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I knew exactly what to do.
But in a much more real sense, I had no idea what to do.

— Michael Scott, The Office, Season 5: Stress Relief
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SUMMARY

An interconnected system is composed of multiple well-defined self-contained subsys-
tems that interact among them and that together create collective behaviours. We can
find many examples of interconnected systems in real life. Ranging from biological sys-
tems, such as the growth and interaction of populations in diverse and spatially dis-
tributed environments, to electric grids connecting power-generating sources, buildings
and infrastructures in a country. When studying interconnected systems, a fundamental
and natural question is how the properties and characteristics of the individual subsys-
tems and the way they are connected relate to the collective behaviour of the complete
system. That is the driving question of the present dissertation.

Given that interconnected systems can be found in a wide variety of contexts, their
representation and specific research interests can be equally varied. Because of this,
it is impossible to answer the aforementioned question uniquely for all interconnected
systems, and specific cases must be considered. In this dissertation, we consider two
types of interconnected systems: a general class of uncertain multiple-input-multiple-
output (MIMO) systems, and agent-based opinion formation models.

The investigation of uncertain MIMO interconnected systems is focused on provid-
ing topology-independent conditions for robust stability. The primary motivation for
this approach is that, in real systems, it is costly or even impossible to have complete
and accurate information on the network topology and subsystem parameters and dy-
namics. However, it is of critical interest to guarantee the system’s stability. Therefore we
need stability conditions that require only partial information about the network and the
subsystems to ensure the system’s stability. By studying these systems both in the time
and frequency domain, we are able to provide conditions that meet these requirements.

As for agent-based opinion formation models, we assume that each individual (or
agent) in a population has an opinion about a statement. By exchanging opinions among
themselves, the agents update their own internal opinion, resulting in a collective dy-
namic of opinion evolution. When studying these systems, the interests shifts from
stability conditions, to a characterisation of the relation between the agents’ individual
traits and qualitative properties of the opinion distribution in the population. Several
techniques and approaches to analyse opinion formation models are proposed and ap-
plied to multiple models, one of which is new to this dissertation.

The collective study of the previously mentioned interconnected systems requires
the use of multiple and diverse analysis techniques and approaches, from analytical
methods based on the Nyquist criterion, Bauer-Fike theorem, and Lyapunov functions
to qualitative and numerical analysis techniques like histograms and binomial propor-
tion confidence intervals. It is our hope that some of the presented results, methods, or
ideas may advance the knowledge frontier in this scientific field, sparkle new research
directions, and either directly or indirectly prove some value to society.
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SAMENVATTING

Een onderling verbonden systeem is gemaakt uit meerdere goed gedefinieerde afzon-
derlijke subsystemen die op elkaar inwerken en samen collectief gedrag vertonen. We
kunnen veel voorbeelden vinden van zulke systemen in het echte leven. Variërend van
biologische systemen, zoals de groei en interactie van populaties in diverse en ruimtelijk
verspreide omgevingen, tot elektriciteitsnetten geschakeld aan energie producerende
bronnen, gebouwen en infrastructuur in een land. Wanneer je deze systemen onder-
zoekt, is een fundamentele en natuurlijke vraag hoe de eigenschappen en karakteristie-
ken van de individuele subsystemen en de manier waarop ze verbonden zijn verband
houden met het collectieve gedrag van het complete systeem. Dat is de drijvende vraag
van dit proefschrift.

Omdat deze systemen gevonden kunnen worden in verschillende soorten contexten,
kunnen de representatie en het specifieke onderzoeksdoel evenveel verschillen. Hier-
door is het onmogelijk om de hiervoor genoemde vraag voor alle systemen gelijk te be-
antwoorden en zullen specifieke gevallen beschouwd moeten worden. In dit proefschrift
beschouwen we twee types van systemen: een generieke klasse van onzekere multiple-
input-multiple-output (MIMO) systemen en agent-based meningsvormingmodellen.

Het onderzoek van onzekere MIMO-systemen richt zich op het verstrekken van to-
pologisch onafhankelijke condities voor robuuste stabiliteit. De primaire motivatie voor
deze benadering is dat, in echte systemen, het kostbaar en zelfs onmogelijk is om volle-
dige en accurate informatie van de netwerktopologie en parameters van de subsystemen
en de dynamica te hebben. Echter, het is cruciaal om de stabiliteit van het systeem te ga-
randeren. Daarom hebben we stabiliteitsvoorwaarden nodig die alleen gedeeltelijke in-
formatie van het netwerk en de subsystemen vereisen om de stabiliteit van het systeem
te verzekeren. Bij het bestuderen van deze systemen zowel in het tijd- als frequentiedo-
mein, kunnen wij de voorwaarden verstrekken die aan deze eisen voldoen.

Wat betreft agent-based meningsvormingmodellen, nemen we aan dat elke individu
(of agent) in een populatie een mening heeft over een statement. Bij het uitwisselen van
meningen binnen de groep updaten de agents hun eigen interne mening, resulterend in
een collectieve dynamica van meningsontwikkeling. Wanneer je deze systemen onder-
zoekt, verschuift de belangstelling van de stabiliteit van de voorwaarden naar een karak-
terisering van de relaties tussen de individuele kenmerken van de agents en de kwalita-
tieve eigenschappen van de meningsverdeling in de populatie. Verscheidene technieken
en benaderingen om meningsvormingmodellen te analyseren zijn voorgesteld en toege-
past in meerdere modellen, waarvan één nieuw is voor dit proefschrift.

Het gezamenlijke onderzoek van de hiervoor genoemde onderling verbonden syste-
men vereist het gebruik van meerdere en diverse analysetechnieken en benaderingen,
van analytische methodes gebaseerd op de Nyquist criterion, Bauer-Fike theorem en
Lyapunov functions tot kwalitatieve en numerieke analysetechnieken zoals histogram-
men en binomial proportion confidence intervals. Het is onze hoop dat sommige ge-

xiii
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presenteerde resultaten, methodes, of ideeën de grens van onze kennis doet opschui-
ven in dit onderzoeksveld, nieuwe onderzoeksrichtingen inspireren en direct of indirect
waarde zullen opleveren voor de maatschappij.



1
INTRODUCTION

What is thy bidding, my master ?

Darth Vader, Star Wars Episode V: The Empire Strikes Back

This initial chapter explains the broad motivation, main contributions, and structure of
the dissertation. The dissertation comprises two self-contained parts that study different
classes of interconnected systems from various perspectives. This chapter aims to elaborate
on the connection of these classes and present them in the broader field of interconnected
systems. This chapter also comments on the data sets and code availability and contains
a dedicated section to clarify the used terminology.

1
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2 1. INTRODUCTION

1.1. ON INTERCONNECTED SYSTEMS
The overall theme of this dissertation is the study of interconnected systems and their
properties. An interconnected system is a collection of individual systems or agents that
communicate between them by exchanging information about their state [85, 74, 27].
This definition can be applied to an incredibly wide range of systems in many disciplines.
Some examples include supply networks, where the subsystems are storage facilities and
their interaction is the movement of goods [190, 119, 131] ; epidemic models, where the
subsystems are disease hosts and their interaction leads to disease transmission [210,
229, 43]; sensor networks, where the subsystems are individual sensors that exchange
estimates of some variables [193, 21, 149, 219, 194, 121]; and collective group behaviour,
where the subsystems are biological or artificial individuals (animals or robots, for in-
stance) and they exchange information about their state [72, 142, 84].

Given the wide range of contexts and applications, interconnected systems can be
represented differently and studied with various research goals in mind. For instance,
supply networks can be modelled by discrete-event dynamics and simulations [225, 88,
64], and their study may focus on control of material flows [138] measuring real-time de-
mand [221], or developing stabilisation strategies for a demand-driven supply network
[220]; epidemic models can use ordinary differential equations [29, 182, 50, 169, 228, 12],
Markov chains [4, 38, 39], or discrete-time systems [11, 206, 76, 227], and their study may
aim to find regions of stability for the disease-free equilibrium [211, 145, 230, 146, 224,
44]; differential equations can represent individual robot dynamics [181, 113, 13, 67],
and their collective study may seek to find synchronisation algorithms [33, 130, 141, 63].

This dissertation approaches the study of interconnected systems from two different
perspectives, reflected in the two parts of the manuscript. The first part studies the ro-
bust asymptotic stability of uncertain systems formed by the interconnection of linear
time-invariant (LTI), multiple-input-multiple-output (MIMO) subsystems [61, 60, 62].
This first body of work is at the core of classical control theory, both in terms of system
representation (LTI systems in the time and the frequency domain) and research interest
(robustness and stability conditions). Reflecting the fact that in real systems, knowledge
of the exact network topology and subsystem dynamics is rarely available, the provided
stability conditions do not require complete information about the system in terms of
both interconnection topology and subsystem parameters. Consequently, the main re-
sults of this first part are topology-independent robust stability conditions for uncertain
systems. Thanks to the generality of the considered class of models and to the topology-
independent and robust characteristics of the results, the conditions are very general
and can be applied in a wide range of fields.

The second part of the dissertation studies a very different class of interconnected
systems: agent-based opinion formation models [159, 57, 58, 59]. Here the subsys-
tems are individuals or agents that hold an opinion about a statement and communi-
cate among themselves. Because of this communication, each agent changes its opin-
ion according to some opinion update law. These systems are often highly nonlinear and
can be represented in continuous or discrete time by differential or difference equations
[179, 180, 159]. Given the nature of these types of models, their behaviour and our en-
suing research interest in them are very different from those related to models studied
in the first part of the manuscript. Social systems are not physical systems; no “univer-
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sal laws” accurately model people’s behaviour; individuals can be complicated, chaotic,
unpredictable, and unreasonable. There is no equivalent to Newton’s law to how people
behave. Accurately measuring people’s opinions, attitudes, values, influence, and per-
ception is nearly impossible and will never be standardised due to the subjective nature
of definitions. None of these concepts has units or unanimous ways of being measured.

Hence, the second part of the dissertation does not aim to find stability conditions
or mathematically prove properties of opinion formation models. Instead, it focuses
on characterising the models in terms of opinion transitions they can predict, possible
model outcomes, and their relation with real opinion evolution [57, 58, 59]. Despite
the lack of a unified framework to study and model opinions and the high number of
subjective assumptions we make when proposing models, making formal and insightful
statements about these models is possible. Which conditions are needed for a popula-
tion to achieve polarisation? How probable is it that opinions will remain constant in
a given time interval? How do opinions in real societies evolve? All these are essential
questions that can be approximately answered by studying agent-based opinion forma-
tion models and their qualitative behaviours, which are the subject of the second part of
this dissertation.

A common theme in Parts 1 and 2 is the motivation of “saying as much as possible,
with as little quantitative information as possible”. In Part 1, this is translated into pro-
viding stability conditions that do not depend on knowledge of the complete network
topology and subsystem parameters. In Part 2, this becomes giving probabilities that
the opinion of a population will evolve in a certain qualitative way given incomplete in-
formation about the agent opinions, parameters, and interconnections. In both cases,
this objective (and to some degree necessity, due to the reality of actual applications) of
providing answers in spite of incomplete information is both challenging and rewarding:
the amount of information or guarantees the results can provide is limited, while at the
same time being applicable to a broader range of realistic cases.

Because the interconnected systems considered in Parts 1, and 2 are so different,
each part is self-contained and can be read independently. The structure of the disserta-
tion is detailed in Section 1.2. Section 1.3 provides a summary of the main contributions
of each part, while Section 1.4 provides additional information on the data and code
availability to reproduce the results presented in this dissertation. Finally, Section 1.5
clarifies some possible misunderstandings caused by different terminology.

1.2. STRUCTURE OF THE DISSERTATION
Part 1 of the dissertation studies the interconnection of LTI MIMO systems. It is com-
posed of three chapters. Chapter 2 provides the preliminary information used in the
next two chapters, this includes a specific introduction to the subject and highlights the
main contributions. Chapters 3 and 4 study the interconnection of LTI MIMO systems
in the frequency and in the time domains, respectively. Because of the difference in rep-
resentation and analysis tools available for each domain, the precise model structure of
the studied systems is not exactly the same: in Chapter 3, the subsystems and their in-
terconnections have associated transfer function matrices [62, 60], whereas in Chapter
4, each subsystem has a different state-space representation and their interconnections
are matrices of the appropriate size [61]. Also, due to this different representation, the
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resulting conditions require different information on the subsystems and their intercon-
nection. Chapters 3 and 4 are independent and self-contained. To improve clarity, both
chapters have the same structure: main results are presented first, followed by examples,
proofs, and then conclusions.

Part 2 of the dissertation analyses agent-based opinion formation models and is also
composed of three chapters. Chapter 5 introduces the field of opinion formation mod-
elling, emphasises the viewpoint and focus of this dissertation, and presents some exist-
ing opinion formation models and notation. It is followed by Chapters 6 and 7. Unlike
Part 1, these chapters are sequential, as Chapter 6 introduces a novel methodology for
the analysis of agent-based opinion formation models [57, 59], exemplified in existing
models [45, 79, 110, 54, 55, 163], and Chapter 7 presents a new model [58], which is then
analysed with the methodology proposed in Chapter 6. This part also includes an ap-
pendix with details on the simulation process, which are not necessary to understand the
main results. The methodology presented in Chapter 6 is composed of four techniques:
Histogram Sorting Algorithm, Transition Tables, Agreement Plot, and Probabilistic Anal-
ysis. The chapter explains each of these techniques, their relation with one another and
their application to existing models in the literature. The model presented in Chapter
7 can be seen as building upon a classical opinion-based model: the Friedkin-Johnsen
model [78, 79]. It combines three well-known psychological traits, namely, conformism,
radicalism, and stubbornness. Simulation results presented in this chapter show that
the proposed model has the potential to mimic opinion evolutions seen in real societies.

Finally, Chapter 8 presents the conclusion of the dissertation.
The overall structure of the dissertation can be seen in Figure 1.1.

1.3. MAIN CONTRIBUTIONS
This section summarises the main contributions of the dissertation for both parts, each
preceded by the associated goal.

1.3.1. PART 1: ANALYSIS OF INTERCONNECTED MIMO SYSTEMS
Goal: provide stability conditions, for networks of interconnected LTI MIMO subsys-
tems, that do not depend on complete knowledge of the network topology or subsystem
dynamics.

Main results:

• Topology-independent sufficient condition for nominal stability in the frequency
domain (Theorem 5) [62].

• Topology-independent sufficient condition for robust stability in the presence of
homogeneous uncertainties in the frequency domain (Theorem 6) [62].

• Topology-independent sufficient condition for robust stability in the presence of
heterogeneous uncertainties in the frequency domain (Theorem 8) [60].

• Topology-independent necessary conditions for robust stability in the presence of
heterogeneous uncertainties in the time domain (Theorem 12 and Proposition 2)
[61].
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Figure 1.1: Structure of the dissertation: it is divided into two self-contained parts. Part 1 contains three chap-
ters which are also self-contained and partially sequential. Part 2 contains three sequential chapters.

• Topology-independent sufficient conditions for robust stability in the presence of
heterogeneous uncertainties in the time domain (Theorem 11 and Proposition 1)
[61].

1.3.2. PART 2: MODELLING AND ANALYSIS OF OPINION FORMATION DY-
NAMICS

Goal: explore the capability of agent-based opinion formation models to (i ) produce a
certain opinion evolution, and in particular characterise which qualitative opinion evo-
lutions can occur and under which circumstances; (i i ) look for global patterns of opin-
ion behaviours predicted by the models; and (i i i ) gain as much insight as possible into
opinion evolution when only limited information is available.

Main results:

• A Histogram-based Sorting Algorithm [57], which sorts opinion sets into five dif-
ferent qualitative classes: perfect consensus, consensus, polarisation, clustering,
and dissensus, based on formal definitions of each of these classes.

• Introduction of Transition Tables [57], which enable the high-level study of opin-
ion evolutions for different models, agent parameters, and initial opinions. Tran-
sition Tables allow the study and characterisation of opinion evolution in a real so-
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ciety and comparison with model predictions, pointing to possible model changes
to make them more accurate.

• The representation of opinion sets by the Agreement Plot [59], which provides a vi-
sual and intuitive representation of a set of opinions as a single point in the Carte-
sian plane. This, in turn, enables the characterisation of real opinions, model pre-
dictions and model outcomes.

• A Probabilistic Analysis [59] that provides information on opinion prediction and
evolution even when only incomplete information is available. This is especially
important in the context of opinion dynamics, where measurement and estima-
tion of model parameters are impossible or extremely challenging.

• A novel Classification-based opinion formation model [58], an agent-based model
that combines the psychological mechanisms of conformism, radicalism, and
stubbornness and accounts for the imperfect assessment of the opinions of
others. The resulting opinion formation model has the potential of reproducing
opinion evolution measured in real societies and producing a wide range of
opinion distributions.

1.4. DATA AND CODE AVAILABILITY
All data, scripts, and additional information to reproduce the results presented in this
dissertation can be found here:

https://giuliagiordano.dii.unitn.it/docs/DissertationCarlosAndres.zip
Or, in the 4TU Repository, with DOI
https://doi.org/10.4121/1fbd5ecd-d0af-4b77-a28a-0aca7b38f45f
The .zip file contains a file describing the code and how to obtain the presented results. The

scripts and datasets are separated in different folders.
The code used for the ternary plots is based on the scripts in [189] by Carl Sandrock. Some

scripts by David Holdaway [114] were used for the Probabilistic Analysis. All the code is written in
Matlab 2021.

1.5. TERMINOLOGY CLARIFICATION
In different sections of the dissertation, a variety of terminology is used to refer to similar concepts.
Here possible misunderstandings are clarified:

• The term ‘interconnected system’ refers to a system formed by subsystems that communi-
cate among themselves. It can refer to an abstract system, belonging to a general class as in
Part 1, or a more specific system related to a precise application, as in Part 2.

• The terms ‘digraph’ and ‘network’ are mainly used interchangeably and are assumed to have
the same meaning, which we formally provide in Chapters 2, and 5. This equivalence also
applies to ‘underlying digraph’ and ‘underlying network’.

• All graphs are assumed to be digraphs, so the terms ‘graph’ and ‘digraph’ are also used in-
terchangeably. The terms ‘interaction graph’ and ‘interaction digraph’ also have the same
meaning as ‘digraph’.

• Formally, the topology of a network or digraph refers to the way vertices are connected by
edges. A digraph can be signed, weighted and time-varying, whereas a topology is unsigned
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and unweighted and can be time-varying. The topology of a digraph is simply the digraph
obtained by setting all the weights to 1.

• When a network/graph is considered, the terms ‘node’ and ‘arc’ have the same meaning as
‘vertices’ and ‘edges’, respectively. The first ones are primarily used in Part 1, whereas the
second ones are mainly used in Part 2.

• In Part 2, the vertices are associated with agents that have an opinion. Because of this as-
sociation, the phrasing ‘the opinion of vertex i ’ should be read as ‘the opinion of the agent
associated with vertex i ’.

• In Part 2, the set of opinions of a population is called the opinion distribution. When it is
clear from context, this term is omitted and instead, this set of opinions is called the ‘agents’
opinions’ or the ‘opinion of the population’.

• In Part 2, to be consistent with the papers where the Backfire Effect and Biased Assimilation
(BEBA) model [45] and Classification-based (CB) model [58] were first proposed, the two
agent parameters entrenchment (for the BEBA model) and radical trait weight (for the CB
model) use the same letter (β). The two models are analysed separately (the BEBA model in
Chapter 6 and the CB model in Chapter 7), and from the context it is clear to which model
the statements refer.

• In some tables and numerical results the base 10 exponents are preceded by an e (this is
the notation used by Matlab, the program used throughout this dissertation). An example
of the equivalence between that notation and the scientific notation is 4.7e−14 instead of
4.7 ·10−14.
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BACKGROUND ON

INTERCONNECTED MIMO
SYSTEMS

So it begins.

King Théoden, Lord of the Rings: The Two Towers

This chapter introduces the state of the art, main contributions, and preliminary concepts related to
Part 1 of the dissertation, focused on the search for topology-independent robust stability conditions
for networked systems formed by the interconnection of uncertain LTI MIMO subsystems. Because
LTI systems can be represented both in the frequency and in the time domains, different conditions
can be stated for the robust stability of these networked systems, resulting from tools available in
each of the two domains. The frequency and time domain analyses are presented in Chapter 4 and
Chapter 5, respectively.

The resulting conditions can be applied to two classes of interconnected systems. The first class con-
siders systems, represented in the frequency domain, where both the nodes and arcs have internal
dynamics, which are respectively identical for all the nodes and all arcs. For the second class, cor-
responding to systems represented in the time domain, the dynamics are present only in the nodes
(this is not restrictive, since arc dynamics can be absorbed by node dynamics); however, they are not
constrained to be identical and not even to have the same number of inputs and outputs.

Regarding topology information, some of the conditions depend only on the maximum connectivity
degree of the network, resulting in stability conditions that can be evaluated locally. Other condi-
tions depend on bounds of the eigenvalues of the Laplacian matrix, which for many types of topolo-

Parts of this chapter have been published in the papers “Topology-independent robust stability for networks
of homogeneous MIMO systems" (2020) [62], “Topology-independent robust stability conditions for uncertain
MIMO networks" (2021) [61], and “MIMO networks with heterogeneous uncertainties: topology-independent
robust stability and α-convergence" (2021) [60] by Carlos Andrés Devia and Giulia Giordano.

11
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gies are known. As a result, the provided conditions are topology-independent and also independent
of the number of nodes or arcs.

The fact that the provided stability conditions account for subsystem uncertainties and depend only
on partial network information makes them very versatile and amenable to be used in a wide variety
of fields. As an example of this versatility, we present a suspension bridge application in Chapter 4
and a cancer therapy application in Chapter 5.
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2.1. INTRODUCTION
Large-scale networks formed by the interconnection of interacting dynamical subsystems can be
found in a wide variety of fields, including smart-grids [223], opinion dynamics [10], biological
systems, pharmacokinetics, epidemiology [118, 34, 103, 115], and multi-agent systems where we
wish to enforce control [158, 32, 150], estimation [91, 207], consensus [172], or synchronisation
[204].

As with any dynamic system, stability is a fundamental property of interest. Assessing it by ex-
ploiting the network structure of the overall system gives rise to the question: under which condi-
tions does the connection of the individual subsystems guarantee the stability of the whole network?
Furthermore, it is common that the exact parameter values of the subsystems are unknown, as
is the complete network topology. Therefore, it is crucial that the answer to this question does
not depend on knowledge of the complete topology and that it also considers parameter uncer-
tainty. This can be done by providing topology-independent conditions for the robust stability
of interconnected systems, which is the problem addressed in Part 1 of the dissertation.

For interconnections of SISO (single-input and single-output) LTI (linear time invariant) sys-
tems, robust stability conditions are provided in [127] and [123] for particular topologies; in [102,
104] and [115] in the generalised frequency variable framework; and in [143] using the multivari-
able Nyquist criterion proposed in [56] and the concept of S-hull. This type of conditions is fur-
ther refined in [176], including a partial extension to interconnections of multiple-input-multiple-
output (MIMO) systems.

The MIMO case is fully addressed in [129, 8] using Integral Quadratic Constraints, also used in
[175] for control design: these conditions are scalable because, to ensure stability of the whole net-
work, it is enough to satisfy a local condition at each node. In [87] the MIMO case is also addressed
in the frequency-domain.

Also an approach based on the generalised frequency variable, proposed in [107], was used
to obtain necessary and sufficient stability conditions for networks of homogeneous MIMO LTI
systems in [103], where the robustness analysis encompasses heterogeneous systems of almost
equal agents for specific topologies.

The above approaches either require the knowledge of the network topology, which is typi-
cally not available for complex and large-scale networks, or don’t consider uncertainty. Topology-
independent sufficient conditions and necessary conditions for robust stability of dynamic net-
works with both dynamic nodes and dynamic interconnections [170] are considered in [31, 30] for
the SISO case: topology-independent robust stability conditions in the frequency domain are ob-
tained for nominally homogeneous node and arc dynamics, with homogeneous or heterogeneous
uncertainties. These conditions are based on Nyquist-type arguments.

In this first part of the dissertation, the robust stability of families of interconnected uncertain
MIMO LTI systems is studied both in the frequency and in the time domain (Chapters 3 and 4
respectively). We provide topology-independent necessary conditions and sufficient conditions
that guarantee robust stability for this type of interconnected systems.

In this first background chapter we comment on the context and importance of the presented
results, then preliminary results and notation are presented. Chapters 3 and 4 have identical struc-
ture, namely, first constructing the main results, then providing examples, followed by proofs, and
finally conclusions.

2.1.1. FAMILIES OF NETWORKED SYSTEMS AND UNCERTAINTIES
All the results of this first part are stated in terms of families of networked systems, which are
defined as follows:

Definition 1 (Family of networked systems). A family N of networked systems is a collection of
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LTI systems formed by the interconnection of LTI subsystems according to a network structure. The
generic system in the family has an underlying graph structure G = {N ,A}, where each node in N ,
labelled with an integer number in the set {1, . . . , N } is associated with a LTI MIMO system and each
arc in A, labelled with an integer number in the set {1, . . . , M }, is associated with a LTI MIMO system
or an interconnection matrix.

Definition 1 encompasses a wide variety of systems, mainly because it does not make any as-
sumptions about the individual subsystems or the network topology. Thus, it may refer to any
number of possibly different and unstable LTI subsystems connected in any possible configura-
tion. The results presented in this dissertation focus on two specific classes of networked systems:

1. Networks with identical dynamic nodes and identical dynamic arcs: For this class of net-
worked systems, all nodes and all arcs have the same dynamics. This characterisation could
apply, for instance, to a network of identical sensors that communicate among themselves
to estimate spatially-distributed variables. In that example, the nodes would be the sen-
sors, which are assumed to be identical, and the arcs, the communication channels, which
also are assumed to be identical. Another example is the coordinated movement of identi-
cal agents, like robots. In this case, all the nodes are identical robots, and the arcs are the
communication channels. A final example is the modelling of spatially distributed systems
via discretisation; for instance, a bridge can be modelled as the interconnection of many
identical ‘bridge sections’ represented by simpler lumped dynamics.

2. Networks with different dynamic nodes and static arcs: For this class of networked sys-
tems, all the nodes can represent possibly different dynamics and all arcs different static
interconnections between nodes. This characterisation could apply, for instance, to con-
nected population subsystems, in which each node has dynamics corresponding to pop-
ulations in different environments, or to flow networks in which the buffers in the nodes
have different geometry and, therefore, different dynamics.

The second class of networked systems is more general than the first, as every system in the
first class also belongs to the second class: one simply needs to represent the arc dynamics as
another type of node dynamics, which is allowed since, for systems in the second class, the node
dynamics are allowed to be different. However, the distinction is relevant since systems belonging
to the first class have a representation that allows for more analysis tools to be used.

Even though Definition 1 does not refer to subsystem properties, an assumption that is made
for all results presented in Part 1 is the stability of the individual subsystems. This is because, al-
though the interconnection of unstable subsystems may produce a stable system, the intention of
providing topology-independent conditions implicitly implies that the empty graph (that is, iso-
lated nodes) is a possibility, and stability for this type of systems requires stability of the individual
subsystems.

The first class of networked systems (networks where all the nodes have identical dynamics
and all the arcs have identical dynamics) is analysed in the frequency domain, and the second
(networks with heterogeneous dynamic nodes and static arcs) in the time domain. Each class of
networked systems is associated with a different form of subsystem uncertainties: additive dy-
namic uncertainties in the frequency domain and additive parametric uncertainties in the time
domain.

Additive dynamic uncertainties occur when unmodelled dynamics are present in the subsys-
tems; a simple example is the parasitic capacitance in electronic circuits. Additive parametric un-
certainties are caused by the tolerance in the value of real-life elements that form parts of a system;
a simple example is the tolerance of resistance values in electronic circuits. These two forms of un-
certainty are present in every real-life system. The degree to which they may be relevant depends
on the nature of the system itself.
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For dynamic uncertainties, we consider two cases: homogeneous uncertainties (the same for
all nodes and for all arcs) and heterogeneous uncertainties (potentially different for each node and
for each arc). Although the case of heterogeneous uncertainties is more general and includes as a
particular case homogeneous uncertainties, the stability condition for systems with homogenous
uncertainties is easier to check, making it a valuable option when the subsystems are such that all
the node uncertainties and all the arc uncertainties can be assumed to be identical. For paramet-
ric uncertainties, only the heterogenous case is considered, and the ensuing results can also be
applied when the uncertainties are homogeneous.

The existence of dynamic and parametric uncertainties is the main reason why families of sys-
tems are considered. Imagine a connection of electronic circuits. By itself, it is a single intercon-
nected system. However, suppose the value of a single component is not known precisely but lies
in a given interval. In that case, each of the values in that interval corresponds to a slightly different
system. The collection of all these possible systems, caused by all the values a single component
can have, generates in itself a family of systems. The same happens with dynamic uncertainties:
all the possible unmodelled dynamics that each subsystem has creates a family of systems. When
stability is proven to hold for every member of the family created by uncertainties (whether dy-
namical or parametric), it is said that the family is robustly stable. If at least one family member is
unstable, then we cannot say that the family is stable.

2.1.2. STABILITY CONDITIONS
There are three types of stability conditions for families of systems: necessary conditions, suf-
ficient conditions, and necessary and sufficient conditions. When a family of systems meets
necessary stability conditions, it does not mean that every element of the family is stable, but
when it does not meet the necessary stability conditions, then at least one member of the family
is guaranteed to be unstable (See Figure 2.1a). When a family of systems meets sufficient stability
conditions, it means that every member of the family is guaranteed to be stable, while if it does
not meet the sufficient conditions, it does not mean that there are unstable elements in the family
(See Figure 2.1b). Finally, if a family of systems meets necessary and sufficient stability conditions,
it means that every member is stable; if it does not meet the condition, it means that the family
contains at least one unstable element (See Figure 2.1c).

Both necessary conditions and sufficient conditions are said to be conservative when there
are families of systems that have the corresponding property but that cannot be guaranteed by the
condition. Necessary conditions are conservative if there exist families of systems that meet the
condition but contain unstable members (therefore, the condition is not precise enough to ‘detect’
the unstable members). Analogously, sufficient conditions are said to be conservative if there exist
families of systems that do not meet the condition but still all the elements are stable (therefore,
the condition is not precise enough to ‘detect’ that indeed all members are stable). Conservative-
ness can be thought of as ‘asking more than strictly required to guarantee an outcome’.

The less conservative a condition is, the more information it provides on the family of sys-
tems. In the limit of zero conservativeness, necessary conditions and sufficient conditions be-
come necessary and sufficient conditions. If a necessary condition is not conservative at all, it
means that there are no family of systems that meet the condition and contain unstable members,
which means that it is also a sufficient condition. On the other hand, a sufficient condition that is
not conservative at all means that there are no families of systems that do not meet the condition
and still contain only stable members; therefore, it is also a necessary condition.

Based on frequency and time domain analysis the main contributions of Part 1 in the form of
necessary conditions and sufficient conditions for robust stability are:

• Topology-independent sufficient condition for nominal stability in the frequency domain
(Theorem 5).
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(a) Representation of a necessary sta-
bility condition. All families that do
not meet the condition contain at least
one unstable member, but there may be
families that meet the condition and in-
clude unstable members (like the green
dot). The level of conservativeness is
proportional to the blue area under the
yellow area.

(b) Representation of a sufficient stabil-
ity condition. All families that meet the
condition are stable, but there may be
families that do not meet the condition
and are also stable (like the green dot).
The level of conservativeness is propor-
tional to the orange area outside the
purple area.

(c) Representation of a necessary and
sufficient condition. All families that
meet the condition are stable. All fam-
ilies that do not meet the condition in-
clude unstable members. A necessary
and sufficient condition is non conser-
vative.

Figure 2.1: Visual representation of necessary conditions, sufficient conditions and necessary and sufficient
conditions. In the diagrams, the blue area contains all families of systems, the orange area the families of
stable systems (all their members are stable), the yellow area contains families that meet a necessary stability
condition, the purple area contains families meeting a sufficient stability condition, and the green area contains
families that meet a necessary and sufficient stability condition.

• Topology-independent sufficient condition for robust stability in the presence of homoge-
neous uncertainties in the frequency domain (Theorem 6).

• Topology-independent sufficient condition for robust stability in the presence of heteroge-
neous uncertainties in the frequency domain (Theorem 8).

• Topology-independent necessary conditions for robust stability in the presence of hetero-
geneous uncertainties in the time domain (Theorem 12 and Proposition 2).

• Topology-independent sufficient conditions for robust stability in the presence of hetero-
geneous uncertainties in the time domain (Theorem 11 and Proposition 1).

All of the conditions provided in the frequency domain are sufficient with varying degrees
of conservativeness. In the time domain, we present two necessary and two sufficient conditions.
The degree of the conservativeness of these necessary conditions and sufficient conditions is mea-
sured by a single parameter χ ≥ 1. We show that when χ = 1, these four conditions become two
necessary and sufficient conditions. This happens for the interconnection of diagonal systems.
For systems where χ> 1, we provide a result on the minimal χ to minimise the level of conserva-
tiveness.

The provided conditions are said to be topology-independent in the sense that they do not
require complete information on the network topology. In many cases, the only information re-
quired about the network is the maximum connectivity degree, i.e., the maximum number of
nodes connected to a single node in the network. This is of particular importance because the
degree of a node can be computed locally, therefore if a bound on the maximum connectivity de-
gree is set (to meet a specific stability condition), nodes can be added or removed from the network
while ensuring that the bound is met by simply using local information. The fact that the required
topology information is the maximum connectivity degree not only allows for conditions that can
be checked locally but also for complete scalability: the conditions and the way to check them do
not depend on the number of nodes in the network.
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All the provided conditions are in the form of inequalities. These inequalities depend on sub-
system dynamics and the network topology. For all the main results, except for Theorem 8, the
maximum connectivity degree is the only information required for the interconnection network.
This means that except for Theorem 8, all the conditions can be checked locally without addi-
tional constraints. For Theorem 8, an upper bound on the maximum eigenvalue of the Laplacian
matrix is needed. For an arbitrary topology, this may be challenging. However, these bounds can
be found in the literature for a variety of well-known and well-studied topologies. In a way, this
additional constraint makes Theorem 8 less topology-independent. Nevertheless, the condition
does not explicitly require knowledge of the complete topology, and if a bound can be found (even
if it is conservative), the condition is still topology-independent.

From the main results, we derive additional conditions. These conditions are generally more
conservative but easier to check, which may be helpful in specific applications. Another additional
result obtained in the frequency domain is that of topology-independentα-convergence. A system
is α-convergent if it is stable and its spectral abscissa (i.e., the maximum real part of the eigenval-
ues) is smaller than −α, with α > 0 real. In practice, this means that the system converges with
a minimum guaranteed speed. This result can be valuable in some applications where not only
system stability is required, but also fast enough convergence is essential (for instance, in a car
suspension).

2.2. NOTATION AND PRELIMINARIES
A directed graph (digraph) with N nodes and M arcs is represented by the pair G = {N ,A}, where
the set of nodes N is indexed by the set {1, . . . , N } and A ⊂N ×N is the arc set, with |A| = M and
A indexed by the set {1, . . . , M }. The element (i , j ) ∈ A denotes an arc that leaves node i and enters
node j . Two nodes are assumed to be connected by at most one directed arc (meaning, that the
set A does not contain repeated elements). Each node i ∈ {1, . . . , N } has an outward (respectively,
inward) connectivity degree δout

i (resp. δin
i ), defined as the number of arcs that leave (resp. enter)

the node.

The maximum outward (respectively, inward) connectivity degree of the digraph is

Dout = max
i∈N

(
δout

i

)
Din = max

i∈N
(
δin

i

)
A bidirectional graph is a directed graph with the property that if (i , j ) ∈ A, then ( j , i ) ∈ A.

For this type of graphs the outward and inward connectivity degrees of every node are the same,
therefore simply called the connectivity degree of the node δi , and the maximum connectivity
degree is defined as

D= max
i

(
di

)
A path from node i to node j is a sequence of nodes i = i0, i1, . . . , i` = j such that (ih−1, ih ) ∈ A

for h = 1, . . . ,`. The graph is strongly connected if each pair of nodes is connected by a path. It
is weakly connected if the associated bidirectional graph, where the presence of arc (i , j ) implies
the presence of arc ( j , i ) (namely, each existing arc can be crossed in both directions), is strongly
connected.

Let X ∈ {−1,0,1}N×M denote the generalised node-arc incidence matrix defined as

[X ]i h =


1, if arc h enters node i ,

−1, if arc h leaves node i ,

0, otherwise,
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For bidirectional graphs, the generalised Laplacian matrix of the graph is1 L = X X> [91]. Its
diagonal entries are Li i = di , for i = 1, . . . , N , while its off-diagonal entries Li j , i 6= j , take the value
−1 if there is an arc either from node i to node j or from node j to node i , and 0 otherwise. Matrix
L is symmetric, hence its eigenvalues {γk }N

k=1 are real, and it can be diagonalised by an unitary
matrix W :

W −1LW = diag
(
γk

)N
k=1.

By the Gershgorin circle theorem [89], the real eigenvalues of L are located inside a circle of
radius D with centre in (D,0), since D is the maximum element along the diagonal of L. Hence,

σ(L) = {
γk

}N
k=1 ⊂ {z ∈R : 0 ≤ z ≤ 2D}. (2.1)

The p-th norm of matrix A is

‖A‖p = sup
v 6=0

‖Av‖p

‖v‖p

and ⊗ is the Kronecker product of matrices. If p = 2, the subscript is omitted in the matrix
norm for simplicity.

For the 2-norm it holds that

‖A‖ = sup
v 6=0

‖Av‖
‖v‖ =

√
λmax (A>A),

where λmax (S) denotes the largest eigenvalue of a symmetric matrix S, and

‖A⊗Y ‖ = ‖A‖‖Y ‖ and ‖AY ‖ ≤ ‖A‖‖Y ‖, (2.2)

as discussed in [136]. Also, ‖A‖ = ‖A>‖.

This implies for the Laplacian matrix L that

‖L‖ ≤ ‖X ‖‖X>‖ ≤ 2D, (2.3)

since ‖X ‖ = ‖X>‖ =
√
λmax (L) ≤p

2D.
The spectrum of a square matrix Y is denoted byσ(Y ) and its condition number [25] is defined

as

Kp (Y ) = ‖Y ‖p‖Y −1‖p .

Also for the condition number, we omit the subscript when p = 2. For unitary matrices, the
condition number is one; therefore if W is a matrix that diagonalises the Laplacian matrix of a
bidirectional graph, then K(W ) = 1.

The n ×n identity matrix is denoted In .
We now consider the 1-norm and the ∞-norm, defined as

‖X ‖1 = max
1≤ j≤m

n∑
i=1

|Xi j | ‖X ‖∞ = max
1≤i≤n

m∑
j=1

|Xi j |,

for a matrix X ∈Cn×m .

1This is a slightly different meaning from the one found in other works in the literature, such as [20], where
generalised Laplacian matrix (sometimes also called the grounded Laplacian matrix) refers to a Laplacian
matrix where one row and corresponding column have been removed, to represent a reference (or ground)
node.



2.2. NOTATION AND PRELIMINARIES

2

19

Theorem 1 (Properties of 1-norm and ∞-norm [136]). Given complex matrices A and B of com-
patible dimensions, ‖AB‖∗ ≤ ‖A‖∗‖B‖∗ and ‖A ⊗B‖∗ = ‖A‖∗‖B‖∗, where the subscript ∗ denotes
either always 1 or always ∞.

Lemma 1 (Norm of block-diagonal matrices). The complex block-diagonal matrix X =
diag(Xk )K

k=1 has norm ‖X ‖∗ = maxk=1,...,K {‖Xk‖∗}, where the subscript ∗ denotes either always 1
or always ∞.

We denote by H the space of stable, linear, time invariant and continuous-time transfer
functions and by Hq×m the space of q ×m matrices with entries in H.

Given a set S, the set ζ(S) is defined as

ζ(S) =
{

s : −1

s
∈S

}
.

Finally, we need a bound for the eigenvalues of uncertain matrices, which is provided by the
Bauer-Fike theorem.

Theorem 2 (Bauer-Fike theorem[22]). Consider the two matrices A, M ∈ Rn×n , with A diagonal-
isable, that is, V −1 AV = diag(λ1, ...,λn ) for some V ∈ Cn×n and λ1, . . . ,λn ∈ C. For every (complex)
eigenvalue β of A+M, there exists an index i ∈ {1, . . . ,n} such that |β−λi | ≤Kp (V )‖M‖p .

With these preliminaries, we are now ready to present the main results of Part 1.





3
FREQUENCY DOMAIN ANALYSIS

Sometimes, life is like this dark tunnel. You can’t always see the light at the end of the tunnel,
but if you just keep moving, you will come to a better place.

