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Impurity necklaces are scattering sites randomly distributed on a line normal to the electron
transport direction in wide wires of the two-dimensional electron gas. The level density and corre-
lation function of the transmission matrix eigenvalues of these systems are expressed exactly as a
function of a short-range impurity scattering potential. The nonuniversal dependence of the aver-
ages and the fluctuations of the transport properties on microscopic parameters can be explained

by the absence of long-range level repulsion.

I. INTRODUCTION

The study of transport phenomena in disordered meso-
scopic systems! is often focused on “universal” proper-
ties, which do not depend on details of the sample geom-
etry or the nature of the disorder. Most prominent are
the universal conductance fluctuations (UCF) relative to
the ensemble averaged value.? * Recently random matrix
theory® (RMT) of transport has been invoked to explain
the universality.5~® This approach is based on Landauer’s
formula, which for zero magnetic field and nonmagnetic
systems reads

2¢e? 2e?
G:—h—’I‘rT=—h—;Tn, (1)
where T, are the eigenvalues of the transmission ma-
trix T. The distribution function of the transmission
matrix eigenvalues (“levels”) of sufficiently random sys-
tems are interpreted in terms of classical fictitious charges
in one dimension, which repel each other with the two-
dimensional Coulomb interaction.® The universality of
the conductance fluctuations is explained by the spectral
rigidity caused by the level repulsion, which reflects the
negligible weight of highly symmetrical matrices in the
maximum entropy ensemble average. However, RMT is
not a theory of everything.!® The single-particle poten-
tial, which confines the charges, must be obtained by
other means. RMT is based on the isotropy assump-
tion that incoming electrons in a specified mode are ho-
mogeneously distributed over all outgoing modes, which
appears reasonable only in the limit where the length
of the sample is much larger than its width and the
electron mean free path. Even in this long-wire limit,
Beenakker and Rejaei!! identified an attractive level in-
teraction on top of the logarithmic Coulomb repulsion,
which causes a small but disconcerting deviation be-
tween the UCF’s obtained by RMT (Ref. 12) and mi-
croscopic calculations.?™* Universal features in the eigen-
value density are completely lost in the presence of tunnel
barriers.'3:14 Conductance fluctuations in metallic point
contacts have been measured to be much smaller than
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the universal predictions.'® Since RMT is increasingly
applied to other problems,'®7 it is important to learn
more about the regime of applicability and the accuracy
of RMT by deliberate research of nonuniversal transport
phenomena in disordered systems.

The present paper is devoted to the theory of trans-
port through a disordered region that is much shorter
(or thinner) than the average distance between scatter-
ers and much wider than the Fermi wavelength, i.e., with-
out appreciable effects of size quantization, in an other-
wise ballistic constriction or wire. Such a system can be
interpreted as the opposite to the long-wire, quasi-one-
dimensional or diffusive limit, which is therefore said to
be in the short channel limit. Physically this model rep-
resents, e.g., a rough metallic heterointerface as relevant
for the perpendicular giant magnetoresistance in metal-
lic magnetic multilayers,'®° or a line of scatterers in-
tentionally introduced into a wire of the two-dimensional
electron gas. The latter system, i.e., a disordered line
in the two-dimensional electron gas (see Fig. 1), will be
called an impurity necklace. We have shown recently that
it is possible to separate the transmitted amplitude into a
specular and diffuse contribution.?° The specular part is
transmitted without change of momentum, and also the
diffuse contribution is not scattered isotropically into all
outgoing states. RMT has been used to describe trans-

FIG. 1. Schematic view of an impurity necklace in the
two-dimensional electron gas. Ap is the Fermi wavelength,
W the channel width, Ar/a the range of the scattering po-
tentials, Az the spreading of the impurity positions in the
transport direction, and nrgr the line density of scatterers.
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port in ballistic cavities under the condition that the
drain contact does not “see” the source directly.'® We
notice that in the short channel limit an analogous con-
dition is violated. Therefore, for necklaces and interfaces
the isotropy assumption must not be made. Further-
more, the number of “pearls” on the necklace is neces-
sarily smaller than the number of channels, which means
that the transmission matrix elements are not distributed
independently, thus violating the maximum entropy as-
sumption. RMT is therefore not applicable.

