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SUMMARY

Most modern spacecraft are structurally flexible and,
moreover, these spacecraft can naturally and profitably be analysed
as a collection of attached substructures (solar array panels,
antennas, thermal radiators, etc.). This report shows how to combine
various models for substructural energy dissipation so that an overall
damping model for the spacecraft results. (Four such substructural
damping models are discussed, two of which are shown to produce the
same results.) Such a synthesis procedure proves valuable when sub-
structural damping data is known, either from ground tests or detailed
analysis.

However, even if substructural damping data is not known but
merely guessed at (as is often the case) this report shows that it is
better to do one's guessing at the substructural modal Tevel that at
the overall spacecraft modal level; the explanation for this, in a nut-
shell, is that, in the former case, 'reality' (in the form of the
relative sizes, connections, elasticities and inertias of the various
substructures) 1is invoked in the synthesis procedure: better to pass
the substructural guesses through some sort of 'reality filter' (the
synthesis procedure) than to simply make guesses about the overall space-
craft damping properties. Furthermore, as a numerical example for a
spacecraft of topical complexity shows, the two alternatives can produce
quite different results.
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1. INTRODUCTION

The object of this report is two-fold:

(a) to show how to combine damping data from the individual sub-
structures of a spacecraft to form a damping model for the
spacecraft as a whole;

(b)  to explain why, if exact damping data is not available, it
is better to estimate the modal damping factors for the in-
dividual substructures than to try to estimate the damping
factors associated with the overall (unconstrained) space-
craft modes.

Two 'structures' will be considered throughout this report: the
rather complex spacecraft shown in Fig. 1.1, and a very simple--
but nevertheless informative--mechanical system, to be introduced
in Section 2.

Figure 1.1 shows a 'mobile communications' satellite which
possesses significant flexibility in its solar array, in its
antenna dish reflector, and in the tower that supports the reflec-
tor. Structurally it has the topology shown in Fig. 1.2a, in which
E1 represents the tower, E2 the reflector, and E3 the solar array.

In this report, the emphasis will be on how to handle an
internal substructure, such as El. The case of a single flexible
appendage (such as E3) attached to a rigid body has been often
treated on previous occasions. In simple terms, the question that
arises in dealing with an internal flexible body such as El 1s:
What should be done with EZ? In this report two answers to this
question are given, either of which provides a rigorous method for
synthesizing overall damping characteristics from the damping data

for El.
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Figure 1.1: "ZSAT"--A Flexible Mobile Communications Satellite
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(b) A Three-Body System

Figure 1.2: Two Possible General Topologies for Flexible Spacecraft
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Lo COORDINATE FUNDAMENTALS

Much of the confusion that sometimes accompanies discussion
of the structural dynamics of flexible spacecraft can be traced to
fuzzy thinking about the coordinates used. In this section certain
fundamentals will be examined. Very simple examples will be used
to illustrate the subject concepts in their simplest terms. These
examples are so straightforward that their properties seem almost
self-evident and perhaps trivial. Yet these same properties when
extended to flexible spacecraft of full complexity are often over-
looked--even though they remain fundamental. In fact, for space-
craft of realistic complexity, these properties become indispensible
because they can often provide numerical order in what appears to
be numerical chaos.

2l A Three-Mass Analogy

Consider the simple three-mass system shown in Fig. 2.1.
The analogy with Fig. 1.2b is fully intended: m. is a point mass
(shown with finite size for visibility) and is intended to repre-
sent a rigid spacecraft 'bus'; the other two point masses, my and
m, , together represent a flexible appendage (such as the offset
dish antenna assembly shown in Fig. 1.1).

Elasticity within the 'appendage' is provided by the springs
(of stiffness k1 and kz), and damping is similarly provided by the
two dampers within the 'appendage'. Furthermore, the 'appendage'
can be further divided into two 'flexible substructures', as shown
in Fig. 2.1c. The analogy to be drawn is with Fig. 1.2b. Thus,
with the ZSAT of Fig. 1.1 in mind, the {mass, spring, damper}
combination {ml,kl,dl} is intended to be analogous to the antenna
tower, and the combination {'"EkZ’dz} is analogous to the antenna
dish.

202 Absolute Coordinates

Three different coordinate systems are shown in Fig. 2.1.
A set of three absolute coordinates is defined in Fig. 2.la. It is
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elementary that the following are motion equations for the system,
expressed in terms of these absolute coordinates:

m.pq = “k(dpq = dpp) - dyldpy - ap) + fr

My, = -ky(Apo = Gp3) - dy(dpy - dp3) ¢
(2.1)

tkylapg = Gp) + dylapg - qpp) + fyg

m2ap3 = kyldpp = dp3) * dplapy - Gp3) + fy

We are especially interested in expressing these equations in matrix
form because the whole point of the exercise is the analogy with

the (matrix) equations for flexible spacecraft of the type shown

o Eig. 1.2

To that end, let

QA 8 CO]{quanzanz} {2.2)

fa

col{ fppsF1psFopd (2.3)

The subscript 'A' is a reminder that we are dealing with absolute
coordinates. Then (2.1) becomes

Uy * pdp *+ Kadp = By (2.4)

with the mass, damping, and stiffness matrices introduced as follows:

m.. 0 0
My = | 0 m 0 (2.5)
0 0 m,



The simple diagonal form of MA makes it immediately clear that

My > 0 (2.8)
a notation which means that MA is positive definite. (In a similar
fashion, M 2 0 means"M is positive semidefinite.")
Note that BA is semidefinite:
QA >0 (2.9)
This follows from the fact that the eigenvalues of QA are
. 2 2,3
x{QA} =0, d] + d2 £ (d] - d1d2 + d2) (2.10)
And, since
2 2 2
d1 - dld2 # d2 = (d1 - d2) + d1d2 (2.11)

we see that two of the three eigenvalues in (2.11) are positve (un-
less d1 = d2 = 0, in which case there 1is, of course, no damping at

all).

