many
hardware design tools are vendor-specific, and many IP cores are platform-specific. The second method of
catching up with the growth rate of data is using computer clusters to process large-scale datasets. For exam-
ple, in big-data analytics, Apache Spark [3] can automatically distribute the data and computing algorithms
to multiple compute nodes and manage the data shuffling among cluster nodes. Later, developers found that
shuffling data in the network usually causes too much performance overhead because serializing the mem-
ory data to data streams and de-serializing back to memory data cost too much time. To address this issue,
Apache Arrow [2] has been proposed to provide a column-based memory format with zero serialization cost.
Considering the missing support for FPGA in Arrow, Fletcher [12, 13] has been proposed as a tool to auto-
matically generate the hardware interface to access the Arrow memory data for FPGA accelerators. However,
the authors of Fletcher realized that representing the hierarchical memory data with hardware description
language is inefficient and greatly increases the design complexity. Thus, they proposed Tydi-spec [15] which
provides a standard for representing hierarchical data and the corresponding hardware-level streaming pro-
tocols. The hardware designed with Tydi-spec is also called typed streaming hardware because of the built-in
type system.

This thesis 1 reports on designing a programming language based on the Tydi-spec and its corresponding
compiler implementation. The Tydi project supervisors extended the Tydi-lang context from the FPGA ac-

1Some contents of this thesis also appear in “Tydi-lang: A User-friendly Language for Typed Streaming Hardware”, a paper which I
submitted to ICCAD 2022.

1

2 1. Introduction

celeration area to the general hardware design area, where transferring hierarchical and variable-length data
among hardware components often requires designers to manually design protocols and document the pro-
tocol specification. This common approach increases the design effort because designers need to frequently
switch between reading documentation and writing low-level HDL code, which also introduces new oppor-
tunities to make mistakes. In the open-source community, this issue becomes more serious because each
project usually designs their own protocols and representations. The standard data representation and pro-
tocols to transfer the data in Tydi-spec can efficiently address the issues mentioned above. Because general
hardware designing is a much wider area than FPGA accelerators, I will use general hardware as the use case
for Tydi-lang in the elaboration and use the FPGA accelerator as the use case in the results and evaluation
section.

1.2. Challenge
The primary aim of this MSc project is to design a Tydi-spec based hardware description language (HDL)
for hardware developers. However, designing a language is not as simple as directly presenting the Tydi-
spec elements. Designing a language should include considerations such as reducing the hardware design
effort, and raising the level of abstraction. In addition, hardware verification is also an important phase in
the hardware design flow. Performing high-level hardware verification to find out high-level design errors
(such as type mismatch) and making the new language compatible with existing tools and simulators are
also important.

Implementing the compiler is another challenge because compilers are usually complicated. The code
written by developers is completely unpredictable, but the compiler must be abstract enough to process these
unpredictable inputs. One of the authors in Tydi-spec also highly recommended using the Rust language to
implement the prototype. The "immutable/mutable reference" feature in Rust also requires new patterns to
construct the compiler structure.

1.3. Problem statement and research questions
This thesis aims to design a high-level hardware description language for typed streaming hardware and im-
plement the corresponding compiler prototype in Rust. Thus, the research questions can be formulated as
below:

• What is the essential language syntax to describe typed streaming hardware based on the Tydi-spec?

• How to reduce the design effort for language users?

• Rust is a relatively new language, its unique immutable/mutable reference system requires more design
effort on the memory structure. How can we address the memory challenges specific to designing a
compiler in Rust?

• What kind of abstraction method should the compiler provide to facilitate designing typed streaming
hardware?

• Hardware verification is an important phase in design flow, how to assess hardware verification in the
context of a Tydi-spec based toolchain.

• How to enable the cooperation between the new language and other existing HDLs and tools?

1.4. Contributions
The major contributions of this thesis can be summarized into following points:

• Design a user-friendly, type-safe and high-level HDL for streaming hardware and implement its com-
piler (Tydi-lang).

• Introduce the "template" concept for typed streaming hardware.

• Provide a new toolchain (Tydi tools and Fletcher) to design FPGA accelerators for big data applications
efficiently. This use case might be a foundation for a future trans-compiler from software programming
languages to hardware description languages.

1.5. Outline 3

• Present a high-level simulator blueprint to facilitate design analysis, including identifying streaming
bottlenecks, and generate testbenches for low-level verification tools.

1.5. Outline
The remainder of this thesis is organized as follows:

• Chapter 2: Background provides relevant background information for the projects discussed in subse-
quent Chapters.

• Chapter 3: Tydi language introduces the syntax and concepts of the Tydi language.

• Chapter 4: Tydi language compiler frontend explains how the Tydi compiler is constructed and de-
scribes its inner features such as multi-file analysis and multi-threaded compiling.

• Chapter 5: Tydi simulator proposes a blueprint for performing packet-level simulation and testbench
generation for Tydi-lang.

• Chapter 6: Result and evaluation shows some Tydi sample applications which translate selected SQL
benchmark queries in TPC-H to the hardware streaming logic. These sample applications demon-
strates that the Tydi language can greatly reduce the complexity of developing big data acceleration
on FPGAs.

• Chapter 7: Conclusion summarizes the thesis.

• Chapter 8: Appendix records some extra but non-trivial information for the Tydi compiler project.

2
Background

2.1. Tydi Specification (Tydi-spec) and Tydi intermediate representation
(Tydi-IR)

As mentioned earlier, Tydi-spec provides a standard method for describing hierarchical data structures using
combinations of logical types and defines how to map the data to hardware streams. There are a total of five
logical types: Null, Bit, Group, Union and Stream in Tydi-spec. To describe the type system in Tydi-spec,
Tydi-IR is proposed as an intermediate representation to encode the logical types directly. In addition, Tydi-
IR also extends Tydi-spec with some hardware-level concepts such as Port, Streamlet, Implementation,
Connection, and Instance. These concepts can efficiently describe typed components and circuits. Table
2.1 summarizes the terms in Tydi-spec and Tydi-IR.

For an example of the logical type system, suppose we want to represent a RGB pixel whose color depth
is 8 bits. We can define three logical types and each of them is represented by a Bit(8), and define a logical
group, called Pixel, to combine the three channel with Group(red,green,blue). The Pixel will map
to 24 hardware bits now but it is not stream yet. We can use Stream(Pixel) to define a stream of Pixel
data. Stream is also a logical type and can be put in another stream with Stream(Group(Stream)). In Tydi-
spec, this case is called nested stream and some stream properties can describe the stream behaviors and
relationships. These properties are listed below:

• Dimension: describes the dimension of the data. For example, an English character is a 0-dimension
ASCII stream, a word is a 1-dimension stream and a sentence is a 2-dimension stream.

• User: a logical type to deliver bit-oriented data rather than stream-oriented data.

• Throughput: represents the minimum number of elements that should be transferrable on the child
stream per element in the parent stream.

• Synchronicity: represents the relation between the dimensionality information of the parent stream
and the child stream.

• Complexity: this is a number to represent the complexity for the corresponding physical stream inter-
face.

• Direction: represents the direction of the stream. The direction for nested stream is set relative to its
parent stream. For example, defining a reverse stream A in a nested Stream B which is also reversed
results in a forward stream A.

• Keep: represents whether the stream carries extra information beyond the "stream" and "user" payload
and whether to keep this stream when both carried data and user data are Null.

Though Tydi-IR provides abilities to describe typed components and circuits, it is still very different from
the Tydi-lang. Tydi-IR, like many other intermediate representations, is usually too long and contains exces-
sive extra information, and thus is not suitable for developers. Many high-level features are also not designed
in Tydi-IR such as the syntax for variables/for/if.

5

6 2. Background

Table 2.1: Terms used in Tydi-spec and Tydi-IR

Term Type Meaning
Null Logical type Represents empty data. A stream of null type will be optimized out.

Bit(x) Logical type Represents data that requires x hardware bit to represent.

Group(x,y) Logical type
A tuple of several other logical types (x and y in this example). The total hardware bit
would be the sum of all child element bit width.

Union(x,y) Logical type
An union of several other logical types (x and y in this example). The total hardware bit
would be the maximum bit width of a single child.

Stream(x) Logical type
Represents a stream of a logical type. The stream can also specify the data dimension,
protocol complexity, hardware synchronicity, and throughput as optional arguments.

Port Hardware element Represents a hardware port, the port must specifies its logical stream type and direction.

Streamlet Hardware element
Represents the port map of a component. This term is almost the same as the "entity"
term in VHDL.

Implementation Hardware element

Represents the inner structure of a component. The inner structure should be a combin-
ation of instances and connections. Implementation must specify a streamlet as its port
map, this relationship is similar to the relationship between "entity" and "architecture" in
VHDL. Implementation can be declared as "external" if they cannot be represented by
instances and connections. "Implementation" is also called "impl" in Tydi-lang.

Connection Hardware element
Connect two ports. The two ports must have the same data stream type, compatible
protocol complexities, correct directions and same clock domain. Connections must be
declared in implementation.

Instance Hardware element
Represents a nested implementation instance in another implementation. The port of the
nested implementation can be accessed by using the instance.

Clock domain Hardware Clock
A clock domain is a representation of clock frequency and phase and is usually bound to
a port. Due to the handshaking mechanism in the stream, the clock domain concept
ensures only two ports with the same clock domains can be connected together.

The Tydi-IR project is done by Matthijs A. Reukers as his MSc thesis. Readers should be able to find his
thesis in the TUDelft database to find more details.

2.2. C++ compiler and Rust compiler
The two compilers are mentioned here because some of their features and design decisions are referenced in
the Tydi-lang compiler. The two most obvious reference points are the typename keywords in C++ and the
multi-file analyzing mechanism in Rust.

2.2.1. typename keyword in C++
In C++ syntax, typename is used in declaring a template and in using a type identifier as template argument
as shown in the following code snippets.

1 class text
2 {
3 public:
4 class print_interface
5 {
6 public:
7 void print()
8 {
9 std::cout << "this is a text" << std::endl;

10 }
11 };
12
13 };
14
15 template <typename T>
16 class invoke_print
17 {
18 public:
19 static void print()
20 {
21 using printable = typename T::print_interface;
22 printable temp;
23 temp.print();
24 }
25

2.2. C++ compiler and Rust compiler 7

26 };
27
28 int main()
29 {
30 invoke_print<text>::print();
31 return 0;
32 }

The typename At line 15 indicates the class has one arguments which must be a type. The typename at
line 21 indicates the term T::print_interface should be evaluated as a type. C++ developers can define a
global variable and a class with the same name in the single source file because variables and types are stored
in two separate space. This feature also makes binding a type to a variable ambiguous because the compiler
cannot determine whether the identifier refers to a type or a variable. Thus C++ uses the typename keyword
to clarify it.

The Tydi-lang also has similar mechanisms to clarify the meaning of the identifier in templates. Because
there are streamlets and implementations, the keywords applied in Tydi-lang templates are more compli-
cated than those in C++. I tried to provide something easier than the current keywords system, for example,
making "type", "streamlet", "impl" keywords optional (because it is counter-intuitive for users to write "type"
keywords before types), but unfortunately failed due to some parser limitations that are discussed in Section
4.4.3.

2.2.2. Multi-file analysis in Rust
In C++, the source codes are split into source files (.cpp files) and header files (.h files). Header files only
declare the identifier, the arguments, and the return type of functions. Source files define the implementa-
tion of these functions. During compilation, the content of the header files will be copied to the position of
the inlcude "header" statement in source files to ensure the functions invoked in a source file are always
defined. After compiling, the C++ linker will link the function implementations defined in multiple source
files.

With the significant improvements in C++ standard template library (STL) introduced in C++ 11, many
developers have begun to mix the source files and the header files because separating them for templates is
complicated. This trend results in a new file type, called C++ header files (.hpp), and the renaming of the
previous header files to C-compatible/pure-C header files (.h). However, developers found poor compiling
performance when they used many C++ header files in a project with only a few source files. The cause is
that the C++ compiler can allocate a maximum of one thread for a single source file. When a single source
file becomes longer and longer as more header files are included, the compiler spends more and more time
to compile it. Thus a side effect of using the template is to prevent multi-threaded compilation.

Rust, as a newly developed programming language, has an entirely different mechanism to handle func-
tion definitions and implementations to achieve multi-threaded compilation. The major difference com-
pared with C++ is that the C++ compiler will check the function definition when a function is invoked. In
contrast, the Rust compiler will collect all the definitions first and then resolve them to their definitions later.
This difference also explains that invoking a function defined after using is not allowed in C++ but acceptable
in Rust. The following code snippets show this difference.

1 //C++ version
2 int main()
3 {
4 print(); //error, print not defined
5 return 0;
6 }
7
8 void print()
9 {

10 std::cout << "Hello world" << std::endl;
11 }

1 //Rust version
2 fn main() {
3 test(); //no error
4 }
5
6 fn test()

8 2. Background

7 {
8 println!("Hello, world! {}", 2);
9 }

The Tydi-lang compiler uses a similar mechanism to Rust to support multi-file compiling.

2.3. Apache Arrow and Fletcher
Apache Arrow and Fletcher are mentioned here because they can integrate with Tydi-lang as a large toolchain
to design hardware accelerators as shown in Chapter 6.

Apache Arrow [2] is a widely-applied data format with zero serialization overhead in the big data analytic
area. The in-memory representation for Apache Arrow data is column-based (the data addresses in the same
column are continuous in memory). This feature accelerates Map-Reduce operations by enabling prefetching
data on the processor level. A limitation of this feature is that Apache Arrow has chosen to make these tables
immutable because of the large overhead of inserting new data into a continuous memory region.

Fletcher [13] is an open-source framework to automatically generate hardware components for FPGA
accelerators to access Arrow data in host memory. The generation of components is based on the Arrow
data schema, and the hardware connection between the FPGA and the host processor could be PCI-E or
OpenCAPI. Hardware designers can design their acceleration algorithms by other tools, such as High-Level
Synthesis or OpenCL, and let the acceleration algorithms work with Fletcher to process the memory data with
FPGA accelerators.

3
Tydi language

3.1. Introduction to Tydi language (Tydi-lang)
Tydi-lang is a high-level hardware description language based on the type system introduced in the Tydi-spec
[15] and Tydi-IR. This new language aims to raise the level of abstraction for typed streaming hardware and
reduce the design effort for hardware designers.

Figure 3.1 provides an overview for Tydi-lang toolchain. The Tydi-lang source code can be compiled to
Tydi-IR with the Tydi-lang compiler and further compiled to VHDL with a compiler introduced in the Tydi-
IR paper. The Tydi-lang compiler is also called "a frontend of Tydi" because the output is an intermediate
representation. Similarly, the compiler in the Tydi-IR paper is called "a backend of Tydi" because it compiles
Tydi-IR to VHDL. In the future, we plan to introduce other frontends and backends to allow interactions with
other toolchains such as CHISEL [4].

To illustrate the use of Tydi we provide an example from big data, Tydi-lang can be an elegant bridge to
connect query languages and the FPGA accelerators, as shown in Figure 3.2. Big data developers usually use
SQL to do analytics on a dataset with a known schema. We use Apache Arrow as the dataset format because
it is widely applied in big data applications for zero serialization overhead. With Fletcher [13], which is a
tool to generate hardware components to access Apache Arrow data automatically, the design effort can be
greatly reduced while the only thing left to do is translating the SQL to Tydi-lang. Our experience suggests it
is possible to design a tool to automatically compile SQL to Tydi-lang in the future.

Based on Tydi-spec and Tydi-IR, Tydi-lang introduces a generative syntax and a template concept, which
allows developers to describe hardware components in a more abstract and reusable way. These two features
also allow developers to design streaming hardware more efficiently by directly connecting components at
a higher level and facilitate translating software languages to Tydi-lang. Some frequently-used component
templates are introduced in a standard library for Tydi-lang. One of the benefits of using the Tydi-lang stan-
dard library is that developers can design digital circuits without having to use low-level HDLs, for example
to accelerate SQL queries via FPGA accelerators, where operations on data can be mapped to hardware tem-

Tydi source
code

backendTydi IRfrontend VHDL

Tydi Simulator Tydi testbench

VHDL testbench

vendor tool

Bottleneck
analysis

Hardware
designer

FPGA
application

Figure 3.1: Tydi-lang toolchain workflow

9

10 3. Tydi language

Apache Arrow
data schema

Components to access
memory dataFletcher

SQL application Tydi source code

Tydi standard
library

hardware designer:
translate SQL to

Tydi source

VHDL component

FPGA application

Tydi-lang
compiler

vendor tool

Automation tool

Future work:
a trans-compiler from

SQL to Tydi-lang

Figure 3.2: Tydi-lang workflow in big data

plates. Besides the standard library, the Tydi-lang also integrates a high-level design rule check system to
identify type errors, which would be un-trackable on the lower layer.

Based on the Tydi-lang, a simulator is proposed to assist high-level developers in designing their stream-
ing circuits to meet functional requirements regardless of low-level behavior. In traditional hardware design,
developers need to care about optimizing low-level components and meeting high-level functional require-
ments at the same time. The change in the delay time of low-level components may cause different high-level
throughput because the arrival time of asynchronous input data packets determines the delay. Analyzing the
timing information of all components can quickly help developers find the streaming bottlenecks. Tradi-
tional low-level simulators can also be used to find bottlenecks but doing so is cumbersome. For some cases
where the low-level components have not been designed, high-level developers can use theoretical data in
simulation and continue working without waiting for the completion of the low-level side.

3.2. Tydi language features
This section describes the Tydi-lang features from a theoretical aspect, which has already been discussed in
the Tydi-lang paper - "Tydi-lang: A User-friendly Language for Typed Streaming Hardware".

3.2.1. High level design
Tydi-lang is designed to be a high-level hardware description language. The term "high-level" does not refer
to high-level synthesis or something similar. However, it refers to the notion that the developers do not have to
care about low-level properties of the component, such as delay, circuit area, and clock frequency. Developers
only focus on meeting the functional requirements of the circuit. In the big data analytics area, the functional
requirements of big data applications always change (for example, the SQL queries to analyze big datasets
constantly change). To meet these high-level requirements, we need Tydi-lang to design prototype circuits
effectively and avoid struggling with low-level components.

The high-level feature of Tydi-lang also makes it possible to directly map software data structures and
code patterns to logical types and patterns in Tydi-lang. For example, the "for" and "if" syntax in software
programming languages indicates the processor will jump to another address (a previous address for the "for"
statement or a future address for "if" statement). These concepts cannot be directly mapped to hardware de-
signing because there is no corresponding execution flow in a circuit. Tydi-lang provides similar "for" syntax
to map a parallel "for" in software to multiple parallel hardware components and "if" syntax to determine
whether to generate the hardware or not.

However, due to the high-level feature, Tydi-lang is not efficient in describing the low-level behaviors of
components. Components that can be described as connections and instances are not considered low-level
components. For example, describing the behavior of an adder is hard in Tydi-lang because the adder itself is
already extremely basic. In practical Tydi-lang projects, these low-level components’ behavior can be written
using traditional HDLs or CHISEL, and the structure code and behavior code can be merged in the synthesis
stage.

3.3. Tydi language specification 11

3.2.2. Hardware description by variables
Please notice that the variable here refers to the variable system in Tydi-lang rather than the "variable" in
VHDL. In traditional VHDL, developers need to manually specify the properties of each port, such as port
width and the number of ports. In Tydi-lang, the port width is represented by logical types, and an integer
can characterize the number of ports. This feature is powerful for mapping readings data multiple times in
software code to Tydi-lang. Let us suppose we have a piece of SQL, and it uses a variable twice. In software,
there is nothing wrong because each variable is a value in a register or memory and can be accessed twice.
However, the data is transient in hardware because it is stored in logical gates. In streaming hardware, there
should be a component to duplicate the data packet and send them to two ports. The duplicator will not
acknowledge the source component until both sink components acknowledge that the data packets are re-
ceived. However, if the variable is used three times, there should be three output ports. There should be
different numbers of output ports under different cases, and in Tydi-lang, the solution is to use variables
to describe hardware. There are totally five types of basic variables which should be enough to describe a
hardware component.