In the following, a microscopic theory is presented for
the level density

P(T) = <Z5(T—Tn)> (2)
and the correlation function

P(T,T') = <Z §(T —T,) Y 8(T' - Tm)> , (3)

where the ensemble average over the randomness is de-
noted by (---) Beenakker'Z?! emphasized that these
functions allow direct calculation of various physical
properties and its variances, such as shot-noise power??
and the transport properties of Normal/Superconducting
(N/S) and S/N/S Josephson junctions.?? In general, for
a property a described by a linear statistic a(T)

(a) = <Za(Tn>> - / dT o(T) P(T) (4)

n

and Var(a) = (a?) — (a)? with

(a?) = / dTdT’ o(T) o(T') P(T,T"). (5)

Nazarov!® derived a Green’s function expression for
P(T). Its semiclassical approximation, which is valid
in the diffusive and weak scattering limit, agreed with
the bimodal distribution obtained before by a scaling
equation.?? P(T,T') has been computed by RMT,® and
by a Fokker-Planck equation parametrized by the mean
free path.1! The author is not aware of fully microscopic
calculations of these distribution functions for realistic
systems, which is not so surprising, since the diagram-
matic theory of the conductance fluctuations is already
quite involved.Z ¢ Only due to the simplifications that
are possible in the present limit does the algebra become
manageable.?> With minor modifications the present re-
sults are also applicable to other transport problems, e.g.,
the transparency of a thin diffusing medium to light.2¢
The nonuniversal properties found in the present study
include a strong dependence on dimensionality. Here we
focus on a two-dimensional system. A brief account on
some results in three dimensions and the relevance for
the giant magnetoresistance effect in metallic multilayers
is given in Ref. 27.

The paper is organized as follows. In Sec. II, the
transmission matrix is derived from the Schrédinger
equation.?® These results are used in Sec. III to ob-
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tain general expressions for the level density and cor-
relation functions. In the weak scattering limit, these
functions can be written explicitly in terms of the mi-
croscopic scattering parameters, which can be evaluated
easily, as shown in Sec. IV. The paper concludes with a
discussion in Sec. V.

II. TRANSPORT THROUGH
A DISORDERED INTERFACE

In the following, the statistical distributions of the
transmission matrix eigenvalues are calculated directly
from the Schrodinger equation, using many results from
Ref. 20. However, in contrast to Ref. 20, focus is here
on the two-dimensional geometry, noting that the three-
dimensional situation can be treated as well.2” On the
other hand, technical complications due to the presence
of a potential step or barrier at the interface and of
evanescent states are disregarded. The model consists
of (see Fig. 1) short-range impurities on a line such that
the spreading Az is smaller than the average distance
1/nrr where nypg is the line density of scatterers.

In the effective mass approximation, the single-electron
states at the Fermi energy Ep are solutions of the
Schrédinger equation,

hV
T 2m

where V is the scattering potential. The wave function
can be expanded in transverse plane waves

F)] Y(7) = Er(7), (6)

zk”

’(L'(.’L‘ y) chu (1:) \/— (7)

Ky

where W is the width of the wire. Impurity scattering
gives rise to mixing between different transverse modes.
Using the orthogonality of the transverse wave functions,
a one-dimensional equation is obtained:

2

%ck“( z) + k3 (z)cr, () = ZVk“,k (z) Chf (1”), (8)

*

2m il k!
Vku,kh (z) = W2 /dy V(fe (ky—kj)y (9)

The scattering potentials are modeled by é-impurity scat-
ters in the plane z = 0:

V() =Y Yab(2)d(y — ¥a), (10)

where y, is the transverse position of a scattering center
and v, = %7 the scattering potential. Inserting Eq. (10)
into Eq. (8)

