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Efficient exploration with
Double Uncertain Value Networks

Thomas M. Moerland, Joost Broekens and Catholijn M. Jonker
Department of Computer Science

Delft University of Technology, The Netherlands
{T.M.Moerland,D.J.Broekens,C.M.Jonker}@tudelft.nl

Abstract

This paper studies directed exploration for reinforcement learning agents by track-
ing uncertainty about the value of each available action. We identify two sources of
uncertainty that are relevant for exploration. The first originates from limited data
(parametric uncertainty), while the second originates from the distribution of the
returns (return uncertainty). We identify methods to learn these distributions with
deep neural networks, where we estimate parametric uncertainty with Bayesian
drop-out, while return uncertainty is propagated through the Bellman equation as a
Gaussian distribution. Then, we identify that both can be jointly estimated in one
network, which we call the Double Uncertain Value Network. The policy is directly
derived from the learned distributions based on Thompson sampling. Experimental
results show that both types of uncertainty may vastly improve learning in domains
with a strong exploration challenge.

1 Introduction

Reinforcement learning (RL) is the dominant class of algorithms to learn sequential decision-making
from data. In RL we start with zero prior knowledge and need to actively collect our own data.
Therefore, we should not settle on a policy too early, instead of trying out actions we have not
properly explored yet. However, we neither want to continue exploring sub-optimal actions, when we
already know what is best. This challenge is known as the exploration/exploitation trade-off.

Most state-of-the-art reinforcement learning implementations use undirected forms of exploration,
such as ε-greedy or Boltzmann exploration. These methods act on point estimates of the mean action-
value, usually applying some random perturbation to avoid only selecting the currently optimal action.
However, these undirected methods are known to be highly inefficient (Osband et al., 2014). By only
tracking point estimates of the mean state-action value, these algorithms lack the information to, for
example, discriminate between an action that has never been tried before (and requires exploration)
and an action that has been tried extensively and deemed sub-optimal (and can be avoided).

A natural solution to this problem originates from tracking uncertainties/distributions. The intuition
is that with limited data and large uncertainty there is reason to explore, while narrow distributions
naturally transfer to exploitation (see Appendix C for a detailed illustration). For this work we identify
two types of uncertainties/distributions that are interesting for exploration:

• Parametric uncertainty: This is the classical statistical uncertainty which is a function of the
number of available data points. The cardinal example is the posterior distribution of the
mean (action-value).

• Return uncertainty: This is the distribution over returns from a state-action pair given the
policy. For this work we focus on deterministic domains, which makes the return distribution
entirely induced by the (exploratory) stochastic policy.
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We argue that - for deterministic environments - we can explore by acting probabilistically optimal
with respect to both distributions (see Section 3). We identify neural network methods to estimate
each of them separately, and subsequently show that both can be combined in one network, which we
call the Double Uncertain Value Network (DUVN). To the best of our knowledge, we are the first to
1) distinguish between uncertainty due to limited data (parametric) and uncertainty over the return
distribution, 2) propagate both through the Bellman equation, 3) track both with neural networks (i.e.,
high-capacity function approximators), and 4) use both to improve exploration.1

The remainder of this paper is organized as follows. In Section 2 we provide a general introduction
to Bayesian deep learning and distributional reinforcement learning. In Section 3, we discuss
parametric and return uncertainty, and identify their potential for exploration. Section 4 discusses
their implementations for policy evaluation with neural networks, and also discusses how to derive
a policy from the learned distributions based on Thompson sampling. Sections 4, 5 and 6 show
experimental results, discuss future work, and draw conclusions, respectively.

2 Pre-liminaries

2.1 Bayesian deep learning

Bayesian neural networks (MacKay, 2003) represent the uncertainty in the model through posterior
distributions over the model parameters. Assume we observe some random variables X and Y and
are interested in the conditional distribution p(Y |X). We introduced a neural network pφ(Y |X) with
parameters φ ∈ Φ to estimate this conditional distribution. In the Bayesian setting, we treat the model
parameters φ as random variables themselves. Given an observed datasetH, we may use the posterior
distribution over model parameters p(φ|H) to obtain the posterior predictive distribution

p(y?|x?,H) =

∫
p(y?|x?, φ)p(φ|H)dφ (1)

for a new observed datapoint x?. In the non-linear neural networks of practical interest, the posterior
distribution p(φ|H) is analytically intractable. Gal and Ghahramani (2016) showed that the well-
known empirical procedure drop-out actually produces a Monte-Carlo approximation to Eq. 1,
providing samples from the posterior predictive distribution by simply retaining drop-out during test
time (prediction). We use this technique in this paper, and discuss alternative methods for Bayesian
inference in neural networks in the Future work section.

2.2 Distributional reinforcement learning

In reinforcement learning (RL) (Sutton and Barto, 1998) agents are studied that interact with an un-
known environment with the goal to optimize some long-term performance measure. The framework
adopts a Markov Decision Process (MDP) given by the tuple {S,A, T ,R, γ}. At every time-step
t we observe a state st ∈ S and pick an action at ∈ A = {1...NA}, for NA available discrete
actions. The MDP follows the transition dynamics st+1 = T (·|st, at) ∈ S and returns rewards
rt = R(st, at) ∈ R. For this work, we assume a discrete action space and deterministic transition
and reward functions.