Another useful case for applying variables is that developers can easily customize components. For ex-
ample, we have a constant data generator that always sends a packet whose value is 50 and whose logical type
is Bit(8). The value and the logical type can be declared as two arguments of the component.

There are also many basic cases of applying variables to describe hardware. For example, calculating the
minimum bit length to represent a value in memory. The following expression can be used to represent a
value in range [0, 1015]: Bit(ceil(log2(10∧15-1))).

3.2.3. Abstract hardware templates
The template concept is one of the most important features in Tydi-lang. Tydi-lang is a strict-type lan-
guage, and developers might need to define multiple components for different logical types even though
the behavior of these components is completely identical. For example, in SQL, Decimal(32bit,2) and
Decimal(32bit, 4) are two different logical types because the digit sizes after the decimal point are dif-
ferent. Their corresponding adders are the same on the low-level side because both types are 32 bit for the
adder. In this case, the adder should be described as an abstract component because the logical type does
not determine its functional correctness.

Abstract hardware templates can also be used to describe some components that are independent of
logical types. For example, there is a special component called "voider" in Tydi-lang, which is used to ac-
knowledge the hand-shaking signals of unused ports to avoid blocking other data transmissions. The voider
only works on the hand-shaking wires, but the Tydi type system forces it to have a logical type even though
the voider will never work on these data wires. Here we can declare the voider as a template, and it can work
on many different logical types.

3.2.4. Generative syntax
Generative syntax means some components are automatically generated from Tydi-lang source code rather
than described by developers. The following language syntax and procedures will generate new components
for the circuit.

• "For" syntax will automatically generate parallel components.

• "If" syntax will generate certain components according to a boolean variable.

• The instantization of templates will generate new components.

• The sugaring process (mentioned in Section 4.7) will automatically generate new components for un-
connected ports and ports that are used for multiple times.

3.3. Tydi language specification
This section will explain the Tydi language syntax and concepts, and how these concepts are related to the
aims mentioned in Section 3.1. The relationships between aims and concepts are listed below for fast content
locating purpose.

• Section 3.2.1 High level design and Section 3.2.2 Hardware description by variables are related to
almost all contents in this section.

12 3. Tydi language

• Section 3.2.3 Abstract representation of hardware is related to Section 3.3.10 Template.

• Section 3.2.4 Generative syntax is related to Section 3.3.9 If and for block and Section 3.3.10 Tem-
plate.

3.3.1. Comments and space
There are two types of comments in Tydi-lang: line comments and block comments. Their syntax is identical
to the corresponding syntax in C++. Tydi-lang is case-sensitive, keywords must have the correct capitaliza-
tion, and identifiers with capital and non-capital letters are different. Tydi-lang is space-insensitive, and
"Space" or "Tab" characters make no difference to the compiler output. Though there is no restriction on the
code format, the format used in this thesis is recommended. The following code snippet gives some comment
examples

1 //this is a line comment
2 /*this is a block comment*/
3 /*
4 this is
5 also a
6 block comment
7 */

3.3.2. Scope and name resolution
Briefly speaking, the scope and name resolution system in Tydi-lang is similar to the one in C++. Both lan-
guages use brackets to define a new scope, and language elements in the inner scope can access elements in
the outer scopes. Here, the language elements can be variables, classes in C++ and variables, logical types,
streamlets, and implements in Tydi-lang. Accessing target members such as ports and implementation in-
stances in Tydi-lang is similar to accessing class members in C++. However, there are also many differences
between the two languages. The detailed scope and name resolution rules (and the difference from C++) are
presented in the following paragraphs.

The term "name" means an identifier in code. Name resolution means the process of finding the defini-
tion of names. In Tydi-lang, a name can be a combination of English characters, underscore, and numbers
but must start with an English character or underscore. Consecutive underscores are not allowed because the
Tydi-lang compiler back-end uses consecutive underscores as hierarchy separators.

In Tydi-lang, "scope" is a space to define all language elements such as constant variables, logical types,
etc. A scope can be defined in another scope where the two scopes are connected by a directed linkage called
"scope relationship". For each Tydi-lang source file, a file itself is a top-level scope that contains many other
inner scopes. A Tydi-lang project can contain multiple Tydi-lang source files, and each file must define its
package name in the first line. Here is a Tydi-lang language example.

1 package tpch;
2 type bit5 = Bit(5);
3 type Group Date {
4 year: Bit(32),
5 month: Bit(4),
6 day: bit5, //access a logical type in external scope
7 };

The corresponding scope graph is provided in Figure 3.3. The above code creates a logical group type
called "Date". The logical type "Date" crates a new scope that contains three inner types. These three inner
logical types should be able to access external logical types but should be inaccessible from the external
scope. So in Tydi-lang, the inner scope "Date" will have a directed relationship to the external file scope.
When the Tydi-lang compiler performs name resolution, it can automatically go through scope relationships
if the name is not found in the current scope. This mechanism also introduces "name shadowing" that an
inner name can shadow an external name.

In most software programming languages, users cannot access a variable before it is declared due to the
register allocation. However, in Tydi-lang, names can use other elements without declaring them first once
the elements are accessible from the current scope. For example, the following syntax is allowed.

1 package test;
2 type Group Date {

3.3. Tydi language specification 13

scope
(name: package tpch)

scope
(name: logical type

Date)

Group-SR

bit5(type)

Date(type)

referenced

contain

contain

Figure 3.3: The scope graph representation

3 year: Bit(32),
4 month: Bit(4),
5 day: bit5, //access an external logical type which is not yet defined
6 };
7 type bit5 = Bit(5);

In Tydi-lang, there are 6 types of scope relationships.

• Group-SR means the inner scope is created by a logical group type.

• Union-SR means the inner scope is created by a logical union type.

• Stream-SR means the inner scope is created by a logical stream type. However, this relationship is not
frequently used because the properties of a stream is embedded in the stream.

• Streamlet-SR means the inner scope is created by a streamlet (explained in Section 3.3.6).

• Implement-SR means the inner scope is created by a implementation (explained in Section 3.3.7).

• IfFor-SR means the inner scope is created by a "for" statement or "if" statement, this scope relationship
is special because it bans most name resolutions across it (explained in Section 3.3.9).

The accessibility of language elements after passing scope relationships is described by Table 3.1. Please
notice that for different language elements, the rules are different. The IfFor-SR will be handled by a gen-
erative process rather than an ordinary name resolution process, so it is "not applicable" in the table. In the
current Tydi-lang version, connections cannot be referenced by any other language elements, so it is also "not
applicable".

Constant variables and logical types are basic building blocks to describe hardware streamlets and im-
plementations, so they are always accessible no matter the scope relationships. In Tydi-lang, streamlets
and implements can only be defined in the package scope because nested streamlets or implements do not
make sense for hardware. Streamlets can pass Implement-SR because declaring implements need to specify
streamlet first. Implements are allowed to pass Implement-SR because declaring instance needs to access
other implements in the external scope. Accessing ports and instances in Tydi-lang is similar to accessing
a member in C++. This accessing process must resolve the instance name first and cannot be described by
scope relationships, so they are always banned from passing any kinds of scope relationships.

The corresponding Rust implementation of the scope system is provided in the following link: tydi-
lang/tydi_lang_raw_ast/src/scope.rs

The name resolution rules are defined in other files. For example, the name resolution rule for constant
variables is declared in the constant variable file.

https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_raw_ast/src/scope.rs
https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_raw_ast/src/scope.rs

14 3. Tydi language

Table 3.1: Name resolution rule

Group-SR Union-SR Stream-SR Streamlet-SR Implement-SR IfFor-SR
Const variable allowed allowed allowed allowed allowed N/A
Logical type allowed allowed allowed allowed allowed N/A
Streamlet banned banned banned banned allowed N/A
Port banned banned banned banned banned N/A
Implementation banned banned banned banned allowed N/A
Instance banned banned banned banned banned N/A
Connection N/A N/A N/A N/A N/A N/A

Table 3.2: Constant variable types

Type Meaning
Integer (int) represents a 64-bit integer value, example: 1,0b0001,0x01,0o01(octal)

String (str) represents a string, non-fixed length, example: "forward"
Float (float) represents a floating number, example: 1.01

Boolean (bool) represents a logical value, example: true, false
Clockdomain (cd) represents a clockdomain, composed of a frequency and a phase.

3.3.3. Constant variable
Traditional HDLs focus on precisely and directly describing the hardware. For example, developers use
STD_LOGIC and STD_LOGIC_VECTOR to describe the hardware signal directly. However, this hardware rep-
resentation removes the original human-readable information. For example, in the case of converting Dec-
imal(10,2) in SQL to STD_LOGIC_VECTOR(0 to 33) in VHDL, the information "last two digits are after the
decimal point" is removed, and the number 33 cannot indicate the range of data, either.

The constant variable system in Tydi-lang is designed to provide a readable, configurable, and abstract
way to describe logical types, streamlets, and implements. There are totally 5 types of constant variable and
are presented in Table 3.2.

Clockdomain is used to verify that two connected ports have the same clock frequency and phase. Oth-
erwise, the streaming protocol described in Tydi specification [15] might not work. The following code illus-
trates how to declare these constant variables.

1 package test;
2 const flag: bool = true; //explicit type
3 const flag = true;
4 const int0: int = 2;
5 const int0 = 2;
6 const str0: str = "hello world";
7 const str0 = "hello world";
8 const f0: float = 1.0;
9 const f0 = 1.0;

10 const cd0: clockdomain;
11 const cd1: clockdomain;
12 const cd2: clockdomain = "100MHz-ph1";
13 const cd3: clockdomain = "100MHz-ph1";

The type indicators are optional except for clockdomain values because we want to disambiguate clock-
domain expressions from string expressions. The expression of a clockdomain can be empty (in this case, its
expression is automatically generated by the Tydi compiler) or a string. In the above code example, cd0 and
cd1 are two different clockdomain values and have random expressions. However, cd2 and cd3 are the same
because they have the same clockdomain expression.

The Tydi-lang compiler integrates a math engine to evaluate the values of constant variables.
With the help of constant variable, the previous decimal example can be converted to the following Tydi-

lang code.

1 package test;
2 const max_decimal_10 = 10^10 - 1;
3 const bit_width_decimal_10 = ceil(log2(max_decimal_10));

3.3. Tydi language specification 15

Table 3.3: Math operation on constant variables

Operator Meaning Operand and output type Operator Meaning Operand and output type
- unary minus int->int / float->float >= is larger or equal int/float*int/float ->bool
! unary not bool->bool <= is smaller or equal int/float*int/float ->bool

<< bit wise left shift int*int->int > is larger int/float*int/float ->bool
>> bitwise right shift int*int->int < is smaller int/float*int/float ->bool

&& logical and bool*bool->bool + add

int*int->int
int*float->float
float*int->float

float*float->float
str+int/float/bool->str
int/float/bool+str->str

|| logical or bool*bool->bool - minus

int*int->int
int*float->float
float*int->float

float*float->float

== equal to

int*int->bool/
float*float->bool/

str*str->bool/
cd*cd->bool/

bool*bool->bool

* multiply same as -

!= not equal to same as == / divide

int*int->int
int*float->float
float*int->float

float*float->float
& bitwise and int*int->bool % modulo int*int->int
| bitwise or int*int->bool ^ power same as -
∼ bitwise not int->int round(x) math rounding float->int

log a(b) log int/float*int/float ->float floor(x) math flooring float->int
ceil(x) math ceiling float->int

4 type SQL_decimal_10 = Bit(bit_width_decimal_10);
5 type Group SQL_decimal_10_2 {
6 const frac = 2, //other code can access the frac within the logical type "SQL_decimal_10_2"
7 decimal: SQL_decimal_10,
8 };
9 type SQL_decimal_10_2_stream = Stream(SQL_decimal_10_2, d = 1);

The type SQL_decimal_10_2 in Tydi-lang is much more flexible and human-readable than direct VHDL.
The logical group type also includes the fraction information as a constant variable.

The corresponding Rust implementation of the constant variable system is provided below:

• Variable system: tydi-lang/tydi_lang_raw_ast/src/variable.rs

• Type system (includes complex types such as streamlet and implement): tydi-lang/tydi_lang_raw_ast/src/data_type.rs

• The math system and evaluation of variables: tydi-lang/tydi_lang_parser/src/evaluation_var.rs

3.3.4. Logical type
As aforementioned, there are five logical types in Tydi-spec: Null, Bit, Group, Union and Stream. The
ways of defining logical types are illustrated in the following code snippet. Please notice that type {id}
= {logical_type} is making an alias of a logical type. Bit is a basic logical type so in most cases we only
make alias of it.

1 package tpch;
2
3 type byte = Bit(8); //define an alias of a Bit(8)
4 type Group rgb { //define a group type
5 const x = 8, //it is possible to define const variables in logical group scope
6 r: Bit(x),
7 g: Bit(x),
8 b: Bit(x),

https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_raw_ast/src/variable.rs
https://github.com/twoentartian/tydi-lang/tydi_lang_raw_ast/src/data_type.rs
https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_parser/src/evaluation_var.rs

16 3. Tydi language

Table 3.4: Stream properties and default values

Property Value type Default value Possible value Syntax

dimension integer 0 all non-negative integer d =<Exp>
user type logical type Null all non-stream logical types u =<LogicalType>
throughput float 1 all non-negative floating number t =<Exp>
synchronicity string "Sync" "Sync", "Flatten", "Desync", "FlatDesync" s =<Exp>
complexity integer 7 1-7 c=<Exp>
direction string "Forward" "Forward", "Reverse" r=<Exp>
keep bool false true, false x=<Exp>

9 };
10 type Union rgb_null {
11 rgb_data: rgb,
12 null_data: Null, //Null logical type
13 };
14 type rgb_null_alias = rgb_null;
15
16 type rgb_stream = Stream(rgb);

The stream properties are optional in Tydi-lang. For properties not specified, the Tydi-lang compiler will
use the default value. Table 3.4 shows the default values and syntax for each stream property. The following
code snippets show some examples of stream properties:

1 type stream0 = Stream(Bit(4));
2 type stream1 = Stream(Bit(4), d=2, c=6); //different stream properties are separated by ","
3 type stream2 = Stream(Bit(4), c=6, d=2); //the order of properties is trivial.

The code files of each component are provided below:

• Type alias system: tydi-lang/tydi_lang_raw_ast/src/variable.rs

• Bit and Null type: tydi-lang/tydi_lang_raw_ast/src/bit_null_type.rs

• Group and Union type: tydi-lang/tydi_lang_raw_ast/src/group_union_type.rs

• Stream type: tydi-lang/tydi_lang_raw_ast/src/steam_type.rs

• Evaluating logic types: tydi-lang/tydi_lang_parser/src/evaluation_type.rs

Please note that some syntax combinations can also pass the parser check and pass the evaluation but do
not guarantee correctness. For example, the following code can be compiled correctly:

1 package tpch;
2
3 type byte = Bit(8);
4 type rgb_alias = Group rgb { //define an alias of Group RGB while declaring it
5 const x = 8,
6 r: Bit(x),
7 g: Bit(x),
8 b: Bit(x),
9 };

10
11 type rgb_stream = Stream(rgb_alias);

The code above makes an alias of logical type rgb. The code can be compiled correctly if only rgb_alias
is used in this code file. However, the logical type rgb is invisible to the package scope, and there are no scope
relationships among them. So following code will result in errors because variable x is not found.

1 package tpch;
2
3 const x = 8,
4 type rgb_alias = Group rgb { //define an alias of Group RGB while declaring it
5 r: Bit(x), // variable "x" not found because the there is no scope relationship with external package

scope for rgb scope
6 g: Bit(x),

https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_raw_ast/src/variable.rs
https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_raw_ast/src/bit_null_type.rs
https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_raw_ast/src/group_union_type.rs
https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_raw_ast/src/steam_type.rs
https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_parser/src/evaluation_type.rs

3.3. Tydi language specification 17

7 b: Bit(x),
8 };
9

10 type rgb_stream = Stream(rgb_alias);

My recommendation for the above issue is to only use the standard syntax at the beginning of this section
to ensure correctness.

3.3.5. Package and cross-package reference
Each Tydi-lang source file will be treated as an isolated package in the compiler. The package name must
be declared at the first statement of the file (empty space does not count). An "import" statement must be
declared in the package scope (directly in the file scope, cannot be in any other scopes such as group scope or
streamlet scope) to access the language elements in other source files. The package name must be identical to
the package name in the imported source file. After importing the external package, all language elements in
that package scope will be accessible to this file. Use following syntax {PackageName}.ID to access language
elements in package whose name is PackageName. The following code snippet illustrates accessing variables
in file "simple_1.td" from file "simple_0.td".

The content for simple_0.td:

1 package simple_0;
2 import simple_1;
3
4 const i1: int = 1 + 100;
5 const external_var0 = simple_1.i1 + 10; //access external variables
6 const external_flag0 = false || simple_1.flag; //access external variables

The content for simple_1.td:

1 package simple_1;
2 const i1 = 100;
3 const flag = true;
4 const i2 = 500;

Please notice that the evaluation of cross-package variables also follows the rule of "lazy evaluation"
(mentioned in Section 4.5.2). A brief explanation of "lazy evaluation" is that the compiler only evaluates
the value required by other values, and unused variables will not be evaluated. In the above code example,
if we evaluate all variables in "simple_0.td", the variable "i2" in "simple_1.td" will not be evaluated. The cor-
responding code structure representation is provided below (the format of code structure representation is
explained in Section 4.5.1):

1 Project(test_project){
2 Package(simple_0){
3 Scope(package_simple_0){
4 Variables{
5 $package$simple_1:PackageType(NotInferred(""))
6 external_flag0:bool(true)
7 external_var0:int(110)
8 i1:int(101)
9 $package$simple_0:PackageType(NotInferred(""))

10 }
11 }
12 }
13 Package(simple_1){
14 Scope(package_simple_1){
15 Variables{
16 i1:int(100)
17 $package$simple_1:PackageType(NotInferred(""))
18 flag:bool(true)
19 i2:UnknownType(NotInferred("500"))
20 }
21 }
22 }
23 }

When the compiler finds "package simple_0" and "import simple_1" in the source file, two magic
variables will be created in the package scope: "$package$simple_1" and "$package$simple_0". De-
velopers will never define a variable with the same name because the variable names contain "$", which

18 3. Tydi language

is invalid at the parser stage. When the compiler finds developers are using variables in another scope, it
will first check the existence of the magic variable to see whether the developer imports the package. The
compiler will visit the target package scope to evaluate the specified variables after checking the existence of
the package variable and return errors if the target package does not exist in the project or the evaluation of
external variables fails.

There are other "magic identifiers" in Tydi-lang to separate the usual variable ids and internal ids. These
ids are located here: tydi-lang/tydi_lang_parser/src/built_in_ids.rs

The magic variable of the self package enables the possibility of using the package level variables rather
than the nearest variable according to the scope relationship. This feature can solve the issue in some cases
where the variables are shadowed by local variables. For example, the following code uses the package level
variable "i" rather than the variable "i" in local scope.

1 package tpch;
2
3 const i = 16;
4 type byte = Bit(8);
5
6 type Group rgb {
7 const i = 8,
8 r: Bit(tpch.i), //r=Bit(16)
9 g: Bit(i), //g=Bit(8)

10 b: Bit(i),
11 };

The source code to manage the project and packages are here: tydi-lang/tydi_lang_parser/src/evaluation.rs
The implementation of evaluating cross-package variables, logical types, streamlets, and implementations
are distributed to their evaluation code.

In addition, at the time of writing this thesis, Tydi-IR does not support cross-package references yet. This
limitation means that cross-package references can be evaluated but cannot be generated to Tydi-IR. Because
there are no variables in Tydi-IR, using cross-package variables is safe in the Tydi-lang compiler, but using
other cross-package features will result in a generation error (but you can still get the evaluation result).

