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Executive Summary

This thesis investigates the comparative performance of three Multi-Objective Evolutionary Algorithms
(MOEAs), applied to the optimisation of complex Integrated Assessment Models (IAMs), JUSTICE
specifically. The study addresses a critical gap currently present in empirical research with regards to
MOEA effectiveness for real-world, highly dimensional and multi-modal problems. To address this gap,
three MOEAs, ϵ-NSGA-II, Borg and Generational Borg, are evaluated.

For each MOEA, the computational efficiency, convergence dynamics and solution quality are evalu-
ated. Their performance is not only tested on the JUSTICE IAM, but also on the DTLZ2 and DTLZ3
benchmark problems. This is done to provide extra insights and context to the JUSTICE findings, as
these problems possess different characteristics. DTLZ2 is a simple problem, acting as a baseline.
DTLZ3 is a highly multi-modal and thus more difficult problem. Also considering the differences ob-
served in how MOEAs perform across these problems contextualises all results.

The findings illustrate Borg’s ability to consistently outperform the other MOEAs and achieve the best
performance metric values. This performance gap increases when problem complexity increases due
to high-dimensionality or multi-modality. Borg’s steady-state nature and auto-adaptive features, like
operator selection and tournament sizing, enable it to outperform ϵ-NSGA-II and Generational Borg in
practically all scenarios. However, when evaluating ϵ-NSGA-II it shows that it can offer a faster and
less complex alternative. Though, important to note, when problem complexity increases, ϵ-NSGA-II’s
performance sharply declines, especially in heavy multi-modal problems. The main reason for this
appears to be its lack of adaptive features and generational nature. This is confirmed by Generational
Borg’s behaviour, which performs on par with ϵ-NSGA-II on a simple problem like DTLZ2, but performs
better (though still worse than Borg) on a complex multi-modal problem like DTLZ3. ϵ-NSGA-II’s and
Generational Borg’s generational nature do shorten their runtimes on simple problems as compared to
Borg, but these differences become negligible on a complex problem like JUSTICE.

The implications of the results obtained in this study are significant for real-world policy design, climate
change mitigation in particular. The results have shown that MOEA choice can critically impact the
quality and robustness of the eventually obtained policy solutions. While acknowledging the viability
of generational MOEAs for simpler problems, or in severe cases of time-constraints, this study has
highlighted the benefits of opting for steady-state MOEAs with more adaptive features when optimising
a demanding problem such as JUSTICE.

Several directions for future research have been identified. Scalability gains should be more thoroughly
explored, if done correctly much higher core counts than used in this thesis can also be considered. As
Borg still demonstrated increasing trends after 70000 NFE for JUSTICE, it would also be interesting to
further increase the computational budget. Lastly, the generalisability and validity of the findings from
this study could be improved by performing similar experiments using additional MOEAs and problem
configurations. Overall, this thesis tried to advance the field of multi-objective optimisation in climate-
economy modelling by providing insights for researchers and policy-makers to aid in designing robust
climate policies.
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1
Introduction

Climate change and its escalating impacts present society with one of the most critical and complex
challenges to date. According to a recent IPCC report, it is very likely that the 2°C temperature increase
above pre-industrial levels limit agreed upon in the 2015 Paris climate agreements will be reached in the
near term, increasing even further in the higher emission scenarios (IPCC, 2023). To properly address
this challenge, it is necessary to develop, test and implement effective, robust and equitable policies.

To aid the development of such policies, researchers and policymakers employ Integrated As-
sessment Models (IAMs). These aremodels that incorporate knowledge frommultiple fields like climate
science, economics and energy systems, combining them into a unified model. This allows for simula-
tion of different policies, and evaluation of the long-term effects of these policies. IAMs thus enable the
exploration of complex and often emergent climate-economy interactions, as well as the evaluation of
the trade-offs that inevitably have to be made in policy design. While IAMs are, per definition, simplified
representations of reality, the policy problem that they frame is characterised by high dimensionality and
non-linearity. These characteristics reflect the uncertainty present in climate-economy developments.
However, this also makes IAMs very challenging to optimise. Multiple conflicting objectives, like min-
imising CO2 while also minimising economic costs for example, are present. Additionally numerous
variables influence these objectives and each other. How can the best policies be found?

Traditional optimisation methods often struggle with the challenges of high dimensionality and
non-linearity. Instead, the Evolutionary Multi-Objective Direct Policy Search (EMODPS) framework
can be used, formulating the problem in terms of state-based control. EMODPS combines Direct Policy
Search (DPS) with the use of a Multi-Objective Evolutionary Algorithm (MOEA) to find an optimal control
policy. This policy is a function mapping the state of a system (e.g. global temperature) to an action
(e.g. an emissions control rate). The policy is represented by a non-linear activation network, like Radial
Basis Functions (RBFs) or Artificial Neural Networks (ANNs), whose parameters are the optimisable
policy levers. These parameters can then be optimised with a MOEA (Salazar et al., 2022). This
approach enables the exploration of high-dimensional policy spaces and the generation of a diverse
set of Pareto-optimal solutions, which are policies that are optimal in at least one objective compared to
all other policies, eventually providing policymakers with a spectrum of optimal solutions and trade-offs
to choose from.

However, the resulting set of solutions is greatly affected by the choice of MOEA. Key differ-
ences in architecture, like a generational versus steady-state population update mechanism or the
inclusion of auto-adaptive operators, create fundamental trade-offs in MOEA behaviour and capabil-
ity. While a large body of research regarding the strengths and weaknesses of different MOEAs and
their architectures exists already, most of this research was on the application of MOEAs to specially
designed benchmark problems or other models than IAMs. Particularly, the trade-offs between MOEA
convergence dynamics, solution quality and scalability applied to a demanding IAM remain underex-
plored. This thesis aims to address this gap by performing a quantitative comparison of three leading
MOEAs, ϵ-NSGA-II, Borg and Generational Borg. Each MOEA will be used to optimise the JUSTICE
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IAM, which is a new and open-source IAM specifically designed for conducting research on equitable
climate-economic policy development under uncertainty (Biswas et al., 2023). Additionally, to provide
more robustness to the drawn conclusions, two benchmark problems, DTLZ2 and DTLZ3, are also in-
cluded in this study. By varying the number of cores, and analysing a number of performance metrics,
this study aims to provide insights into the interplay of IAM problem characteristics, MOEA design and
computational resources. This way researchers working with IAMs can make a better informed MOEA
selection, aiding future IAM-based policy research. Therefore this thesis will answer the following cen-
tral question:

How and why do ϵ-NSGA-II, Borg and Generational Borg differ regarding their computational
efficiency, convergence dynamics and solution quality when optimising a demanding model such as
JUSTICE using the EMODPS framework?

The remainder of this thesis is structured as follows. Chapter 2 discusses relevant literature
on IAMs, EMODPS and MOEAs. Chapter 3 explicitly states the knowledge gap and formulates the
main research question as well as four sub-questions. Chapter 4 describes the methodology, includ-
ing problem formulations, experimental setup and performance metrics. The experimental results are
presented in chapter 5. Chapter 6 discusses the implications and limitations of the obtained results.
Finally, chapter 7 concludes with recommendations for practical applications as well as suggestions for
future research.



2
Literature Review

To establish a solid foundation for this research, it is essential to first explore and clarify several key
concepts and theoretical models. This section will discuss Integrated Assessment Models (IAMs), the
Evolutionary Multi-Objective Direct Policy Search (EMODPS) framework and the intricate workings of
Multi-Objective Evolutionary Algorithms (MOEAs).

2.1. Integrated Assessment Models
Firstly, it is essential to examine the role and state of modern-day IAMs. As briefly discussed in the
introduction, IAMs try to model the complex and dynamic interplay between a wide range of econom-
ical and natural factors. They use theory from different disciplines like economics, climate science
and energy systems to provide quantitative insights into the potential future states of the climate and
economies resulting from various assumptions and policy choices. This way, IAMS allow for research
to be conducted on possible future climatological and economical pathways and evaluation of policy
trade-offs. A number of versions of these models have been developed over the years, consisting of
completely distinct models, models derived from others and models which have been improved over
the course of the past years. Examples are DICE (Nordhaus, 1993), RICE (Nordhaus and Yang, 1996),
IMAGE 3.0 (Stehfest et al., 2014) and many others, each differing in scope or focus.

Despite the widespread use and continued development of such models, there also exist crit-
icisms. These criticisms mainly stem from IAMs over- or underestimating certain effects due to erro-
neous assumptions and thus wrongful implementations of real-world dynamics into the IAM (Ackerman
et al., 2009). Despite these criticisms being justified, this research will not take them into further con-
sideration, as the IAM results themselves are not the main focus here, rather the contribution of MOEA
dynamics to these results. Furthermore, a different IAM called JUSTICE, which is inspired by RICE
and RICE50+, will be used in this research. JUSTICE is intentionally set up as a simpler and modu-
lar framework purpose-built to explore influences of underlying modelling assumptions, making it an
excellent IAM for investigating MOEA scalability and dynamics (Biswas et al., 2023).

2.2. Evolutionary Multi-Objective Direct Policy Search
Asmentioned in the introduction, IAMs comewith a number of challenges. IAMs are inherently complex,
non-linear and uncertain. Given their highly-dimensional policy space, it is not easy to optimise IAM
results. The EMODPS framework comes into play here. EMODPS uses Direct Policy Search (DPS) in
combination with a MOEA to directly optimise specific policy parameters in the IAM while being able to
handle different and conflicting objectives (Giuliani et al., 2016). DPS defines a parameterised policy
πθ(s) and searches for a parameter vector θ that optimises performance. A policy function is used to
map the observed system state st to an action ut as πθ(s) −→ ut. Oftentimes, Artifical Neural Networks
(ANNs) or Radial Basis Functions (RBFs) are used as policy function approximators, as they allow for
complex and non-linear relationships between states and optimal actions. Parameter vector θ then
represents the variables of these approximating functions (like weights, biases, layers etc.). Policy
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πθ then is simulated, and based on the objective function values (e.g. welfare loss or temperature
rise) a MOEA searches the policy parameter space for optimal parameter vectors θ, optimising the
approximating policy function and ultimately the objective function values. EMODPS is not guaranteed
to find the true Pareto front, but is a strong heuristic that allows for researchers to explore a wide variety
of Pareto-optimal policies which balance conflicting objectives like emission reductions and economic
costs.

EMODPS is applicable to a number of different fields, and has been applied as such. Salazar
et al. (2016) have applied EMODPS to research on water reservoir management, Gupta (2020) applied
EMODPS to energy management problems, and EMODPS is of course used in climate research and
IAMs (Carlino et al., 2022). In all of these applications, EMODPS brings the benefit of allowing explo-
ration of very high-dimensional policy spaces, under deep uncertainty, and generating a Pareto front
with robust and diverse solutions.

2.3. Multi-Objective Evolutionary Algorithms
MOEAs are algorithms specifically designed to tackle problems with multiple, often conflicting, objec-
tives. These multi-objective problems (MOPs) can be defined as;

min F (x) = (f1(x), . . . , fm(x))T

s.t. x ∈ Ω
(2.1)

where x ∈ Ω is a decision vector and Ω represents the total decision space. Rm represents the
total objective space and F (x) contains m objective functions fi : Ω −→ R, i = 1, . . . ,m (Zhou et al.,
2011).

As mentioned, these MOPs often have conflicting objectives. As a result of this there is no
single solution that leads to optimisation of every single objective in the objective space and trade-offs
have to be made per definition. To address this issue, MOEAs look for solutions with the most optimal
trade-offs. Introducing the concept of Pareto-optimality, well-known in economics, which entails that a
solution belongs to the Pareto set when there is no other solution that can improve on one objective
without making at least one other objective worse, thusmaking the solution non-dominated. Dominance
and Pareto-optimality can be formally defined through the following three definitions (Zhou et al., 2011).
Definition 1 (Pareto dominance). For theMOPdefined in equation (2.1) andwith vectorsu = (u1, . . . , um)T

and v = (v1, . . . , vn)
T , dominance can be formally defined as u ≺ v iff ∀i ∈ {1, . . . ,m}, ui ≤ vi and

ui ̸= vi. (Note that this definition holds in the case of minimisation problems which is the standard
assumption in this research, in case of maximisation it holds the other way around).
Definition 2 (Pareto set). A feasible solution x∗ ∈ Ω is a Pareto optimal solution iff ∄y ∈ Ω such that
F (y) ≺ F (x∗). The entire set of Pareto optimal solutions, the Pareto set (PS), can be defined as

PS = {x ∈ Ω | ∄y ∈ Ω, F (y) ≺ F (x)} (2.2)

Definition 3 (Pareto front). The Pareto set can be mapped to the objective space to form the Pareto
front (PF), which is defined as

PF = {F (x) | x ∈ PS} (2.3)

The Pareto set and Pareto front are essential tools for decision makers, allowing them to make
optimal and informed trade-offs and decisions in highly dimensional and conflicting problems. MOEAs
are often used to tackle MOPs in numerous different fields, ranging from DNA sequence design (Shin
et al., 2005), to neural network training (Delgado et al., 2008) to greenhouse control (Z. Zhang, 2008)
and many more. To this end a lot of different types of MOEAs exist, each more suited to MOPs with
specific characteristics. Their differences occur in a number of key components found in every MOEA.

2.3.1. Key Components
Population
One of the most fundamental components of a MOEA is the concept of a population. MOEAs maintain
a population of solutions at any given time. This allows for effective and simultaneous exploration of
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different parts of the decision space and maintaining a set of diverse solutions capturing a big portion of
the trade-off spectrum. The way this population is updated with new solutions differs per MOEA and can
be classified as either generational or steady-state. This distinction is one of the main points of interest
in this research. In generational MOEAs, the entire population is replaced each generation. Through
the use of certain selection criteria parents from the previous population are selected and subjected
to genetic manipulation, which in turn creates offspring present in the new generation. In steady-state
MOEAs often only one or two individuals are replaced each iteration. Again, through selection criteria
parents are selected and produce offspring through genetic manipulation. However, now this offspring
is inserted into the population at the cost of removal of a less fit individual (Smith et al., 1998). This
distinction between generational and steady-state population update mechanics is a core architectural
trade-off. Quantifying its effect on solution quality and scalability is one of the major objectives of this
thesis.

The size of the population influences the degree to which the MOEA can fully explore the de-
cision space, where a larger population offers greater exploration but does so at the cost of slower
convergence. On the other hand, a smaller population might converge faster, but lead to sub-optimal
solutions. To balance exploration and exploitation some MOEAs, like Borg, use adaptive population
sizing, where the population size differs throughout the optimisation based on exploration or exploita-
tion needs (Hadka and Reed, 2013). A lot of MOEAs also make use of archiving. High-quality solutions
are stored in an archive to prevent them being lost due to random genetic manipulation (M. Li, 2021).

Selection Mechanism
Selection mechanisms steer the evolution of solutions to the Pareto front through determining which
solutions are selected to produce offspring and which solutions are eventually maintained. All MOEAs
adhere to one of four frameworks. These are decomposition-based MOEAs, where the MOEA divides
a MOP into multiple scalar subproblems which are then optimised separately (Q. Zhang and Li, 2007).
Dominance-based MOEAs, which rely on Pareto dominance and ranking solutions based on their re-
spective dominance (Branke and Deb, 2005). Indicator-basedMOEAs, which rely on tracking a number
of performance metrics and rank solutions based on their contribution to these metrics (Zitzler and Kün-
zli, 2004). Lastly there exist many hybrid combinations of the first three, combining their strengths and
mitigating weaknesses.

Variation Operators
Once the parents have been selected. The genetic manipulation is handled by variation operators
that perform certain operations on the parental individuals. This way, new offspring, and thus greater
solution diversity, is introduced into the population and a greater part of the decision space can be
explored. There are two main variation operators, crossover and mutation. With crossover genetic
material between parent individuals is exchanged to create new offspring, the goal being to combine
good traits of parent solutions into a new solution and promote decision space exploration. Numerous
different types of crossover exist, with different MOEAs opting for different types or combinations of
crossover. Examples are simulated binary crossover (SBX) (Deb, Agrawal, et al., 1995), differential
evolution crossover (DE) (Storn and Price, 1997), unimodal normal distribution crossover (UNDX) (Kita
et al., 1999), parent-centric crossover (PCX) and simplex crossover (SPX) (Mashwani et al., 2015).

With mutation, small changes are introduced at random to certain individuals, preventing search
stagnation. Just as with crossover, MOEAs use different types (or combinations) of mutation. Exam-
ples are polynomial mutation (PM) and uniform mutation (UM) (Hamdan, 2010; Rajakumar, 2013). As
mentioned, certain MOEAs, are self-adaptive and can dynamically change their crossover and mu-
tation methods based on what the optimisation needs at that point. Quantifying the effectiveness of
this adaptivity compared to non-adaptive MOEAs, like ϵ-NSGA-II, in optimising complex multi-modal
problems is another key focus of this thesis.