We act in the MDP according to a stochastic policy π, i.e. a ∼ π(·|s) ∈ P(A). The discounted return
Zπ(s, a) from a state-action pair (s, a) is a random process given by

Zπ(s, a) =

∞∑
t=0

γtrt, st+1 = T (·|st, at), at+1 ∼ π(·|st+1), s0 = s, a0 = a (2)

for discount factor γ ∈ [0, 1]. We emphasize that the return Zπ is a random variable, where the
distribution of Zπ is induced by the stochastic policy (as we assume a deterministic environment). We

1As a side contribution, we introduce the Initial Return Entropy (IRE) as a measure of task exploration
difficulty. See Appendix B.
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may rewrite equation 2 into a recursive form, known as the distributional Bellman equation (omitting
the π superscript from now on):

Z(s, a) = rt + γZ(s′, a′), s′ = T (·|s, a), a′ ∼ π(·|s′). (3)

Note that the equality sign represents distributional equality here (Engel et al., 2005). We are now
ready to define the action-value function. Denote by Eπ the expectation over all traces induced by
the policy π. Applying this operator to Z(s, a) defines the state-action value Q(s, a) = Eπ[Z(s, a)].
Applying this operator to Eq. 2 gives

Q(s, a) = rt + γEs′=T (·|s,a),a′∼π(·|s′)[Q(s′, a′)] (4)

which is known as the Bellman equation (Sutton and Barto, 1998). Most RL papers actually start-off
from Eq. 4. We present the current introduction to emphasize that the mean action value Q(s, a) is a
quantity that we estimate by sampling from an underlying return distribution p(Z|s, a).2

We approximate the action-value (distribution) with a deep neural network. We write Qφ(s, a) for a
network predicting a (point estimate) action-value, and pφ(Z|s, a) for a network approximating the
entire return distribution. To learn the state-action value RL algorithms follow variants of a scheme
known as generalized policy iteration (GPI) (Sutton and Barto, 1998). GPI iterates between policy
evaluation, in which we calculate a new estimates Ψ(s, a) of the state-action value based on (new)
sample data (e.g., for one-step SARSA Ψ(s, a) = r(s, a) + γQ(s′, a′)), and policy improvement, in
which we use the estimate Ψ(s, a) to improve the policy (whether with a value-based, actor-critic or
policy gradient algorithm).

3 Distributional perspective on exploration

We will now argue for a probabilistic perspective on value functions and exploration. There are two
distributions that might be useful from an exploration point of view: 1) the statistical parametric
uncertainty of the mean action value, and 2) the distribution of the return.

Parametric uncertainty of the mean Given a policy the state-action value Q(s, a) is a scalar
number by definition, as it is an expectation over all possible future traces. However, from a statistical
point of view it makes sense to treat our estimate of Q(s, a) as a random variable, as we need to
approximate it from a finite number of samples. We call this the parametric uncertainty.
Parametric exploration, i.e. acting optimistic with respect to the uncertainty of the mean action-value,
has been very successful in the bandit setting. However, it has been sparsely applied to RL (see
Appendix A for related work). We believe this is due to a fundamental complication regarding
uncertainties in RL, which has only been identified by Dearden et al. (1998) before. Bandits are
one-step decision problems with pay-offs originating from a stationary distribution, which makes the
value approximation an ordinary supervised learning problem. However, in RL the target distribution
is highly non-stationary. A standard target like r+γQ(s′, a′) falsely assumes that Q(s′, a′) is known,
while it is actually uncertain itself. Therefore, repeatedly visiting a state-action pair should not
makes us certain about its value if we are still uncertain about what to do next. In other words: the
state-action value certainty depends on the future policy certainty. Standard parametric uncertainty
cannot account for this problem (the ‘local’ parametric uncertainty will converge as if it is supervised
learning), and we somehow need to propagate the uncertainty of future state-action pairs’ value (the
‘global’ uncertainty) back through the Bellman equation. An illustration is seen in Fig. 1b right,
where the uncertainty in φ influences both the current and future value estimates (ignoring the Z
distributions in that graph for now, as the need to propagate the parametric uncertainty p(φ) over
timesteps already applies when we learn mean action-values).

2We empirically observe that the shape of this return distribution strongly differs between domains. This
matters because the shape of the return distribution also influences how easily we can estimate its expectation, or
some other quantity like an upper confidence bound, from samples. For example, a long, thin right tail in the
return distribution - as frequently the case in RL with only a few ‘good’ traces - may give our mean estimate high
variance (it would actually need importance sampling). In Appendix B we visualize return distributions for some
well-known domains, and also introduce the Initial Return Entropy as a measure of task exploration difficulty.
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Figure 1: a) Three types of neural networks with different uncertanties/probabilitiy distributions. Circles are
probabilistic nodes. Left: parametric uncertainty over the mean action-value. Middle: propagating (return)
distributions for point estimate parameters. Right: parametric uncertainty over propagating distribution (=
Double Uncertain Value Network). b) Illustration of propagating distributions. Subscripts identify unique
state-action pairs. We initialize all state-action pairs with a prior parametric uncertainty p(φ) and prior output
distribution pφ(Z). Then, for a new observed transition, we want to update our estimates of pφ(Z) at the current
state action pair by propagating the distribution of the next node p(Z′) through the Bellman operator T (instead
of just propagating the mean). For this work, we consider two quantities to propagate: i) the return distribution
at the next node pφ(Z′) (for point estimate φ), or ii) the parametric uncertain return distribution at the next
node p(Z′) =

∫
pφ(Z

′)p(φ|H)dφ. Arrows point backwards because we focus on the direction of uncertainty
propagation/back-up (which runs in the different direction than our exploration).