3.3.6. Streamlet and port
Streamlet describes the interface of a component. Its role is similar to the "entity" in VHDL, except that
streamlets use typed interfaces, and the ports are bound to clockdomains. The following code snippet shows
some examples of declaring streamlets and ports. Notice that there is a comma that separates statements in
streamlet.

1 package tpch;
2
3 type Group rgb {
4 r: Bit(8),
5 g: Bit(8),
6 b: Bit(8),
7 };
8
9

10 #streamlet documentation# //a documentation for streamlet
11 streamlet rgb_bypass { //declaring a streamlet called rgb_bypass
12 input: Stream(rgb) in, //{port name} : {Logical type} in/out,
13 output: Stream(rgb) out,
14 };
15
16 type rgb_stream = Stream(rgb);
17 const cd:clockdomain = "any string";
18
19 #streamlet documentation#
20 streamlet rgb_bypass2 {
21 input: rgb_stream in ‘cd, //optional clockdomain, starts with "‘" (back single quote), followed by

clockdomain variable name
22 output: rgb_stream out ‘cd,
23 };

The streamlet documentation is a sentence wrapped by two "#" to explain the high-level meaning of this
streamlet. The documentation will be transformed into low-level VHDL documentation. This feature can

https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_parser/src/built_in_ids.rs
https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_parser/src/evaluation.rs

3.3. Tydi language specification 19

increase productivity and allow better cooperation among high-level and low-level developers. The imple-
mentation also supports the documentation system and will not be discussed again in the implementation
section.

Each port in the streamlet must have the following properties: port name, logical type, port direction, and
clockdomain. Port names cannot be identical in the same streamlet. The clockdomain is an optional value.
It will resolve to the default clockdomain expression provided by the Tydi-lang compiler if the developers do
not provide one.

The streamlet scope also supports defining variables and logical types to record some properties. Devel-
opers can use "streamlet" keyword to extract the variable value outside the streamlet scope. For example,
the following code snippet shows defining variables and extracting them.

1 package tpch;
2
3 ...
4
5 streamlet rgb_bypass2 {
6 const delay = 10, //defining a variable
7 type t = Bit(8), //define a logical type
8
9 input: rgb_stream in ‘cd,

10 output: rgb_stream out ‘cd,
11 };
12
13 const delay = streamlet rgb_bypass2.delay; //extra the delay variable in "rgb_bypass2", delay = 10

This feature can be used to pass specifications/configurations from one component to another one. For
example, generate a new clockdomain and perform design verification with the help of assertion in Section
3.3.12.

The source code location is provided in the following code:

• Defining streamlet concept: tydi-lang/tydi_lang_raw_as/src/streamlet.rs

• Evaluating streamlet (including evaluating streamlet template): tydi-lang/tydi_lang_parser/src/evalua-
tion_streamlet.rs

3.3.7. Implementation, instance and connection
Implementation describes the structure of a component by characterizing its internal instances and connec-
tions. The term "instances" refers to an instance of another implementation. The term "connection" means
connecting two ports. The two ports of a valid connection must have compatible logical types, opposite port
directions, and the same clockdomain. The following code snippet shows an implementation. Notice that
statements in implementation are separated by a comma.

1 package tpch;
2
3 type Group rgb {
4 r: Bit(8),
5 g: Bit(8),
6 b: Bit(8),
7 };
8 type rgb_stream = Stream(rgb);
9

10 streamlet rgb_bypass {
11 input: rgb_stream in,
12 output: rgb_stream out,
13 };
14
15 #implement documentation#
16 impl impl_rgb_bypass of rgb_bypass { //declare an implementation called "impl_rgb_bypass" and its

interface (streamlet) is "rgb_bypass"
17 input => output, //connect the input port and the output port.
18 };

There are two methods to determine whether two logical types are compatible. The first method is called
"strict type checking" which checks whether the two type variables resolve to the same logical type value.
The code example above uses this method because both ports use "rgb_stream" as the logical type variable.

https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_raw_ast/src/streamlet.rs
https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_parser/src/evaluation_streamlet.rs
https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_parser/src/evaluation_streamlet.rs

20 3. Tydi language

The second method is called "compatible type checking" which compares the content of the logical types. For
example, two logical variables that both are defined as Bit(8) are compatible. The first method is the default
method in the Tydi-lang compiler, and developers do not need to declare it explicitly. The second method
requires users explicitly add "@NoStrictType@" at the end of connections. Connecting two compatible ports
without "@NoStrictTye@" results in a warning in the DRC stage. The following code illustrates the second
type of checking method.

1 package tpch;
2
3 type Group rgb {
4 r: Bit(8),
5 g: Bit(8),
6 b: Bit(8),
7 };
8 type rgb_stream = Stream(rgb);
9

10 streamlet rgb_bypass2 {
11 input: Stream(rgb) in, //Stream(rgb) is a logical type
12 output: Stream(rgb) out, //Stream(rgb) is a new logical type, the content is same as the previous one
13 };
14
15 impl impl_rgb_bypass2 of rgb_bypass2 {
16 input => output @NoStrictType@, //explicitly add @NoStrictType@
17 };
18
19 impl impl_rgb_bypass3 of rgb_bypass2 {
20 input => output, //result in a warning in DRC
21 };

It is possible to declare a FIFO buffer in the connection, whose buffer size can be stated as an integer
expression. It is also possible to specify the name of a connection. The Tydi-lang compiler will automatically
generate a name with its starting token position and end token position to generate a connection name for
connections with unspecified names. The following code snippet shows an example of a FIFO and specifies
a connection name.

1 impl impl_rgb_bypass of rgb_bypass {
2 input =1=> output "input2output" @NoStrictType@, //the size of FIFO buffer is 1, the connection

name is "input2output"
3 };

The syntax to define an instance inside an implementation is similar to the syntax of defining an instance
of a class in C++. The following code snippet shows a basic example.

1 streamlet rgb_bypass {
2 input: rgb_stream in,
3 output: rgb_stream out,
4 };
5
6 impl impl_rgb_bypass_inner of rgb_bypass {
7 input => output,
8 };
9

10 impl impl_rgb_bypass of rgb_bypass {
11 instance inner(impl_rgb_bypass_inner), //declare an instance of "impl_rgb_bypass_inner", the

instance name is "inner"
12 input => inner.input, //"inner.input" refers to the "input" port on instance "inner"
13 inner.output => output,
14 };

For streaming components, a port without a connection is not allowed because this port will be blocked
due to the handshaking mechanism in Tydi-spec. Tydi-IR also checks that each port has a valid connection.
However, this is no restriction in Tydi-lang because sugaring (mentioned in Section 4.7) will add connections
and corresponding instances automatically.

For components that can only be described with low-level HDL, Tydi-lang provides a keyword called "ex-
ternal" to specify that this implementation should have an empty implementation body and tell the compiler
to find the implementation on the lower-level side. The following code snippet shows an example of an ex-
ternal implementation.

3.3. Tydi language specification 21

1 streamlet duplicator_s {
2 input: data_type in,
3 output: data_type [output_channel] out,
4 };
5
6 external impl duplicator_i of duplicator_s {
7
8 };

3.3.8. Array
The term "array" in Tydi-lang means grouping several similar targets with a single name and using an index
to access every target. The array concept can be applied to basic variables, ports, and instances. Arrays of
basic variables support "+" operator to insert variables at the beginning/end of the array. Notice that the type
of the inserted value must be identical to the element type. The following code snippet shows some examples
of declaring basic variable arrays and operations on them.

1 const array_exp_0 = {1,2,3,4,5}; //array of integer
2 const array_exp_1 = {true,true,false}; //array of boolean
3 const array_exp_2 = {"123", "456"}; //array of string
4 const array_exp_3 = {1.1,2.1,3.1}; //array of float
5 const array_exp_4 = array_exp_3 + 50.5; //append a float to a float array
6 const array_exp_5 = 50.5 + array_exp_3; //insert a float at the beginning of a bool array
7 const array_exp_6 = true + {true,false};//insert a bool at the beginning of a bool array

Port and instance can also be declared as port arrays. The following code snippet shows port arrays and
instance arrays.

1 streamlet data_bypass_channel {
2 inputs: bit8_stream [channel] in ‘"10kHz", //declaring a port array
3 outputs: bit8_stream [channel] out ‘"10kHz", //declaring a port array
4 };
5
6 impl impl_data_bypass_channel of data_bypass_channel {
7 instance bypass(impl_data_bypass) [channel], //declaring an instance array
8
9 ...

10
11 };

The syntax to access an element in an array is "ArrayName[Index]". All places that can be a variable can
also be an array element. Tydi-lang does not support two or higher dimensional arrays because the current
compiler implementation is at the prototype level. Higher-dimensional arrays on the software side can be
flattened to 1-d arrays in Tydi-lang with the price of losing readability.

In Tydi-lang, the "for" block can be used to iterate an array or generate connections/instances from a
basic variable array. The elaboration of the "for" block will be in Section 3.3.9.

3.3.9. If and for block
The "if" and "for" blocks automatically generate instances and connections in implementations. Their syntax
is similar to the "if" and "for" syntax in modern software programming languages, such as C++ and Python.
The following code snippet illustrates a code sample where the implementation "impl_data_bypass_channel"
can automatically generate inner structure according to two variables, "use_data_bypass2" and "channel".

1 package main;
2
3 type bit8_stream = Stream(Bit(8), d = 5, t = 2.5);
4
5 //define impl_data_bypass
6 streamlet data_bypass {
7 input: bit8_stream in,
8 output: bit8_stream out,
9 };

10 impl impl_data_bypass of data_bypass {
11 input => output,
12 };

22 3. Tydi language

13
14 //define impl_data_bypass2
15 streamlet data_bypass2 {
16 input: bit8_stream in,
17 output: bit8_stream out,
18 };
19 impl impl_data_bypass2 of data_bypass2 {
20 input => output,
21 };
22
23
24 const channel = 10; //control the channel count
25 streamlet data_bypass_channel {
26 inputs: bit8_stream [channel] in ‘"10kHz",
27 outputs: bit8_stream [channel] out ‘"10kHz",
28 };
29
30 const use_data_bypass2 = true; //this variable can control which implementation to use
31 impl impl_data_bypass_channel of data_bypass_channel {
32 if (use_data_bypass2) {
33 instance bypass(impl_data_bypass) [channel],
34 for i in (0=1=>channel) { //for block, 0=1=>channel is an sugar expression to generate an int

array
35 bypass[i].output => outputs[i],
36 inputs[i] => bypass[i].input,
37 }
38 }
39 //elif ({BoolVariable}) {} //elif block is optional
40 else {
41 instance bypass(impl_data_bypass2) [channel],
42 for i in (0=1=>channel) {
43 bypass[i].output => outputs[i],
44 inputs[i] => bypass[i].input,
45 }
46 }
47 };

For "if" syntax, the variable inside the brackets must be a boolean value. The content in the "if" scope will
be copied to the outer scope if the evaluation result of the variable is true. Otherwise, nothing happens. The
"elif" and "else" blocks are optional, and users need to provide a boolean variable in the "elif" bracket. A new
variable will be created in the "for" scope, which is only accessible in the "for" scope. The variable name is
stated as the identifier after the "for" keyword ("i" in the above example). The new variable type is the same as
the array element type. The identifier after the "in" keyword must refer to an array of basic types. The content
in the "for" scope will be copied to the external scope with each element value in that array.

The instance cannot be declared in the "for" scope because there will be multiple instances with the same
name after copying to the external scope. Appendix A.1.2 records this issue details and proposed solutions.

3.3.10. Template
The template in Tydi-lang is similar to the template system in Rust and C++. "Template" means this is not a
specific streamlet or implementation but rather a process to generate a series of streamlets or implementa-
tions according to the template arguments. The template system is built based on the variable system and
logical type system. An example of a template streamlet is available below:

1 package main;
2
3 streamlet duplicator_s<data_type: type, output_channel: int> { //a template streamlet
4 input: data_type in,
5 output: data_type [output_channel] out,
6 };

In the above snippet, "data_type" and "output_channel" are two template arguments. Tydi-lang supports
using five basic variables and logical types as template arguments. When declaring template arguments, the
corresponding template variables will be declared in the streamlet (or implementation) scope and can be
directly used as expressions. For the above example, "data_type" is used as the port type of the "input" and
the "output" port. The "output_channel" is used as the size of the "output" port array because it is declared
as an integer. Multiple template arguments are separated by a comma.

3.3. Tydi language specification 23

Tydi-lang supports passing the template arguments of an implementation to a streamlet. This pattern
can be illustrated with the following example.

1 package main;
2
3 type bit8_stream = Stream(Bit(8), d = 5, t = 2.5);
4
5 const eight = 8;
6 type Group rgb {
7 r: Bit(eight),
8 g: Bit(eight),
9 b: Bit(eight),

10 };
11 type rgb_stream = Stream(rgb);
12
13 streamlet data_bypass<data_type: type> {
14 input: data_type in,
15 output: data_type out,
16 };
17 impl impl_data_bypass<data_type: type> of data_bypass<type data_type> { //passing template arguments from

implementation to streamlet
18 input => output,
19 };
20
21 streamlet data_demux<channel:int, data_type: type, cd:clockdomain> { //use clockdomain as template

argument
22 inputs: data_type [channel] in ‘cd,
23 outputs: data_type [channel] out ‘cd,
24 };
25 impl impl_data_demux<channel:int, data_type: type, cd:clockdomain> of data_demux<channel, type data_type,

cd> { //data_type is a logical type, so we must add a "type" keyword before it.
26 instance bypass(impl_data_bypass<type data_type>) [channel],
27 for i in (0=1=>channel) {
28 bypass[i].output => outputs[i],
29 inputs[i] => bypass[i].input,
30 }
31 };
32
33 const cd0: clockdomain = "100MHz";
34 const cd1: clockdomain;
35 impl data_demux_bit8_5(impl_data_demux<5, type bit8_stream, cd0>); //declare implementations based on

implementation templates
36 impl data_demux_rgb_100(impl_data_demux<20, type rgb_stream, cd1>);

In line 17 and line 25, the code defines an implementation template based on an instance of a streamlet
template. The instance syntax is "TemplateName<TemplateArgExp>". Multiple template argument expres-
sions are separated by a comma. Notice that a "type" keyword must be put before the template argument
expression if it is a logical type. This "type" keyword will tell the compiler to find the identifier in logical type
scopes rather than in variable scopes. Similarly, in line 26, the code declares an instance array based on the
implementation template.

Streamlet templates and implementation templates will not be compiled to Tydi-IR because they are not
describing any components. In line 35 and line 36, two implementations are declared based on the templates,
and the two implementations will be compiled to Tydi-IR. The syntax to declare implementations based on
implementation templates is similar to declaring instances in implementation.

The Tydi-lang compiler will never evaluate a template itself until it is instantiated. The first step of evaluat-
ing a template is copying the template’s content to the instantiation. Then the compiler assigns the template
argument expressions to the corresponding template variables. Finally, evaluate the copied version of the
template.

The implementation templates in the code structure have template arguments starting with a "@" while
normal implementations never have. The following code snippets shows the difference.

1 //This is a normal implementation called "orders_i"
2 Implement(orders_i)<NormalImplement> -> Streamlet(orders_s){
3 Scope(implement_orders_i){
4 ScopeRelations{
5 --ImplementScope-->package_tpch
6 }

24 3. Tydi language

7 }
8 simulation_process{None}
9 }

10
11 //This is a implementation template, it has one template argument, which is marked as @LogicalDataType(

DummyLogicalData). The interface streamlet is also a template instance so it’s not known yet. The
name of the streamlet template is "void_s" and the template argument expression is "type_in". "
type_in" is the template argument of "void_i" and it exists in the implementation scope as a result
of template argument.

12 Implement(void_i)<@LogicalDataType(DummyLogicalData)> -> ProxyStreamlet(void_s<@type_in>){
13 Scope(implement_void_i){
14 Variables{
15 type_in:DummyLogicalData(NotInferred("argtype_in"))
16 }
17 ScopeRelations{
18 --ImplementScope-->package_tpch
19 }
20 }
21 simulation_process{None}
22 }
23
24 //This is an instance of the above implement template, please notice that the implementation name is

replaced by "void_i@Stream(SQL_char1_stream)", this is an invalid identifier in Tydi-lang so the
names of template instances will never be the same as the developers’ identifiers. The streamlet
name is also a generated name. The template argument "type_in" is also replaced by the template
argument expression.

25 Implement(void_i@Stream(SQL_char1_stream))<NormalImplement> -> Streamlet(void_s@Stream(SQL_char1_stream))
{

26 Scope(implement_void_i@Stream(SQL_char1_stream)){
27 Types{
28 type_in:Stream(SQL_char1_stream){
29 DataType=Bit(8)
30 dimension=1, user=DataNull, throughput=1, synchronicity=Sync, complexity=7, direction=Forward,

keep=false
31 }
32 }
33 ScopeRelations{
34 --ImplementScope-->package_tpch
35 }
36 }
37 simulation_process{None}
38 }
39
40 //this a normal streamlet called "orders_s"
41 Streamlet(orders_s)<NormalStreamlet>{
42 Scope(streamlet_orders_s){
43 ScopeRelations{
44 --StreamletScope-->package_tpch
45 }
46 Ports{
47 o_custkey:Port(Stream(int_stream),out) ‘DefaultClockDomain
48 o_orderdate:Port(Stream(date_stream),out) ‘DefaultClockDomain
49 o_totalprice:Port(Stream(SQL_decimal_15_2_stream),out) ‘DefaultClockDomain
50 o_shippriority:Port(Stream(int_stream),out) ‘DefaultClockDomain
51 o_comment:Port(Stream(varchar_stream),out) ‘DefaultClockDomain
52 o_clerk:Port(Stream(SQL_char15_stream),out) ‘DefaultClockDomain
53 o_orderkey:Port(Stream(int_stream),in) ‘DefaultClockDomain
54 o_orderstatus:Port(Stream(SQL_char1_stream),out) ‘DefaultClockDomain
55 o_orderpriority:Port(Stream(SQL_char15_stream),out) ‘DefaultClockDomain
56 }
57 }
58 }
59
60 //This is a streamlet template, similar to implementation template, "type_in" is a template argument.
61 Streamlet(void_s)<@LogicalDataType(DummyLogicalData)>{
62 Scope(streamlet_void_s){
63 Variables{
64 type_in:DummyLogicalData(NotInferred("argtype_in"))
65 }
66 ScopeRelations{
67 --StreamletScope-->package_tpch

3.3. Tydi language specification 25

68 }
69 Ports{
70 input:Port(VarType(type_in),in) ‘DefaultClockDomain
71 }
72 }
73 }
74
75 //this is an instance of a streamlet template, the generated name is "void_s@Stream(

SQL_decimal_15_2_stream)"
76 Streamlet(void_s@Stream(SQL_decimal_15_2_stream))<NormalStreamlet>{
77 Scope(streamlet_void_s@Stream(SQL_decimal_15_2_stream)){
78 Types{
79 type_in:Stream(SQL_decimal_15_2_stream){
80 DataType=DataGroup(SQL_decimal_15_2)
81 dimension=1, user=DataNull, throughput=1, synchronicity=Sync, complexity=7, direction=Forward,

keep=false
82 }
83 }
84 ScopeRelations{
85 --StreamletScope-->package_tpch
86 }
87 Ports{
88 input:Port(Stream(SQL_decimal_15_2_stream),in) ‘DefaultClockDomain
89 }
90 }
91 }

The Rust source files of implementing template are distributed files of each component. For example,
streamlet template is implemented with streamlet.

3.3.11. Use components as template arguments
In some cases, users might want to describe components with known interfaces but with unknown imple-
mentations. Suppose we have an adder A whose delay is two cycles, and the input data rate is one addition
per clock. The solution is to use a data multiplexer and a data demultiplexer to split the data into two adders.
In the future, low-level developers might design adder B with a 4-clock delay but much less area. Developers
need to manually redesign the multiplexer and demultiplexer to meet the data rate requirement. For such a
case, we can set the adder as a template component and expose its interface to the demultiplexer and multi-
plexer. The following code snippet shows an example of using a template component.