2

i 2ck,,(z)+kLck” (2) __S_:rk”, ((@)ery (@), (11)

H
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Here the transverse part of the § function has been inte-
grated out, and the matrix

~ zm* —i !
Dieyoky = Wh2 E%e (k) =) Jya (12)

has been introduced. Integrating over x

deg, ()
dx

_ dck” (SC)
dr

=Y f‘k",kl'l e (0).  (13)
k)

z=0"+ z=0"

Equations (11) and (13) are obeyed by

Ck, ()

_ LI Oy ki ethe® + rknvkixe—ik”’ z<0
A\ Ak tiey b etk x> 0.
(14)

We can interpret Eq. (14) in terms of particles incident
with parallel momentum k. The incoming wave gives
rise to an infinite set of modes, propagating for real
ki, and evanescent (exponentially localized) for imag-
inary k), the perpendicular wave vector being defined
in terms of the Fermi wave vector kr as k% = k% — kﬁ
The propagating states are normalized to carry unit flux.
The transmission (reflection) probabilities are obtained
as ]tk”,k“z (e |2). The conductance is given by the
summation over all propagating modes in both indices.
The continuity of the wave function at the interfaces im-
plies that

Tky,k

= oy~ Oy s (15)

whereas from current conservation for propagation modes
prop.

1 T —
Z [t’“llv"fllt’“h"kﬁ + Tk”’kﬁlr"’ﬁ"kh] = Onyuky- (16)

"
kj

Combining Egs. (13), (14), and (15) and disregarding
evanescent waves,?® we find that the transmission coeffi-
cients are solutions of the equation

prop.

~ 1
E é i — |t =6 .
o R R S P o e R B
I

(17)

This can be written in matrix notation as (I+:T) -t =1,
where
1

= m itk kv L
Doy = W h2 Z"/ae WY N (18)

Note that since we omitted evanescent states, I' is Her-
mitian. Expanding t in a power series in T, we obtain

oo

t= Y (—iD)V. (19)

N=0
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The following Ward identity can be derived directly as?®

T=ttl = i i(—z‘)N—MI"”M =

N=0 M=0

(t +th). (20)

N =

This relation is more than an optical theorem,2%3° since

it holds also for the nondiagonal elements, which is im-
portant for the manipulations below. The configurational
average can be calculated most conveniently by Green’s
function methods.?? The following, general expression is
given for future reference:

(Tkuvkh) = Skn,kﬁ Re(tk) k)
1

= Op, p Re ————
P T e T

(21)

where ¥ is the irreducible self-energy at the Fermi energy
and Re denotes the real part.

III. DISTRIBUTION FUNCTIONS
OF TRANSMISSION MATRIX EIGENVALUES

We are interested in the probability distribution of the
transmission matrices. The § function in Eq. (2) can be
expressed as a Fourier integral

d, . .
P(T) = / 44 o —iaT 1y T, (22)
2T
In order to evaluate the expectation value of the expo-
nent, we need expressions for (T™). To this end it is
noted that the electron-electron propagator

tt = (—iT)V+M

L

]
I

0

(14 N)(—=D)N = (1 + 7;%) t, (23)

i™Ms (M

can be expressed as a derivative with respect to the cou-
pling constant to the impurities. Equation (23) is a sec-
ond useful Ward identity. Using these relations and its
Hermitian conjugate repeatedly we find

T =3 fu(N)(=T)*N = fn ("a%) T(n)

N=0

bl
n=vy2

(24)
where f,(N) = (V1") is a polynomial of N. T(n) de-

n
notes the transmission matrix as a function of the squared
scattering potential, which is set to the physical value
n = ~? after differentiation. Assuming that the order
of differentiation and configurational averaging may be
exchanged, P(T) can be expressed in terms of the series

expansion

P =3 [ e (14 3 4

k)

X fr-1 <77'86_n) (Tkn,k” (n))) . (25)
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Referring to Eq. (21), we see that P(T) depends only on
the self-energy. For calculations Eq. (25) is cumbersome.
By using a (slightly modified) Stieltjes transform in the
variable 7 and separating a possibly not square integrable
component, the following more convenient expression can

be derived:

P(T) = (90 = (9(0)))5(T) + (9(c0))8(T — 1)
+%T(1—1_ﬂlm <y(%’—_T—1 —i0+) —9(00)>},

where go = TrI is the number of channels, g(n) =
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Tr T(n), and 07 is a positive infinitesimal. We see that
the complete distribution function can be obtained by an
infinitesimal analytical continuation of the squared cou-
pling constant into the complex plane.