Uncle Iroh, Avatar: The Last Airbender, Season 2, Episode 20: The Crossroads of Destiny

This chapter considers network systems where the node dynamics are described by identical LTI
MIMO subsystems with transfer-function matrix F (s), while the dynamic interactions associated
with the bidirectional arcs are described by identical LTI MIMO subsystems with transfer-function
matrix G(s); the dynamics of the individual nodes and arcs are affected by either homogeneous or
heterogeneous, norm-bounded uncertainties. We provide a topology-independent condition for the
robust stability of all possible network systems with a maximum connectivity degree, regardless of
their size and interconnection structure. We also give a topology-independent condition that ro-
bustly guarantees not only stability, but alsoα-convergence (i.e. all poles having real part less than a
negative −α). The proposed frequency-domain conditions are scalable and can be evaluated locally,
also for large-scale networks where nodes and arcs can be added or removed in real time. Multiple
examples showcase the proposed conditions, including an application of robust α-convergence to a
suspension bridge system of arbitrary size.

This chapter is based on the papers “Topology-independent robust stability for networks of homogeneous MIMO
systems" (2020) [62], and “MIMO networks with heterogeneous uncertainties: topology-independent robust sta-
bility and α-convergence" (2021) [60] by Carlos Andrés Devia and Giulia Giordano.

21



3

22 3. FREQUENCY DOMAIN ANALYSIS

All the results in this chapter (and the next one) are related to the concept of Family of net-
worked systems, whose definition is recalled below. All the networks in this chapter are assumed to
have identical node dynamics F (s), identical arc dynamics G(s), and be affected by norm bounded
uncertainties in the frequency domain. Given that in this chapter all the systems are represented
as transfer function matrices, the main tools used to prove the robust stability conditions will be
the Nyquist stability criterion, algebraic properties of the Laplacian matrix, and the Bauer-Fike
theorem [22]. To improve the readability of the chapter, first the main results are stated, followed
by application examples, proofs, and the conclusions.

Definition 1 (Family of networked systems). A family N of networked systems is a collection of
LTI systems formed by the interconnection of LTI subsystems according to a network structure. The
generic system in the family has an underlying graph structure G = {N ,A}, where each node in N ,
labelled with an integer number in the set {1, . . . , N } is associated with a LTI MIMO system and each
arc in A, labelled with an integer number in the set {1, . . . , M }, is associated with a LTI MIMO system
or an interconnection matrix.

3.1. MAIN RESULTS
We start with some basic assumptions to formally define the type of families considered in this
chapter.

Assumption 1. For each system in the family of networked systems N , the underlying graph is
bidirectional with Laplacian L and has maximum connectivity degree D.

Assumption 2. For all elements in the family N , each node in N (resp. arc in A) is associated
with a stable MIMO linear subsystem represented by the transfer-function matrix F (s) ∈Hr×n (resp.
G(s) ∈Hn×r ), which describes its nominal dynamics (n and r are the number of inputs of the nodes
and arcs respectively). Furthermore, the generic i -th node (resp. h-th arc) dynamics is affected by
the uncertainty ∆Fi (s) ∈Hr×n , i ∈ {1, . . . , N } (resp. ∆Gh

(s) ∈Hn×r , h ∈ {1, . . . , M }).

Theorem 3. Under Assumption 2, a generic element in the family of networked systems N has the
following characteristic polynomial:

p(s) = det
(
IN r +L⊗H(s)+D(s)

)
, (3.1)

where L = X X> is the Laplacian matrix, H(s) = F (s)G(s) and

D= (X ⊗F )DG (X>⊗ Ir )+DF (X ⊗ In )DG (X>⊗ Ir )+DF (X X>⊗G). (3.2)

If all the node and arc uncertainties are homogeneous, i.e. ∆Fi (s) = ∆F (s) for all i ∈ N , and
∆Gh

(s) =∆G (s) for all h ∈ A, then the characteristic polynomial becomes:

p(s) = det
(
IN r +L⊗ (H(s)+∆H (s))

)
, (3.3)

where
∆H (s) = F (s)∆G (s)+∆F (s)G(s)+∆F (s)∆G (s). (3.4)

Finally, if there is no uncertainty the characteristic polynomial becomes

p(s) = det
(
IN r +L⊗H(s)

)
. (3.5)

Assumption 3. The transfer-function matrix H(s) = F (s)G(s) does not have poles in the closed right
half plane.



3.1. MAIN RESULTS

3

23

The eigenvalues of H(s), σ(H(s)) = {λi (s)}r
i=1, are not rational transfer functions: they are not

a quotient of polynomials in s. In general, they are complex functions of the variable s. Therefore,
the poles of λi (s) are not the roots of a polynomial but the set of complex numbers p̃ ∈C such that
λ−1

i (p̃) = 0. We have the following result.

Theorem 4. Consider the transfer-function matrix H(s) ∈ Hr×r and its eigenvalues {λi (s)}. Let
p̃ ∈C be a pole of the complex function λi (s), for some i ∈ {1, . . . ,r }. Then, p̃ is a pole of the transfer-
function matrix H(s).

Remark 1. In view of Theorem 4, if Assumption 3 is satisfied, then the complex functions λi (s) are
stable: there exists some ε< 0 such that, for every pole p̃ of λi (s), Re(p̃) ≤ ε< 0. In fact, we can pick ε
as the largest real part of all the poles of H(s), which must be strictly negative in view of Assumption
3. This is the condition we will exploit in the following results.
Computing the poles of the transfer-function matrix H(s), which are the roots of the denominator
polynomial, is much easier than computing the poles of the generic complex functions λi (s). The
results presented in this chapter do not require to analytically compute the functions λi (s), nor
their poles.

Lemma 2. Consider the scalar complex function h(s) = h̄(s)+δh (s), where the nominal function
h̄(s) is stable and δh (s) is an uncertainty bounded as |δh ( jω)| ≤ δmax

h (ω), where δmax
h (ω) is an

assigned real weighting function. Consider also the scalar coefficient µ ∈ σ(LD), where LD is a
Laplacian matrix with maximum connectivity degree D. Then, the feedback complex function
hfeed(s) = µh(s)(1+µh(s))−1 is robustly stable for all µ ∈ σ(LD) and for all possible realisations
of the uncertainty if, for all ω ∈R+,

min
ρ≤−(2D)−1

|h̄( jω)−ρ| > δmax
h (ω). (3.6)

Lemma 2 will be the foundation upon which the first results will be derived. The basic idea will
be to transform the MIMO systems so that the subsystems are decoupled and we can then apply
Lemma 2.

3.1.1. TOPOLOGY-INDEPENDENT NOMINAL STABILITY
In this section we provide a topology-independent condition for the stability of the nominal mem-
bers of a family (namely, in the absence of uncertainty on the dynamics). First it is necessary to
formally define what a nominal member of a family is.

Definition 2 (Nominal networked system). An element in the family of networked systems N , un-
der Assumption 2, is a nominal networked system if ∆Fi (s) = 0 for all i ∈ {1, . . . , N } and ∆Gh

(s) = 0
for all h ∈ {1, . . . , M }.

By Definition 2 a nominal system is a member of a family of networked systems whose dynam-
ics are not affected by uncertainty.

Theorem 5. Consider the family of networked systems N , under Assumptions 1, 2, and 3. Then,
stability is ensured for all the nominal network systems in N if, for all i ∈ {1, . . . ,r } and ω ∈R+,

min
ρ≤−(2D)−1

|λi ( jω)−ρ| > 0 where σ(H(s)) = {λi (s)}r
i=1. (3.7)

Condition (3.7) can be checked locally, regardless of the network size and topology, and guar-
antees the stability of the whole dynamic network also if new nodes and arcs are added or removed,
as long as the maximum connectivity degree isD. This ensures robustness to online modifications,
and scalability.
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Definition 3 (Family of nominally stable networked systems). A family of nominally stable net-
worked systems is a family of networked systems N where all the nominal networked systems as per
Definition 2 are stable.

Note that Definition 3 does not require that every element in the family is stable. Theorem 5
provides a way to guarantee that a give familyN is a family of nominally stable networked systems.

The results to guarantee stability of every member in a family of networked systems, including
those affected by uncertainties, are built upon Definition 3. This means that stability of all the
nominal members of a family will be a requisite for stability of all the other members of the family.
First, in Section 3.1.2 the case of homogeneous uncertainties will be considered, followed by the
case of heterogeneous uncertainties in Section 3.1.3.

3.1.2. TOPOLOGY-INDEPENDENT ROBUST STABILITY WITH HOMOGENEOUS

UNCERTAINTIES
We start by assuming that the transfer function matrix H(s) can be diagonalised (which is true for
important classes of systems, as pointed out in Remark 2 below) and that the uncertainties are
homogeneous.

Assumption 4. The transfer-function matrix H(s) = F (s)G(s), with eigenvalues σ(H(s)) =
{λi (s)}r

i=1, can be diagonalised by the change-of-basis matrix V (s), so that

V (s)−1H(s)V (s) = diag(λ1(s), ...,λr (s)).

Remark 2. For the important classes of MISO and SIMO systems, Assumption 4 is automatically
satisfied. In fact, if F (s) is a row vector and G(s) is a column vector, then H(s) is a scalar function; if
F (s) is a column vector and G(s) is a row vector, then H(s) is a rank-one matrix, hence it is diago-
nalisable.

Assumption 5. Both node and arc uncertainties are homogeneous, i.e. ∆Fi (s) = ∆F (s) for all i ∈
{1, . . . , N }, and ∆Gh

(s) =∆G (s) for all h ∈ {1, . . . ,r }, and they satisfy the bound ‖∆H ( jω)‖ ≤∆max
H (ω),

where

∆H (s) = F (s)∆G (s)+∆F (s)G(s)+∆F (s)∆G (s). (3.8)

We can now state the main result of this section.

Theorem 6. Consider the family of nominally stable networked systems N , under Assumptions 1,
2, 3, 4, and 5. Then, stability is ensured for all networks in N if, for all i ∈ {1, . . . ,r } and ω ∈R+,

min
ρ≤−(2D)−1

|λi ( jω)−ρ| >K(V ( jω))∆max
H (ω). (3.9)

where K(X ) = ‖X ‖ ‖X−1‖ is the condition number of matrix X .

Condition (3.9) for robust stability is scalable, because it can be checked locally and it is size-
and topology-independent. It allows stability-preserving plug-and-play modifications [26, 184] to
the network as long as the maximum connectivity degree remains D, which can be checked only
by the newly added nodes or arcs.

Some conservativeness is introduced by the Bauer-Fike theorem [22], on which the proof of
the result relies (see Section 3.3.6 for the proof).

Let us now consider a suitable upper bound φ(ω) for the spectral radius of H( jω),

|λi ( jω)| ≤φ(ω) for all i , forω ∈R+, (3.10)
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and a suitable upper bound ξ(ω) for the condition number K(V ( jω)),

K(V ( jω)) ≤ ξ(ω) forω ∈R+. (3.11)

Bounds of these types have been well studied in the literature; for instance, [46] presents a com-
prehensive survey on bounds for condition numbers.

Then, a more conservative sufficient condition, which however allows to assess robust
topology-independent stability without the need of computing the eigenvalues and eigenvectors
of H(s), is the following.

Corollary 1. Consider the family of nominally stable networked systems N , under Assumptions 1,
2, 3, 4, and 5. Then, stability is ensured for all networks networks in N if

C+M< (2D)−1, (3.12)

with

C= sup
ω∈R+

{
φ(ω)

}
,

where φ(ω) is the bound in (3.10), and

M= sup
ω∈R+

{
ξ(ω)∆max

H (ω)
}
,

where ξ(ω) is the bound in (3.11) and ‖∆H ( jω)‖ ≤∆max
H (ω).

Corollary 2. Consider the family of nominally stable networked systems N , under Assumptions 1,
2, 3, 4, and 5. Then, stability is ensured for all networks in N if each node i satisfies di <T, where

T = 1

2( C+M)
, (3.13)

and C and M are defined as in Corollary 1.

Corollary 2 gives fully local sufficient conditions for robust stability, which are independent
of the network size and topology and do not even rely on the shared knowledge of the maximum
connectivity degree. As long as each node satisfies the local condition, new arcs and nodes can be
added, or removed, and the overall networked system remains stable. Furthermore two separate
stable dynamic networks can be connected and, as long as all the connecting nodes satisfy the
local condition, the resulting dynamic network is stable.

Remark 3. The conditions in Theorems 5 and 6 allow us to verify if, given a maximum connectivity
degree D, we have topology-independent stability for all networks with node dynamics F (s) and arc
dynamics G(s), possibly in the presence of homogeneous bounded uncertainties. The conditions in
Corollaries 1 and 2 can be alternatively interpreted as providing the largest D such that all networks
with maximum connectivity degree D, node dynamics F (s) and arc dynamics G(s) are guaranteed
to be (robustly) stable.

3.1.3. TOPOLOGY-INDEPENDENT ROBUST STABILITY WITH HETEROGE-
NEOUS UNCERTAINTIES

When considering the case of heterogeneous uncertainties, we start by assuming that the uncer-
tainties are bounded.
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Assumption 6. The nominal node and arc transfer function matrices never vanish, i.e. ‖F ( jω)‖ 6= 0
and ‖G( jω)‖ 6= 0 ∀ω ∈R+, and node and arc uncertainties are bounded as

‖DF ( jω)‖
‖F ( jω)‖ ≤ KF ( jω) and

‖DG ( jω)‖
‖G( jω)‖ ≤ KG ( jω),

where DF = diag(∆Fi )N
i=1 and DG = diag(∆Gh

)M
h=1. Equivalently, since ‖diag(Xi )‖ = maxi ‖Xi ‖, we

can assume the local uncertainty bounds

‖∆Fi ( jω)‖
‖F ( jω)‖ ≤ KF ( jω) ∀i ∈ {1, . . . , N },

‖∆Gh
( jω)‖

‖G( jω)‖ ≤ KG ( jω) ∀h ∈ {1, . . . , M }.

With the uncertainties bounded by Assumption 6 we can state the first result of this section.

Theorem 7. Consider the family of nominally stable networked systems N , under Assumptions 1,
2, 3, 4, and 6. Then, all systems in N are robustly stable if the inequality

|γkλi ( jω)+1| > 2Dζ(F,G)K ( jω) (3.14)

holds for all k ∈ {1, . . . , N }, for all i ∈ {1, . . . ,r }, and for allω ∈R+, where {λi (s)}r
i=1 are the eigenvalues

of H(s), γk are the eigenvalues of the corresponding Laplacian matrix, and

ζ(F,G) =K(V ( jω))‖F ( jω)‖ ‖G( jω)‖, (3.15)

K ( jω) = KF ( jω)+KG ( jω)+KF ( jω)KG ( jω). (3.16)

The condition (3.14) in Theorem 7 can be easily checked numerically. However, it is topology-
dependent: complete knowledge of the network is required to compute the Laplacian eigenvalues
γk . The result can be refined, yielding a topology-independent condition.

Theorem 8. Consider the family of nominally stable networked systems N , under Assumptions 1,
2, 3, 4, and 6. Then, topology-independent stability is robustly guaranteed for every element in N
if the inequality

min
i∈{1,...,r }

{φi ( jω)} > 2Dζ(F,G)K ( jω) (3.17)

holds for all ω ∈R+, where

φi ( jω) =


1 if 0 ≤ Re(λi ( jω)),
|Im(λi ( jω))|
|λi ( jω)| if −ρ|λi ( jω)|2 ≤ Re(λi ( jω)) < 0,

|ρλi ( jω)+1| if Re(λi ( jω)) <−ρ|λi ( jω)|2,

(3.18)

ρ is an upper bound for the maximum eigenvalue of the Laplacian matrix, ζ(F,G) is defined as in
(3.15) and K ( jω) is defined as in (3.16).

Theorem 8 avoids the need of computing the eigenvalues of the Laplacian matrix and pro-
vides a topology-independent condition: all the required information about the topology is the
maximum connectivity degree D and an upper bound ρ for the maximum Laplacian eigenvalue.
The general upper bound provided in (2.1) is ρ = 2D, but for many common topologies tighter
bounds exist.

So far, the main objective has been to guarantee stability of the overall network. However, in
many instances it is desirable to have fast enough convergence, or equivalently an upper bound
on the settling time, as per the next definition.
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Definition 4. A LTI system with pole set P is α-convergent if Re(p) <−α< 0 for all p ∈P.

Based on Theorem 8, we can obtain topology-independent sufficient conditions to robustly
certify not only stability, but also α-convergence.

Theorem 9. Consider the family of nominally stable networked systems N , under Assumptions 1,
2, 3, 4, and 6. Then, topology-independent α-convergence is robustly guaranteed for every element
in N if the inequalities

min
ξ<−(2D)−1

{|λi ( jω−α)−ξ|} > 0, i ∈ {1, . . . ,r }, (3.19)

min
i∈{1,...,r }

{φi ( jω−α)} > 2Dζ̂(F,G)K ( jω−α), (3.20)

hold for all ω ∈R+, with φi as in (3.18),

ζ̂(F,G) =K(V ( jω−α))‖F ( jω−α)‖‖G( jω−α)‖

and K as in (3.16).

The suitable value of α is problem-dependent and can be selected based on the desired set-
tling time, which can be approximated as 4/α.

3.2. EXAMPLES
First we provide some numerical examples where we check the stability of nominal interconnected
systems according to Theorem 5.

Example 1. Consider an arbitrary network where the node and arc nominal transfer-function ma-
trices are

F (s) = 1

s2 +3.412s +2.871

[
0.1307s −0.08404
−0.1105s +0.06774

]
,

G(s) = 1

s2 +1.805s +0.4837

[
0.1485s −0.753
0.4924s +0.329

]>
,

while the maximum connectivity degree is D= 5. Numerically evaluating the eigenvalues λ1(s) and
λ2(s) of H(s) for s = jω is enough to check that the stability condition (3.7) in Theorem 5 is satisfied.
The blue lines in Figure 3.1 represent the values minρ≤−(2D)−1 |λi ( jω)−ρ| for i = 1,2. Since the blue
lines are always greater than zero the condition in Equation (3.7) is satisfied.

Example 2. Consider the node and arc nominal transfer-function matrices

F (s) = 1

s2 +3.338s +2.613

[
0.08071s +2.308

0.6187s +1.78

]
,

G(s) = 1

s2 +0.9124s +0.2505

[
0.8022s +0.2204
0.1696s +0.2161

]>
.

We wish to check whether stability is guaranteed for all networks with maximum connectivity degree
D = 5. The stability condition (3.7) in Theorem 5 is violated: in Figure 3.2, the blue line represent-
ing minρ≤−(2D)−1 |λ1( jω)−ρ| is zero for ω ≈ 2.5. There could exist at least one dynamic network
with the given node and arc nominal transfer-function matrices and with maximum connectivity
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Figure 3.1: Visualisations of the stability conditions (3.7) in Theorem 5 and (3.9) in Theorem 6, for the systems
in Example 1. The two blue lines are minρ≤−(2D)−1 |λi ( jω)−ρ| for i = 1,2, with D = 5. Nominal topology-

independent stability requires that they are strictly above zero, while robust topology-independent stability
requires that they are strictly above the bound K(V ( jω))∆max

H ( jω) shown in magenta.

degree 5 that is not stable: take, for instance, the network with 5 nodes and 9 arcs whose topology is
described by the generalised Laplacian matrix

L =


3 −1 0 −1 −1
−1 3 −1 0 −1

0 −1 3 −1 −1
−1 0 −1 3 −1
−1 −1 −1 −1 5

 .

The overall interconnected system is unstable because it has positive-real-part poles.

We now propose examples to showcase the stability of interconnected systems with homoge-
neous uncertainty (Corollary 2)

Example 3. In an arbitrary network, assume that all node and arc dynamics are nominally as in
Example 1 and are affected by suitably bounded, but unknown, homogeneous uncertainties. The
bound K(V ( jω))∆max

H (ω) is reported in magenta in Figure 3.1, which shows that the robust stability
condition (3.9) in Theorem 6 is satisfied for all networks with maximum connectivity degree D= 5.
The condition is satisfied up to D= 8, but violated for D≥ 9.
For the given transfer functions, we have the bounds

C= 0.0616 and M= 0.0384.

Therefore, by Corollary 2, topology-independent stability is guaranteed for all networks where the
connectivity degree is di < 5 for each i ∈ {1, . . . , N }. This shows that the condition in Corollary 2 is
more conservative.
In the absence of uncertainties, M = 0, Corollary 2 allows for a maximum connectivity degree of
8: each node could be connected to 8 other nodes and the network would remain stable. This is
conservative, because the condition in Theorem 5 is satisfied for values of D up to 17.
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Figure 3.2: Visualisation of the stability condition (3.7) in Theorem 5, for the system in Example 2. The two blue
lines are minρ≤−(2D)−1 |λi ( jω)−ρ| for i = 1,2, with D= 5. The condition for nominal topology-independent

stability is that they are strictly above zero, which is violated.

3.2.1. α-CONVERGENCE OF A SUSPENSION BRIDGE

For a suspension bridge, it is important not only to ensure stability within suitable uncertainty
bounds, but also to guarantee a short enough settling time, so as to prevent long-lasting oscilla-
tions.

A suspension bridge can be modelled as a network of interconnected systems (see Figure 3.3):
the nodes correspond to the cables that hold the bridge road and the arcs correspond to the dis-
cretisation of the bridge road that connects the cables. The resulting graph is known as a ladder
graph, for which the maximum connectivity degree is always D= 3.

It is worth stressing that the results in this section hold for any type of graph with D = 3, re-
gardless of its topology (information about the topology is not needed).

Figure 3.4 shows an example of a ladder graph with 8 nodes and 10 arcs, having incidence

Figure 3.3: Suspension bridge (side view). The vertical cables are the nodes (red) and the road discretisation
segments are the arcs (blue). The side view shows only one side of the graph. The upper view is similar to the
complete graph in Figure 3.4.
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Figure 3.4: Example of ladder graph, corresponding to the incidence matrix X in (3.21). The red dots are nodes
and the blue arrows are arcs. The arrows are double headed to denote bidirectional interactions.

Figure 3.5: Simplified dynamic system at the nodes. The cable mass is m1 and the road mass is m2; ki denote
spring coefficients and bi denote damping coefficients. The system is modelled as a double oscillator.

matrix

X =



−1 −1 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0
0 1 0 −1 −1 0 0 0 0 0
0 0 1 1 0 −1 0 0 0 0
0 0 0 0 1 0 −1 −1 0 0
0 0 0 0 0 1 1 0 −1 0
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 1 1


. (3.21)

Node and arc dynamics. Assume that an affine transformation was used to remove gravita-
tional effects. Then each node can be modelled as a two mass-spring-damper system (see Figure
3.5). The state vector is x = [x1, x2, x3, x4]>, where x1 (resp. x2) corresponds to the displacement
of mass m1 (resp. m2) from its equilibrium location, while x3 (resp. x4) represents the velocity
of mass m1 (resp. m2). The nodes have a single input u1, which is a force acting on m2, and the
outputs are the state variables x2 and x4. The system matrices are therefore:

AF =


0 0 1 0
0 0 0 1

− (k1+k2)
m1

k2
m1

− (b1+b2)
m1

b2
m1

k2
m2

− k2
m2

b2
m2

− b2
m2

 BF =


0
0
0
1

m2

 (3.22)

CF =
(
0 1 0 0
0 0 0 1

)
DF =

(
0
0

)
The arcs can be represented by a mass-spring-damper, with only one mass (M) and two iden-

tical dampers (B) and springs (K ) at each side. The state variables are the position and velocity of
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Figure 3.6: Simplified dynamic system at the arcs, corresponding to a discretisation of the road. The spring
coefficient K and the damping coefficient B account for a rotational spring and damper.

Figure 3.7: Nyquist plot of the non-zero eigenvalue λ2( jω−α) of H( jω−α). Since it is far from the point
−1/(2D) =−1/6, condition (3.19) is satisfied.

the mass M , while the inputs are the difference between the position and velocity at each side (see
Figure 3.6). The resulting system matrices are

AG =
(

0 1
− 2K

M − 2B
M

)
BG =

(
0 0

− K
M − B

M

)
(3.23)

CG = (−2K −2B
)

DG = (−K −B
)

Topology-independent robust α-convergence. We wish to determine the maximum uncer-
tainty magnitude for which the overall bridge system is robustly α-convergent, with α = 0.4, re-
gardless of the network size. Using a second order approximation, this means that the settling
time is at most T ≈ 4/α= 10 seconds. To assess topology-independent robust α-convergence, we
can apply Theorem 9 with ρ = 2 and D= 6.

For the simulation results, we use the parameter values: k1 = 200, m1 = 800, b1 = 400, k2 = 200,
m2 = 1000, b2 = 800, K = 800, M = 200, B = 800.

First, we show that condition (3.19) is satisfied. In this case there are only two eigenvalues
λi , i = 1,2: λ1 is zero, because H is a rank-one matrix, thus it satisfies the inequality; Figure 3.7
shows the Nyquist plot of λ2, which is far from the point −1/(2D) =−1/6. Hence, condition (3.19)
is satisfied.
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Figure 3.8: Plot of φ2( jω−α); colour denotes the different cases in (3.18).

Figure 3.9: Frequency response of K(V ( jω−α)), ‖F ( jω−α)‖, ‖G( jω−α)‖, and ζ̂(F,G).

Then, we can determine the upper bound for the uncertainty K that guarantees robust α-
convergence for all topologies with D= 3. Rearranging inequality (3.20) yields

K ( jω−α) < θ( jω−α)
.= mini∈{1,2}{φi ( jω−α)}

2Dζ̂(F,G)
. (3.24)

Let us analyse function θ( jω−α) in (3.24).
On the numerator is min{φ1( jω−α),φ2( jω−α)}. Since λ1 = 0, φ1 = 1. Regarding λ2, for different
values of ω it satisfies all the cases in (3.18): Figure 3.8 shows the value of φ2( jω−α), indicating
the frequency intervals for each of the cases. From Figure 3.8, it can be seen that in this case we
have min{φ1( jω−α),φ2( jω−α)} =φ2( jω−α).
The denominator consists of the product 2DK(V ( jω−α))‖F ( jω−α)‖‖G( jω−α)‖, whereD= 3 for
a ladder graph. Figure 3.9 shows K(V ( jω−α)), ‖F ( jω−α)‖, ‖G( jω−α)‖, and the product ζ̂(F,G)
as a function of ω.

As expected, since the input-output matrix DG 6= 0, ‖G‖ is non-zero at high frequencies. This
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Figure 3.10: Largest admissible value for the uncertainty K ( jω − α) that guarantees robust topology-
independent stability, according to equation (3.24).

is reflected also in the frequency response of K(V ). On the other hand, F (s) has a low-pass-filter
behaviour, hence ‖F‖ and ζ̂(F,G) tend to zero for high frequencies.

Finally, taking the ratio between φ2 and 2Dζ̂(F,G) gives the upper bound in (3.24), whose plot
is shown in Figure 3.10.

According to Figure 3.10, the minimum value of the upper bound for K ( jω−α) is around 0.137,
when ω= 0.426 rad/s. This means that, even if the uncertainties were about 6%, i.e. KF ( jω−α) ≤
0.06 and KG ( jω−α) ≤ 0.06, it would be K ( jω−α) ≤ 0.1236; then, K ( jω−α) would still satisfy
the inequality (3.24) at all frequencies. Hence, the system would be stable and α-convergent with
α= 0.4. Note that, since φ2 ≤ 1 and ζ̂(F,G) has a low-pass-filter response, the uncertainties can be
very large at high frequencies without compromising stability and α-convergence.

Given that the expression of K couples the uncertainties affecting the node transfer function
matrix, F , and the arc transfer function matrix, G , it is not possible to immediately deduce separate
upper bounds for the individual uncertainties. However, if for instance KG ≈ 0, then K ≈ KF , which
yields an upper bound for the node uncertainties. An analogous result is obtained if KF ≈ 0.

3.3. PROOFS

3.3.1. LEMMA 3
The following lemma will be used in the proof of Theorem 7.

Lemma 3. Let a, b and u be three complex numbers. If the inequalities |a−b| ≤ϕ and |b−(−u)| >ϕ
are satisfied for some real ϕ> 0, then a 6= −u.

Proof. The inequality |a−b| ≤ϕ can be rewritten as |(a+1)−(b+1)| ≤ϕ. Hence, the reverse triangle

inequality
∣∣∣|x|− |y |

∣∣∣≤ |x − y | ensures ∣∣∣|a +1|− |b +1|
∣∣∣≤ϕ. (3.25)

Then, we can distinguish two cases. If |a + 1| ≥ |b + 1|, the result immediately follows because
|a +1| ≥ |b +1| > ϕ > 0. If |a +1| < |b +1|, then (3.25) becomes |b +1| − |a +1| ≤ ϕ, and |a +1| ≥
|b +1|−ϕ> 0 since |b +1| >ϕ.
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3.3.2. PROOF OF THEOREM 3
Proof. Consider a generic element in the family of networked systems N , let vectors Yi (s) and
Uh (s) represent the output of the i th node and hth arc respectively. The dynamics of node i is

Yi (s) = [F (s)+∆Fi (s)]
M∑

h=1
[B ]i hUh (s), i ∈N ,

while the dynamics of arc h = (i , j ) ∈ A is

Uh (s) = [G(s)+∆Gh
(s)][Yi (s)−Y j (s)], h ∈ A.

We can stack the output and input vectors as Y (s) = [Y1(s)>, . . . ,YN (s)>]> and U (s) =
[U1(s)>, . . . ,UM (s)>]> and write the complete system dynamics as

Y (s) = [(IN ⊗F (s))+DF (s)](X ⊗ In )U (s), (3.26)

U (s) =−[(IM ⊗G(s))+DG (s)](X>⊗ Ir )Y (s), (3.27)

where Ik denotes the identity matrix of size k, while DF = diag(∆Fi )N
i=1 and DG =

diag(∆Gh
)M
h=1. It follows that, the characteristic equation of the complete network is

p(s) = det
(
IN r + [(IN ⊗F (s))+DF (s)](X ⊗ In )

[(IM ⊗G(s))+DG (s)](X>⊗ Ir )
)

= det
(
IN r +L⊗H(s)+D(s)

)
, (3.28)

where L = X X>, H(s) = F (s)G(s) and D = (X ⊗ F )DG (X> ⊗ Ir ) + DF (X ⊗ In )DG (X> ⊗ Ir ) +
DF (X X>⊗G). Equations (3.3) and (3.5) follow from simplifying Equations (3.1) and (3.2)

3.3.3. PROOF OF THEOREM 4
Proof. Since the complex function λi (s) is an eigenvalue of H(s), it must satisfy the characteristic
equation

det
(
λi (s)I −H(s)

)= 0. (3.29)

The transfer-function matrix H(s) can be written as

H(s) = 1

d(s)
R(s), (3.30)

where d(s) is the pole polynomial and R(s) is a matrix with polynomial entries. For any s ∈ C
such that d(s) 6= 0, replacing (3.30) into (3.29) gives

det
(
λi (s)d(s)I −R(s)

)= 0. (3.31)

By contradiction, assume that p̃ is a pole of the complex function λi (s) but not of the transfer-
function matrix H(s). Then, by continuity, lims→p̃ {d(s)} → d(p̃) 6= 0 and lims→p̃ {R(s)} → R(p̃),
which is a matrix with finite entries. At the same time, lims→p̃ {λi (s)} →∞. This in turn implies

that lims→p̃

{
det

(
λi (s)d(s)I −R(s)

)} →∞, which contradicts equation (3.31). Hence, it must be

lims→p̃ {d(s)} → d(p̃) = 0, namely, p̃ must be a root of d(s), hence a pole of H(s).
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3.3.4. PROOF OF LEMMA 2
Proof. First, we prove stability in the nominal case. The Nyquist stability criterion requires Z =
N +P , where P is the number of unstable poles of the complex function h̄(s), Z is the number of
unstable zeros of the complex function 1+µh̄(s) and N is the number of times the Nyquist diagram
encircles the point −1/µ clockwise. Because the nominal open loop complex function is assumed
to be stable (P = 0), the closed loop system is stable (Z = 0) if and only if N = 0, that is, if and only
if the Nyquist diagram does not encircle the point −1/µ.
Recall that σ(LD) ⊂S= {z ∈R : 0 ≤ z ≤ 2D}. Then, the Nyquist diagram h( jω) cannot encircle the
point −1/µ if, for all ω ∈R+, it has an empty intersection with the set

ζ(S) =
{

z ∈R : z ≤ −1

2D

}
. (3.32)

To enforce stability robustly in the presence of a bounded uncertainty, we resort to the Zero Ex-
clusion principle, which requires |µh̄( jω)+1| >µδmax

h (ω), or equivalently |h̄( jω)+ 1
µ | > δmax

h (ω),

for all possible choices of µ. Namely, it must be |h̄( jω)−ρ| > δmax
h (ω) for any ρ in the set ζ(S).

This condition can be interpreted geometrically with the help of Figure 3.11: the distance of h̄( jω)
from the set ζ(S) must be larger than the uncertainty, minρ≤−(2D)−1 |h̄( jω)−ρ| > |δh ( jω)|, for any

possible uncertainty |δh ( jω)| ≤ δmax
h (ω), thus leading to (3.6).:

min
ρ≤−(2D)−1

|h̄( jω)−ρ| > δmax
h ( jω). (3.33)

Figure 3.11: Visualisation of the robust stability condition in Lemma 2. Nyquist diagram of the nominal
transfer function h̄( jω) (green), uncertainty disk centred at h̄( j ω̂) representing δh ( j ω̂) at the frequency ω̂

(cyan), set ζ(S) (red) and distance of h̄( j ω̂) from the set ζ(S) (orange). For all ω ∈ R+, the distance of h̄( jω)
from the set ζ(S) needs to be larger than the uncertainty radius δmax

h (ω) ≥ |δh ( jω)|.

3.3.5. PROOF OF THEOREM 5
Proof. Consider a generic nominal networked system from the family of networked systems N .
By Theorem 3 the characteristic polynomial is given by Equation (3.5).
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p(s) = det
(
IN r +L⊗H(s)

)
.

The system will be stable if and only if all the roots of the characteristic polynomial have neg-
ative real part.

The generalised Laplacian can be diagonalised as W −1LW = diag{γk }N
k=1 and the transfer

function matrix can be triangularised as V (s)−1H(s)V (s) = Λ(s), where Λ(s) is a triangular ma-
trix carrying on the diagonal the eigenvalues {λk (s)}r

k=1 of H(s). Then, we can pre-multiply the

characteristic polynomial p(s) = det
(
IN r +L ⊗H(s)

)
by det((W ⊗V (s))−1) and post-multiply it by

det(W ⊗V (s)) to get

p(s) =
r∏

i=1

N∏
k=1

(1+γkλi (s)). (3.34)

The characteristic polynomial (3.34) is stable (all its roots have negative real part) if and only
if each polynomial 1+γkλi (s) is stable (all their roots have negative real part).

Assumption 3 and Theorem 4 guarantee that the complex functions λi (s) are stable (all the
poles have negative real part); see Remark 1. Therefore, we can apply Lemma 2 where h̄(s) =λi (s)
and δmax

h ≡ 0 to conclude that the polynomials 1+γkλi (s) are stable (all their roots have negative

real part) if, for all i and all ω ∈R+, (3.7) holds.

3.3.6. PROOF OF THEOREM 6
Proof. Consider a generic networked system from the family of nominally stable networked sys-
tems N . By Theorem 3 the characteristic polynomial when all the uncertainties are homogeneous
is given by Equation (3.3),

p(s) = det
(
IN r +L⊗ (H(s)+∆H (s))

)
,

where
∆H (s) = F (s)∆G (s)+∆F (s)G(s)+∆F (s)∆G (s).

The system will be stable if and only if all the roots of the characteristic polynomial have neg-
ative real part.

Recalling that W −1LW is a diagonal matrix carrying the eigenvalues {γk }N
k=1 in the diagonal,

pre-multiplying the characteristic polynomial p(s) = det
(
IN r + L ⊗ (H(s)+∆H (s))

)
by det((W ⊗

Ir )−1) and post-multiplying it by det(W ⊗ Ir ) yields

p(s) =
N∏

k=1
det

(
Ir +γk

(
H(s)+∆H (s)

))
.

Let {βq (s)}r
q=1 denote the eigenvalues of H(s)+∆H (s). Then the characteristic polynomial can

be written as

p(s) =
r∏

q=1

N∏
k=1

(1+γkβq (s)), (3.35)

which is stable (all its roots have negative real part) if and only if each polynomial 1+γkβq (s)
is stable (all their roots have negative real part).

So now we need to show that under the theorem assumptions and hypothesis all the roots of
the polynomials 1+γkβq (s) have negative real part.
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In view of Assumption 4, we can apply the Bauer-Fike theorem; hence, there exists an index
i ∈ {1, . . .r } such that βq (s) =λi (s)+δλi

(s), where

|βq ( jω)−λi ( jω)| = |δλi
( jω)| ≤K(V ( jω))‖∆H ( jω)‖

≤K(V ( jω))∆max
H (ω).

We now can apply Lemma 2, with h(s) = βq (s), h̄(s) = λi (s), δh (s) = δλi
(s) and δmax

h (ω) =
K(V ( jω))∆max

H (ω), for all i ∈ {1, . . .r }. Lemma 2 can be applied because Assumption 3 and Theo-
rem 4 guarantee that the nominal complex functions λi (s) are stable (Remark 1), and γk are the
eigenvalues of the generalised Laplacian matrix of any network with maximum connectivity de-
gree D.

As a result of applying Lemma 2 to all i ∈ {1, . . .r }, we can say that all the roots of the polyno-
mials 1+γkβq (s) have negative real part if inequality (3.9) holds.

3.3.7. PROOF OF COROLLARY 1
Proof. Using the same decomposition as in the proof of Theorem 6, the eigenvalues of matrix
H(s)+∆H (s) can be written as βq ( jω) =λi ( jω)+δλi

( jω) for some i ∈ {1, . . . ,r }, where

|δλi
( jω)| <K(V ( jω))‖∆H ( jω)‖ ≤ ξ(ω)∆max

H (ω).

Hence

|βq ( jω)| ≤ |λi ( jω)|+ |δλi
( jω)| ≤ C+M, ∀ω ∈R+.

If

C+M< min
z∈ζ(S)

|z| = 1

2D
, (3.36)

where S= {z ∈R : 0 ≤ z ≤ 2D}, then the distance between λi ( jω)+δλi
( jω) and the set ζ(S) is

larger than zero for all i and for all possible bounded realisations of the uncertainty, which ensures
topology-independent robust stability of all networks with maximum connectivity degree D.

3.3.8. PROOF OF COROLLARY 2
Proof. With T as defined in (3.13), the inequality (3.12) becomes D<T and is of course satisfied
if and only if di <T for all i = 1, . . . , N , since D= maxi=1,...,N {di }.

3.3.9. PROOF OF THEOREM 7
Proof. Consider a generic networked system from the family of nominally stable networked sys-
tems N . By Theorem 3 the characteristic polynomial when all the uncertainties are homogeneous
is given by Equation (3.1),

p(s) = det
(
IN r +L⊗H(s)+D(s)

)
, (3.37)

where

D= (X ⊗F )DG (X>⊗ Ir )+DF (X ⊗ In )DG (X>⊗ Ir )+DF (X X>⊗G). (3.38)

The system will be stable if and only if all the roots of the characteristic polynomial have neg-
ative real part.
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Denoting by βq (s), q ∈ {1, . . . ,r N }, the eigenvalues of the matrix [
(
L⊗H(s)

)+D(s)], the charac-
teristic polynomial (3.1) can be rewritten as

p(s) =
r N∏
q=1

(1+βq (s)).

By the zero-exclusion theorem [19], since the nominal interconnected system is stable by as-
sumption, robust stability of the uncertain system is guaranteed if, for all possible DF (s) and DG (s)
within the bounds, p( jω) 6= 0 for all ω ∈R+, which is equivalent to

βq ( jω) 6= −1, ∀q ∈ {1, . . . ,r N } and ∀ω ∈R+. (3.39)

The eigenvalues of L⊗H(s) are the products of the eigenvalues of L and of H(s), {γkλi (s)}, and
its diagonalization matrix is W ⊗V (s), where W and V (s) are the diagonalization matrices for L
and H(s) respectively. Hence, in view of the Bauer-Fike Theorem, for every q = 1, . . . ,r N there is a
pair of indices (k, i ) ∈ {1, . . . , N }× {1, . . . ,r } such that

|βq ( jω)−γkλi ( jω)| ≤K(W ⊗V ( jω))‖D( jω)‖. (3.40)

Using the properties of the 2-norm and of the Kronecker product we have that

K(W ⊗V ( jω)) = ‖(W ⊗V ( jω))−1‖‖W ⊗V ( jω)‖
= ‖W −1 ⊗V −1( jω)‖‖W ⊗V ( jω)‖
= ‖W −1‖‖V −1( jω)‖‖W ‖‖V ( jω)‖
=K(W )K(V ( jω)) =K(V ( jω)).

Also,

‖D( jω)‖ ≤ ‖X ‖‖X>‖
(
‖F ( jω)‖‖DG ( jω)‖+‖G( jω)‖‖DF ( jω)‖+‖DF ( jω)‖‖DG ( jω)‖

)
≤ ‖X ‖‖X>‖‖F ( jω)‖‖G( jω)‖K ( jω),

with K ( jω) defined in (3.16):

K ( jω) = KF ( jω)+KG ( jω)+KF ( jω)KG ( jω).

