

CPD-3285

Jeroen Coppelmans
Igor van der Hel
Vincent Lukkien
Roel Meulendijks

Final Review Meeting CPD Group 3285 04-02-2003

Introduction

Group introduction

CROMPTON EUROPE BV

- Amsterdam facility
- Producing 2,6-DBN & Diflubam
- Formulation of Casoron 700 ton/a

QUESTION:

"Make a conceptual process design for the production of new ammoxidation products 2-CBN, 4-CBN and/or 3,4-DBN in the existing DBN plant of Crompton Europe B.V. in Amsterdam"

Introduction

Contents

CPD-3285

REPORT:

Design of a plant capable of producing 2,6-DBN, 3,4-DBN, 2,6-DFBN and benzonitrile.

Contents

Crea Gp & Tools

Creativity, Group Process & Tools

Process Design

Design Evaluation

Conclusion

Discussion

Creativity, Group Process & Tools Crompton

Creativity

Group Process

Tool

- Early indication Strengths & Weaknesses and Expectations of group members
 - 3 intermediate evaluation sessions
- Team learning (McKinsey)
 - Bowling / CPD party
- Taking turns in team captain and secretary
 - Have girls over for lunch
 - La Residence

Tools

Mission Statement

Mission

Process Design

CPD-3285

MISSION:

"Design an innovative, sustainable and economic profitable process, which is flexible in the isolation section, for the production of chlorobenzonitriles using present equipment as a basis"

Process Design

Key Decision Factor

Key Decision Factors

Focus of Design

- Technical
 - Use current equipment
 - Flexible isolation section
- Economically Profitable
- Sustainable
- Innovative

Focus of Design

Product Choice

- Product choice
- Operation mode
- Quench

Product Choice

Current situation

Current situation

Product Choice

- 10 % Crompton revenue is Herbicides
- Amsterdam 2,6 DBN, Diflubam
- Casoron G 700 ton
- Certificates vs Intermediates, lower the cost for production of 2,6 DBN
- Overcapacity

Technische Universiteit Delft

Product choice

Operation mode

		Economical Profitability	Sustainable	Innovative
	2,6- DBN	+	0	N/A
3,4-DBN		+	0	N/A
	2,6- DFBN	+	+	N/A
	BN	N/A	+	N/A

Operability

Impact on Environment

No Marketing

Wastes

Operation Mode

Operation mode result

Operation Mode Results

Quencl

Operation modes

- Series
- Parallel
- Simultaneously

Product choices

- One kind of halogen (Chloro only)
- More Halogens

Quench

Quench approach

Quench Approach

Ouench Medium

Current Process

- Quenching product stream with large amounts of water
- Small particles cause problems in rest process, difficult to separate from slurry phase
- New products with low T_m cannot be crystallized

Solution

Rigorous change in isolation section

New Process

- Use quench medium that separates from product phase in column
- Quench product to liquid in stead of solid state

Quench medium

Old vs Nev

- Water
- Ammonia / Oxygen
- Compressed Air
- Solid CO₂
- Liquid Nitrogen
 - + Quench medium leaves at different exit than product stream
 - + Sufficient cooling capacity for relatively low amounts
 - + Inert to reaction, safe (already present in high amounts)
 - + Low temperatures can be reached
 - Per kg of product 13 kg Nitrogen needed

Old vs New Quench

Conclusion Quench

Design Description

- Technical feasible
 - + No heat transfer limitations according to experts (API)
 - + Capable of quenching to low temperature (new products?)
 - + Easy further purification by distillation liquid phase
 - Transport 2,6-DBN is problem
 - No examples in industrial practice found
- Economically Profitable
 - Nitrogen is relatively expensive quenching medium
- Sustainable
 - + Less equipment
 - Big gas purge
- Innovative
 - + Very original idea by focusing at fundamental problem

Design Description

Process Flow Scheme

A multipurpose ammoxidation plant, for the production of:

- -2,6-dichlorobenzonitrile,
- -3,4-dichlorobenzonitrile,
- -2,6-difluorbenzonitrile and
- -benzonitrile

from the corresponding (halogen) toluenes in series over the current catalyst. Instant product choice will be market driven. All products are quenched with liquid nitrogen. The products are liquids at quench temperature and are isolated in a distillation process. The current plant remains intact.

