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Data-enabled Predictive Repetitive Control

Rogier Dinkla', Tom Oomen'?, Sebastiaan P. Mulders' and Jan-Willem van Wingerden®

Abstract— Many systems are subject to periodic disturbances
and exhibit repetitive behaviour. Model-based repetitive control
employs knowledge of such periodicity to attenuate periodic dis-
turbances and has seen a wide range of successful industrial im-
plementations. The aim of this paper is to develop a data-driven
repetitive control method. In the developed framework, linear
periodically time-varying (LPTV) behaviour is lifted to linear
time-invariant (LTI) behaviour. Periodic disturbance mitigation
is enabled by developing an extension of Willems’ fundamental
lemma for systems with exogenous disturbances. The resulting
Data-enabled Predictive Repetitive Control (DeePRC) technique
accounts for periodic system behaviour to perform attenuation
of a periodic disturbance. Simulations demonstrate the ability
of DeePRC to effectively mitigate periodic disturbances in the
presence of noise.

I. INTRODUCTION

Periodic disturbances and repetitive behaviour are en-
countered in many systems such as wind turbines [1] and
semiconductor manufacturing [2]. The periodic nature of
disturbances is exploited by repetitive control to obtain
improved reference tracking performance compared to con-
ventional feedback control. Model-based repetitive control
uses the internal model principle [3] to model a periodic
disturbance by means of a memory loop, thereby facilitating
complete attenuation of errors that share the same periodicity
as the disturbance [4].

The pursuit of fast and accurate repetitive controllers
has prompted many model-based forms of repetitive con-
trol. Modelling has allowed the design of potentially non-
causal filters to enhance robustness and learning [5]. In
the frequency domain, Frequency Response Function (FRF)
data enables uncertainty modelling for robust controller
designs [6]. Repetitive control of multiple-input multiple-
output (MIMO) systems has been facilitated by means of,
for example, H, techniques [7]. Unfortunately, repetitive
control applications often rely on parametric models that are
costly and hard to obtain due to the complexity that arises
with, e.g., underdamped mechanical systems [8].

The combination of widespread availability of data and
increasing system complexity motivates direct data-driven
repetitive control designs. Unlike model-based control, direct
data-driven techniques do not rely on an intermediate syn-
thesis of a parametric model [9], thereby alleviating the need
for the aforementioned costly modelling of systems with
complex dynamics [10]. Recently, the development of the
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direct data-driven predictive control technique Data-enabled
Predictive Control (DeePC) [11] has garnered significant
interest. DeePC applies Willems’ fundamental lemma [12]
in a receding horizon framework. An important feature of
DeePC is its innate ability to handle constraints due to its
reliance on optimization to solve an optimal control problem.

Despite attracting considerable attention, typical DeePC
approaches do not account for periodic system behaviour
and cannot incorporate periodic exogenous disturbance gen-
erators. DeePC has recently been incorporated in Iterative
Learning Control (ILC) [13], [14], in which field peri-
odic disturbances feature prominently, but by the nature
of ILC these applications are limited to cases where the
system’s state resets periodically. In addition, to mitigate
a periodic disturbance, standard DeePC based on Willems’
fundamental lemma is insufficient because it assumes system
controllability. Whilst DeePC has been extended to linear
parameter-varying [15] and linear periodically time-varying
(LPTV) [16] systems, periodic disturbance attenuation for
repetitive control applications is not considered.

Although DeePC has seen considerable development, its
use to attenuate periodic disturbances and accommodate
periodic dynamics is not adequately addressed. This paper’s
main contribution is the development of a DeePC-inspired
repetitive control framework named Data-enabled Predictive
Repetitive Control (DeePRC) that attenuates the influence of
periodic disturbances and accommodates LPTV system be-
haviour. Building on [16] a technique called ‘lifting’ is used
to transform LPTV to linear time-invariant (LTI) dynamics.
A suitable relaxation of the system controllability assumed
by Willems’ fundamental lemma is developed to faciliate
the mitigation of periodic disturbances. Furthermore, by
incorporating Closed-loop Data-enabled Predictive Control
(CL-DeePC) [17] in a lifted framework, DeePRC relies on a
computationally efficient implementation that can adequately
mitigate noise, including during closed-loop operation.