Return distribution Standard RL, and also the parametric uncertainty introduced above, usually
deal with the mean action-value Q(s, a). However, from an exploration point of view, it makes
more sense to learn the full return distribution p(Z|s, a). Note that we still focus on deterministic
environments. Therefore, the distribution over returns is solely induced by our own policy. As we
may modify our own policy, it makes sense to act optimistically with respect to the return distribution
we observe. As an illustration, consider a state-action pair with particular mean action value estimate
Q(s, a). It really matters whether this average originates from a highly varying return, or from
consistently the same return. It matters because our policy may influence the shape of this distribution,
i.e. for the highly varying returns we may actively transform the distribution towards the good returns.
In other words, what we really care about in deterministic domains is the best return, or the upper end
of the return distribution.3

It turns out that both challenges focus around propagating either parametric uncertainty and/or return
distributions through the Bellman equation (Fig 1b). The overall idea is to memorize the propagating
global MDP uncertainties in a neural network, which makes them locally available at action selection
time. We thereby avoid the need for any forward planning (to get global information), and our
approach is entirely model-free.

4 Double Uncertain Value Networks

4.1 Policy evaluation

We now discuss three probabilistic policy evaluation approaches that incorporate the uncertainties
introduced in the previous section: 1) (local) parametric uncertainty only, 2) return distribution only,
and 3) both combined. The respective network structures are illustrated in Fig. 1a. Implementation
details are provided in Appendix E.

Parametric uncertainty only To estimate our parametric uncertainty we may use any type of
Bayesian inference method suitable for neural networks. For this paper we consider the Bayesian
dropout (Gal et al., 2016), as it has a very simple practical implementation (see Sec. 2.1). This
gives us a sample from the posterior predictive distribution of the mean action value: p(Q|s, a,H) =∫
Qφ(s, a)p(φ|H)dφ. The associated network structure is visualized in Figure 1a, left.

3For stochastic domains the return distribution has additional noise for which we do want to act on the
expectation.
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Return distribution only We next consider the problem of learning return distributions instead
of mean action-values. For this work we will assume that the return distribution p(Z|s, a) can be
approximated by a Gaussian. Therefore, we modify our neural network to output the distribution
parameters µZ(s, a) and σZ(s, a), where clearly µZ(s, a) = Q(s, a). Note that the network parame-
ters φ are point estimates now. The associated network structure is visualized in Figure 1a, middle.
During policy evaluation we need to estimate distributional targets instead of point estimate tar-
gets. We will construct bootstrap estimators based on the distributional Bellman equation (Eq. 3).
The derivation for the mean µZ(s, a) = Q(s, a) is well-known from standard RL, so we focus on
propagating the return standard deviation through the distributional Bellman equation:

Sd
[
p(Z|s, a)

]
= Sd

[
r(s, a) + γ

∑
a′∈A

π(a′|s′)p(Z|s′, a′)
]

= γ
∑
a′∈A

π(a′|s′)Sd
[
p(Z|s′, a′)

]
(5)

because γ ≥ 0, π(a|s) ≥ 0, and we assume the next state distributions are independent so we may
ignore the covariances.4 We see that the standard deviation of p(Z|s, a) is a linear combination of
the standard deviations p(Z|s′, a′) (one timestep ahead), reweighted by the policy probabilities and
shrunken by γ. We approximate the sum over the policy probabilities π(a′|s′) by sampling from our
policy (as is the usual solution in RL, which will be right in expectation over multiple traces). The
network may then be trained to move the current predictions closer to these targets, for example with
a squared loss

L(φ) =
(
r(s, a) + γµZφ (s′, a′)− µZφ (s, a)

)2
+
(
γσZφ (s′, a′)− σZφ (s, a)

)2
(6)

where we as usual fix the bootstrap predictions at (s′, a′), i.e. the training gradients w.r.t. φ are
blocked there. This approach can be seen as a form of analytic approximate return propagation with a
(heuristic) distributional loss (see Appendix A.2 for other distributional losses). Similar ideas with
approximate return propagation were recently explored with discrete network output distributions
(Bellemare et al., 2017), which may also accommodate for propagating multimodality.

A second, more simple propagation method which we also experimented with is sampling-based
propagation. In that setting we sample M values zm(s′, a′) ∼ pφ(Z|s′, a′), push these through
the Bellman operator to construct Ψm(s, a) = r(s, a) + γzm(s′, a′), and train our network on this
collection of samples with, e.g., a maximum likelihood loss. This may require more samples and be
less accurate, but it will also work for complicated network output distributions (like deep generative
models) for which analytic propagation and projection is infeasible. Results of this approach are not
shown, but were comparable to the results with approximate return propagation shown in Section 5.

Parametric uncertainty over return distributions We finish with the observation that both ideas
may actually naturally be combined in one function approximator (Fig 1a, right). Note that we can
now propagate both the return distribution and its parametric uncertainty at the next timestep, i.e.
we are effectively propagating uncertain return distributions (the parametric uncertainty over the
network output distribution). Starting from a sampled transition now, we want to propagate the return
distribution weighted over the parametric uncertainty at the next timestep:

Z(s, a) =

∫ [
r + γZφ(s′, a′)

]
p(φ|H)dφ = r + γ

∫
Zφ(s′, a′)p(φ|H)dφ (7)

Besides that, the same distributional Bellman propagating machinery applies as above.5 We refer to
the general mechanism of uncertainty propagation (parametric, return or both) as Bellman uncertainty.
The appearance of the network, with both uncertainty over the network parameters φ and over the
output distribution to track the propagating (uncertain) return distributions, makes us refer to it as the

4For random variables X,Y and scalar constants a, b, c we have: Var[a + bX + cY ] = b2 Var[X] +
c2 Var[Y ] + 2bc Cov[X,Y ].

5Sample from p(φ|H) at the next time-step, make network predictions µZφ (s
′, a′) and σZφ (s

′, a′), and do
the Bellman propagation. Repeated sampling of φ does Monte Carlo integration over p(φ|H), as a numerical
integration like in Dearden et al. (1998) is infeasible for the neural network setting.
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Double Uncertain Value Network (DUVN) (Fig 1a, right). The intuition is that during early learning
we will mostly be propagating uncertainty, while with converging distributions we will eventually
start propagating true return distributions.