Process Flow Scheme

Equipment design

Reactor

Gas absorber

- •Problem: no convergence above 8 trays
- •4500 kmol/hr is too much water
- •13 trays will be better
- •New column needed, due to higher gas duty

$\bullet P = 1 \text{ bar}$

 $\bullet T = 330-370^{\circ}C$

•Current reactor

Quench

- •2,6 DBN liquid slurry
- •Use current quench column,

•Vs =
$$2.3 \text{ tau} = 5s$$

- $\bullet P = 1-4.5 \text{ bar}$
- •Hot streams enter in top, cold leave bottom

Distillation Column

- •Water amount bottom 0.5 %
- \bullet T top > 15°C
- •6 trays
- •P = 1-20 bar
- •Reflux 1.2
- •Yield over 99.5 %

Other Design Issues

Design Evaluation

•HF is no problem in diluted gas stream

Concentrations

V = 0.004 % w

 $L = 0.00078 \overline{\% w}$

- =>0.25 mm corrosion/year
- increase tube wall thickness
- Changes outside battery limit
 - -Crystallizer: cold roller
 - -Raw material storage
 - -Waste water treatment
- Current plant remains intact

Design Evaluation

Process Safety

Process Safety

Waste

- HAZOP over Quench
 - Maintaining temp in Quench is important

- Fire and Explosion Index (FEI) over all units
 - Overall process is light to somewhat moderate hazardous
 - Look out for leakages, HF, HCl and HCN are present!!!
 - Process is not risk-free

Wastes

Economics

- Less waste by eliminating 2,6-DFBN process in other plant
- Waste water
 - (problems with absorber, therefore high volume)
- HCl is key component in gas purge treatment
- HF purge does not come close to environmental limits
- Not fair to compare a real plant to a conceptual model

Economics

Uncertainty tree

Production of Benzonitrile is not economically profitable

Producing 2,6-DFBN and 3,4-DBN for 5 months

Total investments:M\$ 1.8

Total operational costs:M\$ 14.3 / year

Cash flow:M\$ 0.5 / year

– DCFROR: 20.0 %

Major uncertainty: prices raw materials and products

New plant lowers cost price of 2,6-DBN with \$ 0.75 per kg

Uncertainty Tree

Technische Universiteit Delft				
				Valuable Improvements
		Design is feasible and econmically profitable		Gas Perification 50% 50% 0.22 1 Gasts
		62%		Franker Furtherine 20% 20% 1 1
		0.75		No. Openitor on author properties 25% 0.05
				Tobal Control
	Mission is achieved			60% 60% 0.25 0.5
	58%			0.25 0.5
	1			Tracket Car to part particular Car to part particular
			Overlage is the scalable and occurrence of the control of the cont	The British III Market of products to
		The Design is innovative		The Design is
		32%		
		0.125	Mastan is active at 58 % 1	See perfection
			The Design is become	
		The Design is sustainable	0.125	0.2 85% 0.2
		63%	The Design is sentitive 63% 0.125	
		0.125		75% 0.5
		AUFHIA)	Na N	
		CHEMICAL		

Valuable improvements

Technische Universiteit Delft **Dry Quench** N2/water Quench **3,4 DBN** in Impact current plant Produce more 2,6-DBN Ease of implementation

Technische Universiteit Delft

Conclusions

Decision Key

Decision Keys

Decision Keys cont.