Exactly the same remarks apply to the stiffness matrix

EA:



0 (2.12)

v

Ka

In fact, the zero eigenvalues of 2A and EA are associated with the

same eigenvector: .

LA e L |
(2.13)

:LR
—
—
—
—
d

1]

1

Physically, this eigenvector corresponds to a 'rigid-body' mode,
in which all three masses are displaced equally to the right.

2.3 Global Relative Coordinates

We turn now, in our simple three-mass system, to consider

the system of coordinates shown in Fig. 2.1b. Here, the absolute
displacement of m. is given by Ay (The subscript 'r' denotes the
Reference Rigid Body, represented in our simple system by the mass
m.. Obviously, 9, in the present system of coordinates, and a1
in the last set of coordinates, are identical:

9 = dpq (2.14)
Thus we see that even though our present system of coordinates is

said to be a system of relative coordinates, the Reference Rigid

Body itself, though used as a reference for all other coordinates,

has its own displacement characterized by absolute coordinates.

A1l other displacements in the system, however, are speci-
fied as relative coordinates; they represent the displacements of
all other parts of the system, relative to the Reference Rigid Body
(mr in this case), due to elasticity. For the simple three-mass system
of Fig. 2.1b, these coordinates are denoted q1e and qu, and are



defined as shown. If the entire system were rigid (k1 -+ o, k2 + o),
A11 positions would be uniquely determined by the simple coordinate

Qp.

We denote the current set of coordinates by

A
9g = c01{q,.,q7.,9p} (2.15)

and note that

9 = Tagdp (2.16)
where
1 0 0
EAB = |1 1 0 (2.17)
1 0 )
Then, on insertion of (2.16) in (2.47) and after premultiplication
by EXB’ we have a set of motion equations in the new coordinates:
Mzag + Dpdp + Kpdp = 45 (2.18)
where the definitions
A T
Mg = TppMalap
T
D = TngPalng
(2.19)
&k
K = ITngKaTap
o |

L,

have been introduced.

The elements of the new system matrices are easily calcu-
lated from the definitions (2.19):



4
PR e (2.25)

Obviously m is the total system mass and f is the total external
force on the system.

The partitioning indicated in (2.20) - (2.23) corresponds
to 'rigid' and 'elastic' coordinates; it will be useful in later

10



comparisons with more general cases. Also, because g is nonsingular,
the sign definiteness properties of MA’ QA’ and EA carry over also

to MB’ QB and EB:
MB>0
D20 (2.26)
Kg 20

The rigid body made is 9 = co1{1,0,0}.

It is also useful to compare the degrees of complexity
of {MB, EB’ EB} as compared with {M,, EA’ K,}. Basically, MB is
more complicated than M., but {QB, 53} are less complicated than
their counterparts {D,,K,}. It could be argued that there is a slight
overall simplification in matrix elements in that {M,, D,, EA} con-
tain, between them, 10 zero elements, while {MB, QB’ 53} contain
12 zero elements. However, this is really grasping at straws at
this early stage of the discussion. It is best to wait until the
Section 3, when each mass-spring-damper is replaced by a general
lightly-damped elastic body, to form more definitive conclusions.

2.4 Local Relative Coordinates

We return again to Fig. 2.1, and consider now the third
and final set of coordinates. The coordinate for the Reference Rigid
Body is still qp.> which is, in fact an absolute coordinate, as ob-
served earlier. The 'flexible appendage', however, is now thought
of as a set of (two) substructures, as shown in Fig. 2.1c. Flexible
Appendage 2 is an appendage to Flexible Appendage 1, which is, in
turn,an appendage to the Reference Rigid Body. Therefore, although
the coordinate associated with m; namely 9e> is still referred
to m ., the coordinate associated with m, , denoted qpq, is with re-
ference to m s not m.. For this reason, this set of coordinates
will be called Zocal relative coordinates, not global relative coor-
dinates, as in Section 2.3 and Fig. 2.1b. Thus, whereas global

11



elastic coordinates are all referred to a common Reference Rigid

Body, Tocal relative coordinates are referred to a local reference
point in each local flexible body.

The relationship  between the global and local relative
coordinates is this:

(2,27)

Furthermore, we denote by_gc our set of local relative coordinates:

9c 4 co]{qr,qle,qu} (2.28)
And we note that

95 = Ipclc (2.29)

where

Tge = | 0 1 OJ (2.30)
0

Then, on insertion of (2.29) in (2.18), and after premultiplication
by EEC’ the motion equations in the new coordinates are:

oG ¥ %0+ Keagin fe (2.31)

where the new system matrices are

A T : ol
D¢ © I3cdelec 5 dc = Iieds (2.32)

12



In other words,

m mrl mrz
MC =| My Mg M, (2.33)
G i Yl
™ 0 0
& (2.34)
0. =| O d 0
|0 0 8, .
0 0 0
ke = |0 ky 0 (2.35)
0 0 k
i 2
Fe A
fc = | fie (2.36)
f2e
where
A A
myp=m *om, My =Wy + Wy (S
- A A
Mg = mpp=m, B = Ty
A %
de= Ty 7o (2.38)
A
foe & f,

One may also go directly from the absolute coordinates 9 to the
local relative coordinates 9c via the single transformation

13



That is,

1 0 0
Ie = 1 1 0
0 1 1

from (2.17) and (2.30).