This paper is organized as follows. Section II introduces
the employed LPTV model, notation and definitions. The
DeePRC framework is developed in Section III. To this end,
the LPTV system is first lifted to an LTI representation in
Section III-A. Then, in Section III-B, the internal model
principle is used to motivate augmenting the lifted state
with a constant disturbance. Section III-C explains how the
controllability assumption of Willems’ fundamental lemma
may be relaxed to accomodate such disturbances in a DeePC
framework, which motivates the DeePRC formulation pre-
sented in Section III-D. Thereafter, a simulation case study
is presented in Section IV, and conclusions and suggestions
for future work are provided in Section V.
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II. PRELIMINARIES
A. Periodic System Model

This paper considers the signal generating plant to be a
discrete-time LPTV system S in innovation form to capture
the effects of process and measurement noise [18]

(1a)

S- {zk-',-l = Axxy + Brug + Frdy + Kieg
' (1b)

Yk = Crxr + Diug + Grdy + ex

where the subscript k € Z is used as a discrete time index,
{Ag, By, Fy,, Ki, Ck, Dy, Gy } are periodic system matrices,
x), € R™ represents the system’s states, uy € R are inputs,
dy € R™ are periodic disturbances, yi € R! are outputs,
and e, € R! is zero mean white innovation noise. The
disturbances dj and the system S are assumed to be P-
periodic. For disturbances this entails that dj, = di4 p whilst
for the system S the definition below applies.
Definition 1. (P-periodic LPTV system) [19]: a causal
system S is said to be P-periodic if it commutes with
the delay operator 9p such that 9pS = S%p, where
(Dpf)(k) = f(k— P) for a function of time f.

In effect, for the state space representation of (1), P-
periodicity entails that for all of the system matrices
A = Ak+p, By, = By+p, etc.

B. Notation and Definitions

This section introduces notation and definitions that
are used throughout this paper. For discrete time indices
ki,ko € Z with ke > k; we start by defining a monodromy
matrix @Zf and Markov parameters g,’jf:

(I)ZQ — Apy—1Apy—2- - Ag,, k2> k1 )
! I, ko = k1,
©k ]Cg = /411

Gr2 (B, D)) = v 3)
kl( ) Ck?q)];f-l-l%ku k2 > k17

where I,, € R™*™ represents an identity matrix, and ®j and
B, represent (periodic) matrices of the system as in (1).
Specific types of Markov parameters are defined by

“Gy? = Gy*(Bi, D) 9Gy? i= G2 (Fy,Gy)
k: k:
egkf = gkf (Kka Il)
where I; is not a periodic matrix but an identity matrix.

Using (2) and (3), furthermore define matrices with Markov
parameters ’77:“12 (G), reversed extended controllability matri-

ces 6 ],;2 (%B1), and an extended observability matrix O’,:f as

“4)

g 0 - 0
ghtt ghtl o g
TG = A )
k oo Lk
9 Y o Yk
(611;2<%k) = {‘pﬁfi%kl ‘I)zfié%kﬁl ‘P%Ii%/@}, (6)

Of: = [Cn 0l Corntfy™ s o] @)

Block-Hankel data matrices are defined as

Us Ui4-1 Ui N—1
Uq4-1 Uj42 - Ui+ N
Hisn(ug) = . . i . , (8
Ujts—1 Uits Ui+ N+5—2

where uj can be replaced with different types of data, : € Z
indicates the start of the used sequence, and N,s € Z
respectively indicates the number of columns and block rows
of the matrix. The notion of persistency of excitation is
defined using block-Hankel matrices as follows.
Definiton 2. (Persistency of excitation) [12]: The signal
given by the sequence {wk}f:zv 572 s called persistently
exciting of order s if its block-Hankel matrix H; s n(ws) is
full row rank.

Furthermore, column vectors of concatenated data samples
are exemplified by
wl]' ke >k ©)

.7 T T
Ulky, ko] = [ulﬁ Upy 41

ITI. DATA-ENABLED PREDICTIVE REPETITIVE CONTROL

This section presents the development of Data-enabled
Predictive Repetitive Control (DeePRC). The periodic system
model is first transformed to an LTI system by means
of lifting. To mitigate periodic disturbances, it is shown
that the controllability assumption that underpins Willems’
fundamental lemma may be relaxed, thereby facilitating data-
driven use of the internal model principle.