Diversity
As mentioned previously, ensuring diversity amongst the solution set is important. It makes sure all
parts of the decision space are being explored, preventing premature convergence through getting
stuck in local optima and providing decision-makers with a diverse and evenly distributed set of trade-
offs. To ensure this diversity, MOEAs make use of implicit and explicit mechanisms (Martí et al., 2018).
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Implicit mechanisms mainly consist of the aforementioned selection mechanisms and variation opera-
tors, which introduce diversity through their algorithmic operations. On the other hand, explicit mecha-
nism explicitly enforce diversity.

The main approach to actively enforcing this diversity is through so-called niching. Multiple
different approaches to niching exist, but they all share the underlying principle of encouraging the
algorithm to explore and preserve multiple areas of the objective space. Examples are the crowding
distance, used in NSGA-II, where the distance between solutions in the objective space is measured
and solutions in sparse regions are favoured (Deb et al., 2002). Another example is ϵ-dominance, used
by ϵ-NSGA-II and Borg, where the objective space is discretised into ϵ-sized grids and solutions need
to differ at least one grid, ensuring a minimum resolution between solutions (Deb, Mohan, and Mishra,
2005). A different approach is using reference points, which is done by MOEA/D, where solutions are
distributed in the objective space through the use of predefined directions (Q. Zhang and Li, 2007).

Another mechanism often used is a population restart. Here, based on a certain trigger, the
population is reinitialised. OftentimesMOEAs, like Borg, use a hybrid and dynamic approach to diversity
management, adjusting mechanisms based on performance indicators (Hadka and Reed, 2013).

Elitism
Elitism is another essential MOEA component. Elitism ensures that high-quality solutions are kept and
preserved across different generations. It retains non-dominated solutions, thus ensuring convergence
to the Pareto front, through different mechanisms. Firstly, non-dominated solutions are stored in an
archive. This prevents non-dominated solutions from being lost to genetic operations. Some classical
MOEAs, like NSGA-II, only use this archive for storage. Other more modern MOEAs, like Borg, actively
use archived solutions to generate new solutions, for example reinitialising the population with archived
solutions when a population restart is triggered.

2.3.2. MOEA Parallelisation
Using EMODPS and MOEAs to optimise IAMs (or any other complex problems) often involves com-
putationally heavy function evaluations. To gain meaningful results, many function evaluations are
necessary. Parallel computing is essential in reducing the wall-clock time and increasing the efficiency
of such optimisations. Literature exists on two main approaches to parallelising MOEAs, the Master-
Slave- and the Island Model (Durillo et al., 2008; Limmer and Fey, 2017).

In the Master-Slave approach a central master process (CPU core) manages the main popula-
tion and archive handling as well as the genetic manipulation. It passes on newly generated individuals
to other worker nodes who then evaluate these individuals and calculate the objective function values.
The workers pass their results back to the master which then proceeds with the next step in the algo-
rithm. This setup is relatively straightforward. However, its effectiveness depends heavily on the time
it takes for function evaluations being longer than the time it takes to communicate results. If this is
not the case, the master node can become a bottleneck. Generational algorithms face the additional
limitation of synchronisation overhead (Hadka et al., 2013; Zăvoianu et al., 2013).

The Island approach can be considered to be a scaled and refined version of the Master-Slave
approach. Multiple master nodes each run their own instantiation of the algorithm, and have their own
set of worker nodes. Effectively creating different node ’islands’ (Giuliani et al., 2017). Individuals
can periodically also be exchanged between different islands in case of stagnation for example. This
approach further reduces communication frequency and is very fit for distributed computing (Limmer
and Fey, 2017). However, given the setup of the MOEAs used in this research, the parallelisation model
used will be that of the regular Master-Slave approach.

Another important distinction that needs to be made when considering MOEA parallelisability
is its synchronous or asynchronous execution. This concept is very closely related to the difference
between generational and steady-state MOEAs. Generational MOEAs, like ϵ-NSGA-II and Genera-
tional Borg, operate synchronously. This means that when the master node dispatches individuals to
its workers, it must wait until it has received the evaluation results from each one of its workers. This is
a relatively easy approach to implement, especially for embarrassingly parallel tasks where the work-
load can be split into many smaller independent tasks that require no communication with each other.
However, a big downside is that in case the evaluation times vary, which they often do, workers that
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finish earlier remain idle until all workers have finished and the master node can move on to the next
step. This introduces synchronisation overhead, inefficiencies and reduced scalability, especially on
High-Performance Computing (HPC) systems (Zăvoianu et al., 2013). On the other hand, steady-state
MOEAs adopt an asynchronous approach. Here the master still dispatches individuals to worker nodes
for evaluation, but when the worker is done evaluating and returns its results to the master node it is
immediately handed a new individual for evaluation. This eliminates the bottleneck in the synchronous
approach where the master has to wait for the slowest worker to finish. As a result, idle times are
minimised, CPU utilisation is maximised and significantly better scalability is realised (Hadka et al.,
2013). Empirically quantifying this theoretical difference between synchronous generational and asyn-
chronous steady-state MOEAs, especially applied to a computationally heavy problem, is a key goal of
this thesis. Generational Borg, which shares Borg’s auto-adaptive operators and ϵ-NSGA-II’s genera-
tional nature, is included in this study to be able to properly distinguish the performance gains from an
asynchronous approach versus those from auto-adaptive features.

2.3.3. ϵ-NSGA-II, Borg and Generational Borg
As the focus of this study mainly lies on the differences in parallelisability between generational and
steady-state MOEAs, three different MOEAs, being ϵ-NSGA-II, Borg and Generational Borg, will be
examined. This section will discuss and compare each of these MOEAs properties based on the key
components discussed above and illustrate their workings by providing pseudocode for each MOEA. A
summary of the properties can be found in table 2.1.

ϵ-NSGA-II
ϵ-NSGA-II is a generational MOEA largely based on the older NSGA-II algorithm but using ϵ-dominance
archiving instead of crowding distance as its diversity mechanism and adding adaptive population sizing
(Deb et al., 2002; Kollat and Reed, 2006).

ϵ-NSGA-II starts by initialising a population, with a predefined size, of random individuals. Next,
it makes use of tournament selection to select the parent individuals, using non-dominated sorting to
rank them and selecting the individual with the highest rank. When the parents are selected, it defaults
to use SBX for crossover and PM for mutation. It uses non-dominated sorting to rank all offspring,
adding one non-dominated solution per ϵ-grid cell to the archive and replacing its predecessor in that
ϵ-grid if the predecessor is dominated. This preserves diversity and prevents the archive from growing
without bounds. Its adaptive population sizing and restart mechanism work as follows;

Ptarget = λ · |Asize| (2.4)

where Ptarget is the target population size, Asize is the current archive size and λ is a user-
defined population-to-archive ratio. A restart can now be triggered through stagnation (a set number
of iterations have passed since the last restart) or an imbalance between the population and archive
sizes, defined as;

Psize − (λ · |Asize|) > 0.25 · (λ · |Asize|) (2.5)

where Psize is the current population size. In the case of a restart, it draws new parents from the
archive and introduces additional randomly generated individuals to meet the target population size,
introducing new diversity. New offspring is generated and the cycle repeats.

Keeping all other parameters native to MOEAs in general static makes that ϵ-NSGA-II is compu-
tationally simple and efficient. On the other hand this can also introduce challenges in more complex
problems. For example, in problems with more than four objectives ϵ-boxing can become inefficient
due to exponential growth in grid complexity. Additionally, with ϵ-NSGA-II being a generational MOEA,
it makes use of a synchronous master-slave parallelisation approach. Therefore its scalability should
theoretically be relatively limited, especially compared to other steady-state MOEAs. Nevertheless, ϵ-
NSGA-II still performs very well compared to other MOEAs, and its efficient approach makes that it’s
still widely used today (Kim and Kim, 2021; J. Li et al., 2021; Salazar et al., 2016, 2022).
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Algorithm 1 ϵ-NSGA-II
Require: Problem definition, ϵ, Psize, λ, nfemax, Variation Operators Opfixed
Ensure: Approximation of the Pareto front A
1: P ← InitialisePopulation(Psize)
2: EvaluateSolutions(P )
3: nfe← Psize

4: A← InitialiseEpsilonArchive(ϵ)
5: UpdateEpsilonArchive(A,P )
6: while nfe < nfemax do
7: P ′ ← SelectParentsTournament(P ) ▷ Based on rank
8: O ← ApplyVariation(P ′, Opfixed)
9: EvaluateSolutions(O)

10: nfe← nfe+ |O|
11: R← P ∪O
12: Ranks← NonDominatedSort(R)
13: P ← SelectNextGeneration(R,Psize,Ranks) ▷ Truncate based on rank
14: UpdateEpsilonArchive(A,P ) ▷ Add new non-dominated solutions from P
15: if CheckRestartCondition(A,P, nfe) then ▷ Based on ϵ-progress or other criteria
16: Ptarget ← max(Pmin,min(Pmax, λ · |A|)) ▷ |A| is archive size
17: P ← PerformRestart(A,Ptarget) ▷ Reinitialise using Archive + mutated/random solutions
18: EvaluateSolutions(P \A) ▷ Evaluate only new solutions
19: nfe← nfe+ |P \A|
20: Psize ← Ptarget

21: UpdateEpsilonArchive(A,P )

22: return A

Borg
Borg is a modern steady-state MOEA, sharing a number of features with ϵ-NSGA-II while also featur-
ing additional ones like ϵ-progress and adaptive operator selection (Hadka and Reed, 2013). Just like
ϵ-NSGA-II it starts by initialising a population of random individuals and setting up an ϵ-archive with all
the non-dominated solutions. It randomly selects one parent from the archive and uses tournament
selection and non-dominated ranking to select the other parents. Borg features adaptive tournament
sizing, setting it as a percentage of the population size. It then proceeds to apply a variation operator.
Unlike with ϵ-NSGA-II however this variation operator is not static. Since different operators perform
better or worse depending on the specific problem, Borg logs the success of each operator and adjusts
the probability of selecting that operator accordingly. Given K > 1 operators, it maintains the proba-
bilities {Q1, Q2, . . . , Qk}, Qi ∈ [0, 1] of applying each operator to produce the offspring, initialising them
to Qi = 1/K. Borg then periodically updates these probabilities by counting the number of solutions in
the ϵ-archive produced by each operator {C1, C2, . . . , Ck} and updating Qi by

Qi =
Ci + ζ∑K

j=1(Cj + ζ)
(2.6)

Here ζ > 0 is a constant to prevent probabilities from reaching 0, and is set to one at default.
Borg usually selects from the following variation operators; SBX, DE, PCX, SPX, UNDX and UM. When
using one of the first five operators Borg also applies PM. All offspring is evaluated and added to the
ϵ-archive if they dominate the existing individual in an ϵ-grid cell. Borg also features a restart system.
It introduces the concept of ϵ-progress, tracking search improvement by counting every time a new
improved solution reaches a better ϵ-grid cell and is added to the ϵ-archive. After a set time window
without any ϵ-progress a restart is triggered. Borg’s restart system is very similar to that of ϵ-NSGA-II
but differs in how it fills up the new population. It draws solutions from the archive and fills up remaining
spots by applying UM to archived solutions.

The biggest difference between Borg and ϵ-NSGA-II is Borg’s asynchronous steady-state nature.
It applies a master-slave model, where one CPU node handles the population and archive management
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as well as the operator selection. All evaluations are done by other worker nodes, which immediately
pass the results to the master node after finishing the evaluation and are handed new offspring in
return. This prevents nodes from idling, maximising CPU utilisation (Hadka et al., 2013). One of the
main advantages is that this also allows for massive scaling, making Borg an excellent MOEA for
highly-dimensional and complex problems and useful in a lot of current research (Giuliani et al., 2016;
Marangoni et al., 2021; Salazar et al., 2024).

Algorithm 2 Borg
Require: Problem definition, ϵ, Psize, λ, nfemax, Operator Set Ops
Ensure: Approximation of the Pareto front A
1: P ← InitialisePopulation(Psize)
2: EvaluateSolutions(P )
3: nfe← Psize

4: A← InitialiseEpsilonArchive(ϵ)
5: UpdateEpsilonArchive(A,P ) ▷ Add initial population to archive
6: OperatorProbabilities← InitialiseOperatorProbabilities(Ops)
7: MutationProb← InitialMutationProbability ▷ For restarts
8: while nfe < nfemax do
9: if |A| ≤ 1 then

10: P ′ ← SelectParentsTournament(P, arity) ▷ Select arity parents from P
11: else
12: P ′

pop ← SelectParentsTournament(P, arity− 1) ▷ Select arity-1 from P
13: P ′

arch ← SelectRandom(A, 1) ▷ Select 1 random from A
14: P ′ ← P ′

pop ∪ P ′
arch

15: Shuffle(P ′)
16: opselected ← SelectOperator(Ops,OperatorProbabilities)
17: O ← ApplyVariation(P ′, {opselected}) ▷ Generate offspring batch
18: EvaluateSolutions(O)
19: nfe← nfe+ |O|
20: for each child ∈ O do
21: DominatesIndices, IsDominated ← CompareDominance(child, P )
22: if |DominatesIndices| > 0 then ▷ Child dominates some in P
23: RemoveIndex← SelectRandom(DominatesIndices, 1)
24: RemoveFromPopulation(P,RemoveIndex)
25: AddToPopulation(P, child)
26: else if not IsDominated then ▷ Child is non-dominated w.r.t P
27: RemoveIndex← SelectRandom(1..|P |, 1)
28: RemoveFromPopulation(P,RemoveIndex)
29: AddToPopulation(P, child)
30: Improved← UpdateEpsilonArchive(A, {child}) ▷ Archive handles internal logic
31: UpdateOperatorProbabilities(OperatorProbabilities, opselected, Improved) ▷ Based on

archive improvement
32: if CheckRestartCondition(A, nfe) then ▷ Based on ϵ-progress & potentially pop size deviation
33: Ptarget ← max(Pmin,min(Pmax, λ · |A|)) ▷ |A| is archive size
34: MutationProb← AdjustMutationProbability(restart_history) ▷ Adjust based on

consecutive restarts
35: P ← PerformRestart(A,Ptarget,MutationProb) ▷ Reinitialise P using Archive + mutated

solutions
36: EvaluateSolutions(P \A) ▷ Evaluate only new solutions
37: nfe← nfe+ |P \A|
38: Psize ← Ptarget ▷ Update population size target
39: UpdateEpsilonArchive(A,P ) ▷ Ensure restarted pop is in archive
40: return A
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Generational Borg
Generational Borg can be considered to be a hybrid between ϵ-NSGA-II and Borg. Not a lot of literature
has been written on Generational Borg, but this research adheres to the implementation found in the
’EMA_workbench’ Python library (Kwakkel and contributors, 2024).

Generational Borg shares almost all of the features found in regular Borg. It makes use of the
same auto-adaptive approaches for operator selection, population sizing and population restarts. The
difference is that it does not make use of the steady-state approach, but uses a generational population
update. This means that, intuitively, Generational Borg is less suited for parallel execution. However,
comparing these MOEAs thus allows for an interesting quantification of this difference when applied
to different problems. Additionally, as mentioned, including Generational Borg in this study serves
the crucial purpose of enabling a better distinction between the MOEA performance contributions of
auto-adaptivity versus the population update scheme.

Algorithm 3 Generational Borg
Require: Problem definition, ϵ, Psize, λ, nfemax, Operator Set Ops
Ensure: Approximation of the Pareto front A
1: P ← InitialisePopulation(Psize)
2: EvaluateSolutions(P )
3: nfe← Psize

4: A← InitialiseEpsilonArchive(ϵ)
5: UpdateEpsilonArchive(A,P )
6: OperatorProbabilities← InitialiseOperatorProbabilities(Ops)
7: while nfe < nfemax do
8: P ′ ← SelectParentsTournament(P ) ▷ Based on rank
9: opselected ← SelectOperator(Ops,OperatorProbabilities) ▷ Select operator based on

probabilities
10: O ← ApplyVariation(P ′, {opselected}) ▷ Use selected operator for offspring batch
11: EvaluateSolutions(O)
12: nfe← nfe+ |O|
13: R← P ∪O
14: Ranks← NonDominatedSort(R)
15: P ← SelectNextGeneration(R,Psize,Ranks) ▷ Truncate based on rank
16: Improved← UpdateEpsilonArchive(A,P ) ▷ Add new non-dominated solutions from P
17: UpdateOperatorProbabilities(OperatorProbabilities, opselected, Improved) ▷ Update based on

archive improvements
18: if CheckRestartCondition(A, nfe) then ▷ Based on ϵ-progress
19: Ptarget ← max(Pmin,min(Pmax, λ · |A|)) ▷ |A| is archive size
20: P ← PerformRestart(A,Ptarget) ▷ Reinitialise using Archive + mutated/random solutions
21: EvaluateSolutions(P \A) ▷ Evaluate only new solutions
22: nfe← nfe+ |P \A|
23: Psize ← Ptarget ▷ Update population size
24: UpdateEpsilonArchive(A,P )

25: return A

Property ϵ-NSGA-II Borg Generational Borg
Population Management Generational Steady-State Generational
Parallel Execution Synchronous Asynchronous Synchronous
Crossover Mechanism SBX Auto-adaptive Auto-adaptive
Mutation Mechanism PM Auto-adaptive Auto-adaptive
Restart Mechanism Archive + Random In-

dividuals
Archive + Mutated
Archive Individuals

Archive + Mutated
Archive Individuals

Table 2.1: Key MOEA Properties



3
Research Question

The following section will use the findings from chapter 2 to synthesise a knowledge gap in the current
scientific MOEA literature and formulate a research question to address this gap. Lastly, it will briefly
discuss how the implications of this thesis fall within the EPA curriculum.