In summary, we identified three types of probabilistic policy evaluation algorithms (with the three
associated network structures visualized in Fig. 1a):6

1. The (local) parametric uncertainty of the mean value: p(Q|s, a,H) =
∫
Qφ(s, a)p(φ|H)dφ.

2. The (propagating) distribution of the return: pφ(Z|s, a,H) (with point parameters φ).
3. Both, (propagating) uncertain return distr.: p(Z|s, a,H) =

∫
pφ(Z|s, a,H)p(φ|H)dφ.

4.2 Policy improvement

We now describe how to use any of these distributions to naturally balance exploration versus
exploitation, based on Thompson sampling (Thompson, 1933) (see Appendix C as well). To
generalize notation, we introduce a new random variable Θ with distribution p(Θ|s, a) to cap-
ture any of the three policy evaluation distributions introduced in the previous section. We write
p(Θ|s) =

∏
a?∈A p(Θ|s, a?) for the joint action-value distribution in a state s, where we assume

the posterior distributions per action are independent. Thompson sampling selects action a with
probability equal to:

π(a|s) =

∫
p(Θa > Θa? 6=a)p(Θ|s)dΘ (8)

where Θa = Θ(s, a) and Θa? 6=a notational convention for Θ(s, a?)∀a? ∈ A, a? 6= a. In words, we
choose action a with probability equal to the probability that the specific action is the optimal one
when averaging over all uncertainty in the joint distribution p(Θ|s). The practical implementation of
Thompson sampling is very simple, as we may just sample from p(Θ|s, a) for every a and argmax
over these values:

1. Sample φ ∼ p(φ) (or equivalently a dropout mask).
2. Sample Z(s, a?) ∼ pφ(Z|s, a?) ∀ a? ∈ A.
3. Select a = arg maxa?∈A Z(s, a?).

If we do not consider parametric uncertainty, then we ignore the first sampling step and just use the
current parameter point estimates. If we do not consider the Bellman uncertainty, then we replace the
second sampling step with a deterministic prediction Qφ(s, a).

Thompson sampling is not the only possible choice to make decisions under uncertainty, but it has
shown good empirical performance in the bandit literature (Chapelle and Li, 2011). It naturally
performs policy improvement, as it gradually starts to prefer the better actions when the distribu-
tions start narrowing/converging. We thereby hope to improve on the instability of greedy policy
improvement (see also Bellemare et al. (2017)) or undirected exploration. Ideally, the uncertain return
distribution would gradually narrow and for a deterministic environment eventually converge to a
Dirac distribution on the optimal value function.

5 Experiments

We now evaluate the different types of probabilistic policy evaluation in combination with Thompson
sampling exploration. We refer to Thompson sampling on the three types of discussed policy evalua-
tion as parametric exploration, return exploration, and uncertain return exploration. Experimental
details are provided in Appendix E.

We first consider the Chain domain (Appendix D, Figure 6). The domain consists of a chain of states
of length N , with two available actions at each state. The only trace giving a positive, non-zero

6We could think of another algorithm that does propagate (i.e., has a probabilistic network output), but only
propagates the parametric uncertainty of the mean at the next time-step p(Q′|H) =

∫
Q′
φp(φ|H)dφ (and not

the entire return distribution). We did not come up with such an algorithm, but concurrently with our work,
O’Donoghue et al. (2017) did focus on this problem. See Related Work.
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Figure 2: Learning curves on Chain domain for Thompson sampling on parametric uncertainty, return distri-
bution and uncertain return distribution versus ε-greedy exploration (ε = 0.05). Plots progress row-wise for
increased depth of the Chain, i.e. increased exploration difficulty. Note that the correct action at each state in the
chain is initialized at random (i.e. not always action 2, as in the visualization in Fig. 6). Results averaged over 5
repetitions.

reward is to select the ‘correct’ action at every step. The correct action per step is determined at
domain initialization by sampling from a uniform Bernoulli. The domain has a strong exploration
challenge, which grows exponentially with the length of the chain (see Appendix D).

Learning curves for the Chain domain are shown in Fig. 2, for different lengths of the chain. First
of all, we note that the ε-greedy strategy does not learn in this domain at all (not even for the short
length). The three probabilistic approaches do explore, with best performance for the uncertain return
exploration. In the longest chain, of length 100, all probabilistic exploration methods also get trouble
solving the domain. However, they do see some rewards, which makes us hypothesize this could be
an issue of stabilization (more than that the exploration does not work). See Appendix D.1 for results
when the correct action is always the same, as in the original variants of this problem (Osband et al.,
2016).

We next test our method on a set of tasks from the OpenAI Gym repository (Fig. 3). We see that
our exploration methods manage to learn on all domains. The achieved end policies all reflect
good policies on each problem. ε-greedy exploration is a bit unstable on some domains (CartPole,
LunarLander), but generally performs reasonable as well. We note that the uncertainty exploration
methods, which have a completely different exploration mechanism compared to ε-greedy exploration,
never really perform worse on these domains.

We hypothesize these domains have too much structure and are not challenging enough to show
the same exploration difference as seen for the Chain domain. Future work should address more
challenging (high-dimensional) exploration problems. We also want to stress that probabilistic
exploration will not always outperform undirected methods, especially not on domains with relatively
simple exploration. Uncertainty methods will generally create a cautious agent, that first wants to
properly verify all parts of the domain. In contrast, undirected exploration agents may exploit sooner,
which can be beneficial in domains with non-deep exploration (i.e., with quick rewards).