1 package main;
2
3 type Group rgb {
4 r: Bit(eight),
5 g: Bit(eight),
6 b: Bit(eight),
7 };
8
9 type rgb_stream = Stream(rgb);

10
11 //we define a streamlet called "component"
12 streamlet component {
13 input: rgb_stream in,
14 output: rgb_stream out,
15 };
16
17 //define three implementations of "component", here for simplicity the three implementations are the same
18 impl component_impl0 of component {
19 input => output,
20 };
21
22 impl component_impl1 of component {
23 input => output,
24 };
25
26 impl component_impl2 of component {
27 input => output,
28 };
29

26 3. Tydi language

30 //an example of using abstract implement
31 streamlet larger_component {
32 input: rgb_stream [2] in,
33 output: rgb_stream [2] out,
34 };
35
36 impl impl_larger_component<ts: impl of component> of larger_component { //"component" is a streamlet name

, notice that the keyword "impl of" before the streamlet name
37 instance inst(ts) [2],
38 for i in (0=1=>2) {
39 input[i] => inst[i].input,
40 inst[i].output => output[i],
41 }
42 };
43
44 impl impl_larger_component0(impl_larger_component<impl component_impl0>); //use an implementation of "

component" streamlet to instantiate the template, notice that the keyword "impl" before the
implementation name.

45 impl impl_larger_component1(impl_larger_component<impl component_impl1>);

In the above example, "impl_larger_component" is a template that receives an implementation as an
argument. The interface of the argument is specified as "component". The identifier after the "impl of" key-
word must be a streamlet. An implementation of that streamlet must be provided to instantiate the template,
as shown in lines 44 and 45.

3.3.12. Assertion
As mentioned previously, Tydi-lang is an abstract hardware description language where developers can use
constant variables and logical types to describe hardware components. The assertion is designed to set limi-
tations for the abstract hardware by restricting the variable values. For example, the following code illustrates
setting a limitation for the template arguments.

1 package main;
2 type Group rgb {
3 const x = 8,
4 r: Bit(x),
5 g: Bit(x),
6 b: Bit(x),
7 };
8 streamlet component<data:type> {
9 const x = type data.x,

10 assert(x == 8), //assert x == 8
11 input: Stream(data) in,
12 output: Stream(data) out,
13 };
14 impl component_impl<data:type> of component<type data> {
15 input => output,
16 };
17 impl component_impl0(component_impl<type rgb>); //use logical type rgb as template argument

The assertion is a built-in function that uses "assert" as the identifier and receives one argument with
boolean type. The built-in function is a powerful system that can do various processing on language ele-
ments, such as transform logical types and decay logical types back to variable values. However, due to time
limitations, the current Tydi-lang compiler only supports the assertion function. I put three of my personal
proposed builtin functions in Table A.1 (Appendix) for future Tydi-lang developers’ reference. The functions
in this proposal can be applied to support assertions on logical types.

4
Tydi language compiler frontend

4.1. Introduction to Tydi-lang frontend
The previous chapter illustrates the Tydi-lang specifications and syntax, which should be materialized as a
compiler to automatically compile the source code that meets the specification and syntax to a lower-level
representation. Because Tydi-IR already provides a direct representation of Tydi-spec, compiling Tydi-lang
to Tydi-IR becomes a convenient way to support various backends. Meanwhile, compiling to Tydi-IR also
provides flexibility to cooperate with other future frontends. For example, multiple frontends generate Tydi-
IR, which could mutually access components generated from other frontends.

The structure of the Tydi-lang frontend is similar to that of a software compiler frontend. For example,
both have parsers, name resolutions, references, and scopes. The logical type system in Tydi-lang is also
similar to the user-defined type system in general software languages. The difference is that the evaluation of
all variables is performed while compiling the Tydi-lang source code. In contrast, the evaluation of variables
is usually performed during the runtime for most software programming languages. Some hardware-specific
properties also cause some differences, such as the design rule check, hardware simulation, and generating
testbench.

This chapter focuses on elaborating on the compiling process of the Tydi-lang frontend and some possible
optimizations, as well as some intermediate representations that can be used for debugging the Tydi-lang
source code or continuing developing Tydi-lang infrastructures.

4.2. Overall work flow
This section provides an overview of the Tydi-lang compiler frontend. As mentioned in Figure 3.1, the fron-
tend compiles the Tydi-lang source code to Tydi-IR. Figure 4.1 shows the detailed steps of compiling from
Tydi-lang to Tydi-IR. A parser called PEST [17] transforms the plain-text Tydi-lang source code to a tree struc-
ture, known as abstract syntax tree (AST). The AST can be transformed to the "code structure", a memory
structure which contains extra variables such as evaluation flags, multi-threading locks, name resolution re-
sult, etc. Each step in the Tydi-lang frontend creates a new "code structure". So the number after the "code
structure" in Figure 4.1 indicates the version. Tydi-lang provides some sugaring syntax for developers, so the
Tydi-lang compiler needs to perform de-sugaring, which requires some components in the Tydi-lang stan-
dard library. The Tydi-lang standard library collects many fundamental and useful component templates that
can assist in developing hardware. The design rule check (DRC) is designed to identify errors on the Tydi-lang
level. Some high-level errors might hide themselves in after generating low-level representations. For exam-
ple, two ports with different but same-width logical types are not compatible and should not be connected
together. After generating the low-level representation, they become compatible because they have the same
bit width. The DRC in Tydi-lang level can identify these high-level errors in advance.

All output files mentioned in this chapter are available in the compiler output folder. A sample output
folder might have following structure.

tydi-lang/CookBook/12_tpch_sql3/build
The "0_ast" folder contains the AST tree for all source files. Each file corresponds to a Tydi-lang source

file. The "1_parser_output.txt" file records the "code structure #1". The "2_evaluation_output.txt"
file records the code structure after evaluation and expansion, corresponding to "code structure #3". The

27

https://github.com/twoentartian/tydi-lang/tree/main/CookBook/12_tpch_sql3/build

28 4. Tydi language compiler frontend

transformationabstract syntax
treeparserTydi-lang

evaluation

code structure #1

code
expansion

& evaluation
code structure #2code structure #3

Design rule check

code structure #4

DRC report Tydi-IR generation

Tydi-lang
standard library

desugaring

Tydi-IR

Figure 4.1: Overview of the Tydi-lang frontend

"2_evaluation_output_after_sugaring.txt" represents the "code structure #4". The compiler will gen-
erate a DRC report if the DRC flag is set. An error report will be generated if the compiling fails, and the output
files before the error occurs will be generated as usual. The "3_til" folder contain the generated Tydi-IR and
the "4_vhdl" folder contains the final output VHDL files.

4.3. Mutable memory structure in Rust
This section explains the mutable/immutable reference issue introduced by Rust. This issue is extremely
important, and failing to deal with this issue will rapidly increase the difficulty of designing the Tydi-lang
compiler. For future developers that continue working on Tydi and plan to use Rust as the developing lan-
guage, please read this section carefully and investigate all possible solutions before you really write any code
for Tydi.

In Rust, all variables must be declared as mutable or immutable. This is a common feature in many other
languages such as C++ and Java. The reference of the variable (equivalent to the pointer in C++) must also
be declared as mutable or immutable, and each reference has its own lifetime [19]. The lifetime means the
code region from where it is declared to where it is last used. Immutable variables can only have immutable
references, and mutable variables can have multiple immutable references or one mutable reference. Notice
that having multiple mutable references with overlapped lifetime for a single mutable variable is not allowed.
One mutable reference and one immutable reference with overlapped lifetime are also not allowed. The
check of lifetime overlap is performed at the compile stage, and this mechanism ensures data consistency in
multi-threading environments.

However, the mutable reference and lifetime mechanism causes big troubles for developers who want to
design their own data structures. For example, developers who design a tree structure might find that the tree
is completely immutable even though each node is mutable, because other nodes hold a mutable reference
of that node, and that mutable reference prevents making modifications to that node.

To solve the issue, some students in our group (accelerated big data group) use Salsa [20]. Salsa can store
the values and functions in a key-based in-memory database. Constructing a tree is equivalent to adding
more entries to the database. The difficulty is that you need to construct the tree from the leaf nodes because
the value becomes immutable once put into database. In other words, you cannot add more leaf nodes if the
parent nodes are stored into database. The Tydi-spec prototype [1] and the Tydi backend [18] use this method.
This problem for this solution is the loss in flexibility. The data stored in the database is still immutable and
users must finalize the value before storing it. In some cases, for example, referring a value in another file
which is not analyzed yet, storing the finalized value in Salsa becomes a quite expensive operation because
analyzing another file introduces more dependencies. Because compilers cannot predict the user input, more
complicated dependencies, such as mutual references between files, requires much more design effort.

Another solution to solve the immutable/mutable reference issue is using the unsafe Rust feature. Unsafe
Rust removes the lifetime checking mechanism in safe Rust. The Rust community recommends this method
for implementing complex data structures, which is exactly our need. However, users need to manage the
data consistency by themselves in the unsafe Rust and write safe-Rust interfaces to operate on unsafe-Rust
data. The Tydi-lang compiler does not use this method because using unsafe Rust might introduce more

4.4. Parsing 29

potential risks, which is unacceptable for a nine-month thesis.
The last solution is using the read/write lock (RwLock) provided in Rust standard library. The RwLock

provides a way to obtain a mutable reference at any time, but only one mutable reference can exist at any
time point. The thread that tries to get the second mutable reference will be blocked until the first mutable
reference runs out of its lifetime. In the previous tree example, each node will be stored in a RwLock, and
other nodes hold an immutable reference of the lock. A mutable reference of the node can be obtained from
the immutable reference of the lock when developers want to change its content. However, wrapping the data
with locks introduces extra performance overhead. I did not measure the overhead yet because other choices
are too complicated or risky. In addition, using locks always introduces deadlock problems. Developers
should manage these locks carefully to avoid deadlocks.

We summarize the three solutions here to assist future Tydi developers to make design decisions.

• Using Salsa:
Pros: it is a kind of in-memory database; there is not too much performance overhead(Salsa calculates
hash for values, which might be the only performance overhead); many examples in Tydi-lang backend.
Cons: the data stored in Salsa database is immutable, and developers might need to insert new data to
replace the old one to update the value.

• Using unsafe Rust:
Pros: many documents and examples on Rust official site; no performance overhead (at least in theory);
the recommend way from Rust community.
Cons: developers need to ensure the data consistency in multi-threading cases by themselves.

• Using RwLock:
Pros: it is easy to use; examples available in Tydi-lang frontend.
Cons: the performance overhead might be large; developers must avoid deadlock in some cases.

4.4. Parsing
This section illustrates the process of parsing the Tydi-lang source code to the abstract syntax tree (AST) and
transforming AST to the "code structure #1". The parser is called PEST [17], and its working process can be
briefly described as using a grammar file to define grammar rules. The PEST parser can automatically parse
the source code to an AST according to the grammar file. The PEST grammar syntax will not be discussed
here because this is not a major contribution. The PEST grammar file for Tydi-lang is located in the following
link:

tydi-lang/tydi_lang_parser/src/tydi_lang_syntax.pest

4.4.1. Parsed code structure
There is a text representation of an AST in Tydi-lang. Every source file has its own AST in the compiling output
folder, and developers can debug the grammar rules with this file. For an example of the text representation,
let’s consider the following sample Tydi-lang code snippet.

1 Union A {
2 a : Bit(10),
3 b : Stream(A, d=0, t="user type"),
4 c : Stream(A, t="user type"),
5 d : Stream(A, d=0),
6 e : Stream(A),
7 }

The code snippet defines a logical union type. The following text shows the parsed AST of the above logical
union type. Please notice that "[]" represents a new hierarchy level. "LogicalUnionType" is at the top level.

1 [LogicalUnionType(0, 134, [ID(6, 7), SubItemItem(12, 24, [ID(12, 13), LogicalType(16, 23, [LogicalBitType
(16, 23, [Exp(20, 22, [Term(20, 22, [IntExp(20, 22, [INT_RAW_NORAML(20, 22)])])])])])]), SubItemItem
(27, 61, [ID(27, 28), LogicalType(31, 60, [LogicalStreamType(31, 60, [LogicalType(38, 39, [
LogicalUserDefinedType(38, 39, [ID(38, 39)])]), StreamPropertyDimension(39, 44, [Exp(43, 44, [Term
(43, 44, [IntExp(43, 44, [INT_RAW_NORAML(43, 44)])])])]), StreamPropertyThroughput(44, 59, [Exp(48,
59, [Term(48, 59, [StringExp(48, 59, [STR(48, 59)])])])])])])]), SubItemItem(64, 93, [ID(64, 65),
LogicalType(68, 92, [LogicalStreamType(68, 92, [LogicalType(75, 76, [LogicalUserDefinedType(75, 76,
[ID(75, 76)])]), StreamPropertyThroughput(76, 91, [Exp(80, 91, [Term(80, 91, [StringExp(80, 91, [STR
(80, 91)])])])])])])]), SubItemItem(96, 115, [ID(96, 97), LogicalType(100, 114, [LogicalStreamType

https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_parser/src/tydi_lang_syntax.pest

30 4. Tydi language compiler frontend

(100, 114, [LogicalType(107, 108, [LogicalUserDefinedType(107, 108, [ID(107, 108)])]),
StreamPropertyDimension(108, 113, [Exp(112, 113, [Term(112, 113, [IntExp(112, 113, [INT_RAW_NORAML
(112, 113)])])])])])])]), SubItemItem(118, 132, [ID(118, 119), LogicalType(122, 131, [
LogicalStreamType(122, 131, [LogicalType(129, 130, [LogicalUserDefinedType(129, 130, [ID(129, 130)])
])])])])])]

All numbers in the AST indicate the token (character) index in the source code, e.g. "0, 134" means starting
from the first token to the token at 134. The AST is a tree structure, for above example, A LogicalUnionType
is composed of an identifier and several SubItemItem, each SubItemItem is made up of an identifier and
a LogicalType. The elements in the AST will be transformed into a code structure. The transformation
includes classifying the elements into different categories, such as logical types and streamlets, and adding
invisible language elements, such as scope relationships. Examples of code structure will be provided in
Section 4.5.

4.4.2. Multi-thread and multi-file parsing
Multi-file compiling is important for a large project containing many different source files. Parsing these
source files can be optimized with multi-threading. Since there is no dependency issue among source files at
the parser stage, the parsing is intrinsically parallelizable (The cross-file name resolution is performed at the
evaluation stage).

Here I would like to mention the mutable/immutable memory issue in Rust here because, with immutable
memory, the compiler needs to perform name resolution when seeing an identifier for the first time (might
be at the parser stage). However, the situation would be complicated if the identifier is defined in another
file that is not yet analyzed. Turning to analyze that file is not a solution because the dependency path might
be extremely long. The above arguments are the major reasons that I choose to use RwLock to get mutable
memory in Rust.

4.4.3. Limitations for PEST
PEST is a lightweight parser, and some features common in the compiler parser area are not available in
PEST. The most important missing feature is that PEST does not support left-recursive parsing. Left-recursive
parsing is a case where a term starts with the term itself. For example, consider the following PEST grammar.

1 Exp = { Exp ~ "+" ~ Exp }

This grammar is valid in many compiler workbenches such as Spoofax [8]. However, PEST does not ac-
cept this kind of grammar because parsing Exp will immediately result in parsing Exp again, causing infinite
recursive parsing.

The math system in Tydi-lang contains many grammar rules similar to the above example. So I separate
the meaning of Exp to two grammar syntax: Exp and Term. Exp is a math expression contains numbers and
digits, while Term only includes numbers of bracket expression. Appendix A.1.1 also mentioned this issue.

The missing support of left-recursive parsing also causes the missing support of syntax-level precedence.
For example, the expression "1+5*9" should be parsed with "5*9" first because it has higher precedence in
math. PEST always parses source code from left to right, so the precedence information is lost on the syntax
level. To address the precedence problem, PEST provides an additional method called "precedence climber"
that can rebuild the precedence level after parsing. Readers should be able to find the documentation of
"precedence climber" in the PEST cookbook. Until I was writing this paper, the documentation for "prece-
dence climber" was only an empty section with a title. It is possible to read the source code of PEST to find
out how to use "precedence climber", though that is relatively hard.

4.5. Value and target evaluation
This section illustrates the process of evaluating values and language elements. This section focuses on ex-
plaining the evaluated code structure, which is important for future Tydi-lang development and debugging
errors in Tydi-lang source code. Two optimization methods are applied during the evaluation. The first op-
timization method is called "lazy evaluation", which means the compiler only evaluates the values that have
been used. The second optimization method is called "multi-threading evaluation", indicating that we can
use multi-threading to accelerate the evaluation process.

4.5. Value and target evaluation 31

4.5.1. Evaluated code structure
The following snippet shows an example of "code structure #1", the direct result after transforming from AST.
The meaning of terms is explained in the comments. Please notice that the comments are manually added
rather than a part of the syntax.

1 //corresponds to code structure #1
2 Project(test_project){ //project name
3 Package(tpch){ //package name
4 Scope(package_tpch){ //package scope
5 Variables{ //variables in this scope
6 max_decimal_15:UnknownType(NotInferred("10^15 - 1")) //because nothing is

evaluated, so everything is NotInferred
7 day_max:UnknownType(NotInferred("31")) //raw integer expression is

also not evaluated
8 $package$tpch:PackageType(NotInferred(""))
9 year_max:UnknownType(NotInferred("10^5 - 1"))

10 month_max:UnknownType(NotInferred("12"))
11 bit_width_decimal_15:UnknownType(NotInferred("ceil(log2(max_decimal_15))"))
12 }
13 Types{
14 key_stream:VarType(int_stream) //this represents a type alias
15 Date:DataGroup(Date){ //this is a logical group type
16 Scope(group_Date){ //the scope of the logical group
17 Types{
18 year:VarType(year_t) //the logical types inside the logical group type,

the logical type is a reference of identifier "year_t"
19 month:VarType(month_t)
20 day:VarType(day_t)
21 }
22 ScopeRelations{
23 --GroupScope-->package_tpch //scope relationship
24 }
25 }
26 }
27 day_t:Bit(NotInferred("ceil(log2(day_max))"))
28 date_stream:Stream(date_stream){
29 DataType=VarType(Date)
30 dimension=NotInferred("1"), user=DataNull, throughput=1, synchronicity=Sync, complexity=7,

direction=Forward, keep=false
31 }
32 }
33 Streamlets{
34 ...
35 Streamlet(region_s)<NormalStreamlet>{
36 Scope(streamlet_region_s){
37 ScopeRelations{
38 --StreamletScope-->package_tpch
39 }
40 Ports{
41 r_comment:Port(VarType(varchar_stream),out) ‘DefaultClockDomain //streamlet ports,

the port type is a reference of logical type "varchar_stream".
42 r_regionkey:Port(VarType(key_stream),in) ‘DefaultClockDomain
43 r_name:Port(VarType(SQL_char25_stream),out) ‘DefaultClockDomain
44 }
45 }
46 }
47 ...
48 }
49 Implements{
50 ...
51 Implement(data_filter_i)<NormalImplement> -> ProxyStreamlet(data_filter_s<>){ //

proxyStreamlet indicates this should be a streamlet but not evaluated yet.
52 Scope(implement_data_filter_i){
53 ScopeRelations{
54 --ImplementScope-->package_tpch
55 }
56 Instances{
57 l_extendedprice_filter:(NotInferred("stream_filter_1bit_i")) //not inferred

implementation
58 ...