3.1. Knowledge Gap
The theoretical advantages and disadvantages of particular MOEA architectures, being steady-state or
generational, have been readily explored (Hadka and Reed, 2013; Zăvoianu et al., 2013). Additionally,
a lot of empirical research with regards to ϵ-NSGA-II and Borg performance exists already as well, often
demonstrating Borg’s excellent scalability and the effectiveness of applying ϵ-dominance (Hadka and
Reed, 2015; Salazar et al., 2016). However, a clear research gap remains. A direct empirical com-
parison of ϵ-NSGA-II, Borg and Generational Borg, quantifying the trade-offs between convergence
dynamics, solution quality and computational efficiency, especially in the context of optimising a com-
plex and computationally demanding model like the JUSTICE IAM, does not yet exist.

Even though the theoretical benefits of Borg’s asynchronous steady-state approach for scalabil-
ity and the adaptive techniques used by both Borg and Generational Borg are known, there is no clear
empirical quantification of how these translate into actual performance increases on intensive IAMs
yet. How does the theoretical parallel scalability advantage of Borg compare to synchronous genera-
tional MOEAs, like ϵ-NSGA-II and Generational Borg, when considering the quality of the Pareto front
approximations and the time and resources needed to reach them? Furthermore, the position of Gen-
erational Borg is interesting compared to both Borg as well as ϵ-NSGA-II. Do its additional adaptive
features make it significantly outperform ϵ-NSGA-II despite facing the same generational issues with
regards to parallel scalability, and how does it hold up to the steady-state Borg? Researching this on a
complex and computationally heavy model like JUSTICE is crucial to gain an understanding of how dif-
ferent MOEA architectures perform under realistic conditions and models relevant to climate-economy
modelling.

This is an important gap to address. Insights in changing MOEA dynamics due to parallelisability
can yield significant benefits. It aids researchers in determining the correct choice of MOEA for specific
problems. Given the differences in their efficiency, costs, suitability for distributed computing and ability
to handle complexity, significant time, effort and costs can be saved by having a clear rationale to
choose a particular MOEA based on the intended application.

3.2. Research Question
To address the identified knowledge gap, this thesis aims to answer the following question;

How and why do ϵ-NSGA-II, Borg and Generational Borg differ regarding their compu-
tational efficiency, convergence dynamics and solution quality when optimising a demanding
model such as JUSTICE using the EMODPS framework?

11
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To answer this question the following sub-questions have been formulated;

1. How do ϵ-NSGA-II, Borg and Generational Borg differ in convergence performance metrics
and solution quality?

Answering this question is fundamental to being able to answer the main research question. It
provides the baseline effectiveness of each MOEA in achieving the prime goal of finding high qual-
ity and diverse solutions for the JUSTICE model within in a certain computational and temporal
budget.

2. Are the observed differences in JUSTICE also observed in benchmark problems like DTLZ2
and DTLZ3?

The answer to this question will provide additional insights in the generalisability of the JUSTICE
findings. Comparing the MOEA performance on benchmark problems with that on the JUSTICE
IAM can help determine if the observed differences have to do with fundamental algorithmic prop-
erties or specific interactions with the IAM and benchmark problems.

3. Does increasing or decreasing the number of cores used in optimisation influence the
differences between the different MOEA performances?

This question needs to be answered to address the computational efficiency dimension of the
main research question. By testing the theoretical expectations with regards to scalability dis-
cussed in chapter 2 it quantifies how effectively each MOEA can utilise an increase in computa-
tional resources, which is very helpful to know for evaluating their feasibility and cost-effectiveness
especially on HPC systems.

4. What recommendation with regards to MOEA choice can be made based on problem char-
acteristics and available resources?

Answering this question aims to synthesise the empirical findings from all previous research ques-
tions and provide an actionable advise for researchers selecting MOEAs for similar simulation and
optimisation problems.

3.3. EPA Relevance
This research is highly relevant for and fits well in the domain of Engineering & Policy Analysis. The
EPA philosophy advocates for a quantitative, analytical and modelling approach to understand and
evaluate complex societal issues at the intersection of technology, policy and management. Using
JUSTICE and the EMODPS framework this research heavily depends on advanced modelling and
simulation techniques, both central to the EPA curriculum. It addresses the complex socio-technical
problem of climate-economy policy optimisation, characterised by conflicting interests like economic
and environmental objectives. The objective of this thesis is to research simulation tools like MOEAs
to improve the quality and efficiency of decision-making support for complex policy problems charac-
terised by deep uncertainty.



4
Method

This chapter first outlines the general design and goal of this study. It formally defines the three prob-
lems that will be optimised and discusses which MOEAs and which configurations will be used to do so.
The following section outlines the exact experiments that will be performed. Next, a number of perfor-
mance metrics that will aid in answering the research question are defined and discussed. Lastly, the
limitations this research is subject to are discussed and recommendations to tackle these limitations in
future research are made.

4.1. Research Design
The core of this research is built up out of a series of computational experiments that are run on the
DelftBlue HPC. The experiments are run under a number of different controlled conditions, primarily
varying the number of used CPU cores, and evaluate and compare the performance of the three se-
lected and previously discussed MOEAs; ϵ-NSGA-II, Borg and Generational Borg. Each of the MOEAs
will be run on three different problems, which can be divided into two main categories. First, the JUS-
TICE IAM problem will be optimised using the EMODPS framework. Second and third, the widely used
benchmark problems DTLZ2 and DTLZ3 will be optimised. The latter two problems have known char-
acteristics and analytical solutions and are used to contextualise the observed performance results
from JUSTICE. DTLZ2, a simple unimodal problem, tests the baseline convergence ability of each
MOEA. DTLZ3, a deceptive multi-modal problem, introduces a far greater difficulty than DTLZ2 and
tests the MOEA’s ability to avoid getting stuck local optima. By comparing MOEA performance across
all problems, it is possible to better isolate whether the performance differences on JUSTICE stem from
fundamental convergence issues or difficulties with complex and deceptive solution landscapes.

The experiments aim to quantify the trade-offs mentioned in the main research question, com-
paring the algorithms across three main dimensions. Firstly, the computational efficiency, focussing on
parallel scalability of each of the MOEAs. Secondly, the convergence dynamics, focussing on how ef-
fectively each MOEAmoves towards to the Pareto front during an optimisation run. Thirdly, the solution
quality, focussing on the quality of the final Pareto front approximated by the MOEA compared to the
best-known Pareto front. The performance with regards to each of these dimensions will be measured
by a set of performance metrics that will be further detailed in section 4.5.

4.2. Problem Formulations
This section provides a specific definition of the MOPs used in the experiments. As mentioned, two dif-
ferent categories of MOPs are used. Firstly, the primary problem Justice Universality Spatial Temporal
Integrated Climate Economy (JUSTICE) IAM, employing the EMODPS framework, is discussed. Next,
definitions of the analytical benchmark problems DTLZ2 and DTLZ3 are provided.

13
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4.2.1. JUSTICE
JUSTICE is a novel IAM designed as a simpler and modular model inspired by the FAIR and RICE
IAMs, especially suited to act as a surrogate model for more complex IAMs for eliciting normative
insights (Biswas et al., 2023). One of its key features is its modularity, which allows for researching
the effects of different assumptions with regards to the economic model, damage functions and social
welfare functions used in the model. However, since the purpose of this thesis lies on comparing MOEA
performance, only one specific deterministic JUSTICE configuration is used as, outlined in table 4.1.

Parameter Value

RBFs 4
Inputs per RBF 2
RBF type Squared exponential
Welfare function Utilitarian
Economy type Neoclassical
Damage function Kalkuhl
Abatement type Enerdata
Climate reference scenario SSP245
Climate ensemble size 40
Number of regions 57

Model structure parameters

Parameter Value

Start year 2015
End year 2300
Data timestep 5
Timestep 1
Emission control start year 2025
Temperature year of interest 2100

Time-related parameters

Table 4.1: Parameter settings for the JUSTICE model

The goal is to optimise the following four objectives using ϵ-values based on objective scale and
previous experiments in Biswas et al., 2025;

• Welfare, to be minimised using ϵ = 0.01.
• Years above threshold, to be minimised using ϵ = 0.25.
• Welfare loss damage, to be maximised using ϵ = 10.
• Welfare loss abatement, to be maximised using ϵ = 10.

The directions of optimisation for welfare, welfare loss damage andwelfare loss abatement might
seem counter-intuitive. However, the social welfare function used in the model returns a negative value,
flipping the direction of optimisation for these objectives.

The RBF network acts as the policy function. In JUSTICE the RBF network features four basis
functions andmaps the system state to a set of control actions by taking two inputs, ’scaled_temperature’
and ’scaled_difference’ (change in temperature). These are used to determine the ’emissions_control_rate’
for each of the 57 regions, resulting in 57 final outputs. This mapping is defined by the RBF parameters,
which are the decision variables eventually optimised by the MOEA. This can be represented as policy
πθ(s) with a parameter vector θ containing;

• Center parameters, ncenters = nRBFs · ninputs = 4 · 2 = 8 parameters. Bounded by [-1,1].
• Radii parameters, nradii = nRBFs · ninputs = 4 · 2 = 8 parameters. Bounded by [0.0004,1] for
numerical stability.

• Weight parameters, nweights = nRBFs · nregions = 4 · 57 = 228 parameters. Bounded by
[0.0004,1] for numerical stability.

• Total parameters, nparam = 8 + 8 + 228 = 244 parameters.

The lower bounds for the radii and weight parameters were set to prevent division by zero errors
that occurred when the lower bound was set to zero. The value was determined through multiple trial
and error runs. The MOEA starts by initialising a candidate θ, defining πθ(s). JUSTICE is simulated
over the entire time horizon using this policy, resulting in final objective values for the four previously
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mentioned objectives. The MOEA evaluates these values and searches for an improved θ, after which
the cycle repeats.

4.2.2. DTLZ2
DTLZ2 is a benchmark problem from the DTLZ test suite, often used in MOEA research (Deb, Thiele,
et al., 2005). An advantage of DTLZ2 compared to many other benchmark problems is its ability to
generate a problem with an arbitrary number of objectives. Since it is an analytically solvable problem,
the true Pareto front is known, allowing for a clear evaluation of the MOEA and its performance. Since
the number of objectives used in JUSTICE is four, the number of objectives in the DTLZ2 problem (m)
is also set to m = 4 with ϵ-values 0.05. This leads to the following definition;
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(4.1)

Here x = (x1, · · · , xn) is the decision variable vector and xm = (xm, . . . , xn). The number of
decision variables is set as nvar = m+ k − 1. Following the convention from Deb, Thiele, et al. (2005)
we set k = 10, so nvar = 13. The Pareto front for DTLZ2 is covered by solutions where g(xm) = 0, so
xi =

1
2 for i = m, . . . , n. Here the objective values satisfy

∑4
i=1 f

2
i (x) = 1, forming a smooth concave

global Pareto front representing the first orthant of a unit hypersphere in the 4-dimensional objective
space. This is one of the reasons DTLZ2 is included in this research. With its smooth concave Pareto
front and unimodal distance function g(xm) it is particularly suited to evaluate a MOEA’s basic ability
to converge towards a non-linear front and distribute solutions along this front evenly (Huband et al.,
2006). By comparing these results to JUSTICE and DTLZ3, both more complex problems, insights into
what part of the observed MOEA performance differences is due to basic convergence and diversity
mechanics and what part is due to the ability to handle more complex problems are gained.

4.2.3. DTLZ3
DTLZ3 also is a benchmark problem from the DTLZ test suite (Deb, Thiele, et al., 2005). It is very
similar to DTLZ2 and also has an analytical solution. However, it introduces a different distance function,
making it a multimodal and thus more complex problem. Just like with JUSTICE and DTLZ2 we set the
number of objectives to m = 4 with ϵ-values 0.05, leading to the following definition;
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(4.2)

Just like for DTLZ2 x = (x1, · · · , xn) is the decision variable vector and xm = (xm, . . . , xn).
The number of decision variables is set as nvar = m + k − 1 with k = 10, so nvar = 13. The global
Pareto front for DTLZ3 is covered by solutions where g(xm) = 0, so xi =

1
2 for i = m, . . . , n. Here the
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objective values satisfy
∑4

i=1 f
2
i (x) = 1. However, given the cosine in DTLZ3’s g(xm) function, 3k − 1

local minima are introduced (Deb, Thiele, et al., 2005). This multi-modality leads to many local Pareto
fronts (while the global front is the same as for DTLZ2). Compared to the unimodal DTLZ2, DTLZ3
allows one to evaluate a MOEA’s ability to handle more complex landscapes and avoid local optima.
Also incorporating DTLZ3, in addition to JUSTICE and DTLZ2, allows for understanding whether MOEA
performance differences are mainly due to basic convergence and diversity mechanics, ability to handle
multi-modality or ability to handle even more complex landscapes found in problems like JUSTICE.

4.3. MOEA Implementation and Configurations
This section discusses the main implementation and parameter configurations for each of the three
MOEAs in this research; ϵ-NSGA-II, Borg and Generational Borg. They were all implemented using
Python 3.9.10 and heavily rely on the EMA_workbench (version 2.5.0) and Platypus (version 1.1.0)
libraries (ProjectPlatypus, 2024; Kwakkel and contributors, 2024). All MOEA parameters were left at
their default settings set by the libraries they were imported from. This choice was made given that
the time scope did not allow for extensive parameter tuning, and leaving the MOEAs at default set-
tings ensures a fair ’baseline’ performance comparison reflecting a common use-case scenario where
problem-specific parameter tuning does not happen. Additionally, using default parameter settings al-
lows performance differences to be attributed more directly to fundamental architectural differences
between the MOEAs, minimising the effects parameter fine-tuning could potentially introduce. The
main parameters will be briefly discussed in this section. Appendix A details all the exact MOEA set-
tings. Despite each MOEA having a unique parameter setup, a number of key parameters are shared
and set to identical values. These include;

• The stopping criterion is set to 70000 function evaluations (NFE) for each of the three prob-
lems. Setting a shared stopping criterion ensures the results of each MOEA are based on the
same computational budget and can thus be compared fairly. The number 70000 was chosen as
this provides the MOEAs sufficient budget to reach meaningful results in a complex model like
JUSTICE.

• The same ϵ-values are used for each MOEA. Based on previous experimentation with JUSTICE
in Biswas et al., 2025), the JUSTICE ϵ-values are set too;

Objective ϵ-value

Welfare 0.01
Years above threshold 0.25
Welfare loss damage 10
Welfare loss abatement 10

For both the DTLZ2 and DTLZ3 problems the ϵ-values are set to 0.05 for each of the four objec-
tives.

• The initial population size is set to 100 for each MOEA. This is a commonly used number that
balances initial exploration with computational cost.

• The adaptive population sizing parameters are kept at default settings and also thus similar
for each MOEA. Population-to-archive ratio λ = 4, the minimum population size Pmin = 10, the
maximum population size Pmax = 10000 and the mutator is UM.

4.4. Experimental Setup
This section will outline the specific experiments conducted to evaluate the MOEAs performances and
the computational environment in which they were conducted. Table 4.2 presents a summary of the
performed experiments.

4.4.1. Computational Environment
All experiments were run on high-memory nodes of the DelftBlue HPC. The nodes contain 48 cores,
provided by two 24-core Intel Xeon E5-6248R 24C 3.0GHz CPUs, with 750GB of normal memory and
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a 150GB SSD. After running the experiments, the results were analysed on a local machine.