Recall from equation (2.3) that ‖X ‖‖X>‖ ≤ 2D to get

K(W ⊗V ( jω))‖D( jω)‖ ≤ 2Dζ(F,G)K ( jω), (3.41)

with ζ(F,G) defined in (3.15)

ζ(F,G) =K(V ( jω))‖F ( jω)‖ ‖G( jω)‖. (3.42)

Inequalities (3.40) and (3.41) yield

|βq ( jω)−γkλi ( jω)| ≤ 2Dζ(F,G)K ( jω). (3.43)

Now we can apply Lemma 3 to (3.43) and (3.14), setting ϕ= 2Dζ(F,G)K ( jω), a = βq ( jω), b =
γkλi ( jω) and u = 1. We get that βq ( jω) 6= −1, hence condition (3.39) is satisfied and the network
system is robustly stable.
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3.3.10. PROOF OF THEOREM 8
Proof. To show that inequality (3.17) implies inequality (3.14) for all k ∈ {1, . . . , N } and i ∈ {1, . . . ,r },
write the complex number λi ( jω) as λi =αi + jβi , where the argument is omitted for clarity. Now
define the convex function

D(γk ) = |γkλi +1| =
√

(γkαi +1)2 +γ2
kβ

2
i .

Taking into account that γk ∈ [0,ρ], the minimum of D(γk ) is obtained for γk = γ∗k given by

γ∗k =


0 if 0 ≤αi
−αi
|λi |2 if −ρ|λi |2 ≤αi < 0

ρ if αi <−ρ|λi |2
In other words, γ∗k = argmin{D(γk ) s.t. γk ∈ [0,ρ]}. Hence, the minimum value of D(γk ) de-

pends on λi ( jω) as follows

1. if 0 ≤αi , then D(γ∗k ) = 1,

2. if −ρ|λi |2 ≤αi < 0, then D(γ∗k ) = |Im(λi ( jω))|
|λi ( jω)| ,

3. if αi <−ρ|λi |2, then D(γ∗k ) = |ρλi ( jω)+1|.
Since |γkλi ( jω)+1| ≥ D(γ∗k ), each case gives a different lower bound for |γkλi ( jω)+1|. Thus,

by construction, φi ( jω) satisfies |γkλi ( jω)+1| ≥φi ( jω).
Taking the minimum over all i ∈ {1, . . . ,r } makes inequality (3.17) imply inequality (3.14) for all

k ∈ {1, . . . , N } and i ∈ {1, . . . ,r }.

3.3.11. PROOF OF THEOREM 9
Proof. Take the characteristic polynomial p(s) of the complete network, given in (3.1), and define
p̂(s) as the shifted polynomial p̂(s) = p(s −α).

If p̂(s) is stable, then p(s) is α-convergent.
By Theorem 5, inequality (3.19) guarantees that the nominal networked system associated with
p̂(s) is stable, thus Theorem 8 can be applied to check that, if inequality (3.20) is satisfied, then
p̂(s) is stable, hence p(s) is α-convergent.

3.4. CONCLUSIONS
We have investigated the stability of homogeneous and heterogeneous dynamic networks where
both the nodes and the arcs have MIMO dynamics, described by the uncertain transfer-function
matrices F (s)+∆Fi (s) and G(s)+∆Gh

(s) respectively. The transfer-function matrices F (s) and G(s)
are assumed to be stable and the uncertainties bounded. In the nominal case, we have provided
a stability condition that is topology-independent and exclusively relies on the knowledge of the
maximum connectivity degree of the network. The condition constrains the Nyquist diagram of
the poles of the transfer-function matrix H(s) = F (s)G(s). In the presence of homogeneous and
heterogeneous uncertainties, the topology-independent condition for robust stability depends on
the magnitude of the uncertainty and relies on the bound for the eigenvalues of uncertain matri-
ces given by the Bauer-Fike theorem. An advantage of the obtained conditions, which guarantee
robust stability regardless of the network size and topology, is that they can be checked locally to
ensure stability of the network also when nodes and arcs are added or removed online. In addi-
tion to stability conditions, a topology-independent condition to robustly guarantee fast enough
convergence was provided and applied to a suspension bridge example.
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The last enemy that shall be destroyed is death.

Harry Potter and the Deathly Hallows

We give a sufficient and a necessary condition for the topology-independent robust stability of net-
worked systems formed by uncertain MIMO systems. Both conditions involve constants associated
with the nominal node dynamics and arc interconnection matrices, the uncertainty bounds, and
the maximum connectivity degree of the network; they are scalable (they can be checked locally), in-
dependent of the network topology and even of the number of nodes and arcs, and hold for networks
of heterogeneous MIMO subsystems and interconnection matrices, with heterogeneous uncertain-
ties. The dual cases of 1-norm and ∞-norm bounds are considered. In both cases, if the systems
at the nodes are diagonal, we get a necessary and sufficient condition. We apply our results to the
topology-independent robust stability analysis of a case-study from cancer biology.

This chapter is based on the paper “Topology-independent robust stability conditions for uncertain MIMO net-
works" (2021) [61] by Carlos Andrés Devia and Giulia Giordano.
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All the results in this chapter are related to the concept of Family of networked systems, whose
definition is recalled below. All the networks in this chapter are assumed to have dynamic (possibly
different) nodes and static (possibly different) arcs of the appropriate size. Given that in this chap-
ter all the systems are represented in a state-space form, the main tools used to prove the robust
stability conditions will be algebraic properties of norms and eigenvalues. To improve the read-
ability of the chapter first the main results are stated, followed by application examples, proofs,
and the conclusions.

Definition 1 (Family of networked systems). A family N of networked systems is a collection of
LTI systems formed by the interconnection of LTI subsystems according to a network structure. The
generic system in the family has an underlying graph structure G = {N ,A}, where each node in N ,
labelled with an integer number in the set {1, . . . , N } is associated with a LTI MIMO system and each
arc in A, labelled with an integer number in the set {1, . . . , M }, is associated with a LTI MIMO system
or an interconnection matrix.

4.1. MAIN RESULTS
We start with some basic assumptions to formally define the type of families considered in this
chapter.

Assumption 7. For all elements in the family N , every node in the graph G is associated with a LTI
MIMO subsystem of the form

ẋ(i ) = Ai x(i ) +Bi u(i ), y (i ) =Ci x(i ), i ∈ {1, . . . , N },

where the system matrices are the sum of a nominal and an uncertain part: Ai = Āi + Âi , Bi =
B̄i +B̂i , Ci = C̄i +Ĉi . Let pi and qi be the number of inputs and outputs of subsystem i , respectively.
Every arc in the graph G is associated with an interconnection matrix Gh , of the proper size which
is the sum of a nominal and an uncertain part: Gh = Ḡh +Ĝh , h ∈ {1, . . . , M }.

Figure 4.1 shows an example of a member of a family with the structure described in Assump-
tion 7.

Figure 4.1: Example of an uncertain networked system in the family N , with N = 6 node systems, M = 8 arcs
and incidence matrix (in this figure denoted by H).

Theorem 10. Under Assumption 7, a generic element in the family of networked systems N is mod-
elled by the following matrix differential equation
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ẋ = [
A+BPGRC ]x

.= Ãx, (4.1)

where

x = [x(1)> . . . x(N )>]> A = diag(Ai )i∈N B = diag(Bi )i∈N
C = diag(Ci )i∈N G = diag(Gh )h∈A ,

and the matrices P and R are built as follows: first, define the matrices P and R as
P = max{X ,0} and R = −min{X ,0} element-wise, where X is the incidence matrix associated with
the networked system; then the block matrix in the position (i , j ) of P is the square scaled identity
matrix Pi j Ipi if Pi j = 1, while if Pi j = 0 it is a rectangular matrix of zeros of the appropriate size.
For R, the block matrix in position (i , j ) is R j i Iq j if R j i = 1, while it is a rectangular zero matrix if
R j i = 0.

If all the subsystems have the same number of inputs and outputs, p and q, respectively, then
Equation (4.1) becomes

ẋ = [
A+B(P ⊗ Ip )G(R>⊗ Iq )C

]
x

.= Ãx. (4.2)

Example 4. Consider a network composed of 3 nodes, with p1 = 2, p2 = 3, p3 = 2 inputs and q1 = 1,
q2 = 2, q3 = 1 outputs. Let the incidence matrix be

X =
−1 0 1 1

1 −1 0 −1
0 1 −1 0

 ,

that is, the network has 4 arcs with matrices G1 ∈R3×1, G2 ∈R2×2, G3 ∈R2×1, and G4 ∈R2×2. Then

P =
0 0 1 1

1 0 0 0
0 1 0 0

 , and P=



0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0


.

Assumption 8. For each element in the family N , the maximum outward (resp. inward) connec-
tivity degree of the underlying graph is at most Dout (resp. Din).

Assumption 9. For each element in the family N , Assumption 7 holds, and all the node systems
and interconnection matrices have the following properties:
All node systems (Ai ,Bi ,Ci ), for i ∈ {1, . . . , N }, are such that Ai = Āi + Âi , Bi = B̄i + B̂i , Ci = C̄i + Ĉi ,
where, denoting with ∗ either always 1 or always ∞,
• maxλ∈σ(Āi ){Re(λ)} ≤α, for a given α< 0;

• ‖Wi ‖∗ ≤χ and ‖W −1
i ‖∗ ≤χ, for a given χ≥ 1, where Wi is some eigenmatrix that diagonalises Āi ;

• ‖B̄i ‖∗ ≤µB and ‖C̄i ‖∗ ≤µC , for given µB , µC > 0;
• ‖Âi ‖∗ ≤ ξA , ‖B̂i ‖∗ ≤ ξB and ‖Ĉi ‖∗ ≤ ξC , for given ξA , ξB , ξC ≥ 0.
All interconnection matrices Gh , for h ∈ A, are such that Gh = Ḡh + Ĝh , with ‖Ḡh‖∗ ≤ µG and
‖Ĝh‖∗ ≤ ξG , for given µG , ξG ≥ 0, where the subscript ∗ denotes either always 1 or always ∞.

Assumption 9 implies K∗(Wi ) = ‖Wi ‖∗‖W −1
i ‖∗ ≤χ2.

We are then ready to state our main results for the case of uncertain networked systems with
1-norm bounds; the proofs are given in Section 4.3.
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Theorem 11 (Sufficient condition for topology-independent robust stability). Consider the fam-
ily of networked systems N , under Assumptions 8, and 9 with 1-norm bounds. Then, all systems in
N are stable if

α+χ2[
ξA +Dout(µB +ξB )(µG +ξG )(µC +ξC )

]< 0. (4.3)

Theorem 12 (Necessary condition for topology-independent robust stability). Consider the fam-
ily of networked systemsN , under Assumptions 8, and 9 with 1-norm bounds. A necessary condition
for all systems in N to be stable is

α+ [
ξA +Dout(µB +ξB )(µG +ξG )(µC +ξC )

]< 0. (4.4)

By duality, our main results still hold if the 1-norm is replaced by the ∞-norm, and Dout is
replaced by Din. Since the proofs are essentially unchanged, we just report the results.

Proposition 1 (Dual of Theorem 11). Consider the family of networked systemsN , under Assump-
tions 8, and 9 with ∞-norm bounds. Then, all systems in N are stable if

α+χ2[
ξA +Din(µB +ξB )(µG +ξG )(µC +ξC )

]< 0. (4.5)

Proposition 2 (Dual of Theorem 12). Consider the family of networked systemsN , under Assump-
tions 8, and 9 with ∞-norm bounds. Then, a necessary condition for all systems in N to be stable is
that

α+ [
ξA +Din(µB +ξB )(µG +ξG )(µC +ξC )

]< 0. (4.6)

For diagonal systems, the topology-independent robust stability condition becomes necessary
and sufficient.

Proposition 3 (Diagonal systems). Consider the family of networked systems N , under Assump-
tions 8, and 9 with 1-norm (resp. ∞-norm) bounds. Assume that, for each element of the family, all
the systems at the nodes have a diagonal state matrix Ai . Then, all systems in N are stable if and
only if inequality (4.3) (resp. (4.5)) holds.

Our results highlight the crucial role of the condition number χ2 for topology-independent
stability: for non-diagonal systems, it leads to a gap between the sufficient and the necessary con-
dition, thus introducing conservativeness. To have the tightest gap, we wish to compute the min-
imum value of χ2. Consider the nominal matrix Ā corresponding to the system associated with
a single node; being diagonalisable, it has distinct eigenvectors. Then, the columns of its eigen-
matrix W can be scaled independently with the positive diagonal matrix D = diag(Di ) and we can
find

(χ2)opt = min
D∈diag(Di ),Di>0

‖W D‖∗‖D−1W −1‖∗ (4.7)

where the subscript ∗ denotes either always 1 or always ∞.

This optimisation problem has a neat solution.

Proposition 4 (Minimum χ2). The optimal (χ2)opt in (4.7) is obtained when D is such that: all
columns of W̃ = DW have unitary 1-norm, with 1-norm bounds; all rows of W̃ −1 = D−1W −1 have
unitary 1-norm, with ∞-norm bounds.

After stating the main results we can show how they can be applied in the next section.
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4.2. EXAMPLE: AN APPLICATION TO CANCER BIOLOGY
Consider a multi-compartment evolutionary model describing growth, mutation and metastasis
of a heterogeneous tumour cell population [92], where a set of mutant cell lines M can spread in
a set of body compartmentsJ and the d available drugs are differently effective against differ-
ent mutants in different compartments. The mutants can settle just in some compartments: Mk
denotes the set of mutants in compartment k. Denoting by r k

i the growth rate of mutant i in com-

partment k, qk
j i the mutation rate from mutant j to i in compartment k, µck

i the migration rate

from compartment c to k of mutant i (µck
i = 0 if there is no migration path), φk

s,i the effect of drug

s on mutant i in compartment k, and `s the constant amount of drug s, the concentration xk
i of

mutant i ∈Mk in compartment k ∈J evolves as

ẋk
i = ∑

j∈Mk

r k
i qk

j i xk
j +

∑
c∈J

r k
i µ

ck
i xc

i −
∑

j∈Mk

qk
i j xk

i − ∑
c∈J

µkc
i xk

i −
d∑

s=1
φk

s,i`s xk
i .

We can see this model as a networked system with compartments (nodes), including a set
of mutants, connected by possible migration routes (arcs). Compartment k is associated with
the linear system ẋk = Ak xk +Bk uk , yk = xk , where xk = (xk

i )i∈Mk
includes all mutant lines

in compartment k and uk = (uk
i )i∈Mk

, where uk
i is the sum of all cells of mutant i migrating to

compartment k. For the state matrix,

[Ak ]i i = r k
g qk

g g − ∑
j∈Mk

g 6= j

qk
g j −

∑
c∈J
c 6=k

µkc
g −

d∑
s=1

φk
s,g`s ,

with g =Mk (i ), while

[Ak ]i j = r k
g qk

f g ,

with g = Mk (i ), f = Mk ( j ). The nonzero entries of Bk are [Bk ]i i = r k
g , with g = Mk (i ). The

nonzero entries of the interconnection matrix Gh , associated with the arc from compartment k to
compartment c, are [Gh ]i j =µkc

g if g =Mc (i ) =Mk ( j ).
As in all biological systems, the parameter values are subject to huge uncertainties. The net-

work topology, and even the number of affected compartments, are not known exactly. However,
if we assume that the overall networked system belongs to the family N satisfying Assumptions
8, and 9 with 1-norm bounds, with Dout = 3 (mutants in a compartment can migrate to 3 other
compartments at most), and values

α=−25.0227 χ= 1.2236 µB = 6.2 µC = 1 µG = 0.3

ξA = 8.5268 ξB = 0.93 ξC = 0 ξG = 0.045,

then condition (4.3) is satisfied:

α+χ2[
ξA +Dout(µB +ξB )(µG +ξG )(µC +ξC )

]=−1.2 < 0.

As long as the networked system belongs to this class, stability is robustly guaranteed (namely, the
adopted cancer therapy successfully reduces the tumour size) for all topologies with maximum
degree 3, regardless of the number of nodes (affected body compartments) and arcs (possible mi-
gration paths), and even of the actual number of inputs, outputs and states for each node (number
of mutants in each compartment). For comparative simulations, we consider

J= {1,2,3,4} and M= {1,2,3}
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with
M1 = {1,2} M2 = {2,3} M3 = {1,2,3} M4 = {1,3}.

We take the uncertain parameters in the same intervals for all compartments:

r1q11 ∈ [2.4,3.3], r2q12 ∈ [0.61,0.82], r3q13 ∈ [0.76,1], r1q21 ∈ [0.24,0.33],

r2q22 ∈ [3.1,4.1], r3q23 ∈ [1.1,1.5], r1q31 ∈ [0.73,0.98], r2q32 ∈ [0.31,0.41],

r3q33 ∈ [3.8,5.1], q11, q22, q33 ∈ [0.65,0.78], q12, q13 ∈ [0.13,0.16],

q21, q32 ∈ [0.065,0.078], q23, q31 ∈ [0.2,0.23],

r1 ∈ [2.8,5.2], r2 ∈ [3.5,6.5], r3 ∈ [4.3,8.1],

µ1 ∈ [0.19,0.21], µ2 ∈ [0.29,0.31], µ3 ∈ [0.099,0.1],

φ1,1 ∈ [0.3981,0.4019], φ2,1 ∈ [0.497,0.503], φ1,2 ∈ [0.1592,0.1608],

φ2,2 ∈ [0.1988,0.2012], φ1,3 ∈ [0.199,0.201], φ2,3 ∈ [0.2485,0.2515].

Figure 4.2 shows the graph representation of the system with all the possible 12 mutation paths:
each mutation path can be active or inactive (henceµi = 0), leading to 4096 different graph topolo-
gies. With 2 available drugs, we compare four different therapies:

T1 = {`1 = 1.957,`2 = 21.137} T2 = {`1 = 2.571,`2 = 26.453}

T3 = {`1 = 3.531,`2 = 29.302} T4 = {`1 = 11.76,`2 = 133.229}.

Only with therapy T4 the uncertain networked system satisfies the sufficient condition (4.3).

Figure 4.2: Example of possible graph topology for multi-compartment cancer evolution, with 4 nodes (body
compartments) and 12 directed arcs (migration paths); illustration of the mutation, migration and drug selec-
tion dynamics.

As shown in Table 4.1, T1 stabilises the nominal disconnected systems, but can fail in the pres-
ence of uncertainties and/or interconnections; T2 guarantees robust stability of the disconnected
systems, but can fail when the systems are interconnected; T3 guarantees stability also of all the
interconnected systems, but not robustly; finally, T4 guarantees topology-independent robust sta-
bility, as expected.

Figure 4.3, showing the time evolution of the total number of cancer cells, and Figure 4.4,
showing the eigenvalue distribution, confirm that only therapy T4 ensures stability for all network
topologies and all uncertainty realisations; for all other therapies, at least one system realisation is
unstable, meaning that the chosen treatment fails and the tumour grows unbounded.
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Figure 4.3: Time evolution for the system cases and therapies in Table 4.1.

Figure 4.4: Eigenvalue distribution for the system cases and therapies in Table 4.1.

4.3. PROOFS

4.3.1. LEMMA 4
Lemma 4. Consider three matrices X̃ , X̄ , δX ∈Rn×n such that X̃ = X̄ +δX and let Z ∈Cn×n be an
eigenmatrix that diagonalises X̄ . Given the scalars % = maxλ∈σ(X̄ ){Re(λ)} and κ ≥ Kp (Z )‖δX ‖p ,

matrix X̃ is Hurwitz stable if
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T1 T2 T3 T4

Case 1: disconnected, nominal S S S S
Case 2: disconnected, uncertain U S S S
Case 3: connected, nominal U U S S
Case 4: connected, uncertain U U U S

Table 4.1: Effect of the therapies in different cases. S: stability is guaranteed for all systems in the case. U:
at least one system in the case is unstable. Simulations with 150 random parameter variations for uncertain
disconnected systems and with all the 4096 possible interconnection topologies for connected systems (each
with 2 parameter variations in the uncertain case).

%+κ< 0. (4.8)

Proof. Let D(x,r ) denote the closed disk with center x ∈ C and radius r . By the Bauer-Fike the-
orem (Theorem 2), all the eigenvalues of X̃ are located in the set Υ = ⋃

λ∈σ(X̄ ) D(λ,κ). Since

maxϕ∈Υ{Re(ϕ)} = maxλ∈σ(X̄ ){Re(λ)}+κ = %+κ, all the eigenvalues of X̃ have negative real part
if %+κ< 0.

Since κ≥ 0, condition (4.8) requires %< 0, i.e. Hurwitz stability of the nominal X̄ .

4.3.2. PROOF OF THEOREM 10
Proof. Under Assumption 7, the overall dynamics for the disconnected node systems is

ẋ = Ax +Bu, y =C x, (4.9)

where x = [x(1)> . . . x(N )>]>, u = [u(1)> . . .u(N )>]>, y = [y (1)> . . . y (N )>]>, A = diag(Ai )i∈N , B =
diag(Bi )i∈N , C = diag(Ci )i∈N . Splitting nominal and uncertain parts, A = Ā + Â, where Ā =
diag(Āi )i∈N , Â = diag(Âi )i∈N ; B = B̄ + B̂ , where B̄ = diag(B̄i )i∈N , B̂ = diag(B̂i )i∈N ; C = C̄ + Ĉ ,
where C̄ = diag(C̄i )i∈N , Ĉ = diag(Ĉi )i∈N .

The node systems are connected through the incidence matrix X ∈ {−1,0,1}N×M of G, defined
as Xi h = 1 if the arc h ∈ A enters node i ∈ N ; Xi h = −1 if the arc h leaves node i ; and Xi h = 0
otherwise. In particular, we define matrices P = max{X ,0} and R = −min{X ,0} element-wise, so
that Pi h = 1 if arc h enters node i and Ri h = 1 if arc h leaves node i . These scalar matrix entries
match nodes and arcs according to the interconnection topology.

Then, the input to node i ∈N is

u(i ) =
M∑

h=1
Pi hGh

( N∑
j=1

R j h y ( j )
)
,

where just one of the scalars R j h , with j = 1, . . . , N , is nonzero and selects the node output “feed-
ing” arc h.

Let G = diag(Gh )h∈A , then the vector of inputs can be written as

u =PGRy, (4.10)

where the matrices P and R are as described in the theorem (Theorem 10). Merging (4.9) and
(4.10) produces the networked system

ẋ = [
A+BPGRC ]x

.= Ãx, (4.11)
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If all the subsystems have the same number of inputs and outputs (pi = p and qi = q for all
i ∈ N), then the matrices P and R simplify to (P ⊗ Ip ) and (R>⊗ Iq ) respectively, and Equation
(4.11) becomes

ẋ = [
A+B(P ⊗ Ip )G(R>⊗ Iq )C

]
x

.= Ãx. (4.12)

4.3.3. PROOF OF THEOREM 11
Proof. To assess stability of the networked system (4.1), we rewrite matrix Ã as the sum of three
matrices

Ã = Ā+δA1 +δA2,

where

Ā = diag(Āi )i∈N
is the block diagonal matrix of state matrices,

δA1 = Â = diag(Âi )i∈N
represents the uncertainty in the state dynamics, and

δA2 = BPGRC

includes the uncertainty due to the input and output matrices and to the interconnection.
Thanks to its particular block-diagonal structure, the nominal matrix Ā can be diagonalised

as Ā = W −1ΛW , where Λ = diag(Λi )i∈N has on the diagonal the blocks Λi = diag(λ)λ∈σ(Āi ) in-
cluding the eigenvalues of the individual systems at the nodes, while W = diag(Wi )i∈N has on the
diagonal the eigenmatrices Wi of Āi that satisfy ‖Wi ‖1 ≤ χ and ‖W −1

i ‖1 ≤ χ as per Assumption 9
with 1-norm bounds.

The stability of Ã can be checked by applying Lemma 4 with

X̃ = Ã X̄ = Ā δX = δA1 +δA2 Z =W %=α,

and

κ=χ2[
ξA +Dout(µB +ξB )(µG +ξG )(µC +ξC )

]
. (4.13)

In fact, since maxλ∈σ(Ā){Re(λ)} ≤ α, which is negative in view of Assumption 9, the nominal
state matrices are Hurwitz stable.

To make sure that the assumptions of Lemma 4 are all satisfied, we must show that

K1(W )‖δA1 +δA2‖1 ≤ κ, (4.14)

with κ as in Equation (4.13). We have K1(W ) ≤χ2 in view of Lemma 1, while

‖δA1 +δA2‖1 ≤ ‖δA1‖1 +‖δA2‖1

can be upper bounded by exploiting Theorem 1 and, in view of the block structure of matrix
δA1, Lemma 1:

‖δA1‖1 = ‖Â‖1 = max
i∈N

{‖Âi ‖1} ≤ ξA
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and

‖δA2‖1 ≤ ‖P‖1‖R‖1‖B‖1‖G‖1‖C‖1

≤ Dout(µB +ξB )(µG +ξG )(µC +ξC ),

where the last inequality holds because

‖P‖1‖R‖1 = ‖P‖1‖R>‖1 ≤ Dout (4.15)

by construction, and

‖B‖1 = ‖B̄ + B̂‖1 ≤ ‖B̄‖1 +‖B̂‖1 = max
i∈N

{‖B̄i ‖1}+max
i∈N

{‖B̂i ‖1} ≤µB +ξB ,

‖G‖1 = ‖Ḡ +Ĝ‖1 ≤ ‖Ḡ‖1 +‖Ĝ‖1 = max
h∈A

{‖Ḡh‖1}+max
h∈A

{‖Ĝh‖1} ≤µG +ξG ,

‖C‖1 = ‖C̄ + Ĉ‖1 ≤ ‖C̄‖1 +‖Ĉ‖1 = max
i∈N

{‖C̄i ‖1}+max
i∈N

{‖Ĉi ‖1} ≤µC +ξC .

Since inequality (4.14) is proven, Lemma 4 can be applied and guarantees that matrix Ã in (4.1)
is Hurwitz stable if the sufficient condition (4.3) is satisfied.

4.3.4. PROOF OF THEOREM 12
Proof. If condition (4.4) is violated, hence

α+ (
ξA +Dout(µB +ξB )(µG +ξG )(µC +ξC )

)≥ 0, (4.16)

then there exists an unstable system structure in the family N . We show that this structure is
associated with a circulant matrix, for which the following result [98, Sec. 3.1] holds.

Theorem 13 (Spectrum of a circulant matrix [98]). The eigenvalues of a circulant matrix C ∈Rn×n

with coefficients {c0,c1, . . . ,cn−1},

C =


c0 c1 . . . cn−1

cn−1 c0 . . . cn−2
...

...
. . .

...
c1 c2 . . . c0

 ,

are

ψm =
n−1∑
k=0

ckρ
k
m , (4.17)

where ρm = exp(−2πi m
n ), m ∈ {0, . . . ,n −1}.

Without loss of generality, since the networked systems in the familyN can have node systems
of any size, we consider a networked system where each node is the same scalar system ẋ(i ) =
ax(i ) + bu(i ), y (i ) = cx(i ), i ∈ N , and all the arcs are associated with the same interconnection
scalar g . Assume that Dout arcs leave each node to reach the previous Dout nodes: there is an arc
leaving node i to node (i −k) mod M for i ∈N and k = 1, . . . ,Dout.

The networked system has the following state matrix:

Ã = aIN + (bIN )(P )(g IM )(R>)(cIN ) = aIN +bg cPR>,
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where [PR>]i j = 1 if there is an arc going from node j to i , [PR>]i j = 0 otherwise. For
this graph structure, Ã is a circulant matrix satisfying Theorem 13, where c0 = a, ck = bg c for
k = 1, . . . ,Dout and the other coefficients are zero. Then, equation (4.17) with m = 0 gives ψ0 =∑n−1

k=0 ck = a +Doutbg c =α+ξA +Dout(µB +ξB )(µG +ξG )(µC +ξC ), where the last equality is ob-
tained by splitting the nominal and the uncertain part in a =α+ξA , b =µB +ξB , c =µC +ξC , and
g =µG +ξG .

By inequality (4.16) the eigenvalueψ0 of matrix Ã is nonnegative, therefore the networked sys-
tem is unstable. Since this system belongs to the family N , this proves the necessity of condition
(4.4).

4.3.5. PROOF OF PROPOSITION 4

Proof. Set U = W −1 and denote by W j the j -th column of W , by Ui the i -th row of U . Then,

‖W D‖1‖D−1U‖1 = max j D j ‖W j ‖1 maxh
∑

i
|Ui h |

Di
= max j

1
z j

maxh ν
>
h z, where the last equality fol-

lows by assuming without restriction that ‖W j ‖1 = 1 (which can be obtained via pre-scaling) and
denoting by z the vector with i -th component zi = 1/Di and by νh the vector with i -th com-
ponent |Ui h |. In the dual case, assuming ‖Uh‖1 = 1 without restriction, ‖W D‖∞‖D−1U‖∞ =
maxi

∑
j |Wi j |D j maxh

‖Uh‖1
Dh

= maxi ν
>
i z maxh

1
zh

, where vector z has i th component zi = Di and
vector νi has j th component |Wi j |.

Then the function to be minimised can be written in the form

φ(z) = max
j

{
1

z j

}
max

h

{
ν>h z

}
,

where νh are non-negative vectors and z > 0 component-wise. Since φ is positively homoge-
neous of order 0 (i.e.,φ(λz) =φ(z) for anyλ> 0), we can find its minimum assuming the additional
constraint

max
j

{
1

z j

}
= 1. (4.18)

Indeed, if zopt > 0 is a minimum, then we can take the maximum 1/z
opt
i∗ = max j 1/z

opt
j and set

λ
.= 1/z

opt
i∗ ≥ 1/z

opt
j for all j . Now, λzopt produces the same minimum value, since φ(λzopt) =

φ(zopt), and satisfies (4.18). Therefore, the additional constraint does not change the result. The
surface in (4.18) can be split into n faces: Fi = {z : zi = 1, z j ≥ 1, j 6= i }, for i = 1, . . . ,n. So we need

to consider n problems of the form minz maxh

{
ν>h z

}
with constraints zi = 1 for i = 1, . . . ,n and

z j ≥ 1 for j = 1, . . . ,n, j 6= i , which can be converted into linear programs. Since all the components
of νh are non-negative, the minimum of the i th problem with zi = 1 is immediately achieved by
choosing the smallest possible value for all other components: z j = 1 for all j 6= i . Hence the initial
pre-scaling, with ‖W j ‖1 = 1 in the 1-norm case and ‖Uh‖1 = 1 in the ∞-norm case, was already
optimal.

4.3.6. PROOF OF PROPOSITION 3

Proof. For diagonal systems, χ2 = 1. Then, the result directly follows from Theorems 11 and 12 in
the 1-norm case, and from Propositions 1 and 2 in the ∞-norm case.
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4.4. CONCLUSIONS
We deal with the topology-independent robust stability analysis of uncertain networked systems
with completely unknown topology (but known maximum connectivity degree). Both the neces-
sary and the sufficient condition provided here are easy to verify in a state-space framework and
are fully scalable, since they can be checked locally and do not depend on the number of nodes
and arcs. Both the systems at the nodes and their uncertainties, as well as the uncertain intercon-
nection matrices at the arcs, can be heterogeneous, thus making these conditions applicable to a
general class of systems.

However, our results are conservative, because they cannot exploit the knowledge of the phys-
ical structure of the uncertainties in the system parameters and interconnections, and tight norm
bounds on the system matrices are hard to obtain.

Since we seek topology-independent results, another unavoidable source of conservativeness
is that we cannot exploit the knowledge of the interconnection and its possibly stabilising effects.
Hence, requiring stability of the individual subsystems is necessary for topology-independent sta-
bility: the system with disconnected nodes is a possible topology. The interconnection may com-
promise the stability of the node systems (as shown in the case-study in Section 4.2). The maxi-
mum connectivity degree naturally appears in our conditions; intuitively, a smaller degree facili-
tates topology-independent stability, because it limits the number of possible topologies among
which the worst case must be considered.

For given nominal systems and uncertainty bounds, conditions (4.3) or (4.5) allow to find the
maximum connectivity degree ensuring topology-independent robust stability; the stability of the
networked system is robust to online modifications of the network, in a plug-and-play framework
[26, 184], provided that the maximum connectivity degree is not exceeded.

Inequalities (4.3) and (4.5) can then be seen as a balance between the stable systems at the
nodes, on the one hand, and the uncertainties and interconnections that can potentially desta-
bilise the overall system, on the other hand. The sufficient condition may not be satisfied because
the spectral abscissa α of the nominal systems at the nodes is not negative enough to counter-
act the possibly destabilising effect of interconnections and uncertainties. Then, local controllers
can be added to move the eigenvalues further to the left of the complex plane, until the sufficient
condition is met.
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5
BACKGROUND ON OPINION

FORMATION MODELS

What happened, happened,
and couldn’t have happened any other way.

Morpheus, The Matrix Reloaded

This chapter introduces fundamental concepts and sets the context for Part 2 of the dissertation,
which focuses on the analysis and development of agent-based opinion formation models. This
chapter also elaborates on the connection between Chapters 6 and 7 and provides details related to
the simulation results.

Parts of this chapter are based on the manuscripts “A framework to analyze opinion formation models" (2022)
[57], and “Classification-Based Opinion Formation Model Embedding Agents’ Psychological Traits" (2023) [58]
by Carlos Andrés Devia and Giulia Giordano.
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5.1. INTRODUCTION, MOTIVATION, AND CONTRIBUTION
The development and analysis of opinion formation models has been an active field of research
since the introduction of the first opinion formation models by French, DeGroot, and Harary [77,
105, 106, 54]. In recent years the study of opinion formation has attracted growing attention [195,
179, 180, 159, 75, 9, 183]. An opinion formation model is a mathematical model aimed at repro-
ducing the evolution of opinions within a population in a given time interval. Increasingly more
sophisticated models have been developed by embedding different concepts such as susceptibility
[78, 79], stubbornness [111, 160], leaders [124, 125], emotions [199, 47], trust [222, 133], bounded
confidence [110], coevolving networks [201, 197], biases [196], polarity [154], assimilation [49, 83,
154, 18], tolerance [65], mass media [42], controversy [23], weighted balance theory [191], curation
algorithms (or recommender systems) [185], among others.

In the resulting models, opinions can be represented by continuous [52, 110] or discrete [132,
202] variables, and can evolve in discrete [77, 54] or in continuous [2, 1] time in a deterministic
[54] or stochastic [152] way, over an underlying interaction graph that can be time-varying [117,
151, 177], directed, weighted, or signed [6]. Although there may be different reasons to construct
mathematical models of opinion formation [69], the ultimate goal is typically to capture the mech-
anisms behind opinion change in society and accurately predict the evolution of real-life opinions
[203, 205]. The literature on opinion formation models is very varied and rich. In this dissertation
we focus on a type of model called agent-based models (ABMs). These models offer a high de-
gree of versatility and flexibility, by allowing individual agents to update their opinions following
a (possibly unique) opinion update law. At the same time, the model evolves over a graph which
can also be analysed and showcase interesting properties.

Agent-based models (ABMs), such as the French-DeGroot model [54], are very common in the
opinion formation literature. In an ABM, every individual holds a different opinion (or vector of
opinions) and interacts with the other agents according to a given function over a network that can
be directed, weighted, or signed. Some examples of agent-based models are those by Hegselmann
and Krause [112], Salzarulo [188], and Deffuant [52], among many others [209, 3, 51, 162, 208]. An
extensive literature [159] proposes and analyses opinion formation models for different types of
agent interactions and network characteristics.

In this dissertation, each agent has a single time-varying absolute opinion, denoted xi [k] for
agent i at time k ∈ N. It is assumed that each opinion belongs to the interval [−1,1] and that its
value represents the level of agreement or disagreement the agent has with a particular statement
(an alternative, equivalent, interpretation is that of polar opinions, where both opinions represent
two competing alternative [7]). Opinion values of +1, −1, and 0 represent complete agreement,
complete disagreement, and indifference, respectively; and intermediate values correspond to less
extreme opinions, i.e. the opinions are absolute, in contrast with relative opinions [41].

When studying the behaviours emerging from these models, the focus is not on individual
opinions but on the overall evolution of opinions in the entire population. Denoting as opinion
distribution the collection of all the opinions within a population at a given time instant, the study
of opinion formation models addresses four main questions:

1. How does the model evolve opinion distributions? (informally, what does the model do to
the opinions?)

2. What opinion distributions can the model produce, and under which conditions? (infor-
mally, what can the model do?)

3. What can be said about the model outcomes when only incomplete information is
known?

4. How realistic is the model?
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Let us examine each one of these questions more closely and answer them for two of the sim-
plest opinion formation models: the Null model, and the French-DeGroot (FG) model.

1. How does the model evolve opinion distributions?: consider the set of all possible opinion
distributions. Any opinion formation model is a map from this set to itself. This question
basically asks, how does this map look like? For the Null model, the answer is simple: the
opinion distributions remain the same, and there is no transformation. Therefore, the map
is the identity. For the FG model, the opinions move closer together and eventually (asymp-
totically) become identical.

2. Which opinion distributions can the model produce and under which conditions?: regarding
an opinion formation model as a map, this question asks about the range of the map and
how it changes depending on the model parameters. Related relevant questions include:
for which model parameters is the range invariant? and can the model produce any possi-
ble opinion distribution (or opinion distribution type) for suitable model parameters? For
the Null model, which has no parameters, the range is the same as the domain, and every
opinion distribution belongs to it. For the FG model, if the underlying digraph is strongly
connected, then the range is contained in the domain. This is because this model cannot
produce for instance, opinion distributions in which half of the opinions are −1 and half are
1.

3. What can be said about the model outcomes when only incomplete information is known?:
one characteristic of social systems is that measuring or estimating their parameters is re-
markably challenging. In a realistic scenario, only partial information about the system
is known, for instance, the set of initial opinions (but not which opinion is held by which
agent, i.e., the allocation of opinions, see Section 5.5.5), the set of agent parameters (but
not their allocation), properties of the initial opinion set, agent parameter set, or underly-
ing digraph. When only incomplete information is available, what can be said about the
model outcomes? For the Null model, all the properties of the initial opinions also hold for
the final opinions. For the FG model, it is known that the final opinions will always belong
to the convex hull of the initial opinions. So, for instance, if the only known information is
that the initial opinions are positive for both models, we can say that the final opinions will
also be positive, independent of any other model parameter.

4. How realistic is the model?: this question can be rephrased as to what degree can the model
reproduce opinion transitions observed in real life? And to answer it, real-life opinion in-
formation is required. The question also depends on the type of opinion formation phe-
nomenon under consideration. For instance, if the model aims to reproduce the opinion
evolution in a team or group, the FG model outcomes are accurate in that teams often reach
a consensus. In contrast, if it aims to reproduce the opinion evolution of a population, it is
often inaccurate, as consensus is not often seen at the broad societal level.

There are two main challenges associated with answering these questions. The first one is
about representation, and the second one is about data analysis:

• Representation problem: For simplicity, assume that the set of opinions an agent can have
is O = {−1,−1+δ, . . . ,1−δ,1} where δ = 2/K for some integer K and that we are analysing
models with N agents. Therefore, the set of all possible opinion distributions is ON , a finite
set. In this case, an opinion distribution is a set of N numbers from O. This complete rep-
resentation of an opinion distribution is not practical to use because it is not intuitive and
is difficult to manage and interpret. With this representation, even comparing two opin-
ion distributions becomes difficult. To formulate questions and statements about opinion
distributions, a more intuitive and practical way to represent them is necessary: we need a
representation that is formal and retains the most relevant information.
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• Data analysis: Assume that the model we analyse guarantees that the predicted opinion
distribution belongs to ON for every possible prediction horizon and model parameters.
Suppose the elements in ON are given an order. Then, for any prediction horizon and model
parameters, the model can be represented by a look-up table that relates the initial opinions
with the predicted opinions. Moreover, suppose the collection of every possible prediction
horizon and model parameters is also ordered. In that case, the opinions predicted by the
model can be arranged in a multidimensional look-up table containing all the information
about the model. In principle, this multidimensional look-up table contains the answers
to every question we might have about the model. However, even if it could be calculated
(which cannot be because it would require too many computations), the answers are hid-
den in a tremendous amount of data. So the challenge is to select which simulations to run
and how to arrange and interpret the results.

In this section we propose a methodology to solve these problems and answer the four afore-
mentioned questions for agent-based opinion formation models. The methodology relies on four
techniques: Histogram-based Sorting Algorithm, Transition Tables, Agreement Plot, and Probabilis-
tic Analysis.

Histogram-based Sorting Algorithm and Transition Tables: We identified perfect consensus
(all individuals share the very same opinion), consensus (all individuals have almost the same opin-
ion), polarisation (presence of two opposed opinion groups), clustering (presence of several dis-
tinct opinion groups) and dissensus (a practically uniform distribution of the opinions) as qualita-
tive categories of opinion distributions that emerge in real life. They recurrently appear in the re-
sults of the World Values Survey [99, 101, 100] (WVS), a research project that explores people’s val-
ues and beliefs by conducting global surveys approximately every 5 years; in particular, we mon-
itored the answers to 30 questions (regarding values, behaviour, and ethics) asked to participants
in 25 countries in three occasions separated by roughly 5 years, these three sets of survey answers
are labeled as wave 5, wave 6, and wave 7 (the years in which each survey wave was conducted
varies with country, however, there are approximately 5 years between two consecutive waves in
the same country: wave 5 spans the years 2005-2009, wave 6 the years 2010-2014, and wave 6 the
years 2017-2022).