The correlation function Eq. (3) can be expressed as

CENETE

which, as mentioned above, provides information about
the fluctuations of the transport properties due to in-
dividual deviations of a typical impurity configuration
compared with the ensemble average. We can proceed as
before and obtain

—iqTe—iq'T’ ('I\l' 9T Ty eiq'T)

(27)

(Tr *9T Tr ¢'4'T) —nh_)n}, ZZ<[1+Z (ig)” i fn- 1( 0 )Tkn kn(n)] [1+ Z (zq/)’ Fre —1< 3?, )Tkn’k (' ):|>

;
ki

The product of the traces of the transition matrix ele-
ments reads

Z Z Ty iy (")Tkh el (n")

k) "’ﬁ

g(mg(n’)

Il

L Re[Tr () T (7') + Trt(n) Tr ¢! ()],
(29)

which cannot be reduced any further. The vertex correc-
tion of the configurational average of Eq. (29) contains
all information about the fluctuations.

A simple application is the (normalized) shot-noise
power of the conductivity??

Pox = YT (1 = T)) = —ng-lotm)  (30)

and its variance

— . a ! a !
VarPsy = lim, 50" a—n,(y(n)g(n ))- (31)

IV. WEAK SCATTERING
AND LOW IMPURITY DENSITY LIMIT

The above results are exact for the given model. In
particular, they are valid for two and three dimensions
(in the latter case the parallel momentum is a vector)
and are not limited to weak scattering or any assump-
tions about the distribution of the scatterers. Concrete
results are obtained rather easily when the scattering po-
tential is weak, but also for strong scattering potentials,
provided the density of scatterers is small. The single-site
approximation is valid in this limit, where the scattering

n'=1

(28)

[

at a single impurity is treated exactly, but the phase co-
herence during multiple scattering is disregarded in the
self-energy. This approximation is also called (single-site)
coherent potential approximation. In the following, ana-
lytic results are discussed in this approximation for two-
dimensional (2D) systems. Three-dimensional systems
show quantitative differences,?” which will be discussed
in more detail in a separate paper.

A. Level densities

The self-energy in the single-site approximation reads
in two dimensions

nIRY — inn?_%:g;(ﬂ —2iln|a+ Va2 — 1))
1+ (Z2)2(m — 2iln|a + Va? — 1|)2

where nrg is the density of scatterers with average scat-
tering strength 7 and « is a cut-off parameter in the wave-
vector summations. Since we disregard evanescent states,
a will be set to unity in the following. The single-site ap-
proximation is valid in the weak scattering limit, where
the scattering parameter ng = ( h; )252%1"— is sufficiently
smaller than unity, but is believed to be apphcable more
generally at elevated temperatures where inelastic scat-
tering destroys subtle phase coherence effects. In three
limiting cases, analytical results can be obtained easily.
The first, and rather trivial one, is that of a homogeneous
é-function barrier potential without disorder. This prob-
lem is equivalent to the disordered interface when only
the first term in the self-energy is taken into account. In
this limit

Ns =

(32)

¥ = nrry. (33)

It is straightforward to derive the distribution func-
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tion for a barrier in a channel of the two-dimensional
electron gas and a dimensionless scattering parameter

Ny = (-"%;ig&j)z to be

1 Mo 1
Py(T) = goz ,
v =90 oI VIsT = ol
for T < T®., = 1/[1 + ns] and zero otherwise. go =
iwLW denotes the number of channels in a ballistic wire of
width W.
A second simple limit is obtained for weak scattering

such that nIR(T,{;l)z < 1. In that case the Born approx-
imation is valid:

(34)

.m* nrpy?