4.4.2. Experiments
Each of the three MOEAs is used to optimise all three problems. To answer research sub-question 3,
this is done for three different core counts. For the core counts the values 16, 32 and 48 were picked.
Using the master-slave approach discussed in section 2.3.2 this translates to runs with 1 master and 15
workers, 1 master and 31 workers and 1 master and 47 workers. These three values were specifically
chosen for a number of reasons. Given the time scope of this thesis and a single high-memory node
containing 48 cores, the choice was made not to incorporate any Message Passing Interface (MPI)
setup in the experiment code and use 48 cores as the maximum. Additionally, Hadka et al. (2013)
have shown that for a master-slave setup higher core counts not necessarily translate to proportional
increases in convergence. Depending on the time needed for a single function evaluation, Borg’s
efficiency peaks between 16 and 256 cores. To easily see the effects of an increasing or decreasing
core count a linear increment was chosen, leading to the choice of 16, 32 and 48 cores.

All experiments were run for 70000 NFE. This number was chosen based on the available time
resources, and previous JUSTICE runs made by P. Biswas using ϵ-NSGA-II showing convergence
around 50000 NFE. Lastly, each experiment was run five times, using different seeds. Ideally, the
number of seeds would be higher, as it not only increases the validity of the results but also leads to a
more robust reference set for JUSTICE (as the ’true’ Pareto front is formed by the best solutions of all
runs). However, due to time and computational constraints only five seeds were run.

JUSTICE DTLZ2 DTLZ3
MOEAs ϵ-NSGA-II, Borg, Genera-

tional Borg
ϵ-NSGA-II, Borg, Genera-
tional Borg

ϵ-NSGA-II, Borg, Genera-
tional Borg

Objectives 4 4 4
NFE 70000 70000 70000
Core Counts 16, 32, 48 16, 32, 48 16, 32, 48
Seeds 12345, 23403, 39349,

60930, 93489
12345, 23403, 39349,
60930, 93489

12345, 23403, 39349,
60930, 93489

Table 4.2: Experiment Summary

4.5. Performance Metrics
To quantify the trade-offs between computational efficiency, convergence dynamics and solution quality
mentioned in the research questions, a number of often used performance metrics in MOEA research
have been selected. All metrics are computed for independent optimisation runs. This section provides
a detailed discussion of each metric. This specific group of metrics was chosen to ensure a holistic
assessment of the performance. The hypervolume indicator provides a measure of convergence and
diversity, while the generational distance and additive epsilon indicator both specifically quantify how
close the solution approaches the reference Pareto front. The spacing metric is used to give additional
insights with regards to diversity. Lastly, the epsilon progress and archive size provide insights into the
MOEA’s ability to effectively explore the solution space and find new solutions over time.

4.5.1. Hypervolume
First off, the hypervolume is computed. The hypervolume is a widely-used metric that quantifies the
quality and diversity of the obtained convergence (i.e. the Pareto front generated by the MOEA) (Hadka
and Reed, 2013; Ishibuchi et al., 2010; Yen and He, 2013). It measures the m-dimensional volume of
the objective space that is weakly dominated by the obtained Pareto front (i.e. the final ϵ-archive, which
we will call A) and bounded by a reference point which we will call zref . This reference point must be
set so that it is weakly dominated by all solutions inA. To determine a suitable zref , the true Pareto front
must be known or a reference Pareto front must be set. In case of the DTLZ2 and DTLZ3 problems
this true Pareto front is known, simply being the analytical solution to the problem. In case of JUSTICE
the true Pareto front is unknown. Here the reference set is defined by grouping all the final archives A
generated by each experiment run (so combining them for all problem, MOEA and seed combinations)
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and performing another non-dominated sorting. We will call the true Pareto front, or chosen reference
set, Z. Next, zref is defined as Z ’s nadir point, meaning the vector composed of the worst value for
each objective found across all solutions in Z. The hypervolume needs to be maximised, and can be
formally defined as;

HV (A, zref ) = Λ

(⋃
a∈A

[a, zref ]

)
where [a, zref ] = {q ∈ Rm|a ⪯ q,q ⪯ zref}

(4.3)

Here Λ denotes the Lebesgue measure, taken from the union of all four-dimensional hyper-
rectangles formed by the objective vector a = (a1, a2, a3, a4)

T and reference vector zref = (zref1 , zref2 , zref3 , zref4 )T

(since we have four objectives for each problem), where a is a non-dominated objective vector in A
and zref is the nadir point from Z (Guerreiro et al., 2021).

4.5.2. Generational Distance
The generational distance is a metric also widely used to assess the quality of the obtained Pareto
front A (Knowles and Corne, 2002; Yen and He, 2013). The generational distance measures how far
the average distance from solutions in A is compared to the true Pareto front or chosen reference set
Z. It quantifies how close solutions in A have come to the optimal front Z, where a lower value for
generational distance means the found solutions are closer to the optimum. The generational distance
needs to be minimised and can be formally defined as;

GD(A,Z) =

(∑|A|
i=1 d

p
i

) 1
p

|A|
(4.4)

Where |A| denotes the number of solutions in A. We set p = 2, making di denote the Euclidean
distance from solution ai ∈ A to its nearest neighbour solution in Z.

4.5.3. Additive Epsilon Indicator
The additive epsilon indicator is another metric to quantify the quality of the obtained Pareto front A
(Salazar et al., 2022). However, it takes a different approach than for example the generational dis-
tance. Instead, it identifies the minimum uniform distance ϵ with which the entire set A must shift in all
objectives to weakly dominate the true or set Pareto front Z, essentially quantifying how much worse
A is compared to Z in the worst case. This makes it an effective metric for capturing large gaps in
trade-offs. A small additive epsilon indicator indicates less large gaps between A and Z and thus is
indicative of better performance. For m objectives the additive epsilon indicator can be defined as;

Iϵ+(A,Z) = max
z∈Z

(
min
a∈A

(
m

max
i=1

(ai − zi)
))

(4.5)

4.5.4. Epsilon Progress
The epsilon progress is a measure to evaluate the improvement of solutions over time. Each time a new
solution sits in a better ϵ-grid cell than the previous solution, epsilon progress occurs. This allows for
an easy evaluation of the search progress and potential stagnation (Salazar et al., 2022). Essentially,
here higher values are also preferred, as these indicate the search is progressing well and solutions
are reaching ’better’ ϵ-grid cells.

4.5.5. Archive Size
The archive size simply logs the amount non-dominated solutions at any given stage of the optimisation
process. A higher value is preferred, as this indicates a lot of non-dominated solutions are found. It
provides information on the diversity of the solutions, while also providing additional insights into the
quality of convergence (Salazar et al., 2022).
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4.5.6. Hypervolume Efficiency
The hypervolume efficiency will be computed to evaluate how effective the MOEA is in converting
computational effort into improving the Pareto front. It calculates the in- or decrease in hypervolume
over a unit NFE, essentially being the gradient when plotting the hypervolume over NFE.

4.5.7. Spacing
The spacing is a metric which quantifies how evenly spread out the solutions are along the Pareto
front. It evaluates the uniformity of how solutions are spaced out with respect towards their nearest
neighbours, with a lower value indicating a more uniform distribution of solutions. It complements
other convergence metrics like hypervolume and generational distance by providing additional diversity
context. This study uses the implementation found in the Platypus library, which follows as;

S(A) =

√√√√ 1

|A| − 1

|A|∑
i=1

(di − d̄)2 (4.6)

Where |A| again indicates the number of solutions in the obtained Pareto front A, di indicates
the Euclidean distance from solution i to its nearest neighbour and d̄ is the average of these distances
(ProjectPlatypus, 2024).

4.6. Limitations
Despite efforts to minimise them, this study still is subject to a number of limitations which this section
will outline in more detail. First off, a limitation is the small amount of seeds used. Due to the time
constraints of this thesis and the time it takes to complete experiment runs even on a HPC such as
DelftBlue, all experiments were only run for five seeds. Due to the stochastic nature of MOEAs, this
does reduce the confidence in the generalisability of the results slightly. Additionally, given the way the
reference set was created for JUSTICE (taking the best solutions from all performed runs), the small
amount of seeds leads to a very substantial possibility that there are better solutions out there and that
the performance metrics were computed relative to a sub-optimal Pareto front. Future research, with
more time resources, could perform a similar study but extending it for a larger number of seeds to
confirm or disprove the findings from this study.

Another area for future work to improve on is the limited computational setup used in this study.
Again, due to time constraints, this study only tested the problems for three differing core counts. It
is not a given that the findings from this study also generalise to other core counts, or different HPC
setups in general. It would be interesting to see in future work if the results obtained here also hold for
substantially higher core counts, or a higher amount of different nodes.

Similar to the limited computational setup, the findings also result from fixed problem formula-
tions and parameter settings. Only the two DTLZ benchmark problems were tested, whereas more
benchmark problems with differing characteristics exist, and both the DTLZ problems were only tested
with four objectives. More importantly, JUSTICE was only run with one configuration. A different RBF
setup, different welfare function, different economy type, different damage function, different abatement
type, different climate reference scenario or a larger climate ensemble size all could substantially influ-
ence the model dynamics and results. Similarly, the MOEAs were only tested with their default settings.
Future research should therefore test a larger amount of different model and MOEA configurations.

Lastly, whereas 70000 NFE is a substantial NFE and previous research has shown it to generally
be enough for MOEAs to display a certain degree of convergence, there is no absolute certainty that
the MOEAs are close to having explored the complete objective space they are capable of exploring.
Future research could run the same experiments for an even higher NFE, exploring whether all MOEAs
have reached full convergence.



5
Results

This chapter presents the empirical results obtained by the experiment runs. It discusses the perfor-
mancemetrics and their development during the optimisation process. Additionally development trends
over wall-clock time will be shortly discussed. However, a significant limitation is present and will be
briefly discussed here. Due to the initial experiment setup utilising a maximum of 48 cores, and a
high-memory node of DelftBlue containing exactly 48 cores, no MPI was implemented in the code. Un-
fortunately, no exclusive node access was requested during experiment runs, and the DelftBlue Slurm
Workload Manager divided experiments over one to four nodes for different runs. This introduces un-
controllable variability in exact wall-clock runtimes, which therefore are not directly comparable between
runs. However, given the fact that this happened for all core counts, seeds and MOEAs, the observed
trends do still offer some general insights, which is why they will presented in this section. Additionally,
a number of experiments were rerun with exclusive node access to double check performance metric
result validity. These results were similar for non-exclusive and exclusive node runs, strengthening the
conviction that obtained performance metric results are valid. Unfortunately, due to time constraints
not all experiments could be rerun using exclusive node access.

First, all JUSTICE results will be presented and briefly discussed. Next, a number of interesting
results, which aid the contextualisation and interpretability of the JUSTICE results, of the DTLZ2 and
DTLZ3 problems will be presented. All DTLZ2 and DTLZ3 results that are not discussed in the main
text can be found in appendix C.

5.1. JUSTICE
JUSTICE, with its high-dimensional and complex solution space, serves as the primary problem for
evaluating the threeMOEAs. Its performancemetrics will be plotted over NFE, and tables of final results
averaged out over seeds will be presented. Additionally, the computational efficiency and scalability
observations will be presented. More detailed results per seed can be found in appendix B.

5.1.1. Solution Quality and Convergence Dynamics
Hypervolume Figure 5.1 presents the hypervolume obtained by each MOEA for JUSTICE plotted
over NFE. To reiterate, the hypervolume values were calculated using a global reference set made
up out of all the non-dominated solutions contributed by each run. Therefore, these plots indicate to
what degree individual runs cover the total discovered optimal Pareto front. All MOEAs show expected
behaviour, increasing in hypervolume at a quick rate at the start, and slowing down after approximately
10000 NFE. ϵ-NSGA-II and Generational Borg obtain relatively similar hypervolume values on aver-
age, though ϵ-NSGA-II shows slightly bigger inter-seed differences. Borg clearly achieves the highest
hypervolume as well as still displaying the highest rate of hypervolume increase even at 70000 NFE.

20
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Figure 5.1: JUSTICE Hypervolume

Table 5.1 shows the hypervolume values averaged out over all five seeds, for each core count as
well as the average hypervolume over all core counts for each MOEA. This gives a more detailed insight
into the final hypervolume obtained by each MOEA. Looking at the final hypervolume values in table 5.1,
it is clear that Borg achieves a significantly higher hypervolume than ϵ-NSGA-II and Generational Borg.
As already mentioned, ϵ-NSGA-II and Generational Borg achieve very similar hypervolume values,
even being identical for the 16- and 32-core runs. What also stands out is that the core count does
not seem to have any substantial effect on the final hypervolume value. The fact that ϵ-NSGA-II and
Generational Borg achieve very similar hypervolume values, while Borg achieves substantially higher
values, indicates that the exploration of the JUSTICE solution space especially benefits from a steady-
state nature. Definitely more so than the advantages that auto-adaptivity introduces.

Hypervolume
Core Count ϵ-NSGA-II Borg Generational Borg
16 0.311439 0.374093 0.313802
32 0.311439 0.366613 0.313802
48 0.311510 0.359279 0.307792
Total Average 0.311463 0.366662 0.311799

Table 5.1: Average JUSTICE hypervolume

Generational Distance For the generational distance, figure 5.2 shows logical and similar behaviour
for each MOEA. It starts out high and slowly converges to lower values as the search progresses. Borg
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seems to consistently get lower results, and a smaller inter-seed difference. The generational distance
seems to stabilise the quickest for Generational Borg, though generally being a bit worse than that of
ϵ-NSGA-II (except for seed 60930). The plot suggests that Generational Borg’s auto-adaptive features
make it approach the true Pareto front slightly quicker than ϵ-NSGA-II, but that its lack of steady-state
updates limit its final generational distance to roughly the same value as that of the generational ϵ-
NSGA-II rather than that of the steady-state Borg.

Figure 5.2: JUSTICE Generational Distances

Table 5.2 presents the final average generational distance values. Again, we see that for both
ϵ-NSGA-II and Generational Borg the 16- and 32-core experiments return similar values. Borg con-
sistently achieves the lowest and best generational distance values, while differing core counts do not
seem to matter for any of the MOEAs.

Generational Distance
Core Count ϵ-NSGA-II Borg Generational Borg
16 0.002854 0.001818 0.002758
32 0.002854 0.001692 0.002758
48 0.002796 0.001852 0.002995
Total Average 0.002835 0.001787 0.002837

Table 5.2: Average JUSTICE Generational Distance
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Additive Epsilon Indicator Figure 5.3 shows expected behaviour. All MOEAs quickly decrease in
their additive epsilon indicator score, converging to low values. It is interesting to see that ϵ-NSGA-
II does so the quickest, followed by Generational Borg, while this was reversed for the generational
distance. Borg takes slightly more NFE to get to the same epsilon indicator values as the others, but
does eventually converge to slightly lower values.

Figure 5.3: JUSTICE Epsilon Indicators

Table 5.3 confirms that Borg achieves the lowest final epsilon indicator values on average. ϵ-
NSGA-II and Generational Borg show almost identical final values. Again, one can observe that core
count does not significantly impact the epsilon indicator.

Additive Epsilon Indicator
Core Count ϵ-NSGA-II Borg Generational Borg
16 0.099516 0.060496 0.093362
32 0.099516 0.055853 0.093362
48 0.094307 0.062682 0.093950
Total Average 0.097780 0.059677 0.093558

Table 5.3: Average JUSTICE Epsilon Indicator

Archive Size Figure 5.4 displays relatively similar behaviour for each MOEA at the start of the search.
Rapidly increasing their archive size to roughly 180 after 15000 NFE. After this point Generational Borg
is the first to start converging to a value of roughly 220. ϵ-NSGA-II still displays a slightly increasing
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trend even after 70000 NFE. Borg again performs best, reaching the biggest archive sizes and still
showing an increasing trend for almost all seeds after 70000 NFE. Different core counts do not seem
to affect the archive size development.

Figure 5.4: JUSTICE Archive Sizes

Table 5.4 summarises the average final archive sizes for each core count and MOEA. It is clear
that regardless of core count, Borg finds the most non-dominated solutions, followed by ϵ-NSGA-II and
finally Generational Borg.

Archive Size
Core Count ϵ-NSGA-II Borg Generational Borg
16 267 333 235
32 267 313 235
48 265 334 240
Total Average 266 326 236

Table 5.4: Average JUSTICE Archive Size

Spacing Figure 5.5 shows the development of the spacing value for each MOEA and core count. All
MOEAs follow a similar trend and reach comparable final spacing values. The most striking difference
is the small inter-seed difference for ϵ-NSGA-II compared to the Borg and Generational Borg runs.
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Figure 5.5: JUSTICE Spacing

Table 5.5 also shows the comparable spacing values, especially ϵ-NSGA-II and Generational
Borg reach similar values. Another returning observation is that a differing core count does not have a
substantial effect on the resulting spacing values.