Technical Feasibility

- + A multipurpose plant is designed for the production of
 - 3,4-DBN,
 - 2,6-DFBN and
 - Benzonitrile
- Production of 2,6-DBN is most probably technically infeasible in the designed plant
- + Reactor and quench column can also be used for other ammoxidation processes

Economical profitability

- + \$0.75 per kg cost reduction on 2,6-DBN after investments are paid back
- Production of Benzonitrile is economically not profitable

Decision Keys

Recommendations

Sustainability

- + Make 2,6-DFBN, so the unsustainable diflubam process can be omitted.
- + A flexible plant is sustainable, because it will not become obsolete if market demands for its product decreases. New products can then be made.
- + A higher mass based yield is obtained for 3,4-DBN than for the current 2,6-DBN process
- Large waste water stream for 3,4-DBN and 2,6-DBN.
- Large amount of Nitrogen needed for quench

Innovativity

+ Dry Quench. Reduces difficulties in purification section considerably

Recommendations

Crompton Valuables

- Produce 2,6-DBN in current process
- Short time perspective
 - Produce 3,4-DBN in current process
- Long term perspective
 - Develop dry quench further for production of 2,6-DFBN and 3,4-DBN

Crompton valuables

CPE

- Market research results
- Catalyst research results
- Chemical properties possible products
- Dry Quench idea
- Diflubam production in new plant
- Aspen models for all products
- Loose end list
- Literature file

Discussion

reativity roduces reams

Technische Universiteit Delft

Discussion

Ouestions & Discussions

Questions & Discussion Crompton

Subject Inventory

Technische Universiteit Delft

Technical details

Technical details

Contents

- Quench Calculations
- Price estimation
- NRTL model Selection
- Mass and Heat balances
- Thermodynamics calculations
- Physical properties chemicals used
- Current process block scheme
- Aspen model
- HF in equipment

Quench Calculations

Required cooling in Quench column

All calculations are made for the case of 2,6-DBN

Temperature reactor out:

330 degrees celcius

Temperature quench out:

70 degrees celcius

Cooling all components from Treactor out to Tquench out:

	Mass stream	Ср	Molar mass	Ср	Delta T	Q	Q	% of total
	kg/hr	J/(mol K)	g/mol	J/(kg K)	K	J/kg	J	
Nitrogen	2276	29	28	1039	260	2.70E+05	6.15E+08	72%
Dichlobenil	172	140	172	814	260	2.12E+05	3.64E+07	4%
H2O	112	35	18	1944	260	5.06E+05	5.66E+07	7%
CO2	41	38	44	864	260	2.25E+05	9.21E+06	1%
CO	296	30	37	1037	260	2.70E+05	7.98E+07	9%
NH3	60	37	17	2176	260	5.66E+05	3.40E+07	4%
Total	2957						8.31E+08	97%
Desublimizing	g dichlobenil							

	Mass stream			Hsub		
	kg/hr	J/mol	Molar mass	J/kg		
Dichlobenil	172	2.62E+04	172	1.52E+05	2.62E+07	3%

Total heat to be removed in 1 hour 8.57E+08 100%

Quench Calculations

Cooling with nitrogen

Pin: 200 barTin: 20 degr. CgasPout: 1 barTout: 70 degr. Cgas

 Cp
 Delta T
 Q

 J/(kg K)
 K
 J/kg

 Tin-->Tuit
 1.04E+03
 50
 5.20E+04

Total 5.13E+05

Required cooling capacity (see Appendix 1): 8.57E+08 J/hr

Needed massflow of compressed air: 1670 kg/hr

This would result in the following volume flows:

rho gas at p1 Volumeflow at p1 kg/m3 m3/hr

rho gas at p2 Volumeflow at p2 kg/m3 m3/hr
1.15 1452

Technische Universiteit Delft

Price estimation

Economic potential (€/kg)	Product price (€/kg)	Profits per kg Raw material	(€/k Raw Material cost (€/k	g) Toluene
1.7	8		7	5 2Chloro
2.6	12		10	8 4Chloro
5.1	24		20	15 3.4DiChloro
2.4	11		9	7 2.6DiChloro
•		•		2.4DiChloro
10.6	35		30	19 2Fluoro
3.5	38		32	29 4Fluoro
19.3	91		77	58 3.4DiFluoro
8.9	41		35	26 2.6DiFluoro
				2.4DiFluoro
16.0	50		43	27 2Bromo
2.7	50		43	40 4Bromo
26.7	125		106	80 3.4DiBromo
12.2	57		49	36 2.6DiBromo
				2.4DiBromo
	1.7 2.6 5.1 2.4 10.6 3.5 19.3 8.9 16.0 2.7 26.7	1.7 8 2.6 12 5.1 24 2.4 11 10.6 35 3.5 38 19.3 91 8.9 41 16.0 50 2.7 50 26.7 125	1.7 8 2.6 12 5.1 24 2.4 11 10.6 35 3.5 38 19.3 91 8.9 41 16.0 50 2.7 50 26.7 125	1.7 8 7 2.6 12 10 5.1 24 20 2.4 11 9 10.6 35 30 3.5 38 32 19.3 91 77 8.9 41 35 16.0 50 43 2.7 50 43 26.7 125 106

NRTL model Selection

NRTL Water in product

NRTL model Selection

NRTL Raw material in product

NRTL model Selection Crompton

NRTL Water in raw material

Technische Universiteit Delft

NRTL model Selection

Uniquac: Water in Toluene

Peng Robinson: Water in Toluene

Mass and Heat balances

The reaction process

3,4-dichlorotoluene +
$$3/2$$
 O₂ + NH₃ \rightarrow 3,4-dichlorobenzonitrile + 3 H₂O 3,4-dichlorotoluene + 8 O₂ \rightarrow 2 HCl + 7 CO₂ + 2 H₂O 3,4-dichlorobenzonitrile + 6 O₂ \rightarrow 2 HCl + HCN +6 CO₂ 2 NH₃ + $3/2$ O₂ \rightarrow N₂ + 3 H₂O

$$\phi_{M\,,A,out} = \sum_{i=1}
u_A \cdot \xi_{A,i} \cdot \phi_{M\,,A,in}$$

$$Q_{HE} = \left(\phi_{M,x,in} - \phi_{M,x,out}\right) \cdot C_{P,x} \cdot \left(T_{in} - T_{out}\right) - \Delta_r H$$

Mass and Heat balances

The quench process

Mass balance
$$0 = \phi_{M,Quand}$$

$$0 = \phi_{M,Quenchmedium,in} + \phi_{M,Gas,in} - \phi_{M,Liquid,out} - \phi_{M,Gas,out}$$

Heat balance

$$0 = \left(\phi_{M,Quenchmedium} \cdot C_{P,Quenchmedium} \cdot T\right)_{Liquid,in} + \left(\phi_{M,x} \cdot C_{P,x} \cdot T\right)_{Gas,in} - \left(\phi_{M,x} \cdot C_{P,x} \cdot T\right)_{Liquid,out} - \left(\phi_{M,x} \cdot C_{P,x} \cdot T\right)_{Gas,out}$$

Distillation

$$0 = \phi_{M,in} - \phi_{M,Bottom,out} - \phi_{M,Top,out}$$

$$0 = \left(\phi_{M,x} \cdot C_{P,x} \cdot T\right)_{in} - \left(\phi_{M,x} \cdot C_{P,x} \cdot T\right)_{Bottom,out} - \left(\phi_{M,x} \cdot C_{P,x} \cdot T\right)_{Top,out} + \Delta H_{reboiler} - \Delta H_{Condensor}$$

Purification section

$$0 = \phi_{M,Water,in} + \phi_{M,Gas,in} - \phi_{M,Liquid,out} - \phi_{M,Gas,out}$$

$$0 = \left(\phi_{M,water} \cdot C_{P,water} \cdot T\right)_{Liquid,in} + \left(\phi_{M,x} \cdot C_{P,x} \cdot T\right)_{Gas,in} - \left(\phi_{M,x} \cdot C_{P,x} \cdot T\right)_{Liquid,out} - \left(\phi_{M,x} \cdot C_{P,x} \cdot T\right)_{Gas,out}$$

