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Abstract—In WDM networks, survivable routing and wave-
length assignment (SRWA) involves assigning link-disjoint pri-
mary and backup lightpaths. In the on-line SRWA problem,
a sequence of requests arrive and each request is either ac-
cepted or rejected based only on the input sequence seen so
far. For special networks, we establish on-line algorithms with
constant and logarithmic competitive ratios. It is not possible
to obtain good competitive ratios in general topologies. Hence,
we propose heuristic schemes and evaluate their performance by
way of simulations. The building blocks in these schemes are 2-
approximation algorithms (MSA and ESA) that we establish for
the minimum disruption link-disjoint paths (MDLDP) problem.
These approximations require far less memory and computation
time than the best-known exact solution of the MDLDP problem.
We use these three algorithms as heuristics for the on-line SRWA
problem for infinite and finite duration requests and we show
that, in terms of on-line performance, our algorithms do as well
as (even at times better than) the exact algorithm of the MDLDP
problem. We also provide an exact ILP formulation to solve the
infinite duration off-line SRWA problem.

I. INTRODUCTION

In optical networks employing wavelength-division multi-
plexing (WDM), the enormous capacity of a fiber is divided
into several non-overlapping wavelength channels that can
transport data independently. These wavelength channels make
up lightpaths, which are used to establish point-to-point optical
connections that may span several fiber links without using
routers. In wavelength-selective WDM networks, a lightpath
connection between a source and a destination must have the
same wavelength in all links along its route. In wavelength-
interchanging WDM networks, the nodes have the capability to
convert a wavelength at an incoming link to a different one at
an outgoing link. Unfortunately, the high price of wavelength
converters makes them less desirable. Therefore, in this paper
we only focus on wavelength-selective networks.
In WDM networks, provisioning lightpaths involves not

only routing, but also wavelength assignment and this problem
is referred to as the routing and wavelength assignment
(RWA) problem. Due to the tremendous amount of data
transported, survivability, which is the ability to reconfigure
and re-establish communication upon failure, is indispensable
in WDM networks. Since in reality not all the links fail at the
same time, we consider the single-link failure model, where
at most a single link fails at any given time. The survivable
routing and wavelength assignment (SRWA) problem is to
assign, given a set of lightpath requests, link-disjoint primary

and backup lightpaths to each request so that the total number
of accepted requests is maximized.
For a single request, the SRWA problem can be solved with

Suurballe’s algorithm [10], if the primary and backup light-
paths use the same wavelength (for different wavelengths, it
is NP-complete [1]). But, in practice, lightpath requests arrive
over time and the decision to accept or reject a request is made
without any knowledge of future requests, yet maintaining the
goal to maximize the total number of accepted requests. This
version of the SRWA problem is called on-line SRWA. An
algorithm is an on-line algorithm if, for any arbitrary input
sequence σ, at any point in the sequence a decision is made
based on the input seen so far and without any knowledge of
the future. On the other hand, an off-line algorithm is assumed
to know the whole input sequence. Thus, the performance of
an on-line algorithm A can at best be as good as an optimal,
but usually non-implementable, off-line algorithm OPT .
Definition 1: An on-line algorithm A is said to be ρ-

competitive if for any input sequence σ,

B(A, σ) ≥ 1
ρ
B(OPT, σ)

where B(X,σ) is the number of accepted requests by algo-
rithmX for the input sequence σ. The smallest such ρ is called
the competitive ratio of the algorithm.
In Section II, we provide algorithms for the on-line SRWA

problem with constant and logarithmic competitive ratios for
specific networks. In Section III, we introduce rerouting of
lightpaths to improve the practical performance of on-line
routing. We discuss a related problem called the minimum
disruption link-disjoint paths (MDLDP) problem and provide
two 2-approximation algorithms for solving it. An algorithm is
a 2-approximation algorithm for MDLDP if for any request,
the number of lightpaths rerouted by its solution is at most
twice that of the optimal algorithm. In Sections IV and V,
we employ these algorithms as heuristics to solve the on-line
SRWA with rerouting problem for requests of infinite and finite
duration, respectively. Section VI presents our conclusions.