A. Lifting the LPTV to an LTI system

Lifting is a technique that is used to transform LPTV
systems into a higher-dimensional LTI representation. This
section lifts the P-periodic system from (1) along the lines
of [16], from which we obtain the following definition.
Definition 3. (Lifting): For a P-periodic LPTV system &
as in (1) the corresponding LTI, lifted system representation
Si(ko) of S with initial time ko € Z is

Xj+1 :AXj +Bu]‘ +Fdj +Kej
y; = CXj +Dllj +Gd]‘ —|—Hej

(10a)

St (ko) : { (10b)

with iteration index j € Z, and state x; € R", inputs
u; € R™F, outputs y; € R'F, disturbance d; € R™F, and
innovation noise e; € R!P. The following relations exist
between these quantities in the P-periodic LPTV system S
and the lifted LTI system Sy (ko)

Xj 1= Tho4jPy WG = Ukt j P, ko+(j+1)P—1]

with y;, d;, e; defined akin to u;. For the lifted system
matrices {A, B, F, K,C,D,G, H} in (10) note the lack of a
subscript to distinguish them from LPTV counterparts. These
system matrices are defined using (2) to (7) as follows:

A= dpott C:=0ptr!

B:= (6£§+P71(Bk) D= Elf)oJrPfl(ug)

F .= (628+P71(Fk) Fo= 77€/€0+P71(dg)
K

K =62 (Ky)  H:=Tot"7(g).
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B. Applying the Internal Model Principle

The internal model principle is the main mechanism be-
hind repetitive control to mitigate disturbances. The essence
of the internal model principle is that the effect of a distur-
bance that is generated by some signal generating model
may be asymptotically attenuated by means of feedback
if the controller includes the dynamics of the disturbance
generating model [3].

In the case of a P-periodic disturbance dy, = di p, as is
the case here, this implies that the lifted disturbance d; is
constant: d;4; = d; Vj € Z. Combining this disturbance
model with the lifted system dynamics of (10) obtains the
augmented system description

Xj+1| _[A F ||x; Bl K|
S =L ][ ol o
v;=[C & [§2]+DuJ+Hej. (11b)
J

SE (k’o) . |:

In data-driven control applications, minimality of the con-
trolled system is often assumed, requiring that the system is
both controllable and observable. Whilst the augmented lifted
system (11) may be observable, the modes corresponding to
the dynamics of the disturbance are not controllable. The
next section derives an extension of Willems’ fundamental
lemma for such uncontrollable systems in a (not necessarily
lifted) LTT domain that is subsequently applied in Section III-
D for the development of a data-driven repetitive control
method that operates on lifted data from a system like (11).

C. Disturbances with Willems’ Fundamental Lemma

DeePC applies Willems’ fundamental lemma to make
data-driven predictions in a receding horizon optimal control
framework. For the purpose of the following discussion of
Willems’ fundamental lemma, consider a generic determin-
istic state-space LTI model P

(12a)

D {xk.H = Axy, + Buy,
' (12b)

yr = Cxy + Duy,

with states z; € R™, inputs u; € R™, outputs y; € R™
and system matrices {.A, B, C, D}. For the system P consider
the following lemma.

Lemma 1 (Willems’ fundamental lemma [12, Th. 1]).
Consider the deterministic LTI system P from (12) and
assume it to be controllable'. Collecting input uy' and output
measurements y; during an experiment, if the input signal
{up g:‘LOLJrn’rQ is persistently exciting of order L+ny, then
any L-long input-output trajectory of P is described by

[U[o, L—l]:| _ |:HO,L,N+nx(ugl):| p

13
Yo, L—1) Ho,L,N+n, (U3) (13

with g € RN+,

Note that [12, Th. 1] employs a behavioural definition of controllability
(see, e.g., [20]) that is implied by classical state controllability. This latter
notion of state controllability is used in [21] to demonstrate the fundamental
lemma for state-space representations, as well as in this work.

A proof of Lemma 1 relies on the fact that if P is
controllable and if u} is persistently exciting of order L+ny
then [12, Cor. 2]

Ho,L N+ne(TF)]) _
rank <|:HO,L,N+nX ()| ) = Lny, + ny, (14)

i.e. the matrix in (14) is is full row rank. It then follows from
the Rouché-Capelli theorem, that there exists a vector g as
above such that

[ To } _ |:HO,1,N+nX (CCI;?)}
wo, b-1)| | Hoznn (@] &
with x¢ as initial state corresponding to the input-output
trajectory on the left-hand side of (13). As is furthermore
shown in [22, Lem. 2], (13) follows directly from (15).