6 Future work

We identify several directions for future work:

1. Other types of Bayesian inference in neural networks (for parametric uncertainty): we
hypothesize that the Bayesian drop-out may be too unstable and tedious to tune, as we
sometimes observed in our experiments as well. Potentially, different methods to approxi-
mate the posterior over the network parameters (e.g., Welling and Teh (2011)) may improve
estimation of parametric uncertainty.

2. More expressive output distributions (for Bellman uncertainty propagation): for this work
we only experimented with Gaussian distributions for propagation. Recently, Bellemare et al.
(2017) studied return distribution propagation with categorical distributions, which more
naturally accommodate for multi-modality (see Related Work as well). Another extension
could involve more expressive continuous network distributions, e.g. based on conditional
variational inference (Moerland et al., 2017).
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Figure 3: Learning curves for parametric exploration, return exploration and uncertain return exploration on
different OpenAI Gym environments. Results averaged over 5 repetitions.

3. Continuous action-spaces: the current implementations only focussed on discrete action
spaces, where Thompson sampling can easily be applied by maintaining a distribution per
action and enumerating all actions for action selection. Extension to the continuous setting
would require either directly propagating policy uncertainty, or learning a parametric policy
whose distribution mimics the uncertainty in the value function.

4. Stochastic environments: this paper entirely focussed on domains with deterministic
reward and transition functions, which makes the return distribution only induced by the
stochastic policy. In stochastic domains the return distribution will have additional noise for
which we do want to act on the expectation, to prevent continuing to act optimistically with
respect to something we can’t influence.

Finally, we want to stress that the RL algorithms in this paper are entirely model-free. The uncertainty
theme also appears in model-based RL, where it is useful/necessary to track the uncertainty on an
estimated transition and/or reward function (Deisenroth and Rasmussen, 2011; Depeweg et al., 2017).
This parametric model uncertainty is different from the parametric value/policy uncertainty studied
in this work, but our ideas may be extended to the model-based setting as well (which would add
another source of uncertainty).

7 Conclusion

This paper introduced Double Uncertain Value Networks (DUVN), which, to the best of our knowl-
edge, is the first algorithm that 1) distinguishes between uncertainty due to limited data (parametric)
and uncertainty over the return distribution, 2) propagates both through the Bellman equation, 3)
tracks both with neural networks (i.e., high-capacity function approximators), and 4) uses both to
improve exploration. We implemented the DUVN algorithm with Bayesian dropout for the para-
metric uncertainty and a Gaussian distribution for the Bellman uncertainty propagation. The main
appeal of this implementation is its simplicity: any deep Q-network implementation can be easily
extended as in this work by adding drop-out to the neural network layers and specifying a Gaussian
output distribution instead of a mean-only prediction. This should take no more then a few lines
of code in most automatic differentiation software packages. We showed that, even for the vanilla
implementation, we at least match or improve undirected exploration performance on a variety of
problems, and drastically improve performance on an exploration heavy domain (Chain). We believe
further improvements in the distributional approach to RL, e.g. with more expressive network output
distributions that capture multi-modality, is a promising direction for RL exploration research.
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A Related work

Exploration is a widely studied topic in reinforcement learning. We will discuss work based on
parametric (value/policy) uncertainty, return distributions/uncertainty, and add some context on
other exploration approaches (count-based/intrinsic motivation) and other uncertainty methods in RL
(uncertainty in model-based RL).

A.1 Parametric uncertainty of the mean

This research direction uses the uncertainty of the mean action value, either from a frequentist
or Bayesian direction, to direct exploration. Exploration is usually based on ’optimism under
uncertainty’. Parametric uncertainty has been extensively studied in the bandit setting, which are
environments with a single state, multiple actions and unknown, stochastic rewards. Succesful
approaches are UCB Auer et al. (2002), which acts on the upper confidence bound of a frequentist
confidence interval, and Thompson sampling Thompson (1933), which is also studied in this paper.

There are a few extensions of these ideas to the RL/MDP setting. The first occurrence of parametric
uncertainty in RL seems to be Bayesian Q-learning by Dearden et al. (1998). The authors use
tabular Q-learning with normal distributions and conjugate updating. They are also the only ones
that explicitly identify the necessity to propagate parametric uncertainty from future states. Their
exploration is based on either Thompson sampling (which they call Q-value sampling), while they
also consider myopic value of perfect information (VPI) as another exploration strategy.

Osband et al. (2014) extended these ideas to the linear function approximation setting with randomized
least-squares value iteration (RLSVI). In the neural network context, parametric uncertainty based
on variational inference was studied for bandits by Blundell et al. (2015). Gal and Ghahramani
(2016) studied the use of dropout uncertainty for parametric value uncertainty similar to our work,
but did not consider any propagation, nor the distribution over returns. Osband et al. (2016) also
studied parametric exploration in RL with neural networks, using the non-parametric bootstrap
(i.e., a frequentist approach to uncertainty estimation, not to be confused with the use of the term
‘bootstrapping’ in RL).

Concurrently with the present paper, O’Donoghue et al. (2017) also identified the need to propagate
parametric uncertainty over timesteps. Their approach is based on a variance estimate, which has a
similar role as the σ in our Gaussian uncertainty propagation. Their neural network implementation
derives the local parametric uncertainty estimates from the linearity of their last network layer and
frequentist uncertainty estimates known from linear regression. This contrasts to our Bayesian
approach to parametric uncertainty. Moreover, they still propagate uncertainty about the mean action
value, and do not consider the returns as in our paper.

There is more work that does track uncertainty for policy evaluation, but does not use these for policy
improvement / exploration. Most of these have focussed on Gaussian Process regression (Engel
et al., 2003). Rasmussen et al. (2003) uses two Gaussian Processes: one to track the parametric
uncertainty in the value, and a second one to model the uncertainty in the transition model. However,
the paper still uses a greedy policy improvement. The Gaussian Process approach was also extended
to continuous action spaces. There are actor-critic (Ghavamzadeh and Engel, 2007a) and policy
search (Ghavamzadeh and Engel, 2007b) algorithms that track the uncertainty in the gradients, but
again only to stabalize the update, not to direct exploration.