II. ON-LINE SRWA
The on-line survivable routing and wavelength assignment

(SRWA) problem is defined as follows.
Problem 1: On-line SRWA: The physical optical network

is modeled as an undirected graph G(N ,L), where N is
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a set of N nodes and L is a set of L links. Each fiber
link has a set of W wavelengths, Λ = {w1, w2, . . . , wW }. A
sequence of lightpath requests σ arrive over time. Each request
i ∈ σ is represented by (si, ti), where si, ti ∈ N are its
source and destination nodes, respectively. The on-line SRWA
problem is to allocate for each request link-disjoint primary
and backup lightpaths such that (1) the same wavelength is
used on all links of the primary and backup lightpaths, (2) no
two lightpaths having the same wavelength can share a link,
and (3) the decision to accept or reject a request is based only
on the input sequence seen so far. The objective is to maximize
the number of accepted requests.
Before addressing the on-line SRWA problem, we consider

the on-line SRWA problem without survivability (on-line
RWA) and other related problems that have been studied in
the literature.
Problem 2: On-line Maximum Disjoint Paths (MDP)

Problem: Given are a graph G(N ,L) and a sequence of
requests. For each request (si, ti), find a path Pi that connects
si and ti such that no two paths share the same link. The
objective is to maximize the total number of accepted requests.
The MDP problem is NP-complete [6]. Since lightpaths on

the same wavelength are not allowed to share a link, the on-
line MDP problem is equivalent to the on-line RWA problem
with W = 1. Awerbuch et al. [4] have shown that if there is a
ρ-competitive algorithm for the on-line MDP problem, then a
(ρ+ 1)-competitive algorithm can be obtained for the on-line
RWA problem by employing the on-line MDP algorithm on
each wavelength.
The on-line MDP problem has been widely studied in the

literature. The Ω(Na), where a = 2
3(1− log4 3) lower bound

given by Bartal et al. [5] for randomized algorithms shows that
it is not possible to find a good competitive ratio for general
networks. In fact, most of the work in the literature has been
restricted to special networks such as lines, trees, lattices, tree
of rings, etc.
Problem 3: On-line kMaximum Disjoint Paths (k-MDP)

Problem: Given are a graph G(N ,L) and a sequence of
requests. For each request (si, ti), find k link-disjoint paths
Pi1, ..., Pik that connect si and ti such that no two paths
of different requests share the same link. The objective is to
maximize the total number of accepted requests.
A simple upper-bound of any non-preemptive on-line algo-

rithm for k-MDP is O(Lk ). Suurballe’s [10] algorithm (k = 2)
has a competitive ratio equal to this upper-bound. For example
in Figure 1, if the input sequence is (s, t) followed by (s, a1),
(a1, a2),. . ., (ay, t), (s, b1), (b1, b2),. . ., (by, t) and all links
have equal cost, the off-line algorithm accepts O(N) requests
(i.e., all except the first), but the on-line algorithm accepts only
the first two requests. Since in this example L = O(N), the
competitive ratio is of the same order as the upper-bound.
Using the same argument provided by Awerbach et al. [4],

a (ρ+1)-competitive algorithm for the on-line SRWA problem
(W > 1) can be derived from a ρ-competitive algorithm of
the on-line 2-MDP problem. Hence, in the remainder of this
section, we provide algorithms and corresponding competitive

s
a1

b1

a2

b2

ay t

by

s
a1

b1

a2

b2

ay t

by

Fig. 1. An example where Suurballe’s algorithm attains the upper bound.

ratios for the on-line 2-MDP problem, which forms the basis
for the on-line SRWA problem, in star-of-rings, tree-of-rings,
and lattice networks. Even though these are simple networks,
not only do they help us gain insight into the problem, but they
are also used in real networks (e.g., the SURFnet network in
the Netherlands resembles a star-of-rings1).

A. Star-of-rings network

Algorithm 1 Star_Alg(G, s, t)
- Accept a request if it is the first request so far that uses the
ring(s) to which the source and destination nodes belong.

- Reject, otherwise.