These categories are also present in the outcomes produced by different opinion formation
models. For instance, the French-DeGroot model is guaranteed to asymptotically achieve perfect
consensus if the graph is strongly connected [179]. For a structurally balanced digraph, the Altafini
model predicts polarisation if the digraph is strongly connected [6, 166] and consensus near the
origin, if it has a spanning tree [165, 164]. When bounded confidence is added to the model, then
clustering is a likely outcome [109], and if the confidence radius is small enough opinions can
remain in dissensus.

The proposed Histogram-based Sorting Algorithm associates an opinion distribution with a
qualitative category. Histogram-based sorting has been used in many fields, especially related to
image processing [187, 28]; yet, to the best of our knowledge, this is the first time it is adopted in
an opinion-dynamics setting. Second, we construct a Transition Table to visualise how opinion
distributions evolve over time from an initial to a possibly different final qualitative category.

Transition Tables are used to assess and analyse known opinion formation models and com-
pare their prediction with real data. To do this, we compare real-world data, representing opinion
distributions at different sampling times (waves) taken from the World Values Survey [99, 101, 100],
with the predictions provided by various well-known opinion formation models: French-DeGroot
[77, 54], Weighted Median [163], Bounded Confidence [53, 215, 216], and Quantum Game [55]
models.

An extensive literature deals with model comparison based on Bayesian analysis: Bayes fac-
tor [37, 139, 128], Bayesian evidence [122], and Bayesian methods such as the Lv measure [148].
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Model comparison statistics [147] can be based on the information criterion [212] or the deviance
information criterion [200]. These statistical model comparisons aim at selecting the model that
fits at best a given data set. Conversely, simulation-based model comparison directly compares
the outcomes of two or more models without fitting real data [48, 186].

As a main novelty, we propose a peculiar simulation-based framework that compares opin-
ion formation models not in their ability to reproduce a given data set, but in their capability to
generate a spectrum of qualitative behaviours that is as broad as the one observed in real life.

Our results provide insight into real-life opinion evolution and comparatively assess different
opinion formation models. They reveal that, while all transitions between qualitative categories
occur in reality, existing models can only yield some peculiar transitions and are characterised by
a bias towards consensus that cannot be found in real opinion data. This observation, and other
qualitative comparisons, can also identified by the tools presented in the next chapters.

A specific application for the Histogram-based Sorting Algorithm and Transition Tables is to
characterise opinion evolutions seen in real life for populations with different backgrounds and
try to relate these evolutions with societal context. So, for instance, in a society that benefits from
significant economic growth, the opinion regarding government economic policies may shift from
polarisation to consensus, reflecting the fact that most individuals approve these policies.

Agreement Plot: besides labelling an opinion distribution using the Histogram-based Sorting
Algorithm, another intuitive and helpful representation of an opinion distribution is by its mean
and the mean of the opinion absolute values. Plotting this point in the Cartesian plane results in
what we call the Agreement Plot. The mean of the opinion absolute values measures the popula-
tion’s interest in a statement. If it is near 1, then the agent’s opinions are near −1 or 1, meaning
strong agreement or disagreement, i.e. the agents care a lot about the statement. On the contrary,
if the mean of the opinion absolute values is close to 0, then the agents are mostly indifferent. On
the other hand, the mean of the opinions gives information on what the general average opinion
is.

A crucial advantage of the Agreement Plot is that, by reducing a complete opinion distribution
to a single point in the Cartesian plane, it is possible to plot multiple opinions at once. This allows
for plotting and comparing multiple opinion evolutions for different initial opinions, agent pa-
rameters, and underlying networks. This flexibility enables a high-level analysis of the model be-
haviour for various parameters and, consequently, the identification of patterns and model prop-
erties.

A specific application for the Agreement Plot is to give a measure of the capacity that a given
opinion formation model has to produce different opinions. This can be done thanks to the fact
that all opinion distributions have a representation in the triangle with vertices (0,0), (1,1), and
(1,−1). Therefore, ‘measuring’ how much ‘area’ an opinion formation model can cover enables us
to assess the model versatility and capacity to produce rich results.

Probabilistic Analysis: in the context of opinion dynamics, we often have access to only lim-
ited information. For instance, only the mean of the initial opinions is known, or only the variance
of the agent parameters. In these cases, making statements on the model outcomes is still pos-
sible. For instance, for the French-DeGroot model, the variance of the predicted opinions will be
lower than that of the initial opinions, independent of the initial opinions’ exact value.

When limited information is available, no precise statements can be made about the final
opinion distribution. Instead, the statements become probabilistic; starting with incomplete in-
formation, there is a certain probability that the predicted opinions will have a given property or
qualitative characteristic. This is the approach taken in the Probabilistic Analysis technique.

A specific application for the Probabilistic Analysis is to identify combinations of agent param-
eters and initial opinions that produce results unexpected from certain opinion formation models.
For instance, the Friedkin-Johnsen model is known for its tendency to produce consensus, so it is
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interesting to know whether, for suitable parameters, the model can produce polarisation or clus-
tering.

The Agreement Plot and Probabilistic Analysis techniques are used to study and analyse three
agent-based opinion formation models: the Friedkin-Johnsen, Bounded Confidence, and Backfire
Effect and Biased Assimilation models [79, 110, 45]. The results provide insight into the intrinsic
properties of the models and exemplify the application of these techniques to agent-based models.

The application of the proposed methodology and the obtained results are detailed and ex-
plained in Chapter 6. After introducing this methodology and applying it to known opinion forma-
tion models, we present our own agent-based opinion formation model, the Classification-based
model. Two novel features characterise this agent-based model.

1. Even if the agents communicate, and openly express their real opinion, it is impossible for
an agent to exactly measure and quantify the opinion of another. Therefore, the model
introduces a classification-based approach, supported by the empirical finding that the as-
sessment of the opinion of others depends on the perceived distance to those others [191]:
each agent classifies its neighbours in different groups according to their perceived opin-
ion, distinguishing between those that agree much more, or more, or comparably, or less, or
much less (than itself) with a given statement.

The fact that agents don’t have access to the exact opinion of their neighbours with infinite
resolution and accuracy has been taken into account by models with quantised opinions
[167, 40], while threshold models [95, 96] could be seen as adopting a classification ap-
proach because the opinion update law depends on the number of neighbours expressing
a particular opinion or action. Our classification-based approach is based not on the opin-
ion of an agent’s neighbours, but on the weighted difference between the opinion of the
agent and of its neighbours, accounting for the finite resolution with which agents perceive
the opinions of their neighbours. Also in opinion formation models with private and public
opinions [168, 10, 192, 65, 17] the agents cannot have perfect access to the real opinion of
their neighbours. However, there is a critical difference. In these models, the agents can
choose which public opinion they show, with certainty that it will be the opinion perceived
by others, and hide their true private opinion: the misperception is intentional. Conversely,
in our model, the misperception is unintentional and unavoidably caused by the inability
to communicate with infinite accuracy: the agents wish to show as openly as possible their
opinion, which still cannot be perceived with infinite resolution, and the other agents can
only perceive the range in which the opinion falls, which depends on both the agent that
expresses the opinion and the one that assesses it. Therefore an agent cannot know with
certainty how its opinion is perceived by others. Also in the Continuous Opinions and Dis-
crete Actions model [156], the mismatch between real and perceived opinions is intentional
and due to the agents purposefully hiding their actual opinion to others (each agent con-
trols the action it takes and consequently how its opinion is perceived by its neighbours),
while in the classification-based model the mismatch is due to the intrinsically imperfect
perception mechanism.

To reflect imperfect communication in the model, our proposed solution of classifying the
opinion of others in one of five categories is inspired by the field of psychometrics: in ques-
tionnaires, the responses quantify opinions according to discrete scales. Likert scales are a
standard psychometric scale used to analyse surveys, which in turn are the typical approach
to measure the opinions of individuals in a population. In our model, the process of agent
i assessing the opinion of agent j yields, at each time step, the answer to a five-point Lik-
ert question, which asks how much agent j agrees with a statement, compared with agent i ,
where the possible answers are: Agrees much more, Agrees more, Agrees the same, Agrees less,
and Agrees much less. For certain specific questions and specific social groups and connec-
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tions, the perception may be sharper, while in other cases it may be less sharp; also, some
agents may have a sharper perception than others. Five levels are chosen as a compromise
resolution to account for the perception skills of the average agent interacting with an av-
erage neighbour. Still, the model could be modified to consider more than five levels, thus
accounting for agents with a sharper average perception, and differentiating the sharpness
of perception for different agents could also be interesting future work.

2. Each agent behaves according to a combination of three internal traits based on well stud-
ied sociological and psychological concepts: conformisms, radicalism, and stubbornness.

• Conformism: agents tend to agree with their neighbours. This behaviour was first
shown in the conformity experiment by Asch [14, 15, 16] and evolved into social con-
formity theory [137]. A similar behaviour is supported by the cognitive dissonance
theory [73, 161].

• Radicalism: agents do not care if their opinion is different from their neighbours’. On
the contrary, their opinion is strengthened by the presence of agents with a similar
opinion, which reinforce their beliefs; this is known as the persuasive argument the-
ory, which supports several polarisation models [157, 135, 153, 83, 178].

• Stubbornness: agents refuse to change their opinion; this type of behaviour has
been often present in opinion formation models starting from those by Friedkin and
Johnsen [81, 79].

In our proposed model, the behaviour of each agent is determined by a combination of
these three traits: in fact, actual people are not completely conformist, radical, or stubborn,
but everyone is characterised by a peculiar blend of these three traits. The inclusion of the
radical trait can be seen as an extension of the model by Friedkin and Johnsen [81, 79],
which includes both conformist and stubborn traits.

The proposed model evolves over an invariant, directed, signed and unweighted network.
Signed edges are interpreted as in structural balance theory [5, 218, 36]: an edge from agent j
to agent i is positive if agent i approves, trusts, or follows agent j , whereas it is negative if agent i
disapproves, distrusts, or antagonises agent j .

Despite significant research efforts in the development and analysis of opinion formation
models, empirical validation is often lacking, and has been identified as one of the frontiers of
opinion modelling [75]. In most cases, just an analytical or numerical characterisation of possi-
ble opinion evolutions is provided and, with some exceptions (most notably the Friedkin-Johnsen
model [79, 81]), there are no systematic comparisons with real world behaviours.

The problem of identifying individual-level parameters (in the model we propose, the agent
inner traits, see Section 7.2.3) from population-level data (survey results in the problem consid-
ered in Section 7.2.3) is known as the inverse problem [126] and arises, in the context of opinion
dynamics, for any agent-based model, also when estimating agent interactions [155] and under-
lying networks [108] from data. An approach to solve the inverse problem using survey results
relies on evolutionary algorithms [65]; other papers taking into account survey results or empir-
ical data in the study of opinion formation models include those by Banisch and Shamon [18],
Chattoe-Brown [42], Baumann , Lorenz-Spreen , Sokolov, and Starnini [23], and Martins [156].

In Chapter 7, we describe our Classification-based model and we assess its potential to predict
opinion evolution in real-life settings using data from the World Values Survey [99, 101]. Our main
purpose is to present a new opinion formation model; through the comparison with real data,
we identify parameter choices showing that the model has the potential to accurately predict real
opinions starting from a variety of different initial opinions, but this does not fully or univocally
solve the inverse problem [126].
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5.2. GRAPHS AND OPINIONS
A directed graph (digraph) G with N vertices can be represented by a set of vertices V = {1, . . . , N }
and a set of edges E ⊆ {(i , j ) : i , j ∈ V}, where the pair (i , j ) represents an edge from vertex j to
vertex i .

In the context of opinion dynamics, the vertices correspond to individuals, each associated
with a time-varying opinion (individual i at time k has opinion xi [k]) and the edges correspond to
interactions, each with a possibly time-varying sign and weight (wi j [k] represents the influence
that individual j exerts over individual i at time k).

For all the considered models, the opinions will belong to the interval [−1,1], namely, xi ∈
[−1,1] for all i ∈ V. The edge properties (sign, weight, time-dependence) depend on the model,
for details see the information on each model provided in Section 5.3.

For every model, each individual is assumed to have self-confidence wi i > 0 (for all i ∈ V),
which represents the persistence of belief in its own opinion. In the remainder of the Part 2, the
terms agent and vertex will be used interchangeably. All the simulations evolve over strongly con-
nected digraphs with different topologies, including: (Generalised) Ring, Complete, Small-World,
Scale-Free, Lattice, and Random graphs. More on these graph topologies will be explained in Sec-
tion 5.4.

The edge weights can be arranged in a V× V matrix W , where the coefficient in row i , column
j is Wi , j = wi , j . For edges not present in E, the weight is assumed to be zero. This representation
is particularly useful when expressing opinion formation laws in matrix form, or when computing
network metrics. In the reminder of the dissertation, this matrix representation of the digraph will
be used. Matrix W is the weighted adjacency matrix. Every digraph has a topology, associated
with the adjacency matrix with all non-zero weights set to one (in other words, an unsigned and
unweighted adjacency matrix). The digraph topology provides information on how the agents are
connected. For more information about the considered topologies see, Section 5.4.

5.3. OPINION FORMATION MODELS
All the opinion formation models we consider evolve in discrete time. Here we provide an overview
of the opinion update rules for the considered models: French-DeGroot [179, 77, 54], Weighted-
Median [163], Bounded Confidence [110], Quantum Game [55], Friedkin-Johnsen [79], and Back-
fire Effect and Biased Assimilation [45]. This is not a comprehensive explanation or description of
the models: for more details, see the cited papers.

5.3.1. FRENCH-DEGROOT MODEL
At every time step, the opinions of each individual are updated according to the rule:

xi [t +1] = ∑
j∈V

wi j x j [t ], ∀i ∈ V.

The associated weight adjacency matrix W is time-invariant and row stochastic, meaning that
all the coefficients belong to the interval [0,1] and the row sum is 1 for every row. This has the
interpretation of ‘partitioning’ the total influence or attention a given agent can have. For more
details see [179, 77, 54].

5.3.2. WEIGHTED-MEDIAN MODEL
At every time step, only the opinion of a single individual is updated. This individual is chosen
randomly and moves to the opinion of another individual selected as follows:

xi [k +1] = x∗,
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where x∗ ∈ {x1[k], . . . , xN [k]} is the opinion satisfying

∑
j :x j [k]<x∗

wi j ≤
1

2
, and

∑
j :x j [t ]>x∗

wi j ≤
1

2
.

If more than one opinion satisfies these inequalities, then x∗ is taken as the opinion closest to
xi [t ].

For this model, matrix W has the same properties as the one for the French-DeGroot model.
For more details see [163].

5.3.3. BOUNDED CONFIDENCE MODEL
This model is similar to the French-DeGroot model; however, at every time step, agent i is influ-
enced by agent j if and only if |xi − x j | ≤ ri , where ri is the confidence radius of agent i . Mathe-
matically the model evolves according the the following equation:

xi [k +1] = ∑
j∈V

wi j [k]x j [k], wi j [k] =
{

1
|Ni | if |xi [k]−x j [k]| ≤ ri

0 otherwise
∀i ∈ V,

where Ni = { j ∈ V : |xi [k]− x j [k]| ≤ ri }, and |Ni | is its cardinality. The Bounded Confidence
model can be interpreted as the French-DeGroot model where the digraph is time-varying. At each
time step, matrix W is still row-stochastic. Edges can be created and removed, therefore the whole
network topology changes with time, not only the edge weights. For more details see [110].

5.3.4. QUANTUM GAME MODEL
In this model, at each time step two randomly chosen agents interact pairwise. In each interaction
the agents have three options: Keep (keep their opinion), Change (take the other agent opinion),
and Agree (take an intermediate opinion). The action each agent decides to take depends on the
payoff. In this quantum model the payoff matrices depend on parameters a, b, c and the initial
entangled state |ψin〉. For the simulations shown in the dissertation, the values of the parameters
are a = 1, b = 3, c = 1, and |ψin〉 =

p
1/2|00〉 + (1/2)|11〉 + (1/2)|22〉. Denoting by d the opinion

distance between agents, the opinion formation law reduces to the following:

• If d < 0.25, then the unique Nash Equilibrium is to Agree, hence the new opinion of both
agents is the mean of their previous opinion.

• If d ≥ 0.25, then the Nash Equilibrium with greatest payoff is to Keep, hence the new opinion
of both agents is the same as their previous opinion.

For more details, see the referenced paper.
This type of model does not have an underlying digraph: two agents are chosen at random to

interact, without regard of a possible underlying network structure.

5.3.5. FRIEDKIN-JOHNSEN MODEL
This model generalises the French-DeGroot model, by including for each agent a parameter called
susceptibility. The susceptibility of agent i ∈ V is denoted by λi ∈ [0,1]. According to the Friedkin-
Johnsen model, the opinion of agent i evolves as

xi [k +1] =λi

( ∑
j∈V

wi j x j [k]
)
+ (1−λi )ui , ∀i ∈ V,

where ui is called the prejudice of agent i . Throughout this dissertation, ui = xi [0]. If λi = 1
for all agents, then we get the French-DeGroot model. Correspondingly, the digraphs used in the
Friedkin-Johnsen model are time-invariant and row-stochastic. For more details see [79].
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5.3.6. BACKFIRE EFFECT AND BIASED ASSIMILATION MODEL
This model is also a generalisation of the French-DeGroot model, modified to represent backfire
effect and biased assimilation. Backfire effect occurs when, after agents i and j communicate,
their resulting opinions are more distant than before their interaction. Biased assimilation is a
form of homophily, in that it represents the tendency to be more influenced by neighbours that
think like us.

Both these mechanisms are represented by the entrenchment parameter, a positive number
associated with each agent: βi > 0. If βi is small then it means that the agent’s backfire and biased
assimilation tendencies are low, and as βi increases so do the strength of these tendencies.

The opinion of agent i evolves as follows:

xi [k +1] =
sgn(xi [k]) if

∑
j∈V wi j [k] ≤ 0∑

j∈V wi j [k]xi [k]∑
j∈V wi j [k] otherwise

and the edge weights evolve as follows:

wi j [k] =
{
βi xi [k]x j [k]+1 if wi j [0] 6= 0,

0 if wi j [0] = 0.

Hence, edges that were not present in the initial digraph cannot be added, and the edges that
were present may change sign and weight (for some specific opinions, the edge could become zero,
effectively removing the edge for that time step), meaning that the topology remains approximately
the same. For more details see [45].

5.4. DIGRAPH TOPOLOGY
As previously mentioned, the topology of a digraph determines how the agents are connected
among themselves. In Part 2 of the dissertation, only digraphs with one of the following topologies
are considered:

1. (Generalised) Ring: a Ring digraph is the same as a Directed Cycle graph. In these digraphs,
all the agents can be arranged in a circle and connected to the agent in front (moving clock-
wise). We can generalise this concept in several ways, for instance connecting to the N
agents in front or connecting to some of the agents in front. The connections can also be
made bidirectional. If all the connections are bidirectional, we say that the digraph is undi-
rected. In this dissertation, all Ring topologies are generalised: a Ring topology can always
be a Generalised Ring topology. Examples of these digraphs can be seen in Figures 5.1b,
5.1c, and 5.1d.

2. Complete: every agent is connected to all the others. Equivalently, matrix W has no zero
coefficients. See Figure 5.1a.

3. Small-World: this type of topology is built starting with a Generalised Ring and then go-
ing through all the edges and changing their end-point with a given probability. This is an
extension of the Watts-Strogatz mechanism to construct directed graphs. A high clustering
coefficient and low average path length characterise these topologies. Some examples can
be seen in Figures 5.1e and 5.1i.

4. Scale-Free: this type of topology is built starting with an initially connected digraph. As
new vertices are added, these are connected to the existing vertices with a probability pro-
portional to the in-degree of the existing nodes (this is the Barabási–Albert model). In these
topologies, the clustering coefficient follows a power-law of the number of vertices. For an
example, see Figure 5.1h.
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(a) Digraph with Complete topology bla
bla bla bla bla bla

(b) Directed Ring 1: digraph with a Ring
topology

(c) Directed Ring 2: digraph with a Ring
topology

(d) Undirected Ring: digraph with a Ring
topology

(e) Small-World 1: digraph with a Small-
World topology

(f) Digraph with Random topology bla
bla bla bla bla bla

(g) Digraph with Torus Lattice topology
bla bla bla bla bla bla

(h) Digraph with Scale-Free topology bla
bla bla bla bla bla

(i) Small-World 2: digraph with a Small-
World topology

Figure 5.1: Examples of digraphs with the topologies considered in Part 2. Some topology metrics of these
digraphs are presented in Table 5.1. An explanation about how these metrics are computed can be found in
Appendix A (Section 7.4). All the presented digraphs have 100 vertices. All the simulation results presented
in Part 2 of this dissertation use 100 agents, except for Sections 6.1 and 6.2, for more information see Section
5.5.4.

5. (Torus) Lattice: Lattice topologies follow a regular pattern. For every Lattice digraph in
this dissertation, vertices are arranged in a square grid and connected to the nearest four
neighbours. A standard regular lattice has a boundary, and the agents at the border have
fewer neighbours. An option to solve this is to connect the boundaries so that the system
is ‘closed’ and every agent has the same number of connections. We call the result a torus
lattice. For an example, see Figure 5.1g.

6. Random: as the name implies, in these topologies, the edges are created randomly. Every
possible edge exists with a given probability. See Figure 5.1f.

Figure 5.1 shows examples of digraphs with the topologies mentioned earlier.
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Digraph APL D CC σ(CC ) #E δout σ(δout ) δi n σ(δi n) BC

Complete 1 1 1 0 10000 100 0 100 0 1
Directed Ring 1 10.404 20 0.5 0 600 6 0 6 0 0
Directed Ring 2 5.4545 10 0.5 0 1100 11 0 11 0 0
Undirected Ring 5.4545 10 0.66667 0 1100 11 0 11 0 1

Small-World 1 2.0365 3 0.17538 0.0020628 1435 14.35 6.553 14.35 6.553 0.69513
Random Network 1.8129 3 0.20122 0.00057076 2083 20.83 17.4961 20.83 15.7385 0.21785

Torus Lattice 5.0505 10 0 0 500 5 0 5 0 1
Scale-Free 5.6893 14 0.67 0.22333 298 2.98 5.0905 2.98 5.0905 1

Small-World 2 1.6778 2 0.32651 0.00036845 3290 32.9 15.2828 32.9 14.6162 0.65078

Table 5.1: Metrics for the different digraph topologies considered in Sections 5.4 and 6.3, and shown in Figure
5.1. The reported metrics are Average Path Length (APL), Diameter (D), Mean clustering (CC ), Clustering vari-

ance (σ(CC )), Number of edges (#E), Mean out-degree (δout ), Out-degree variance (σ(δout )), Mean in-degree

(δi n ), In-degree variance (σ(δi n )), and Bidirectional Coefficient (BC). All the metrics correspond to digraphs
with 100 vertices. All the simulation results presented in Part 2 of this dissertation use 100 agents, except for
Sections 6.1 and 6.2, for more information see Section 5.5.4.

Although we consider digraphs with all these topologies in Part 2 of the dissertation, we use
only Small-World topologies when investigating the model capabilities to predict opinion evolu-
tions seen in real life (Section 7.2.3). A significant body of literature backs up the decision to evolve
the models over Small-World networks [134, 120, 86], because the two main features of Small-
World networks (high clustering coefficient and low average path distance) are typically observed
in real-life interactions.

As mentioned, the various topologies have specific features that can be highlighted by com-
puting some metrics, such as the clustering coefficient, average path length, and diameter. Ap-
pendix A (Section 7.4) explains how we calculated these metrics. Table 5.1 reports the values of
these metrics for examples of networks with the previously described topologies.

A brief explanation of the meaning of these metrics is as follows:

• Average path length (APL): the average number of edges connecting any two vertices. It is
a positive number greater than or equal to one. The only topology for which it is one is the
Complete topology, where every agent is connected to all the others. In general, the greater
this number, the more dispersed the agents are.

• Diameter (D): the maximum length of a path connecting any two agents. It is a positive
integer. As with the APL, the greater this number, the more dispersed the agents are.

• Clustering mean and variance (CC and σ(CC ) respectively): each agent has an individual
clustering coefficient, which measures the proportion of neighbours that are neighbours
among them. Since each agent has a single coefficient, it is possible to compute the mean
and variance of these numbers to obtain the clustering mean and variance. The mean of
the agent’s clustering coefficients is also called the clustering mean and measures how in-
terconnected the agents are. It is a number between 0 and 1, where 0 means no two con-
nected agents have a common neighbour and 1 means complete connectivity (this can only
happen in the Complete topology). The clustering variance measures how diverse are the
individual clustering coefficients in the network. A low variance indicates a largely homo-
geneous network, whereas a high variance means a diverse network.

• Number of edges (#E): it is the number of edges of the digraph. It is an indirect measure of
how connected the digraph is.

• Mean degree (δout and δi n ): each agent has an individual in-degree and out-degree, the
number of edges that point to the agent or that exit the agent, respectively. The two mean
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degrees give information on how interconnected the agents are. If edges are allowed to
enter and exit vertices ‘outside the system’, these two numbers can be different. If every
edge is constrained to enter or leave one of the nodes in the system, both numbers are
equal.

• Degree variance (σ(δout ) and σ(δi n )): the variance of in- and out-degrees provides an idea
of how distributed the influences are in the network. If the variance is low, every agent com-
municates with approximately the same number of agents; thus, they all have comparable
influence. On the contrary, if a subgroup of agents has a much higher degree, they can be
perceived as highly influential over the network.

• Bidirectional coefficient (BC): the proportion of edges for which there exists an edge con-
necting the same vertices in the opposite direction.

It is essential to distinguish between topology metrics and digraph metrics. Every digraph has
a topology; therefore, it is possible to compute topology metrics for every digraph. However, be-
cause the edges in a digraph can have signs and weights (unlike in a topology), not every digraph
metric is topological. For instance, if the edges are signed, it is possible to compute the balance in-
dex. Because different signed digraphs with the same topology can have distinct balance indices,
the balance index is a digraph metric but not a topological metric. Every metric shown in Table 5.1
is topological.

5.5. ADDITIONAL NOTES ON THE SIMULATION RESULTS
There are five possible sources of confusion that we take the opportunity to clarify now:

5.5.1. MODEL NAMES
In Part 2 of the dissertation 7 opinion formation modes are analysed. Besides their complete name,
all of them also have a shorthand name that is used mainly in tables, figures, or to make the
text more legible. The names of the models and their corresponding shorthand notation are, in
no particular order, French-DeGroot (FG), Friedkin-Johnsen (FJ), Quantum Game (QG), Bounded
Confidence (BC), Backfire Effect and Biased Assimilation (BEBA), Weighted-Median (WM), and
Classification-based (CB). The first 6 models are presented in Section 5.3, whereas the last model
is introduced and explained in Chapter 7.

5.5.2. HISTOGRAM-BASED SORTING ALGORITHM DIFFERENCE
In Chapter 6 the Histogram-based Sorting Algorithm is introduced. When comparing this algo-
rithm with the one published in [57], in the latter the last step is missing. This is because in the
time between the publication of that paper and this dissertation that last step was added. This can
be confusing, as the results presented both in the paper and the dissertation are the same. This
is because that additional step introduces a change that is only relevant for a particular class of
histograms, which is not present in the histograms analysed in [57]. Therefore the results remain
the same.

5.5.3. USE OF WORLD VALUES SURVEY DATA
We used the results of the WVS data on two occasions: first, in the computation of real Transition
Tables (Figure 6.3) and then in the Model Validation with Real Data (Section 7.2.3). In both cases,
we considered the same 30 questions of the questionnaries (the questions reported in Table 7.19);
however, in the two cases, we considered different countries (See Tables 7.17 and 7.18)

For the Transition Tables, we considered the answers from 25 countries. However, not all 30×
25 = 750 possible combinations of question-country pairs had answers for the three waves (Waves
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5, 6, and 7), which is why Figure 6.3 considers only 675 question-country pairs (only question-
country pairs with answers in the three waves were used). On the other hand, Section 7.2.3 uses
the answers from waves 5 and 6. In this case, we selected 26 countries such that every question-
country pair had answers in these two waves. This is reflected by the fact that Table 7.24 does not
have empty cells. The list of 25 (respectively, 26) countries considered in the first (resp. second)
occasion is reported in Table 7.17 (resp. Table 7.18).

It is important to note that for every question-country pair the number of survey answers was
not the same. To address this, and make meaningful comparisons, the opinion distributions were
rescaled so that the overall distribution remained approximately the same (the form of the his-
togram did not change significantly) for a different number of agents. This rescaling is valid if
the original histograms are assumed to be accurate representations of the society opinion, since
in that case, sampling a different number of people should not significantly change the resulting
opinion distributions.

5.5.4. COLLECTIONS OF UNDERLYING DIGRAPHS
Different reported simulation results use separate collections of underlying digraphs. Here we
distinguish them:

• To construct the Transition Tables reported in Figure 6.4, 15 initial digraphs were used. Of
these 15 digraphs, 5 have 100 vertices, 5 have 500 vertices, and 5 have 1000 vertices. All
digraphs are strongly connected and were constructed based on the Watts-Strogatz Small-
World graph model. All the associated matrices are row-stochastic.

• For all the results presented in Section 6.3, a collection of 45 different digraphs were used
(each with 100 vertices). This collection can be separated into 9 groups of 5 digraphs. Every
digraph in each group has the same topology and differs only in the edge weights (all the as-
sociated matrices are row-stochastic, since the model is Friedkin-Johnsen). The considered
topologies are Complete, Directed Ring (two different ones), Undirected Ring, Small-World
(two different ones), Random, Torus Lattice, and Scale-Free. We present some metrics for
these topologies in Table 5.1.

• The results presented in Section 6.4 use a collection of 1000 different strongly connected
digraphs with Small-World network topology (each with 100 vertices). Figure 6.14 shows
some of the characteristics of these digraphs.

• In Section 6.5.1, the Agreement Plot analysis uses 9 digraphs (each with 100 vertices), which
have the same topology as the digraphs in Section 6.3. This is because the digraph topology
for the BEBA model is constant, while the weights and signs can change; therefore, for each
topology, only one digraph is necessary. The Probability Analysis in Section 6.5.1 uses a
collection of 1000 digraphs with the same topology as the collection used in Section 6.4.

• In Section 7.2.3, we use a collection of 35 different digraphs (each with 100 vertices). All
the digraphs are strongly connected and have Small-World topology. This collection can be
divided into 7 groups, each containing digraphs with the same topology and different edge
signs. We report the metrics for this collection of 35 digraphs in Table 7.1.

• In Section 7.2.5, the Agreement Plot analysis uses 45 digraphs (each with 100 vertices) which
can be divided into 9 groups, each with the same topology as the digraphs in Section 6.3.
The Probability Analysis in Section 7.2.5 uses a collection of 1000 digraphs with the same
topology as the collection used in Section 6.4, and the considered digraphs are signed and
unweighted.
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5.5.5. AGENT OPINION AND PARAMETER ALLOCATION
When simulating an opinion formation model with N agents, five elements are required:

1. Interaction network: it encodes how the N agents communicate. The interaction network
is represented by a graph with N vertices, where each vertex corresponds to an agent. In
general, we denote this graph by G. In the Friedkin-Johnsen case, it is a directed, unsigned,
weighted graph associated with a N ×N row-stochastic adjacency matrix.

2. Set of initial opinions: a set of N real numbers representing the initial opinions of the pop-
ulation.

3. Set of agent parameters: a set of N tuples, each corresponding to the parameters describ-
ing the behaviour of agent. In the Friedkin-Johnsen model, it is a set of N numbers in the
interval [0,1] representing the agent’s susceptibility.

4. Initial opinion allocation: it dictates which initial opinion corresponds to each agent, by
means of a one-to-one correspondence between elements in the initial opinion set and
vertices in V.

5. Agent parameter allocation: it designates which parameters each agent has, by means of a
one-to-one correspondence between elements in the agent parameters set and vertices in
V.

Usually, the initial opinion and agent parameter allocations are implicit: in code implemen-
tations, the vertices, by default, have an ordering and managing the sets of initial opinions and
agent parameters using vectors also gives them an order. So the allocation is simply the identity.
Also, when referring to initial opinions and agent parameters, we do not mention allocation since
it is assumed that the opinions and parameters are assigned to the network vertices in some irrel-
evant way. Opinion allocation is not limited to the initial opinions but has the same interpretation
throughout the complete opinion evolution process: opinion allocation is the association between
opinion values and vertices in the network structure.

The allocation, however, is an essential piece of information, since it can radically change the
outcome of an opinion formation model. Besides being critically important, measuring or esti-
mating it in real societies is exceptionally challenging. This is why we mention it in Section 6.4 in
the Probability analysis, as it typically is part of the information not available when making pre-
dictions on the qualitative outcomes of opinion formation models.
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ANALYSIS OF AGENT-BASED

OPINION FORMATION MODELS

Choose not to be harmed, and you won’t feel harmed.
Don’t feel harmed and you haven’t been.

Marcus Aurelius

This chapter introduces a methodology to analyse the evolution of opinion formation models. The
proposed methodology is based on four techniques: Histogram-based Sorting Algorithm, Transi-
tion Tables, Agreement Plot, and Probabilistic Analysis. Collectively, these techniques allow for a
comprehensive qualitative characterisation of agent-based opinion formation models. This char-
acterisation includes the opinion transformations the model predicts, the capability of the model to
produce different qualitative types of opinion distributions, and their relation with real data. Fur-
thermore, the proposed methodology can be applied also to real opinion data, to gain insight into
how opinions evolve in real societies.

The chapter starts by introducing the Histogram-based Sorting Algorithm, which is a way to classify
sets of opinions into one of five qualitative opinion categories that were identified from the World
Values Survey data: perfect consensus, consensus, polarisation, clustering, or dissensus. This sort-
ing allows for an intuitive interpretation and simplified handling of opinion sets made up of pos-
sibly hundreds of numbers. Next, the sorting algorithm is applied in the Transition Tables, which
capture the qualitative evolution of the opinion distribution between an initial and a final time.
The use of Transition Tables for survey data reveals patterns in the evolution of real opinions and
their comparison with model predictions allows for improvement and validation of the model.

Following the Transition Tables, the concept of Agreement Plot is introduced. This third technique
is an intuitive visual representation of a collection of opinion sets, which can be used in a variety of

This chapter is based on the paper “A framework to analyze opinion formation models" (2022) [57], by Carlos
Andrés Devia and Giulia Giordano, and on the work-in-progress paper “Graphical and Probabilistic Analysis of
Agent-Based Opinion Formation Models" [59], by Carlos Andrés Devia and Giulia Giordano
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ways. It can provide further insight into the sorting algorithm by showing that the different qualita-
tive categories can be seen too in the Agreement Plot. It visualises ‘where’ real opinions can be found,
and shows which opinions a model can produce. The fourth technique, Probabilistic Analysis, aims
to describe the possible transitions an opinion distribution may undertake when only incomplete
information on the opinions, agent parameters, and network is known.

All the techniques are applied to a variety of opinion formation models, from classical models such
as the French-DeGroot, Friedkin-Johnsen, Bounded Confidence model, to more recent models such
as the Weighted-Median, Quantum Game, and Backfire Effect and Biased Assimilation model. The
results presented in this chapter not only illustrate the use of the presented techniques but also pro-
vide insight into the evolution of real-life opinions and highlight key directions to improve opinion
formation models.
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6.1. OPINION DISTRIBUTION CLASSES AND TRANSITION TA-
BLES

We denote as opinion the level of agreement with a statement. The opinions that an individual
can have belong to the interval [−1,1], where the values −1, 0, and 1 respectively denote complete
disagreement, indifference, and complete agreement with the statement. Given a population of N
individuals, each having an opinion about a statement, the set containing the opinions of all the
individuals in the population is called an opinion distribution, which belongs to one of our iden-
tified qualitative categories, exemplified in Figure 6.1: perfect consensus, consensus, polarisation,
clustering, and dissensus. Their mathematical definitions, provided in the following, are inspired
by these informal definitions (where by majority we denote more than 50% of the population):

• perfect consensus: the majority chooses the very same opinion.
• consensus: the majority chooses approximately the same opinion.
• polarisation: the majority is split between two ‘distant’ opinions.
• clustering: the majority is split between two or more groups.
• dissensus: the majority of the opinions are uniformly distributed.

These categories of opinion distributions capture an increasing level of inhomogeneity. When
all the individuals have the exact same opinion (perfect consensus), there is perfect homogene-
ity. Starting from perfect consensus, progressively increasing inhomogeneity leads to consensus,
polarisation, clustering, and lastly dissensus. When every opinion is held by the same number
of people (perfect dissensus), inhomogeneity is maximal and no preference whatsoever can be
identified.

6.1.1. OPINION DISTRIBUTION SORTING
An opinion distribution can be visualised as a histogram with M bins, which can then be sorted
(namely, “classified”) so as to determine to which qualitative category the opinion distribution
belongs. This process is performed by our proposed Histogram-based Sorting Algorithm:

1. Input the positive integers M , B < M and K ≤ M −2, and the thresholds T1, T2 with 0 < T2 <
50 ≤ T1 < 100.

2. Partition the [−1,1] interval in M bins of equal width.
3. Count how many opinions fall in each bin. Denote by H(k) the number of opinions in bin

k (1 ≤ k ≤ M).
4. Normalise the bin counts so they add up to 100. Denote the normalised bin counts by H̃(k).
5. Classify each bin as green, blue, or red: bin k is green if H̃(k) > T1; blue if H̃(k) < T2; red

otherwise.
6. Compute the number of groups; a group is formed by consecutive green or red bins. For

each group, compute the number of bins, and the normalised group count, which is the
sum of all the normalised bin counts of the bins belonging to the group.

7. Sort the histogram according to the following criteria:

• perfect consensus if there is a green bin;
• consensus if there is one group, with at most B bins, and with normalised group count

larger than 50;
• polarisation if there are two groups, each with at most B bins, with at least K bins in

between, whose normalised group counts add up to more than 50;
• clustering if there are two or more groups, each with at most B bins, whose normalised

group counts add up to more than 50;
• dissensus otherwise.
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Figure 6.1: Examples of real-life opinion distribution histograms, taken from the World Values Survey data,
sorted as perfect consensus, consensus, polarisation, clustering, and dissensus by the proposed Histogram-
based Sorting Algorithm (the title shows the corresponding wave, question number, country, and type). The
vertical axis represents the normalised bin counts H̃ . The dotted lines mark thresholds T1 (green) and T2 (red).
The bins are coloured according to the Histogram Sorting Algorithm: green if the normalised bin count is larger
than T1; blue if it is smaller than T2; red if it is between T1 and T2. The parameter values we adopted to perform
the sorting are: M = 10, B = 3, K = 4,Υ= 6, T1 = 50, T2 = 12, and T3 = 40.

8. The only exception to the previous criteria is if the histogram has only two non-empty bins
with at least Υ empty bins in between and each of these two non-empty bins has a nor-
malised group count larger than T3. Then the opinion distribution is also classified as po-
larisation.

The last exception has been added because, when the histogram has only two non-empty bins,
it will always be classified as perfect consensus, except in the rare occasion in which both bins
have the exact same height (i.e. 50). However, intuitively, if there are only two non-empty bins at a
significant distance, of comparable height, the histogram should be classified as polarisation.

The parameters M , B , K , Υ, T1, T2, and T3 allow the proposed sorting to be tuned according
to the problem at hand, thus taking into account possible differences in the interpretation of our
proposed qualitative categories.

In our case study, M = 10 is a natural choice, since the data from the World Values Survey [99,
101, 100] comes from Likert 10-scale questions. Parameter B represents the ‘level of closeness’
required to state that a group of people share a ‘similar’ opinion: we set B = 3. Polarisation is de-
fined as the presence of two groups with significantly opposing views, the ‘level of opposition’ is
encoded by the parameter K . Two groups at a distance less than K would represent clustering,
since the opinions are not very different, while two groups at a distance K or more represent two
opposing views and hence polarisation. The value K = M −2 would mean that extreme opposition
is needed to define polarisation; in this dissertation, we choose K = 4. The threshold T1 defines
perfect consensus: we choose T1 = 50 to capture all instances where the majority (more than 50%)
shares a single opinion. The threshold T2 discriminates between significantly numerous opinion
groups and ‘white noise’ residual opinions. A low T2 leads to the appearance of multiple groups
with more than B bins, while a high T2 leads to interpreting significant opinion groups as white



6.1. OPINION DISTRIBUTION CLASSES AND TRANSITION TABLES

6

75

noise: in both cases, the sorting is biased towards dissensus. After repeated numerical experi-
ments, the intermediate value of T2 = 12 was selected and can be seen as a robust choice, be-
cause varying T2 between 10 and 14 gave comparable classification results. For the polarisation
exception, the values Υ = 6, and T3 = 40 were chosen, because with these values we interpret the
corresponding histograms as polarisation. The parameter T2 is the only one for which a sensitivity
analysis was done, given that the other parameters have a more straightforward interpretation and
choice of value.

Figure 6.1 shows examples of real-life opinion distribution histograms, taken from the World
Values Survey data, representative of our proposed qualitative categories.