The idea of exploration based on parametric uncertainty also connects to the difference between
action space and parameter space / episode-based exploration (Matthias et al., 2017; van Hoof et al.,
2017). Most (undirected) exploration methods, like ε-greedy and Boltzmann, inject exploration noise
at the action space level. However, it can be beneficial to inject the noise at parameter level instead,
usually because it allows you to retain a particular noise setting over multiple steps (e.g. an entire
episode). The risk of action-space exploration noise is that the agent has to redecide at every timestep
and therefore cannot stick with an exploration decision. The effect might be jittering behaviour
between exploration and exploitation steps. This has also been identified as the challenge of ensuring
‘deep’ exploration Osband et al. (2016). We have not considered this problem in this paper, but it
could for example be implemented by fixing the dropout mask over an entire episode.

We also want to note that the exact same exploration problem occurs in classical (tree) search.
Succesful Monte Carlo Tree Search (MCTS) algorithms, like Upper Confidence Bounds for Trees
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(UCT) Kocsis and Szepesvári (2006), act on the upper confidence bound of a frequentist confidence
interval of the value at each state-action pair. The overlap between reinforcement learning and (model-
based) search has been identified for long Sutton and Barto (1998), where RL i) does not assume
an a-priori known environment model, and ii) usually includes a parametric function approximator
to represent the value/policy, while search stores these in a tree structure (which is technically an
effective sparse form of tabular representation). But besides that, the same exploration themes appear
in both fields.

A.2 Return uncertainty

While the distributional Bellman equation (Eq. 3) is certainly not new Sobel (1982); White (1988),
nearly all RL research has focussed on the mean action-value. Most papers that do study the
underlying return distribution study the ’variance of the return’. Engel et al. (2005) learned the
distribution of the return with Gaussian Processes, but did not use it for exploration. Tamar et al.
(2016) studied the variance of the return with linear function approximation. Mannor and Tsitsiklis
(2011) theoretically studies policies that bound the variance of the return.

The variance of the return does not need to be used with ’optimism under uncertainty’, and actually
has more frequently been considered for risk-sensitive RL. In several scenarios we may want to
avoid incidental large negative pay-offs, which can e.g. be desastrous for a real-world robot, or in a
financial portfolio. Morimura et al. (2012) studied parametric return distribution propagation as well.
They do risk-sensitive exploration by softmax exploration over quantile Q-functions (also known as
the Value-at-Risk (VaR) in financial management literature). Their distribution losses are based on
KL-divergences (including Normal, Laplace and skewed Laplace distributions), which could be a
better distributional loss than the heuristic loss in Eq. 6. However, their implementations do remain
in the tabular setting.

Recently, Bellemare et al. (2017) theoretically studied the distributional Bellman operator. The authors
show that the operator is still a contraction in the policy evaluation setting, but not a contraction
in any distribution metric for the control setting. They hypothesize this is due to the ‘inherent
instability of greedy updates’ in the Bellman optimality operator. Their algorithm (called C51) uses a
categorical distribution to propagate returns distributions, which may more easily accommodate for
multimodality compared to the Gaussian distribution used in this work. C51 backs-up the complete
Bellman distributions, but they do not use these for exploration. Their methods nevertheless improves
over all other previous deep Q-networks on Atari games.

A.3 Count-based Exploration & Intrinsic Motivation

Count-based exploration uses a slightly different incentive for exploration, focussing or rewarding
regions of state-space that have not been visited (often). These ideas were extensively studied in the
tabula rasa setting, e.g. R-max Brafman and Tennenholtz (2002) and Explicit-Explore or Exploit
(E3) Kearns and Singh (2002). Guez et al. (2012) explicitly plans ahead using Monte Carlo Tree
Search over uncertain transition dynamics models. Applications in high-dimensional domains include
Stadie et al. (2015) and Bellemare et al. (2016).

Intrinsic motivation generalizes this notion of novelty to any internal reward for domain-independent
characteristics, i.e. next to the domain-dependent external reward function. An example is rewarding
actions that decreases the parametric uncertainty in the transition model (Houthooft et al., 2016).
Alltogether, this class of exploration methods usually depends on the ability to learn good transition
models (from limited data), a problem which is not trivial itself (Deisenroth and Rasmussen, 2011;
Depeweg et al., 2017; Moerland et al., 2017).

A theoretical problem with count-based / intrinsic motivation approaches can be that they change the
RL objective itself. For example, bonuses on novelty might make an agent continue to visit a region
of state-space where the value functions are already very certain, yet not all states are frequently
visited yet (like continuously walking around a room to view it from all angles, which gives a new
visual state each time). Nevertheless, intrinsic motivation-based approaches hold the state-of-the-art
on challenging exploration problems like Montezuma’s Revenge (Bellemare et al., 2016).
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A.4 Uncertainty in model-based RL

All work in this paper only considered model-free RL. However, similar issues with uncertainty
appear when learning the transition and/or reward function, known as ‘model-based RL’. Dearden
et al. (1999) was again the first to address this problem for the tabular setting. Mannor et al. (2004,
2007) studied two environment sources of variance that may influence the return distribution: the
‘internal variance’ due to a stochastic environment, and the ‘parametric (model) variance’ due to bias
in the environment model. Neither of these were considered in this work, but both may be added.
These ideas were studied in neural networks by Depeweg et al. (2017), who instead uses the terms
empistemic uncertainty for the model bias and aleatoric uncertainty for the inherent environment
noise/stochasticity. Their approach, which infers distributions on neural network parameters to
capture model bias, and uses expressive output distributions to capture true environment stochasticity,
actually has a similar structure as our Double Uncertain Value Network (in some sense, they learn
a ‘Double Uncertain Transition Network’). Of course, transition model learning does not involve
any uncertainty propagation (it is a well-defined supervised learning problem). Finally, Gal et al.
(2016) used Bayesian drop-out, as considered in this work for parametric value uncertainty, to track
parametric model uncertainty.