Star_Alg(G, s, t) is 2-competitive if the number of rings is
greater than 1. For a single ring, it is optimal. Figure 2 shows
an example where Star_Alg(G, s, t) is 2-competitive for the
input sequence (a, b), (b, c), (a, d). In this example, the on-
line algorithm accepts only the first request, while the off-line
algorithm accepts the last two requests.

a

b c

d

a

b c

d

Fig. 2. A star of rings containing four rings.

B. Tree-of-rings network

Algorithm 2 Tree_Alg(G, s, t)
- Replace each ring by a single link so that the whole tree
of rings is substituted by the underlying tree topology.

- Each 2-MDP request in the tree of rings is equivalent to
a corresponding MDP request in the underlying tree.

- Use the algorithm of Awerbuch et al. [3], which has
O(logN) competitive ratio for a tree ofN nodes, to solve
the on-line MDP problem.

From [3], it follows that Tree_Alg(G, s, t) is O(logΥ)-
competitive, where Υ is the number of rings.
1http://www.surfnet.nl/en
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C. Lattice network
The O(logN)-competitive algorithm given by Kleinberg

and Tardos [7] for the on-line MDP problem can, with a slight
modification, be used for solving the on-line 2-MDP problem
with an O(logN)-competitive ratio. We have described the
modified algorithm in detail in a technical report [13].

III. ON-LINE SRWA WITH REROUTING
In Section II, we provided algorithms for the on-line 2-MDP

problem in specific networks, which can be used to derive
corresponding algorithms for the on-line SRWA problem.
Unfortunately, it is not possible to attain a good competitive
ratio for general networks [5]. In this section, we explore
the idea of rerouting lightpaths to improve performance.
Although rerouting does not improve the competitive ratio, we
show through simulations that it can increase the acceptance
rate considerably. In wavelength-selective WDM networks, a
rerouting procedure may be path rerouting (i.e., changing the
route of a lightpath while keeping the wavelength), wavelength
rerouting (i.e., changing the wavelength while keeping the
path) or a combination of both. Compared to path rerouting,
wavelength rerouting does not need extra path computation (as
it retains the same path), facilitates control and, if the rerouted
lightpath is moved to a vacant route on another wavelength,
it incurs less traffic disruption [8]. We therefore focus on
wavelength rerouting.
Generally, the wavelength rerouting problem is NP-

complete [8]. It consists of solving the three possible scenarios
presented below. The second and the third scenarios make the
problem hard to solve. Figure 3 shows the different scenarios.
The labels on the links represent already existing lightpaths.
1) When the lightpaths to be rerouted are on the same
wavelength, they can be moved to vacant wavelengths
in parallel without any conflict (since they do not share
links). For example, in Figure 3(a), a new lightpath
from node 1 to 5 can be accepted on wavelength w2
by rerouting lightpath p3 to w1 and p4 to w3 in parallel.

2) When the lightpaths are on different wavelengths, mov-
ing to vacant wavelengths can be done sequentially while
checking for conflicts. For example, in Figure 3(b), a
new lightpath from node 1 to 5 can be accepted on w1
by first rerouting p4 to w3 and then p1 to w2.

3) Moving to a vacant wavelength may not be sufficient,
and it may be necessary to swap the wavelengths of
lightpaths. For example, in Figure 3(c), a new lightpath
from node 1 to 4 can be accepted on w2 by swapping
the wavelengths of p2 and p3.

In the literature and the remainder of this paper, the term
wavelength rerouting is used to refer to the reduced problem,
i.e., assigning a lightpath by moving existing lightpaths on the
same wavelength to vacant wavelengths in parallel. Xue [12]
has shown that this problem can be solved in O(WN logN+
WL) time.
On-line SRWA with wavelength rerouting involves assign-

ing link-disjoint primary and backup lightpaths for new re-
quests by rerouting, if necessary, already existing lightpaths.
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Fig. 3. Different scenarios of wavelength rerouting: (a) moving to vacant,
(b) sequential rerouting, and (c) swapping.