A TR

(35)

. - 2
In terms of the scattering parameter ng = (%—)2%,
the distribution function reads

nf;T 1

1-T7)*,/0-T)2 —n3T?

for T < T2, = 1/[1 + ng], and zero otherwise, where
gB is the (dimensionless) conductance. These results dif-
fers qualitatively from the distribution of long wires. The
number of states with small transmission is strongly sup-
pressed and there are no completely transmitted states.

In the limit of very few strong scatterers, the self-
energy is independent of the scattering potential

PB(T) = 4do

(36)

. 2n13ﬁ2
17771,*

25(00) = - ’ (37)
which gives the simple result that go —nyrW eigenstdtes
are transmitted (T = 1) and Nrgp = nrgW states are
reflected. In this limit the shot-noise power vanishes,
just like in the case of ballistic point contact.

In the intermediate regime, we can use Eqgs. (26) and
(32) to obtain

T U
&ﬂﬁ=ﬁﬂT‘”+“1_T1—ﬂlfmh7)

- (38)

X I
VA —T) — (nsT)?
for T < T3, . = 1/[1+nB + 1B/, and zero otherwise,

where 7o, = 2nrr/kr and g3 is the conductance in the
limit of strong scattering potentials,

2 —
S S P (Vi - y Moo <1
9s oo™ 1-m% e
oo _ 1 _ Nleo™ ~
90 2
% arccos(;ﬁ:) , Noo > 1,
(39)

which is simply the number of completely transmitted
states.

These results (Fig. 2) can be understood as follows.
In the weak scattering limit, the incoming and outgo-
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0 0.5 1
T

FIG. 2. Level density distribution as calculated in the sin-
gle-site approximation Eq. (38) for constant ng = 0.3 and dif-
ferent values of oo = 2nrr/kr. The dashed line labeled Q1D
denotes the bimodal distribution of the transmission matrix
eigenvalues in long wires (Ref. 22). The blocks on the right
represent the integrated strength of the § functions at 7' = 1.

ing states are plane waves, which are extended over the
complete area of the junction. Even the electrons with
k1 = kp will be therefore scattered back with a finite
probability, which fixes T3, . If the strength of the scat-
terers increases, the states which diagonalize the trans-
mission matrix are not plane-wave states anymore, but
will adjust to the scattering potential such that some
states are localized at those parts of the interfaces where
there are no impurities, thus establishing states that have
a transmission probability of unity. In the strong scatter-
ing limit, all electrons either hit a scatterer and are com-
pletely reflected, or are completely transmitted through
the “empty” spaces between the scatterers.

This can be quantified by the following argument.3!
Since go conducting channels are available with Nrgp im-
purities, a unitary transformation can be carried out that
locates the nodes of go — Nyg states exactly at the im-
purities. Irrespective of the scattering strength we there-
fore obtain go — Nig states with transition probability
of unity. The reflection probability of states, which have
an amplitude on the scatterers, do depend on . When
evanescent states are taken into account, all conducting
channels can be constructed in a way to have unit trans-
mission probability, which illustrates the well-known ar-
tifact that zero-range potentials do not scatter electrons.
It is therefore noted that (i) we should recall that our
choice of &« = 1 does imply that we consider scatterers
with a cross section of the order of the Fermi wavelength,
(ii) the Born approximation is valid only for high density
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of (weak) scatterers even though Eq. (35) appears to be
accurate for small nyg, and (iii) the results may depend
quite sensitively on a proper treatment of the potential
range.