It is again of interest to compare the complexity of the
system matrices {MB,QB,EB} to that of {MC*QC’K }. While the former
have 12 zero elements, the latter have 14 zero elements. The pro-
gression of coordinates 9y~ 95 ~ 9¢ tends to simplify the damping
and stiffness matrices at the expense of adding complexity to the
mass matrix. As we shall now see in the next section, this trend
is valid also when the 'appendages' of Fig. 2.1 are generalized from
one-degree-of-freedom appendages to general elastic bodies.

14



3. RIGID REFERENCE BODY WITH A TWO-SUBSTRUCTURE APPENDAGE

Consider again the mechanical system shown in Fig. 1.2b,
reproduced in Fig. 3.1 for convenience. The analogy with the three-
mass system of Fig. 2.1 should be quite plain: R, El’ and E2 are,
respectively, generalizations of m. {ml,kl,dl} and {m2’k2’d2}°

3.3 Kinetic Energy

The velocity distribution in the system is

pa—

A-r8, reR; expressed in F

Ll B T Iiél + !le(rl)éle’-ﬁle E;; expressed in Fy (3.1)

Ky - Iéég + ¥, (ry)Qy,5 rp €Ey; expressed in Fz_

Here, n(t) is the absolute displacement of O, expressed in Frs 24 (t)

is the absolute displacement of 01, expressed in Fl’ and 1 (t) 1s

the absolute displacement of 02, expressed in F2 In a s1m11ar fashion,

8 is the absolute rotation of R at O, expressed in F ; 6, is the
absolute rotation E1 at 01, expressed in Fl; and 5, is the absolute
rotation of E2 at Oé, expressed in F The shape functions ¥ie and
¥5q> and their associated coord1nates qle(t) and q2e(t), represent

the elastic d1sp1acements within El and E2’ respectively. 'glé isex-
pressed in Fl, and Yoo is expressed in F2

The total kinetic energy of the system is
T = Tr + T1 % T2 (3.2)

where

Tr-= éj V'V dm (3.3)

15




Three-Body System

Figure 3.1: The General Three-Body Model for a Flexible Spacecraft
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From (5.1),

¥ OT L ]
T = 2949,
where
a, 8 col{x,6}
X
MR
M 2
~r
X
=r r
A
mr = JRdm
&)
= r dm
A f X X
= - r dm
R i
In a similar fashion, from (3.1),
T = é.TM L]
1-F 241%19y
where

g, @ collgy,.q;.}

17
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(3.13)




>

X
- e J s Eitte O
1

A
col {il 9@1}

e
—_
=

1

X
ml -G
M 4
—lrr o
£y ]
m1 4 J dm
E
1
Cy = f r, dm
=1 E—l

18
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(3.19)

(3.20)

(3.21)

(3.22)

(3.23)



In the same fashion,

g .T ®
To = 395050,

with a set of definitions identical to (3.13-23), but with
( )1 + ( )2, and all quantities expressed in F,, instead of Fy

e’

3.2 The System Mass Matrix

In Tooking over the kinetic expressions just derived,
we see that the 1list of coordinates reads like this:

{2:85215971 5010220589590, } (3.25)

There 1is redundancy here, however. Assuming that E1 is fixed
rigidly in R, the displacements {gl,gl} are determined once
{#n,6} are known. In fact,

_ X
1y = G2 - 18

6, = C18 (3.26)
where Yol is the vector from O to 01’ expressed in Fr, and C p
is the 'rotation matrix' from Fr to Fl. The constraints (3.26)
can be compactly summarized thus:
9r = L1rly (3.27)
with
X
A L P P
EIY‘— (3.28)
9 Elr

19



Looking further at the 1list (3.25) we see that 1, and
6, are known once the displacement of O, in E; is known. Thus,

I X
no = Cop(ny - r1p81 + ¥195¢)
(3.29)

8y = Cp1(87 * ©1p8;¢)

where ¥,, and ©,, are related to the elastic displacements, trans-
lational and rotational, in E; at O,:

¥1p © Yelryp) (3.30)
B asX
912 = V¥, (ry5) {3.31)
Also, as shown in Fig. 3.1, r,, is the vector from O; to O,, ex-
pressed in F;, and C,; is the rotation matrix from F, to F,. We
write (3.29) as
2r = Io181r * E2191e s
with
B X
, |21
fou 80 (3.33)
o) - C
| = =21
, | Stz
291 F (3.34)
| 21812
Finally, combining (3.27) and (3.32), we have
G2r = Doy * Ep191e (3,35)

where

20



A
Tor = Ioilyp

Having found these constraint equations we are now in a position
to find the final form for the kinetic energy and the system mass

matrix.

Setting (3.27) and (3.35) in the kinetic energy expres-

sions of Section 3.1, we have

T=1q

Mq

where

5
9 = col{g,.,97 45950}
M—rr‘ Mlr'l MrZ
8| T
L VLY.
T T
| Mo My My |

and the mass partitions are given by

Mrr Q.M- 4 EIerrn—lr EEFMZFFEZP
M é-EIerre —ngZre—Zl

Mrz é-—ngZre

g & Myeq + Bk Ea

M12 é-—gl-M-Zre

Hyp © Myee

21
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(3.38)

(3.39)

(3.40)



An analogy can be drawn between the structure of the mass matrix

in (3.39) and the earlier mass matrix in (2.33) for the much simpler
system of Fig. 2.1: the upper-left partition reflects the rigid-
only mass properties; the right-most column (and therefore the
bottom row also) depends on the most outboard substructure; and

so on. This analogy will be more fruitful, however, when we ex-

amine in a similar way the stiffness and damping matrices, to
which we now turn.