From Figure 6.1 it can also be seen that histograms with limited difference may be categorised
in substantially different categories (for instance, Consensus and Dissensus). This is an inevitable
consequence of the sorting approach. Since the possible categories are much less than the num-
ber of possible histograms, one could think of the histograms as being ‘continuous’ and the sorting
generates a partition of this ‘continuous’ set. As a consequence, two elements that are arbitrarily
close can belong to two different subsets, because the algorithm is very sensitive to small variations
regarding some features. Although this is not a desirable feature, it is unavoidable when associat-
ing a unique label with each histogram, which is the only way to implement the Transition Tables
(as will be explained in the next section). A different approach would be to compute a ‘grade’ or
coefficient for each category and for each histogram, expressing how much the histogram fits into
the category; in this scenario, a single histogram has five measures of how well it represents each
category. This approach would be less sensitive, but since it does not categorise the histograms, it
cannot be used in order to build Transition Tables.

6.1.2. MODEL PREDICTIONS VS. REAL OPINIONS: A FRAMEWORK FOR SYS-
TEMATIC COMPARISON

The proposed histogram-based sorting approach allows us to systematically associate a given
opinion distribution, which can be either real (e.g. survey data) or predicted by an opinion
formation model, with a qualitative category. An opinion distribution is a static snapshot; to
study opinion formation, we need to understand how opinion distributions can evolve over
time. We introduce Transition Tables to capture the possible qualitative categories of final
opinion distribution that can be obtained, after some time, starting from various categories of
initial opinion distribution. A transition table is a matrix whose rows (respectively, columns) are
associated with the qualitative category of initial (respectively, final) opinion distribution: entry
(i , j ) represents the number of opinion distributions that evolve from an initial configuration
belonging to category i to a final configuration belonging to category j , where i and j can be
either perfect consensus, consensus, polarisation, clustering, or dissensus. To systematically
compare the outcome of a given opinion formation model with real opinion data collected at two
different time instants, we proceed as follows:

1. classify the real initial opinions,
2. let them evolve according to the opinion formation model, and produce the predicted final

opinions,
3. sort the predicted final opinions,
4. using the sorting of real initial opinions and predicted final opinions, construct the predicted

transition table,
5. sort the real final opinions,
6. using the sorting of real initial opinions and real final opinions, construct the real transition

table, and
7. compare the two Transition Tables.

As an example, we assess the Bounded Confidence model (BC) [110, 53, 52, 215, 216], with
confidence radius 0.3 (all agents have the same confidence radius), along with the answers, pro-
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vided by 500 people, to four questions of the World Values Survey both in wave 5 and wave 6.
The four initial opinion distributions (wave 5) are sorted by our algorithm as perfect consensus,
perfect consensus, polarisation, and clustering, respectively. Taking these opinion distributions
as initial conditions, the Bounded Confidence model yields predicted opinion distributions that
our algorithm respectively sorts as perfect consensus, perfect consensus, perfect consensus, and
clustering. Hence, two opinion distributions are predicted to remain perfect consensus, one to
change from polarisation to perfect consensus, and one to remain clustering, as summarised in
the predicted transition table in Figure 6.2 (left). The real transition table in Figure 6.2 (right) can
be constructed by considering the real final opinion distributions (wave 6) for the same four ques-
tions, which are sorted as clustering, polarisation, polarisation, and dissensus, respectively.

Comparing real and predicted Transition Tables allows us to evaluate the model, identify its
shortcomings and suggest ways to improve its realism. Furthermore, real Transition Tables pro-
vide qualitative understanding of how the actual opinion distributions can evolve within the pop-
ulation in the considered time interval.

Figure 6.2: Simple example to illustrate the proposed approach: based on the answers to 4 questions admin-
istered to 500 people in two consecutive survey waves, the accuracy of the Bounded Confidence Model (BC)
can be assessed by comparing the predicted transition table (left) with the real transition table (right). In the
tables P.C. is perfect consensus, Co is consensus, Po is polarisation, Cl is clustering, and Di is dissensus. The
BC model was selected for this example because it is a widely used and well-studied model; any other model
could have been chosen.
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6.1.3. REAL TRANSITION TABLES HIGHLIGHT FEATURES OF OPINION EVO-
LUTION

We analysed in total 2025 real opinion distributions, corresponding to World Values Survey an-
swers to 30 questions in 25 countries in waves 5, 6, and 7, approximately separated by 5 years
[99, 101, 100]; not all questions were asked in all countries, hence there are 675 opinion distribu-
tions for each wave. The orange panels in Figure 6.3 show the qualitative sorting of all the opinion
distributions in each wave. The number of opinion distributions belonging to each qualitative
category does not change significantly in different waves and a recurrent pattern can be observed:
dissensus is consistently the most common outcome, followed by perfect consensus and then by
clustering, by consensus and finally by polarisation, which is invariably the least common out-
come. Figure 6.3 also reports the real Transition Tables from wave 5 to 6, and 6 to 7, which ev-
idence that, in spite of the observed recurring pattern, opinion distributions themselves do not
tend to remain in the same category. On the contrary, there are several examples of opinion distri-
butions that move from a category to almost any of the others: the real Transition Tables indicate
that, in real life, opinion distributions can evolve from any category to any other. The likelihood
of evolving towards a different qualitative category can be assessed by comparing the sum of di-
agonal and off-diagonal entries in the Transition Tables: from wave 5 to wave 6, these numbers
are 368 and 307 respectively, indicating that around 45% of the opinion distributions move to a
different qualitative category; from wave 6 to wave 7, these numbers are 381 and 294 respectively,
hence the probability of change has decreased to roughly 44%. Interesting similarities emerge
in the patterns of the two Transition Tables: corresponding entries often have close values, or at
least the same order of magnitude, which seems to suggest that the likelihood of evolving from a
qualitative category to another changes slowly over time.

Figure 6.3: Real Transition Tables: The 675 real opinion distributions emerging from the World Values Survey
[99, 101, 100] waves 5, 6, and 7 are qualitatively classified as perfect consensus (P.C.), consensus (Co), polarisa-
tion (Po), clustering (Cl), and dissensus (Di) in the orange panels. The Transition Tables show the qualitative
evolution of opinion distributions between these waves, highlighting how each qualitative category of opinion
distributions could evolve into the various other categories.

6.1.4. PREDICTED TRANSITION TABLES AND MODEL COMPARISON
Starting from the opinion distributions in wave 5 and wave 6, we generated the next wave results
predicted by six different opinion formation models: French-DeGroot (FG), Weighted-Median
(WM), Bounded Confidence with confidence radius 0.1 (BC1), 0.3 (BC2), and 0.7 (BC3) (all the
agents have the same confidence radius), and Quantum Game (QG). Figure 6.4 shows the obtained
average predicted Transition Tables, from wave 5 to 6 (left) and from wave 6 to 7 (right): each re-
ported transition table is the average over 75 tables, computed for different population size, di-
rected graph topology, and initial opinion assignment. The shade of blue quantifies the variability
across the 75 tables represented by the difference between the maximum and minimum value for
each cell across all 75 Transition Tables.

All simulations of the French-DeGroot and Bounded Confidence models evolved for 50 time
steps, since the time difference between waves is about 5 years, and it is assumed that the agents
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can update their opinions regarding values about 10 times per year. For the Weighted-Median
(respectively, Quantum Game), since at each time step only one agent (resp. two agents) update
the opinion, the number of time steps is 50N (resp. 1

2 50N ), where N is the number of agents. This
is so that on average, each agent updates its opinion 50 times during the complete simulation. This
limitation on time steps was implemented so that the opinion transitions are comparable.

Figure 6.4: Average predicted Transition Tables from wave 5 to 6 (left), and 6 to 7 (right) for the six considered
models. Each table entry contains the average of the corresponding values in the 75 computed Transition Ta-
bles, obtained for different population sizes, graph topologies, and initial opinion assignments. The variability
of these values, in terms of the difference between the maximum and minimum value across all 75 tables, is
denoted by the shade of blue. A cell with light blue colour ..... represents half the maximum difference for
that model, and a cell with dark blue colour ..... represents the maximum difference for the model. The value
of the difference represented by these shades of blue is reported to the right. A white cell means that all values
are identical for all 75 tables. Summing the rows (respectively, columns) results in the average starting (resp.
ending) number of histograms in each category.
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The French-DeGroot (FG) model behaves as expected, with a clear trend towards perfect con-
sensus, evidenced not only by the average transitions but also by the low difference. However, it is
interesting to note that not all final opinions result in perfect consensus: some produce consen-
sus, and in exceptional circumstances dissensus. There are two explanations for these cases. First,
if the opinion towards which the agents converge is in the middle of two histogram bins, it may
happen that the two adjacent bins to that converging opinion are equally populated, thus result-
ing in consensus and not perfect consensus. The second reason is that, in large interaction graphs
it takes more time to achieve perfect consensus because, even if the graph is strongly connected,
only few edges may be responsible for that strong connectivity, thus the graph could have two or
more ‘pseudo clusters’.

The Bounded Confidence models with confidence radius r = 0.1 (BC1) and r = 0.7 (BC3) also
behave as expected: for the BC1 model, the confidence radius is so small that most of the edges
vanish in the first step and then the opinions remain the same, hence the transition table is a
diagonal matrix. On the other hand, the BC3 model produces exclusively perfect consensus. The
reason why BC3 produces perfect consensus always, while the same does not happen with FG, is
that BC3 creates more edges in the interaction graph. Hence it is possible to assume that after a
few time steps the interaction graph is Complete, and then the convergence to a single opinion is
much faster, resulting in perfect consensus. It is also interesting to note that BC1 and BC3 are the
models showing the smallest variability (difference of zero, see Figure 6.4).

The Bounded Confidence model with an intermediate value of confidence radius r = 0.3 (BC2)
is biased towards perfect consensus, but allows some instances of polarisation, clustering and dis-
sensus to evolve into polarisation or clustering. A larger confidence radius (with respect to BC1)
yields strongly connected subgroups of individuals that achieve perfect consensus among them:
if there are only two subgroups with sufficiently distant opinions, polarisation occurs, otherwise
the model produces clustering, which is the most likely outcome of the two. No consensus out-
comes are generated, because, once the opinions are sufficiently close, they evolve into perfect
consensus. For this model, varying population size, graph topology, and initial opinion assign-
ment appears to have little impact, as seen in a maximum difference of 5.

The Weighted Median (WM) model exhibits a very rich behaviour. Although biased towards
perfect consensus, it can produce every transition except the ones from perfect consensus and
consensus to polarisation, and from perfect consensus to clustering. This wide range of outcomes
is accompanied by a high sensitivity with respect to varying population size, graph topology, and
initial opinion assignment, which is the highest across all considered models. The bias towards
perfect consensus is expected, given the fact that the WM model is based on the cognitive disso-
nance theory and conformist tendencies.

Finally, the Quantum Game (QG) model presents a very interesting transition table. There is a
tendency to consensus, which is coherent with the fact that agents can only Change, Keep, or Agree.
Hence there is no disagreement mechanism. However, the randomness with which agents are cho-
sen to interact, and the dependence of the payoff matrices on the opinion distance, produces also
a clustering behaviour (a bounded confidence effect). The result is that, when the initial distribu-
tion is perfect consensus, most agents will interact with each other but the final opinion will be
almost the same, resulting in perfect consensus; when the initial distribution is of consensus type,
then there is a tendency to stay perfect consensus, but the agents that are not in the consensus
bins can move other agents away resulting in some clustering; starting from polarisation there is a
greater chance of producing polarisation or clustering due to the bounded confidence effect; this
pattern is also present when the initial conditions correspond to clustering and dissensus. Another
interesting observation is that this model can evolve with a lower ‘speed of change’. The fact that
at each time step only two agents are chosen to interact and that they may not change opinion
creates the possibility that in a considerable percentage of time steps the opinions don’t change,
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in contrast with the other models where the opinions are constantly changing. The lower ‘speed of
change’ already takes into account that only two agents interact each time step, thus it is a model
property.

6.2. TRANSITION TABLE ANALYSIS
Several opinion formation models have been proposed in the literature, often based on well-
studied sociological and psychological principles, such as social conformity theory [66, 14], cred-
ibility [226], biases [196, 90, 49], trust [133, 174], strong and weak ties [94, 97], moral foundations
[93], expertise [222], stimulus-response theory [213], stimulus-object-response theory [35], ‘back-
fire’ effect [171, 144] and ‘boomerang’ effect [116], among many others. Significant effort has been
devoted to analysing opinion formation models, but their predictions are rarely compared with
real data. A notable exception is the Friedkin-Johnsen model, which has been validated on nu-
merous experiments with small and medium-size groups [81, 80, 82, 9, 183]. However, comparing
the model results with large scale data is a challenging task for several reasons, including the diffi-
culty in collecting large amounts of reliable opinion distributions at subsequent time instants and
in gathering information about the topology of the corresponding interaction network [183], as
well as the lack of systematic approaches for a high-level comparison between qualitative model
outcomes and real data. Despite the difficulties, comparison with real data is crucial to assess the
usefulness of a model and to identify possible directions for improving it.

The Histogram Sorting Algorithm and Transition Tables are a first step towards systematically
comparing model predictions with large-scale data sets taken from real-life surveys.

Qualitative sorting of opinion distributions into five categories that account for increasing
heterogeneity (perfect consensus, consensus, polarisation, clustering and dissensus) and its use in
the computation of Transition Tables allows us to capture how an initial opinion distribution, be-
longing to a given category, can evolve over time into a final opinion distribution belonging to
a possibly different category. The accuracy of an opinion formation model can be evaluated by
comparing the real transition table, which displays the evolution between survey data taken in
two subsequent occasions, with the predicted transition table, which displays the prediction gen-
erated by the model starting from initial survey data.

The analysis of real opinion data from the World Values Survey [99, 101, 100], shown in Figure
6.3, provides insight into the evolution of real-life opinions, and in particular reveals that:

1. In real life there are examples of all possible transitions.
2. The number of opinion distributions belonging to each type appears to remain almost con-

stant in each wave.
3. About half of the opinion distributions remain of the same type.

Therefore, a fully realistic opinion formation model should be able to produce, with suitably
chosen parameters, opinion distributions that recreate these three features. However, while the
real Transition Tables are almost full matrices (Figure 6.3), the predicted Transition Tables are
sparse (Figure 6.4): the models are inherently unable to yield some of the transitions observed in
real data. Among the considered models, the Bounded Confidence model with intermediate con-
fidence radius and the recently proposed Weighted-Median and Quantum Game models appear
to be the most flexible, able to generate the richest variety of transitions and behaviours. However,
there is still room for improvement.

The comparison between real and predicted Transition Tables highlights that improved opin-
ion formation models should include flexible mechanisms able to both leave the opinion distribu-
tion category unchanged and produce any of the other distribution categories, under appropriate
circumstances. We summarise some key observations, pointing at directions to improve existing
models so as to match opinion transitions observed in real life.
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1. Most models exhibit a strong agreement bias, resulting in an unrealistic tendency towards
(perfect) consensus. This tendency could be mitigated by considering, e.g., the Friedkin-
Johnsen model [79], which takes into account not only individual self-confidences, but also
individual susceptibilities to social influence; these additional parameters are however ex-
tremely challenging to estimate, especially in large-scale interaction networks.

2. In the studied models, there is no direct mechanism to produce dissensus, clustering or po-
larisation starting from (perfect) consensus; however, these transitions do happen in real
life. At the expense of the simplicity of the model, stochastic and random effects could be
introduced through a noise component, representing the individuals’ free will and the un-
predictability of their decisions [183]. Other mechanism that can increase the heterogeneity
of the opinion distribution are signed edges. Clustering and polarisation can also be pro-
duced by ‘Kinetic Theory for Active Particles’ models [24], this is thanks to the competition
mechanism that characterises these models.

3. Most often, in the models the opinions change fast and significantly, typically converging
towards an equilibrium state, whereas in real data there are plenty of examples of opinion
distributions that remain almost constant and continue to change very slowly. This suggests
that, as recently observed [198], most of the actual social dynamics lead to transient, non-
equilibrium phenomena: ad-hoc models should be developed to capture this effect. In
this context, understanding the timescale of phenomena influencing opinion formation is
crucial to map the time of model simulation to the time of real-world opinion evolution, a
still unresolved challenge [198].

4. Random initial opinion distributions are typically used when analysing, or numerically sim-
ulating, opinion formation models. However, as shown in survey results [99, 101, 100], this
is not realistic: opinions tend to have characteristic qualitative distributions, which should
be taken into account when evaluating opinion formation models. The critical role of ini-
tial conditions in opinion formation models has been pointed out as a long-overlooked
problem [198]: different initial conditions can lead to grossly different final states and it
is then fundamental to assign the initial opinion distribution appropriately, which remains
an open challenge, in particular when large-scale interaction networks are considered.

6.3. AGREEMENT PLOT ANALYSIS
This section introduces the Agreement Plot concept. Based on this concept six different plots
are defined, the Agent Parameter Time Evolution (APTE), Underlying Digraph Time Evolution
(UDTE), Initial Opinion Time Evolution (IOTE), Agent Parameter Steady State (APSS), Underlying
Digraph Steady State (UDSS), and Initial Opinion Steady State (IOSS) plots. Collectively, these six
plots can be used to analyse models and identify behaviour patterns and intrinsic characteristics.
The technique is exemplified with the Friedkin-Johnsen model.

6.3.1. BASIC IDEA

Given an opinion distribution x = (xi )N
i=1, the general agreement of x, denoted byπ(x) and defined

as

π(x) = (|x|, x
)
, where |x| = 1

N

N∑
i=1

|xi | and x = 1

N

N∑
i=1

xi , (6.1)

represents how much the population cares about and agrees with a statement. Since xi ∈
[−1,1] for all i , π(x) is contained in the triangle with vertices in the points (0,0), (1,−1), and
(1,1). Therefore, the general agreement of every possible opinion distribution can be plotted in
this triangle, independent on the number of agents. The plot of the general agreement of one or
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more opinion distributions in the Cartesian plane creates what we call the Agreement Plot. Fig-
ure 6.5 shows the Agreement Plot of five different opinion distributions and their corresponding
histograms.

Figure 6.5: Example of five opinion distributions and their general agreement plotted in the Cartesian plane,
creating what we call the Agreement Plot. The location of a point in the Agreement Plot provides important
information on the opinion distribution, making it a visual and intuitive way to represent one or more opinion
distributions.

The use of |x| and x to represent complete opinion distributions consisting of possibly hun-
dreds of agent opinions is motivated by two main reasons:

• The value of each quantity has a simple and direct interpretation, and therefore, also its
representation in the Cartesian Plane. In addition to this, combined, they can provide in-
formation on the opinion distribution (as explained in the following paragraphs),

• the points π(x) are located in a subset of the Cartesian Plane that is easy to characterise: the
triangle with vertices (0,0), (1,1), (1,−1). This is important because when plotting multiple
resulting opinion distributions it is intuitively clear how much of this plane they cover.

As previously mentioned, the location of the point π(x) provides useful information about the
opinion distribution. For instance, if the point is located near one of the corners (1,−1) or (1,1),
the population cares significantly about that statement, as |x| ≈ 1 means most of the opinions
are either −1 or 1 and therefore extremely strong opinions are common. Furthermore, near these
corners x ≈ 1 or x ≈−1, so almost every agent must have the same opinion, either ‘ strongly agree’
or ‘strongly disagree’.

If the point π(x) is in the neighbourhood of the corner (0,0), then |x| ≈ 0, so most agents are
indifferent about that particular statement, and the average opinion x ≈ 0 is neutral. Ifπ(x) ≈ (1,0),
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the agents care about that statement but the mean is low, therefore two opposite groups must exist,
with almost equal number of agents, i.e. polarisation. When π(x) is located near the lines y =±x,
almost all the population either agrees or disagrees to some degree. On the other hand, if π(x) is
located near the line y = 0, there is almost equal amount of agreement and disagreement.

Figure 6.6 shows the location in the Agreement Plot of different opinion distributions, and
their corresponding category according to the sorting algorithm. Although it is not possible to par-
tition the triangle with vertices (0,0), (1,−1), and (1,1) into regions containing exclusively opinion
distributions belonging to one category, there is a strong correlation between the location of the
points in the Agreement Plot and their corresponding category, especially for perfect consensus,
consensus, and polarisation. This plot further shows how arguably similar opinion distributions
may correspond to different categories (two close points of different colours), which, as explained
before, is a consequence of the sorting algorithm.

Figure 6.6: Agreement Plot of multiple opinion distributions and their corresponding category. Each point
corresponds to an opinion distribution that belongs to a certain category according to the sorting algorithm.
The point colour represents to which category the opinions belong: blue for perfect consensus, red for con-
sensus, purple for polarisation, green for clustering, and yellow for dissensus. The five surrounding plots show
only points belonging to one of the five categories. Although the triangle with vertices (0,0), (1,−1), and (1,1)
cannot be partitioned in regions containing only one single category, there is a strong correlation between the
location of the opinion distribution in the Agreement Plot and its category.

The possibility to represent any opinion distribution by a single point with simple and intuitive
interpretation allows for new types of model analysis. Specifically, the Agreement Plot can be used
in two distinct ways: time evolution (see Section 6.3.2), and steady state (see Section 6.3.3) analysis.

Colour coding: In order to maximise the information obtained by the different plots, the plot-
ted lines and points will be colour coded. Unless otherwise specified, the colour coding will rep-
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resent the mean agent parameters of a population. For the Friedkin-Johnsen (FJ), Backfire Effect
and Biased Assimilation (BEBA), and Bounded Confidence (BC) model each agent has a single pa-
rameter, represented by a number in a given interval ([0,1] for the FJ model, (0,7) for the BEBA
model, and [0,2] for the BC model). Thus, the agent parameters of a population of N individuals
are simply a set of N numbers belonging to the corresponding interval. The mean of these values
is the parameter an average agent of the population would have. Each set of agent parameters has
a single mean that can be colour coded in lines or points representing that population.

For different models, different colours are used based on the following convention:

• Friedkin-Johnsen model: the agent parameter is susceptibility and is a number in the inter-
val [0,1]. Less susceptible populations have a dark magenta colour, and more susceptible
populations have a teal colour.

• Backfire Effect and Biased Assimilation model: the agent parameter is entrenchment and is
a number in the interval (0,7). Less entrenched populations have a green colour, and more
entrenched populations have an orange colour.

• Bounded Confidence model: the agent parameter is confidence radius and is a number in
the interval [0,2]. Less open populations have a lavender colour, and more open popula-
tions have a pink colour.

When the model is clear from context, the term ‘agent parameter’ is interchangeable with the
agent parameter name. For instance, the statements ‘higher parameters’ mean’ is the same as
‘higher susceptibility mean’, if from the context it is clear that the statements refer to the Friedkin-
Johnsen model. The colour coding extends also to histograms of the agent parameters.

6.3.2. AGREEMENT PLOT OF TIME EVOLUTION
The first use of the Agreement Plot is to plot one or more parametric curves (with the parameter
being time) corresponding to the temporal evolution of one or more different populations.

Figure 6.7 shows an example of the complete evolution of a population’s opinion represented
by a single parametric curve in the Agreement Plot. On the upper left figure we can see the opinion
evolution of every single agent over time. The bottom left figure shows the time-dependence of
the mean of the opinion absolute values and of the opinion mean for the complete population.
We can represent these two lines as a parametric curve in the Agreement Plot, as shown in the
right plot. Visualising the time evolution of the individual opinions provides some information,
however collective behaviours can be hidden in the complex evolution of all individual agents.
The Agreement Plot allows us to better visualise collective behaviours.

If the populations differ in only one aspect, for instance, agent parameters, underlying di-
graph, or initial opinions, then the time evolution Agreement Plots show the overall effect these
changes have on the opinion evolution. Figure 6.8 shows the three approaches applied to the
Friedkin-Johnsen model.

Figure 6.8a shows 15 parametric curves. In these plots the initial opinion and underlying di-
graph are constant and only the agent parameters change (this is represented by the change in the
line colour). It can be seen that lines with more dark magenta colour tend to be shorter than lines
with more teal colour. This is to be expected, as for the first lines the agents are less susceptible
and therefore the opinions change less. On the other hand, teal lines correspond to populations
with high average susceptibility and therefore opinions change significantly more.

Figure 6.8b shows 9 curves corresponding to models with the same initial opinions and agent
parameters evolving over different underlying digraphs. Although all the lines follow different
paths, they tend to have the same overall behaviour of moving to the left, i.e. decreasing the mean
of the opinion absolute values.
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Figure 6.7: Example of how a parametric curve in the Agreement Plot can represent the opinion evolution of a
complete population. The top left plot shows the time evolution of all the agents in a population (evolving with
the Classification-based model, see Chapter 7). The bottom left plot shows the time-dependence of the mean
of the opinion absolute values and of the opinion mean for the complete population. The right plot shows the
corresponding parametric curve in the Agreement Plot.

Figure 6.8c shows 15 parametric curves corresponding to opinions evolving with the same
agent parameters and underlying digraph, and different initial opinions (represented by the or-
ange dots). The agent parameter number can be seen in the upper left corner. Figure 6.9 shows a
histogram of the corresponding agent parameters. The digraph name can be seen in the bottom
left corner, the corresponding topology is shown in Figure 5.1, and some metrics are presented in
Table 6.1. Independent of the initial opinions, there is a tendency to move towards the left, and
opinions close to the lines y =±x tend to remain in the same place.

Although plots in Figure 6.8 evidence certain behaviours, a valid question to ask is if these ob-
servations depend on the chosen initial opinions, agent parameters, and underlying digraphs. For
instance, how would Figure 6.8b change if the agent parameters were changed to the ones in Fig-
ure 6.8c? Or if the digraph topology changed from Small-World to Complete? These questions can
be answered by repeating similar plots for a variety of different initial opinions, agent parameters,
and underlying digraphs.

For simplicity, plots of parametric curves with different agent parameters and constant initial
opinions and underlying digraph (like the one shown in Figure 6.8a) will be referred to as Agent
Parameter Time Evolution (APTE) plots. Plots of parametric curves with different underlying di-
graph, and constant initial opinions and agent parameters (like the one shown in Figure 6.8b),
will be referred to as Underlying Digraph Time Evolution (UDTE) plots. Plots of parametric curves
with different initial opinions, and constant agent parameters and underlying digraph (like the
one shown in Figure 6.8c), will be referred to as Initial Opinion Time Evolution (IOTE) plots.

Figure 6.9 shows the histograms corresponding to the agent parameters used for the UDTE,
IOTE, UDSS, and IOSS plots for the Friedkin-Johnsen model.

Table 6.2 shows 12 different APTE plots for 3 choices of the initial opinions and 4 different
underlying digraphs. The metrics for these four digraphs are summarised in Table 6.1.

Comparing the plots in Table 6.2, it is possible to conclude that, although the overall qualitative
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(a) Parametric curves for 15 different
opinion evolutions with the same ini-
tial opinions (orange dot) and underly-
ing digraph, and different agent param-
eters. The digraph name can be seen in
the bottom left corner, the correspond-
ing topology is shown in Figure 5.1, and
some metrics are presented in Table 6.1.
This type of plot is called Agent Parame-
ter Time Evolution (APTE).

(b) Parametric curves for 9 different
opinion evolutions with the same ini-
tial opinions (orange dot) and agent pa-
rameters, and different underlying di-
graph. The agent parameter number
can be seen in the upper left corner. Fig-
ure 6.9 shows a histogram of the corre-
sponding agent parameters. This type of
plot is called Underlying Digraph Time
Evolution (UDTE).

(c) Parametric curves for 15 differ-
ent opinion evolutions with the same
agent parameters and underlying di-
graph, and different initial opinions.
The agent parameter number can be
seen in the upper left corner. Figure 6.9
shows a histogram of the corresponding
agent parameters. The digraph name
can be seen in the bottom left corner,
the corresponding topology is shown in
Figure 5.1, and some metrics are pre-
sented in Table 6.1. This type of plot
is called Initial Opinion Time Evolution
(IOTE).

Figure 6.8: Use of the Agreement Plot to identify opinion evolution behaviours produced by the Friedkin-
Johnsen model. In each of the panels, multiple parametric curves (where the parameter is time) are plotted that
correspond to populations that differ only in the agent parameters (Figure 6.8a), underlying digraph (Figure
6.8b), or initial opinions (Figure 6.8c). For all the plots the line colour represents the average susceptibility of
the agents (magenta is less susceptible, teal is more susceptible). The initial opinions are the orange dots, and
when either the agent parameters or underlying digraph are constant, their name or number is also shown in
the plot. All simulations were for 50 time steps and 100 agents.

Figure 6.9: Histograms of the agent parameters used in the UDTE, IOTE, UDSS, and IOSS plots for the Friedkin-
Johnsen model (Tables 6.3, 6.4, 6.6, and 6.7 respectively).

behaviour is the same as seen in Figure 6.8a, the network topology appears to have an important
effect on the opinion evolution. Specifically, for all the initial opinions it can be noted that the
opinions change less for the Scale-Free digraph, whereas for the other three digraphs there ap-
pears to be no significant difference (this is particularly true for row 2). A possible explanation for
this phenomenon is that the high network diameter and clustering variance, combined, lead to a
network that has a few central, highly influential vertices connecting otherwise disconnected sub-
networks. Because of this, opinions take more time to spread, possibly explaining why opinions
change less than with the other digraphs for all initial opinions.

It is also interesting to remark that the other three topologies are quite different, and still, sim-
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Digraph APL D CC σ(CC ) #E δout σ(δout ) δi n σ(δi n) BC

Directed Ring 2 5.4545 10 0.5 0 1100 11 0 11 0 0
Scale-Free 5.6893 14 0.67 0.22333 298 2.98 5.0905 2.98 5.0905 1

Small-World 1 2.0365 3 0.17538 0.0020628 1435 14.35 6.553 14.35 6.553 0.69513
Complete 1 1 1 0 10000 100 0 100 0 1

Table 6.1: Digraph information for the digraph topologies considered in the agreement plot analysis. This in-
formation can also be found in Table 5.1. The metrics are Average Path Length (APL), Diameter (D), Mean

clustering (CC ), Clustering variance (σ(CC )), Number of edges (#E), Mean out-degree (δout ), Out-degree vari-

ance (σ(δout )), Mean in-degree (δi n ), In-degree variance (σ(δi n )), and Bidirectional Coefficient (BC).

ulation results are very similar. This is specially true for the Ring and Complete digraphs (columns
1 and 4), even though, as seen in Table 6.1, for some metrics one has the highest value, while the
other has the lowest value (for instance average path length, or clustering coefficient). This indi-
cates that, for the Friedkin-Johnsen model, the opinion evolution is independent of these network
metrics.

Table 6.3 presents 12 UDTE plots for 4 choices of the agent parameters and 3 different initial
opinions. The fact that multiple lines are close together indicates that all the evolutions have more
or less the same behaviour for all different digraphs we considered (shown in Figure 5.1). This
could be surprising, taking into account that Table 6.2 showed examples where the digraph has
a significant effect on the opinion evolution. This apparent contradiction (of the digraphs not
having a significant effect on the opinion evolution in one table, and then having a significant
effect on another table) can be explained be noting that the digraph effect observed in Table 6.2
was on the speed of opinion change, but not the direction of the curves, and that the plots in Table
6.3 are showing exactly the same directions for parametric curves of different length.

Regarding the agent parameters, the behaviour observed in columns 1 and 4 is consistent with
what is known about the model properties, i.e. if most agents have a low susceptibility (column
1), then opinions will change slightly, and on the contrary, if most agents have a high susceptibil-
ity (column 4), then opinions will change significantly. The most interesting plots in this regard
are the ones in columns 2 and 3. They correspond to agent parameters with similar mean sus-
ceptibility value, but different variance. Column 2 describes to a society where approximately half
the population is very susceptible and half is not, while column 3 represents a society where all
agents have approximately the same medium susceptibility. The plots in these two columns show
that then all the agents have approximately the same susceptibility, their opinions change more,
indicated by the length of the curves. This behaviour is independent of the location of the initial
opinion distribution in the Agreement Plot.

Table 6.4 shows 12 IOTE plots for 3 choices of the agent parameters and 4 different underlying
digraphs. These plots provide further evidence that the observations made from Tables 6.2 and 6.3
are true for opinions starting from any initial opinion distribution. This is important to check, as it
may not always be true. It is also interesting to note that the parametric curves for the plot in row
3, column 2 (Scale-Free digraph with highly susceptible agents) show a subtle peculiar behaviour
in that they don’t immediately move to the lines y =±x, like the other plots with these same agent
parameters do. This can possibly be explained by the structure of the Scale-Free network. In con-
trast to the other digraphs which are made of a single ‘entity’, the ‘different compartments’ of the
Scale-Free network disperse and slow down the tendency of the Friedkin-Johnsen model (with
high agent susceptibility) to create perfect consensus.
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6.3.3. AGREEMENT PLOT OF STEADY STATE
If we only care about the steady state, it is possible to skip the parametric curve and simply plot
the initial and final opinions. Doing this for a wide collection of agent parameters, underlying
digraphs, and initial opinions (while keeping the other model parameters constant) can highlight
what kind of opinion distributions the model can produce starting from a given point and also
how the model transforms the opinions. For these plots, the number of time steps can also be
increased, so that the models are given enough time to show the opinion changes caused by slow
dynamics. For these plots, the number of time steps is increased from 50 to 1000.

We first consider the case of multiple agent parameters and underlying digraphs. These plots
are quite straightforward: we simply repeat the APTE and UDTE plots but without the parametric
curve, and with (possibly) a higher number of agent parameters or underlying networks. Figure
6.10 shows an example for the Friedkin-Johnsen model.

(a) Agreement Plot of the predicted opinions for 3528 differ-
ent opinion evolutions with the same initial opinions (orange
dot) and underlying digraph, and different agent parameters.
The digraph name can be seen in the bottom left corner, the
corresponding topology is shown in Figure 5.1, and some met-
rics are presented in Table 6.1. This type of plot is called Agent
Parameter Steady State (APSS).

(b) Agreement Plot of the predicted opinions for 45 different
opinion evolutions with the same initial opinions (orange dot)
and agent parameters, and different underlying digraph. The
agent parameter number can be seen in the upper left cor-
ner. Figure 6.9 shows a histogram of the corresponding agent
parameters. This type of plot is called Underlying Digraph
Steady State (UDSS).

Figure 6.10: Use of the Agreement Plot to display the capacity of the Friedkin-Johnsen model to create a wide
range of opinion distributions starting with the same initial opinions (orange dot), for different agent param-
eters (Figure 6.10a) and underlying digraphs (Figure 6.10a). For all the plots the point colour represents the
average susceptibility of the agents (magenta is less susceptible, teal is more susceptible). The initial opinions
are the orange dots, and when either the agent parameters or underlying digraph are constant, their name or
number is also shown in the plot. All simulations were for 1000 time steps and 100 agents.

Figure 6.10a shows the Agreement Plot of 3528 predicted opinions starting with the same ini-
tial opinion distribution (orange dot), underlying digraph, and different agent parameters. The
digraph name can be seen in the bottom left corner, the corresponding topology is shown in Fig-
ure 5.1, and some metrics are presented in Table 6.1. Besides observing behaviours consistent with
previous simulations (such that the dark magenta points are closer to the orange dot, in contrast
to the teal points), it is interesting to note that very few opinions can be found below the x-axis or
to the right of the initial opinions. This seems to suggest that, independent of the agent parame-
ters, the sign of the mean will most likely remain constant, and also that the mean of the opinion
absolute values is unlikely to increase for this model.

Figure 6.10b shows the Agreement Plot of 45 predicted opinions starting with the same initial
opinion distribution (orange dot), agent parameters, and different underlying digraphs. The agent
parameter number can be seen in the upper left corner. Figure 6.9 shows a histogram of the cor-
responding agent parameters. This plot is specially interesting: given the fact that all agents have
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a very high susceptibility, and that the prediction horizon is 1000 time steps, one would expect
all the agents to have the same opinion, which would correspond to the prediction points being
along the y = ±x lines. However that is not the case, at least with some of the points. This fur-
ther signals the importance of the digraph structure and how the model can produce different and
non-obvious predictions depending on the underlying digraph.

Adapting IOTE plots to represent the opinion evolution of a wide variety of initial opinions for
a fixed agent parameter set and underlying digraph cannot be done as with APSS and UDSS plots,
simply because there is not enough space. Instead what can be done is to start with a reference
plot, like the one in Figure 6.11a, where each dot corresponds to a different initial opinion. Then,
evolve the model, with the same agent parameters and underlying digraph, for each of the initial
opinions, and present the resulting opinions in a separate plot, as shown in Figure 6.11b.

(a) Reference image for the location in the Agreement Plot of
the 5314 initial opinions used in the Initial Opinion Steady
State (IOSS) plot.

(b) Agreement Plot of the predicted opinions for 5314 different
opinion evolutions with the same agent parameters, under-
lying digraph, and different initial opinions, shown in Figure
6.11a. The agent parameter number can be seen in the upper
left corner. Figure 6.9 shows a histogram of the corresponding
agent parameters. The digraph name can be seen in the bot-
tom left corner, the corresponding topology is shown in Figure
5.1, and some metrics are presented in Table 6.1. This type of
plot is called Initial Opinion Steady State (IOSS).

Figure 6.11: Evolution of the Friedkin-Johnsen model for different initial opinions. Dots with the same colour
in Figures 6.11a and 6.11b correspond to initial and final opinion distributions for the same simulation (in
these plots the colours don’t have a meaning on themselves, they are only used to visually connect one dot in
Figure 6.11a with a dot in Figure 6.11b). Figure 6.11a shows the initial opinion, whereas Figure 6.11b shows the
predicted opinions. All simulations were for 1000 time steps and 100 agents.

Figure 6.11b shows how the 5314 initial opinions from Figure 6.11a transform according to the
Friedkin-Johnsen model when the agent parameters and underlying digraph are the ones in the
top and bottom left corners of Figure 6.11b, respectively. Several observations can be made about
Figure 6.11b. The contraction of the initial opinions towards the y-axis is evident, and so is the
fact that the contraction is more pronounced near the x-axis. This indicates that very polarised
opinions are transformed into less polarised opinions, which is consistent with the averaging ten-
dency caused by the susceptibility trait in the Friedkin-Johnsen model. The colours also allow to
see that the mean opinion remains almost constant, this is hinted by the colour gradient seen in
Figure 6.11a, which is still distinguishable in Figure 6.11b.

As with APTE, UDTE, and IOTE plots, the analysis possibilities are increased when multiple
plots of the same type are arranged together, as shown in Tables 6.5, 6.6, and 6.7. This allows to
determine if the observed behaviour is intrinsic for the model, or if (and how) it depends on the
model parameters. It is worth clarifying that, for all IOSS plots, Figure 6.11a will always be the
reference for the starting initial opinions.
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The APSS 12 plots, for 3 different initial opinions, and 4 different underlying digraphs in Table
6.5 indicate that, for all initial opinions and digraphs, the qualitative effect of increasing the mean
susceptibility is the same: as the mean susceptibility increases, the dark magenta points form a
‘cone’ to the left of the initial point. The higher the mean susceptibility, the more the predicted
opinions move to the left. This trend continues until they arrive to the y =±x lines, at which point
they move along these lines, which is where most of the teal points can be found.

This also implies that the higher the mean susceptibility, the more likely the final opinions are
to form perfect consensus, which is not surprising. What is surprising, is the noticeable difference
between the second column and the others. As in Table 6.2 we see the Scale-Free digraph effect in
that opinions don’t change as much as with the other topologies. This is better evidenced in the
plots of row 3.

The 12 UDSS plots, for 3 different initial opinions, and 4 different agent parameters in Table 6.6
show that the observation made in Table 6.3, that societies where most agents have approximately
the same susceptibility change more than societies with a similar mean susceptibility but with
higher susceptibility variance. This can be seen by comparing the plots in columns 2 and 3 of
Table 6.6. It is also important to recall that the simulations seen in Table 6.6 are for 1000 time
steps, indicating that points closer to the initial opinion not only change slower, but also change
less in the asymptotic behaviour. Besides this important observation, the behaviour seen in these
plots is coherent with the one presented in the previous tables.

Finally, Table 6.7 presents 12 IOSS plots which show how the reference initial opinions seen
in Figure 6.11a evolve for 3 different choices of the agent parameters and 4 different underlying
digraphs. These plots showcase familiar behaviours, while at the same time providing additional
information on the model. It is not surprising that every plot contracts, as seen initially in Figure
6.11b: every plot so far shows this pattern. Nevertheless, comparing the plots evidences a hidden
nonlinearity in the ‘contraction factor’. Indeed, the agent parameters in row 2 are in a way the
middle point between the agent parameters in row 1 and 3, however, the difference between plots
in rows 1 and 2 is less significant than the difference between plots in rows 2 and 3. Regarding the
underlying digraph, row 1 shows that for models with very low mean susceptibility the result is
almost independent of the digraph topology. The opposite can be seen in rows 2 and 3, where the
Scale-Free digraph again causes a significantly different behaviour.

After analysing Tables 6.2 to 6.7, we can draw the following conclusions regarding the opinion
transformation and predictive capabilities of the Friedkin-Johnsen model:

• independent on the initial opinions, agent parameters, and underlying digraph the opin-
ions have the tendency to move towards the lines y =±x, meaning that all the agents have
(almost) the same opinion, they either agree or disagree,

• when the mean susceptibility is below about 0.5, or when the underlying digraph has a
Scale-Free topology, the opinions change more slowly and the final asymptotic value is
closer to the initial value,

• as the mean susceptibility increases, or the average path length and clustering variance
decreases, the opinions change faster and their final asymptotic value is closer to the line
y =±x,

• when the mean susceptibility is high, and the average path length and clustering variance
are low, the opinions reach the y =±x line and move parallel to it.