Spacing
Core Count ϵ-NSGA-II Borg Generational Borg
16 4.314934 3.853624 4.641669
32 4.314934 3.422113 4.641669
48 4.330172 3.454604 4.683329
Total Average 4.321482 3.576780 4.655566

Table 5.5: Average JUSTICE Spacing

Hypervolume Efficiency Figure 5.6 shows the hypervolume in- or decrease per function evaluation.
The shown behaviour is expected, as all MOEAs rapidly increase in hypervolume at the start, but just
make very small progress per function evaluation later in the search. No significant differences in
behaviour between MOEAs are observed.
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Figure 5.6: JUSTICE Hypervolume Efficiency

Epsilon Progress Figure 5.7 shows the epsilon progress for each MOEA. As expected, Borg shows
the biggest epsilon progress. It shows a very linear increase, without any signs of slowing down after
70000 NFE, indicating that it keeps refining quality solutions or finding new ones (since the archive
size also keeps growing after 70000 NFE). It also indicates that Borg is likely able to reach a higher
hypervolume if run with a higher NFE. ϵ-NSGA-II and Generational Borg show very similar behaviour
again. Both reach roughly the same epsilon progress, also still showing a slightly increasing trend even
after 70000 NFE. However, given the converging archive sizes this is likely due to small refinements of
existing solutions, and not the result of finding new distinct regions of the solution space.
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Figure 5.7: JUSTICE Epsilon Progress

Table 5.6 once more illustrates the large difference in epsilon progress made by Borg on one
hand and ϵ-NSGA-II and Generational Borg on the other. It indicates that Borg is able to more consis-
tently find solutions in better ϵ-boxes, and thus more effectively explores the solution space of JUSTICE.

Epsilon Progress
Core Count ϵ-NSGA-II Borg Generational Borg
16 1920 7263 1658
32 1920 7474 1658
48 1922 7415 1668
Total Average 1920 7384 1661

Table 5.6: Average JUSTICE Epsilon Progress

5.1.2. Computational Efficiency & Scalability
Figure 5.8 presents the mean wall-clock time taken to complete the optimisation for each MOEA and
core count. ϵ-NSGA-II is quickest for 32 and 48 cores, with Generational Borg only roughly matching it
for 16 cores. Generational Borg is slowest for 32 and 48 cores, slower even than Borg. Normally, this
would suggest that auto-adaptivity introduces more overhead, and that a steady-state nature is able
to slightly compensate for this. However, the previously mentioned multi-node limitation prevents any
definitive conclusions from being drawn. For all three MOEAs an increase in runtime can be observed
when cores are increased. This seems unintuitive, as more cores allow for a bigger parallelisation and
theoretically a faster runtime. It is very likely that the trend observed in figure 5.8 is also mainly due to
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communication overhead introduced by multi-node runs.

Figure 5.8: JUSTICE Runtime Comparison

Figure 5.9 displays the average obtained hypervolume plotted over wall-clock time. An important
side-note here is that the hypervolume was not explicitly logged per second. Rather, the NFE was
linearly scaled over the final runtime, allowing the hypervolume to also be plotted over time. However,
this does make the assumption that every function evaluation takes approximately the same amount
of time regardless of the stage of the search it happens in. As mentioned, no real conclusions based
on runtime differences between core counts can be drawn. However, a trend which is visible is that
regardless of core count both ϵ-NSGA-II and Generational Borg show a much faster initial gain in
hypervolume, with Generational Borg seeing the biggest gain, than regular Borg. Suggesting that a
generational nature allows for more rapid initial exploitation of promising solutions. This can likely be
attributed to the initial learning time needed for Borg’s adaptive features to effectively learn and tune
themselves to promising solutions. This is not really observed for Generational Borg, despite also
having adaptive features, because its larger batch population updates provide a quicker initial inflow of
information for the adaptive features. Nevertheless, for every core count Borg quickly catches up and
continues to gain hypervolume well beyond the final values ϵ-NSGA-II and Generational Borg manage
to reach, indicating that a steady-state nature is a great driver of further exploration of the solution
space.
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Figure 5.9: JUSTICE Hypervolume Over Wall-Clock Time

5.2. Benchmark Performance
To define a performance baseline for each MOEA it is necessary to look at optimisation problems where
the true Pareto front is known. Therefore, the results of the DTLZ2 and DTLZ3 benchmark problems will
now be briefly discussed. By plotting the performance metrics mentioned in section 4.5 over the NFE,
insights into behaviour, strengths and weaknesses at different stages of the optimisation process can
be gained for each MOEA. Additionally, for specific metrics a table with final values will be presented.
Again, more detailed results and additional plots can be found in appendices B and C respectively.

5.2.1. DTLZ2
Since DTLZ2 is a simple unimodal problem with a known analytical solution, it is very well suited to
quickly evaluate whether the MOEAs show any fundamental performance differences that would be-
come apparent on any given problem they optimise. This allows for checking if the observed per-
formance differences on JUSTICE really are due to the MOEAs ability to handle JUSTICE’s specific
characteristics, or due to fundamental differences.

Hypervolume Figure 5.10 shows the hypervolume for all three MOEAs for each core count for five
seeds on DTLZ2.
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Figure 5.10: DTLZ2 Hypervolume

What stands out is that for all seeds of ϵ-NSGA-II and Borg, and for most seeds of Generational
Borg, the hypervolume tends to converge to a value of around 0.6. Given the relative simple problem
that is DTLZ2, this seems rather low. However, using a reference point zref = (1, 1, 1, 1) for the DTLZ
hypervolume calculations means we calculate the volume of the unit hypercube minus the volume of
the spherical volume formed by the Pareto front. For a unit m-sphere the volume of the first orthant is
given by;

Vorthant(m, r) =
1

2m
· π

m
2

Γ(m2 + 1)
· rm (5.1)

And since we havem = 4 objectives and radius r = 1, the volume of the Pareto front is 1
24 ·

π2

2 =
π2

32 . As a result of this the maximum theoretically obtainable hypervolume for both DTLZ2 and DTLZ3
is;

HVmax = 1− π2

32
≈ 0.6916 (5.2)

This shows that the MOEAs find a Pareto front close to, but not completely covering the true
Pareto front. Table 5.7 shows the obtained hypervolume values averaged out over the seeds. For each
core count, Borg clearly obtains the best hypervolume, followed by ϵ-NSGA-II and then Generational
Borg. As mentioned they approach the theoretical maximum hypervolume but don’t quite fully reach
it. Given the very slight increasing plots seen in figure 5.10 it is possible that with a higher NFE the
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hypervolume would near the theoretical maximum further. However, what is the most important to
note here is that the differences in hypervolume are definitely smaller than they were for JUSTICE.
This confirms that compared to the other two MOEAs, Borg’s characteristics were better suited for a
problem like JUSTICE and responsible for achieving a higher hypervolume.

Hypervolume
Core Count ϵ-NSGA-II Borg Generational Borg
16 0.597470 0.619322 0.586789
32 0.598960 0.618976 0.593103
48 0.599335 0.619188 0.587365
Total Average 0.598588 0.619162 0.589086

Table 5.7: Average DTLZ2 hypervolume

Generational Distance Figure 5.11 shows the generational distance of each MOEA, for differing core
counts and different seeds. Given the obtained results for the hypervolume, the results from figure 5.10
are logical. For all core counts each MOEA rapidly improves its own solution set, getting closer to the
analytically generated true Pareto front. After approximately 10000 NFE the generational distance is
already approaching values near zero.

Figure 5.11: DTLZ2 Generational Distance

Table 5.8 shows the final generational distance for all MOEAs and core counts. Just like with
the hypervolume values, these values do not differ very much between MOEA or core count. This
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is expected as DTLZ2 is a relatively simple problem. The low values indicate that all optimisations
managed to get close to the true Pareto front with their obtained solutions. On average all three MOEAs
converge to similar values. In context of JUSTICE, this confirms that auto-adaptive features do not
help a MOEA to better approximate the true JUSTICE Pareto front, as indicated by the similar final
generational distance values on JUSTICE for ϵ-NSGA-II and Generational Borg shown in table 5.2.
Instead, a steady-state nature is a bigger driver of closer Pareto front approximation, as table 5.2 does
clearly show Borg reaches better final generational distance values for JUSTICE.

Generational Distance
Core Count ϵ-NSGA-II Borg Generational Borg
16 0.003498 0.003354 0.003318
32 0.003492 0.003331 0.003284
48 0.003478 0.003341 0.003288
Total Average 0.003489 0.003342 0.003297

Table 5.8: Average DTLZ2 Generational Distance

Computational Efficiency & Scalability
Figure 5.12 displays the average hypervolume over wall-clock time. Despite the often mentioned multi-
node limitation, the plot does show a number of interesting facts. Regardless of core count, ϵ-NSGA-II
is the fastest to complete, reaching the second best hypervolume every time. Generational Borg is the
second fastest, but also converges to the smallest hypervolume every time. Lastly, Borg consistently
reaches the highest hypervolume, while also taking the longest every time. What is most interesting to
see is that the differences in runtime between the generational MOEAs and the steady-state Borg are
far more outspoken for this simple problem than for JUSTICE. Furthermore, it is interesting to see that
ϵ-NSGA-II initially sees a far more rapid increase in hypervolume than the other MOEAs. This suggests
two things. Auto-adaptive operators introduce a certain computational overhead on simple problems,
as seen by the later hypervolume increases of Borg and Generational Borg, as their added complexity
is not necessary to solve simple problems. Additionally, simple problems do not necessarily require a
steady-state update scheme, as the fine-grained search pressure introduced by a steady-state update
scheme does not translate into substantially better hypervolume values in these cases. However, it
does lead to substantially longer runtimes. This clearly changes for more complex problems, as seen
for JUSTICE in figure 5.9.

Figure 5.12: DTLZ2 Hypervolume Over Wall-Clock Time
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5.2.2. DTLZ3
Just like DTLZ2, DTLZ3 is a benchmark problem with an analytical solution. However, it differentiates
itself through its deceptiveness, introduced by its multi-modality. Therefore it enables a better under-
standing of whether an observed performance difference is introduced due to pure multi-modality, or
other factors such as the high-dimensionality and thus large solution space as seen in JUSTICE. This
leads to better insights regarding the effects auto-adaptivity and a generational versus steady-state
nature have on a MOEA’s ability to tackle a problem with specific characteristics.

Solution Quality and Convergence Dynamics
Hypervolume Figure 5.13 displays the obtained hypervolume for all MOEAs for each seed and core
count. As previously explained for DTLZ2, the theoretical maximum for the hypervolume of DTLZ3
in this research also is HVmax ≈ 0.6916. From the plot it immediately becomes clear that the many
local optima make DTLZ3 a more deceptive problem than DTLZ2. ϵ-NSGA-II does not obtain a pos-
itive hypervolume for any run. This is behaviour that has been observed before, with the NSGA-II
and NSGA-III MOEAs also not being able to obtain any hypervolume on a three-objective DTLZ3 min-
imisation problem (Ishibuchi et al., 2016). Generational Borg obtains a good hypervolume for four
runs, spread over three seeds and three core counts, total. Only Borg seems to more consistently ap-
proach the global Pareto front, but still has runs with zero or very low hypervolume. This shows that all
MOEAs have trouble navigating DTLZ3’s deceptive true Pareto front. However, as exemplified by seed
23403 in the 48-core Generational Borg run (which only started increasing after 60000 NFE), there is a
possibility that the MOEAs simply need a higher NFE to find good solutions for DTLZ3. The observed
behaviour strongly points towards the lack of auto-adaptive features limiting a MOEA’s ability to escape
local optima and handle multi-modal problems, as indicated by the differences between ϵ-NSGA-II and
Generational Borg (and Borg of course). Additionally, the difference between Generational Borg and
Borg also suggests that having a generational instead of steady-state nature inhibits a MOEA’s search
pressure and, thus, ability to explore diverse regions of the solution space.
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Figure 5.13: DTLZ3 Hypervolume

Interpreting the values in table 5.9 requires extra attention, as these are values averaged over
seeds. The plot showed that most of the times a run would either approach the true front well, or
not at all. What it does show is that Borg consistently had more runs successfully navigating the
DTLZ3 landscape, with Generational Borg sometimes managing to do so as well, and ϵ-NSGA-II not
managing at all. The results observed here do also say something about the JUSTICE problem. Given
the hypervolume values observed for JUSTICE as seen in table 5.1, where every MOEA obtained a
(very) roughly similar positive hypervolume for each seed, it is likely that JUSTICE is substantially less
deceptive than DTLZ3. The MOEAs were less likely to become stuck in local optima and not gain any
hypervolume at all. However, the relatively low JUSTICE hypervolume values indicate that instead it
has a very big solution space. This is likely introduced through its high dimensionality, and the MOEAs
struggle to explore a large part of this area within the given computational budget.

Hypervolume
Core Count ϵ-NSGA-II Borg Generational Borg
16 0 0.366820 0.103760
32 0 0.584704 0.213371
48 0 0.573190 0.115125
Total Average 0 0.508238 0.144085

Table 5.9: Average DTLZ3 Hypervolume
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Generational Distance Figure 5.14 shows the DTLZ3 generational distance for each MOEA and
core count. An important note is that while having a hypervolume of zero, a solution set can still
improve its generational distance. The generational distance merely measures the average distance
to the true Pareto front, whereas hypervolume indicates if the found solutions dominate zref . Therefore
ϵ-NSGA-II still displays a decreasing trend in its generational distance. However, as expected, Borg
shows the steepest and fastest decline in generational distance. Generally, the plots look typical for
the generational distance, with a steep decrease early on in the search, which then slowly converges.

Figure 5.14: DTLZ3 Generational Distances

Table 5.10 again confirms that ϵ-NSGA-II does find solutions closer and closer to the true Pareto
front, but not close enough to dominate zref . Generational Borg, and especially Borg, obtain lower
values for generational distance. This is to be expected, as they actually displayed runs where their
solutions managed to dominate zref . Again, the values in table 5.10 all are worse than the generational
distance values for JUSTICE shown in table 5.2. With ϵ-NSGA-II obviously showing the biggest differ-
ences. This confirms that all three MOEAs had more difficulty approaching the deceptive true Pareto
front of DTLZ3 than that of the high-dimensional JUSTICE problem. However, given that Borg outper-
formed the other MOEAs for both problems, auto-adaptive features and a steady-state nature clearly
aid the exploration of complex solution spaces. This seems to especially be the case for auto-adaptive
features, given that Generational Borg did obtain a positive hypervolume for some runs on DTLZ3.

Archive Size Figure 5.15 shows the development of the archive size over NFE for each MOEA. Com-
pared to the DTLZ2 archive size plots shown in figure C.3, it immediately stands out that ϵ-NSGA-II
has a very low number of solutions, and that it does not show any increasing trend. This does not
guarantee that ϵ-NSGA-II would not have found more solutions if given more NFE, but it does indicate
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Generational Distance
Core Count ϵ-NSGA-II Borg Generational Borg
16 1.764981 0.046274 0.970969
32 3.572047 0.003385 1.394063
48 4.810238 0.003236 0.962975
Total Average 3.382422 0.017632 1.109336

Table 5.10: Average DTLZ3 Generational Distance

how much it is struggling with finding any solutions for the DTLZ3 problem. Comparing the plots for
Borg and Generational Borg, the plots coincide relatively well with the hypervolume plots, with runs that
obtain higher hypervolume values also ending the run with a larger archive size. What is an interesting
observation is that for some runs, the archive size seems to substantially decrease again after reaching
a peak.

Figure 5.15: DTLZ3 Archive Sizes

Table 5.11 summarises the average final archive sizes per core count. It shows the very small
amount of solutions found by ϵ-NSGA-II, especially compared to the archive size of Borg. Both Borg
and Generational Borg show a slight increase in final average archive size with a core count increase.
Again, when compared to the final archive sizes of JUSTICE seen in table 5.4, the differences between
the MOEAs are far greater for DTLZ3. This indicates how much more especially ϵ-NSGA-II, with its
generational nature and lack of auto-adaptivity, struggles with deceptive problems.
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Archive Size
Core Count ϵ-NSGA-II Borg Generational Borg
16 84 1002 252
32 53 1210 298
48 57 1263 367
Total Average 64 1158 305

Table 5.11: Average DTLZ3 Archive Size

Epsilon Progress Lastly, we consider the epsilon progress shown in figure 5.16 and table 5.12. Borg
still shows an increasing trend after 70000 NFE, making it more likely that the seeds that were unable
to obtain any hypervolume after 70000 NFE might still improve if given more function evaluations. For
both ϵ-NSGA-II and Generational Borg this trend is far less outspoken (with exceptions for some Gen-
erational Borg seeds). However, even for ϵ-NSGA-II the epsilon progress keeps increasing ever so
slightly, indicating that it still is finding new and improved solutions. Though, given the high values for
the generational distance and epsilon indicator, as well as a very low value for the archive size, it is
more likely that it is simply refining solutions for a local optima rather than discovering new high-quality
solutions.