% Potential Energy and Stiffness Matrix

The potential energy is much easier to work with using
the present coordinates because it depends only on the elastic
coordinates,ﬂ1e and 9oe- In fact

V=V 4V Y, (3.41)
where

V., =0 (3.42)

V, = 3q] K (3.43)

1 ° 291eM9. ;

V, = 3q) K.q (3.44)

2 = 292:890 .

and K, and K, can be calculated (finite element method) once Yo
and ¥, are chosen.

Therefore, the stiffness matrix for the system is extracted

as follows:
i Y
V = 39 Kq (3.45)
where 4
o o0 O
K8 g O (3.46)
O 0 K,

22



The analogy between the stiffness matrix in (3.46) for
the quite general system of Fig. 3.1, and the stiffness matrix
in (2.35) for the very simple system of Fig. 2.1 is now reason-
ably evident. (Indeed, the sole purpose of Section 2 was to lay
the foundation for this analogy.) In both cases, the stiffness
matrix is block-diagonal (the 'blocks' for the simple system being,
of course, simply individual elements); in both cases, the upper-
left block--the one associated with the rigid coordinates--is
zero, the remaining blocks being positive definite stiffness matrices,
each associated with a particular substructure in the chain. This
is the form one should always expect when 'local relative coordinates'’
are used, and it is this simple form that makes local relative
coordinates an attractive set to use.

3.4 Damping Matrix

Likewise also damping can be associated with only the
coordmatesg1e and P

o o ©
810 9 o (3.47)
o o o

We shall discuss extensively later the role of this damping matrix.

3.5 Generalized Forces

To complete a specification of all the dynamical ele-
ments necessary to write motion equations, the generalized forces
are needed. These follow from the external force distribution.
We: shall take this to be a body force, but extension to surface
forces, point forces, or even torque distributions, is not diffi-
cult. We have

23




Ly Tt o R 8 8 G
foxt = | fextlryt) » 1y e Eps
| fext(rpst) » rpe B

Then the virtual work done by this

is [consult (3.1)]

where

Thus

where

expressed in Fr

expressed in Fl

expressed in F2

force distribution

SW = SH_+ 8y + oW,
sW. = | 1 .(sn - r¥se) dv
& R—ext - = =
sy o= # eens - ¥Xse, # U sa.. ) dY
17 g Textt®21 T 1% T Sle 91e

4 T X
e j o Lo B0y Yagltey) A
2
e Y 4
o, = flon + gloe

o, T T
Wy = f1019 + 916867 + §100991¢

g ot 4 T
CSw2 4 f-26£2 +-926-92 " i2ee6-92e

24
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.50)

5.3 9,

.52)

;53)

.54)

o 55)

.56)

:57)

.58)

.59)



dv

The expressions (3.53-55) can be further contracted

thus:
_ T
Wy = 800y (3.64)
I i T
6W1 - ﬁlr‘éﬂlr‘ t ﬁleeaﬂle (3.65)
_t T
Wy = §5895, * £90e8%00 (3.66)
where
- 4 co]{fr,gr} (3.67)
f1y @ colify,gp) (3.68)
$op - col{jz,_g_z} (3.69)

After using (3.27) and (3.35) to re-state 89y, and &g, in terms
more basic coordinates, we find the final expression for the total
virtual work

= 20 T T
W = §,09, * 16391 * f2¢%90e

where

25



A T T
-ﬁr A4 ﬁrr % I-llr'-ﬁlr‘ 1 EZrﬁZr (3.70)

T

$1e ¢ f1ee * E2142 (3.71)

fize © free (3.72)
That is,

W = 4T

=449 (3.73)

where

£ 8 ol 100600 (3.74)

Again, the analogy with (2.36) can be drawn.

3.6 Motion Equations

The motion equations for the three-body system shown
in Fig. 3.1 are therefore

Mg + D§ +Kq = § (3.75)

which, as can be seen from (3.39), (3.46), (3.47), and (3.74),
may be expanded to give the set shown in Table 3.1.

3.¥ Reduction to Simple System of Section 2

The three-body system of this section is a substantial
generalization of the simple three-mass system discussed in Section
2, and to make this point very clear, the present system will
now be reduced to the former system as the simplest special case. K

First, there is translation in only one direction, and
no rotation at all:

26
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Motion Equations for the Three-Body System Shown in

Fig. 3.1
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Furthermore, there is only one elastic degree of freedom in each

of E1 and

Therefore,

to:

is simple:

Also,

Hence

E2:

Y1691 > 1*93¢

¥oed2e * 1°0p¢

the mass matrices associated with each body reduce
-Mr > M.
Birp > My 50 By ¥y 5 - Moy
Morp > Mp 3 Mpoomy 5 My, >m

Now the relationship between the three 'rigid' coordinates
they are all identical. Therefore

Byp v 15 lgg by B 1

28



which is in accord with (2.33) for the three-mass system.

In a similar manner, the damping and stiffness matrices
reduce in an obvious fashion:
W . S

kyedky 3 Ty

The coordinates g,, and g,, are, in the terminology of Section
2, local relative coordinates. They are due entirely to elastic
deformations in the body with which they are associated.