13



B Initial Return Entropy (IRE) as a measure of initial exploration difficulty

Define the initial return distribution (IRD) pinit(Z) as the distribution over trace returns Z ∈ R when
sampling an initial state sinit from some initial state distribution and following a uniform random
policy from there on. For undirected exploration, the uniform policy is the best policy we can specify
until we start encountering varying returns. Define the initial return entropy (IRE) as the entropy of
this distribution:

H(Z) =

∫
pinit(Z) · log

(
pinit(Z)

)
dZ (9)

We propose that the IRE is an interesting measure of the domain exploration difficulty, where
lower values indicate a higher exploration challenge. Figure 4 shows the IRD and IRE for various
domains from the OpenAI Gym repository. We see quite large differences between the shape of
these distributions. Importantly, some domains with hard exploration, for example the Atari game
Montezuma’s Revenge, show a very spiked IRD and therefore low IRE. The challenge of such
domains is that nearly all initial traces give the same return, which makes it hard to ever find a first
indication of where to go. In many of such domains nearly all traces then give 0 reward, but for
example Mountain Car shows all traces giving -200 reward (there is a -1 penalty per timestep, and
Gym caps MountainCar episodes at length 200 by default). The entropy of the return distribution
is of course robust against such reward function translations, making it a stable measure of initial
exploration difficulty.

We do not propose this is the only measure of domain exploration difficulty. For example, a well-
known exploration challenge is choosing between a small suboptimal pay-off and exploring further
to obtain a potential higher reward. This type of exploration challenge is not accurately reflected in
the IRE, as simple early rewards spread out the initial return distribution and may falsely suggest the
domain is easy. There are of course many more dimensions that influence the RL task difficulty, like
the state and action space cardinality, but the IRE nicely illustrates why a low-dimensional task like
the Chain (Appendix D) can actually be quite challenging.

Figure 4: Return distributions from the initial state in different environments for a uniform random policy.
Histogram produced over 50.000 traces of maximum 500 steps. The first 8 domains are directly taken from the
OpenAI Gym. The Chain domain is introduced in Appendix D. Orange line is a kernel density estimate, with the
vertical dashed line its empirical mean (a Monte Carlo estimate of Q(s, a) under a uniform random policy. The
top-right display the initial return entropy (IRE) estimate for the domain.
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C Illustration of undirected versus directed exploration

We will quickly elaborate on the difference between undirected exploration methods, like ε-greedy
and Boltzmann exploration, and directed methods, like Thompson sampling, in a theoretical example.
Consider two available actions which, given some observed dataH, both have some posterior action-
value distribution p(Q|H). Figure 5 shows two scenario’s, I (left) and II (right). The only difference
between both scenario’s is our uncertainty about the value of action a1: in the second scenario we are
much more uncertain about its true value. We now compare how ε-greedy, Boltzmann and Thompson
sampling will act in both scenario’s. The main point will be that undirected methods cannot leverage
the uncertainty information.

Figure 5: Example posterior value distributions for two available actions. Scenario I (left): Action 1 (blue solid
line) has µ1 = 0, σ1 = 1, Action 2 (green dashed line) has µ2 = 2, σ2 = 1. Scenario II (right): The same
except for σ1 = 5.

1. ε-greedy exploration only uses the distribution means and will act the same in both scenarios,
preferring action 2 and selecting action 1 with (small) probability ε.

2. Boltzmann (soft-max) exploration is usually seen as more subtle, gradually preferring actions
with a higher pay-off. Boltzmann does consider the numerical scale of the action means, including
their difference (something ε-greedy ignores):

πBoltzmann(a|s) =
eµa∑

a?∈A e
µa?

However, it still acts the same in scenario I and II, because Boltzmann approximates a distribution
over both actions by still only considering their means. Although the softmax returns a probability dis-
tribution over actions, this should can not be interpreted as their uncertainty.7 Another problem with
Boltzmann action selection is that it is non-robust against translation of the reward function, making
it tedious to tune. Therefore, many undirected implementations still prefer ε-greedy exploration.

3. Thompson sampling, a directed exploration method, uses π(a1|s) = p(Q1 > Q2). For the
example with normal random variablesQ1 ∼ N (·|µ1, σ1) andQ2 ∼ N (·|µ2, σ2), we can analytically
calculate P (Q1 > Q2) = P (Q1 −Q2 > 0). Define X = Q1 −Q2, then X will still have a normal
distribution, and by standard laws of probability, E[X] = µ1 − µ2, and Sd[X] =

√
(σ1)2 + (σ2)2.

Applying this to the example, gives us for Scenario I (left) π(a1) = N (Q1−Q2 > 0|µX = −1, σX =√
2) ≈ 0.08, and for Scenario II (right) π(a1) = N (Q1 −Q2 > 0|µX = −1, σX =

√
26) ≈ 0.35.

Note how Thompson sampling naturally assigns extra probability mass to action a1 in Scenario II,
where we are much more uncertain about its potential value.