Thermodynamics calculations Crompton

UNIFAC Values

	$\Delta_{ m f} { m H}^0$	S^0	$C_P^{\ 0}$	G^{0}
	kJ/mole	J/mole·K	J/mole·K	kJ/mole
	1bar, 350°C	1bar, 350°C	1bar, 350°C	1 bar, 350°C
NH_3	-32.65	-69.35	46.02	10.56
O_2	9.98	22.50	32.32	-4.04
CO_2	-379.47	34.28	47.71	-400.83
HCl	-82.80	31.58	29.68	-102.49
HF	-263.86	28.50	29.35	-281.62
HCN	148.30	64.46	44.29	108.13
H_2O	-230.50	-18.79	36.67	-218.79
N_2	9.59	21.71	30.26	-3.93
Toluene	101.21	-130.02	200.90	182.23
Benzonitrile	265.85	-310.00	191.99	285.17

Shomate's Values

	$\Delta_{ m f} { m H}^0$	S^0	$C_P^{\ 0}$	\mathbf{G}^0
	kJ/mole	J/mole·K	J/mole·K	kJ/mole
	1bar, 350°C	1bar, 350°C	1bar, 350°C	1 bar, 350°C
NH ₃	-32.66	222.33	45.99	-56.87
O_2	10.07	227.80	32.48	1.57
CO_2	-379.52	245.07	47.87	-404.23
HCl	-82.80	208.47	29.67	-212.67
HF	-263.07	195.27	29.25	-384.73
HCN	148.32	231.35	44.25	4.19
H_2O	-230.49	214.42	36.58	-364.07
N_2	9.64	213.37	30.60	-123.29

Shomate's Equation

$$C_{P}^{0} = A + B \cdot T + C \cdot T^{2} + D \cdot T^{3} + \frac{E}{T^{2}}$$

$$H^{0} - H^{0}_{298.15} = A \cdot T + \frac{B \cdot T^{2}}{2} + \frac{C \cdot T^{3}}{3} + \frac{D \cdot T^{4}}{4} - \frac{E}{T} + F - \Delta_{f} H^{\circ}_{298}$$

$$S^{0} = A \cdot \ln(T) + B \cdot T + \frac{C \cdot T^{2}}{2} + \frac{D \cdot T^{3}}{3} - \frac{E}{2 \cdot T^{2}} + G$$

Values for the constants are given in Appendix 4.1

Thermodynamics calculations Compton

UNIFAC Values

	$\Delta_{ m f} { m H}^0$ ${ m S}^0$		$C_P^{\ 0}$	G^0
	kJ/mole	J/mole·K	J/mole·K	kJ/mole
	1bar, 298 K	1bar, 298 K	1bar, 298 K	1 bar, 298 K
Toluene	49.8	-245.1	106.8	120.2
3,4-DCT	-14.3	-281.2	143.2	66.3
2,6-DFT	-331.7	-148.3	141.5	-289.7
2,6-DCT	-14.3	-277.6	143.2	210.2
Benzonitrile	215.1	-145.3	112.4	256.5
3,4-DBN	167.9	-784.6	145.9	394.9
2,6-DFBN	-162.9	-28.7	147.3	-155.7
2,6-DCBN	163.6	-156.4	153.4	68.4

Benson's Values

	$\Delta_{ m f} { m H}^0$	S^0	$C_P^{\ 0}$	G^0
	kJ/mole	J/mole·K	J/mole·K	kJ/mole
	1bar, 25°C	1bar, 25°C	1bar, 25°C	1 bar, 25°C
Toluene	50	-241.9	94.7	122.1
3,4-DCT	-23.4	420.7	126.5	-148.8
2,6-DFT	-367.4	406.9	119.3	-488.7
2,6-DCT	-23.4	420.7	126.5	-148.8
Benzonitrile	218.9	327.1	109.7	121.4
3,4-DBN	168.7	379.2	142.4	55.7
2,6-DFBN	-175.4	365.4	135.3	-284.3
2,6-DCBN	168.7	379.2	142.4	55.7