The general system of Fig. 3.1 can often be discussed
using its three-mass analogy shown in Fig. 2.1c. This will prove
true as the discussion proceeds to consider the question of how
to build system damping matrices from substructure damping matrices.
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4. MODAL ALTERNATIVES

We shall assume that substructure damping information
is available in the form of modal damping factors. These damping
factors might be assigned based on experience or, better still,
based on measurements. The object of the discussion is to constuct
a damping matrix for the overall system based on known damping
factors for substructural modes. It is also stated here that
the notion of "modal damping factors," i.e., ignoring damping
cross-coupling between modes, is a good assumption if either
(a) the actual modal damping matrix is diagonally dominant, or
(b) the structure is lightly damped. Clearly, modal damping
uncoupling is an especially good assumption if the actual modal
damping matrix is both small and diagonally dominant.

There are several classes of modes that can be discussed.
There are, of course, the overall modes of the spacecraft, but
we shall not discuss these directly here. Instead, it is the
substructural modes that are the focus of attention. There are
several sets of such modes for the three-body satellite shown
in Fig. 3.1 and analysed in Section 3. These sets, shown in Fig.
4.1, are as follows:

(a) constrained modes for E2, denoted M2
(b) constrained modes for E; + Ry, denoted M;,

(c) constrained modes for El’ denoted M1

These modes are discussed in Sections 4.1, 4.2 and 4.3, respectively.

It is important to note the distinction between the
subscripts ( )1A and ( )1. In the former, the modes are those
of E1 + R2, i.e., modes in which E1 is cantilevered at Cﬁ, and
in which a body inertially identical to EZ’ but rigid, not flexible,
is attached to E1 at 02. The attached rigid body,Rz, does not
have to be geometrically identical to E,; so long as it has the
same {m,,C,Jy} as does E,, it will serve as R,. To recapitulate,
the modes M1A correspond to an elastic E, with all other substurctures
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31




outboard of El attached to E1 but taken as rigid; the modes M1
correspond to El alone, with all outboard substructures stripped
off

If there were several elastic substructures in the chain
instead of only two, we would have to distinguish similarly between

the modes M2A and the modes M2' As E2 is the last body in the
chain, there are no further outboard bodies; hence M2A = M2'

4.1 Mz: Constrained Modes for E2

In these modes, E2 is constrained at O?’ as shown in
Fig. 4.1a. We assume that the natural frequencies {wz,l’wz,z""}
and modal eigenvectors {92,1,92,2""} are available. (These
are the 'undamped' natural frequencies and eigenvectors, since
the structural damping is assumed to be very light.) We form the
diagonal matrix of frequencies

Dy
Qz g d]ag{wz’lng’z,ono}

and the modal matrix

Ezéfﬁm B2 9. 44l (4.2)

from the above "available data," either calculated or measured.

Associated with the modes M2 is a modal damping matrix,
D,, defined to be

Dy = E5DoE, (4.3)

a relation that is companion to the other orthonormality properties
of the modal matrix, namely,

T s
EoMyoEy = 1 (4.4)

and
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T by s
EoKoE, = Q5

Note that although 1 and 92 are diagonal, there is no physical

reason to expect D, to be diagonal.

In summary then, we assume that the following have been
either calculated or measured: Q,, E,, and.éz. Often @2 must
be assigned based more-or-less on experience, and is usually made
diagonal. In such cases we may set

A

D, = 22,0, (4.6)

as is customary, with Zz being the diagonal matrix of damping
factors for the M2 modes:

_2_2 é diag{éz,l,cz’z,...} (4.7) :

Having arrived at an agreed 22, the damping matrix_g2
needed in the motion equations is found from (4.3):

0, = ESVp,E; ] (4.8)"

An alternate version of this equation can be inferred from (4.4):

- a3 el "
Dy = MooEo05k M0 (4.8)

Which version of (4.8) ultimately proves most useful probably
depends on numerical algorithmic considerations beyond the scope
of this report.

Reflecting on the system motion equations [shown in
Table 3.1] we see that the first of the two needed damping matrices,
D,, has now been specified. We now move on to the second and
more interesting of the two, D,.
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4.2 MlA:

Constrained Modes for E1 + RZ

Looking at the motion equations in Table 3.1, we see
that an attractive set of eigenvectors is a set that simultaneously
diagonah‘zesM11 and 51. In other words, this set would do for
the partitions M;, and K; what the set M, did for the partitions
My, and K,. There is however, a big difference between these
two situations, and this difference is the kermel idea in this
report. Wh11e_M22 and 52 involve only the elastic body EZ’-Mll
and _Igl do not involve only the elastic body El. Specifically,

Mll involves E1 and E2 (although 51 involves only El). Similarly,
D, involves only E,.

Thus we see that the modes associated with the matrices
{M17.01,K;} have their stiffness characteristics determined by £y
alone, but their <nertial characteristics determined by both El
and E,. Specifically, from (3.40),

= :'T -
M11 = Mge * EaiMarnrEng (4.9)

The first term is evidently the inertia matrix associated with E1
alone. The second term, however, indicates a coupling term with
EZ' Furthermore, this coupling takes E2 to be rigid, not flexible
(note the subscript 'rr" on M, ). Thus, as claimed, the My
modes correspond to O1 constrained and E2 rigid (E2 > RZ)’ with

E1 remaining flexible.