When rerouting lightpaths, the number of rerouted lightpaths
should be kept to a minimum. This leads us to consider the
minimum-disruption link-disjoint paths (MDLDP) problem.
The MDLDP problem is NP-complete when the primary
and backup lightpaths use different wavelengths. However, it
is polynomially solvable for the same wavelength [11]. We
consider the polynomially-solvable version.
Problem 4: Minimum Disruption Link-Disjoint Paths

(MDLDP): The physical optical network is modeled as an
undirected graph G(N ,L), where N = |N | and L =
|L|. Each fiber link has a set Λ = {w1, w2, . . . wW } of W
wavelengths. Given a request i, the MDLDP problem is to
allocate on the same wavelength link-disjoint primary and
backup lightpaths for request i, while minimizing the number
of lightpaths to be rerouted.
Wan and Liang [11] provided an O(WL5 log N) exact

algorithm for solving the MDLDP problem. We refer to this
algorithm as WLA. WLA has a very high running time and
requires a large amount of memory. This makes it less suitable,
especially in an on-line setting where the algorithm has to be
invoked whenever a new request arrives. We propose two 2-
approximation algorithms with considerably less running times
and memory requirements.

A. 2-Approximation Algorithms for MDLDP
We provide two 2-approximation algorithms for MDLDP:

MSA and ESA. MSA is a modified version of Suurballe’s
algorithm [10] with a running time of O(WN logN +WL)
and ESA is an extended algorithm with a running time of
O(WN2 logN +WNL). This is a significant reduction from
the O(WL5 log N) running time of the exactWLA algorithm
with at most twice as much lightpaths being rerouted.
In our notation, we use p to represent a lightpath and P to

represent any path. A lightpath on wavelength wi is said to be
reroutable, if and only if all of its links are free on at least one
other wavelength wj . A path P from s to t is said to traverse
a lightpath p if it shares at least one link with p. Let Pk be
the set of lightpaths on wavelength wk; P 0

k ⊆ Pk be the set of
reroutable lightpaths on wavelength wk; P 00

k = Pk\P
0
k be the

set of non-reroutable lightpaths on wavelength wk; and Λ(i,j)
be the set of free wavelengths on fiber link (i, j).
We identifyW subgraphs, Gk = G(N ,Lk), Lk = {(i, j) ∈

L | wk ∈ Λ(i,j) or ∃ p ∈ P 0
k such that link (i, j) belongs
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to lightpath p}. The cost of a link (i, j) in subgraph Gk is
costk(i, j) = �, if (i, j) is a free link, where2 2N� < 1;
costk(i, j) = 1 otherwise. However, the cost costk(P ) of a
path P in subgraph Gk is the sum of the cost of its free links
and the number of distinct reroutable lightpaths traversed by
P , i.e., multiple links belonging to a lightpath are counted
only once. Thus, the shortest path between two nodes traverses
the minimum number of reroutable lightpaths. Note that any
lightpath that is traversed by the shortest path is encountered
only once.

Algorithm 3 MSA(G, s, t)

1) For each Gk, k = 1, . . . ,W
a) In graph Gk, find the shortest path from s to t.
b) Graph G

0
k is obtained by directing each link (i, j)

of the shortest path from t to s, setting the cost of
the free links on the shortest path as costk(j, i) =
−costk(i, j) and the cost of all links of lightpaths
that are traversed by the shortest path to zero.

c) Find the shortest path from s to t in G
0
k.

d) If the shortest path exists in G
0
k, remove all the

overlapping links between the two paths in Gk to
obtain the solution.

2) Choose the best solution among all wavelengths.

In Step 1a of the MSA algorithm, we find the shortest
path from s to t (using an algorithm such as the one given in
[12]). In Step 1b, the cost of all links belonging to lightpaths
traversed by the shortest path is set to zero so that these links
are preferred in the second path and the lightpaths are not
counted twice. Similarly, the cost of free links on the shortest
path is set to −�.
Theorem 1: MSA is a 2-approximation algorithm for the

MDLDP problem.
Proof: Since the best solution is chosen after indepen-

dently considering each wavelength, it suffices to consider only
the wavelength that provides the best solution. Assume that
for this wavelength, given a solution of MSA that traverses a
total ofK lightpaths, there is an optimal solution that traverses
less than K