• the final predicted opinions are very unlikely to have a higher mean of the opinion absolute
values than the initial opinions, and, when that happens, the opinions are along the y =±x
line,

• in a society with low susceptibility variance opinions will change more than another society
with similar susceptibility mean and higher susceptibility variance.
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The analysis of the Friedkin-Johnsen model using the Agreement Plot by means of Tables 6.2
to 6.7 may seem unnecessary and repetitive: after all, the same patterns were seen in almost every
plot. However, it is important to keep in mind that the Friedkin-Johnsen model is relatively sim-
ple and intuitive, and is also well known, and hence the expected behaviour is showcased in the
Agreement Plot analysis. Still, even in this case, the Agreement Plot analysis provided insight on
the intrinsic properties of the model that can be missed otherwise, for example the critical effect
of the average path length and clustering variance in the model predictions, or the fact that the
opinions in populations with similar susceptibility mean change more or less, depending on the
susceptibility variance.

We will see that, when the Agreement Plot is used to analyse more intricate agent-based opin-
ion formation models, with less intuitive dynamics, each of the plot types can provide unique
valuable insight on the model intrinsic properties. The information provided by, and possible in-
terpretations of, the six previously introduced plots is summarised in Table 6.8.

Plot name What is plotted Constant model pa-
rameters

Variable model pa-
rameters

Line or point colour meaning Example
figure

APTE Parametric curves
(the parameter is
time) corresponding
to the Agreement
Plot of the system
evolution (50 time
steps).

Initial opinions and
underlying digraph

Agent parameters The average agent parameter:
susceptibility for the FJ model
(λ= 0 is dark magenta, and λ= 1
is teal); entrenchment for the
BEBA model (β= 0 is green, and
β= 7 is orange); confidence
radius for the BC model (r = 0 is
lavender, and r = 2 is pink); and
trait weights for the CB model
(this will be explained in Section
7.2).

Figure 6.8a

UDTE Initial opinions and
agent parameters

Underlying digraph Figure 6.8b

IOTE Agent parameters
and underlying di-
graph

Initial opinions Figure 6.8c

APSS Agreement Plot
of the steady
state opinions
resulting from
the system
evolution (1000
time steps).

Initial opinions and
underlying digraph

Agent parameters Figure 6.10a

UDSS Initial opinions and
agent parameters

Underlying digraph Figure 6.10b

IOSS Agent parameters
and underlying di-
graph

Initial opinions The colour itself has no meaning,
but it is used to relate the initial
and final points corresponding to
the same system evolution. The
reference image is shown in Figure
6.11a

Figure 6.11b

Table 6.8: Summary of the six plot types that make use of the Agreement Plot to analyse agent-based opinion
formation models.

6.4. PROBABILISTIC ANALYSIS
This section introduces and explains the Probabilistic Analysis technique. This technique is based
on what we call the Qualitative Outcome Likelihood Tables (QOL Tables), a collection of five tables
containing the probabilities that a certain qualitative outcome will be obtained. The QOL Tables
can be used to make statements about the model outcomes when limited information is available.
The technique is exemplified with the Friedkin-Johnsen model.

6.4.1. BASIC IDEA
Consider the following question: Q1 Given a population of 100 agents where opinions evolve ac-
cording to the Friedkin-Johnsen model, if the initial opinion distribution has its mean in the inter-
val [−0.1,0.4], the mean agent susceptibility is in the interval [0,0.3], and the underlying digraph
is strongly connected, what is the probability that after 50 time steps the final opinion distribution
forms perfect consensus?

This is a natural question to ask when only limited or incomplete information on the social
system is available, which is the case in reality. When the information is not complete, it is not
possible to precisely compute the final opinions and their allocation, so evaluating the probability
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that they belong to a certain category, is the most that can be done. If, for instance, the answer
to Q1 is 99%, then knowing the exact initial opinions, and agent parameters, along with their al-
location, and the exact underlying digraph is not very relevant, as the qualitative outcome of the
model is almost surely perfect consensus.

In principle, providing a quantitative answer to questions like Q1 can be done with a four step
process:

1. Translate the known information about the initial opinions, agent parameters, and under-
lying digraphs into well defined mathematical objects. This is done by building the set of
initial opinion distributions O , the set of agent parameter sets P , and the set of underlying
digraphs N . In the example of Q1 these sets are:

• The set of initial opinion distributions O (this is the same as a collection of initial
opinion sets, as by definition, an opinion distribution is a set of opinions) contains all
the initial opinion sets that meet the known information:

O =
{

x = {xi }100
i=1

∣∣∣ xi ∈ [−1,1] ∀ i , and x ∈ [−0.1,0.4]

}

• The set of agent parameter sets P contains all the agent parameter sets that meet the
known information:

P =
{
λ= {λi }100

i=1

∣∣∣λi ∈ [0,1] ∀ i , and λ ∈ [−0.1,0.4]

}

• The set of underlying digraphs N contains all the digraphs (represented by the cor-
responding adjacency matrices N ) that meet the known information:

N =
{

N ∈ [0,1]100×100
∣∣∣ 100∑

j=1
Ni j = 1∀ i , and N is strongly connected

}

2. Create three algorithms that randomly sample from the sets O , P , and N uniformly.

3. For a number of events Ne do the following:

(a) Randomly select uniformly an element from O , P , and N ,

(b) evolve the system with the selected initial opinion distribution (random allocation),
agent parameter set (random allocation), and underlying digraph according to the
opinion model for the designated time steps,

(c) sort the final opinions, if the sorting is perfect consensus, then label this event as
success.

4. The previous sequence of Ne events has the structure of a Bernoulli process, where the
random variable is a success if the final opinions belong to the category on the question.
Because of this, the number of events Ne and successes Ns can be used to approximate the
probability that the final opinions form perfect consensus, i.e. the answer to question Q1.

Denote by PB (O ,P ,N ,K ) the probability that, if the initial opinion distribution belongs
to the set O , the agent parameter set belongs to the set P , and the underlying digraph be-
longs to the set N , the final predicted opinions after K time steps is sorted into the category
B ∈ {P.C .,Co,Po,C l ,Di }. This probability can be approximated by the Wilson score interval [217]



6.4. PROBABILISTIC ANALYSIS

6

99

PB (O ,P ,N ,K ) ∈ [p −δ, p +δ] with probability 0.95 (6.2)

with p = Ns + 1
2 z2

Ne + z2
δ= z

Ne + z2

√
(Ne −Ns )Ns

Ne
+ z2

4

where z = 1.96 is the z-value for 95% confidence level, and Ne and Ns are respectively the num-
ber of events and of successes of a Bernoulli process where the Bernoulli trial is the answer to the
question: Does the final opinion belong to category B?. It can be seen that the higher the num-
ber of events, the better the approximation (since, as Ne → ∞, δ → 0). This procedure can be
adjusted to account for different forms of available information. For instance, if some correlation
between initial opinion assignation and agent parameters is known, it can be added as a constraint
to the process. The only requirement is that the random variables are independent and identically
distributed, which means that every possible initial configuration should be equally likely to be
chosen so as to be evolved and produce final opinions that are then sorted.

The meaning of the 95% confidence level is that the real probability of the Bernoulli process
PB (O ,P ,N ,K ) is in the interval [p −δ, p +δ] with a probability of 0.95 (meaning that Equation
(6.2) is true with probability 95%).

6.4.2. IMPLEMENTATION
Although conceptually simple, there is one step in the previously explained process that is chal-
lenging, and that is step 2. Creating an algorithm that is guaranteed to uniformly sample elements
from the sets O , P , and N is a challenge. That is why in the implementation the sets O , P , and
N are slightly modified as explained in this section. For the creation of the sets O and P the
scripts by David Holdaway [114] were used.

As with the rest of simulation results in Part 2 of the dissertation, all the simulations related to
the Probabilistic Analysis evolve 100 agents.

SET OF INITIAL OPINION DISTRIBUTIONS

So far, every agent could have an opinion the interval [−1,1]. For the Probabilistic Analysis (Sec-
tions 6.4 and 7.2.5) this assumption will change. The set of opinions an agent can have will be
O = {−1,−1+∆,−1+2∆, . . . ,1−2∆,1−∆,1} where ∆= 2/14. That is, the set O contains only 15 pos-
sible opinions an agent can have. We label these opinions as O = {Xk }15

k=1. Next, the set of possible
initial opinion distributions will be constrained to the following:

X =
{

x = {xi }100
i=1

∣∣∣ xi ∈O for i = 1, 2, . . . , 100 and (6.3)

∣∣{x̃ ∈ x
∣∣ x̃ = Xk

}∣∣ ∈ {0, 10, 20, . . . , 100} for k = 1, . . .15

}
In other words, besides the possible opinions an agent can have being discrete (the 15 options

in the set O), the number of agents in the opinion distribution x that have each of the possible
opinions in O needs to be a multiple of 10. Thanks to these constraints, the set of possible opinion
distributions X becomes much more manageable. If on one hand the original set of possible
opinion distributions has infinite elements, the set X as defined in Equation 6.3 contains “only”
1961256 elements.

Following the intuitive interpretation of the points in the Agreement Plot, the limited infor-
mation on the initial opinion distributions will be assumed to be on the opinion mean and on the
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mean of the opinion absolute values. Representing every element in X by its mean and mean of
its absolute values produces the Agreement Plot of the set X, shown in Figure 6.12a.

If the mean x and the mean of the absolute values |x| of the initial opinion distribution x
are only approximately known with uncertainty radius εo , then the collection of initial opinion
distributions that takes into account this uncertainty can be defined as

O
(
x, |x|,εo

)= {
z ∈X |

√(
x − z

)2 + (|x|− |z|)2 ≤ εo

}
(6.4)

The collection defined in Equation (6.4) will be the one used for the Probabilistic Analysis.
Figure 6.12b shows an example of how a set of this looks like in the Agreement Plot.

(a) Agreement Plot of the opinion distributions in the set X
as defined by Equation 6.3. The colour of each dot represents
the number of elements in X that have the same mean and
absolute value mean.

(b) The highlighted points correspond to the set
O(0.2,0.6,0.05) according to Equation (6.4).

Figure 6.12: Agreement Plot of the opinion distributions in the collection X according to Equation (6.3). The
vertical saw-tooth pattern is due to the way the sets in X are constructed, in particular because of the restric-
tion in the values the opinions can take, and also the requirement that the number of agents in the opinion
distributions that have the same opinion must be a multiple of 10.

SET OF AGENT PARAMETERS SETS

The definition of this set depends on the model and the type of agent parameters it uses. For now
we consider the Friedkin-Johnsen model. In this case, since the agent parameter is a single number
(susceptibility, λi ) in the interval [0,1], then the approach is basically the same as before. Instead
of considering all the possible sets of agent parameters, we consider the constrained collection

Y =
{
λ= {λi }100

i=1

∣∣∣ λi ∈ P for i = 1, 2, . . . , 100 and (6.5)

∣∣{λ̃ ∈λ ∣∣ λ̃= Pk
}∣∣ ∈ {0, 10, 20, . . . , 100} for k = 1, . . .15

}
where P = {Pk }15

k=1 and Pk = (k −1)/14. As before, the set Y contains only 1961256 elements.
This time, the relevant properties of the agent parameter set will be the mean and variance (as
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the mean of the absolute value is the same as the mean since the susceptibility is always non-
negative). Representing every element in Y by its mean and variance produces the plot shown in
Figure 6.13a.

If the mean λ and variance σ(λ) of the agent parameters (susceptibilities, λ) are only approxi-
mately known, with uncertainty radius εp , then the set of agent parameter sets that represents this
uncertainty can be defined as

P
(
λ,σ(λ),εp

)= {
q ∈ Y |

√(
λ−q

)2 + (
σ(λ)−σ(q)

)2 ≤ εp

}
(6.6)

The collection defined in Equation (6.6) will be the one used for the Probabilistic Analysis.
Figure 6.13b shows an example of how this collection looks like.

(a) Plot of the variance and mean of every element in Y. The
colour of each dot represents the number of elements in Y
that have the same mean and variance.

(b) The highlighted points correspond to the set
P(0.45,0.1,0.005) according to Equation (6.6).

Figure 6.13: Plot of mean and variance of the susceptibility (agent parameter) sets in the collection Y according
to Equation (6.5).

SET OF UNDERLYING DIGRAPHS

The set of all possible underlying digraphs also depends on the model, for instance the Friedkin-
Johnsen model is associated with the set of all N ×N row-stochastic weighted adjacency matrices,
whereas the digraphs in the Altafini model belong to the set {−1,0,1}N×N since in that model the
digraphs are signed but unweighted. Call Z the set of adjacency matrices for all possible underly-
ing digraphs admitted by the model, with no other constraints. So, for the Friedkin-Johnsen model
Z is the set of all N ×N row-stochastic matrices:

Z =
{

N ∈ [0,1]100×100
∣∣∣ 100∑

j=1
Ni j = 1 for i = 1, 2, . . . , 100

}
. (6.7)

It is possible to add additional constraints to the set Z, for instance topological constrains,
by requiring all nodes to have a self-loop, the digraph to be strongly connected, or having certain
average path length, clustering coefficient, or diameter. For the Probabilistic Analysis simulations,
two constraints were taken into account: the digraphs need to be strongly connected and have a
Small-World network topology. Hence, the set of considered underlying digraphs (represented by
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adjacency matrices) N ⊂ Z is composed of 1000 different strongly connected Small-World net-
work digraphs. Plots showing metrics for these digraphs are presented in Figure 6.14. The different
digraphs were made by varying the parameters used in the creation of directed Small-World net-
works, such as the number of edges from the starting Ring digraph, the rewiring probability, and
the probability of having bidirectional edges. From this variation, we can obtain digraphs with the
same type of topology but significantly different metrics, shown in Figure 6.14.

For all the Probabilistic Analysis simulations presented in this dissertation, the set N will con-
tain 1000 digraphs. For each model the digraphs will be slightly different, as some models use
weighted, or signed digraphs. However, for all models the topology of the digraphs will remain the
same. That is, if NBC,NBEBA, NFJ, and NCB are the sets of digraphs used in the Probabilistic Anal-
ysis for the Bounded Confidence, Backfire Effect and Biased Assimilation, Friedkin-Johnsen, and
Classification-based (explained in Chapter 7) models, then |NBC| = |NBEBA| = |NFJ| = |NCB| =
1000 and for each digraph in any of these sets, there is one digraph in each of the other sets with
the exact same topology.

Figure 6.14: Plots showing the relations between four metrics computed for all the digraphs in the set N . The
metrics are: average path length, clustering coefficient, average connectivity degree, and bidirectional coefficient.
The set N contains 1000 strongly connected digraphs with Small-World topology, therefore each plot has 1000
points. Points with the same colour correspond to the same digraph. Details on how these topological metrics
are computed can be found in Section 7.4.

The great advantage of approximating the sets O , P , and N as in Equations (6.4), (6.6), and
as discussed above is that their cardinality is finite and relatively easy to handle. For instance the
collection O(0.2,0.6,0.05) has 52676 elements, as shown in blue in Figure 6.12b; the collection
P(0.45,0.1,0.005) has 3885 elements, as shown in blue in Figure 6.13b; and the set N has 1000
elements, with metrics shown in Figure 6.14. Therefore, choosing one element of these sets with
uniform probability can be done simply by ordering the elements and uniformly choosing a ran-
dom integer in the appropriate interval.

QUALITATIVE OUTCOME LIKELIHOOD TABLES

With this construction in place, it is straightforward to compute the interval [p−δ, p+δ] that (with
a 95% probability) contains the probability PB = PB (O ,P ,N ,K ) according to Equation (6.2).
At this point, it is important to clearly explain the exact relation between p and PB . PB is the
real probability, what we want to know; while, p is a value we can compute that approximates the
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real probability. For all the simulations done in the Probabilistic Analysis section, the number of
events Ne is 10000. As shown in Figure 6.15, this means that, for any possible number of successes
Ns ∈ {0,1, . . . ,9999,10000}, the uncertainty δ is less than 0.01, hence for all the results in the Prob-
abilistic Analysis |PB −p| < 0.01 with 95% probability, where p is as defined in Equation (6.2).
For clarity and simplicity, in the remainder of the chapter we will identify p with PB , meaning that
if we say ‘we can compute the probability PB ’ the precise statement would be ‘we can compute
the probability p for which |PB −p| < 0.01 with 95% probability’.

Figure 6.15: Probability uncertainty δ of the Bernoulli process when the number of events Ne is 10000 with
a confidence level of 95%, given by Equation (6.2) (with z = 1.96). Regardless of the number of successes the
uncertainty is always lower than 0.01.

We have thus established the groundwork to compute and interpret the probability
PB

(
O ,P ,N ,K

)
, with O =O

(
x, |x|,εo

)
and P =P

(
λ,σ(λ),εp

)
, that approximates the probabil-

ity that the predicted opinions after K time steps starting from an initial distribution with mean
x and mean absolute value |x|, with agent parameter (susceptibility) mean λ and variance σ(λ),
evolving over a strongly connected, Small-World network digraph in N , belongs to the category
B , with B ∈ {P.C .,Co,Po,C l ,Di }. This probability can be computed with the single equation

PB
(
x, |x|,λ,σ(λ),εo ,εp ,N ,K

)=PB

(
O

(
x, |x|,εo

)
,P

(
λ,σ(λ),εp

)
,N ,K

)
. (6.8)

The value εp and the set N depend on the model (for all models, all the sets N have the
same number of digraphs with the same topology, but depending on the model the edges may
be weighted or signed). Therefore, for a given model εp and N are fixed. For all Probabilistic
Analysis results shown in the dissertation, εo = 0.05 and K = 50. Consequently, since the only
changing parameters are x, |x|, λ, and σ(λ), it is more practical to redefine

PB
(
x, |x|,λ,σ(λ)

)=PB

(
O

(
x, |x|,εo

)
,P

(
λ,σ(λ),εp

)
,N ,K

)
, (6.9)

which is valid only when computing probabilities for the same model (since εp and N are
omitted).

Thanks to Equation (6.9) if values for x, |x|, λ, and σ(λ) are given such that the sets O , P are
not empty, it is possible to compute the probability PB . Although a single application of Equation
(6.9) may be useful in particular cases, in order to uncover behaviour patterns of the model it is
necessary to take a broader and more systematic approach.

Figure 6.16 shows values of x, |x|, λ, and σ(λ) for which the sets O and P are not empty for
the Friedkin-Johnsen model.

Any pair of points in Figures 6.16a and 6.16b can be associated with a number in the inter-
val [0,1], representing the probability PB (computed with Equation (6.9)) for the corresponding
values of x, |x|, λ, σ(λ). By comparing Figure 6.16a with Figure 6.12a, it can be seen that Figure



6

104 6. ANALYSIS OF AGENT-BASED OPINION FORMATION MODELS

(a) Pairs of opinion mean x and of mean of opinion absolute
values |x| that produce non empty sets O.

(b) Pairs of susceptibility mean λ and variance σ(λ) that pro-
duce non empty sets P for the Friedkin-Johnsen model.

Figure 6.16: Non empty sets O and P for the Friedkin-Johnsen model. Taking any point to the left (corre-
sponding to collection Ô) and any point to the right (corresponding to collection P̂) produces a probability
PB that initial opinion distributions from the collection Ô evolving with agent parameters in P̂ produce pre-
dicted opinions sorted in category B . The ‘missing’ dots at the right of Figure 6.16a are a consequence of the
saw-tooth pattern seen in Figure 6.12a. Because of this saw-tooth pattern, the pairs (x, |x|) corresponding to
the missing dots create empty O sets and that is why they are omitted.

6.16a only takes into account opinions with a positive mean. This is because, due to symmetry,
the Probabilistic Analysis results obtained when the opinions’ mean is negative is a reflection of
the results when the opinions’ mean is positive. Therefore, we only need to analyse one case.

Unfortunately, since PB depends on four parameters, it is not possible to plot it directly. How-
ever, if the points in Figures 6.16a and 6.16b are given an order, it is possible to represent the values
PB resulting from all combinations of points in Figures 6.16a and 6.16b in a meaningful way. Fig-
ure 6.17 shows a schematic example of how this would work.

As shown in Figure 6.17, by ordering the points in Figures 6.16a and 6.16b it is possible to
arrange all the probabilities PB in a Table. Since B ∈ {P.C .,Co,Po,C l ,Di }, this procedure actually
creates five different tables, one per qualitative type, which are collectively called the Qualitative
Outcome Likelihood Tables (QOL Tables). In this case, since there are 318 points in Figure 6.16a
and 371 in Figure 6.16b, the QOL Tables have 318 rows and 371 columns. For each table, every
one of the 117978 cells contains a number between 0 and 1. Therefore, instead of showing each
number, it is more practical and insightful to represent visually the tables by an image. The colour
of each cell depends on its value, probabilities near 0 (respectively, 0.5, and 1) have a blue (resp.
green, and red) colour. This colour convention is used for all the Probabilistic Analysis and can be
seen in the colourbars of the figures.

The ordering of the points in Figures 6.16a and 6.16b is directly related to the order of rows
and columns in the QOL Tables, and as such, a suitable ordering may reveal patterns in the form
of clusters or regions in the table with high or low probability.

It is also possible to plot the histogram of the cell values in the QOL Tables, this histogram is



6.4. PROBABILISTIC ANALYSIS

6

105

Figure 6.17: Construction of the QOL Tables: start with points in the Agreement Plot {O1,O2,O3}, each of these
points corresponds to a pair (x, |x|) for which the set O , given by Equation (6.4), is non-empty. These points
can be ordered (see the red arrows) to produce an opinion distribution ordering. An analogous process can be
done for points in the Parameter Plane {P1,P2,P3,P4}, each of these points corresponds to a pair (λ,σ(λ)) for
which the set P , given by Equation (6.6), is non-empty. These points can also be ordered (see the red arrows)
to produce an agent parameter ordering. Rows (respectively, columns) of the QOL Tables are associated to
points in the Agreement Plot (reps. Parameter Plane) in the corresponding order. Therefore, a cell in the QOL
Tables is related to a point in the Agreement Plot O = (x, |x|) and a point in the Parameter Plane P = (λ,σ(λ)),
and its value between 0 and 1 is the probability PB that opinions starting from the set O(x, |x|) with agent
parameters in the set P(λ,σ(λ)) evolving over an underlying digraph from the set N produce opinions that
are of qualitative type B . For analysis purposes the QOL Tables can be plotted. For the Friedkin-Johnsen
model, the opinion distribution and agent parameter ordering are shown in Figure 6.18 (instead of arrows the
order is indicated by point colour), and the QOL Tables plots in Figure 6.19.

invariant with respect to row and column permutations and represents the overall probability that
a certain predicted category is obtained.

Figure 6.18 shows the ordering of points, and Figure 6.19 shows the corresponding images of
the QOL Tables and their histograms, for the Friedkin-Johnsen model.

Before starting to analyse Figure 6.19 it is worth to first look at Figure 6.18. Looking at the
Agreement Plot ordering (order of rows in the QOL Tables), it can be seen that the point order goes
from the corners (0,0) and (1,1) to the corner (1,0). Based on the interpretation of the Agreement
Plot, the intuition built so far and Figure 6.6 (the figure where different opinion distributions are
plotted in the Agreement Plot and colour-coded by their qualitative type) this can be interpreted
as: the first rows of the QOL Tables correspond to opinion distributions with perfect consensus,
which in the following rows becomes consensus, then clustering, and then dissensus, and eventu-
ally polarisation in the last rows.

Regarding the agent parameters, the first columns correspond to societies with very high sus-
ceptibility values that in the following columns become societies with a lower susceptibility, and
the last columns correspond to societies where every agent has the same value of susceptibility
which is around 0.3. Notice that the order appears to be somewhat independent of the variance,
which was also observed during the Agreement Plot analysis.

This interpretation of the meaning of rows and columns can be combined to further provide
meaning to different parts of the QOL Tables. In Figure 6.19 it can be seen for instance that perfect
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Figure 6.18: Ordering of the points in the Agreement Plot and Parameter Plane seen in Figure 6.16, for the
Friedkin-Johnson model. Each point in the Agreement Plot corresponds to a pair (x, |x|) that creates a non-
empty set of opinion distributions O . Each point in the Parameter Plane corresponds to a pair (λ,σ(λ)) that
creates a non-empty set of agent parameter sets P . The ordering is indicated by the colorbars and will be used
in the plotting of the corresponding QOL Tables in Figure 6.19 as explained in Figure 6.17.

consensus is an almost guaranteed outcome for the first rows. This makes sense: if the societies in
these rows are located around the corners (0,0) and (1,1), then they already have perfect consen-
sus, and because the Friedkin-Johnsen model has no mechanism to diversify these opinions, they
remain as perfect consensus. Perfect consensus is also almost sure for cells in the left columns,
corresponding to societies with very high susceptibility. This also is consistent: if all agents are
highly susceptible, they will reach perfect consensus, because in these cases the model is basically
the French-DeGroot model.

Figure 6.19 also shows that polarisation can be expected only when agents start from an al-
ready polarised opinion distribution and the susceptibility is very low and uniform (seen in the
red bottom right corner in the third table). This basically means that the agents remain with their
initial opinion, which was polarised from the start. Regarding other opinion distribution cate-
gories, they also have regions in which they are more likely. However, these regions have a less
intuitive interpretation.

The histograms below the QOL Tables provide additional information independent on the row
and column ordering. For instance, the only category which has almost guaranteed outcome is
perfect consensus, as only for this table the right bin (in the neighbourhood of 1) has a significant
height. It can also be seen that the least likely outcome is polarisation, as the corresponding his-
togram has the largest left bin (in the neighbourhood of 0). It is also interesting to note that other
histograms, especially consensus, have a more uniform distribution. This means that the model is
very susceptible to missing information.

Imagine now that agent parameter (respectively, initial opinion) information is not available.
In this case the same analysis can be done, setting O =X (resp. P = Y). An advantage of this
approach is that in this case PB depends only on λ and σ(λ) (resp. x and |x|), and therefore
the resulting probabilities can be visualised in the Agreement Plot, Figure 6.16a (resp. Parameter
Plane, Figure 6.16b) without having to resort to the QOL Tables.
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Figure 6.20 shows the results for B ∈ {P.C ,Co,Po,C l ,Di }. This different approach shows infor-
mation that supports the conclusions drawn from Figures 6.18 and 6.19

According to Figure 6.20, perfect consensus is the only outcome that is almost guaranteed
(very high probability) for some regions of the Agreement Plot and the Parameter Plane. This hap-
pens when the opinions’ general agreement is the neighbourhood of corners (0,0), or (1,1), which
makes sense because opinions starting from perfect consensus will most likely remain in that cat-
egory, as the Friedkin-Johnsen model has no mechanism to move opinions away from each other.
Looking at the Parameter Plane, perfect consensus is also almost guaranteed when the mean sus-
ceptibility is very high. This also makes sense, since in these cases the model behaves almost like
the French-DeGroot model, which is known to lead to perfect consensus.

In addition to these clear trends, analysing the other plots of Figure 6.20 reveals interesting
observations. For instance, it is notable that for both the Agreement Plot and Parameter Plane, the
probability of obtaining consensus is significant (around 50%) for a wide variety of initial opinions
and agent parameters. This is evidenced by the high amount of green present in the consensus
plots. The fact that most opinions form either perfect consensus or consensus means that the
probabilities of obtaining other opinion categories are low. The polarisation plots are to be ex-
pected, as polarisation can only occur in the Friedkin-Johnsen model when the opinions start po-
larised and the susceptibility is low. Similarly, clustering can only happen when the opinions start
either in clusters or dissensus and the agent parameters are allocated in an ‘uniform’ way, such
that in the proximity of different opinions some agents have a low susceptibility (these agents will
remain with that opinion) and others have high susceptibility (these agents will move towards the
low susceptibility agents). This combination of circumstances is unlikely, but still noticeable in the
cluster plots, especially in the green colour of agent parameters with high variance and low mean
susceptibility.

Some of the observations drawn from Figures 6.18, 6.19, and 6.20 may appear repetitive, in part
because of the simplicity of the Friedkin-Johnsen model. However, we will see that, for less intu-
itive models, our proposed techniques can provide valuable insight into the behaviour of opinion
formation models that cannot be obtained via other means.

6.5. AGREEMENT PLOT AND PROBABILISTIC ANALYSIS AP-
PLIED TO THE BEBA AND BOUNDED CONFIDENCE MOD-
ELS

The previous two sections have introduced the Agreement Plot and Probabilistic Analysis as tech-
niques to study and discover behaviours and patterns of agent-based opinion formation models.
So far, these techniques have been explained using the Friedkin-Johnsen model, resulting in a
comprehensive understanding of the model behaviour and characteristics for a wide range of ini-
tial opinions, agent parameters, and underlying digraphs, also in the presence of uncertainty. In
this section, the properties of two other opinion formation models, the Backfire Effect and Biased
Assimilation (BEBA) model and the Bounded Confidence model, are studied using the aforemen-
tioned techniques.

6.5.1. BACKFIRE EFFECT AND BIASED ASSIMILATION MODEL
Agreement Plot analysis. Starting with the Agreement Plot technique, Tables 6.9 to 6.14 present
multiple plots in a way analogous to Tables 6.2 to 6.7 in Section 6.3. For Tables 6.9, 6.11, 6.12, and
6.14, the underlying digraphs have the same topology as the digraphs used in the Agreement Plot
analysis of the Friedkin-Johnsen model. Therefore, the topology metrics are shown in Table 6.1.

Figure 6.21 shows the histograms corresponding to the agent parameters used for the UDTE,
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IOTE, UDSS, and IOSS plots for the BEBA model.

Figure 6.21: Histograms of the agent parameters used in the UDTE, IOTE, UDSS, and IOSS plots for the BEBA
model (Tables 6.10, 6.11, 6.13, and 6.14 respectively).

As in the previous section, the line and point colours in the plots on Tables 6.9 to 6.14 indi-
cate the mean agent parameter, which for the BEBA model is the mean entrenchment β. Although
originally βi > 0, for the purpose of this analysis (and the Probabilistic Analysis) the individual
entrenchment values βi will be restricted to βi ∈ (0,7) for all agents. Low values of the mean en-
trenchment are represented by green and generally translate to more open-minded agents, more
willing to accept diverse opinions. Higher values of mean entrenchment are represented by or-
ange and correspond to agents that will react negatively to other agents with a slightly different
opinion, and that are positively influenced only by agents with very similar views.

Table 6.9 shows 12 APTE plots for 3 different initial opinions and 4 different underlying di-
graphs. Immediately we can notice a new behaviour, previously unseen in the Friedkin-Johnsen
model. The initial opinions in rows 2 and 3 have a mean of the opinion absolute values of approx-
imately 0.5, that is, they are more or less at the centre of the x-axis, and still several parametric
curves move to the right of the axis. The explanation for this phenomenon can be found in the
lines’ colour. The curves that move to the right have orange shade or are orange, and thus corre-
spond to a highly entrenched society where biased assimilation and backfire effect are predomi-
nant. It makes sense, then, that these societies will move towards regions in the Agreement Plot
where agents are more interested, whether to create polarisation or perfect consensus.

On the other end of the spectrum, the green lines tend to move towards the y-axis. This be-
haviour is similar to the French-DeGroot model, and it also makes sense. It is known that in the
limiting case where β→ 0 the BEBA model behaves like the French-DeGroot model. The digraph
topology effect is similar to what was seen previously with the Friedkin-Johnsen model, i.e., opin-
ions change more slowly in the Scale-Free digraph and faster on the other digraphs. It remains to
be seen if the digraph topology has more effects on the model evolution.

Table 6.10 shows 12 UDTE plots for 3 different initial opinions and 4 different choices of the
agent parameters. From this table it is possible to make two observations. First, besides the opin-
ion change speed, different digraph topologies do not dramatically affect the model evolution.
Some sporadic examples where not all lines follow the same direction can be seen in row 2 and 3,
and column 2. Nevertheless, most curves appear to follow the same trajectory. Second, the mean
entrenchment appears to be a good predictor of the system behaviour, like with the Friedkin-
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Johnsen model. This can be seen in columns 2, 3, and 4, where the agent parameters were dif-
ferent but had comparable mean (seen in the similarity of the line colours) and the behaviour is
approximately qualitatively comparable.

Table 6.11 shows 12 IOTE plots for 3 different choices of the agent parameters and 4 different
underlying digraphs. We can immediately see a behaviour present in all the plots: some curves
go to the left and others go to the right. Since in these plots the agent parameters and underlying
network are constant, this means that the tendency of the opinions to go to extremes or to con-
sensus depends on the location of the initial opinions in the Agreement Plot. Closer inspection
reveals that some plots have a ‘threshold’ in the x-axis (the mean of the opinion absolute values)
that separates the curves that move to the left or to the right. One such plot is shown in row 3,
column 4. For other plots this ‘threshold’ is not so clear. See for instance the plot in row 1, column
3.

Here it is important to take into account that there are two types of curves that move to the
right. One type starts moving to the right immediately, while the other moves initially to the left,
and then turns to the right. One possible explanation for this is that for the first type the backfire
effect is predominant and causes polarisation and seeking of extreme opinions from the start;
while for the second type opinions tend to form consensus and are then reinforced, thus moving
towards consensus or perfect consensus.

Table 6.12 shows 12 APSS plots for 3 different initial opinions and 4 different underlying di-
graphs. This table is very interesting, as it clearly shows the capacity of the BEBA model to pro-
duce a wide variety of predicted opinions. Several observations are relevant: (i ) almost every
point along the line x = 1 is reached, meaning that it can achieve predicted opinions where all
the opinions are extreme (−1 or 1) with any proportion (the mean ranges from 1 to −1); (i i ) not
every orange dot is located near the point (1,0), meaning that complete entrenchment does not
automatically mean polarisation; (i i i ) looking at the rows, it is clear that the digraph topology has
an effect on the possible model outcomes. However, unlike with the Friedkin-Johnsen model, it is
not only the Scale-Free digraph that behaves differently. For the BEBA model every digraph pro-
duces a significantly different plot; and (i v) although predicted opinions can be found in almost
every point inside the triangle, the area near the point (0.1,0) is more empty. This may indicate
that when opinions are located in that area they will not remain there, but most likely move to the
left until they reach the triangle boundary.

Table 6.13 shows 12 UDSS plots for 3 different initial opinions and 4 different choices of the
agent parameters. Plots in Table 6.13 show that, in most cases, the initial opinion and the agent
parameters have a greater effect than the underlying digraph over the location of the predicted
opinions: for most plots, the predicted points are closely located. Combining this observations,
with the observations from Table 6.12 we can say that different underlying digraphs enable differ-
ent model predictions, but that these different model predictions are ultimately achieved by the
agent parameters themselves.

Table 6.14 shows 12 IOSS plots for 3 different choices of the agent parameters and 4 different
underlying digraphs. This is one of the most interesting tables, as it highlights the rich and diverse
behaviour of the BEBA model. The plot in row 1, column 1 evidences that, for fixed agent parame-
ters and underlying digraph, the model can produce extreme opinions (recall that some opinions
along the y =±x lines belong to the perfect consensus category, while opinions located along the
line x = 1 belong to perfect consensus or polarisation). Table 6.14 once again evidences that the
Scale-Free topology leads to a peculiar model behaviour, as can be seen in every row, in particular
rows 1 and 3. Row 2 is very intriguing, in particular column 4. The dots in the plots of row 2 can be
separated in two groups: the first group is composed of points located along the y =±x lines, for
which either all agents agree or disagree. The second group corresponds to the ‘arc’ which is more
or less defined depending on the digraph. A similar arc was seen in the Friedkin-Johnsen model
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analysis, hence a similar explanation could apply, i.e. that the opinions tend to contract and move
towards consensus.

Looking now at the agent parameters of row 2, the two groups start to make more sense. From
the agent parameter histogram it is clear that, in these particular societies, some agents have a very
low entrenchment, while others have a very high entrenchment. One possible explanation for this
‘two group’ behaviour is that, depending on where the initial opinions are located (in the (0,0),
(1,−1), (1,1) triangle), one of the two groups of agents has a predominant effect. When the ini-
tial opinions are somewhat polarised, the backfire effect has nowhere to move the opinions, and
thus the predominant effect is due to less entrenched agents. On the other hand, when the ini-
tial opinions are near consensus or perfect consensus, the biased assimilation effect of the highly
entrenched agents is predominant and moves the opinion distribution to consensus or perfect
consensus, effectively moving them to the lines y =±x.

The analysis of Tables 6.9 to 6.14 has provided insight into the opinion evolution capabilities
of the BEBA model for a variety of initial opinions, agent parameters, and underlying digraphs.
This model presents a rich and varied behaviour, resulting from the inclusion of both the backfire
effect and the biased assimilation mechanism in the opinion formation process. In particular,
the backfire effect allows for opinion distributions to achieve extreme opinion values, resulting
in perfect consensus and polarisation. On the other hand, the biased assimilation mechanism
moves opinions towards consensus on opinions that can have any value in the interval [−1,1].
The underlying digraph plays a fundamental and indirect role in the model behaviour. Unlike the
Friedkin-Johnsen model, not only the Scale-Free topology results in a peculiar behaviour, but also
the other considered topologies.

Now we can proceed with the Probabilistic Analysis of the BEBA model.

Probabilistic Analysis. Figures 6.22, 6.23, and 6.24 are analogous to Figures 6.18, 6.19, and 6.20
obtained in the Probabilistic Analysis of the Friedkin-Johnsen model. The Agreement Plot ordering
of Figure 6.22 is quite similar to the one in Figure 6.18, therefore, the interpretation is the same: the
first rows in the QOL Tables will correspond to initial opinions forming perfect consensus. Moving
to towards the last rows the initial opinion goes from perfect consensus, to consensus, dissensus
and clustering, and finally, polarisation.

On the other hand, the agent parameters ordering is quite different from the one for the
Friedkin-Johnsen model. It is highly dependent on both the mean and variance of the agents’
entrenchment. The first columns correspond to low values of entrenchment and as the ordering
increases two groups appear, one with high mean entrenchment and the other with intermediate-
high mean entrenchment and high variance. Therefore, when analysing the QOL Tables for the
BEBA model, we need to take into account that right columns may correspond to societies where
the mean entrenchment is very high, or where only some agents have a very high entrenchment
(this would explain the mean of around 4 and high variance).

Figure 6.23 shows a model behaviour consistent with what was observed in the Agreement Plot
analysis: the BEBA model has a strong tendency to move opinion distributions to the lines y =±x.
Opinion distributions near these lines are mostly classified as consensus or perfect consensus.
Figure 6.23 indicates that indeed most of these opinion distributions become perfect consensus.

According to Figure 6.23, the BEBA model results almost always in perfect consensus, and in
the rare cases this is not the outcome, then the predicted opinions form polarisation. Initially, this
can be somewhat unexpected, as the backfire effect and biased assimilation traits are generally
associated with polarisation. In order to explain these results it is important to keep in mind that
polarisation not only requires the existence of two ‘distant enough’ subgroups in the society, but
also that these subgroups must have a comparable population. If this last condition is not met (one
group has significantly more individuals than the other), then the opinion distribution is classified
as perfect consensus.
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Figure 6.22: Ordering of the points in the Agreement Plot and Parameter Plane, for the Backfire Effect and
Biased Assimilation model. Each point in the Agreement Plot corresponds to a pair (x, |x|) that creates a non-
empty set of opinion distributions O . Each point in the Parameter Plane corresponds to a pair (β,σ(β)) that
creates a non-empty set of agent parameter sets P . The ordering is indicated by the colorbars and will be used
in the plotting of the corresponding QOL Tables in Figure 6.23 as explained in Figure 6.17.

Although backfire effect and biased assimilation promote the existence of these two separate
subgroups, there is no intrinsic mechanism to equalise the number of individuals in each one.
And since random assignations most likely produce unequal subgroups, most of them are sorted
as perfect consensus, as seen in Figure 6.23. The conditions for which the BEBA model most likely
produces polarisation can be inferred from Figure 6.23. As evidenced by the middle image, po-
larisation mostly occurs in the lower right corner, which corresponds to initial opinions near the
(1,0) point in the Agreement Plot, and agent parameters with either high mean entrenchment or
intermediate-high mean entrenchment and high variance. This is not surprising: if the population
is already polarised, adding high entrenchment ensures that the two separate subgroups forming
the initial polarisation distribution are maintained.

Figure 6.24 (row 2, column 1) shows that perfect consensus is the most likely outcome even in
the presence of high entrenchment. This further corroborates the conclusions drawn from Figure
6.23, that high entrenchment does not necessarily lead to polarisation. From row 2 in Figure 6.24
it is interesting to note that, when all initial opinions are considered, only intermediate-low mean
values of entrenchment with high variance have a significant probability of producing opinions
that are not sorted as perfect consensus.

After the Agreement Plot and Probabilistic Analysis, we can summarise the BEBA model be-
haviour and intrinsic characteristics in the following observations:

• The backfire effect and biased assimilation traits result in a model where agents have a ten-
dency to (i ) go to extreme opinions, or (i i ) form perfect consensus. This behaviour is par-
ticularly evident in Table 6.14 (where the final opinions are located along the boundary of
the (0,0), (1,−1), (1,1) triangle), and Figure 6.23 (where perfect consensus is the most likely
outcome).