Once this crucial fact is understood, we have a clear
route to the calculation of D, (not the only route, however--
see Section 4.3). Either from laboratory testing or by calculation,
the frequencies {wlA,l’wlA,Z""} and the eigenvectors
(€17 1°81p . 22--+} are available, we assume. The needed matrices

Ao 1
QIA B d]ag{wlA,lgwlA’z,...} (4.10) &+

and
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are formed, with the properties

EqghyEyy < L
E1kia = 215
Then
Dy = E1D1,E1s = MyEp Dy pE] Mg

which gives the needed 21 in terms of D The Tatter may be

1A°
either measured, calculated, or invented. If the last, it may

as well be invented diagonal:

D14 = 2214 (4.15)

where

Z

A .
—].A = d'lag{ClA,lsClA’z’oo-} (4~16)

In any case, the damping matrix 21 is now established.

4.3 M1: Constrained Modes for El

The distinction between the modes M., and the modes M1

1A

is now completed: while, for modes M,, all outboard substructures--

rigidized--remained connected to El a%AOZ, for modes M1 all outboard
substructures are removed. These modes will no longer diagonalized
My, in Table 3.1, but the loss of this attractive mathematical
property is more than offset by a more attractive practical property:

in most cases the properties of E1 alone are known, not the properties
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of E1 with additional mysterious rigid bodies attached thereto.
After all, if E1 and E, are both known, what is the basis for
separating E2 from El? Better in such cases to consider E1 + E2

as a single flexible structure appended to R, and to use the methods
of Section 4.1. It is for this same reason that the modes of

E1 * E2 are not among the alternatives discussed in this report--
if we take El + E2 as a single elastic body, we avoid the main
issue: how to construct a damping matrix for an internal elastic
body.

Let us take it as granted that the frequencies and eigen-
vectors of the M1 modes are available:

g ¢ diagls) 1.0 pse..) (4.17)
E, & [e e ] (4.18)
By Bt K5 e , '

[Incidentally note that we do not call € the "mode shapes."
This would tend to lead to confusion since the mode shiapes are
found from ¥, (r;)e; ..1 These modal parameters have the following

properties:
i AW R 4.1
EiMieeEy = 1 (4.19)
Ed, | =l (4.20)

In a similar fashion, the damping matrix 21 is trans-
formed thus

A R
B TRy (4.21)

which means that, given D,, we can calculate D; from
-Tg p=1 _

- i )
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An oft-used but ill-based procedure is to set

D, = 24;%

and guess at the Z;:
2, @ diaglz, }
=1 N e B e 4

At all events we assume here that D, is 'known', from (4.24) or
otherwise, whence D, can be calculated from (4.22).

4.4 Motion Equations

The three types of modes defined in this section can be
inserted in the motion equations of Table 3.1 in five possible ways

These result in the motion equations shown in Table 4.1.
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(a) Use M2 for E2

M, My MBSl T [2 © olra- T Fe e oefa] [a]
T . . 2
Mo My MpE g [ 9 2 Qe |t 240 %1 | =] fie
O RN - ~ |l . 2 |l .

| EMp Ejp L ] [me | L9 2 %] %e| | 0 8 S il ) Ta

~

where Y, = E-ZrﬁZe and one often sets D, * 22,0, ;

(b) Use M for E1

Mr'r' Mr‘l—lA Mrz 9y 0 g ° S 0 4 g 9 ﬁr ¥
4 0 T > A ¢ 2 ¥

2 TR (T e B R N ma [T 2 %a Qff Ma|=| Yaa

W K ' p 0 9 : W | g §

L) Mi2Ein Mo 92e Bl Qe et o | e 2e

o B 5
where Y1, = Ejafqe and one often sets Dy, * 2Z,,;,

(c) Use M1 for f:'1

Mey M1y M 9y 0.0 FP 9y 2.2 .2 S-r‘-1 L
Tl ooglu e, FEM v Tl 9007 oMbk twit 635 0 . l=21y
LT A LS T L le 2% 2 Al £oxyp = Ne | = | Y1e
1 P ! q o o 2|3 00 .k 4
Y2 R1221° 222 B2e 2 2 2| % 2 9 % || e | |22
where y,, = ﬂﬁle and one often sets D; * 22,2
(d) Use MIA for E1 and M2 for E2
2 b i e L i
Mr'r Mrlg-lA M EZ e 9 W g2 2 T 9y - i R -l 9y ¥ ﬁ-r
M 1 T | g gl U O 2 =
=1arl = 11222 | M = 2 = D1a EARUTI Maf=1] N1a
ik Tl + a . 2
| By By 1 fplee ] | 00,8 It} ngad 49 9 Hp | LHZe_ | Yoe |
(e) Use M1 for E1 and M2 for Ez
—Mrr MrlEr .MrZE.Z S.r 9 9 9 S-Y‘ ? 9 9 9 —g.r -ﬁ.r 7
et T T ¥ A . 2 e
, EML, EMpE EME, (| ome [+ @2 O ffme|Hf Q8 O Me =) Xre
eluly o 1l 1 n o o 9, || 7 e
| =272 M1 2K - D2e 2 2 24| e 28 Hadb e | | e | .

Table 4.1: -Five Possible Ways To Use The Modes of Section 4 in Conjunction
with the Three Types of Mode Defined in the Section. (Note: For the
definitions of M1,M2, and M]A’ see the text.)
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5. TWO DAMPING MODELS: VISCOUS AND HYSTERETIC

To recapitulate the modeling of damping thus far, we have
made the following two assumptions:

(a) damping forces are linear combinations of the generalized
velocities (i.e., of the elements of §). This assumption
is often called linear 'viscous' damping, having in mind
the one-degree-of-freedom case where the (scalar) damping
force is given by -dq. We shall however, save the word
'viscous' for a slightly different purpose (see Section
5.1 below). According to this assumption, the damping
force ﬁd is given by

44 = -Dq (5.1)

(b) the modal form of D, denoted‘é is either diagonal, or may
as well be diagonal, due to either to diagonal dominance,
or Tight damping, or both.