Figure 5.16: DTLZ3 Epsilon Progress

Table 5.12 gives the final values for the epsilon progress. Confirming that Borg finds substantially
more improvements, followed by Generational Borg and ϵ-NSGA-II closely trailing behind that. Each
MOEA reaches a higher epsilon progress on DTLZ3 than they do on JUSTICE, as can be seen when
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comparing tables 5.12 and 5.6. This could again confirm the suspicion that JUSTICE simply is a larger
but less deceptive problem than DTLZ3. When the MOEAs get stuck in a local optima, they can keep
on refining solutions within that local optimum, thus increasing epsilon progress, without getting closer
to the true global Pareto front.

Epsilon Progress
Core Count ϵ-NSGA-II Borg Generational Borg
16 2696 9786 3297
32 2656 10512 3109
48 2347 10331 3317
Total Average 2566 10209 3241

Table 5.12: Average DTLZ3 Epsilon Progress

Computational Efficiency & Scalability
Figure 5.17 presents the mean wall-clock time each MOEA needed to complete 70000 NFE on DTLZ3.
Just like with DTLZ2, Borg takes substantially longer to complete its 70000 NFE than both ϵ-NSGA-
II and Generational Borg. It is interesting that all MOEAs take less time for DTLZ3 than they did for
DTLZ2. An explanation could be the MOEAs struggling with finding the true Pareto front, and getting
stuck in local optima, speeding up the search. Just like with DTLZ2, Borg demonstrates the greatest
runtime decrease over an increasing core count (though still very minimal), which would make sense
as it is the only true steady-state MOEA of the three. However, again, the multi-node limitation likely
exerted a substantial influence on these results, therefore rendering the conclusions drawn from them
uncertain.

Figure 5.17: DTLZ3 Runtime Comparison

Figure 5.18 shows the average hypervolume development over the estimated wall-clock time
in bold, with the shaded lines representing individual runs. The plots reflect the behaviour seen in
the previously discussed performance metrics. ϵ-NSGA-II did not obtain any hypervolume during its
search. For some runs, Generational Borg was successful in obtaining some hypervolume, and did so
relatively quick. Borg took the longest but was able to find a decent hypervolume in most cases.
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Figure 5.18: DTLZ3 Hypervolume Over Wall-Clock Time



6
Discussion

This chapter provides a detailed discussion of the observed results from chapter 5, their implications and
reasoning behind their observation. It generalises the results and proposes a rough visual framework
to aid future MOEA selection. Additionally, it restates a number of key limitations. Lastly, it explicitly
states a number of contributions made by this research, discusses the implications of the findings and
proposes directions for future research.

6.1. MOEA Performance Synthesis
This section will provide a detailed synthesis of the results presented in chapter 5 and aims to give an
explanation for them. Instead of interpreting the results for each problem in isolation, they can be gen-
eralised into a conceptual framework to aid future MOEA selection. This framework maps the specific
problem characteristics deceptiveness (multi-modality, as seen primarily in DTLZ3) and solution space
size (due to high-dimensionality, as seen in JUSTICE) to fundamental MOEA architectural properties.
Figure 6.1 gives a very rough visual representation on how to base the MOEA architecture choice on
problem characteristics. This section will analyse the observed performance on each problem to pro-
vide evidence supporting this framework and aim to justify why the MOEAs performed on each problem
the way they did. Finally, a few notable observations will be discussed in more detail.

6.1.1. Solution Quality & Convergence Dynamics
We start by discussing the performance of each MOEA with regards to final solution quality and con-
vergence dynamics on DTLZ2, DTLZ3 and JUSTICE.

DTLZ2
DTLZ2 is the simplest of all three problems. Its smooth and unimodal true Pareto front is relatively
easy to approach in the optimisation process. This is clearly reflected in the obtained results, with all
three MOEAs performing well. Nevertheless, Borg did achieve the best hypervolume, approaching the
theoretical maximum hypervolume for DTLZ2. Additionally, it achieved the best values for the epsilon
indicator, archive size, spacing and epsilon progress. ϵ-NSGA-II and Generational Borg performed
very similarly, being slightly worse than Borg, but still converging to good solutions for DTLZ2. These
marginal differences confirm that for simpler problems without a substantial degree of multi-modality
or high-dimensionality, like DTLZ2, advanced MOEA characteristics like auto-adaptive mechanisms,
epsilon progress tracking and steady-state versus generational natures do not necessarily make a
MOEA outperform other MOEAs lacking those features by a great amount.

DTLZ3
DTLZ3 differs from DTLZ2 in that it is a significantly more deceptive model, its multi-modal nature intro-
duces a lot of local optima which MOEAs can easily get stuck in. This increase in problem difficulty was
clearly observed in the obtained results, with performance differences between the MOEAs becoming
much more pronounced. Borg now clearly outperforms both ϵ-NSGA-II and Generational Borg across

40



6.1. MOEA Performance Synthesis 41

practically all performance metrics. Most striking is the difference in hypervolume values. Borg was
the only MOEA that was able to consistently obtain a positive hypervolume value (with the exception
of one single run). This indicates a strong ability to avoid getting stuck in local optima and successfully
explore more deceptive solution spaces. In contrast, ϵ-NSGA-II fails to obtain any hypervolume at all.
Despite its generational distance and epsilon progress plots in figures 5.14 and C.1 showing that it
does get closer to the true Pareto front during the optimisation process, its solutions fail to dominate
zref and thus do not generate any hypervolume.

This extreme difference in performance can thus be attributed to Borg’s defining features, namely
its adaptive tournament sizing, auto-adaptive operator selection and epsilon progress-based restart
mechanism. As stated by Hadka and Reed (2013) these features greatly enhance performance on
multi-modal problems. Additionally, its steady-state nature ensures a more constant in- and outflow
of solutions in the ϵ-archive. This results in a more fine-grained and continuous selection pressure.
Together with its continuous elitism, and more frequent feedback for adaptive features, this helps Borg
to preserve solution diversity and prevent getting stuck in local optima.

This steady-state nature effect can be clearly seen when considering Generational Borg’s per-
formance on DTLZ3. Generational Borg shares almost all features of Borg, except for that it uses a
generational population update mechanism. Its performance on DTLZ3 falls in between that of ϵ-NSGA-
II and Borg. Despite its auto-adaptive mechanisms and epsilon progress tracking, its epsilon archive
is updated less frequently and in greater batches than that of Borg. As a result of this, high-quality
solutions are introduced into the population less quickly, delaying useful feedback to the adaptation
mechanisms and reducing the responsiveness of the search process. This becomes clearly visible
when considering the archive sizes shown in table 5.11. Borg finds approximately four times as many
solutions as Generational Borg. However, on its turn Generational Borg finds roughly six times as many
solutions as ϵ-NSGA-II. This clearly illustrates the effectiveness of using adaptive features and epsilon
progress tracking as well as the additional effect a steady-state population update approach has on
successfully dealing with deceptive multi-modal problems.

JUSTICE
The observed results for JUSTICE provide more interesting insights, also with regards to JUSTICE its
own characteristics. For JUSTICE, all three MOEAs manage to obtain a positive hypervolume, though
Borg does outperform the other two again. However, despite all MOEAs obtaining positive hypervolume
values relatively close to each other, none of them are particularly high. Combined with the fact that ϵ-
NSGA-II does consistently obtain a hypervolume for JUSTICE (which was not the case for DTLZ3) this
indicates that it is very likely that JUSTICE is a less deceptive problem than DTLZ3. Instead, its very
high dimensionality (JUSTICE has 244 optimisable parameters versus only 13 for DTLZ2 and DTLZ3)
possibly makes for an extremely large solution space which all MOEAs are having trouble with fully
exploring.

Figure 6.1: MOEA selection based on problem characteristics
A: Generational & Non-Adaptive (e.g. ϵ-NSGA-II)

B: Generational & Auto-Adaptive (e.g. Generational Borg)
C: Steady-State & Auto-Adaptive (e.g. Borg)

An important observation here though is
that Borg is the only MOEA successfully contin-
uing optimisation after 70000 NFE. For Borg, fig-
ures 5.1, 5.4 and 5.7 all show continued upward
trends for hypervolume, archive size and epsilon
progress respectively, suggesting that Borg has
not converged yet, and is able to better approach
the true Pareto front if given a larger computa-
tional budget. On the other hand, ϵ-NSGA-II and
Generational Borg both show much slower and
more stagnant improvement after 70000 NFE,
suggesting they are likely not able to further ex-
plore the solution space by much.

A final observation particular to JUSTICE,
is the difference in convergence behaviour dur-
ing the early stage of the optimisation process.
Despite Borg consistently achieving the best final
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hypervolume values, it starts off converging more
slowly than the other two MOEAs. Both ϵ-NSGA-
II and Generational Borg initially show faster hy-
pervolume gains, only later being overtaken by
Borg. This behaviour is likely due to the differ-

ence in generational and steady-state nature. The generational nature of ϵ-NSGA-II and Generational
Borg allow for quick population updates in greater batches, making for a higher early stage search pres-
sure. Opposed to this is Borg’s more gradual update strategy, resulting in slower initial hypervolume
gains but more steady improvement later in the search. This suggests a key trade-off between the rate
of initial convergence and the quality of the final converged solution set. The key takeaway here though
is that for problems defined by high-dimensionality, such as JUSTICE, the continuous search pressure
of a steady-state update mechanism is the most effective feature for ensuring maximum exploration of
the solution space.

To give the reader a final illustration of howMOEA selection andMOEA characteristics concretely
affect objective values, figure 6.2 presents all the non-dominated solutions found for JUSTICE per
MOEA.

Figure 6.2: ’Years above threshold’ versus ’Welfare loss damage’ trade-offs found by the optimal solutions per MOEA

PerMOEA, solutions across all seeds and core counts were combined into one large set and sub-
jected to a non-dominated sorting. The plot thus shows the aggregated Pareto fronts obtained by each
MOEAon JUSTICE projected on the two objectives ’years_above_threshold’ and ’welfare_loss_damage’.
Only two objectives are shown here as a 4D-plot is less interpretable and this plot only serves the il-
lustrative purpose of showing the policy relevance of MOEA selection. It is easy to see how the better
hypervolume and generational distance Borg achieved compared to the other MOEAs translate to more
high-quality solutions with better objective values. Almost all Borg solutions dominate the solutions
found by the others, consistently getting closer to the optimal lower left corner (since a low welfare loss
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damage and few years above the temperature threshold are desirable). The plot displays the expected
relation of implementing less costly climate change abatement policies (lower welfare loss damage)
also resulting in many more years of the earth being above the 2°C temperature increase threshold.
The takeaway here is that better MOEA performance leads to objectively better policy insights, and
rigorous MOEA selection should thus always be an integral part of climate research.

6.1.2. Computational Efficiency & Scalability
As already mentioned in chapter 5 a substantial limitation with regards to evaluating the MOEAs com-
putational efficiency and scalability must be kept in mind. Due to unfortunate circumstances, node
allocation for experiment runs ranged from one to four, and no MPI was implemented. This introduces
uncontrollable variability in exact wall-clock runtimes and prevents valid direct comparisons between
MOEAs and core counts from being made. However, since this happened for all core counts, seeds
and MOEAs, the observed trends can still offer some general insights if interpreted with a large amount
of caution. Therefore the results will still be briefly discussed in this section. Another important point is
that for a selected amount of experiment runs, the exact same seed runs were rerun using exclusive
node access. Performance metric results were cross-referenced and either completely identical or very
similar. Therefore the obtained performance metric values are deemed to be valid, and we can make
the following point. As expected, core count does not have any substantial effect on solution quality,
only on the time needed to complete the optimisation processes.

Benchmark Problems
When considering DTLZ2 and figure 5.12, the most striking thing immediately is the substantially longer
time Borg needs to complete its 70000 NFE than both ϵ-NSGA-II and Generational Borg. Intuitively one
would attribute this to the overhead introduced by the time needed for all its adaptive mechanisms to
update, which could be overkill for a simple problem like DTLZ2 (as Generational Borg is also slower
than ϵ-NSGA-II). However, Borg shares these features with Generational Borg, making Borg’s steady-
state nature the only difference possibly explaining Borg’s longer runtime. As explained, a steady-
state MOEA performs selection and updates its archive every function evaluation. Again, this causes
computational overhead, especially on simpler problems, and likely causes the longer runtime seen for
Borg in DTLZ2. One conclusion that can therefore be drawn is that a steady-state nature influences
runtimes significantly more than auto-adaptive features or ϵ-progress tracking. When considering the
effect of core count on the runtimes, the largest decrease can be seen for Borg going from 16 to 32
cores. Given Borg’s steady-state nature, which is more fit for parallel computing as outlined in chapter
2, this makes sense. However, one would then also expect a decrease when increasing from 32 to 48
cores. These results are therefore very likely influenced by the multi-node issue mentioned numerous
times already.

Looking at the DTLZ3, very similar behaviour is observed. While Borg still is slowest, followed
by Generational Borg and finally ϵ-NSGA-II, they all take slightly shorter than for DTLZ3, which is
interesting. A potential reason for this could be that due to DTLZ3’s increased deceptiveness, less
solutions are found and added to the ϵ-archive. Therefore during each function evaluation, the solution
needs to be compared to fewer others, reducing the wall-clock time needed per function evaluation.
Again, we see a slight decrease in Borg runtime when increasing the core count, but no real conclusions
can be drawn from this.

JUSTICE
Figure 5.8 shows really peculiar runtime behaviour for all MOEAs. Every MOEA shows an increase in
runtime for an increase in core count. This is very unintuitive and is very likely caused by the multi-node
and lack of MPI limitation. No further conclusions will be drawn from this plot. On the other hand given
that the general trends with regards to hypervolume development over wall-clock time seen in figure 5.9
are similar for every core count, this behaviour is deemed to be valid. It confirms the point previously
made about how Borg is slower in its initial hypervolume gains, both NFE- as wall-clock-time-wise, but
always overtakes the other MOEAs slightly later in the search. The reason for this, as justified prior,
likely is a lower initial search pressure for Borg due to its steady-state nature.
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6.1.3. Notable Observations
This section will discuss two additional notable observations not previously mentioned in subsection
6.1.1 yet. Firstly, figure 5.15 shows a very steep and unusual decline in DTLZ3 archive size for two
Borg seeds on 16 cores, which is not observed anywhere else. A possible reason for this can normally
be a solution breakthrough, where the MOEA was caught in a certain area within the solution space,
with many solutions just marginally different. If the MOEA suddenly has a search breakthrough and
finds a small number of solutions which dominate a large number of other solutions, the archive size
can see a large decrease as the worse solutions are removed from the archive. Given that DTLZ3
is a deceptive problem, this would not be unthinkable. However, for the two specific runs where this
happened, figure 5.13 does not show any increase in hypervolume. This makes it unlikely that the
archive size reduction was due to a solution breakthrough. The other reason coming to mind would
be an archive management issue by the MOEA possibly introduced through the multi-node and lack of
MPI issue. Though this too seems unlikely, as it has not happened in any other run. Additionally, it was
double-checked and seed 60930, which shows the largest decrease in archive size, was actually run on
one single node for the 16 core DTLZ3 experiment, eliminating any suspicion of themulti-node limitation
introducing any archive management issues. Uncovering the reason for these observed archive size
reductions will therefore be left for future research.

Another interesting observation to discuss is the higher inter-seed variability for Borg and Gen-
erational Borg on JUSTICE compared to ϵ-NSGA-II. Even with Borg always obtaining a lower final
average spacing value than ϵ-NSGA-II, its seeds differ significantly more than ϵ-NSGA-II. This can be
explained by considering the many auto-adaptive features of Borg and Generational Borg. Based on
search progress these features can evolve in very different ways. Different random initial seeds can
therefore set the MOEAs on relatively different paths from the beginning, leading to larger differences
between seeds. On the other hand, ϵ-NSGA-II does not feature the same adaptive features, likely
leading to a more deterministic search path. Though it is surprising that this difference in inter-seed
variability is mainly observed for the spacing metric for JUSTICE.

6.2. Limitations
Despite many of the major limitations already having been discussed a number of times, this section
will briefly synthesise the biggest impact of these limitations on the results and what has to be kept
in mind when considering the final recommendations made in this study. For an additional detailed
evaluation of the limitations the reader is referred to section 4.6.

Firstly, the uncontrollable variability in wall-clock times due to the non-exclusive node allocation
introduced a severe degree of uncertainty in the comparisons of computational efficiency across runs
and should be kept in mind. As confirmed, this has not affected the validity of the core performance
metrics which can therefore be interpreted at face value. However, any insights drawn from the runtime
data should be interpreted with much caution. Secondly, all the tested problems were configured using
one single deterministic configuration. While this enabled clear, comparable and reproducible analyses,
it is not certain that its conclusions hold for a wider variety of problem settings. Additionally, there is no
guarantee that the chosen configuration is the most accurate in capturing real-world climate dynamics.
Therefore, the conclusion on which MOEA is best fit to use for IAM-like problems must be interpreted
with caution.