32 4. Tydi language compiler frontend

59 }
60 Connections{
61 Self.NotInferred("o_shippriority_in") =0=> ExternalOwner(o_shippriority_filter).NotInferred

("input") (connection_14449-14498) //a connection with not inferred ports
62 ...
63 }
64 }
65 simulation_process{None}
66 }
67 ...
68 }
69 }
70 }
71 }

After evaluation and template expansion, the corresponding code structure would transform to the fol-
lowing format. Please notice that anything that remains in "NotInferred" state means it is not used in the
code.

1 //corresponds to code structure #4
2 Project(test_project){ //project name
3 Package(tpch){ //package name
4 Scope(package_tpch){ //package scope
5 Variables{ //variables in this scope
6 max_decimal_15:int(999999999999999) //the value of all variables are calculated and

inferred
7 day_max:int(31)
8 $package$tpch:PackageType(NotInferred("")) //the package variable will not be evaluated
9 year_max:int(99999)

10 month_max:int(12)
11 bit_width_decimal_15:int(50)
12 }
13 Types{
14 key_stream:Stream(int_stream){
15 DataType=Bit(32)
16 dimension=1, user=DataNull, throughput=1, synchronicity=Sync, complexity=7, direction=Forward,

keep=false
17 } //key_stream is an alias of "int_stream", and the content of the "int_stream" is

printed out
18 Date:DataGroup(Date){
19 Scope(group_Date){
20 Types{
21 year:Bit(17) //the bit width of each logical type is evaluated
22 month:Bit(4)
23 day:Bit(5)
24 }
25 ScopeRelations{
26 --GroupScope-->package_tpch
27 }
28 }
29 }
30 day_t:Bit(5)
31 date_stream:Stream(date_stream){
32 DataType=DataGroup(Date)
33 dimension=1, user=DataNull, throughput=1, synchronicity=Sync, complexity=7, direction=Forward,

keep=false
34 }
35 }
36 Streamlets{
37 ...
38 Streamlet(region_s)<NormalStreamlet>{
39 Scope(streamlet_region_s){
40 ScopeRelations{
41 --StreamletScope-->package_tpch
42 }
43 Ports{
44 r_comment:Port(Stream(varchar_stream),out) ‘DefaultClockDomain //the logical type is

evaluated and the name is the direct name of the logical type
45 r_regionkey:Port(Stream(int_stream),in) ‘DefaultClockDomain
46 r_name:Port(Stream(SQL_char25_stream),out) ‘DefaultClockDomain
47 }

4.5. Value and target evaluation 33

48 }
49 }
50 ...
51 }
52 Implements{
53 ...
54 Implement(data_filter_i)<NormalImplement> -> Streamlet(data_filter_s){ //the streamlet

identifier is evaluated
55 Scope(implement_data_filter_i){
56 ScopeRelations{
57 --ImplementScope-->package_tpch
58 }
59 Instances{
60 l_extendedprice_filter:(Implement(stream_filter_1bit_i@Stream(SQL_decimal_15_2_stream)))

//the identifier "stream_filter_1bit_i@Stream" is a streamlet expaned from a template.
61 selection:(Implement(where_claus_i)) //implementation identifier is evaluated
62 ...
63 }
64 Connections{
65 ...
66 Self.o_shippriority_in:Port(Stream(int_stream),in) ‘DefaultClockDomain =0=> ExternalOwner(

o_shippriority_filter).input:Port(Stream(int_stream),in) ‘DefaultClockDomain (
connection_14449-14498)

67 ...
68 }
69 }
70 simulation_process{None}
71 }
72 ...
73 }
74 }
75 }
76 }

In addition, as mentioned in the Tydi-lang specification, templates will not be evaluated, so in the code
structure, a template should seem to be not evaluated. The following code snippet gives an example.

1 //a template will not be evaluated during evaluation
2 Streamlet(accumulator_s)<@LogicalDataType(DummyLogicalData)>{ //a template which accepts a

logical type as template argument. The "DummyLogicalData" indicates it is a place holder.
3 Scope(streamlet_accumulator_s){
4 Variables{
5 data_type:DummyLogicalData(NotInferred("argdata_type")) //argument logical type
6 }
7 Types{
8 count_type:Stream(count_type){
9 DataType=Bit(NotInferred("32"))

10 dimension=0, user=DataNull, throughput=1, synchronicity=Sync, complexity=7, direction=
Forward, keep=false

11 }
12 overflow_type:Stream(overflow_type){
13 DataType=Bit(NotInferred("1"))
14 dimension=0, user=DataNull, throughput=1, synchronicity=Sync, complexity=7, direction=

Forward, keep=false
15 }
16 }
17 ScopeRelations{
18 --StreamletScope-->package_tpch
19 }
20 Ports{
21 overflow:Port(VarType(overflow_type),out) ‘DefaultClockDomain
22 count:Port(VarType(count_type),out) ‘DefaultClockDomain
23 output:Port(VarType(data_type),out) ‘DefaultClockDomain
24 input:Port(VarType(data_type),in) ‘DefaultClockDomain
25 }
26 }
27 }

The "for" and "if" blocks will be removed from the code structure after expansion. The compiler will
perform expansion while evaluating the implementation). Thus the "for"/"if" expansion will be performed

34 4. Tydi language compiler frontend

after template expansion.

4.5.2. Lazy evaluation
The term "lazy evaluation" in Tydi-lang means the language elements will not be evaluated if they are not
used. This feature applies to all "evaluation" operations in Figure 4.1, and is designed to avoid the excessive
compiling time waste introduced by the standard library and templates. Another benefit of the lazy evalu-
ation is enabling the compiler to dim the unused variables, types, and templates. Whether these language
elements are used or not can be determined by looking up the evaluated code structure.

implementation

streamlet instance

other
implementsport

logical type#2

port array

composite
logical type#1variable#3

connection

instance port on
instance

reference

other
streamlet

port

reference

variable#1 variable#2 logical type#3 logical type#4

Evaluation order

Figure 4.2: Lazy evaluation of an implementation

Figure 4.2 shows the lazy evaluation process, which starts by analyzing the dependency tree of each im-
plementation, excluding implementation templates. The layer-1 leaf nodes of the dependency tree include
streamlet, instance, and connection, which are the direct child elements, and the layer-2 leaf nodes include
port, other implementations, etc. The bottom layer of the tree consists of variables and logical types, which
are the starting places of evaluation. This evaluation pattern ensures that all evaluated elements are used,
and unused elements will never be evaluated.

4.5.3. Multi-thread evaluation
Each implementation has its dependency tree. Multiple implementations result in a directed acyclic graph
(DAG) whose root nodes are implementations. As mentioned in Section 4.3, all nodes in the dependency
tree are protected by locks. Evaluating the DAG can be optimized with multi-threading because each imple-
mentation is an entry for a thread, and there are multiple implementations. However, several threads might
repeat evaluating the same nodes because they are common leaf nodes. Thus, locks are applied to avoid re-
peat evaluation. Deciding whether a lock should protect this element depends on how many leaf nodes exist
under it. Using locks on high-level elements, such as streamlets, will result in coarse-grained parallelism: Vice
versa, fine-grained parallelism requires locking low-level elements such as variables. The current Tydi-lang
compiler chooses a compromise, which uses locks on child nodes of streamlets.

Currently, the multi-threading evaluation is only implemented but not tested yet. The reason is that multi-
file parsing is impossible because the backend does not support multi-file generation. The performance
improvement of multi-thread evaluation is not measured because the project structure is not complicated
enough, causing the implementation dependency structure to be more like a linear structure.

4.6. Tydi standard library
The Tydi-lang standard library is a pure-template library, defining many frequently-used components which
can be categorized into the following three types.

4.7. Sugaring 35

• Components to duplicate/remove data packets. The Tydi-lang is designed for streaming hardware
where each port can only be connected once, while using a value several times is common in software
languages. Thus duplicator and voider (a component name) are proposed to duplicate data packets and
remove data packets. In the low-level implementation, duplicators copy and resend the bit-level data
to all output ports and only acknowledge the input port when all outputs are acknowledged. Voiders
will remove all data packets by acknowledging the source component and ignoring the data. These two
components work on the handshaking layer and hardware bit, so they are templates in Tydi-lang.

• Components that describe common behaviors for different logical types. For example, an adder can
work for integer types, decimal types, and many other numerical types once the bit width is specified. A
comparator is also possible to compare integers, dates, etc. However, selecting and implementing these
components might be tricky because the multipliers for integer and decimal are different (if taking the
digits after the digit point into consideration). For this case, assertion and "if" can be applied to restrict
the template.

• Components to transform logical types. The transformation includes splitting a group type into its in-
ner types or combining several logical types in a group. These template components help process ports
with user-defined composite data structures. This part is future work and has not been implemented
in the current Tydi-lang version.

Unlike typical template components, the components in the Tydi-lang standard library are too elemen-
tary to be described as instances and connections (external implementations if using terms in Table 2.1),
so there is another RTL generation process for these standard components. However, this generation pro-
cess must be manually defined. For example, in a duplicator template with two arguments - a logical type of
stream and an integer variable to indicate the output port count, the process to generate the correct compo-
nent needs to be hardcoded into the generator.

Because adding a new component template in the Tydi standard library means adding more hard-coded
processes in the generator, the Tydi-lang standard library should be kept as small and as abstract as possible.
It is a compromise between the library size and the generator complexity, resulting in greater difficulty in
designing the standard library. In addition, finding the proper abstraction of each component is also compli-
cated. The selection of components in the Tydi-lang library and their corresponding templates remain under
construction. The Tydi-lang library used in Chapter 6 is a prototype and only includes the essential templates
for our test cases.

4.7. Sugaring
Sugaring is important in reducing language developers’ design effort by automatically inferring and append-
ing the absent code. With the help of the Tydi-lang standard library, the current compiler provides two types
of sugaring. The first type of sugaring is the automatic duplicator template insertion if an output port has
been connected to multiple input ports. The compiler will automatically infer the duplicator template’s log-
ical type and output channel size. The second type of sugaring is the automatic voider template insertion
if an output port has never been used, where voider is a component that does nothing but is always ready
to receive the next packet. These two sugarings release the restriction that "one port must be connected to
exactly one other port".

For sugaring examples, consider the case of using Fletcher [13] to generate components to access memory
data from a data schema. The data schema might be large while the query only accesses a small portion of
it, and the query on data is flexible while the generated components are rigid. Without sugaring, developers
need to manually append voiders for each unused port on the generated Fletcher components. Another
example can be found in the translation from software programming languages to Tydi-lang. In software
programming languages, using variables multiple times is normal because it is a value inside the memory
that can be accessed at any time. However, for hardware design, the value is represented by logical gate states,
which are transient. Hardware designers usually manually duplicate the stream to send data to multiple
components. Sugaring in Tydi-lang can automatically put duplicators between the source port and sink port
according to the times that the data is used in the Tydi-lang source code.

36 4. Tydi language compiler frontend

4.8. Design rule check
Design rule checks (DRC) are widely applied in hardware designing areas, from PCB design to IC design. Tydi-
lang is special due to its high-level properties, so a specialized Tydi-specific DRC system is integrated with the
compiler, aiming to find out high-level design errors. Low-level DRC is still necessary and can be performed
after generating low-level HDLs. Tydi-IR also integrates a DRC system to check design errors. The difference
among the Tydi-lang DRC and Tydi-IR DRC is that Tydi-IR always checks the logical types of two ports of a
connection have the same type hierarchy, while Tydi-lang provides two options to compare the type equality.

The design rule check is performed in the last stage of the compiling process to find out high-level errors
which become invisible after generating low-level HDLs. It checks the following rules:

• The logical types of the connected ports are compatible. Compatible means the logical types refer to
the same logical type or the two logical types have the group/union structure and same bit-width of
their children. The syntax to select one of the two compatibility rules is mentioned in Section 3.3.7.

• A connection is established from a source(output) port to a sink(input) port. Please notice that the
direction of an input port is output for that implementation and input for other implementations.

More rules can be added in the future, e.g. checking the port complexities are compatible. The Rust source
files to define these checks is available in the following link:

tydi-lang/tydi_lang_front_end/src/drc.rs

https://github.com/twoentartian/tydi-lang/blob/main/tydi_lang_front_end/src/drc.rs

5
Tydi simulator

5.1. Introduction to Tydi simulator
The goal of Tydi-lang simulator is assisting high-level developers in designing streaming circuit to meet func-
tional requirements regardless of low-level behavior, and generating testbenches to collaborate with low-level
developers.

Simulating the streaming hardware on the Tydi-lang level is necessary because the response time of a
single component is determined by the arrival time of asynchronous input data packets. Analyzing the timing
information of all components can quickly help designers identify streaming bottlenecks. Using traditional
low-level simulators for such work is cumbersome because there are too many trivial low-level signals such
as handshaking. Our simulator can also predict the output sequences under certain input sequences, but this
is also possible with traditional simulation tools, so we will not address this feature in this thesis.

Performing simulation requires the input data sequence to top-level implementation and the mapping
from the clockdomain to physical frequency and phase. The simulator can calculate the delay time, record
data flows, and record the state-transition table of each implementation.

The delay time includes the delay from components simulation code and connection. The time to transfer
data packets via connections is calculated with the connection clockdomain and data packet length. The data
flow and the state transformation can be inferred from the simulation code. The state means the combination
of all possible values of all state variables. Notice that some hardware components cannot be described by
the "state" system, for example, the random number generator.

Because state transformation is caused by events, which are combinations of receiving data from differ-
ent ports, analyzing the relationship between data flow and state could also help identify the potential for
deadlock. As for identifying bottlenecks, the simulator should be able to record the waiting time of all output
ports (blocked by handshaking). Designers can investigate the output ports with the longest blockage to find
the bottleneck component.

5.2. Tydi simulation syntax
The Tydi-lang simulation code is defined inside an implementation to describe its behavior. Implementa-
tion defined by inner instances and connections should not have simulation code because inner instances
characterize its behavior. The simulation syntax includes the following parts.

• State variable: represents a state with a string value.

• Acknowledge mechanism: because the Tydi-lang integrates the handshaking mechanism from Tydi-
spec, it is crucial to control the handshaking behavior and time. For example, a component with two
input ports with different throughputs should have synchronization on its ports. This synchronization
can be achieved by controlling the time of acknowledging the output ports.

• Event-driven: an event is an action from ports, such as receiving a data packet. Designers can use
boolean logic to define composite events. For example, only compute when both data from two ports
are ready. The process when an event happens is called an event handler, where behavior code, such

37

38 5. Tydi simulator

as sending acknowledge signals, changing state variables, sending data to other components, and de-
laying for a specific time, can be defined here. In addition, the "if" and "for" syntax is available in the
event handler as logic flow control syntax.

The simulation syntax is not finished yet. Currently, the simulation code can be parsed to the correct
abstract syntax tree (AST). Readers can find the complete grammar in the aforementioned PEST file. Here I
provide a proposed simulation example below.

1 impl impl_template<i:int> of basic0 {
2 instance test_inst(basic0_1) [i],
3
4 process {
5 state component_state = "0"; //declare state variable "component_state" and its initial state as "0"
6 set_ack(data_in_0, 2); //set the acknowledge count of port "data_in_0" to 2
7 set_ack(data_in_1, 1);
8
9 event receive(data_in_0) && receive(data_in_1) {

10 if (component_state == "0") {
11 delay_cycle(5, 100MHz);
12 send(data_out_0, 0b11110000);
13 //do we need read(data_in_0)?
14 read(data_in_0);
15 //for composite data types: Group(a: Bit(8), b: Bit(8))
16 send(data_out_0, Group(a=0x11110000, b=0x11110000));
17 send(data_out_0, Union(a=0x11110000));
18 //for composite data types: Group(a: Bit(8), b: Stream(Bit(8)))
19 send(data_out_0->b, 0x11110000);
20
21 assign component_state = "1"; //assign the state variable "component_state" to state "1"
22 }
23 elif (component_state == "1") {
24 assign component_state = "2";
25 }
26 elif (component_state == "2") {
27 assign component_state = "1";
28 }
29 ack(data_in_1);
30 ack(data_in_0);
31 };
32
33 event receive(data_in_0) {
34 ack(data_in_0);
35 };
36 },
37 };

The simulation block is started by the keyword "process". In the simulation block, users can define state
variables, set the acknowledge count and declare events. The acknowledge count is a mechanism to deter-
mine when to acknowledge the source port. For the above example, the acknowledge count of "data_in_0" is
set to 2, each "ack" statement in lines 30 and 34 will add 1 to the counter. The source port will be acknowl-
edged when the counter reaches 2. Each event is a logical expression of one or multiple built-in functions.
For the above example, "receive" is such a built-in function. The event is a new block where users can define
the simulated behavior with if/for/built-in functions. Please notice that though there are "if" and "for" syn-
tax in simulation code, their compiling processes are entirely different from generative "if" and "for" syntax
because they work on variable values rather than generating parallel components. Due to this reason, the
simulator should integrate a small stack-based virtual machine to execute the simulation code. The stack im-
plementation should include a PC(program counter to record the execution location) and a SP (stack pointer,
necessary in nested "if"/"for" structure). LR(link register) is not necessary because the event does not return
any value. Each event in implementation might bind to multiple stacks because a single event might be trig-
gered multiple times in real hardware. This property also results in the state variables being shared among
different stacks, but local variables should be stack-independent.

One thing that has not been designed in Tydi-lang simulation syntax is the composite data representation,
which will be used in "send", "read" functions, and comparison-related features. Using "Group" and "Union"
to describe the data structure is also not an efficient solution for developers and should be re-designed.

The simulation syntax also integrates many built-in functions such as send, receive, ack. The decisions

5.3. Tydi simulator structure 39

about their arguments and return values are not determined, either. Appendix A.2 shows a draft of current
design and can be used for reference.

5.3. Tydi simulator structure
Figure 5.1 shows the structure of the Tydi simulator. The green parts are already finished, and the yellow parts
are partially finished. The white parts indicate that they are not started yet.

Tydi Code Structure

Streamlets, implementations,
ports, etc

Mainly designed for inferring
variables in scope

Circuit representation
and circuit state

Implementations, ports,
connections and simulation

info
Mainly designed for timing

analysis

Implementation

Implementation

Implementation

Implementation

Simulator Stack

Simulator Stack contains:
1. state variables,
2. program counter(the
location of simulation
process)
3. stack pointer
4. receives a time as an arg
to simulate
5. Stack state: sleep,
normal...

Simulator Stack
each event has
a simulator stack

Const values / State variable
inferring systemif this is a const value, query Tydi code structure query a expression

if this a state variable, query stack

Built in functions to
change circuit state: for

example: send(xxx)

Simulation Recorder

Time = x+1 ns
Time = x ns

Time = x+2 ns

Tydi Front End

State space for each
implementation

timing analysis result

post processing

generating testbench sequences

component testbench

Simulation config file

Simulator Stack

Use a simulator stack
to predict the

component behavior

Check the state sequences
matches the simulator

record, if the state sequence
doesn't exist then drop this

state sequence

Figure 5.1: The block diagram of the Tydi-lang simulator

The "Tydi code structure" is a tree-like structure unsuitable for simulation circuits. So it needs to be
transformed to a flat circuit representation first. Meanwhile, the simulator should attach the state variables
to each implementation. The simulation is performed by a stack-based virtual machine as mentioned in 5.2.
Above all, for a given input data sequence specified in the "simulation config file", the Tydi-lang should be
able to provide the predicted output data sequence.

During simulation, a "simulation recorder" will record the state transformations and their corresponding
triggered events. In simulation syntax, users will define many transformations, but not all of them will appear
in the simulation. Especially with given inputs, the state sequence usually only has limited patterns. The
simulation recorder is applied to find out what state patterns are within the design scope. The "state space
for each implementation" is directly analyzed from the Tydi-lang simulation code, containing some state
patterns outside the design scope. The final testbenches are generated based on the mixture of the simulation
recorder and state space. In addition, the timing result can be calculated based on the data sequence stored
in the simulation recorder.