2 lightpaths, which would violate the claim of 2-
approximation. Our intention is to prove that the assumption
is wrong.
Let c(P ) represent the number of lightpaths traversed by

a path P and c({P1, P2}) represent the number of distinct
lightpaths traversed by paths P1 and P2, where c({P1, P2}) ≤
c(P1) + c(P2).
Let {P ∗1 , P ∗2 } be the optimal solution. In MSA, let P1 be

the first shortest path that is obtained in Step 1a and P2 be
the second shortest path that is obtained in Step 1c.
Let Q be the set of alternating lightpaths of the optimal

solution {P ∗1 , P ∗2 }, i.e., lightpaths with segments in both P ∗1
and P ∗2 . Let S be the set of links of lightpaths p ∈ Q.
2Using such a cost, the longest possible link-disjoint paths made up of only

free links have a total cost that is less than any link-disjoint pair of paths that
cross a lightpath.

c({P ∗1 , P ∗2 }) < K
2 implies that c(P

∗
1 ) <

K
2 and c(P

∗
2 ) <

K
2 .

Hence, the first shortest path returned by MSA must have
c(P1) <

K
2 . Since c({P1, P2}) = K, the second shortest path

returned by MSA should have c(P2) > K
2 . But, MSA can

find a path P2 from the set of links of P ∗1 , P ∗2 and S. If P1
also contains any of these links, they are redirected in Step
1b of MSA and are assigned a cost of zero. Since no new
lightpaths are added c(P2) < K

2 , which is a contradiction.
The 2-approximation is attained in the worst case when

c(P1) = c(P2) = c({P ∗1 , P ∗2 }) and P1 and P2 do not have
common lightpaths as shown in Figure 4(a). P1 = {s, 3, t},
P2 = {s, 4, t}, P ∗1 = {s, 1, 2, t}, and P ∗2 = {s, 5, 6, t};
c({P1, P2}) = 2 and c({P ∗1 , P ∗2 }) = 1.
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Fig. 4. (a) A worst case for MSA that leads to a 2-approximation and (b)
an example where ESA fails.

The example in Figure 4(a) can exactly be solved if P1
leaves the source node through node 1 or node 5. We can
achieve this by extending the MSA algorithm so that it checks
the shortest path through any given node u ∈ N\{s, t}. This is
exactly what our extended algorithm ESA does. As it can be
seen later in Section III-C, ESA has a significantly improved
performance in solving the MDLDP problem. But, it fails for
cases like the one in Figure 4(b), where P1 = {s, 1, 3, t}, P2 =
{s, 2, 3, 5, t}, P ∗1 = {s, 1, 3, 4, t}, and P ∗2 = {s, 2, 3, 5, t};
c({P1, P2}) = 3 and c({P ∗1 , P ∗2 }) = 2.
In ESA, for each node u ∈ N\{s, t}, we find link-disjoint

paths from s to t, where the first path is forced to go through
u. In Step 1a-ii of the ESA algorithm, the cost of all links
on Ps−u and all links belonging to lightpaths on Ps−u (except
those of the lightpath on the last link, if there is any) is set
to infinity. This is to prevent the same links from being used
again in Pu−t and to make sure that any lightpath in Ps−t is
traversed in at most one segment. For the lightpath on the last
link, since our interest is to find the shortest path from s to t
through u, the lightpath can still be encountered on a segment
just after node u. Therefore, its links, except those in Ps−u,
will have a cost of zero. In Step 1a-iii, the shortest path from u
to t is found. If Ps−u and Pu−t share nodes, then the algorithm
does not proceed to finding the second shortest path. Instead,
it skips to searching for the solutions of the remaining nodes.
Once the path through u is found by concatenating Ps−u and
Pu−t, the links on this path are directed from t to s in Step
1a-iv. In Step 1b, all the solutions are compared and the one
that traverses the minimum number of lightpaths is chosen. In
case of a tie, the one with the smallest hopcount is chosen.
Since ESA includes MSA, it is at worst a 2-approximation
algorithm.
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1) For each Gk, k = 1, . . . ,W

a) For each node u ∈ N\{s, t}:
i) In graph Gk, find the shortest path Ps−u from

s to u.
ii) Graph G

0
k is obtained from Gk by setting the

cost of all links on Ps−u and each link belong-
ing to lightpaths on Ps−u to infinity except for
links of the lightpath (if any) in the last link of
Ps−u. For the lightpath in the last link, all its
links except the ones in Ps−u will have a cost
of zero.