Another point of caution is the fact that all of the performance metrics for JUSTICE were cal-
culated using a reference set based on the best solutions found by the MOEAs tested in this study.
Therefore, there is no certainty, and little clarity, regarding to what degree the reference set really ap-
proaches the true Pareto front. Other MOEAs, not tested here, could potentially explore a much larger
area of the solution space, rendering the supposed superiority of Borg over ϵ-NSGA-II and Generational
Borg insignificant.

6.3. Contributions, Implications & Recommendations
This study has made a number of findings that have relevant implications for both the field of climate-
economy modelling as well as the broader field of multi-objective optimisation. Additionally, a number
of interesting directions for future research have been uncovered.



6.3. Contributions, Implications & Recommendations 45

6.3.1. Contributions
This study has primarily contributed by providing the first rigorous, empirical performance comparison
between generational versus steady-state and auto-adaptive versus non-adaptive MOEAs, namely ϵ-
NSGA-II, Borg andGenerational Borg, on a complex highly dimensional IAM. This way, it has decoupled
the effects of auto-adaptivity and steady-state nature inMOEA architecture. By usingGenerational Borg
as a control MOEA, and contrasting JUSTICE results with those of DTLZ2 and DTLZ3, the contributions
of auto-adaptivity and population update scheme have been decoupled. This has shown that multi-
modality in problems is best tackled by using both auto-adaptivity and a steady-state nature. When a
problem is characterised by high-dimensionality and thus a large solution space, a steady-state nature
has been shown to be the most effective feature in tackling the problem. This allows for more justified
MOEA selection based on problem characteristics in future work.

Another contribution of this study has been an initial characterisation of the JUSTICE problem
landscape. Comparing the performance of each MOEA on DTLZ2 and DTLZ3 with that on JUSTICE
suggests two things. Firstly, JUSTICE likely only is moderately deceptive, definitely less so than DTLZ3.
This is shown by themore extreme performance differences observed on DTLZ3 compared to JUSTICE.
On the other hand, it is likely that JUSTICE features a very large solution space, as theoretically ex-
pected due to its high dimensionality. This is suggested by the lower hypervolume values obtained for
JUSTICE compared to DTLZ2 (obviously) and the DTLZ3 runs that obtained hypervolume.

6.3.2. Implications
Firstly, the empirical evidence provided in this study advocates for the use of adaptive, steady-state
MOEAs like Borg for complex, deceptive and highly dimensional problems such as JUSTICE. Simpler
generational MOEAs like ϵ-NSGA-II and Generational Borg remain viable for less complex problems,
but for real-world applications where solution quality is a top priority Borg’s superior performancemakes
it the preferred choice. This is especially relevant for climate policy analysis, as the stakes of finding
the optimal policy recommendations are very high.

Secondly, despite only being able to provide limited insights into true scalability of the MOEAs,
this study has shown that scaling primarily affects runtimes and not solution quality. Therefore, gen-
erally, if solution quality is the main concern, increasing the NFE is the most effective consideration.
However, in projects with tight time constraints, or heavy and parallelisable applications/problems, it is
of course still more effective to run high NFE with higher core counts.

6.3.3. Future Research
First off, future research should address the main limitation present in this study. It would be interesting
to see the true scalability of the three MOEAs when increasing the core count while using one exclu-
sive node or implementing MPI. Additionally, the core counts used for optimisation can also be further
increased, yielding insights into how scalability gains scale.

Secondly, given that Borg had not yet fully converged after 70000 NFE, it would be interesting
to run the same experiments again. However, now run them with an increased computational budget,
like 150000 NFE for example, to see how much closer Borg could approach the Pareto front.

A third direction for future research would be to make the results more robust and generalisable.
This can be done by running the experiments on benchmark problems with different characteristics and
different hyperparameter settings. Most interesting would be also to test additional JUSTICE configura-
tions. Increasing the climate scenario ensemble size, using different welfare functions, different policy
function approximators etc. The results could also be made more robust by increasing the number of
seeds for each experiment. An additional advantage of doing so is that, at least for the setup used
in this study, the resulting reference set used for performance metric calculations would more closely
approximate the true (but unknown) Pareto front.

Lastly, as observed in the results, a generational versus a steady-state approach has a no-
ticeable effect on the initial speed with which good solutions propagate in the population. In MOEAs
with auto-adaptive mechanisms, which adapt based on high-quality solutions, the speed with which
these good solutions propagate in the population thus determines how quickly the auto-adaptive op-
erators can base adaptation on more high-quality solutions. Evaluating the exact interplay between
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auto-adaptivity and population update mechanism and quantifying its effect is an interesting direction
for future research to further explore.

6.3.4. Societal and Policy Impact
The ability to efficiently optimise complex IAMs, like JUSTICE, directly supports the development of
effective, equitable and sustainable climate policies. MOEAs help policymakers make informed trade-
offs between conflicting objectives, such as welfare and emission reduction, by finding a high-quality
set of Pareto optimal policies (as illustrated by figure 6.2). This study has aimed to provide researchers
with a number of insights and recommendations to enable more effective MOEA use in IAM optimisation
and thus contribute to better future policy analysis and decision support in the face of global climate
challenges.



7
Conclusion

To conclude, this study has researched how and why the three MOEAs ϵ-NSGA-II, Borg and Genera-
tional Borg differ regarding their computational efficiency, convergence dynamics and solution quality
when optimising a complex IAM like JUSTICE. The findings have been contextualised and validated
by running identical experiments for the DTLZ2 and DTLZ3 benchmark problems. This way the knowl-
edge gap identified in chapter 3, being the lack of empirical research regarding MOEA performance
in real-world, high-dimensional and policy-relevant problems, has been addressed. Using all the find-
ings and insights discussed in previous sections, we can now first answer the sub-research questions
formulated in chapter 3;

1. How do ϵ-NSGA-II, Borg and Generational Borg differ in convergence performance metrics
and solution quality?

The results presented in chapter 5 and discussed in chapter 6 have demonstrated substantial
differences between ϵ-NSGA-II, Borg and Generational Borg. Borg was able to consistently ob-
tain the best hypervolume, generational distance and epsilon indicator values across practically
all problems, seeds and core counts. This is indicative of a very strong ability to navigate com-
plex problem landscapes. ϵ-NSGA-II showed comparative performance on a simple problem like
DTLZ2, and also did reasonably well on JUSTICE, but completely failed on DTLZ3. Showing how
its fixed operators and generational nature make it very vulnerable to deceptive multi-modal prob-
lems. Lastly, Generational Borg takes an intermediate position. Its lack of steady-state updates
inhibit it in reaching similar solution quality to Borg on JUSTICE, but its auto-adaptive features
make it generally outperform ϵ-NSGA-II on DTLZ3.

2. Are the observed differences in JUSTICE also observed in benchmark problems like DTLZ2
and DTLZ3?

Trendwise, the observed differences in JUSTICE are also observed in the benchmark problems
DTLZ2 and DTLZ3. This means that Borg’s superior performance, and Generational Borg’s
(mostly) similar performance to ϵ-NSGA-II are observed in every problem, but that performance
gaps widen with model complexity. DTLZ2’s simple unimodal nature makes the MOEAs obtain
final performance metric values that are closer together than is the case with JUSTICE, but re-
tains the same MOEA ranking. For the case of DTLZ3, likely more deceptive than JUSTICE, the
obtained final performance metrics are more apart, with ϵ-NSGA-II lacking any hypervolume as
most striking example. Though, again, the same ranking is retained, with Borg performing best,
followed by Generational Borg and ϵ-NSGA-II.

3. Does increasing or decreasing the number of cores used in optimisation influence the
differences between the different MOEA performances?

The answer to this question is very nuanced. First off, in- or decreasing the core count did not sys-
temically influence the final solution quality. For practically all performance metrics, MOEAs and
problems, a differing core count did not show any real effect. However, core count definitely does
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influence final runtimes. As theoretically expected, an increase in core count seemed to have
the biggest positive impact on Borg’s runtime, given its steady-state nature, and was especially
effective on more complex and large problems like JUSTICE. However, given the numerously
mentioned limitation of lacking node-exclusivity for a large number of runs, as well as the lack of
MPI, no exactly quantified conclusions could be drawn from the data obtained in this study.

4. What recommendation with regards to MOEA choice can be made based on problem char-
acteristics and available resources?

Based on the observed behaviour, a number of recommendations for choice of MOEA can be
made. Firstly, Borg, or any steady-state MOEA with auto-adaptive features, always is a good
choice when solely considering solution quality. The outcomes showed that Borg was the top
performer for practically all runs. However, if the problem to be optimised is known to be simple
and unimodal and a short runtime is important given the scope and resources of the study, a
simpler and generational MOEA without any advanced auto-adaptive could be the better choice.
Its solution quality will not differ much from aMOEA like Borg, while the runtime will be significantly
shorter.

In all other cases a more advanced and steady-state MOEA, like Borg, is the better choice. For
problems that are more difficult, like multi-modal or very high dimensional problems such as
DTLZ3 and JUSTICE, Borg simply showed that it was able to achieve significantly better perfor-
mance. For cases where computational resources for example include HPC access, Borg, or any
steady-state MOEA, also is the obvious choice. Despite the limitations in this study, steady-state
MOEAs are theoretically (and have shown so in practice) much more scalable than generational
MOEAs, with better runtime performance than their generational counterparts.

By synthesising the answers to the sub-research questions, the main research question;

How and why do ϵ-NSGA-II, Borg and Generational Borg differ regarding their compu-
tational efficiency, convergence dynamics and solution quality when optimising a demanding
model such as JUSTICE using the EMODPS framework?

can now be properly answered. The empirical results have led to the conclusion that Borg consis-
tently achieves the highest solution quality, increasing the performance gap with the other MOEAs as
problem complexity, due to multi-modality or high dimensionality for example, increases. Its steady-
state nature together with auto-adaptive features like operator selection, tournament sizing and ϵ-
progress based restarts enabled it to keep outperforming the other MOEAs. The advantage these
features give Borg especially materialises in more complex problems, confirming its suitability for use
in optimising a demanding real-world problem like JUSTICE. By contrast, ϵ-NSGA-II proved to be a
faster and lighter alternative that still holds it own on simple problems like DTLZ2. However, with in-
creasing complexity, especially when introducing multi-modality, its lack of advanced features like those
of Borg make its performance drastically decline. This became most apparent on DTLZ3. The adaptive
features Generational Borg shares with Borg made it perform mostly on par with or slightly better than
ϵ-NSGA-II, at the cost of a slightly increased runtime. However, as problem complexity increased it
became more limited by its lack of a steady-state nature making it lag behind the performance of Borg.

In terms of computational efficiency, Borg’s steady-state nature did introduce some overhead,
mainly on simpler or smaller problems like the DTLZ problems, but it did enable better continued
progress on difficult highly-dimensional problems like JUSTICE. The results did hint at Borg being
more suited for high scalability, as theoretically expected. However, due to the discussed experimental
limitations, mainly the variable node allocation and lack of MPI, the runtime comparisons must further
be interpreted very cautiously.

To build on the findings made by this study, future research is suggested to explore the following
directions. First, future work should better examine efficiency gains through scalability by running the
experiments on truly exclusive nodes, or implementing MPI. Additionally, the MOEAs could be given
a higher computational budget to examine what the upper limits of convergence are for problems like
JUSTICE, especially considering Borg has not yet fully converged after 70000 NFE for JUSTICE. The
experiments could also be run with different MOEAs and different JUSTICE configurations to increase
the robustness of currently made observations and findings.
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Finally, this research has demonstrated that choice of MOEA critically impacts performance
and solution quality, essential when used for real-world policy design under deep uncertainty. The
findings have shown that especially steady-state architectures together with auto-adaptive features
are essential when navigating complex solution landscapes in IAMs like JUSTICE, aiding the EPA
philosophy of model-driven policy design. And while generational MOEAs remain viable options for
simpler problems, especially when time is constrained, adaptive steady-state MOEAs like Borg are now
shown to better enhance our ability to discover robust and equitable climate policies. Therefore, this
study has achieved its goal of aiding researchers in the development of actionable policies combating
humanity’s most urgent challenge, climate change.
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A
MOEA Parameter Settings

Table A.1: Detailed Parameter Settings for MOEAs

Parameter ϵ-NSGA-II Borg Generational Borg
Common Parameter Settings

Stopping Criterion (NFE) 70000 70000 70000
ϵ-values (JUSTICE) Welfare: 0.01

Years > Threshold:
0.25
Damage Loss: 10
Abatement Loss: 10

Welfare: 0.01
Years > Threshold:
0.25
Damage Loss: 10
Abatement Loss: 10

Welfare: 0.01
Years > Threshold:
0.25
Damage Loss: 10
Abatement Loss: 10

ϵ-values (DTLZ2, DTLZ3) 0.05 (all objectives) 0.05 (all objectives) 0.05 (all objectives)
Initial Population Size (Pinit) 100 100 100
Pop-to-Archive Ratio (λ) 4 4 4
Min Population Size (Pmin) 10 10 10
Max Population Size (Pmax) 10000 10000 10000
Mutator for Pop. Sizing1 UM(1.0) UM(1.0) UM(1.0)
Core Algorithmic Strategy

Population Management Generational Steady-State Generational
Parallel Execution Model Synchronous

Master-Slave
Asynchronous
Master-Slave

Synchronous
Master-Slave

Archive Type ϵ-Box Archive ϵ-Box Archive ϵ-Box Archive
Selection Mechanism Tournament Selec-

tion Size 2
Tournament Selec-
tion Size 2

Tournament Selec-
tion Size 2

MOEA-Specific Variation Operators

ϵ-NSGA-II
Crossover SBX — —
Crossover Probability (Pc) 1.0 — —
Distribution Index (ηc) 15 — —

Mutation PM — —
Mutation Probability (Pm) 1.0 — —
Distribution Index (ηm) 20 — —

Borg & Generational Borg
Operator Selection — Adaptive Adaptive
Initial Operator Probs. — Uniform (1/K)2 Uniform (1/K)2

Continued on next page
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Table A.1 – continued from previous page
Parameter ϵ-NSGA-II Borg Generational Borg
Prob. Update Constant (ζ) — N/A3 N/A3

Operator Suite:
SBX — Pc: 1.04

ηc: 15
Pc: 1.04
ηc: 15

DE — Crossover Rate: 0.1
Step Size: 0.5

Crossover Rate: 0.1
Step Size: 0.5

PCX — n parents: 10
n offspring: 2
η: 0.1
ζ: 0.1

n parents: 10
n offspring: 2
η: 0.1
ζ: 0.1

SPX — n parents: 10
n offspring: 2
Expansion: 0.3

n parents: 10
n offspring: 2
Expansion: 0.3

UNDX — n parents: 10
n offspring: 2
ζ: 0.5
η: 0.35

n parents: 10
n offspring: 2
ζ: 0.5
η: 0.35

UM (as operator) — Pm: 1.05 Pm: 1/nvars
Secondary Mutation with
Crossovers

— PM for SBX and DE PM for all operators

PM Pm — 1.06 1/nvars
PM ηm — 20 20
MOEA-Specific Restart Mechanisms

ϵ-NSGA-II
Restart Trigger Stagnation (fixed

NFE interval OR
Pop/Archive imbal-
ance)

— —

NFE Interval 1000 — —
Pop/Archive Imbalance Con-

dition
Psize − (λ · |A|) >
0.25 · (λ · |A|)

— —

Population Reinitialisation Archive + Mutated
Archive Solutions

— —

Restart Mutation Type UM — —
Mutation Probability (Pm) 1.0 — —

Borg & Generational Borg
Restart Trigger — ϵ-progress stagna-

tion OR Pop/Archive
imbalance OR Max
Iteration Window

ϵ-progress stagna-
tion OR Pop/Archive
imbalance OR Max
Iteration Window

Pop/Archive Imbalance Con-
dition

— Psize − (λ · |A|) >
0.25 · (λ · |A|)

Psize − (λ · |A|) >
0.25 · (λ · |A|)

ϵ-progress Threshold — No new archive im-
provements

No new archive im-
provements

No. of Stagnant Windows
(K)

— 1 window 1 window

ϵ-progress Window (stagna-
tion check frequency)

— 100 iterations 100 iterations

Max Iteration Window (time-
based trigger)

— 1000 iterations 1000 iterations

Continued on next page
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Table A.1 – continued from previous page
Parameter ϵ-NSGA-II Borg Generational Borg
Population Reinitialisation — Archive + Mutated

Archive Solutions
Archive + Mutated
Archive Solutions

Restart Mutation Type UM(1.0) UM (Adaptive Prob.)7 UM(1.0)
Adaptive Tournament Size — Yes (ratio: 0.02) Yes (ratio: 0.02)

1Refers to the mutation operator used when filling the population during adaptive population sizing restarts. Default internal
probability for ‘UM‘ is 1.0.