Unlike is assumed in Willems’ fundamental lemma, the
lifted augmented system S (ko) from (11) is not controllable
due to the uncontrollable disturbance modes. This raises the
question of what conditions are sufficient to guarantee that
(15), and therefore (13) on which DeePC relies, still hold in
the presence of a periodic disturbance.

1) Imposing full row rank on the state-input data matrix:
Given the developments in the preceding section, a natural
answer is to seek guarantees for the equivalent of (14)
using an extended state to incorporate an uncontrollable
disturbance. To this end, P is augmented with an observable
disturbance as

15)

_ A Byl _ B
Tht1 = {O Aﬂ Ty + {0} Uk (16a)
Pq : ~— ~~
=Ap =B,
Yp = [C Cd] Z + Duy, (16b)
where z, = [:z:; d—kr]T € R" is the augmented state

containing the disturbance d € R™, with n = ny + ng,
and {Bg4, Aq,Cq} are extra system matrices with respect to
‘P that indicate effects of the disturbance.

What follows is a theorem that specifies sufficient condi-
tions to guarantee that, analagous to (14),

Ho,1.N+n(T}) _
k o =1L u P
ran ([HO,L,N+”(U?) Ny +n

such that (15) and therefore (13) also hold for the augmented
system Py.

a7

Theorem 1. Consider the deterministic LTI system Py from
(16). Let the superscript m denote data obtained from an
experiment. If a measured input signal {ug‘}gjL"'ﬁ_z is
persistently exciting of order L+n, and (A, B) and (Aq, d7)
are controllable, then the resulting augmented state-input
trajectories are such that (17) holds.

A proof of Theorem 1 follows along the same lines as [21,
Th. 1.i], and is provided in the extended report [23].

The above Theorem 1 provides sufficient conditions for
the rank condition stipulated by (17) to hold. As explained
in the beginning of this section, this rank condition is an
important building block of typical DeePC implementations.
Unfortunately, the conditions posed by Theorem 1 are rather
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restrictive. To see this, compare Py from (16) to the non-
stochastic component of S{(ko) from (11). In the lifted
framework the periodic disturbance is constant such that
Ay, = I,,,p. With reference to Theorem 1, this implies that
the lifted disturbance d; € R™F must be full row rank,
which is highly unlikely given that this would require that
m = 1 and that P = 1. Particularly this latter condition
would obviate the need for lifting in the first place since the
considered LPTV system is then actually LTI

2) Relaxing the assumption of controllability: Since the
controllability of (Aqg, d{") seems like a difficult condition to
satisfy for many kinds of exogenous disturbance generators,
it makes sense to look into whether this condition, and conse-
quently (17), may be relaxed. As it turns out, the conditions
presented by Theorem 1 are sufficient but not necessary to
ensure an equivalent of (15) upon which DeePC ultimately
relies. The following theorem formalizes this insight.

Theorem 2 (Fundamental lemma for systems with an
exogenous disturbance). For the LTI system Py from (16),
if the pair (A, B) is controllable, the controllability matrix
of (Ag,dy") has rank v with 1 < v < ng, and a measured
input signal {uzﬂ}év:t)L‘m_Q is persistently exciting of order
L + 7, then the following three properties hold:

(1) the matrix from (17) is nq — v rank deficient:

[Ho1,n4a(Z)]
rank o . = Lny+ny+v, 18
( _HO,L,NML(UIC ) (18)

(i) dg such that

[Ho1,Nn(TP)] { Zo ]
Y m = 5 19
| Ho,o,N+n(upl) | g Ujo, L—1] (19)

(iii) g such that for measured inputs v} and outputs y;,
[Ho,L,N+a(up)]

_ {U[o, L—1]]

| Ho,z,N+n(y)') | 9= Yo, L—-1]]

For proof of Theorem 2, see the extended report [23].
The above theorem demonstrates that the controllability and
rank condition posed by Willems’ fundamental lemma can
be relaxed to facilitate the application of DeePC to systems
of the form given by (16).

3) Implications for a constant disturbance: The following
corollary states the implications of Theorem 2 for a constant
disturbance, as is the case in the lifted domain of (11).

(20)

Corollary 1. Let the conditions of Theorem 2 hold for a
nonzero constant disturbance such that Aq = I, then the
results of Theorem 2 hold with v = 1.

LTI systems with a constant disturbance are a type of affine
system, for which an alternative proof of Corollary 1 can be
found in the combination of [24, Th. 1] and [25, Th. 1].
The above corollary enables direct data-driven control of
the lifted system on the basis of (20) using DeePC if the
predicted output is additionally unique. This is the case when
the past window length that is used to approximate the initial
state is larger than the lag of the lifted system [16, Lem. 7.ii].
The next section presents the control problem formulation
and noise mitigation strategy.