iii) In graph G
0
k, find the shortest path Pu−t from

u to t. If Ps−u and Pu−t share nodes, go to
Step 1a-i if there are remaining nodes whose
shortest paths have not been found, otherwise
go to Step 1b. If Ps−u and Pu−t do not share
nodes, the shortest path through u is found by
concatenating the two.

iv) Graph G
00
k is obtained from Gk by directing

each link (i, j) along the shortest path from t to
s. The cost of free links on the shortest path is
set to costk(j, i) = −costk(i, j) and the cost of
all links belonging to lightpaths on the shortest
path is set to zero.

v) In graph G
00
k , find the shortest path from s to t.

vi) If the shortest path exists, remove all the over-
lapping links.

b) Choose the best solution among all nodes.
2) Choose the best solution among all wavelengths.

B. Reroutability Status Update Procedure

Once a lightpath request is accepted and its link-disjoint
lightpaths are determined, it affects the reroutability of other
lightpaths. These lightpaths include the rerouted lightpaths,
and lightpaths that are using the same link, but on different
wavelengths. In addition, the reroutability of the new light-
paths has to be identified. Once a request is accepted, its
primary and backup lightpaths are treated independently, i.e.,
each can be rerouted to a different wavelength independently
of the other. Hence, as in [9], for each lightpath, we dy-
namically keep track of such information as its hopcount,
its wavelength, how many of its links are free on other
wavelengths and to which other wavelengths it can be rerouted.
This is done as follows.
1) When a new lightpath p is assigned without rerouting
other lightpaths on wavelength wk:
• We create new reroutability status information for
p, e.g., how many of its links are free on other
wavelengths and the wavelengths it can be rerouted
to. This takes O(NW ) time.

• After checking whether p is reroutable or not, we
assign the costs of its links on wavelength wk. This

takes O(N) time.
• In addition, the reroutability status information of
lightpaths using the same fiber link, but on other
wavelengths, should be updated. If q is such a
lightpath, the number of its links that are free on
wavelength wk is decremented by one for each
link that p and q have in common. Thus, if q was
reroutable to wavelength wk, it is not any more.
Since, in the worst case, there are O(NW ) such
lightpaths, this takes O(NW ) time.

2) When a new lightpath p is assigned by rerouting some
lightpaths on wavelength wk:
• All the aforementioned operations are performed.
• If q is a rerouted lightpath, the costs of its links
on the new wavelength, and its reroutability status
on wk should be updated. This takes O(N) time
and in the worst case O(N) lightpaths are rerouted.
Therefore, the total running time is O(N2).

3) When the holding time of lightpath p expires:
• All its links on wavelength wk will be free links and
their cost is updated accordingly. This takes O(N).

• For any lightpath q that uses the same fiber link,
but a different wavelength, the reroutability status
information is updated. The number of its free links
on wavelength wk is increased by one and if this
equals to the hopcount of q, then q is reroutable to
wk. This will take O(NW ) time.

The total running time of the reroutability update procedure
is O(N2+NW ).We employ this procedure when solving the
on-line SRWA problem using the MDLDP algorithms.

C. Simulation Study
We proceed to compare our 2-approximation algorithms

(MSA and ESA) with the exact algorithm (WLA) in solving
the MDLDP problem. In order to simulate a wide range
of possibilities, we generate dynamic traffic, where requests
arrive according to a Poissonian distribution (arrival rate r)
with exponential holding times of mean 1. For each request,
we record the results of our algorithms in comparison to
WLA. The approximation ratio represents the ratio of the
number of lightpaths traversed by an approximation algorithm
to the number of lightpaths traversed by WLA. It is averaged
for all accepted requests over 10 iterations, each iteration
with 5000 requests. The source and destination nodes are
randomly selected with all nodes having equal probability of
being selected.
We consider three networks: an ARPANET network (Figure

5), an Erdös-Rényi random network (N = 50, link density
α = 0.2, i.e., the average total number of links is α · ¡N2 ¢),
and a 7×7 lattice network, each withW = 10 wavelengths. In
all our simulations, the approximation ratio attained by ESA
never exceeded 1.00004. The approximation ratios of both
ESA and MSA in comparison to the exact algorithm were
much smaller than 2. Table I shows the average simulated
approximation ratios of MSA, in terms of the number of
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Fig. 5. ARPANET network

lightpaths rerouted, when compared to WLA, which returns
the exact number for a given request.