2K is the number of operators in the suite (6 for both Borg and Generational Borg).
3Operator selection probabilities managed by Platypus ‘Multimethod‘’s internal logic; no explicit ζ parameter set.
4The probability parameter within SBX itself; selection probability for the SBX operator by ‘Multimethod‘ is adaptive.
5Internal mutation probability (Pm) for the ‘UM‘ operator when part of Borg’s operator suite. Default for Platypus ‘UM()‘ is 1.0.
6Internal mutation probability (Pm) for the ‘PM‘ operator when used as secondary mutation in Borg. Default for Platypus ‘PM()‘

is 1.0.
7For Borg, the ‘UM‘ used during restarts (initially ‘UM(1.0)‘) has its internal probability Pm adapted by the formula P =

Pbase + (1− Pbase)/nvars, where Pbase changes from 0 to 1.0 based on ‘base_mutation_index‘. This means Pm ranges from
approx. 1/nvars to 1.0.



B
Results per Seed

B.1. Hypervolume
Table B.1: Final DTLZ2 hypervolume

Hypervolume
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 0.597566 0.618505 0.592487
23403 0.595832 0.619347 0.563799
39349 0.597660 0.619780 0.588743
60930 0.599087 0.619788 0.593782
93489 0.597203 0.619188 0.595135
Average 0.597470 0.619322 0.586789

32

12345 0.597846 0.618262 0.589443
23403 0.600720 0.618975 0.589980
39349 0.598467 0.619772 0.596452
60930 0.599462 0.618559 0.596288
93489 0.598307 0.619313 0.593353
Average 0.598960 0.618976 0.593103

48

12345 0.597967 0.619385 0.587689
23403 0.595900 0.618809 0.577886
39349 0.602369 0.619455 0.593747
60930 0.600007 0.618958 0.595826
93489 0.600431 0.619336 0.581679
Average 0.599335 0.619188 0.587365

Total Average 0.598588 0.619162 0.589086
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Table B.2: Final DTLZ3 Hypervolume

Hypervolume
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 0 0.043492 0
23403 0 0.609518 0.518801
39349 0 0.594471 0
60930 0 0 0
93489 0 0.586619 0
Average 0 0.366820 0.103760

32

12345 0 0.582271 0.517945
23403 0 0.552912 0
39349 0 0.594028 0.548913
60930 0 0.612469 0
93489 0 0.581841 0
Average 0 0.584704 0.213371

48

12345 0 0.567212 0.560638
23403 0 0.551911 0.014987
39349 0 0.595163 0
60930 0 0.574748 0
93489 0 0.576914 0
Average 0 0.573190 0.115125

Total Average 0 0.508238 0.144085
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Table B.3: Final JUSTICE Hypervolume

Hypervolume
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 0.312357 0.352536 0.303605
23403 0.321510 0.373744 0.308638
39349 0.318113 0.385087 0.303087
60930 0.286710 0.371754 0.332334
93489 0.318505 0.387342 0.321346
Average 0.311439 0.374093 0.313802

32

12345 0.312357 0.397780 0.303605
23403 0.321510 0.365839 0.308638
39349 0.318113 0.355803 0.303087
60930 0.286710 0.360913 0.332334
93489 0.318505 0.352728 0.321346
Average 0.311439 0.366613 0.313802

48

12345 0.312711 0.357900 0.303605
23403 0.321510 0.348593 0.308638
39349 0.318113 0.332404 0.303087
60930 0.286710 0.392831 0.302281
93489 0.318505 0.364668 0.321346
Average 0.311510 0.359279 0.307792

Total Average 0.311463 0.366662 0.311799
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B.2. Generational Distance
Table B.4: Final DTLZ2 Generational Distance

Generational Distance
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 0.003495 0.003296 0.003315
23403 0.003515 0.003306 0.003390
39349 0.003555 0.003401 0.003287
60930 0.003463 0.003417 0.003278
93489 0.003462 0.003352 0.003320
Average 0.003498 0.003354 0.003318

32

12345 0.003509 0.003326 0.003282
23403 0.003553 0.003346 0.003328
39349 0.003468 0.003282 0.003290
60930 0.003576 0.003417 0.003239
93489 0.003352 0.003281 0.003282
Average 0.003492 0.003331 0.003284

48

12345 0.003524 0.003299 0.003287
23403 0.003458 0.003322 0.003293
39349 0.003489 0.003347 0.003278
60930 0.003442 0.003413 0.003343
93489 0.003475 0.003326 0.003240
Average 0.003478 0.003341 0.003288

Total Average 0.003489 0.003342 0.003297
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Table B.5: Final DTLZ3 Generational Distance

Generational Distance
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 1.379975 0.034825 0.227291
23403 1.009488 0.003325 0.003976
39349 1.164905 0.003449 1.076368
60930 3.090794 0.186638 0.297484
93489 2.179744 0.003132 3.249727
Average 1.764981 0.046274 0.970969

32

12345 3.449566 0.003818 0.004479
23403 5.260605 0.003348 1.910214
39349 4.566423 0.003219 0.004118
60930 2.230648 0.003299 1.744931
93489 2.352995 0.003242 3.306576
Average 3.572047 0.003385 1.394063

48

12345 6.147696 0.003046 0.004377
23403 4.502291 0.003164 0.033674
39349 3.119187 0.003247 0.626203
60930 4.122932 0.003189 2.692920
93489 6.159086 0.003531 1.457703
Average 4.810238 0.003236 0.962975

Total Average 3.382422 0.017632 1.109336
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Table B.6: Final JUSTICE Generational Distance

Generational Distance
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 0.002794 0.001910 0.003144
23403 0.002308 0.001981 0.002901
39349 0.002797 0.001855 0.002975
60930 0.003803 0.001735 0.002411
93489 0.002571 0.001610 0.002355
Average 0.002854 0.001818 0.002758

32

12345 0.002794 0.001542 0.003144
23403 0.002308 0.001658 0.002901
39349 0.002797 0.001696 0.002975
60930 0.003803 0.001662 0.002411
93489 0.002571 0.001901 0.002355
Average 0.002854 0.001692 0.002758

48

12345 0.002503 0.001859 0.003144
23403 0.002308 0.002156 0.002901
39349 0.002797 0.002240 0.002975
60930 0.003803 0.001272 0.003601
93489 0.002571 0.001732 0.002355
Average 0.002796 0.001852 0.002995

Total Average 0.002835 0.001787 0.002837
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B.3. Epsilon Indicator
Table B.7: Final DTLZ2 Epsilon Indicator

Epsilon Indicator
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 0.055823 0.053433 0.063395
23403 0.054329 0.050966 0.091709
39349 0.060740 0.046814 0.063651
60930 0.053929 0.046923 0.060367
93489 0.054980 0.067037 0.059801
Average 0.055960 0.053034 0.067785

32

12345 0.059378 0.052119 0.064971
23403 0.057865 0.050969 0.056982
39349 0.069099 0.049092 0.059113
60930 0.058418 0.052757 0.064051
93489 0.054992 0.053297 0.076156
Average 0.059951 0.051647 0.064254

48

12345 0.055960 0.052379 0.066343
23403 0.064622 0.045496 0.076061
39349 0.065324 0.052283 0.069194
60930 0.057030 0.044897 0.059894
93489 0.059596 0.046414 0.071493
Average 0.060506 0.048294 0.068597

Total Average 0.058839 0.050992 0.066879
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Table B.8: Final DTLZ3 Epsilon Indicator

Epsilon Indicator
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 8.726062 0.692393 2.572081
23403 6.486144 0.057406 0.104258
39349 3.715129 0.062428 5.211905
60930 13.126034 2.040228 1.855365
93489 11.098678 0.070885 12.793205
Average 8.630409 0.584668 4.507363

32

12345 9.316437 0.089556 0.142555
23403 13.573567 0.098638 8.240333
39349 20.118402 0.063936 0.087953
60930 9.492398 0.058896 5.460742
93489 9.852280 0.075979 15.794788
Average 12.470617 0.077401 5.945274

48

12345 16.931851 0.071506 0.098047
23403 16.787490 0.090818 0.726022
39349 11.135266 0.060526 3.169642
60930 18.407931 0.080733 10.924057
93489 16.153053 0.081406 5.403302
Average 15.883118 0.076998 4.064214

Total Average 12.328048 0.246356 4.838950
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Table B.9: Final JUSTICE Epsilon Indicator

Epsilon Indicator
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 0.105828 0.056688 0.086837
23403 0.094455 0.066369 0.091348
39349 0.081748 0.055966 0.104837
60930 0.129602 0.071653 0.088031
93489 0.085949 0.051806 0.095757
Average 0.099516 0.060496 0.093362

32

12345 0.105828 0.055345 0.086837
23403 0.094455 0.055684 0.091348
39349 0.081748 0.053628 0.104837
60930 0.129602 0.057526 0.088031
93489 0.085949 0.057084 0.095757
Average 0.099516 0.055853 0.093362

48

12345 0.079779 0.061246 0.086837
23403 0.094455 0.077761 0.091348
39349 0.081748 0.071383 0.104837
60930 0.129602 0.043916 0.090969
93489 0.085949 0.059105 0.095757
Average 0.094307 0.062682 0.093950

Total Average 0.097780 0.059677 0.093558
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B.4. Archive Size
Table B.10: Final DTLZ2 Archive Size

Archive Size
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 1166 1386 1239
23403 1155 1380 1184
39349 1118 1345 1268
60930 1175 1321 1264
93489 1171 1372 1264
Average 1157 1360 1243

32

12345 1169 1362 1278
23403 1142 1347 1253
39349 1149 1389 1287
60930 1147 1295 1287
93489 1239 1401 1284
Average 1169 1358 1277

48

12345 1184 1403 1256
23403 1165 1374 1222
39349 1175 1333 1289
60930 1176 1322 1227
93489 1190 1380 1242
Average 1178 1362 1247

Total Average 1168 1360 1255
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Table B.11: Final DTLZ3 Archive Size

Archive Size
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 109 815 338
23403 75 1301 754
39349 61 1203 48
60930 83 330 76
93489 93 1362 47
Average 84 1002 252

32

12345 25 966 585
23403 19 1135 48
39349 100 1327 738
60930 82 1347 51
93489 42 1275 70
Average 53 1210 298

48

12345 12 1378 678
23403 38 1279 982
39349 52 1297 107
60930 110 1300 47
93489 74 1061 23
Average 57 1263 367

Total Average 64 1158 305
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Table B.12: Final JUSTICE Archive Size

Archive Size
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 261 337 242
23403 301 313 237
39349 255 314 211
60930 250 365 234
93489 272 336 254
Average 267 333 235

32

12345 261 289 242
23403 301 319 237
39349 255 288 211
60930 250 319 234
93489 272 352 254
Average 267 313 235

48

12345 247 352 242
23403 301 318 237
39349 255 345 211
60930 250 294 257
93489 272 364 254
Average 265 334 240

Total Average 266 326 236
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B.5. Spacing
Table B.13: Final DTLZ2 Spacing

Spacing
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 0.047558 0.042931 0.051233
23403 0.047555 0.043361 0.055553
39349 0.046748 0.042336 0.048944
60930 0.047371 0.043223 0.050424
93489 0.047756 0.044253 0.047633
Average 0.047398 0.043221 0.050758

32

12345 0.046961 0.043617 0.049520
23403 0.045763 0.043827 0.051563
39349 0.047907 0.042399 0.053083
60930 0.047048 0.044679 0.049297
93489 0.046122 0.043448 0.048753
Average 0.046760 0.043594 0.050443

48

12345 0.044425 0.043137 0.050138
23403 0.048464 0.043091 0.050867
39349 0.048507 0.041591 0.050594
60930 0.045402 0.041878 0.049968
93489 0.047510 0.045521 0.051093
Average 0.046861 0.043044 0.050532

Total Average 0.047006 0.043286 0.050578
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Table B.14: Final DTLZ3 Spacing

Spacing
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 0.616998 0.086633 0.275961
23403 0.366937 0.045666 0.063694
39349 0.455438 0.050104 0.584307
60930 0.838907 0.252887 0.274019
93489 0.722037 0.049671 0.639499
Average 0.600063 0.096992 0.367496

32

12345 0.844823 0.055256 0.068143
23403 1.012591 0.052309 0.532754
39349 0.872638 0.046632 0.062453
60930 0.631056 0.045612 0.598353
93489 0.718715 0.049173 0.872161
Average 0.815964 0.049796 0.426773

48

12345 0.549154 0.049069 0.064281
23403 0.612056 0.051878 0.099573
39349 0.642924 0.050617 0.375672
60930 0.921148 0.046654 0.745277
93489 1.175641 0.053838 0.533455
Average 0.780184 0.050411 0.363652

Total Average 0.732070 0.065733 0.385974
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Table B.15: Final JUSTICE Spacing

Spacing
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 4.427365 3.955610 3.967384
23403 4.282251 3.498025 5.100258
39349 4.198882 4.159515 5.229442
60930 4.492479 3.619538 4.756513
93489 4.173691 4.035434 4.154749
Average 4.314934 3.853624 4.641669

32

12345 4.427365 2.855222 3.967384
23403 4.282251 3.313301 5.100258
39349 4.198882 3.941814 5.229442
60930 4.492479 3.563038 4.756513
93489 4.173691 3.437189 4.154749
Average 4.314934 3.422113 4.641669

48

12345 4.503557 3.410698 3.967384
23403 4.282251 3.363375 5.100258
39349 4.198882 3.135706 5.229442
60930 4.492479 3.904751 4.964810
93489 4.173691 3.458492 4.154749
Average 4.330172 3.454604 4.683329

Total Average 4.321482 3.576780 4.655566
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B.6. Epsilon Progress
Table B.16: Final DTLZ2 Epsilon Progress

Epsilon Progress
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 6359 9901 6681
23403 6688 9877 7119
39349 6439 10292 6471
60930 6395 10844 6456
93489 6306 10098 6489
Average 6437 10202 6643

32

12345 6506 10553 6899
23403 6061 10577 6709
39349 6254 10135 6134
60930 6022 10994 6432
93489 6505 9934 6355
Average 6269 10438 6505

48

12345 6524 10312 6614
23403 6979 9728 6971
39349 6558 10329 6207
60930 6445 10702 6618
93489 6567 9977 6187
Average 6614 10209 6519

Total Average 6440 10283 6555
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Table B.17: Final DTLZ3 Epsilon Progress

Epsilon Progress
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 3211 9518 3751
23403 2829 9914 3703
39349 2642 10558 2426
60930 2288 9459 3987
93489 2512 9484 2618
Average 2696 9786 3297

32

12345 2704 10452 3659
23403 2451 11643 2852
39349 2481 10079 3591
60930 2955 9961 2880
93489 2690 10425 2566
Average 2656 10512 3109

48

12345 2361 9441 4292
23403 2261 11413 4063
39349 2260 10168 3052
60930 2458 9767 3059
93489 2399 10869 2119
Average 2347 10331 3317

Total Average 2566 10209 3241
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Table B.18: Final JUSTICE Epsilon Progress

Epsilon Progress
Cores Seed ϵ-NSGA-II Borg Generational Borg

16

12345 1889 6984 1760
23403 1963 7452 1626
39349 1949 6814 1699
60930 1938 7577 1577
93489 1864 7489 1629
Average 1920 7263 1658

32

12345 1889 7583 1760
23403 1963 8045 1626
39349 1949 7454 1699
60930 1938 7150 1577
93489 1864 7139 1629
Average 1920 7474 1658

48

12345 1900 7022 1760
23403 1963 7372 1626
39349 1949 7517 1699
60930 1938 7598 1629
93489 1864 7569 1629
Average 1922 7415 1668

Total Average 1920 7384 1661
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DTLZ2 and DTLZ3 Plots

C.1. Additive Epsilon Indicator

Figure C.1: DTLZ2 Epsilon Indicator
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Figure C.2: DTLZ3 Epsilon Indicators
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C.2. Archive Size

Figure C.3: DTLZ2 Archive Size
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C.3. Spacing

Figure C.4: DTLZ2 Spacing
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Figure C.5: DTLZ3 Spacing
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C.4. Hypervolume Efficiency

Figure C.6: DTLZ2 Hypervolume Efficiency
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Figure C.7: DTLZ3 Hypervolume Efficiency
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C.5. Epsilon Progress

Figure C.8: DTLZ2 Epsilon Progress
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C.6. Runtime Comparison

Figure C.9: DTLZ2 Runtime Comparison
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