Thermodynamics calculations **Crompton**

Equations

$$egin{aligned} & \Delta_{reaction} H^0 = \sum_i
u_i \cdot \Delta_f H^0 \ & \Delta_{reaction} G^0 = \sum_i
u_i \cdot G^0 \ & \Delta_{reaction} G^0 = -RT \ln \left(K
ight) \end{aligned}$$

$$\Delta_{reaction}G^0 = \sum_i
u_i \cdot G^0$$

$$\Delta_{reaction}G^0 = -RT\ln(K)$$

dH, dG of reaction and Chemical Equilibrium Constant

Reaction		$\Delta_{reaction} H^0$	$\Delta_{reaction}G^0$	K
		1 bar, 350°C	1 bar, 350°C	1 bar, 350°C
		[kJ/mole]	[kJ/mole]	
1	Ammoxidation of 3,4-DCT	-558.74	-164.72	8
2	Oxidation of 3,4-DCT	-3410.6	-3551.6	∞
3	Oxidation of 3,4 DCBN	-2582.25	-3133.6	∞
1	Ammoxidation of 2,6-DFT	-570.75	-572.96	∞
2	Oxidation of 2,6-DFT	-3455.79	-3509.5	∞
3	Oxidation of 2,6-DFBN	-2615.43	-2665	∞
1	Ammoxidation of Toluene	-574.748	-557.93	∞
2	Oxidation of Toluene	-3769.32	-3826.8	∞
3	Oxidation of Benzonitrile	-2924.96	-2991.3	∞
4	Oxidation of NH ₃	-762.18	-675.36	∞

Physical properties chemicals used

Component	name	Technologi	Technological Data						No te
Design	Systematic	Formula	Mol weight	Boiling point	Melting point	Liq./Sol. Density [6]	MAC value [2]	LD50	
				°C	°C	kg/m3	ppm	ppm	
Oxygen	Oxygen	O_2	32	-182.9	-218.8	1141	n.a.	n.r.	
Ammonia	Ammonia	NH ₃	17	-33	-77.7	700	25	7338	[1] [3]
Water	Dihydrogenoxide	H ₂ O	18	100	0	997	d.n.e.	n.r.	
2,6-DBN	2,6-Dichlorobenzonitril	C7H3NCl2	172	270	144	n.a.	n.a.	2710	[4
2,6-DCT	2,6-Dichlorotoluene	C ₇ H ₆ Cl ₂	161	196	2	1254	n.a.	n.a.	[5
3,4-DBN	3,4-Dichlorobenzonitril	C ₇ H ₃ NCl ₂	172	252	69	n.a.	n.a.	1600	[4
3,4-DCT	3,4-Dichlorotoluene	C7H6Cl2	161	200	-15.2	1251	n.a.	n.a.	[5
2,6-DFBN	2,6-Difluorobenzonitril	C ₇ H ₃ NF ₂	139	197	29	n.a.	n.a.	n.a.	
2,6-DFT	2,6-Difluorotoluene	C ₇ H ₆ F ₂	128	112	n.a.	1129	n.a.	n.a.	
Toluene	Toluene	C ₇ H ₈	92	110	-95	865	n.a.	636	[4
Benzonitril e	Benzonitrile	C ₇ H ₅ N	103	190	-13	1020	n.a.	971	[4
CO2	Carbondioxide	CO ₂	44	d.n.e.	-78.5	1524	5000	n.a.	[8 [1
HCl	Hydrochloric acid, anh.	HCl	36.5	110	-25	n.a.	5	900	[1 [8
HF	Hydrofluoric acid, anh.	HF	20	20	-83	997	3	n.a.	[8
HBr	Hydrobromo acid, anh.	HBr	81	-66.7	-87	2200	3	2860	[8 [3
HCN	Cyanide acid	HCN	27	25.6	-14	690	10	3.7	[8
	1	1			1		I	l	[1

HCl (aq)

HF(aq)

Hydrochloric acid, hydr.

Hydrofluoric acid, hydr.