• Although this tendency is intrinsic to the model, it can be affected by the underlying di-
graph. The Scale-Free topology has a particularly noticeable effect on the model evolution,
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by allowing for more diverse opinion transformations.

• The underlying digraph has an indirect but significant effect on the overall model evolution.
In a way, different digraph topologies enable the model to produce various outcomes via
different agent parameters.

• Regarding the evolution of individual opinion distributions, depending on the agent pa-
rameters and the location of the initial opinion distribution in the Agreement Plot, the para-
metric curve corresponding to the opinion evolution moves to the left or right of the plot.
This can be interpreted as opinions becoming more extreme, or going towards consensus.

• Overall the BEBA model has a great capacity of producing a wide range of quantitatively
different opinions, evidenced for instance by Table 6.12, which shows that, starting from a
single point in the Agreement Plot, the final opinions can be located almost everywhere in
the (0,0), (1,−1), (1,1) triangle.

• On the other hand, the qualitative range is way more limited, as evidenced by the QOL Ta-
bles in Figure 6.23. According to the tables and histograms in that figure, perfect consensus
and polarisation are almost the two exclusive outcomes of the BEBA model.

6.5.2. BOUNDED CONFIDENCE MODEL
Unlike the Friedkin-Johnsen and BEBA models, for the Bounded Confidence model the digraph
topology changes at each time-step, therefore there is no constant underlying digraph and, as a
consequence, no UDTE or UDSS plots. Additionally, the APTE, IOTE, APSS, and IOSS plots will
make no reference to a particular underlying digraph. Besides these changes, the analysis of this
agent-based opinion formation model will follow the same structure as before. For the Bounded
Confidence model, the agent parameter is the confidence radius, which is a number ri ∈ [0,2]. For
the line and point colour coding, a confidence radius near 0 is represented by lavender colour, and
a confidence radius near 2 by a pink colour.

Figure 6.25 shows the histograms corresponding to the agent parameters used for the UDTE,
IOTE, UDSS, and IOSS plots for the Bounded Confidence model.

Figure 6.25: Histograms of the agent parameters used in the IOTE, and IOSS plots for the Bounded Confidence
model (Tables 6.16, and 6.18 respectively).

Agreement Plot analysis. Starting with the Agreement Plot technique, Table 6.15 presents
APTE plots for four different initial opinions. As with the Friedkin-Johnsen model, all the para-
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metric curves move to the left, meaning that opinions get less extreme. This is due to the fact that
the Bounded Confidence model has no mechanism to move opinions away from each other, so
new opinions cannot exceed the initial maximum and initial opinions. In contrast to the Friedkin-
Johnsen model, the parametric curves also have a significant component along the y-axis. A possi-
ble explanation for this is the following: if there are two subgroups of agents with distant opinions,
one with agents having high confidence radius and the other with agents having low confidence
radius, the first group will be influenced by the second group, but not vice-versa, resulting in a
change in the mean of the opinion distribution.

Table 6.16 shows four IOTE plots for different choices of the agent parameters. The first no-
table observation is that, in some plots, some points seem not to have a parametric curve. This
happens because for those opinions the agent parameters (confidence radius) are such that no
agent influences each other, or if they do, their influence is minimal and therefore not noticeable.
This explanation is further backed by the fact that the points without a visible trajectory are lo-
cated to the right of the plots, where the mean of the opinions absolute values is relatively high,
meaning that most agents have ‘extreme’ (and therefore, distant) opinions. Besides this observa-
tion, the plots in Figure 6.16 show a behaviour that is to be expected of a model that in essence
averages opinions.

Table 6.17 presents four APSS plots for different initial opinions. The resulting plots are simi-
lar to the ones obtained for the Friedkin-Johnsen model in Table 6.5, with a key difference: some
steady-state points can be located to the right of the initial opinion point and not near the y =±x
lines. Although not a common outcome, it is also significant. The same explanation as before
applies: one subgroup with extreme opinions can influence the other agents without itself be-
ing influenced and thus, move them to opinions with higher value, without the need of achieving
consensus. An additional clue is in the point’s colour. Most of the points located at the right of
the initial opinion point and not near the y = ±x lines are lavender, meaning a low mean confi-
dence radius, therefore, if only some agents have a relatively high confidence radius they will move
towards the other agents that could possibly have a more extreme opinion.

Regarding the colour coding interpretation, most of the lavender points are near the initial
opinion point. This makes sense: if the mean confidence radius is low, then very few edges will be
formed and the opinions will not change significantly. On the other hand, the more pink points
are located near the y = ±x lines. Once again, this makes sense because, for those systems, the
opinions evolve similarly to the French-DeGroot model and thus move towards perfect consensus.

Table 6.18 shows four IOSS plots for different choices of the agent parameters. As with the IOSS
plots for the BEBA model, the points in these plots can be divided into two groups: a contracting
group and an invariant group. The contracting group behaves as with the Friedkin-Johnsen model,
except that points are more mixed: some blue points have a positive y-axis value, and some red
points have a negative y-axis value. This has the same explanation as parametric curves having
a significant component along the y-axis. On the other hand, the invariant group is self explana-
tory: for those initial opinions the agents have little influence among themselves (because the
confidence radius is lower than the opinion differences) and thus the opinions remain almost the
same.

These explanations are further backed by the agent parameters in each plot. For the first plot
some agent parameters possibly have a confidence radius of 2 and therefore are affected by ev-
ery agent and tend to consensus, resulting in a complete contraction (which can influence other
agents with narrower confidence radius to also move) and empty invariant group. For the third
plot the maximum confidence radius is probably around 1.9, therefore opinions with an absolute
value mean above 1.9 tend to remain invariant, while the other opinions contract. For the second
and fourth plots the maximum confidence radius is even lower, resulting in an invariant group
consisting of more initial points.
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Unlike in the other plots, for the contracting group in the fourth plot, the opinions are exactly
on the y =±x lines. This happens because all agents have similar confidence radius and therefore
the resulting digraphs are Complete and all agents converge to the same opinion. This does not
happen in the other plots, where some agents have a very low confidence radius and therefore their
opinion is almost invariant, preventing the steady state opinions from forming perfect consensus.

Probabilistic Analysis. Figures 6.26, 6.27, and 6.28 are analogous to Figures 6.18, 6.19, and
6.20 obtained in the Probabilistic Analysis of the Friedkin-Johnsen model.

Figure 6.26: Ordering of the points in the Agreement Plot and Parameter Plane, for the Bounded Confidence
model. Each point in the Agreement Plot corresponds to a pair (x, |x|) that creates a non-empty set of opinion
distributions O . Each point in the Parameter Plane corresponds to a pair (r ,σ(r )) that creates a non-empty set
of agent parameter sets P . The ordering is indicated by the colorbars and will be used in the plotting of the
corresponding QOL Tables in Figure 6.27 as explained in Figure 6.17.

The Agreement Plot ordering of Figure 6.26 means that the first rows will correspond to perfect
consensus and will move through consensus, clustering, and dissensus until reaching polarisation
for the last rows, which correspond to initial opinions near the point (1,0). The agent parameter
ordering shows a significant dependence on the confidence radius variance: the first rows corre-
spond to high mean radius with low variance and the last rows to intermediate-low mean confi-
dence radius and high variance. This means that in the societies represented in the left columns
most agents have the same confidence radius, around 2, and in societies to the right some agents
have a high and others have a low confidence radius.

The QOL Tables in Figure 6.27 show that the Bounded Confidence model predominantly pro-
duces perfect consensus and that the second most likely outcome is clustering. Perfect consensus
is almost guaranteed for the left part of the QOL Tables, that is, approximately when the mean
confidence radius is above 1. This makes sense: with such a high mean confidence radius, even
with high variance some agents will be influenced by almost all the other agents and cause global
convergence to a single value, producing perfect consensus.

The QOL Tables show that clustering is almost guaranteed for the bottom right corner, that
is, when the initial opinions are near the point (1,0) (most likely polarised), and the confidence
radius has an intermediate-low mean and high variance. This happens because, when the initial
opinions start polarised, the agents with intermediate confidence radius move towards the agents
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with low confidence radius, which remain in place, as they are influenced by very few agents. This
behaviour has the potential of moving agents away from the two initial polarised groups and thus
lead to clustering.

From Figure 6.27 it is also clear that the other qualitative outcomes are extremely unlikely,
because, in order to exist, they would need to start from very specific initial opinions and the
initial opinions and agent parameters would need to be precisely allocated, which is not likely to
happen at random.

Figure 6.28 provides more specific information about the conditions for which perfect con-
sensus is not the almost sure outcome. This happens when the variance is maximal and the mean
confidence radius is below 1. In that region there is also a significant probability of obtaining
clustering, and when the mean confidence radius is below 0.5 there is a slight probability that the
opinions form polarisation. This, however, is likely not because opinion distributions from differ-
ent categories become polarisation, but because polarised opinions remain polarised.

To summarise, the conclusions drawn from the Bounded Confidence’s behaviour and intrinsic
properties using the Agreement Plot and Probabilistic Analysis techniques are:

• Although the Bounded Confidence model uses the same weighted sum law to evolve opin-
ions (representing, thus, the trend towards agreement), as the French-DeGroot model, the
possibility of some agents having a low confidence radius and others a high confidence ra-
dius allows the model to escape the ‘averaging tendency’ (the tendency of evolving opinions
to have a near constant mean, represented by an almost horizontal movement along the
Agreement Plot), and instead have a significant displacement along the y-axis of the Agree-
ment Plot, i.e., significantly change the opinion’s mean. This is because agents with low
confidence radius can influence all the other agents without necessarily being influenced
themselves. Hence, if there exists a group of agents with similar opinions and low confi-
dence radius, that influence the other agents of the population, unavoidably, the mean of
the population opinion will move towards the opinions of these group of low confidence
radius agents.

• The lack of an underlying digraph both simplifies and limits the model. As noted for the
Friedkin-Johnson and BEBA models, the digraph had a significant indirect effect on the
model dynamics by ‘modulating’ the model response to different agent parameters and ini-
tial opinions. This cannot happen for the Bounded Confidence model, and thus one could
say that it has only one response to agent parameters and initial opinions.

• Depending on the agent parameters, a significant percentage of possible initial opinion dis-
tributions may remain constant for the Bounded Confidence model. The lower the maxi-
mum confidence radius, the more likely societies with extreme opinions remain invariant
as agents from opposite groups do not influence each other.

• A uniformly distributed agent parameter set creates more variety in the predicted opinions,
because heterogeneous confidence radii result in a network that not necessarily is strongly
connected and therefore allows agents to have different opinions. On the other hand, if all
the confidence radii are similar, then the agents are either all isolated or strongly connected.

6.6. CONCLUSIONS
This chapter introduced and explained four agent-formation model analysis techniques: the
Histogram-based Sorting Algorithm, the Transition Tables, the Agreement Plot, and the Prob-
abilistic Analysis. These four techniques collectively form a framework that can investigate
the intrinsic properties of agent-based opinion formation models. They rely on numerical
simulations to examine the models from different perspectives.
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We illustrated all the techniques with existing models in the literature, and we gained insight
into the models and real opinion formation.

The first avenue of future work is to apply these techniques to other models and implement
the required adaptations to put them into use with different opinion formation models (for which
agents could have more than one parameter, for example). Another possibility is to export these
ideas to other fields that use agent-based models, for instance, in disease spreading and epidemic
modelling.

Chapter 7 will use the framework described in this chapter to analyse a newly proposed opin-
ion formation model: the Classification-based model.



7
CLASSIFICATION-BASED OPINION

FORMATION MODEL EMBEDDING

AGENTS’ PSYCHOLOGICAL TRAITS

One often meets his destiny
on the road he takes to avoid it.

Master Oogway, Kung Fu Panda

We propose an agent-based opinion formation model characterised by a two-fold novelty. First, we
realistically assume that each agent cannot measure the opinion of its neighbours with infinite res-
olution and accuracy, and hence it can only classify the opinion of others as agreeing much more,
or more, or comparably, or less, or much less (than itself) with a given statement. This leads to a
classification-based rule for opinion update. Second, we consider three complementary agent traits
suggested by significant sociological and psychological research: conformism, radicalism and stub-
bornness. We rely on World Values Survey data to show that the proposed model has the potential
to predict the evolution of opinions in real life: the classification-based approach and complemen-
tary agent traits produce rich collective behaviours, such as polarisation, consensus, and clustering,
which can yield predicted opinions similar to survey results.

This chapter is based on the manuscript “Classification-Based Opinion Formation Model Embedding Agents’
Psychological Traits" [58] by Carlos Andrés Devia and Giulia Giordano, and on the work-in-progress paper
“Graphical and Probabilistic Analysis of Agent-Based Opinion Formation Models" [59], by Carlos Andrés Devia
and Giulia Giordano.
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This Chapter is structured in the following way. In Section 7.1 the model is described and in-
troduced. Section 7.2 presents the simulation results. These results consist of five parts: first, sim-
ulations over simple cases to develop an intuition on how the model behaves in simplified cases;
next, a parameter sensitivity analysis that studies how different parameter changes affect he model
behaviour; then, model validation with real data, where survey results from the World Value Sur-
vey data are used to determine the potential that the Classification-based model has of mimick-
ing opinion evolutions seen in real societies; after this, simulations comparing the Classification-
based model with the Friedkin-Johnsen model; and finally, results showing the model outcome
capabilities. Section 7.3 discusses summary and conclusions. Throughout the simulation results
the different analysis techniques described in Chapter 6 are used.

7.1. THE CLASSIFICATION-BASED MODEL
In our proposed classification-based (CB) model, the set V = {1,2, . . . , N } indexes the agents. The
opinion of agent i ∈ V at time k, representing its level of agreement with a statement, is denoted
by xi [k] ∈ [−1,1]. The opinions xi = 1, xi = 0, and xi =−1 represent complete agreement, indiffer-
ence, and complete disagreement respectively. The vector of all opinions at time k is denoted by
x[k].

The agent opinions evolve in time due to opinion exchanges occurring over a signed digraph,
represented by the matrix W ∈ {−1,0,1}N×N , whose entries are constant and, in particular, not
opinion-dependent. The self-confidence of each agent is expressed by wi i = 1 for all i . The coeffi-
cient wi j represents the influence of agent j over agent i . If wi j = 0, then agent i is not influenced
by agent j . If wi j 6= 0, then agent j is a neighbour of agent i : wi j = 1 means that agent i approves,
trusts, or follows agent j , while wi j = −1 means that agent i disapproves, mistrusts, or antago-
nises agent j . Signed edges have been interpreted in the opinion formation literature in terms
of either cooperative/antagonistic interactions [5], trust/mistrust [218], or approval/disapproval
[36]. In our model, if wi j = 1 (respectively wi j =−1), then agent i perceives the opinion of agent
j as x j (resp. −x j ). The set of neighbours of agent i ∈ V is

Ni =
{

j ∈ V | wi j 6= 0
}

. (7.1)

The agent opinions evolve in discrete time and the opinion update relies on the assumption
that agents cannot determine their neighbours’ opinions precisely. Instead, each agent can classify
its neighbours according to how close their perceived opinion is to its own opinion. For instance,
if agent j influences agent i , and xi = 0.61 and x j = 0.34, then it is unrealistic to expect agent i to
know exactly the opinion of agent j , or to assume that agent i knows that the opinion difference is
exactly 0.27. However, agent i can perceive that agent j agrees less than itself. On the contrary, if
x j = 0.89, agent i can perceive that agent j agrees more than itself.

Therefore, agent i can at most classify agent j according to an estimation of ∆i j , which is the
weighted difference between its opinion xi and the opinion of agent j , x j : ∆i j = xi − wi j x j ∈
[−2,2]. Let us divide the interval [−2,2] in five equal subintervals. Then, depending on the subin-
terval to which ∆i j belongs, agent i can perceive that agent j : (1) agrees much more, (2) agrees
more, (3) agrees comparably, (4) agrees less, or (5) agrees much less with the statement; see Figure
7.1. If wi j = −1, then agent i disapproves/mistrusts/antagonises agent j , therefore the weighted
opinion difference is ∆i j = xi − (−x j ) ∈ [−2,2]. If wi j = 1, then agent i approves/trusts/follows
agent j and the weighted opinion difference is ∆i j = xi − x j ∈ [−2,2]. The combined effect of
signed edges and neighbour classification leads to a three-step process: first, agent i perceives the
opinions of its neighbours; then, the opinions of neighbours that agent i disapproves, mistrusts, or
antagonises have the sign reversed; finally, the neighbours are classified according to the adjusted
perceived opinion distance.
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Figure 7.1: Partition of the interval [−2,2] in five equal subintervals. Depending on the interval to which the
weighted opinion difference ∆i j = xi −wi j x j belongs, agent i will perceive that agent j agrees either: much
more; or more; or comparably; or less; or much less.

The set Ni of all the neighbours of agent i is thus partitioned into five time-dependent subsets:
D+

i [k], Di [k], Ni [k], Ai [k], and A+
i [k], which contain the neighbours that agree much less, less,

comparably, more, and much more, respectively. Mathematically these subsets are defined as

D+
i [k] = {

j ∈Ni | 6/5 ≤∆i j [k] ≤ 2
}

Di [k] = {
j ∈Ni | 2/5 ≤∆i j [k] < 6/5

}
Ni [k] = {

j ∈Ni | −2/5 <∆i j [k] < 2/5
}

(7.2)

Ai [k] = {
j ∈Ni | −6/5 <∆i j [k] ≤ −2/5

}
A+

i [k] = {
j ∈Ni | −2 ≤∆i j [k] ≤ −6/5

}
where∆i j [k] = xi [k]−wi j x j [k]. The cardinality of these sets has the following interpretation:

|D+
i [k]| = number of neighbours that agent i perceives as agreeing much less than itself at time k

|Di [k]| = number of neighbours that agent i perceives as agreeing less than itself at time k

|Ni [k]| = number of neighbours that agent i perceives as agreeing the same as itself at time k

|Ai [k]| = number of neighbours that agent i perceives as agreeing more than itself at time k

|A+
i [k]| = number of neighbours that agent i perceives as agreeing much more than itself at time k

The overall behaviour of each agent results from the combination of three complementary
inner traits: conformism, leading the agent to agree with its neighbours; radicalism, driving the
agent to reinforce its opinion; and stubbornness, anchoring the agent to its current opinion. The
conformism, radicalism and stubbornness degree of agent i is respectively denoted by αi , βi and
γi . The parameters ψi = (αi ,βi ,γi ), quantifying the inner traits of agent i , satisfy αi ,βi ,γi ∈ [0,1]
and αi +βi +γi = 1 for all i . We call inner traits assignation the collection of inner traits of all
agents, ψB (ψi )i∈V . The model features are summarised in Figure 7.2.

The opinion change ∆xi [k] of agent i at time k is thus the convex combination of the be-
haviour of a purely conformist, purely radical, and purely stubborn agent,

∆xi [k] =αi f con
i +βi f rad

i +γi f stb
i , (7.3)

with f con
i , f rad

i , and f stb
i taken as

f con
i = λ

|Ni |
(
ξ|A+

i |+ |Ai |− |Di |−ξ|D+
i |

)
, f rad

i = λ

|Ni |
µ|Ni |xi [k], f stb

i = 0, (7.4)
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where λ, ξ, and µ are positive parameters: λ weighs the overall opinion change magnitude, ξ
weighs the increased influence that neighbours with distant opinions have over conformist traits,
and µ weighs the influence of the agent’s own opinion in radical traits. We call these opinion evo-
lution parameters: Ω= (λ,ξ,µ).

To better understand Equations (7.4) and choose reasonable values for the parameters, one
can think of how an extreme agent (αi = 1, or βi = 1, or γi = 1) behaves.

• A purely conformist agent (αi = 1, βi = 0, γi = 0) evolves towards an opinion comparable to
that of its neighbours. For instance, if Ni =Ni (all the neighbours of agent i agree compara-
bly), then agent i does not change its opinion. If Ai =Ni (all the neighbours of agent i agree
more), agent i increases its opinion xi by λ; given that all the neighbours of agent i are in
the set Ai , a value λ= 0.4 guarantees that, if all the neighbour opinions remain unchanged,
then at the next time step all the neighbours of agent i will be in the set Ni , hence perceived
as having a comparable opinion. Instead, if A+

i = Ni , then the opinion of agent i needs to
increase 0.8 = 2λ in order to be perceived as comparable to its neighbours’ at the next time
step, and therefore a natural choice is ξ= 2. The same reasoning can be applied to the sets
Di and D+

i .

• A purely radical agent (αi = 0, βi = 1, γi = 0) ignores neighbours with a different opinion
and only cares about agents that think comparably to itself, hence it reinforces its current
opinion xi [k] depending on the magnitude of its own opinion and on the fraction of its
neighbours in the set Ni . To make sure that radical traits can affect the opinion change
more strongly than conformist traits, we need µ > 1. In fact, if µ = 1, then | f rad

i | < | f con
i |

in general: the opinion change caused by the radical trait (which is proportional to xi [k],
and |xi [k]| ≤ 1) is smaller in magnitude than the one caused by the conformist trait. In our
simulations, we set µ= 5. The effect of different values of µ can be seen in Table 7.7.

• A purely stubborn agent (αi = 0, βi = 0, γi = 1) does not change its opinion under any
circumstance.

The new opinion of agent i at time k + 1 is the sum of the previous opinion xi [k] and the
opinion change ∆xi [k], modulated by the saturation function σ

σ(x) =
{

x if |x| ≤ 1

sign(x) if |x| > 1
(7.5)

so as to guarantee that the opinions remain in the interval [−1,1]. The complete opinion update
law is therefore

xi [k +1] =σ
(

xi [k]+ λ

|Ni |
(
αi ξ

(|A+
i |− |D+

i |)+αi
(|Ai |− |Di |

)+βiµ|Ni |xi [k]
))

, ∀i ∈ V. (7.6)

7.1.1. MODEL PARAMETERS
The Classification-Based (CB) model has three types of parameters: the signed digraph weights
wi j ; the inner traits assignation ψi = (αi ,βi ,γi ); and the opinion evolution parameters
Ω = (λ,ξ,µ) = (0.4,2,5) whose values are fixed, and chosen based on the model interpretation.
Later, a parameter sensitivity analysis explores how the model evolution is affected by changes in
opinion evolution parameters.

If the model has N agents, then:

• The signed digraph has weighted adjacency matrix (or weight matrix) W ∈ WN . In general,
WN = {−1,0,1}N×N , but we can focus for instance on Small-World, or strongly connected,
networks.
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• The inner traits assignation is ψ ∈ AN , where

AN =
{
ψ= (ψi )i∈V = (

(αi ,βi ,γi )
)N

i=1 |αi ,βi ,γi ∈ [0,1] and αi +βi +γi = 1, ∀i ∈ V
}

.
(7.7)

We omit the subscript N from the sets W and A for simplicity. Given N agents, a signed di-
graph W ∈ W, an inner traits assignation ψ ∈ A, and a vector of initial opinions x[0], the opinion
formation model evolves according to Equation (7.6). The vector x[K ] of opinions after K iter-
ations can be explicitly represented as a function of W , ψ, and x[0] by the map FΩ (x[K ] also
depends onΩ, whose value, given by the model interpretation, is fixed) as

x[K ] =FΩ(x[0],W,ψ,K ) (7.8)

The value of K depends on the type of statements and the prediction horizon. For statements
related to core values or beliefs, opinions are not expected to change very fast and one could con-
sider roughly 10 changes per year (as done in the analysis of the Transition Tables, in Section 6.1.4).
Therefore, if the model is used to predict the opinions after 5 years, K = 50. On the other hand, the
opinions on more superficial topics could change faster and, over the same 5-year timespan, it
could be K = 500. See Figure 7.2 for a summary of the model parameters and features.

To validate the model – namely, assess its potential to closely reproduce the evolution of opin-
ions in real life with suitably chosen parameters – we consider real initial and final opinions, de-
noted by x and y respectively, taken from survey data. Assuming that y are the real opinions K
iterations after the real initial opinions x, these data can be used to find values of the model pa-
rameters (edge weights W and inner traits ψ) that match as closely as possible the real opinion
evolution, through the minimisation problem

(Ŵ ,ψ̂) = argmin
W ∈W
ψ∈A

J (y, ỹ) such that ỹ =FΩ(x,W,ψ,K ), (7.9)

where the cost function J (y, ỹ) =∑N
i=1 |yi − ỹi | quantifies the mismatch between opinion vec-

tors y and ỹ .
If the same population is asked to quantify the agreement with Q different statements, the

signed digraph cannot change. However, the inner traits assignation can vary depending on the
statement, since each individual may have different attitudes towards different topics. Therefore, if
ψ(l ) represents the inner traits assignation associated with statement l , values for the parameters

W and (ψ(l ))Q
l=1 that produce predicted opinions as similar as possible to the real ones can be

found through the free optimisation problem

(
Ŵ , (ψ̂(l ))Q

l=1

)= argmin
W ∈W
ψ(l )∈A

Q∑
l=1

J (yl , ỹl ) ỹl =FΩ(xl ,W,ψ(l ),K ) (7.10)

where xl and yl are the known initial and final opinions related to statement l .
If instead all the inner traits assignations are constrained to be the same for every question, we

consider the constrained optimisation problem

(Ŵ ,ψ̂) = argmin
W ∈W
ψ∈A

Q∑
l=1

J (yl , ỹl ) ỹl =FΩ(xl ,W,ψ,K ) (7.11)
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The free optimisation problem, where the inner assignations can change, allows for a more
thorough study of the behaviour of a population, while the constrained optimisation problem al-
lows for a more rigorous testing of the prediction capabilities of the model in the form of cross-
validation: the answers to some questions can be used as training datasets to choose the model
parameters, and the model performance can then be tested on the remaining questions.

7.2. SIMULATION RESULTS
To gain insight into the classification-based (CB) model, this section presents five different types
of simulation results: 1) Simulations in Simple Cases (Section 7.2.1) evolve the model in sim-
ple, special cases to gain intuition into its behaviour; 2) Parameter Sensitivity Analysis (Section
7.2.2) studies how changes in each of the model parameters (inner traits assignation, signed di-
graph, opinion evolution parameters) affect the model behaviour; 3) Model Validation with Real
Data (Section 7.2.3) leverages real data from the WVS to show that the CB model has the poten-
tial to reproduce the time evolution of real opinions in society (with parameters chosen through
the free and the constrained optimisation problems of Equations (7.10) and (7.11) respectively)
and presents the Transition Tables between different qualitative types of opinion distributions,
as described in Section 6.1; 4) Comparison with the Friedkin-Johnsen (FJ) Model (Section 7.2.4)
investigates the relation between the two models and their predictive capabilities (first, evolving
equivalent populations; second, solving the optimisation problems (7.10) and (7.11); and third,
computing the corresponding Transition Tables); 5) Agreement Plot and Probabilistic Analysis
(Section 7.2.5) studies the model from the perspective presented in Sections 6.3 and 6.4. It is worth
noting that the Agreement Plot is also used in other parts of the simulation results, but the six dif-
ferent plots described in Table 6.8 are found in Section 7.2.5.

To facilitate the interpretation of simulation results, we introduce some definitions. Given the
inner traits assignation ψ= (ψi )i∈V = (

(αi ,βi ,γi )
)

i∈V , the associated average inner traits

ψ̄= (ᾱ, β̄, γ̄) where ᾱ= 1

N

∑
i∈V

αi β̄= 1

N

∑
i∈V

βi γ̄= 1

N

∑
i∈V

γi , (7.12)

represent the traits of an average agent in the considered society or population. The inner
traits assignation ψ and the corresponding average inner traits ψ̄ can be plotted in a ternary dia-
gram as shown in Figure 7.3a. Figure 7.3b explains how to interpret a point in the ternary diagram.

The signed agreement of an opinion vector x = (xi )N
i=1, quantified by the pair (θ+,θ−) where

θ− = ∑
xi<0

xi and θ+ = ∑
xi>0

xi , (7.13)

is the overall level of agreement and disagreement in the whole society. The signed agreement
θ = (θ+,θ−) and the general agreement π= (x, |x|) are related as follows:

x = 1

N
(θ++θ−) |x| = 1

N
(θ+−θ−) (7.14)

All the digraphs used in both Parameter Sensitivity Analysis and Model Validation with Real
Data have a Small-World network topology, with an assigned probability for positive and negative
edges, and are strongly connected. We consider Small-World networks because they have a high
clustering coefficient (neighbours of neighbours of agent i are likely also neighbours of agent i )
and low diameter (maximum distance between two agents of the network), which are believed to
be characteristics of real-life social networks [68, 214]. The directed Small-World networks were
built based on the Watts-Strogatz algorithm. Appendix A (Section 7.4) describes the computation
of network metrics. The signed digraphs are not restricted to be structurally balanced, to account
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(a) Each dot represents the inner traits of an agent; its
RGB colour reflects the weight of each trait (blue: con-
formist; red: radical; green: stubborn). The crossed dot
represents the average inner traits.

(b) Example of average inner traits in the ternary dia-
gram: 60% conformist, 10% radical, 30% stubborn.

Figure 7.3: Ternary diagrams visualising inner traits assignationsψ and average inner traits ψ̄. Panel 7.3a shows
the whole inner traits assignation (along with its average), while panel 7.3b only shows the average inner traits.
The difference between these diagrams is key: each non-crossed dot in Figure 7.3a represents the traits of
a single agent (see the diagram labels), the crossed dot represents the average traits. The dot in Figure 7.3b
represents the average traits of a complete population of (possibly) many agents (see the diagram labels). The
ternary diagram in Figure 7.3b could also have multiple dots, and each would correspond to a different society.

for the fact that also non-structurally-balanced networks have been considered in the literature
when modelling social dynamics [70, 140, 173].

In all the considered simulations, the initial opinions, traits and networks are assigned in-
dependently. A different approach could be to assign them in some correlated way: e.g., initial
opinions and network could be correlated by assigning the initial opinions such that two vertices
connected by an edge have a very similar (or very distant) initial opinion; traits and network could
be correlated by assigning the agent parameters with a probability that depends on the corre-
sponding vertex characteristics, for example assuming that vertices with higher out-degree have a
higher probability of being completely conformist, or radical. Correlations between initial opin-
ions, traits, and network characteristics can reproduce different types of societies present in real
life (for instance, in a society that values tradition, highly stubborn agents may be more influential
than others, and hence the corresponding vertices may have a higher out-degree).

7.2.1. SIMULATIONS IN SIMPLE CASES
To better understand the model behaviour, we simulate the model evolution over a digraph with
a Lattice topology with varying inner traits assignations (Figure 7.4). We consider a signed Lattice
digraph, where each agent has 4 in-neighbours and the edges are positive with probability 0.77.
All the agents have the same inner traits, combining only two inner traits: stubbornness and radi-
calism; radicalism and conformism; conformism and stubbornness. Starting from the same initial
opinions, Figure 7.4 shows the opinion evolution over 30 time steps. Radicalism tends to form
polarisation by driving the agents to extreme opposite views. Conformism tends to create consen-
sus; however, because of the classification approach, the agents do not converge to the very same
opinion (close enough agents are unable to perceive their opinion difference, because opinions are
assessed with finite resolution). Stubbornness slows down the effect of the other two traits; only in
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a fully stubborn population everyone keeps its initial opinion. Among the three traits, radicalism
appears to have the greatest effect: even a small amount of radicalism can prevent conformism
from forming consensus, and can yield polarisation in a very stubborn society.

Figure 7.4: Evolution of the CB model, starting from the same initial opinions, over a signed Lattice digraph
where the edges are positive with probability 0.77. In each simulation, all 100 agents have the same inner traits
that are a combination of only two of the possible traits: stubbornness (Stb), radicalism (Rad), and conformism
(Con). The top labels show the proportion of each trait: the upper left (respectively, right) graph corresponds
to a simulation where all agents are purely stubborn (resp. radical). The colour of the lines is the RGB repre-
sentation of the inner traits assignations (blue: conformist; red: radical; green: stubborn).

The opinion evolutions shown in Figure 7.4 can be interpreted as the model behaviour when
the inner traits are at the boundary of the ternary diagram. In a way, these evolutions capture the
dynamics that the model is capable of producing; since, as it can be seem in the next section, opin-
ion evolutions when the inner traits are located inside the ternary diagram follow similar patterns.
For instance, compare the plots in Figure 7.4 and Figures 7.6a, 7.7b, and 7.7e.

7.2.2. PARAMETER SENSITIVITY ANALYSIS
We select a set of nominal parameters (which, for given initial conditions, produce nominal sim-
ulation results) as a baseline with which other parameter choices can be compared. We choose
a nominal inner traits assignation that leads to model outcomes that closely reproduce real data
from the World Values Survey (in fact, it is close to some of the inner traits assignations resulting
from the Free optimisation problem (7.9), see Figure 7.15a), and therefore has the potential to rep-
resent a realistic society; moreover, it allows us to showcase the wide range of different opinion
evolutions that the model can produce. Then, we vary inner traits assignations, signed digraph
and opinion evolution parameters, one by one, and study their effect on the simulated behaviour.

NOMINAL PARAMETERS AND NOMINAL RESULTS

We consider the initial opinions shown in Figure 7.5a, which evolve according to the model with
the nominal parameters: λ = 0.4, ξ = 2, µ = 5, inner traits assignations in Figure 7.5b, and signed
digraph in Figure 7.5c.

The initial opinions shown in Figure 7.5a have θ− = −19.3 and θ+ = 41.5, indicating a strong
general agreement since θ+ > −θ−. Figure 7.5b shows that most agents have very strong con-
formist traits, with a notable percentage of radicalism, resulting in an average agent (crossed dot)
with 60% conformist traits, 30% radical traits, and 10% stubborn traits. The nominal signed di-
graph in Figure 7.5c is highly connected, with average path length 2.12, clustering coefficient 0.38,
diameter 4. It has 834 positive edges and 767 negative edges.

The nominal results are shown in Figure 7.6. Figure 7.6a shows the opinion evolution of every
agent. The line colour represents the percentage of conformist, radical, and stubborn agent traits
(blue for conformist, red for radical, and green for stubborn). The purple colour of most lines
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(a) Initial Opinions Histogram
(b) Nominal Inner Traits Assigna-
tion (c) Nominal Signed Digraph

Figure 7.5: Initial opinions, nominal parameters, and nominal signed digraph.

corresponds to a combination of conformist and radical traits. The discontinuity in the opinion
change is due to the classification process leading to a discontinuous opinion update law. The
opinion evolution of the various agents shows a great variability in opinion changes, without a
clear global tendency.

(a) Nominal Opinion Evolution (b) Nominal Final Opinion Histogram

Figure 7.6: Opinion evolution with nominal parameter values (λ= 0.4, ξ= 2, µ= 5) and final opinion histogram
(100 agents).

Figure 7.6b shows the histogram of the nominal final opinions predicted by the model after 50
time steps. Compared with the initial opinions, the final opinions appear to have a more uniform
distribution: in fact, for the nominal final opinions, θ− = −25.75 and θ+ = 25.1, hence θ+ ≈ −θ−.
The behaviour of the opinion evolution and the distribution of the final opinions is explained by
the presence of two opposing forces that drive the opinion of all the agents: on one hand, the
tendency to achieve consensus, due to the conformist traits, drives the agents towards the centre;
on the other hand, the radical traits move the opinions towards extreme values.

VARYING THE INNER TRAITS ASSIGNATIONS

To evaluate the effect of different inner traits assignations, we change the nominal inner traits
assignations of Figure 7.5b and simulate the opinion evolution, keeping all the other parameters
unchanged. The two new inner traits assignations, shown in Figures 7.7a and 7.7d, are simply ro-
tations of the nominal inner traits assignations. The corresponding opinion evolutions are shown
in Figures 7.7b and 7.7e, while the final opinion histograms are presented in Figures 7.7c and 7.7f.

Comparing the opinion evolutions of Figures 7.6a, 7.7b, and 7.7e and the final opinion his-
tograms of Figures 7.6b, 7.7c, and 7.7f reveals the profound effect of different inner traits assigna-
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(a) Inner traits assignations 1
(b) Opinion evolution inner traits assignations 1 (c) Final opinion histogram inner

traits assignations 1

(d) Inner traits assignations 2
(e) Opinion evolution inner traits assignations 2 (f) Final opinion histogram inner

traits assignations 2

Figure 7.7: Effect of changing the inner traits assignations (evolving 100 agents).

tions on the opinion evolution. In the inner traits assignation of Figure 7.7a, the agents are mostly
stubborn and conformist. This results in a very slow convergence towards the mean, spurred by
conformist traits and slowed down by stubborn traits. Because of the neighbour classification,
even completely conformist agents would not reach perfect consensus, but would rather converge
to an opinion subinterval where all the agents perceive that the others have a comparable opinion.
This tendency towards the mean can be seen in the final opinion histogram of Figure 7.7c, where
both θ− =−11.02 and θ+ = 18.85 are much closer to 0.

On the other hand, the inner traits assignation of Figure 7.7d gives agents pronounced radical
traits. Both the opinion evolution in Figure 7.7e and the final opinion histogram in Figure 7.7f
show that agents lean towards extreme opinions. A bunch of agents keeps its opinion closer to
zero. The line colours (closer to blue and green) show that these agents do not have very strong
radical traits, and instead they are more conformist and stubborn: such traits allow these agents
to avoid extreme opinions.

VARYING THE SIGNED DIGRAPH

To study the effect of changing the signs of the weights of the signed digraph, the nominal signed
digraph of Figure 7.5c is modified into the signed digraphs shown in Figures 7.8a and 7.8d. The
topology is unchanged, but the number of positive and negative edges is changed. The resulting
opinion evolution and final opinion histograms are shown in Figures 7.8b and 7.8c, and in Figures
7.8e and 7.8f respectively.

Compared with the nominal results in Figures 7.6a and 7.6b, the most different outcome oc-
curs when most edges are positive (digraph in Figure 7.8d). In this case, the end result is almost
perfect consensus for the +1 opinion, because the initial opinion, with θ− =−19.3 and θ+ = 41.5, is
more skewed towards +1. The presence of negative edges is crucial to avoid trivial consensus out-
comes even when the agents are not completely conformist. The opinion evolution in Figure 7.8e
shows that, initially, conformist traits pull the opinions towards positive values, and then radical
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(a) Signed digraph 1 (b) Opinion evolution signed digraph 1 (c) Final opinion histogram
signed digraph 1

(d) Signed digraph 2 (e) Opinion evolution signed digraph 2 (f) Final opinion histogram
signed digraph 2

Figure 7.8: Effect of changing the signed digraph (evolving 100 agents).

traits make them increase in value until they reach +1. Purely radical agents would have produced
polarisation instead of consensus.

When increasing the number of negative edges (digraph in Figure 7.8a), the final opinions in
Figure 7.8c are different from the nominal ones, but the qualitative behaviour is comparable.

VARYING THE OPINION EVOLUTION PARAMETERS

We study the sensitivity with respect to the opinion evolution parametersΩ= (λ,ξ,µ), where: λ is
the overall opinion change magnitude, and can also be thought of as a time scaling parameter; ξ
gives more weight to distant opinions for conformist traits; µ increases the opinion change for rad-
ical traits. We change these parameters one at the time, with respect to the nominal parameters,
and compare the results with the nominal results in Figure 7.6.

Figure 7.9 shows the opinion evolution and final histogram for λ = 0.2 and λ = 0.8. The final
histograms in Figures 7.9b and 7.9d do not change much with respect to the nominal. The most
significant change can be noticed in Figures 7.9a and 7.9c, showing that indeed a higher value of λ
produces larger changes in the opinions. Overall, however, the effect of varying λ is very limited.

The effect of varying ξ is shown in Figure 7.10. The changes in both the opinion evolution
and the final opinion histogram are quite noticeable. A value of ξ= 1 means that distant opinions
have the same attracting power as closer opinions for the conformist traits, hence in general the
conformist trait has less influence over the whole opinion change, which is instead dominated
by the radical traits. The result is visible in the opinion evolution in Figure 7.10a and the final
opinion histogram in Figure 7.10b. On the contrary, increasing the value to ξ= 4 yields a stronger
conformist tendency towards consensus, evident when comparing the nominal final opinions in
Figure 7.6b with the final opinions with ξ= 4 in Figure 7.10d, and the respective θ− and θ+.

Parameter µmodulates the effect of radical traits on the opinion evolution. Comparing Figure
7.11b with Figure 7.11d shows that a larger µ increases radicalism in the population, which leads
to polarisation for the given initial opinions. A similar effect is achieved by varying ξ: in fact, both
ξ and µ affect the balance between the conformist tendency towards consensus and the radical
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(a) Opinion Evolution with λ= 0.2 (b) Final Opinion Histogram withλ= 0.2

(c) Opinion Evolution with λ= 0.8 (d) Final Opinion Histogram withλ= 0.8

Figure 7.9: Effect of changing λ from the nominal value λ = 0.4 to λ = 0.2 (Figures 7.9a and 7.9b) and λ = 0.8
(Figures 7.9c and 7.9d) evolving 100 agents. The other model values are ξ= 2, and µ= 5

(a) Opinion Evolution with ξ= 1 (b) Final Opinion Histogram with ξ= 1

(c) Opinion Evolution with ξ= 4 (d) Final Opinion Histogram with ξ= 4

Figure 7.10: Effect of changing ξ from the nominal value ξ = 2 to ξ = 1 (Figures 7.10a and 7.10b) and ξ = 4
(Figures 7.10c and 7.10d) evolving 100 agents. The other model values are λ= 0.4, and µ= 5

tendency towards polarisation. Although both ξ and µ play a role in the conformist-radical bal-
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ance, they are not completely complementary: an increase in ξ is not the same as a decrease in µ.
This can be seen by comparing Figures 7.10d and 7.11b: increasing ξ produces final opinions that
are more evenly distributed than those obtained by decreasing µ. Moreover, increasing radicalism
does not always lead to polarisation: this happens only when the opinions have both positive and
negative values. If the opinions have only positive values or only negative values, then radical-
ism will move all of them to a single extreme, resulting in consensus. Therefore, it is not possible
to generalise the idea that more radicalism always leads to polarisation, regardless of the initial
opinions.