B. Fluctuations

In order to get results for the level correlations we have
to approximate Eq. (29). The calculations are more com-
plicated now and the following discussion is restricted to
the Born approximation (which has been shown above
to be accurate for a high density of weak scatterers).
We have to calculate two terms (Fig. 3) representing an
electron-electron (Cooperon) and an electron-hole (diffu-
son) scattering amplitude. Summing the simple ladder
and maximally crossed diagrams, we get

(g(mg(n')) — (g(m)){g(n))

2
m* ki K\
=2 —
( z ) 22 noke ) (% ke )?
I
0.2

% 5y T (R k|’|)
1- Ug,,qlnnm’(kll’ kﬂ)z

(40)

where 0., 4 = niryy /W is the simplest irreducible ver-
tex function and

.
* 1
1I (k 'y — ’ITL_
nr (ki Kp) (ﬁ2> XQ:(’“H_QM-H?BkF
1

X 41
(k| — Q)1 + ngkr’ (41)
2 (<gm) g M)> - <g(n)><g M)>) =
@ * ®
r—— E—‘--—‘-
@] = % + % % + x X X +
N
o e+
O =% + % % + x X+ .
+ow o+ e
FIG. 3. Lowest order diagrams for (g(n)g(n’))

—{g(m)){g(n"))-
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where Qax is the largest momentum that leaves the in-
tegrand real. It would be rather difficult to calculate
the distribution function using Egs. (28), (29), and (40).
Fortunately the second-order approximation to Eq. (40)

(g(mg(n)) = (g(m)){g(n"))

1 1 1
= Lo [ M e
72 J_, -1 (ki +mnp)? (K + 1)
5 /Qmax dQ 1 1
0 (k= Q)L +n5 (k| — Q)L +np

where the integration variables are dimensionless, turns
out to be an excellent approximation. Disregarding the
terms in the denominator in Eq. (40) corresponds to the
conventional perturbation treatment in the calculation
of conductance fluctuations.* The errors in Var(g) are
calculated to be < 1% for all g € [0,00). We see that
the variance is proportional to the sample cross section,
which reflects the phase space available for scattering of
the correlated electron-hole pairs.

The correlation function calculated using Egs. (28),
(29), and (42) is quite complicated and very singular.
We can write down the final result in terms of the “uni-
versal” function

F(@,)) = 24, *){3 —2 L A@)

, (42)

VI—22 | 1-2x2
x(l— A VI—X—-Q )}
\/1—/\2\/1_@_\/{‘_—)\2)2 ’

(43)
where
A@,N) = ! , (44)
V1- (@ - vIi—x)2 -2
such that
Qumex T T’
par) =2 [ dQF<Q, IL_T)F(Q, ﬂ“:r“)
(45)
where

Qmax = min|1 + 4/1— 1_7',, 1- ({5

The results are easier to interpret in terms of the func-
tion

Qmax
S\, N) = /0 dQPIA(Q,N) + A(—Q, \)]
XP[A(Q7 )‘,) + A(-Qa ’\,)]’ (46)

where P indicates the principal value, from which the
statistical fluctuations are calculated as
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2 Topox
Var(a) = =90 dT
0

w2

T(1- T)é—if - 1] o(T)

Tiax d
' "1 — Ty _ T
X/o dT' | T'(1 = T") 5 — 1| a(T")
= T T
xP5(T)/g0 P5(T")/g0 =(T::F’ = T’)'

(47)

All variances scale with the number of modes, i.e., the
wire width, and depend on the scattering parameter An-
other qualitative difference with long channels is the pos-
itive correlation of closely spaced eigenvalues in Z(A —
A}, in contrast to the divergent negative correlation in
long channels.® The §-function self-correlation can be
separated as

2

1— A2

— ! 772 !
EAN) = 5 s(A =)

Qmax -
+Re /0 dQ[A(Q,)) + A(-Q, N)]
<[A(Q, V) + A(=Q, \)], (48)

where in A a small imaginary part is introduced into the
denominator. The second term on the right-hand side is
now positive and smoothly varying at A = X’ (or T' = T").
The results can be understood in terms of phase space
arguments (see Fig. 4). The correlations/fluctuations are

(a) resonant processes (T=T")

(b) edge blocking (T=T,,,,)