7A similar phenomenon happens with the softmax and cross-entropy loss in classification tasks. The outputs
of this softmax are also frequently falsely interpreted as a measure of uncertainty over classes (Gal, 2016).
However, when we extrapolate (far) away from our observed data, one of the classes usually gets a high
probability. It thereby appears as we are very certain, but since we have not observed any data in this region of
input space, we should actually be very uncertain. This illustrates how point estimates over a discrete set cannot
be transformed to uncertainties (what we need is an entire uncertainty/distribution per class output).
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D Illustration of exploration challenge: Chain domain

We now study the Chain domain, an example MDP (Fig. 6) that illustrates the difficulty of exploration
with sparse rewards. This domain is also empirically studied in the results section of this paper. The
MDP consists of a chain of states S = {1, 2..., N}. At each time step the agent has two available
actions: a1 (‘left’) and a2 (‘right’). At every step, one of both actions is the ‘correct’ one, which
deterministically moves the agent one step further in the chain. The wrong action terminates the
episode. All states have zero reward except the final chain state N , which has r = 1. Variants
of these problem have been studied more frequently in RL (Osband et al., 2014). In the ‘ordered’
implementation, the correct action is always the same (e.g. a2), and the optimal policy is to always
walk right. This is the variant illustrated in Fig. 6 as well.

Figure 6: Chain domain. Example MDP where undirected exploration is highly inefficient. Based on (Osband
et al., 2014).

Osband et al. (2014) studied the expected regret for a variant of this scenario. We here present a
different illustration, where we show the expected time until the first visit to the terminal state (i.e.
the first non-zero trace in this domain).

Example 1. Let l denote the number of episodes before we first reach state N . Clearly, before
we reach N for the first time, we have seen no reward information, and undirected exploration will
follow a uniform random policy. The probability of a trace reaching state N under the uniform policy
is p = 2−(N−1). Therefore, the number of episodes until we first reach N follows a negative binomial
distribution with success probability p, i.e. l ∼ NB(1, p). It follows that E[l] = 1−p

p = 2(N−1) − 1.

Example 1 shows that, for undirected exploration on point estimates, the required number of ex-
ploratory episodes scales exponentially with the exploration depth N . Although this is clearly a
simplified domain, it is important to note that this setting is actually very representative of the
exploration problem in sparse reward domains. This is well visible in Fig. 4, where we can see the
Chain domain having similar initial return distributions as for example Montezuma’s Revenge, a
game notorious for its challenging exploration.

D.1 Additional results for ordered Chain

The experiments section in the paper discusses the unordered Chain, where the correct action at
every step is randomized. We here compare to the ‘ordered’ Chain, where the correct action at every
step is always a2. Although this is the standard implementation in literature, we believe there is a
systematic bias in this domain that makes them not really exponentially challenging for exploration.
The problem is that the optimal policy has a network predicting a2 at every step. This will happen
too easily in a function approximator (like a neural network) due to its natural tendency to generalize.

We show the results on the ordered Chain in Fig. 7. First of all, compared to the results in Fig. 2, we
see that exploration is indeed much easier in the ordered problem. For example, ε-greedy now also
solves the problem, something which we would not expect from the exponential exploration time
discussed above. Nevertheless, we see that the probabilistic exploration methods still outperform
ε-greedy, especially when the length of the chain increases.
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Figure 7: Learning curves on the ordered Chain domain.

E Implementation Details

Network architecture consists of a 3 layer network for each discrete action with 128 nodes in each
hidden layer and ReLu activations. For parametric uncertainty, each hidden layer has drop-out
applied to its output, with pkeep probability to keep a node. We use separate subnetworks per action
to explicitly separate their uncertainty. For larger problems, the initial representation layers may
be shared. Learning rates are fixed at 0.001 on all experiments. Optimization is performed with
stochastic gradient descent using Adam updates in Tensorflow. For the experiments with parametric
exploration (parametric uncertainty only) we train on a standard squared loss between new target
and predicted mean action value, i.e. the first half of Eq. 6. We use a target network and replay
database, where we replay 10% of times in a prioritized way (by maintaining a separate prioritized
replay queue based on the total temporal difference error in the previous time this trace was trained
on). All domains (except for the Chain) are taken from the OpenAI Gym repository available at
https://github.com/openai/gym.

All ε-greedy experiments have ε fixed at 0.05 throughout learning. Drop-out rates were either
pkeep = 0.75 (for parametric uncertainty only) or pkeep = 0.90 (for uncertain returns). All experi-
ments used one-step SARSA (ie., on-policy updates with eligibility traces parameter λ = 0 (Sutton
and Barto, 1998)), except for the MountainCar experiments, which use λ = 0.9. Note that the ideas
about eligibility traces and cutting traces equally apply to the propagation of distributions, i.e. they
allow for quicker propagation over multiple timesteps (always at the risk of propagating on-policy,
exploratory results too quickly/far).8
Thompson sampling uses the same policy for exploration and evaluation. In some sense, proper uncer-
tainty policies somewhat blur the line between on- and off-policy (where the behavioural/exploration
policy differs from the target/evaluation policy), as there is just on reasonable probabilistic policy
incorporating all uncertainty. Nevertheless, we could consider Thompson sampling exploration while
evaluating with a policy that does act on some mean value again.

8We do believe that the uncertainty-based policies, like Thompson sampling, may also benefit work on
cutting traces. Trace cutting is usually based on importance sampling ratios between the exploratory policy
and the target policy. Thompson sampling may provide more realistic probabilities for exploratory actions,
which may allow for more natural trace cutting. For example, ε-greedy always strongly cuts a trace for every
exploratory step, no matter whether the exploratory action is very close to the best one, or known to be very bad.
In contrast, probabilistic policies will cut traces when other possible actions in the state have much uncertainty
left, which should indeed stop the speed of our back-ups. A challenge is that our neural network implementation
naturally samples a next action, but the associated probability of each action is not directly available. Of course,
for a small discrete action space we could approximate it by repeatedly sampling from our policy.
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