5.4. Generate testbench
While the simulation code only describes the expected behavior of components, it does not guarantee low-
level behavioral correctness. The Tydi-lang simulator should be able to generate testbench files to ensure
the expected behavior matches the low-level simulation results. Tydi-IR already defined a testbench syntax
based on prediction strategy (giving certain input and verifying output correctness), and provided a tool to
translate from Tydi-IR testbenches to VHDL testbenches. The Tydi-lang simulator can utilize this tool to
generate VHDL testbenches.

40 5. Tydi simulator

The mechanism to generate testbench can be briefly described as an "input - current state - output" test-
ing system. The "input" corresponds to an event in Tydi-lang, the "current state" is a combination of events
and the initial state, and the "output" corresponds to sending data. Generating testbenches is a process of
using the above mechanism to cover all states and events in the state transition table. The coverage of input
data in the simulation stage is important because uncovered input results in uncovered state transformation.
The testbench system also reduces design effort because only low-level components require simulation code
and testbenches, which is easier than writing testbenches for high-level components.

The Tydi-lang testbench system also allows the collaboration between Tydi-lang developers and low-level
HDL developers. Tydi-lang developers can focus on using the Tydi toolchain to design streaming applica-
tions, whose requirements always change in software domains, while low-level HDL developers can focus
on designing and optimizing low-level components, regardless of high-level function requirements. Tydi-
lang designers can update simulation code when low-level components are optimized. Low-level language
developers can use the testbench from the Tydi-lang toolchain to ensure the correct component behavior.

5.5. Current simulator implementation and circuit representation
This section elaborates on the process of converting Tydi-lang to circuit representation, the only work I have
done for the Tydi-lang simulator. Some other drafts about the configuration format are also mentioned here.
The Rust source code for this section is in the following link:

tydi-lang/tydi_simulator
The configuration file for Tydi-lang simulator is in JSON format. The configuration file defines the top-

level implementation and the input signals on the top-level implementation. For timing analysis, the real
frequency and phase of each clockdomain must also be specified.

I rewrite the memory structure for all language elements because we previously focused on evaluating
their values and reference relationship, which are useless information in circuit representation. Meanwhile,
the memory structure for the simulator requires new features, for example, the references to the two ports
for a connection. These new memory structures are written in files starting with "circuit" in the simulator
folder. For example, tydi-lang/tydi_simulator/src/circuit_connection.rs defines the memory structure for a
connection.

After converting the Tydi-lang code structure to the flat circuit structure, the simulator will generate a
DOT language[5] file. DOT language is a graph description language that uses a special syntax to describe
various graphs. The DOT language file is available in the output folder with other compiler outputs. DOT
language files can be converted to vector images by extension in Visual Studio Code [9]. Chapter 6 provides a
sample circuit image.

The unit test "test_process_sample_code" in tydi-lang/tydi_simulator/src/test.rs is an example to auto-
matically generate the DOT language file.

The following code snippet shows some basic syntax rules for DOT language. Notice that the comments
are not allowed in DOT language, and these C-style comments are just for explaining. It will not work if you
directly copy the code to DOT files.

1 digraph { //represents this is a directed graph
2 main_i [color=red, shape=record, label="{<component>main_i|<err>err|<l_linenumber>l_linenumber|<

l_orderkey>l_orderkey|<p_partkey>p_partkey|<revenue>revenue}"]; //top level component is
main_i, it has serveral ports: err, l_linenumber, etc. The name in <...> is the reference that will
be used to create connection

3 main_i__accu [shape=record, label="{<component>main_i__accu|<count>count|<input>input|<output>output|<
overflow>overflow}"]; //two consecutive "_" means the original component hierarchy.

4 main_i__data_filter__selection__duplicate_l_shipinstruct_0_output [shape=record, label="{<component>
main_i__data_filter__selection__duplicate_l_shipinstruct_0_output|<input>input|<output_AT_0>output@0
|<output_AT_1>output@1|<output_AT_2>output@2}"]; //the hierarchy for this component: main_i ->
data_filter -> selection -> duplicate_l_shipinstruct_0_output. Because in circuit representation

everything is flat, we encode this hierarchy in names for potential future use.
5
6 ...
7
8 main_i__err_and:output -> main_i:err [label="connection_25562-25599__main_i::err_and__main_i"] ;

//Make a connection from the port (output) of component (main_i->err_and) to port (err) of component
(main_i)

9 }

https://github.com/twoentartian/tydi-lang/tree/main/tydi_simulator
https://github.com/twoentartian/tydi-lang/blob/main/tydi_simulator/src/circuit_connection.rs
https://github.com/twoentartian/tydi-lang/blob/main/tydi_simulator/src/test.rs

6
Result and evaluation

This chapter provides a use case of applying FPGAs to accelerate SQL queries to demonstrate the increased
hardware abstraction level and the decrease in design effort. We translated several TPC-H [11] SQL bench-
mark queries to Tydi-lang to represent the query logic on hardware and compare the line of code (LoC) of
Tydi-lang and the generated VHDL.

As mentioned previously, the Tydi-lang integrates a standard library. The code of the standard library
should not be counted in to design effort because they can be reused. In big data analytic area, there are tools
(such as Fletcher [13]) to automatically generate VHDL hardware interfaces to access memory data. Because
there currently are no tools to automatically generate a Tydi-lang interface, the code to describe interfaces is
manually written. The primary key in a TPC-H dataframe will be treated as the input port, and the other ports
will be treated as output ports. This part of code should not be counted in to design effort either because they
can be automatically generated. So in total there are three parts of code in our TPC-H examples: the Tydi-lang
standard library, the interface part and query logic part. The line of code (LoC) of each part is counted as a
representation of design effort.

In addition, the result also contains a non-sugaring version of the first query in TPC-H to show the design
effort saved by sugaring. The result is shown in Table 6.1 and Figure 6.1. The following formula presents the
calculation of ratio and total LoC.

LoCa = LoCq +LoC f +LoCs

Rq = LoCvhdl /LoCq

Ra = LoCvhdl /LoCa

The Tydi-lang source code, SQL source code, evaluation result, Tydi-IR, and generated VHDL are available
in the following link: https://github.com/twoentartian/tydi-lang/tree/main/CookBook.

Table 6.1: LoC for translating TPC-H queries to Tydi-lang

LoC for Fletcher part(LoC f) 166 LoC for Tydi-lang standard library(LoCs) 151

Query name Raw SQL query
Query logic
in Tydi-lang

(LoCq)

Total Tydi-lang LoC
(LoCa)

Generated VHDL
(LoCvhdl)

Ratio:
VHDL/Query logic

(Rq)

Ratio:
VHDL/Total Tydi-lang

(Ra)
TPC-H 1 (without sugaring) 20 402 709 7547 18.77 10.50
TPC-H 1 20 284 601 7547 26.57 12.56
TPC-H 3 22 166 483 6291 37.90 13.02
TPC-H 5 24 197 514 6992 35.49 13.60
TPC-H 6 9 108 425 4586 42.46 10.79
TPC-H 19 35 297 614 11734 39.51 19.11

Other queries in TPC-H benchmark are not translated into Tydi-lang because some of them have nested
"select" structures, which requires storing the intermediate result back to memory for later calculations. The
interface of storing and accessing intermediate result is beyond the research scope of Tydi-lang.

The result shows that using Tydi-lang can greatly reduce the number of lines of code to design FPGA
accelerators. If we use the Rq as the indicator of design effort (the code in the standard library and memory

41

https://github.com/twoentartian/tydi-lang/tree/main/CookBook

42 6. Result and evaluation

101 102 103 104

Line of code (LoC)

TPCH-1(no sugaring)

TPCH-1

TPCH-3

TPCH-5

TPCH-6

TPCH-19

SQ
L

qu
er

y

VHDL Tydi-lang SQL query

Figure 6.1: LoC for translating TPC-H queries to Tydi-lang

interface does not count), the total design effort can be saved for over 40x in TPC-H 6 query. The reduction in
LoC comes from many aspects. For the Tydi-lang frontend, the reduction mainly comes from the following
points.

• The Fletcher and Tydi-lang standard library provide many component templates.

• Using templates can get higher Rq because many components, such as comparators and constant data
generators, are generated from templates.

• Desugaring process can automatically add missing components, such as voiders and stream duplica-
tors.

The Tydi-lang backend can also reduce the line of code because the Tydi type system can encode many
ports in a single Tydi type and many connections in a single Tydi connection.

Different queries can get different Rq due to some intrinsic properties. The most interesting example is
the TPC-H query 19, which can get relatively higher Rq because it contains similar sub-structures. The SQL
source code of TPC-H query 19 is provided below.

1 :x
2 :o
3 select
4 sum(l_extendedprice* (1 - l_discount)) as revenue
5 from
6 lineitem,
7 part
8 where
9 (

10 p_partkey = l_partkey
11 and p_brand = ’:1’
12 and p_container in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’)
13 and l_quantity >= :4 and l_quantity <= :4 + 10
14 and p_size between 1 and 5
15 and l_shipmode in (’AIR’, ’AIR REG’)
16 and l_shipinstruct = ’DELIVER IN PERSON’
17)
18 or
19 (
20 p_partkey = l_partkey
21 and p_brand = ’:2’
22 and p_container in (’MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’)
23 and l_quantity >= :5 and l_quantity <= :5 + 10
24 and p_size between 1 and 10
25 and l_shipmode in (’AIR’, ’AIR REG’)
26 and l_shipinstruct = ’DELIVER IN PERSON’
27)
28 or
29 (
30 p_partkey = l_partkey

43

31 and p_brand = ’:3’
32 and p_container in (’LG CASE’, ’LG BOX’, ’LG PACK’, ’LG PKG’)
33 and l_quantity >= :6 and l_quantity <= :6 + 10
34 and p_size between 1 and 15
35 and l_shipmode in (’AIR’, ’AIR REG’)
36 and l_shipinstruct = ’DELIVER IN PERSON’
37);
38 :n -1

We can observe that the three "or" components have the same structure. The only difference is that the
argument strings are different. In this case, the three "or" components can be written as a template which re-
ceives these string arguments and use "for" statement in Tydi-lang to generate three components (the current
Rq for query 19 is lower than expected due to an issue mentioned in Appendix A.1.2.). The string arguments
can be stored in a Tydi-lang array. These abstractions can further save design effort.

I also found that there are fixed patterns to translate SQL to Tydi-lang. For example, the "select" keyword
always maps to a "stream_filter" in Tydi-lang, which receives a data packet and a one-bit signal to determine
whether to send this packet to next stage. These patterns can be easily found in the Tydi-lang source code. It
might be possible to design an automation tool to translate SQL to Tydi-lang.

Please also notice that the generated VHDL only includes hardware structure because the RTL generator
for Tydi-lang standard library is not finished yet (mentioned in Section 4.6). In the future version with a
finished RTL generator, the real Rq would be higher than current result.

Besides the overall LoC comparison, the Tydi-lang source code of TPC-H query 1 is also provided to illus-
trate a typical Tydi-lang application. The source code does not include the Fletcher part because it should be
automatically generated in the future. As for the Tydi-lang standard library part, only the interface (stream-
let) code is provided because the implementation should be generated by the code generator of the standard
library.

1 package std;
2
3 type SQL_int = Bit(32);
4 type int_stream = Stream(SQL_int, d = 1);
5 type key_stream = int_stream;
6
7 const year_max = 10^5 - 1;
8 type year_t = Bit(ceil(log2(year_max)));
9 type year_stream = Stream(year_t);

10 const month_max = 12;
11 type month_t = Bit(ceil(log2(month_max)));
12 type month_stream = Stream(month_t);
13 const day_max = 31;
14 type day_t = Bit(ceil(log2(day_max)));
15 type day_stream = Stream(day_t);
16 type Group Date {
17 year: year_t,
18 month: month_t,
19 day: day_t,
20 };
21 type date_stream = Stream(Date, d = 1);
22
23 type SQL_char = Bit(8);
24 type SQL_char1_stream = Stream(SQL_char, d = 1);
25 type varchar_stream = Stream(SQL_char, d = 2);
26
27 type SQL_char10 = Bit(8*10);
28 type SQL_char10_stream = Stream(SQL_char10, d = 1);
29 type SQL_char15 = Bit(8*15);
30 type SQL_char15_stream = Stream(SQL_char15, d = 1);
31 type SQL_char25 = Bit(8*25);
32 type SQL_char25_stream = Stream(SQL_char25, d = 1);
33
34 const max_decimal_15 = 10^15 - 1;
35 const bit_width_decimal_15 = ceil(log2(max_decimal_15));
36 type SQL_decimal_15 = Bit(bit_width_decimal_15);
37 type Group SQL_decimal_15_2 {
38 const frac = 2,
39 decimal: SQL_decimal_15,
40 };

44 6. Result and evaluation

41 type SQL_decimal_15_2_stream = Stream(SQL_decimal_15_2, d = 1);
42
43 //////////////////// Fletcher part ////////////////////
44 ...
45
46 //////////////////// tpch.part ////////////////////
47 ...
48
49 //////////////////// tpch.nation ////////////////////
50 ...
51
52 //////////////////// tpch.region ////////////////////
53 ...
54
55 //////////////////// tpch.supplier ////////////////////
56 ...
57
58 //////////////////// tpch.partsupp ////////////////////
59 ...
60
61 //////////////////// tpch.customer ////////////////////
62 ...
63
64 //////////////////// tpch.orders ////////////////////
65 ...
66
67 //////////////////// tpch.lineitem ////////////////////
68 ...
69
70
71 //////////////////// tydi standard lib ////////////////////
72
73 //void component, always acknowledge the handshake
74 streamlet void_s<type_in: type> {
75 input: type_in in,
76 };
77
78 ...
79
80 //padding zero to the highest bit
81 streamlet padding_zero_s<type_in: type, type_out: type> {
82 stream_in: type_in in,
83 stream_out: type_out out,
84 };
85
86 ...
87
88 //comparator, compare two values: (input0 is larger) => 1, (input1 is larger) => 2, (input1 == input0) =>

3
89 streamlet comparator_s<type_in: type> {
90 input0: type_in in,
91 input1: type_in in,
92 output: Stream(Bit(2)) out,
93 };
94
95 ...
96
97 //const value generator, type_out should be a Stream(Bit(x)) type and the value should be the value

mapped to Bit(x)
98 streamlet const_value_generator_s<type_out: type, value: int> {
99 output: type_out out,

100 };
101
102 ...
103
104 //data duplicator
105 streamlet duplicator_s<data_type: type, output_channel: int> {
106 input: data_type in,
107 output: data_type [output_channel] out,
108 };
109

45

110 ...
111
112 //stream filter
113 type stream_filter_select_stream = Stream(Bit(2));
114 streamlet stream_filter_s<data_type: type> {
115 input: data_type in,
116 output: data_type out,
117 select: stream_filter_select_stream in,
118 };
119
120 ...
121
122 //accumulator
123 streamlet accumulator_s<data_type: type> {
124 type count_type = Stream(Bit(32)),
125 input: data_type in,
126 output: data_type out,
127 count: count_type out,
128 type overflow_type = Stream(Bit(1)),
129 overflow: overflow_type out,
130 };
131
132 ...
133
134 //logical type converter
135 streamlet converter_s<input_type: type, output_type: type, channel: int> {
136 input: input_type [channel] in,
137 output: output_type [channel] out,
138 };
139
140 ...
141
142 //and
143 streamlet and_s<data_type: type, input_channel: int> {
144 input: data_type [input_channel] in,
145 output: data_type out,
146 };
147
148 ...
149
150 //adder
151 streamlet adder_s<data_type: type> {
152 input0: data_type in,
153 input1: data_type in,
154 output: data_type out,
155 overflow: Stream(Bit(1)) out,
156 };
157
158 ...
159
160 //to negative
161 streamlet to_neg_s<data_type: type> {
162 input: data_type in,
163 output: data_type out,
164 };
165
166 ...
167
168 //multiplier
169 streamlet multiplier_s<data_type: type> {
170 input0: data_type in,
171 input1: data_type in,
172 output: data_type out,
173 overflow: Stream(Bit(1)) out,
174 };
175
176 ...
177
178 //divider
179 streamlet divider_s<data_type: type> {
180 dividend: data_type in,

46 6. Result and evaluation

181 divisor: data_type in,
182 quotient: data_type out,
183 };
184
185 ...
186
187 //////////////////// Project file ////////////////////
188 //construct the sql_date stream by providing its year steam, month steam, and day stream
189 streamlet sql_date_constructor_s {
190 year_input: year_stream in,
191 month_input: month_stream in,
192 day_input: day_stream in,
193 date_output: date_stream out,
194 };
195
196 external impl sql_date_constructor_i of sql_date_constructor_s {
197
198 };
199
200 streamlet const_date_generator_s {
201 date_output: date_stream out,
202 };
203
204 impl const_date_generator_i<day: int, month: int, year:int> of const_date_generator_s {
205 instance day_gen(const_value_generator_i<type day_stream, day>),
206 instance month_gen(const_value_generator_i<type month_stream, month>),
207 instance year_gen(const_value_generator_i<type year_stream, year>),
208 instance compositor(sql_date_constructor_i),
209
210 day_gen.output => compositor.day_input,
211 month_gen.output => compositor.month_input,
212 year_gen.output => compositor.year_input,
213 compositor.date_output => date_output,
214 };
215
216 streamlet data_filter_s {
217 l_partkey_in: key_stream in,
218 l_suppkey_in: key_stream in,
219 l_quantity_in: SQL_decimal_15_2_stream in,
220 l_extendedprice_in: SQL_decimal_15_2_stream in,
221 l_discount_in: SQL_decimal_15_2_stream in,
222 l_tax_in: SQL_decimal_15_2_stream in,
223 l_returnflag_in: SQL_char1_stream in,
224 l_linestatus_in: SQL_char1_stream in,
225 l_shipdate_in: date_stream in,
226 l_commitdate_in: date_stream in,
227 l_receiptdate_in: date_stream in,
228 l_shipinstruct_in: SQL_char25_stream in,
229 l_shipmode_in: SQL_char10_stream in,
230 l_comment_in: varchar_stream in,
231
232 l_partkey_out: key_stream out,
233 l_suppkey_out: key_stream out,
234 l_quantity_out: SQL_decimal_15_2_stream out,
235 l_extendedprice_out: SQL_decimal_15_2_stream out,
236 l_discount_out: SQL_decimal_15_2_stream out,
237 l_tax_out: SQL_decimal_15_2_stream out,
238 l_returnflag_out: SQL_char1_stream out,
239 l_linestatus_out: SQL_char1_stream out,
240 l_shipdate_out: date_stream out,
241 l_commitdate_out: date_stream out,
242 l_receiptdate_out: date_stream out,
243 l_shipinstruct_out: SQL_char25_stream out,
244 l_shipmode_out: SQL_char10_stream out,
245 l_comment_out: varchar_stream out,
246
247 };
248
249 impl data_filter_i of data_filter_s {
250 instance baseline_date(const_date_generator_i<1,12,1998>),
251 instance compare_date(comparator_i<type date_stream>),