D. DeePRC Formulation and Noise Mitigation

Having lifted the LPTV system S of (1) to the LTI
form Si(ko) of (11), and having shown how DeePC may
accommodate exogenous disturbances in such an LTI do-
main in the previous section, this section develops a data-
driven repetitive control method that operates on lifted data
to accommodate periodic behaviour and disturbances and
mitigates noise.

1) Closed-loop DeePC applied to a lifted system: Use will
be made of the computationally efficient CL-DeePC frame-
work developed in [17, Sec. 4] for several reasons. Firstly,
the method uses the available data relatively efficiently to
suppress noise when compared to DeePC. Secondly, the
dimension of the identification task is considerably reduced
w.r.t. DeePC, which is especially significant for lifted sys-
tems. Thirdly, we note the potential of this method to obtain
consistent output predictions from noisy closed-loop data,’
which is a problem for regular DeePC [27]. For clarity we
provide an analytically equivalent, simpler representation of
the employed CL-DeePC framework from [17, Sec. 4] as

Hip,n(uy) Hi,p,f(uj)
Hian(wy) | Z27G=|H; 4 p(w) |, (2la)
Hip.n(y;) H; . (¥5)
=Z
Hiyan(YDZET [0 - g5l =H; 1 ;(55),  (21b)
N————

=G

where i and ¢ are starting indices of the relevant data matri-
ces, p is a window length of past data, f is the prediction
window length, i, := i + p, i, := i + p, (-) indicates
predictions, and (_) indicates that the data is composed in part
of predictions. With this notation, the first future sample is
found at %p. Furthermore, G € R(PHDPr+pPOXF j¢ 4 collec-
tion of f vectors that are found in DeePC with instrumental
variables [28]. This paper uses Z as an instrumental variable
to mitigate the effects of noise whilst preserving the rank of
the matrix pre-multiplying G. Subsequent columns of (21)
correspond to DeePC with an instrumental variable matrix
and a prediction window length of one, applied to the same
past data matrix to find trajectories that are each subsequently
shifted one (lifted) sample into the future.

2) Optimal Control Problem Formulation: The optimal
control problem formulation that is used here is

min
Uiip, ip+r—1

st (21), (22b)
w €U, §;, €V, V) € [ip, ip+ f—1], (22¢)

]|\5’[2p,%p+f—1]||éz + ||u[%p,2p+f—1]||§a (22a)

in which, R and @) are respectively positive(semi)-definite
weighting matrices, and ¢/ and ) are allowed sets constrain-
ing the inputs and outputs.

2For lifted systems this necessitates using a suitably chosen instrumental
variable Z. An optimal choice is non-trivial, so for simplicity (21) uses
a common choice for open-loop data that is sub-optimal otherwise. For
dedicated alternatives for closed-loop data see [26].
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3) Receding horizon implementation: With regards to
the receding horizon implementation, consider implementing
either the entire sequence of inputs corresponding to the first
computed lifted input u; , or the first input of this sequence
U yi, P A significant advantage of the latter method is
the availability of more frequent feedback by which to
improve performance. However, note that for data-driven
control applications that seek to learn LTI behaviour (e.g. by
updating RQ data factorizations at each time step as in [29])
the latter method also has an important drawback: since
the lifted LTI system varies periodically with the starting
point S (ko) = S(ko + P), such applications would need
to learn the behaviour of P different lifted LTI systems.

IV. SIMULATION RESULTS

Having presented the DeePRC framework, this section will
demonstrate the superior performance it can achieve for a
periodic system with a periodic disturbance.

A. Simulated LPTV System

The simulated periodic system was obtained from [30] and
constitutes a linear parameter-varying system with a periodic
scheduling parameter ji, = cos(% k), with period P = 20.
The periodic matrices from (1) are defined by

0 09 02] 06 05 05
AM | A®]=] -09 05 0 | 05 06 0 [,
| 02 0 02|-05 0 06
(1] 04
[BO [ B®]=| 1] 02 |, [DO | D] = [ 01 ‘ 0:2 }
0.12 : :
(02 1 05]02 01 1
1 2 —
c | c®] = 02 01 1 ]03 04 08 }
[ 0.0130 0.0225 |0 0
[E® | K@ ] =] 00089 0.0060 [0 0 |,
| 0.0002 —0.0010 | 0 0

with A4, = AWM + 4, A®) | and likewise for By, Cy, Dy,
and K. An unknown input disturbance will be applied such
that Fy, = By, and Gy = Dj. The periodic disturbance
is given by dy = sin(25k). Use is made of zero-mean
white innovation noise e; with a variance of 0.05. In the
lifted domain represented by (11) this system has controllable
(A, B) and is observable.