(c) correlated phase-space blocking

FIG. 4. Singular scattering processes in the correlation
function =, Eq. (46).
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consequences of the phase space available for scattering
to two electron-electron and electron-hole pairs, which
scatter simultaneously at the same impurity site. With
this scattering a momentum @ is transferred from one
pair to the other. A given transmission T is (in the Born
approximation) uniquely linked to a certain k; of the
scattering state. When T' = T the scattering can make
optimal use of the phase space, which means that the cor-
relation is large and positive. Negative correlations are
possible close to "resonant” scattering k| — —kj, which
leaves k; unchanged. Negative correlations occur when
only one side of the resonance can be reached by scatter-
ing and the other side is blocked, because the companion
state cannot accept the momentum. This situation oc-
curs when 1 4+ v/1—22 = 2/1— X2, or when A — 1
(T = Thux)-

The original correlation function as defined in Eq. (3)
can be recovered from Z by partial integration. This
does not change the picture much, but in addition to the
0(T — T") self-correlation in Eq. (48) the first and sec-
ond derivatives of the § function contribute too. Intro-
ducing a finite broadening parameter by adding a small
imaginary part to the integration variable in Eq. (45),
P(T,T') is plotted in Fig. 5 close to its diagonal. We can
clearly clearly see the presence of 6(T' — T"), §'(T — T"),
and 6”(T — T"). If level interaction is still a valid con-
cept at all, this zero-range negative correlation can be
interpreted as a very short-range repulsion, which is not
effective in suppressing fluctuations. The rest of the in-
teraction is not only weak, but also attractive. It should
be interesting to find out whether the level attraction
identified in Ref. 11 for long wires can be explained by
microscopic phase space arguments as well.

6x10° 1

4x10° .

P(0.6,T)

2x10° 1

-2x10° .
0.58 0.6 0.62
T

FIG. 5. Correlation function P(0.6,T) close to the diago-
nal. P has been broadened by adding a small imaginary part
(full line: 10734, dashed line: 2 x 107%3) to the integration
variable Q in Eq. (45) to allow for a graphical representation
of the singular self-correlation.
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C. Transport properties

The physical consequences become evident in Fig. 6,
where the averages of three transport properties are plot-
ted for the intermediate regime as a function of the im-
purity density 7., and a fixed g = 0.3. Small 7., corre-
spond to strong scattering potentials. Remarkable is the
drop of the conductance of the N/S junction below the
normal conductance in the Born scattering limit, a direct
consequence of the lack of highly transmitting states.

In Fig. 7 the root-mean-square fluctuations of the phys-
ical statistics as in Fig. 6 are calculated from Eq. (47).
Interesting are the strong nonlinearity of the fluctuations
in the shot noise as a function of the scattering strength.
The conductance fluctuations in a normal metal sys-
tem are enhanced up to more than a factor 7 for small
ne when one of the terminals becomes superconducting.
This is in contrast to the universal enhancement of the
fluctuations in long channels by 3/v/2 (Ref. 12). One
should be aware that significant corrections to the results
of the weak scattering approximation in Fig. 7 must be
expected for large 7p.

V. DISCUSSION

The present results can be directly tested experimen-
tally in wide wires of the high-mobility two-dimensional
electron gas,3? which are selectively doped by focused ion
beam implantation.3® This would also provide a method
to systematically explore the emerging level repulsion
with increasing channel length. The three-dimensional
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FIG. 6. Average transport properties (a) (in units of go)
of a two-dimensional short disordered channel (inset) as cal-
culated in the single-site approximation of the self-energy as
a function of 77, and a constant np = 0.3: Normal conduc-
tance a(T') = T (full curve), conductance of an N/S junc-
tion a(T) = 2T72%/(2 — T)? (long dashes), shot-noise power
a(T) = T(1 —T) (short dashes). The dotted curve represents
the number of completely transmitted states gs(co).
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FIG. 7. Fluctuations 4/Var(a) of transport proper-
ties about the ensemble average (in wunits of ,/go) of a
two-dimensional short disordered channel (inset) as calculated
in the Born approximation to the self-energy as a function of
np: Normal conductance (full curve), conductance of an N/S
junction (long dashes), shot-noise power (short dashes). The
dotted line is the average reflection probability in the Born
approximation 1 — gg. A similar quantity has been used to
estimate the magnitude of the conductance fluctuations in
Ref. 15.