47

252 l_shipdate_in => compare_date.input0,
253 baseline_date.date_output => compare_date.input1,
254
255 instance l_partkey_bypass(stream_filter_i<type key_stream>),
256 l_partkey_in => l_partkey_bypass.input,
257 compare_date.output => l_partkey_bypass.select,
258 l_partkey_bypass.output => l_partkey_out,
259
260 instance l_suppkey_bypass(stream_filter_i<type key_stream>),
261 l_suppkey_in => l_suppkey_bypass.input,
262 compare_date.output => l_suppkey_bypass.select,
263 l_suppkey_bypass.output => l_suppkey_out,
264
265 instance l_quantity_bypass(stream_filter_i<type SQL_decimal_15_2_stream>),
266 l_quantity_in => l_quantity_bypass.input,
267 compare_date.output => l_quantity_bypass.select,
268 l_quantity_bypass.output => l_quantity_out,
269
270 instance l_extendedprice_bypass(stream_filter_i<type SQL_decimal_15_2_stream>),
271 l_extendedprice_in => l_extendedprice_bypass.input,
272 compare_date.output => l_extendedprice_bypass.select,
273 l_extendedprice_bypass.output => l_extendedprice_out,
274
275 instance l_discount_bypass(stream_filter_i<type SQL_decimal_15_2_stream>),
276 l_discount_in => l_discount_bypass.input,
277 compare_date.output => l_discount_bypass.select,
278 l_discount_bypass.output => l_discount_out,
279
280 instance l_tax_bypass(stream_filter_i<type SQL_decimal_15_2_stream>),
281 l_tax_in => l_tax_bypass.input,
282 compare_date.output => l_tax_bypass.select,
283 l_tax_bypass.output => l_tax_out,
284
285 instance l_returnflag_bypass(stream_filter_i<type SQL_char1_stream>),
286 l_returnflag_in => l_returnflag_bypass.input,
287 compare_date.output => l_returnflag_bypass.select,
288 l_returnflag_bypass.output => l_returnflag_out,
289
290 instance l_linestatus_bypass(stream_filter_i<type SQL_char1_stream>),
291 l_linestatus_in => l_linestatus_bypass.input,
292 compare_date.output => l_linestatus_bypass.select,
293 l_linestatus_bypass.output => l_linestatus_out,
294
295 instance l_shipdate_bypass(stream_filter_i<type date_stream>),
296 l_shipdate_in => l_shipdate_bypass.input,
297 compare_date.output => l_shipdate_bypass.select,
298 l_shipdate_bypass.output => l_shipdate_out,
299
300 instance l_commitdate_bypass(stream_filter_i<type date_stream>),
301 l_commitdate_in => l_commitdate_bypass.input,
302 compare_date.output => l_commitdate_bypass.select,
303 l_commitdate_bypass.output => l_commitdate_out,
304
305 instance l_receiptdate_bypass(stream_filter_i<type date_stream>),
306 l_receiptdate_in => l_receiptdate_bypass.input,
307 compare_date.output => l_receiptdate_bypass.select,
308 l_receiptdate_bypass.output => l_receiptdate_out,
309
310 instance l_shipinstruct_bypass(stream_filter_i<type SQL_char25_stream>),
311 l_shipinstruct_in => l_shipinstruct_bypass.input,
312 compare_date.output => l_shipinstruct_bypass.select,
313 l_shipinstruct_bypass.output => l_shipinstruct_out,
314
315 instance l_shipmode_bypass(stream_filter_i<type SQL_char10_stream>),
316 l_shipmode_in => l_shipmode_bypass.input,
317 compare_date.output => l_shipmode_bypass.select,
318 l_shipmode_bypass.output => l_shipmode_out,
319
320 instance l_comment_bypass(stream_filter_i<type varchar_stream>),
321 l_comment_in => l_comment_bypass.input,
322 compare_date.output => l_comment_bypass.select,

48 6. Result and evaluation

323 l_comment_bypass.output => l_comment_out,
324 };
325
326 // col: sum_qty, sum_base_price, avg_price
327 streamlet sum_qty_s {
328 l_quantity: SQL_decimal_15_2_stream in,
329 l_extendedprice: SQL_decimal_15_2_stream in,
330 sum_qty: SQL_decimal_15_2_stream out,
331 sum_base_price: SQL_decimal_15_2_stream out,
332 avg_price: SQL_decimal_15_2_stream out,
333 error: Stream(Bit(1)) out,
334 };
335
336 impl sum_qty_i of sum_qty_s {
337 type count_type = streamlet accumulator_s<type SQL_decimal_15_2_stream>.count_type,
338 instance accu0(accumulator_i<type SQL_decimal_15_2_stream>),
339 instance accu1(accumulator_i<type SQL_decimal_15_2_stream>),
340
341 l_quantity => accu0.input,
342 accu0.output => sum_qty,
343
344 l_extendedprice => accu1.input,
345
346 instance avg_price_divider(divider_i<type SQL_decimal_15_2_stream>),
347 accu1.output => sum_base_price,
348 accu1.output => avg_price_divider.dividend,
349
350 instance converter(converter_i<type count_type, type SQL_decimal_15_2_stream, 1>),
351 accu1.count => converter.input[0],
352 converter.output[0] => avg_price_divider.divisor,
353 avg_price_divider.quotient => avg_price,
354
355 //error
356 type error_stream = Stream(Bit(1)),
357 instance and(and_i<type error_stream, 2>),
358 accu0.overflow => and.input[0] @NoStrictType@,
359 accu1.overflow => and.input[1] @NoStrictType@,
360 and.output => error @NoStrictType@,
361 };
362
363
364 // col: sum_disc_price, sum_charge
365 streamlet sum_disc_price_s {
366 l_extendedprice: SQL_decimal_15_2_stream in,
367 l_discount: SQL_decimal_15_2_stream in,
368 l_tax: SQL_decimal_15_2_stream in,
369 sum_disc_price: SQL_decimal_15_2_stream out,
370 sum_charge: SQL_decimal_15_2_stream out,
371
372 error: Stream(Bit(1)) out,
373 };
374
375 impl sum_disc_price_i of sum_disc_price_s {
376 instance const_decimal_15_value(const_value_generator_i<type SQL_decimal_15_2_stream, 1>),
377 instance neg(to_neg_i<type SQL_decimal_15_2_stream>),
378 instance adder(adder_i<type SQL_decimal_15_2_stream>),
379
380 //calculate sum_disc_price
381 const_decimal_15_value.output => adder.input0,
382 l_discount => neg.input,
383 neg.output => adder.input1,
384 instance multiplier(multiplier_i<type SQL_decimal_15_2_stream>),
385 adder.output => multiplier.input0,
386 l_extendedprice => multiplier.input1,
387 multiplier.output => sum_disc_price, //sum_disc_price
388
389 //calculate sum_charge
390 instance multiplier2(multiplier_i<type SQL_decimal_15_2_stream>),
391 instance const_decimal_15_value2(const_value_generator_i<type SQL_decimal_15_2_stream, 1>),
392 instance adder2(adder_i<type SQL_decimal_15_2_stream>),
393 l_tax => adder2.input0,

49

394 const_decimal_15_value2.output => adder2.input1,
395 adder2.output => multiplier2.input0,
396 multiplier.output => multiplier2.input1,
397 multiplier2.output => sum_charge, //sum_charge
398
399 //error handling
400 type error_stream = Stream(Bit(1)),
401 instance and(and_i<type error_stream,4>),
402 multiplier.overflow => and.input[0] @NoStrictType@,
403 adder.overflow => and.input[1] @NoStrictType@,
404 adder2.overflow => and.input[2] @NoStrictType@,
405 multiplier2.overflow => and.input[3] @NoStrictType@,
406 and.output => error @NoStrictType@,
407 };
408
409 // col: avg_qty, avg_disc, count_order
410 streamlet avg_qty_s {
411 l_quantity: SQL_decimal_15_2_stream in,
412 l_discount: SQL_decimal_15_2_stream in,
413 avg_qty: SQL_decimal_15_2_stream out,
414 avg_disc: SQL_decimal_15_2_stream out,
415 count_order: Stream(Bit(32)) out,
416
417 error: Stream(Bit(1)) out,
418 };
419
420 impl avg_qty_i of avg_qty_s {
421 instance accu0(accumulator_i<type SQL_decimal_15_2_stream>),
422 instance divider0(divider_i<type SQL_decimal_15_2_stream>),
423 instance accu1(accumulator_i<type SQL_decimal_15_2_stream>),
424 instance divider1(divider_i<type SQL_decimal_15_2_stream>),
425 instance converter(converter_i<type count_type, type SQL_decimal_15_2_stream, 2>),
426
427 l_quantity => accu0.input,
428 accu0.output => divider0.dividend,
429 accu0.count => converter.input[1],
430 converter.output[1] => divider0.divisor,
431 divider0.quotient => avg_qty,
432
433 l_discount => accu1.input,
434 accu1.output => divider1.dividend,
435 type count_type = streamlet accumulator_s<type SQL_decimal_15_2_stream>.count_type,
436
437 accu1.count => converter.input[0],
438 converter.output[0] => divider1.divisor,
439 accu1.count => count_order @NoStrictType@,
440 divider1.quotient => avg_disc,
441
442 //error
443 type error_stream = Stream(Bit(1)),
444 instance and(and_i<type error_stream, 2>),
445 accu0.overflow => and.input[0] @NoStrictType@,
446 accu1.overflow => and.input[1] @NoStrictType@,
447 and.output => error @NoStrictType@,
448 };
449
450
451
452 //main component
453 streamlet main_s {
454 l_orderkey: key_stream in,
455 l_linenumber: key_stream in,
456
457 l_returnflag: SQL_char1_stream out,
458 l_linestatus: SQL_char1_stream out,
459
460 sum_qty: SQL_decimal_15_2_stream out, //part0
461 sum_base_price: SQL_decimal_15_2_stream out, //part0
462 sum_disc_price: SQL_decimal_15_2_stream out, //part1
463 sum_charge: SQL_decimal_15_2_stream out, //part1
464 avg_qty: SQL_decimal_15_2_stream out, //part2

50 6. Result and evaluation

465 avg_price: SQL_decimal_15_2_stream out, //part0
466 avg_disc: SQL_decimal_15_2_stream out, //part2
467 count_order: Stream(Bit(32)) out, //part2
468
469 err: Stream(Bit(1)) out,
470 };
471
472 impl main_i of main_s {
473 instance data_src(lineitem_i),
474 l_orderkey => data_src.l_orderkey,
475 l_linenumber => data_src.l_linenumber,
476
477 instance data_filter(data_filter_i),
478 data_src.l_partkey => data_filter.l_partkey_in,
479 data_src.l_suppkey => data_filter.l_suppkey_in,
480 data_src.l_quantity => data_filter.l_quantity_in,
481 data_src.l_extendedprice => data_filter.l_extendedprice_in,
482 data_src.l_discount => data_filter.l_discount_in,
483 data_src.l_tax => data_filter.l_tax_in,
484 data_src.l_returnflag => data_filter.l_returnflag_in,
485 data_src.l_linestatus => data_filter.l_linestatus_in,
486 data_src.l_shipdate => data_filter.l_shipdate_in,
487 data_src.l_commitdate => data_filter.l_commitdate_in,
488 data_src.l_receiptdate => data_filter.l_receiptdate_in,
489 data_src.l_shipinstruct => data_filter.l_shipinstruct_in,
490 data_src.l_shipmode => data_filter.l_shipmode_in,
491 data_src.l_comment => data_filter.l_comment_in,
492
493 data_filter.l_returnflag_out => l_returnflag,
494 data_filter.l_linestatus_out => l_linestatus,
495
496 //part0
497 instance part0(sum_qty_i),
498 data_filter.l_quantity_out => part0.l_quantity,
499 data_filter.l_extendedprice_out => part0.l_extendedprice,
500 part0.sum_qty => sum_qty,
501 part0.sum_base_price => sum_base_price,
502 part0.avg_price => avg_price,
503
504 //part1
505 instance part1(sum_disc_price_i),
506 data_filter.l_extendedprice_out => part1.l_extendedprice,
507 data_filter.l_discount_out => part1.l_discount,
508 data_filter.l_tax_out => part1.l_tax,
509 part1.sum_disc_price => sum_disc_price,
510 part1.sum_charge => sum_charge,
511
512 //part2
513 instance part2(avg_qty_i),
514 data_filter.l_quantity_out => part2.l_quantity,
515 data_filter.l_discount_out => part2.l_discount,
516 part2.avg_qty => avg_qty,
517 part2.avg_disc => avg_disc,
518 part2.count_order => count_order @NoStrictType@,
519
520 //error
521 type error_stream = Stream(Bit(1)),
522 instance and(and_i<type error_stream, 3>),
523 part0.error => and.input[0] @NoStrictType@,
524 part1.error => and.input[1] @NoStrictType@,
525 part2.error => and.input[2] @NoStrictType@,
526 and.output => err @NoStrictType@,
527 };

Current Tydi-lang simulator supports transforming the code to a circuit representation. Figure 6.2 shows
the circuit graph for TPC-H query 1. Each component is represented by a square box. The first line of the
box is the name of the component. Other lines represent the names of ports. The directed arrows indicates
connections. The text on the connection indicates the connection name (specified in code). Red boxes mean
wrapper components. The ports on wrapper components have two arrows: one flows in and one flows out.

51

In traditional hardware synthesis tools, components represented by red boxes are same as components that
are clickable (click to see the internal structure).

All TPC-H queries mentioned in this thesis have their own circuit graph, available in the TPC-H folders of
the following link: https://github.com/twoentartian/tydi-lang/tree/main/CookBook.

https://github.com/twoentartian/tydi-lang/tree/main/CookBook

52 6. Result and evaluation

m
ain_i

avg_disc

avg_price

avg_qty

count_order

err

l_linenum
ber

l_linestatus

l_orderkey

l_returnflag

sum
_base_price

sum
_charge

sum
_disc_price

sum
_qty

m
ain_i__data_src

l_com
m
ent

l_com
m
itdate

l_discount

l_extendedprice

l_linenum
ber

l_linestatus

l_orderkey

l_partkey

l_quantity

l_receiptdate

l_returnflag

l_shipdate

l_shipinstruct

l_shipm
ode

l_suppkey

l_tax

connection_18145-18179
connection_18182-18220

m
ain_i__and

input@
0

input@
1

input@
2

output

connection_20114-20147

m
ain_i__data_filter

l_com
m
ent_in

l_com
m
ent_out

l_com
m
itdate_in

l_com
m
itdate_out

l_discount_in

l_discount_out

l_extendedprice_in

l_extendedprice_out

l_linestatus_in

l_linestatus_out

l_partkey_in

l_partkey_out

l_quantity_in

l_quantity_out

l_receiptdate_in

l_receiptdate_out

l_returnflag_in

l_returnflag_out

l_shipdate_in

l_shipdate_out

l_shipinstruct_in

l_shipinstruct_out

l_shipm
ode_in

l_shipm
ode_out

l_suppkey_in

l_suppkey_out

l_tax_in

l_tax_out

connection_19012-19057
connection_19060-19105

m
ain_i__data_filter__duplicate_l_shipdate_in

input

output@
0

output@
1

connect_duplicate_l_shipdate_in_input

m
ain_i__data_filter__l_com

m
ent_bypass

input

output

select

connection_12944-12983

m
ain_i__data_filter__l_com

m
itdate_bypass

input

output

select

connection_12050-12095

m
ain_i__data_filter__l_discount_bypass

input

output

select

connection_10997-11038

m
ain_i__data_filter__l_extendedprice_bypass

input

output

select

connection_10753-10804

m
ain_i__data_filter__l_linestatus_bypass

input

output

select

connection_11624-11669

m
ain_i__data_filter__l_partkey_bypass

input

output

select

connection_10115-10154

m
ain_i__data_filter__l_quantity_bypass

input

output

select

connection_10529-10570

m
ain_i__data_filter__l_receiptdate_bypass

input

output

select

connection_12270-12317

m
ain_i__data_filter__l_returnflag_bypass

input

output

select

connection_11400-11445

m
ain_i__data_filter__l_shipinstruct_bypass

input

output

select connection_12502-12551

m
ain_i__data_filter__l_shipm

ode_bypass

input

output

select

connection_12735-12776

m
ain_i__data_filter__l_suppkey_bypass

input

output

select

connection_10315-10354

m
ain_i__data_filter__l_tax_bypass

input

output

select

connection_11211-11242

m
ain_i__duplicate_data_filter_l_discount_out

input

output@
0

output@
1

connect_duplicate_data_filter_l_discount_out_input

m
ain_i__duplicate_data_filter_l_extendedprice_out

input

output@
0

output@
1

connect_duplicate_data_filter_l_extendedprice_out_input

m
ain_i__duplicate_data_filter_l_quantity_out

input

output@
0

output@
1

connect_duplicate_data_filter_l_quantity_out_input

m
ain_i__part1

error

l_discount

l_extendedprice

l_tax

sum
_charge

sum
_disc_price

connection_19517-19554
m
ain_i__void_data_filter_l_com

m
ent_out

input connect_void_data_filter_l_com
m
ent_out

m
ain_i__void_data_filter_l_com

m
itdate_out

input

connect_void_data_filter_l_com
m
itdate_out

m
ain_i__void_data_filter_l_partkey_out

input

connect_void_data_filter_l_partkey_out

m
ain_i__void_data_filter_l_receiptdate_out

input

connect_void_data_filter_l_receiptdate_out

m
ain_i__void_data_filter_l_shipdate_out

input

connect_void_data_filter_l_shipdate_out

m
ain_i__void_data_filter_l_shipinstruct_out

input

connect_void_data_filter_l_shipinstruct_out

m
ain_i__void_data_filter_l_shipm

ode_out

input

connect_void_data_filter_l_shipm
ode_out

m
ain_i__void_data_filter_l_suppkey_out

input

connect_void_data_filter_l_suppkey_out

m
ain_i__data_filter__baseline_date

date_output

m
ain_i__data_filter__com

pare_date

input0

input1

output

connection_9999-10048

m
ain_i__data_filter__baseline_date__com

positor

date_output

day_input

m
onth_input

year_input

connection_8612-8650

m
ain_i__data_filter__baseline_date__day_gen

output

connection_8480-8519

m
ain_i__data_filter__baseline_date__m

onth_gen

output

connection_8522-8565

m
ain_i__data_filter__baseline_date__year_gen

outputconnection_8568-8609

m
ain_i__data_filter__duplicate_com

pare_date_output

input

output@
0

output@
1

output@
10

output@
11

output@
12

output@
13

output@
2

output@
3

output@
4

output@
5

output@
6

output@
7

output@
8

output@
9

connect_duplicate_com
pare_date_output_input

connect_duplicate_com
pare_date_output_output_13

connect_duplicate_com
pare_date_output_output_11

connect_duplicate_com
pare_date_output_output_8

connect_duplicate_com
pare_date_output_output_5

connect_duplicate_com
pare_date_output_output_10

connect_duplicate_com
pare_date_output_output_4

connect_duplicate_com
pare_date_output_output_9

connect_duplicate_com
pare_date_output_output_3

connect_duplicate_com
pare_date_output_output_6

m
ain_i__data_filter__l_shipdate_bypass

input

output

select

connect_duplicate_com
pare_date_output_output_2

connect_duplicate_com
pare_date_output_output_0

connect_duplicate_com
pare_date_output_output_1

connect_duplicate_com
pare_date_output_output_7

connect_duplicate_com
pare_date_output_output_12

connect_duplicate_l_shipdate_in_output_0

connect_duplicate_l_shipdate_in_output_1

connection_13036-13077
connection_12151-12198

connection_11092-11135
connection_10863-10916

connection_11725-11772
connection_10207-10248

connection_10624-10667
connection_12374-12423

connection_11501-11548
connection_11936-11979

connection_12609-12660
connection_12830-12873

connection_10407-10448
connection_11291-11324

connection_18263-18310
connection_18313-18360

connection_18363-18412
connection_18415-18474

connection_18477-18526
connection_18529-18568

connection_18571-18624
connection_18627-18680

connection_18683-18732
connection_18735-18788

connection_18791-18846
connection_18849-18906

connection_18909-18958
connection_18961-19008

connect_duplicate_data_filter_l_discount_out_output_1

m
ain_i__part2

avg_disc

avg_qty

count_order

error

l_discount

l_quantity

connect_duplicate_data_filter_l_discount_out_output_0

m
ain_i__part0

avg_price

error

l_extendedprice

l_quantity

sum
_base_price

sum
_qty

connect_duplicate_data_filter_l_extendedprice_out_output_0
connect_duplicate_data_filter_l_extendedprice_out_output_1

connect_duplicate_data_filter_l_quantity_out_output_0
connect_duplicate_data_filter_l_quantity_out_output_1