Neither of these two assumptions is untarnished for reasons given
earlier but they are innocuous relative to the procedure this report
points the way to avoiding: all unconstrained (overall spacecraft)
modal damping factors set to 0.005. Thus, in this report, we set

D=2 (5.2)
on a structure-by-substructure basis, with Z taken to be diagonal

for each substructure. The only remaining question is How are the
diagonal elements of the Z matrices chosen? In other words, How

are the constrained substructural modal damping factors chosen?

<l & Viscous Damping

The best methods for choosing modal damping factors rely

v
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on test results or analysis. Test results may not always be avail-
able, however, especially at the design stage, and damping analysis

for realistic structures is only recently being brought out of the
Stone Age. This leaves guesswork (hopefully based on experience)
as the only alternative. These are two types of guesses suggested
here: the 'viscous' model and the 'hysteretic' model.

In the 'viscous' model, one sets

ﬁ = YVQZ (5.3)

where vy is a constant. From (5.2), this is equivalent to setting

Z = 3vQ, (5.4)
that is, to setting

Ty = By (5.5)

on a mode-by-mode basis.

One could agree that no real progress has been made by
using (5.4) or (5.5) since, until yvhas been specified, the z. are
still unknown. However, it can be countered that there is now only
one unknown instead of many, and that a single constant, yv,is suffi-
cent to represent the Zevel of damping. The character of viscous
damping is shown in Fig. 5.1.

§.2 Hysteretic Damping

A second possibility, generally referred to as 'hysteretic'
damping, is to use

D=y (5.6)

where vy, is a constant. Thus (5.6) replaces (5.3) and we have, on
a mode-by-mode basis,



Hysteretic Damping :
C| e % YH

Viscous Damping:
Ci==2 %Y

)

Point of Intersection :
We=x/% 5=y

(Magnitude of Real Part Exaggerated)

|Slope| = -727H

/

/l Curvature| = )'v

Y9

Figure 5.1: A Comparison of Viscous and Hysteretic Modal Damping
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C.i = éYH (5.7)

That is, the modal damping factors are all the same in value (see
Fig. 5.1). Again, Yy represents the level of hysteretic damping.

Note that Yy is dimensionless, while Yy has the dimensions
of [time].
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6. A NUMERICAL EXAMPLE: "ZSAT"

To use a concrete example of practical interest, consider
again the 'ZSAT' satellite shown in Fig. 1.1, repeated again on the
next page for convenience. The damping in the solar array will be
taken as hysteretic, as will the damping in the antenna dish. The
numerical comparisons will be made for hysteretic and viscous damp-
ing in the antenna tower. The tower is chosen as the object of study
because it is the largest and most crucial structural component as
regards the characteristics of those overall, unconstrained, space-
craft modes that are most 1ikely to be important in attitude control
and configuration integrity.

6.1 Viscous Damping in the Antenna Tower

As explained in Section 4, there are two sets of constrained
(substructural) modes that can be used in respect of an internal
substructure 1ike the antenna tower: modes for the constrained tower
with the reflector absent (denoted Mt)’ and modes for the constrained
tower with the reflector rigid (denoted MtA)’ Damping factors can
be assigned for either set of modes.

Let us begin by considering the (unaugmented) modes Mt’
and let us assign a viscous damping constant Yyt for these tower
modes. Then, as in (5.3),

D, = o? (6.1)
£t T Teete .
[Note that the subscript 't' for 'tower' is used in this example in-
stead of the more ambiguous '1' for 'internal flexible body'.] The
corresponding damping matrix in physical coordinates is

g -1
2 i Btgt (6.2)
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Figure 6.1: "ZSAT"--A Flexible Mobile Communications Satellite
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using the first of the expressions given in (4.22). With the viscous
damping model (6.1), D, becomes

% -T 2--1
Dy = vyeky Ry 6.9
However, from (4.20), an immediate interpretation of (6.3) is this:
Dy = vyik (6.4)

That is, <f one assumes 'viscous' damping (as defined in this report)
for the unaugmented interior substructure modes, the "damping' matrix
assoctated with the interior substructural coordinates is stmply

proportional to the stiffness matrix associated with these coordinates.

The second 'viscous alternative' for a tower damping model
is to use the augmented modes, MtA’ and to assign a viscous damping
constant, Yyt for these (constrained-elastic-tower + rigid-reflector)
modes. Then, as in (5.3),

. 2
Dia = Yvealia (6.5)
The corresponding damping matrix in physical coordinates is
_ =157 -1
Dy = EgplepEy (6.6)

using the first of the expressions given in (4.14). With the viscous
damping model (6.5), D, becomes

1.2 -1

D¢ = YyeabeaRealen (6.7)
However, from (4.13), an immediate interpretation of (6.7) is this:
Dt = vyeake (6.8)
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That is, Zf one assumes 'viscous' damping (as defined in this report)

for the augmented interior substructural modes, the damping matrix
associated with the interior substructural coordinates is simply

proportional to the stiffness matrix associated with these coordinates.

Moreover, from (6.4) and (6.8) we learn that Zf the viscous
damping constant for the unaugmented modes, Yyt 18 chosen equal
to the viscous damping constant for the augmented modes, Yytpe the

same damping matrix, Et’ results.