TABLE I
APPROXIMATION RATIOS OF THEMSA ALGORITHM IN THE THREE

NETWORKS FOR DIFFERENT ARRIVAL RATES (r) FORW = 10.

ARPANET RANDOM LATTICE
r Approx. ratio r Approx. ratio r Approx. ratio
10 1.0105 20 1.0185 20 1.0208
15 1.0095 40 1.0209 30 1.0172
20 1.0055 60 1.0309 40 1.0147
25 1.0170 80 1.0326 50 1.0119
30 1.0128 110 1.0275 60 1.0093
35 1.0100 120 1.0169 70 1.0073

In Sections IV and V, we use the aforementioned MDLDP
algorithms to heuristically solve infinite and finite duration
on-line SRWA, respectively. For each case, we compare the
performances of MSA, ESA and WLA.

IV. INFINITE DURATION ON-LINE SRWA

In the infinite duration on-line SRWA problem, lightpaths
stay indefinitely once they arrive. The off-line SRWA problem,
where all the requests are known beforehand, can be described
as a network flow problem. For this, we provide ILP formu-
lations under two cases: Case1, when both the primary and
backup lightpaths have to use the same wavelength and Case2,
when they can use different wavelengths.
Indices:
i = 1, . . . , F ID of requests (F in total)
w = 1, . . . ,W ID of wavelengths
N (u) Set of nodes adjacent to node u
Variables (integers):
γi,w,u,v is 1 (or −1 depending on the flow direction) if

the primary or backup lightpaths of request i use
wavelength w on link (u, v) ∈ L; 0 otherwise.

xi,w Case1 (same wavelength): is 1 if request i is
accepted and uses wavelength w; 0 otherwise.
Case2 (different wavelengths): is 0 if neither the
primary nor the backup lightpaths of request i
are on wavelength w; 1 if either the primary or
the backup lightpath of request i is on wave-
length w; 2 if both the primary and the backup
lightpaths of request i are on wavelength w.

yi is 1 if request i is accepted; 0 otherwise.

Objective:
Maximize the number of accepted requests.

Maximize:
FX
i=1

yi

Constraints
Antisymmetry constraints: Since the graph is undirected, the

flow is in both directions.

γi,w,u,v = −γi,w,v,u ∀(u, v) ∈ L; 1 ≤ i ≤ F ; 1 ≤ w ≤W.

Conservation constraints: If a given node is not the source
or destination of a given request, then any flow related to the
request that enters the node has to leave the node.X
v∈N (u)

γi,w,u,v = 0 ∀u ∈ N\{si, ti}; 1 ≤ i ≤ F ; 1 ≤ w ≤W.

Capacity constraints: Only a single lightpath can use a given
wavelength on a certain link.

FX
i=1

γi,w,u,v ≤ 1 ∀(u, v) ∈ L; 1 ≤ w ≤W.

Disjointedness constraints: The primary and the backup
lightpaths of a request should be link-disjoint.

WX
w=1

γi,w,u,v ≤ 1 ∀(u, v) ∈ L; 1 ≤ i ≤ F.

Equations
Lightpaths of a request on a given wavelength.X
v∈N (si)

γi,w,si,v = βxi,w 1 ≤ i ≤ F ; 1 ≤ w ≤W.

X
v∈N (ti)

γi,w,v,di = βxi,w 1 ≤ i ≤ F ; 1 ≤ w ≤W.

where β = 2 for Case1 and β = 1 for Case2.
An accepted request has link-disjoint primary and backup

lightpaths.
WX
w=1

xi,w = ϕyi 1 ≤ i ≤ F.

where ϕ = 1 for Case1 and ϕ = 2 for Case2.
Solving the given ILP formulation for large networks and

high number of requests is not feasible. Therefore, we use
the algorithms of the MDLDP problem to solve the on-line
SRWA problem sequentially. Clearly, this approach will not
guarantee an optimal solution. However for small networks,
we show that the results obtained by these algorithms are
close to the optimal off-line solution (given by the ILP for
Case2), which does not need rerouting. Tables II and III show
comparisons, in terms of the number of rejected requests,
of our algorithms (MSA and ESA), WLA and without
rerouting (W/R) against the optimal ILP formulation for
small random networks with link density α (N = 10 with
20 requests and N = 12 with 30 requests) and W = 4.
We observe that rerouting performs better (though marginally,
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since the network is small and the number of requests are few)
than without rerouting and our algorithms perform as good as
(and at times better than) WLA.