- [1] TLV i.s.o. MAC
- [2] ppm

30w% HCl

49w%HF

- [3] LC50 (ppm) i.s.o. LD50
- [4] oral rat mg/kg
- [5] solid density g/cm3
- [6] At 101.3 kPa, 21°C, kg/m3
- [7] Data from Handbook of Chemistry and Physics 81st edition
- [8] Data from 'Nationale lijst van Mac-waarden, 1985'

1200

1150

[9] LC50 (ppm) mouse i.s.o. LD50

-35

[10] sublimation point

110

103-10

- [11] oral rabbit mg/kg
- [12] oral mouse mg/kg
- [13] b.p. CO₂ d.n.e. at normal pressure (solid → vapour

n.a. = not available d.n.e. = does not exist (physically) n.r. = not relevant

900 [11]

342 [13]

^{*1)} Data from MSDS/ICSC unless mentioned

Physical properties chemicals used

Technische Universiteit Delft

C			ES (cont.)						
Component:	name	Technologic	cal Data				Safety data		Note
Design	Cas number	Vapour pressure [1]	Auto Ignition T	Flash point	Tcritic	Vapour Density [1]	LEL	UEL	
		mmHg	°C	°C	°C	kg/m3	%	%	
Oxygen	7782-44-7	d.n.e.	d.n.e.	d.n.e.	-118.4	1.326	d.n.e.	d.n.e.	[2]
Ammonia	231-635-3	•	630		132	0.717	15	30	[2] , [3]
Water	7732-18-5	17.5	d.n.e.	d.n.e.			d.n.e.	d.n.e.	
2,6-DBN	1194-65-6		527	216					[2]
2,6-DCT	118-69-4			79/8 2		5.6			[2]
3,4-DBN	6574-99-8			127		1.37	1.6	7.4	[2]
	95-75-0		>450	79/8		5.6	1.0	/.4	[2]
J,T-DC1	75-75-0		7 430	6		5.0			[2]
2,6-DFBN	1897-52-5			80					[2]
2,6-DFT	443-84-5			9/24		4.42			[2]
	108-88-3	10	535	4.			1.2	7	
Benzonit r il e	100-47-0	1		72.					[6]
	124-38-9		d.n.e.	d.n.e.			d.n.e.	d.n.e.	[2]
	7647-01-0								[2]
HF	7664-39-3					0.836			[2] [4]
	10035-10-6				90	3.345			[2]
	74-90-8			-18					[2]
N2	7727-37-9		d.n.e.	d.n.e.		1.159	d.n.e.	d.n.e.	[2]
LICL()	7647.04.0	210				1 552			[0]
\ \ \	7647-01-0	210				1.553			[2]
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7664-39-3	14				2.21			[2]
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10035-10-6 kPa, 21°C, kg/	/ 2				3.345	does not		[2]

[1] At 101.3 kPa, 21°C, kg/m3

[2] MSDS/ICSC available

[3] relative density (air) = 0.6

[4] relative density (air) = 0.7

[5] Data from MSDS/ICSC unless mentioned

[6] Relative density (Air) =3.6

d.n.e. = does not exist (physically) n.a. = not available

.a. – not avanable

Current Process

HF in equipment

HF is no problem in diluted gas stream

-HF content is no problem

-(V = 0.004 & w, 0.00078% w)

-0.25 mm p/y corrosion, increase tube wall thickness a little

Technische Universiteit Delft

Aspen Model

Feedselector

The feedeslector is used to be able to switch feeds fast for modeling of the multipurpose plant

R101 Tube Reactor

The stoichometric reactor together with the heat exchanger model the Tube reactor cooled by the Salt melt.

C103 Quench

The Quench is modeled by an adiabetic mixer and a flash vessel with set in and outlet pressure.

C102 Gas Absorber

The gas absorber is modeled by a RADFRAC with one stream entering at the top and one at the bottom. No condensor or reboiler is used.

C101 Distillation Column

The distillation column is modeled with a RADFRAC

Quench Controller

The quench temperature is controlled by the nitrogen feed to the Quench. The set-point for the quench temperature is entered in a degin spec that keeps the internal stream of the quench at set-point by varying the nitrogen feed.

Block Scheme

4 Coningen