connection_19258-19283
connection_19286-19325

connection_19328-19357

connection_19976-20019

m
ain_i__part0__accu0

count

input

output

overflow

connection_13643-13669

m
ain_i__part0__accu1

count

input

output

overflow

connection_13700-13731
connection_13672-13696

m
ain_i__part0__and

input@
0

input@
1

output

connection_14198-14244

m
ain_i__part0__void_accu0_count

input

connect_void_accu0_count
connection_14247-14293

m
ain_i__part0__converter

input@
0

output@
0 connection_13972-14006

m
ain_i__part0__duplicate_accu1_output

input

output@
0

output@
1

connect_duplicate_accu1_output_input

connection_14296-14331

m
ain_i__part0__avg_price_divider

dividend

divisor

quotient

connection_14061-14101connection_14009-14058

connect_duplicate_accu1_output_output_0

connect_duplicate_accu1_output_output_1

connection_19557-19596
connection_19599-19630

connection_20022-20065

m
ain_i__part1__adder2

input0

input1

output

overflow

connection_15485-15508

m
ain_i__part1__m

ultiplier

input0

input1

output

overflow

connection_15143-15180

m
ain_i__part1__neg

input

output

connection_14982-15006

m
ain_i__part1__adder

input0

input1

output

overflow

m
ain_i__part1__and

input@
0

input@
1

input@
2

input@
3

output

connection_15850-15896

connection_15106-15140

connection_15899-15946

m
ain_i__part1__m

ultiplier2

input0

input1

output

overflow

connection_15562-15598

connection_16004-16039

m
ain_i__part1__const_decim

al_15_value

output

connection_14933-14979

m
ain_i__part1__const_decim

al_15_value2

outputconnection_15511-15559

m
ain_i__part1__duplicate_m

ultiplier_output

input

output@
0

output@
1

connect_duplicate_m
ultiplier_output_output_1

connect_duplicate_m
ultiplier_output_output_0

connection_15796-15847

connect_duplicate_m
ultiplier_output_input

connection_15644-15677

connection_15949-16001

connection_15009-15036

connection_19773-19798
connection_19801-19828

connection_19831-19879

connection_20068-20111

m
ain_i__part2__accu0

count

input

output

overflow

connection_16708-16734

m
ain_i__part2__accu1

count

input

output

overflow

connection_16887-16913

m
ain_i__part2__and

input@
0

input@
1

output

connection_17292-17338

m
ain_i__part2__converter

input@
0

input@
1

output@
0

output@
1

connection_16774-16808

m
ain_i__part2__divider0

dividend

divisor

quotient

connection_16737-16771

connection_17341-17387

m
ain_i__part2__divider1

dividend

divisor

quotient

connection_16916-16950

m
ain_i__part2__duplicate_accu1_count

input

output@
0

output@
1

connect_duplicate_accu1_count_input

connection_17390-17425

connection_16811-16851
connection_17077-17117

connection_16854-16883
connection_17165-17195

connect_duplicate_accu1_count_output_0

connect_duplicate_accu1_count_output_1

Figure 6.2: Generated circuit graph for TPC-H query 1

7
Conclusion

This thesis presents a new language (Tydi-lang) based on Tydi-spec to allow developers more effectively de-
sign streaming hardware. This new language also introduces the template concept to typed hardware, which
raises the level of abstraction, saving design efforts for developers and enabling the possibility of translating
software domain languages to hardware description languages. The syntax, grammar details and many sam-
ple codes are provided in this thesis for future Tydi-lang users and future Tydi-lang compiler developers. The
structure of the compiler and possible optimization methods are also discussed in this paper.

Along with the high-level language, we also present the blueprint of Tydi-lang simulator, a verification
and simulation tool, to show how Tydi-lang works with low-level languages and improve the efficiency of
high-level design. We implement the Tydi-lang compiler prototype with its standard library and use several
SQL query cases to demonstrate the new design flow and its effectiveness.

I would like to give the answers to the questions in the problem statement (Section 1.3).

• What is the essential language syntax to describe typed streaming hardware based on the Tydi-spec?
Answer: Section 3.3 shows the Tydi-lang syntax. The syntax to define logical types, streamlets (includ-
ing inner ports), and implementations (including inner instance and connections) is essential. The
other syntax, such as defining variables, templates, "for" and "if" blocks, and assertions, is designed to
reduce the design effort and reduce the possibility of making mistakes.

• How to reduce the design effort for language users?
Answer: Raise the level of abstraction by using variables and templates to describe hardware. Provide
compiler-level sugaring and standard template library for developers.

• Rust is a relatively new language, its unique immutable/mutable reference system requires more design
effort on the memory structure. How can we address the memory challenges specific to designing a
compiler in Rust?
Answer: Use read/write locks on each node of the code structure tree to get the immutable reference
when needed. This immutable reference also allows multithreading optimization mentioned in Section
4.5.3. Properly solving this issue can avoid many other future problems in designing the compiler.

• What kind of abstraction method should the compiler provide to facilitate designing typed streaming
hardware?
Answer: The abstraction methods include template and generative "if"/"for" syntax. The template sup-
ports accepting seven types of arguments: integer, float point numbers, string, boolean, clockdomain,
logical type, and components. These template arguments are enough to describe hardware in most
cases. The "if" and "for" syntax can generate parallel hardware circuits according to variable values.

• Hardware simulation and verification is an important phase in design flow, how to assess hardware
simulation and verification in the context of a Tydi-spec based toolchain.
Answer: First of all, Tydi-lang provides a high-level design rule check. Developers can find mistakes
such as logical type mistakes quickly. The Tydi-lang simulation syntax mentioned in Section 5.2 enables

53

54 7. Conclusion

the possibility to perform high-level simulations to predict data sequence or analyze the streaming bot-
tleneck. Meanwhile, the Tydi-lang simulator can generate low-level testbenches from the simulation
syntax to allow cooperation between high-level designers and low-level designers.

• How to enable the cooperation between the new language and other existing HDLs and tools?
Answer: Besides the hardware verification and simulation cooperation mentioned above, Tydi-lang
also provides mechanisms to deliver the high-level description to low-level HDLs, such as the docu-
mentation and logical type system. There are many ways to perform language-level cooperation. For
example, the RTL generator of the Tydi-lang standard library can be written in CHISEL, and developing
a new backend from Tydi-IR to CHISEL ensures high portability.

There are many possible future works for Tydi-lang, and I record them here for further development:

• Support all functions in the Tydi-lang simulator. For example, we can include support for the stack-
based virtual machine, the simulation recorder, the testbench generator.

• Implement the RTL generator for the Tydi-lang standard library.

• The current cross-package reference feature in Tydi-lang is not well tested because of the missing sup-
port on the backend side.

• Improving Fletcher to generate Tydi interfaces.

• Support generating CHISEL and/or integrate Tydi support for CHISEL.

A
Appendix

A.1. Known issues in the Tydi-lang compiler
There are some potential issues in the current implementation of the Tydi-lang compiler. I put them in the
appendix for future developers’ reference.

A.1.1. Wrong precedence for unary operator
The following code snippet illustrates a precedence error for unary operators (! and -) during evaluating
mathematical expressions.

1 package test;
2
3 const i1 = -1+2; //evaluated result: i1 = -3, correct: 1
4 const i2 = i1 + 5;
5 type bit = Bit(i2);
6 type stream = Stream(bit);

The cause is that the Tydi-lang compiler evaluate 1+2 first and finally evaluate the -(1+2). This error may
be fixed by modifying the PEST grammar files, but I tried several times and didn’t get a working version.

Traditional language workbench systems, such as Spoofax [8], support left-recursive parsing, while the
PEST parser does not support this feature yet because it causes great performance loss. The missing of left-
recursive parsing results in invalid grammar rules like Exp = Exp + Exp because evaluating the second Exp
will recursively use this rule.

Due to this limitation, the Tydi-lang compiler separate the semantic Exp to two terms, Exp and Term, with
the following PEST grammar:

1 //available in tydi_lang_syntax.pest: 59~65
2 Term = { ("(" ~ Exp ~ ")") |
3 ... | UnaryExp}
4 Exp = { Term ~ (InfixOp ~ Term)* }

In theory, the UnaryExp should have the least precedence because no other expression is starting with
- or !. Though in practice, it does not work correctly. The missing left-recursive in PEST parser makes this
issue more complicated because I was forced to separate the semantic Exp into two parts. I recommend
future developers start by reconsidering the definition of Term and Exp to fix this bug.

A.1.2. Duplicated identifier issue in for/if expansion
In Tydi-lang, users can define connections in for and if scopes. The name of these connections will be the
connection name appended with the scope name. The scope name is different in each for/if expansion, so
the connections name will be different after expansion. However, defining instances in a for scope will result
in errors because the name does not change in each expansion.

Defining instances inside "for"/"if" scope is useful in many cases. For example, in TPCH benchmark -
query 19, there are three similar query statement blocks but with different arguments. Tydi-lang developers
can use a "for" syntax to define the three query structure whose arguments are defined in an array. It is
impossible in the current Tydi-lang compiler because we cannot define instances in "for"/"if" scope.

55

56 A. Appendix

Thus, I propose an alternative identifier syntax subject to variable values. In Tydi-lang, the traditional
identifiers can only contain digits, alphabet char, and underscore. The alternative identifier should have the
following PEST grammar rule.

1 ID = @{ ID_BLOCK_LIST ~ (ID_INVALID_CHAR ~ (ASCII_ALPHA | "_")) ~ (ID_INVALID_CHAR ~ (ASCII_ALPHA |
ASCII_DIGIT | "_"))* ~ !(ASCII_ALPHA | ASCII_DIGIT | "_") }

2
3 VAR_IN_ALTERNATIVE_ID = @{"{{" ~ ID ~ "}}"}
4 ALTERNATIVE_ID = { ID_BLOCK_LIST ~ (ID_INVALID_CHAR ~ (ASCII_ALPHA | "_")) ~ (ID_INVALID_CHAR ~ (

ASCII_ALPHA | ASCII_DIGIT | "_" | VAR_IN_VAR_ID))* ~ !(ASCII_ALPHA | ASCII_DIGIT | "_") }

The VAR_IN_ALTERNATIVE_ID is an identifier to a basic variable and its value will be evaluated construct
the ALTERNATIVE_ID. In a "for" scope, users can use the state variable in the "for" statement to give different
names to instances to avoid the duplicated identifier problem after code expansion.

An example of the use of the alternative identifier syntax.

1 package main;
2
3 type bit8_stream = Stream(Bit(8), d = 5, t = 2.5);
4
5 streamlet data_bypass<data: str> {
6 input: bit8_stream in,
7 output: bit8_stream out,
8 };
9 impl impl_data_bypass<data: str> of data_bypass<data> {

10 input => output,
11 };
12
13 const channel = 4;
14 streamlet data_bypass_channel {
15 inputs: bit8_stream [channel] in ‘"10kHz",
16 outputs: bit8_stream [channel] out ‘"10kHz",
17 };
18
19 const use_data_bypass2 = true;
20 const data = {"Monday", "Tuesday", "Wednesday", "Thursday"};
21
22 impl impl_data_bypass_channel of data_bypass_channel {
23 //the external scope contains 4 instances: bypass_0,bypass_1,bypass_2,bypass_3, each of them will have

different template arguments.
24 for i in (0=1=>channel) {
25 instance bypass_{{i}}(impl_data_bypass<data[i]>), //when i == 1, the bypass_{{i}} will be evaluated

to bypass_1
26 bypass_{{i}}.output => outputs[i], //bypass_{{i}} => bypass_1
27 inputs[i] => bypass_{{i}}.input,
28 }
29 };

A.2. Proposals about future work

Table A.1: Proposed builtin functions in Tydi-lang

function identifier(arg list) ->output explanation example
get_child_names({logical_type})
->Array<string>

return the child names if the logical
type is group or union.

get_child_names(rgb)
->{"r","g","b"}

get_child({logical_type}, {child_name})
->logical_type

return the child logical type with
given child name

get_child(rgb,"r")
->Bit(8)

type_of_logical_type({logical_type})
->String

return "group" if the logical type is a
group type, "union" for logical union,
"stream" for logical stream, "bit" for
logical bit.

type_of_logical_type(rgb)
->"group"

A.2. Proposals about future work 57

Table A.2: Proposed builtin functions in Tydi simulator

function identifier(arg list) ->output explanation example

receive(port_name) ->bool

returns "true" if the data packet is
available on the port. Equivalent
to getting a handshaking signal on
the hardware side.

receive(data_in_0)

read(port_name) ->
{composite data representation}

return the received composite data
from this port.

read(data_in_0)

send(port_name,
{composite data representation});

send certain composite data packet
via this port.

send(data_out_0, Group(
a=0x11110000,
b=0x11110000));

delay_cycle(int, {Frequency})

delay for certain cycles of a
frequency. The frequency must be
one of the clockdomain values
available on the component.

delay_cycle(5, 100MHz);

delay(time)

delay for a certain physical time.
The physical time should be
achievable with the available
frequencies on that component,
otherwise, the Tydi simulator
should throw an error.

delay_cycle(1us);

ack(port_name)

add 1 to the acknowledge counter
for the port. The physical
acknowledge signal will be sent
when the value becomes large
enough.

ack(data_in_0);

Bibliography

[1] abs tudelft. Tydi-an open specification and tools for complex data structures over hardware streams.,
2022. URL https://github.com/abs-tudelft/tydi.

[2] Apache. Apache arrow, 2022. URL https://arrow.apache.org/.

[3] Apache. Apache spark - unified engine for large-scale data analytics, 2022. URL https://spark.
apache.org/.

[4] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John
Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a scala embedded language. In DAC
Design Automation Conference 2012, pages 1212–1221, 2012. doi: 10.1145/2228360.2228584.

[5] Graphviz. Dot language, 2022. URL https://www.graphviz.org/doc/info/lang.html.

[6] Joost Hoozemans, Johan Peltenburg, Fabian Nonnemacher, Akos Hadnagy, Zaid Al-Ars, and H. Peter
Hofstee. Fpga acceleration for big data analytics: Challenges and opportunities. IEEE Circuits and Sys-
tems Magazine, 21(2):30–47, 2021. doi: 10.1109/MCAS.2021.3071608.

[7] Ernst Houtgast, Vlad-Mihai Sima, and Zaid Al-Ars. High performance streaming smith-waterman im-
plementation with implicit synchronization on intel fpga using opencl. In 2017 IEEE 17th International
Conference on Bioinformatics and Bioengineering (BIBE), pages 492–496, 2017. doi: 10.1109/BIBE.2017.
000-6.

[8] Lennart C.L. Kats and Eelco Visser. The spoofax language workbench: Rules for declarative specifica-
tion of languages and ides. In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’10, page 444–463, New York, NY, USA,
2010. Association for Computing Machinery. ISBN 9781450302036. doi: 10.1145/1869459.1869497. URL
https://doi-org.tudelft.idm.oclc.org/10.1145/1869459.1869497.

[9] Microsoft. Graphviz (dot) language support for visual studio code, 2022. URL https://marketplace.
visualstudio.com/items?itemName=joaompinto.vscode-graphviz.

[10] Nvidia. Cuda toolkit - free tools and trainings for developers, 2022. URL https://developer.nvidia.
com/cuda-toolkit.

[11] Nvidia. Tpch homepage, 2022. URL https://www.tpc.org/tpch/.

[12] Johan Peltenburg, Jeroen van Straten, Matthijs Brobbel, H. Peter Hofstee, and Zaid Al-Ars. Supporting
columnar in-memory formats on fpga: The hardware design of fletcher for apache arrow. In Christian
Hochberger, Brent Nelson, Andreas Koch, Roger Woods, and Pedro Diniz, editors, Applied Reconfig-
urable Computing, pages 32–47, Cham, 2019. Springer International Publishing. ISBN 978-3-030-17227-
5.

[13] Johan Peltenburg, Jeroen van Straten, Lars Wijtemans, Lars van Leeuwen, Zaid Al-Ars, and Peter Hofstee.
Fletcher: A framework to efficiently integrate fpga accelerators with apache arrow. In 2019 29th Inter-
national Conference on Field Programmable Logic and Applications (FPL), pages 270–277, 2019. doi:
10.1109/FPL.2019.00051.

[14] Johan Peltenburg, Lars T.J. van Leeuwen, Joost Hoozemans, Jian Fang, Zaid Al-Ars, and H. Peter Hofstee.
Battling the cpu bottleneck in apache parquet to arrow conversion using fpga. In 2020 International Con-
ference on Field-Programmable Technology (ICFPT), pages 281–286, 2020. doi: 10.1109/ICFPT51103.
2020.00048.

59

https://github.com/abs-tudelft/tydi
https://arrow.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://www.graphviz.org/doc/info/lang.html
https://doi-org.tudelft.idm.oclc.org/10.1145/1869459.1869497
https://marketplace.visualstudio.com/items?itemName=joaompinto.vscode-graphviz
https://marketplace.visualstudio.com/items?itemName=joaompinto.vscode-graphviz
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.tpc.org/tpch/

60 Bibliography

[15] Johan Peltenburg, Jeroen Van Straten, Matthijs Brobbel, Zaid Al-Ars, and H. Peter Hofstee. Tydi: An open
specification for complex data structures over hardware streams. IEEE Micro, 40(4):120–130, 2020. doi:
10.1109/MM.2020.2996373.

[16] Johan Peltenburg, Ákos Hadnagy, Matthijs Brobbel, Robert Morrow, and Zaid Al-Ars. Tens of gigabytes
per second json-to-arrow conversion with fpga accelerators. In 2021 International Conference on Field-
Programmable Technology (ICFPT), pages 1–9, 2021. doi: 10.1109/ICFPT52863.2021.9609833.

[17] pest parser. pest, the elegant parser, 2022. URL https://pest.rs/.

[18] Matthijs Reukers. Wip/playground vhdl back-end for (yet to be defined) tydi intermediate representa-
tion., 2022. URL https://github.com/matthijsr/til-vhdl.

[19] rust lang.org. Lifetimes, rust by examples, 2022. URL https://doc.rust-lang.org/
rust-by-example/scope/lifetime.html.

[20] salsa rs. Salsa-a generic framework for on-demand, incrementalized computation., 2022. URL https:
//github.com/salsa-rs/salsa.

https://pest.rs/
https://github.com/matthijsr/til-vhdl
https://doc.rust-lang.org/rust-by-example/scope/lifetime.html
https://doc.rust-lang.org/rust-by-example/scope/lifetime.html
https://github.com/salsa-rs/salsa
https://github.com/salsa-rs/salsa

	Introduction
	Context
	Challenge
	Problem statement and research questions
	Contributions
	Outline

	Background
	Tydi Specification (Tydi-spec) and Tydi intermediate representation (Tydi-IR)
	C++ compiler and Rust compiler
	typename keyword in C++
	Multi-file analysis in Rust

	Apache Arrow and Fletcher

	Tydi language
	Introduction to Tydi language (Tydi-lang)
	Tydi language features
	High level design
	Hardware description by variables
	Abstract hardware templates
	Generative syntax

	Tydi language specification
	Comments and space
	Scope and name resolution
	Constant variable
	Logical type
	Package and cross-package reference
	Streamlet and port
	Implementation, instance and connection
	Array
	If and for block
	Template
	Use components as template arguments
	Assertion

	Tydi language compiler frontend
	Introduction to Tydi-lang frontend
	Overall work flow
	Mutable memory structure in Rust
	Parsing
	Parsed code structure
	Multi-thread and multi-file parsing
	Limitations for PEST

	Value and target evaluation
	Evaluated code structure
	Lazy evaluation
	Multi-thread evaluation

	Tydi standard library
	Sugaring
	Design rule check

	Tydi simulator
	Introduction to Tydi simulator
	Tydi simulation syntax
	Tydi simulator structure
	Generate testbench
	Current simulator implementation and circuit representation

	Result and evaluation
	Conclusion
	Appendix
	Known issues in the Tydi-lang compiler
	Wrong precedence for unary operator
	Duplicated identifier issue in for/if expansion

	Proposals about future work

	Bibliography