B. Controller Settings

Two different controllers are simulated. One controller
makes use of the DeePRC framework with optimal control
problem formulation given by (22) with p = 1, f =
periods, Q = 100, R = 1. This controller computes a
lifted future input sequence and implements the first sample
ug € R” thereof. A second controller uses CL-DeePC and
operates fully in the non-lifted domain, likewise implement-
ing the first sample wy that it computes. The optimal control
problem solved by the second controller is comparable to that
solved by DeePRC. Furthermore () and R are the same for
the second controller, as are the effective window lengths in
terms of the non-lifted domain. Both controllers implement
constraints of the form |ux| < 10 and |yx| < 20 and are
initialized with 1000 periods of open-loop data where uy, is
zero-mean white noise with a variance of 1.

CL-DeePC
DeePRC

noise ey,
———no control

"‘ “w"' ““ *“ ‘ ‘ Al Nl HM]\ Al A w..;‘.ﬁ_
il M [”‘1 “' 4 A

1
disturbance
no control

Outputs Yk
__3

il
CL-DeePC
DeePRC

«

3

2

] 0

=y

g

= -5

10 1 I { | t |
20000 20050 20100 20150 20200 20250 20300 20350 20400
Time k
Fig. 1. Performance of DeePRC and CL-DeePC controllers using re-

spectively data from the lifted LTI and the non-lifted periodic domain
under the influence of a periodic disturbance and noise. DeePRC effectively
compensates the input disturbance, whilst CL-DeePC performs worse here
w.r.t. the case without control. Dashed grey lines indicate contraints.

C. Simulation Results

With the above simulation model and controller settings,
the obtained results are shown in Fig. 1. The controllers
are enabled at the grey vertical line when the open-loop
data collection ends. The figure clearly demonstrates that the
DeePRC controller, which operates in the lifted domain, out-
performs the CL-DeePC controller in attenuating the effect of
the disturbance to regulate the output channels to zero. This
is because the DeePRC controller effectively operates on LTI
data and is therefore better able to form an implicit internal
disturbance model, as explained in Section III-C. Further-
more, notice that after initialization the CL-DeePC controller
violates the output constraints. This is possible because the
constraints are formulated only for future samples and are,
if necessary to ensure feasibility, relaxed. Moreover, there is
considerable mismatch for the CL-DeePC controller between
the data-driven output predictor that it employs and the true
system. This contributes to a deterioration of the performance
compared also to the case where no control action is applied.

The obtained iteration cost, as specified by

T () = llyillg + llyl1% (23)

can be calculated for each iteration index j. The results
are shown in Fig. 2 for both the setting with noise shown
in Fig. 1 and in the same setting, but without noise. In
the noiseless case, the DeePRC iteration cost demonstrates
convergence that is, at least initially, quite fast. Moreover,
the iteration cost of DeePRC is considerably lower than
would be the case without control. This is not the case
for the CL-DeePC controller, which only appears to achieve
a somewhat better iteration cost than no control would in
the absence of noise and after a considerable number of
iterations.
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Fig. 2. Obtained iteration cost as specified by (23) of the DeePRC
and CL-DeePC controllers under conditions with and without noise. The
iteration cost of DeePRC is lower than that of CL-DeePC and illustrates
faster convergence.

V. CONCLUSIONS AND FUTURE WORK

A new control framework is presented that is able to
address both dynamics and disturbances of a known period
in the presence of noise. Moreover, it is shown under what
conditions Willems’ fundamental lemma can accommodate
autonomous, uncontrollable disturbance dynamics that arise
from the application of the internal model principle. In
particular, it is shown how despite a loss of the generally
assumed controllability, a constant disturbance may still be
accommodated by DeePC formulations. Simulation results
indicate superior performance of the DeePRC controller
compared to a CL-DeePC controller that respectively use
data from the lifted LTI and periodic system domains. Future
work considers the effect of an uncertain period as well
as periodic data differencing to remove the effect of the
disturbance from the data.
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