version of the present theory describes a metallic point
contact,'® including a short and wide constriction with
a thin disordered region in the center, which might be
a rough heterointerface or a (sub)monolayer of doping
atoms. The conductance fluctuations in ballistic point
contacts are caused by remote impurities, which are not
treated by the present theory.3* However, when the main
source of scattering comes from the interface it will dom-
inate the fluctuations also.

The above results shed light on a semiclassical approx-
imation for transport in sample with finite system length
L (Refs. 35 and 20), which consists of replacing the trans-

mission and reflection coefficients ik, K> They K in the con-

catenation of the scattering matrices by the transmission
and reflection probabilities lt’“li’kﬁ |2 and |7’k”,k;| |2, which
leads to the recovery of Ohm’s law for L > ¢. This
scheme has been shown to be equivalent to shifting all im-
purities onto a single scattering plane, which may then
be treated by the method discussed above. Assuming
that the scattering is weak at each point of the sample,
we may continue to use the Born approximation, but still
let the self-energy become large for large samples. We see
that the singularity at T = 1 in the bimodal distribution
of P(T) for long channels,?* i.e., the transmitted states,
are not recovered in this semiclassical approximation and
must therefore be caused by quantum interference. The
process is seen to be equivalent to the single barrier vs
double barrier tunneling device: the latter supports res-
onant tunneling states with transmission probability of
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unity, in contrast to the single barrier diode. In this
semiclassical —na%g — g, which means that the Drude
result is obtained for the conductance, but that the shot-
noise is not suppressed relative to its classical Poisson
value. Note however, that the completely transmitting
states seem to be not necessary to explain the shot-noise
suppression, since de Jong and Beenakker3® derive the
shot-noise suppression semiclassically and conclude that
phase coherence it not required for this property. Appar-
ently there are different levels of “semiclassicality.”

Theoretically, the present study has to be expanded
to include effects of an additional dimension, magnetic
fields, potential steps or barriers, and evanescent states.
Of particular interest is the double necklace/interface
configuration, which should give important additional in-
sights into the level repulsion concept in phase-coherent
transport.

The complete absence of universality in the transport
through necklaces and interfaces has interesting conse-
quences for material science. Whereas the amplitude of
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the universal conductance fluctuations obviously does not
depend on the microscopic structure of the sample(s) in
question, the present results indicate that transport ex-
periments on single necklaces and interfaces do yield ad-
ditional information on the scattering potentials, which
might be a useful technique to characterize these sys-
tems.2”
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FIG. 1. Schematic view of an impurity necklace in the
two-dimensional electron gas. Ap is the Fermi wavelength,
W the channel width, Ap/a the range of the scattering po-
tentials, Az the spreading of the impurity positions in the
transport direction, and nrg the line density of scatterers.
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FIG. 6. Average transport properties {(a) (in units of go)
of a two-dimensional short disordered channel (inset) as cal-
culated in the single-site approximation of the self-energy as
a function of 7., and a constant g = 0.3: Normal conduc-
tance a(T) = T (full curve), conductance of an N/S junc-
tion a(T) = 2T?/(2 — T)? (long dashes), shot-noise power
a(T) = T(1 —T) (short dashes). The dotted curve represents
the number of completely transmitted states gs(oo).
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FIG. 7. Fluctuations Var(a) of transport proper-
ties about the ensemble average (in units of ,/go) of a
two-dimensional short disordered channel (inset) as calculated
in the Born approximation to the self-energy as a function of
ngs: Normal conductance (full curve), conductance of an N/S
junction (long dashes), shot-noise power (short dashes). The
dotted line is the average reflection probability in the Born
approximation 1 — gg. A similar quantity has been used to
estimate the magnitude of the conductance fluctuations in

Ref. 15.