TABLE II
NUMBER OF REJECTED REQUESTS FOR N = 10 AND 20 REQUESTS.

α W/R WLA MSA ESA Optimal
0.2 15 14 14 14 12
0.3 13 12 12 11 7
0.4 8 6 6 6 3
0.5 7 6 6 7 3
0.6 6 5 5 4 1

TABLE III
NUMBER OF REJECTED REQUESTS FOR N = 12 AND 30 REQUESTS.

α W/R WLA MSA ESA Optimal
0.2 23 22 22 22 21
0.3 25 25 25 25 24
0.4 12 11 11 10 6
0.5 5 3 3 3 2
0.6 4 3 3 3 0

V. FINITE DURATION ON-LINE SRWA
Finite duration SRWA requests arrive to and depart from the

network over time. Thus, any two lightpaths can share requests
as long as they do not overlap in time. We use the algorithms
of MDLDP as heuristics to solve the finite duration on-line
SRWA problem.
We use the same scenarios as in Section III-C for our simu-

lations. Figures 6-11 show comparisons of the performance of
our algorithms (MSA and ESA) with WLA in terms of the
percentage of rejections. The given results are (a) for different
number of requests with a constant arrival rate, and (b) for
different arrival rates with a constant number of requests. A
comparison of these algorithms with the case of no rerout-
ing (W/R) shows that rerouting of lightpaths decreases the
percentage of rejections significantly. In addition, we observe
that both MSA and ESA perform similarly to WLA, which
has much higher running time and memory requirements. The
need to have a small running time becomes more pronounced
in an on-line setting, where the algorithm has to be invoked
repeatedly whenever a request arrives.

VI. CONCLUSIONS
In WDM optical networks, where lightpaths carry a tremen-

dous amount of data, survivability is of paramount importance.
In practice, lightpath requests arrive over time and a decision
on whether to accept or deny a request should be made
without any knowledge of the future requests. Therefore, it
is necessary to have an on-line solution scheme with good
performance to deal with survivable routing and wavelength
assignment (SRWA). In this paper, we have studied on-line
SRWA and have provided constant and logarithmic compet-
itive ratios for special networks. For general networks, it is
not possible to have algorithms with good competitive ratios.
Since the competitive ratio reflects a worst-case performance,
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different number of requests for the ARPANET network. (W = 10, r = 40)
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Fig. 10. Rejection rates of MSA, ESA, WLA and without rerouting for
different number of requests for the lattice network. (N = 49, W = 10,
r = 60)
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Fig. 11. Rejection rates of MSA, ESA, WLA and without rerouting for
different arrival rates in the lattice network. (N = 49, W = 10 and 5000
requests)

we considered lightpath rerouting, which generally improves
the acceptance rate, but not the competitive ratio. To serve this
purpose, we studied the Minimum Disruption Link-Disjoint
Paths (MDLDP) problem, for which we provided two 2-
approximation algorithms: MSA and ESA. We have shown
through simulations that these algorithms perform close to the
best-known exact algorithm for MDLDP, which incurs a very
high time-complexity. We subsequently applied all considered
MDLDP algorithms as heuristics for infinite and finite duration
on-line SRWA. For infinite duration SRWA, these algorithms
performed close to the optimal off-line solution (for which
we provided an ILP formulation). For finite duration SRWA,
we considered Poissonian distributed input sequences with
exponential holding times. In these scenarios, our algorithms
performed as good as (and at times even better than) the exact
algorithm of the MDLDP problem, but in a much faster time.
These findings suggest that our algorithms are more suitable
for dealing with the (on-line) SRWA problem.
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