6.2 Hysteretic Damping in the Tower

Again, there are two sets of constrained (substructural)
modes that can be used in respect of an internal substructure 1like
the antenna tower: modes for the constrained tower with the reflec-
tor absent (denoted Mt)’ and modes for the constrained tower with
the reflector rigid (denoted M
for either set of modes.

t5). Damping factors can be assigned

Let us begin by considering the (unaugmented) modes My
and let us assign a viscous damping constant Yt for these tower

modes. Then, as in (5.31),
212 = YHtQt (6.9)

the corresponding damping matrix in physical coordinates is

g L
Qt 5 E¢ Eﬁf& (6.10)
using the first of the expressions given in (4.22). With the hy-
steretic damping model (6.9), D, becomes
2 o g ’
Di = Yuebr 4k (6.11)
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Unlike its viscous counterpart, (6.3), there is not a proportionality
between D, and K¢ and it may prove numerically convenient to use
the second of the two expressions given in (4.22),

¥ 8
Bt 9 YHtMteeEtQtEtMtee’ (6.12)

instead.

The second 'hysteretic alternative' for a tower damping
model is to use the augmented modes, MtA’ and to assign a hysteretic
damping constant, YHtp? for these (constrained-elastic-tower + rigid-
reflector) modes. Then, as in (5.3),

A

Den = Yhtalea (613)
The corresponding damping matrix in physical coordinates is
R G |
D¢ = Etaleaea (6.14)
using the first of the expressions given in (4.14). With the hy-
steretic damping model (6.13), D, becomes
D, = vy, Eito, E-L (6.15)
“t ~ YHtaStA“tAEtA .
Unlike its viscous counterpart, (6.7), there is not a proportion-
ality betweengt and Et and it may prove numerically convenient to
use the second of the two expressions given in (4.14),
D, =y, M E 0 EN M (6.16)
St T VHtARttEtA ARt A .

Moreover, there is no simple relationship between the 2t calculated
for 'unaugmented', hysteretically damped modes [as given by (6.11)
or (6.12)]and the{Qt calculated for 'augmented', hysteretically damped
modes [as given by (6.15) or (6.16)].

47




6.3 Numerical Results

As mentioned in the introduction to this section, the damp-
ing in the solar array will be assumed hysteretic, with hyst-
eretic damping constant YHa * and the damping in the antenna dish
reflector will be assumed hysteretic also, with hysteretic damping
constant Y- We shall take

0.01 (solar array) (6.17)

Ha

Yyp = 0.01 (antenna reflector) (6.18)

Four models for the tower damping will be studied:

(1) Unaugmented tower modes (Mt) viscously damped, with

Yyt = 0.01 (tower) (6.19)
(11) Augmented tower modes (MtA) viscously damped, with

Yy = 0-01 (tower) (6.20)
(I11) Unaugmented tower modes (Mt) hysteretically damped, with

Yyt = 0.01 (tower) (6.22)
(1V) Augmented tower modes (MtA) hysteretically damped, with

Yiwp 0.01 (tower) (6.22)

In view of the observation at the end of Section 6.1, we will have,

for both Damping Models I and II, the same damping matrix in 'physical

coordinates,' Dy. Thus (cf. Table 3.1) the damping characteristics

of the tower, and thus of the spacecraft as a whole, are indistinguish- -
able in these two cases.
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The motion equations for the ZSAT example of Fig. 6.1 will
not be developed here in detail. The interested reader has recourse
to Reference 1. Suffice it to say that the motion equations for
ZSAT are as shown in Table 3.1, with two alterations:

(a) the subscript 1 - t;
(b) the subscript 2 -+ r;
(c) the equations are augmented appropriately to encompass

the solar array (see Table 3.1 and Figure 1.2).

The results are given in Fig. 6.2. Damping factors for
the overall spacecraft modes are shown. (The 'rigid' modes are,
of course, undamped and are not included.) The logarithmic scale
for these damping factors should not distract from the fact that
there are substantial differences between the damping factors of
different modes (for a particular substructural damping model),

and that there are substantial differences (for many of the modes)

between the results for different substructural damping models.

Not surprisingly, damping factors of %YH ( = 0.005) are
quite common among many of the spacecraft modes. However, there
is a substantial variation with respect to this value. It should

also be kept in mind that if a spacecraft damping factor is 0.02
and it is assumed to be 0.002, this is a ~1000% error. Similarly,

if the spacecraft damping factor is 0.002 and it is assumed to be

0.02, this also is a ~1000% error. Such an error in a modal fre-

quency would never be tolerated, and such an error in a modal damp-
ing factor should not be tolerated either.
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3 CONCLUDING REMARKS

In this report it has been shown how to combine the modal
damping factors associated with substructural modes, to form an over-
all damping model for a spacecraft. Ideally the substructural modal
damping factors would be measured, or calculated in terms of known
structural properties.

However, even if they are merely 'estimated based on ex-
perience' this is still preferrable to estimating the damping factors
of the overall, unconstrained modes of the spacecraft. This can be
seen in the example in the last section, in which unconstrained modal
damping factors can vary from mode to mode by more than an order of
magnitude (Fig. 6.2). In this case it would clearly be a further
major approximation to assume these unconstrained damping factors
all to be equal.

Perhaps this lesson can be stated in loose terms the follow-
ing way: it is better to make guesses at the substructural level
than at the overall spacecraft level. The reason is that, in the
former procedure, many important properties of the system (relative
size, mass, elasticity of the substructures, etc.) are involved in
the calculation whereas, in the latter procedure, only damping guess-
work is used.

Even though one of these 'guesswork procedures' is better
than the other, a still better procedure is to arrive at the sub-
structural damping factors by other than guesswork, after which the
synthesis procedures outlined in this report can be used to obtain
a reliable damping model for the overall spacecraft.
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