(a) Opinion Evolution with µ= 2.5 (b) Final Opinion Histogram withµ= 2.5

(c) Opinion Evolution with µ= 10 (d) Final Opinion Histogram with µ= 10

Figure 7.11: Effect of changing µ from the nominal value µ= 5 to µ= 2.5 (Figures 7.11a and 7.11b) and µ= 10
(Figures 7.11c and 7.11d) evolving 100 agents. The other model values are λ= 0.4, and ξ= 2

7.2.3. MODEL VALIDATION WITH REAL DATA
Data from the World Values Survey are used to validate the CB model, namely, show that a suitable
choice of the parameters allows the model to produce predicted opinions similar to the real opin-
ions in a society. The World Values Survey is an international organisation that conducts surveys
about ethics and values in different countries around the globe. These surveys are repeated every
5 years. We considered the answers to 30 questions, shown in Table 7.19, in 26 countries, shown
in Table 7.18. In each question, the respondents are asked to state the extent to which they agree
with a statement in a Likert scale 10. The answers given in the wave 5 surveys are taken as initial
opinions, while the answers of wave 6 surveys are taken as final opinions.

Two minimisation problems are stated to find model parameters that produce predicted opin-
ions similar to the ones found in the survey answers. The Free Optimisation Problem allows the
inner traits assignation to change with questions; in the Constrained Optimisation Problem, the
inner traits are fixed for all questions. The Transition Tables for the model with parameters pro-
vided by both optimisation problems are also computed.

Given real and model-generated opinion vectors r and y , the cost function J used in the min-
imisation problems (7.9), (7.10), and (7.11) is defined as
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J (r, y) =
N∑

i=1
|r̃i − ỹi |, (7.15)

where r̃ = (r̃i )N
i=1 is the vector r̂ = (r̂i )N

i=1 sorted in descending order, and ·̂ is the quantisation
function

r̂i = argmin
ζ∈R

{|ζ− ri |} ∀i = 1, . . . , N ,

with R defined as R =
{

1
2 (uk +uk+1) | uk = −1+k 2

10 k = 1, . . . ,9
}

. Quantisation is needed

because the World Values Survey answers we consider as real opinions use a Likert scale 10: par-
ticipants could choose their opinion from 10 different options. These opinions rescaled to be be-
tween -1 and 1 produce the set R and, therefore, the predicted opinions also need to be quantified
in the same way. Both opinion vectors (real and predicted) are sorted in descending order, so that
equal opinions add a zero to the total cost.

Even for a relatively small population N = 100, the size of the sets W (underlying signed di-
graph structures) and A (inner traits assignations) is enormous. Given the tremendous size of the
parameter space W×A, performing the minimisation over all possible signed digraphs and agent
inner traits would be computationally intractable. Therefore, the minimisation occurs over small
subsets W̃ ⊂ W, Ã ⊂ A of the whole parameter space. As a consequence, there is no guarantee
that we are estimating the real parameter values or making the absolute best parameter choice:
with other parameter choices, not included in W̃× Ã, the model could reproduce the data with
even better accuracy.

ID 1 2 3 4 5 6 7 8 9 10 11 12
APL 2.13 2.13 2.13 2.13 2.13 1.95 1.95 1.95 1.95 1.95 2.04 2.04
CC 0.38 0.38 0.38 0.38 0.38 0.18 0.18 0.18 0.18 0.18 0.16 0.16
PE 252 558 834 1115 1436 258 566 848 1145 1438 222 533
NE 1349 1043 767 486 165 1326 1018 736 439 146 1194 883
D 4 4 4 4 4 3 3 3 3 3 3 3
BI 0.00015 4.4e-05 3.8e-05 0.00013 0.042 0.00023 8.1e-05 4.8e-05 0.00027 0.049 0.00099 0.00025

ID 13 14 15 16 17 18 19 20 21 22 23 24
APL 2.04 2.04 2.04 1.75 1.75 1.75 1.75 1.75 1.68 1.68 1.68 1.68
CC 0.16 0.16 0.16 0.25 0.25 0.25 0.25 0.25 0.35 0.35 0.35 0.35
PE 746 1020 1259 362 864 1351 1813 2344 418 1079 1683 2372
NE 670 396 157 2227 1725 1238 776 245 2891 2230 1626 937
D 3 3 3 3 3 3 3 3 2 2 2 2
BI 0.00021 0.00056 0.047 2e-08 6.1e-09 4.1e-09 1e-07 0.0071 3.4e-11 5.8e-12 7.5e-13 6.7e-09

ID 25 26 27 28 29 30 31 32 33 34 35
APL 1.68 1.68 1.68 1.68 1.68 1.68 1.62 1.62 1.62 1.62 1.62
CC 0.35 0.32 0.32 0.32 0.32 0.32 0.39 0.39 0.39 0.39 0.39
PE 2947 456 1063 1667 2329 2972 457 1259 1998 2717 3506
NE 362 2823 2216 1612 950 307 3440 2638 1899 1180 391
D 2 2 2 2 2 2 2 2 2 2 2
BI 0.00074 4.8e-11 8.6e-12 1.3e-12 3.7e-09 0.0021 4.7e-14 3.6e-14 3.2e-14 4.3e-11 0.00033

Table 7.1: Signed Digraph Information: Average Path Length (APL), Clustering Coefficent (CC), Positive Edges
(PE), Negative Edges (NE), Diameter (D), and Balance Index (BI)

The subset W̃ contains 35 different Small-World signed strongly connected digraphs. Table 7.1
shows the main characteristics of the networks. The subset Ã contains 3528 randomly generated
inner traits assignations ψ= (ψi )N

i=1. To avoid bias towards societies with average inner traits that

are more conformist, radical, or stubborn, the set Ã satisfies the following property: for every
inner traits assignation ψ, with corresponding average inner trait ψ̄ = (ᾱ, β̄, γ̄) = (a1,b1,c1), there
are two inner traits assignations ψ′,ψ′′ ∈ Ã that satisfy ψ̄′ = (b1,c1, a1), and ψ̄′′ = (c1, a1,b1). In
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Figure 7.12: All the average inner traits ψ̄ corresponding to inner traits assignations ψ in Ã.

other words, the parameter space Ã is symmetric with respect to permutations of agent traits.
Besides this property, the elements of this set were chosen at random. All the average inner traits
ψ̄ corresponding to inner traits assignations ψ in Ã are shown in Figure 7.12.

Due to the anonymity of the surveys, it is not possible to guarantee that the same people an-
swered the survey in subsequent waves of the WVS. However, if the surveys are done correctly to
represent society overall, the results can be anyway assumed to reflect the global opinion distri-
bution of the general population about a given topic at a specific time, and this allows us to use
the survey results in different waves in our minimisation problem, as if the very same people had
answered.

Free OPTIMISATION PROBLEM

Assuming that the agents can have different inner traits for each question, Equation (7.10) was
used to find model parameters for each country that yield opinions similar to the real ones. Once
the parameters that solve the minimisation problem (7.10) were found for each country, the cost
associated with the prediction discrepancy for each question-country pair was computed as in
Equation (7.15) (see Figure 7.13). Due to its complexity and the huge size of the feasibility set, the
minimisation problem is solved approximately: hence, a possibly suboptimal solution is found.
By solving the optimisation problem more accurately, over a longer computation time (which we
could not afford, due to the very large number of question-country pairs that we consider), even
smaller costs could be achieved, and hence even better fits of the real data.

Figure 7.14 shows the model predictions for some question-country pairs. The original opin-
ion is shown in blue, the real final opinion in orange, and the predicted final opinion in green; the
corresponding cost (discrepancy) is reported. For costs less than 7, the model produces predicted
final opinions that accurately represent the real final opinions, hence, we label these question-
country pairs as ‘accurate’ .

In total 780 question-country pairs were considered (30 questions and 26 countries). The in-
dividual cost of each question-country pair is reported in tables located in Appendix E. In order
to evaluate the models, the most important metrics are: the average cost along all the countries,
the number of ‘accurate’ question-country pairs, and their average cost. These values, for the Free
optimisation problem are reported in Table 7.2.
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Figure 7.13: Visualisation of the procedure to solve minimisation problem in Equation (7.10). Assume that a
survey conducted in two separate occasions in country A had Q questions. Given a signed digraph W ∈ W

and Q inner traits assignations (ψ(l ) ∈ A)Q
l=1

(one for each question), the model predicts a final opinion ỹl .
The cost function J (yl , ỹl ) measures how close the predicted final opinion is to the real final opinion yl . The
sum of all these costs gives the total cost T of the country. Minimising the value of T over the all the signed
digraphs in W and inner traits assignations in A gives parameters that approximate the real opinion evolution,

Ŵ , and (ψ̂(l ))Q
l=1

. The cost for each question and the average and total cost obtained using these optimal
parameters are reported in the column of Table 7.24 corresponding to the considered country. Table 7.2 reports
the global results, namely, the average cost along all countries, the number of ‘accurate’ question-country
pairs (a question-country pair is labeled ‘accurate’ if the cost J (yl , ỹl ) is less than 7), and the average cost of
‘accurate’ question-country pairs. All simulations evolved 100 agents.

Average cost along all the countries 3.2815
Number of ‘accurate’ question-country pairs 755 from 780 (97% accuracy)
Average cost of ‘accurate’ question-country pairs 2.97

Table 7.2: Global results of the Free optimization problem (Equation (7.10)) using the Classification-based
model. The individual costs for each question-country pair can be seen in Table 7.24. The corresponding
results for the Friedkin-Johnsen model are shown in Table 7.9

To carry out a thorough comparison with standard models of opinion formation, an analysis
equivalent to the one reported in Table 7.2 is performed also for the Null model (the model that
assumes that the opinions do not change over time) and the French-DeGroot (FG) model [77, 105,
106, 54]. The results are reported in Tables 7.3 and 7.4, respectively.

Average cost along all the countries 10.5567
Number of ‘accurate’ question-country pairs 332 from 780 (43% accuracy)
Average cost of ‘accurate’ question-country pairs 4.17

Table 7.3: Global results using the Null model. The individual costs for each question-country pair can be seen
in Table 7.25

To make Tables 7.2 and 7.4 comparable, for the FG model the digraphs used in each country
are selected following the same minimisation problem as the one solved for the CB model. Since
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Figure 7.14: Examples of the opinion predictions achieved with the CB model, with varying resulting costs. For
each trio of histograms, the initial opinions are in blue, the real final opinions in orange, and the predicted
final opinions in green. The value of the cost J (in Equation (7.15)) is shown in the predicted histogram: cost
values within 7 are shown to correspond to an accurate reproduction of the real opinion distribution.

Average cost along all the countries 38.4323
Number of ‘accurate’ question-country pairs 13 from 780 (2% accuracy)
Average cost of ‘accurate’ question-country pairs 5.43

Table 7.4: Global results of the optimization problem using the French-DeGroot model. The individual costs
for each question-country pair can be seen in Table 7.26

the FG model does not involve agent parameters, we only minimise over the set of digraphs WFG.
Both the set of digraphs for the CB model, W, and for the FG model, WFG, have the same number
of elements and there is a one-to-one topology correspondence; the digraphs in W are signed
and unweighted, while those in WFG are unsigned and row-stochastic (as required by the different
nature of the two models).

Comparing Table 7.2 with Tables 7.4 and 7.3 shows that the CB model performs remarkably
well, yielding a 97% accuracy in contrast to the 43% accuracy of the Null model and the 2% accu-
racy of the French-DeGroot model. In fact, from Table 7.3 it is clear that, although there is a strong
tendency towards stubbornness and opinion distribution tend to change only slightly over time,
keeping the opinions exactly constant does not lead to good predictions. As shown in Table 7.4,
the predictions of the French-DeGroot model are also not accurate, consistently with the evidence
that perfect consensus is uncommon in real life.

Plotting the average inner traits ψ̄ for all question-country pairs for which the cost is less than
7 provides possible hints on how these societies could potentially be formed. However, because of
the large parameter space and relatively small data set, we cannot make conclusive statements on
actual societies just based on the optimisation results, as very different inner traits assignations
may produce similarly low costs: we just propose a possible explanation. The resulting ternary
diagram is presented in Figure 7.15. Figure 7.15a shows the position of each question-country
pair. Figure 7.15b shows a density plot over the ternary diagram indicating the regions where most
question-country pairs are found.
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(a) Ternary diagram plotting the average inner traits for the
question-country pairs with cost < 7 according to Table 7.24.

(b) Density plot of the ternary diagram: most question-
country pairs have an average agent with more than 95% stub-
born traits.

Figure 7.15: Analysis of the location of the average agents for all the question-country pairs with cost less than
7.

Despite the small data set and possible multiple local minima with similar low cost, fitting
real data to gain an insight into the composition of actual societies reveals a clear trend: most
average inner traits include a strong stubborn component, as shown by the high density in the
stubbornness corner in Figure 7.15b. Also, the non-stubborn part can be roughly divided into 70%
conformist and 30% radical, as shown by the trend in Figure 7.15a. This distribution is almost con-
stant across all question-country pairs. Again, this is a possible explanation, and more data and
more thorough explorations of the parameter space (extremely challenging from a computational
standpoint) would be needed to make more conclusive statements. Hence, this is not conclu-
sive evidence that most people are stubborn. There may be other explanations, for instance that
not too many opinion exchange events take place in an average person’s life. Graph-theoretically
speaking, isolation due to the lack of outgoing edges from a node (i.e., lack of interactions) is asso-
ciated with the concept of stubbornness. However, from a mathematical model it is impossible to
draw conclusions on whether the opinion of an agent remains unchanged because the agent re-
fuses to consider the different opinions it is exposed to, or because the agent intentionally avoids
exposure to different opinions, or because the agent simply lacks the opportunity to come into
contact with different opinions. Furthermore, the traits themselves can be interpreted in different
ways: for instance, a lower value of stubbornness can be regarded as a greater openness to change.

Parameter Variation:

The results presented in Table 7.2 and Figures 7.14 and 7.15 are obtained by solving the min-
imisation problem (7.10) with nominal opinion evolution parameters λ = 0.4, ξ = 2, and µ = 5.
We now analyse the results of the minimisation problem when these parameters are changed.
Tables 7.5 to 7.7 present how this variation affects the percentage of accurate question-country
pairs (namely, those associated with a cost smaller than 7), the average cost of accurate question-
country pairs, and the ternary diagram plot.

Tables 7.5 to 7.7 show that, even after varying the values of λ, ξ, and µ, the percentage of
accurate question-country pairs remains around 96%, and the average cost of accurate question-
country pairs is between 2.79 and 3.45 which is quite remarkable since it means that the high
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λ= 0.2 λ= 0.4 λ= 0.8

% of ‘accurate’ country-question
pairs

93.7 96.8 97.8

Average cost of ‘accurate’ country-
question pairs

2.79 2.97 3.02

Ternary Diagram Plot

Table 7.5: Effects of varying λ while keeping the nominal values ξ= 2, and µ= 5.

ξ= 1 ξ= 2 ξ= 4

% of ‘accurate’ country-question
pairs

96 96.8 95.8

Average cost of ‘accurate’ country-
question pairs

2.84 2.97 3.45

Ternary Diagram Plot

Table 7.6: Effects of varying ξ while keeping the nominal values µ= 5, and λ= 0.4.

µ= 2.5 µ= 5 µ= 10

% of ‘accurate’ country-question
pairs

96.8 96.8 97.2

Average cost of ‘accurate’ country-
question pairs

2.84 2.97 3.15

Ternary Diagram Plot

Table 7.7: Effects of varying µ while keeping the nominal values λ= 0.4, and ξ= 2.

accuracy achieved with the CB model is very robust to parameter variations.
Comparing the ternary diagrams shows the persistent tendency of question-country pairs to

lie along a line where the proportion between conformist and radical traits is constant. For most
simulation results, this proportion is still 70% conformist and 30% radical, as in the nominal case
(Figure 7.15a). The proportion only changes when varying µ: for µ= 2.5, we have 60% conformist
and 40% radical agents, while for µ = 10 we have 80% conformist and 20% radical agents. There-
fore, it appears that µ can be tuned to regulate this proportion.
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Constrained OPTIMISATION PROBLEM

If the agents are assumed to have the same inner traits for every question, then the model param-
eters can be found using the constrained optimisation problem in Equation (7.11). One advantage
of using this approach is that, since each country has the same topology and inner traits assigna-
tion for all the questions, these parameters can be identified by solving the constrained optimisa-
tion problem (7.11) for a subset of all available questions (training dataset), and then tested on the
remaining questions (test dataset). This was not possible previously, when assuming a different
inner traits assignation associated with each question.

This procedure is commonly known as cross-validation. Generally, a subset of available data
is used to train an algorithm (in this case, to identify the model parameters Ŵ and ψ̂) and the
remaining data is used to test the trained algorithm (in this case, the model with identified param-
eters Ŵ and ψ̂). To eliminate result biases due to the selected training datasets and test datasets,
cross-validation is performed multiple times for different partitions of the data. A common ap-
proach is to divide the data in K subsets and validate the model K times so that, at each iteration,
only one subset is taken as the test dataset. This is known as K -fold cross-validation.

In the case of the constrained optimisation problem, a sixfold cross-validation was done on the
available data (the questions are divided in six subsets of five questions each: {1, . . . ,5}, {6, . . . ,10},
. . . , {26, . . . ,30} ). The results, reported in Table 7.8, show that the free optimisation problem yields
better results, this is to be expected, as it has more degrees of freedom. Therefore, when looking
at the results in Table 7.8 it is important to note that these predictions are done based on the
assumption that the inner traits are the same for every question, while in reality the inner traits of
the agents may change when considering their attitude towards different types of questions (which
is taken into account by the free optimisation approach).

Average cost along all the countries 11.6746
Number of ‘accurate’ question-country pairs 220 from 780 (28% accuracy)
Average cost of ‘accurate’ question-country pairs 5.16

Table 7.8: Global results of the Constrained optimization problem (Equation (7.11)) using the Classification-
based model. The individual costs for each question-country pair can be seen in Table 7.27. The corresponding
results for the Friedkin-Johnsen model are shown in Table 7.10

TRANSITION TABLES

Here we briefly recall the definition of Transition Tables, for details see Section 6.1. Let xo be an
initial opinion vector, and x f the final opinion vector predicted by the model. Both xo and x f can
be sorted into one of five possible opinion distribution categories shown in Figure 7.16: 1) perfect
consensus, PC; 2) consensus, Co; 3) polarisation, Po; 4) clustering, Cl; and 5) dissensus, Di.

Figure 7.16: Histograms of opinion vectors that are representative of the five possible qualitative opinion dis-
tribution categories: Perfect Consensus, Consensus, Polarisation, Clustering, and Dissensus.

Now, let Xo be a set of initial opinions Xo = {xo } and X f the corresponding set of predicted
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opinions X f = {x f }. A transition table T , with 5 rows and 5 columns corresponding to the five pos-
sible opinion categories, is computed so that the coefficient in cell (a,b) is the number of initial
opinion vectors xo ∈ Xo belonging to category a for which the corresponding predicted opinion
x f belongs to the category b. The table shows whether the model can evolve initial opinions be-
longing to any category into predicted opinions belonging to any other category.

Figure 7.17 shows three Transition Tables, where the set Xo represents the set of all World
Values Survey answers to wave 5 for all questions and countries. For the real transition table A, the
set X f represents all the corresponding survey answers in wave 6, which are the true final opinions.
For the transition table B (respectively, C) the set X f contains all the corresponding predicted
opinions produced by the CB model with the parameters obtained through the Free (respectively,
Constrained) optimisation, namely, all the predicted final opinions ỹ used to compute Table 7.2
(respectively, Table 7.8).

Figure 7.17: Real transition table and Transition Tables produced by the CB model using the digraphs and
inner traits assignations given by the Free and Constrained optimisation problems, along with the sum and
percentage of cells above / on / below the diagonal. The two tables below show the absolute value of the
difference between predicted and real Transition Tables.

Interestingly, with the suitable choice of parameters, the CB model is capable of evolving opin-
ions from any initial category into any other final category, as it happens with real opinion distri-
butions. As expected, better results are achieved with the Free optimisation, in line with the results
from Tables 7.2 and 7.8; still, both the free and the constrained Transition Tables show the versa-
tility of the CB model, which can yield all transitions between opinion distribution categories that
are seen in real life.

7.2.4. COMPARISON WITH THE FRIEDKIN-JOHNSEN MODEL
The classification-based model can be seen as an extension of the Friedkin-Johnsen (FJ) model
[78, 79], in the sense that both models include in the agents’ behaviour inner traits described by
tuples. In the FJ model, each agent i is characterised by two parameters: susceptibility ai ∈ [0,1],
determining how strongly the agent is affected by its neighbours’ opinions and forgets the initial
opinion [79], and prejudice bi = 1− ai ∈ [0,1]. A value of ai = 1 means that the agent has com-
plete susceptibility to interpersonal influence (similar to complete conformism), while a value of
ai = 0 means that the opinion remains the same for all times (similar to complete stubbornness).
When all agents are completely susceptible, the FJ model becomes the classic French-DeGroot
(FG) model [77, 105, 106, 54]; when all agents are completely prejudgemental, the FJ model be-
comes the Null model (opinions do not change over time).
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In the CB model, each agent i is associated with three parameters: conformism αi ∈ [0,1],
radicalism βi ∈ [0,1], and stubbornness γi ∈ [0,1], such that αi +βi +γi = 1 for all i ∈ V. Therefore,
a FJ model where all agents have a susceptibility of a is similar to a CB model where all agents
have inner traits α = a and γ = 1− a (hence β = 0). Still, the interpretations of stubbornness and
prejudice are slightly different: prejudice in the FJ model means that agents tend to remain with
their initial opinion, while stubbornness in the CB model means that agents tend to remain with
their current opinion, which leads to the same outcome only when all the agents are completely
stubborn. Apart from the outlined similarity, the FJ and CB models are different: crucially, the FJ
model is linear, while the CB model is highly non-linear, which severely limits the applicability of
closed-form analysis tools.

Figure 7.18 shows the evolution of the same initial opinions according to the two models, for
different values of a, α, and γ. The digraphs had the same topology; randomly generated weights
are considered for the FJ model, while for the CB model all the edge signs are taken positive to
match the absence of antagonism in the FJ model.

The FJ model exhibits a slower change as a increases, while with the CB model, as soon as con-
formism is introduced, the opinions converge to an interval where all the agents perceive that their
neighbours’ opinion is similar enough to theirs. This difference is caused by the two different in-
terpretations and implementations of stubbornness and prejudice. Another important difference
is that, as the susceptibility value increases, the final opinions of the FJ model tend to converge to
a single opinion, and yield perfect consensus when a = 1. Conversely, the final opinions of the CB
model never converge to perfect consensus, even when α = 1 and γ = 0, as a consequence of the
classification-based approach.

Figure 7.18: Comparison between the Friedkin-Johnsen (FJ) model, for different values of susceptibility a, and
the Classification-Based (CB) model, for corresponding values of conformist (α) and stubborn (γ) weights.
All the 100 agents have the same values of a (FJ) and of α and γ (CB). The simulations start from the same
initial opinions and evolve over digraphs with the same topology. The degree of susceptibility, prejudice, con-
formism, and stubbornness is represented by the colours cyan, magenta, blue, and green respectively.

The differences between CB and FJ model help visualise the strong implications of the
classification-based mechanism for assessing the opinion of others, which captures the fact that
opinions cannot be perceived with perfect resolution and accuracy, and hence changes the model
behaviour significantly: it grants the model new properties, such as the existence of multiple
equilibria that can span the complete spectrum of opinions. For instance, in Figure 7.18, the CB
model with α = 1 and γ = 0 generates equilibrium opinions that span almost 40% of the opinion
interval [−1,1] (a wider span can be achieved with different topologies), while the FJ model with
a = 1 leads to identical equilibrium opinions.

The non-linearity introduced by the classification-based assessment of the opinion of others
can completely change the resulting dynamics and lead to the emergence of peculiar features,
which would not emerge from models where the agents have perfect access to the opinion of oth-
ers. This is highlighted, for instance, by the comparison with the Friedkin-Johnsen model and with
the French-DeGroot model (corresponding to the FJ model with a = 1).
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The results of an analysis for the FJ model, equivalent to the one reported in Tables 7.2 and
7.8 for the CB model, are reported in Tables 7.9 and 7.10. To make the results comparable, when
solving the optimisation problems (7.10) and (7.11) for the FJ model the sets Ã and W̃ are modified
as follows: the set of digraphs is the same used for the French-DeGroot model, since both models
require row-stochastic adjacency matrices; the inner traits assignations in Ã are transformed into
parameters of the FJ model using the mapping ai =αi /(αi +γi ); if αi +γi = 0, then ai = 0.5.

Average cost along all the countries 7.4897
Number of ‘accurate’ question-country pairs 460 from 780 (59% accuracy)
Average cost of ‘accurate’ question-country pairs 3.3

Table 7.9: Global results of the Free optimization problem (Equation (7.10)) using the Friedkin-Johnsen model.
The individual costs for each question-country pair can be seen in Table 7.28. The corresponding results for
the Classification-based model are shown in Table 7.2

Average cost along all the countries 10.3918
Number of ‘accurate’ question-country pairs 330 from 780 (42% accuracy)
Average cost of ‘accurate’ question-country pairs 4.1

Table 7.10: Global results of the Constrained optimization problem (Equation (7.11)) using the Friedkin-
Johnsen model. The individual costs for each question-country pair can be seen in Table 7.29. The corre-
sponding results for the Classification-based model are shown in Table 7.8

Comparing Tables 7.2 and 7.9 shows that the CB model outperforms the FJ model, yielding
a 97% accuracy in contrast to 59%. Also, the average cost of ‘accurate’ country-question pairs is
lower for the CB model (2.97) compared with the one produced by the FJ model (3.3), indicating
that not only more question-country pairs are predicted satisfactorily, but also the predictions are
more accurate.

Since the French-DeGroot (FG) and the Null model can be seen as extreme cases of the FJ
model, as expected, the FJ model produces better results than the FG model and the Null model,
as can be seen by comparing Tables 7.9 and 7.10 with Tables 7.4 and 7.3 (note that the optimisation
was done for the total cost, not the number of ‘accurate’ question-country pairs). The fact that
the Null model yields better predictions than the FG model suggests that opinions do not change
much from one wave to the other, an observation that is also confirmed by the Transition Tables
in Figure 7.17, where the sum (and percentage) of the values on the diagonal cells (associated with
cases where initial and final opinion distributions both belong to the same qualitative category) is
always the largest.

Figure 7.19 shows the Transition Tables for the FJ model (computed as for the CB model in
Figure 7.17). In the CB Transition Tables, the diagonal sums (416 and 357) are always smaller than
the real diagonal sum (444), while in the FJ Transition Tables the diagonal sums (544 and 630) are
always larger, probably due to prejudice having a stronger effect than stubbornness in preserving
the initial opinion. The lack of a “radical” trait makes the FJ model less versatile, which is reflected
in the lower off-diagonal sum. According to Tables 7.2, 7.8, 7.9 and 7.10 the models that mimic
the real opinion evolution at best are (in order): Free CB, Free FJ, Constrained FJ, and Constrained
CB. Instead, according to the qualitative evaluation emerging from the Transition Tables, the mod-
els that are more faithful to the real opinion evolution are: Free CB, Free FJ, Constrained CB, and
Constrained FJ.
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Figure 7.19: Real transition table and Transition Tables produced by the FJ model using the digraphs and inner
traits assignations from the Free and Constrained optimisation problems. The sum and percentage of cells
above, on, and below the diagonal is shown. The two bottom tables correspond to the absolute value of the
difference between the predicted Transition Tables and the real one.

7.2.5. AGREEMENT PLOT AND PROBABILISTIC ANALYSIS
This final part of the simulation results for the Classification-based model investigates the model
using the Agreement Plot and Probabilistic Analysis described in Sections 6.3 and 6.4, respectively.

AGREEMENT PLOT ANALYSIS

Starting with the Agreement Plot technique, Tables 7.11 to 7.16 present multiple plots in a way
analogous to Tables 6.2 to 6.7 in Section 6.3. For Tables 7.11, 7.13, 7.14, and 7.16, the underly-
ing digraphs have the same topology as the digraphs used in the Agreement Plot analysis of the
Friedkin-Johnsen model. Therefore, the topology metrics are shown in Table 6.1.

Figure 7.20 shows the agent parameters used for the UDTE, IOTE, UDSS, and IOSS plots for
the Classification-based model.

Figure 7.20: Ternary plots of the agent parameters used in the UDTE, IOTE, UDSS, and IOSS plots for the
Classification-based model (Tables 7.12, 7.13, 7.15, and 7.16 respectively).

Unlike in Sections 6.3 and 6.5, the line and point colours in the plots on Tables 7.11 to 7.16
do not indicate a single mean. This is because, unlike the previous models, for the Classification-
based model each agent has three parameters: the conformist, radical, and stubborn trait weights
αi , βi , and γi , respectively. For each agent, these three weights take a value from the interval
[0,1] and their sum is always 1. The average agent of a society will have conformist, radical, and
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stubborn trait weights that are the corresponding averages among all the population agents, these
average weights are denoted α, β, and γ respectively; see Equation (7.12).

We will associate with each trait a colour, for conformism (α) blue, for radicalism (β) red, and
for stubbornness (γ) green. Thus the line or point colour associated with a given society is the
colour resulting from mixing the amount of blue, red, and green corresponding to the average
weights in that particular society. So, for instance, a teal colour may indicate an equal amount of
conformism and stubbornness and very low radicalism, while a red line indicates a highly radical
society or a blue line a high level of conformism.

Table 7.11 shows 12 APTE plots for 3 different initial opinions and 4 different underlying di-
graphs. These APTE plots have a similar behaviour to the ones produced by the BEBA model; the
parametric curves not only move towards the y-axis but also move away from it. There are also
some curves that appear to move towards the centre of the Agreement Plot, but this behaviour can
only be observed for some initial opinions. Looking at the line colours it is clear that the lines mov-
ing towards the y-axis are mainly blue, representing highly conformist societies. This makes sense,
because in the Classification-based model the conformist trait produces consensus, and thus it is
expected that the blue lines behave like the Friedkin-Johnsen and Bounded Confidence lines.

On the other hand, the curves moving away from the y-axis are mostly red and green. For
the red lines, clearly radicalism tends to move the agent opinions to the extremes, resulting in a
higher mean of the absolute values. For the green lines, the behaviour is unexpected, however
upon closer inspection it is clear that these green lines also have a significant red component and
this mild radical trait may be responsible for this change.

Regarding noticeable differences due to the underlying digraph, societies evolving over the
Scale-Free digraph tend to move more towards the centre of the Agreement Plot, and in contrast
the other societies (especially the ones with Complete digraph) move more to the right or left of
the plot. One possible explanation could be that, since the Classification-based model allows for
differences between the expressed opinion and how it is perceived by influenced neighbours, in
networks with longer average path length these ‘errors’ accumulate, thus diluting the trait’s effects
and for instance preventing a highly conformist society from reaching consensus (blue curves not
going completely to the y =±x lines).

Table 7.12 shows 12 UDTE plots for 3 different initial opinions and 4 different choices of the
agent parameters. These plots suggest that the agent parameters have a definitive effect on the
overall opinion evolution: regardless of the underlying digraph topology, the curves in each plot
appear to be moving towards the same regions in the Agreement Plot. The directions of these
movements are consistent with the observations made for the APTE plots: Blue curves move gen-
erally towards the left of the Agreement Plot, red and green curves move to the right, and a more
equal combination of the three colours moves to the centre-right. Taking into account that all the
curves in a given plot move in the same direction, it is possible to conclude that the underlying
digraph has an indirect influence on the opinion evolutions that cannot prevail over the agent
parameters’ effect.

Table 7.13 shows 12 IOTE plots for 3 different agent parameters and 4 different underlying
digraphs. These plots suggest that, given a set of agent parameters and underlying digraph, all
the initial opinions will move towards the same region in the Agreement Plot: this region just de-
pends on the agent parameters and underlying digraph. This is a new behaviour. For the previous
models, all the curves either moved to the same direction (Friedkin-Johnsen), or there were two
qualitative different (and to some degree opposite) behaviours (for the BEBA model, moving either
to the left or to the right of the Agreement Plot, and for the Bounded Confidence model moving to
the left or not moving at all). In contrast, for the Classification-based model the general direction
the curves follow depends on the initial opinion location in the Agreement Plot and the region
towards all curves converge to.
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The convergence speed (inferred from the distance between points in the parametric curves)
seems to depend only on the agent parameters and not the underlying digraph. The distance be-
tween points in the green curves is noticeable less than in the other curves, indicating that societies
with mostly stubborn traits change more slowly, which is coherent, given that the stubborn trait
has the tendency of keeping the opinions unchanged and, as a side effect, decreases the opinion
change caused by the other agents’ traits.

Table 7.14 shows 12 APSS plots for 3 different initial opinions and 4 underlying digraphs. These
APSS plots look remarkably different from the same type of plots for the other models. The first
difference is that, unlike all the other APSS plots, the plots in Table 7.14 have few points located
along the lines y = ±x and x = 1. The points mostly appear to converge to a connected (and in
most cases convex) subset of the Agreement Plot. In some cases the initial point is clearly lo-
cated in the interior of this region, while in others it is at the boundary. Unlike the other models
(especially the BEBA model) the range of opinions that can be achieved is not too wide. This is par-
ticularly true when looking at the y-axis components of the points: most predicted points in the
Classification-based model have a y component not too far from the initial opinions. This means
that the Classification-based model tends to leave the mean of the opinions relatively unchanged.

Looking at the dot colours, we can see the right dots are mostly red, the left dots are mostly
blue, and the green dots can be found in the vicinity of the initial opinion distribution point
in either direction. This indicates that mostly conformist societies tend to less extreme opin-
ions, mostly radical societies tend to more extreme opinions, and mostly stubborn societies don’t
change much and the change direction is determined by the trait with the second highest weight.

Table 7.15 shows 12 UDSS plots for 3 different initial opinions and 4 different choices of the
agent parameters. Like the APSS plots, the UDSS plots for the Classification-based model are very
contrasting with the ones obtained for the other models. The plots in Table 7.15 indicate that,
for the Classification-based model, the digraph topology has a more direct and clear effect on the
agents’ opinion evolution. For instance, looking at column 1, we can see that, even for a highly
conformist society, for some underlying topologies extreme opinions can appear (represented by
dots near the x = 1 line), thus conformism alone is not enough to prevent extreme opinions from
forming. Dots in columns 2 and 4 are also very scattered and in many cases can be found around
the initial opinion point, further implying that even for a fixed agent parameter set, the digraph
topology has a significant effect on the opinion evolution.

The only parameters for which this effect is somewhat less evident are the ones in column 3,
where most of the dots are located to the right of the initial opinions distribution dot. This may
suggest that the radical trait in the Classification-based model has a more powerful effect than the
other traits, overshadowing the influence of the underlying digraph topology.

Table 7.16 shows 12 IOSS plots for 3 different agent parameters and 4 different underlying di-
graphs. These plots are also very interesting. They confirm the existence of ‘convergence regions’
towards which all the opinions move. Clearly these ‘converge regions’ depend on the agent param-
eters and underlying digraph, as hinted by Table 7.13. These regions are symmetric with respect
to reflections along the x-axis, given that the model has no preference for agreement or disagree-
ment. Besides this observation there is no clear relation between the ‘convergence region’ shape
or location and the agent parameters and underlying digraph.

An additional observation is that there are no blue dots with negative opinion mean, and there
are no red dots with positive opinion mean. This indicates that the opinion’s general agreement
does not travel significantly along the y-axis, or in other words that the mean of the opinions does
not change much, as previously noted. Finally, we can see that the ‘convergence region’ is some-
times located away from the (0,0), (1,−1), (1,1) triangle’s boundary, which is consistent with the
behaviour noticed in Table 7.14.
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PROBABILISTIC ANALYSIS

Figures 7.21, 7.22, and 7.23 are analogous to Figures 6.18, 6.19, and 6.20 obtained in the Probabilis-
tic Analysis of the Friedkin-Johnsen model.

First, it is important to point out that the agent parameter ordering in Figure 7.21 is different
from the other agent orderings. Previously the x-axis (respectively, y-axis) corresponded to the
mean (resp. variance) of the agent parameters, whether that was susceptibility, entrenchment,
or confidence radius. For the Classification-based model, since each agent has three parameters
(which, because they add up to 1, are in reality two independent parameters), the axes are changed
to be: in the x-axis the mean radical trait weight (β) and in the y-axis the mean stubborn trait (γ).
This choice of axis is convenient, because it is intuitive and, as seen in Figure 7.21, the ordering de-
pends almost completely on the mean radical weight. The Agreement Plot ordering has the same
axes as before, and the ordering is almost only dependent on the mean of the opinion absolute
values.

Therefore, the first rows of the QOL Tables will correspond to societies with very extreme opin-
ions, while the last rows are for almost completely indifferent societies. For the first columns the
society is highly radical, and in contrast, the last columns have on average a low radical weight and
any proportion of conformist and stubborn weights.

Figure 7.21: Ordering of the points in the Agreement Plot and Parameter Plane, for the Classification-based
model. Each point in the Agreement Plot corresponds to a pair (x, |x|) that creates a non-empty set of opinion
distributions O . Each point in the Parameter Plane corresponds to a pair (β, (γ)) that creates a non-empty set
of agent parameter sets P . The ordering is indicated by the colorbars and will be used in the plotting of the
corresponding QOL Tables in Figure 7.22 as explained in Figure 6.17.

Looking at Figure 7.22 it can be seen that only perfect consensus and consensus have some-
what well-defined regions in the QOL Tables, which suggests that this model’s behaviour is highly
intricate. Here it is important to clarify that there could exist Agreement Plot and agent parameter
orderings that create more well defined regions, however, these orderings probably won’t follow an
easy-to-interpret pattern and, as such, would not provide relevant information about the model
behaviour.

Looking at the QOL Tables’ histograms, it is possible to see that except for dissensus all qual-
itative outcomes have significant probability of being achieved. It is also interesting to note that
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perfect consensus and consensus are likely outcomes in opposite scenarios. Perfect consensus oc-
curs in the left columns corresponding with highly radical societies, while consensus can be found
in scarcely radical societies. This happens because radicalism moves opinions to extremes: as
with entrenchment, this often results in perfect consensus. On the other hand consensus requires
a clear but not extreme tendency of all agents to have similar opinions, thus going to extremes
cannot produce consensus.

Clustering is partially present in the left side of the last rows, which correspond to significantly
radical societies starting from almost indifferent opinions. This can be explained in that individu-
als with radical traits may move from indifference towards a more well defined opinion, but not to
an extreme that probably would produce perfect consensus, forming two or three not very distant
subgroups that produce clustering. Interestingly, the histograms corresponding to the QOL Tables
for the Classification-based model are similar to the histograms of the Friedkin-Johnsen model
in two ways: (i ) in both collections of histograms, there is no single qualitative outcome that is
almost guaranteed for the majority of the QOL Tables (unlike with the BEBA and Bounded Confi-
dence models, where perfect consensus is the almost sure result for the majority of cells); and (i i )
in every table, a relatively significant number of cells has a probability that is not zero or one.

Unlike the QOL Tables in Figure 7.22, the plots in Figure 7.23 show clear regions in the Agree-
ment Plot and parameter plane where qualitative outcomes are likely to be found. The first row
indicates that only perfect consensus, polarisation, and clustering have clear regions in the Agree-
ment Plot where they have significant probability of appearing: these regions are the vicinity of
the points (1,1), (1,0), and (0,0) for perfect consensus, polarisation, and clustering respectively. In
the case of perfect consensus and polarisation, a possible explanation is that opinions located in
those areas already belong to that qualitative category, therefore if they do not change much (for
example by agent parameters with high stubbornness or radicalism) their qualitative category will
not change. The possible explanation for the clustering case was previously discussed.

Looking at the second row, perfect consensus, consensus, polarisation, and clustering have
regions in the parameter plane where they have significant probability of appearing. These re-
gions seem to be dependent mostly on the average radical weight. From minimum to maximum
radical weight, the order in which the qualitative outcomes are more probable is consensus, clus-
tering, polarisation, and perfect consensus. A possible explanation follows the same reasoning
previously presented: the existence of these categories requires a degree of intermediate and not
extreme opinions: consensus needs multiple similar but not identical opinions, clustering two or
more subgroups with distinguishable opinions, polarisation two subgroups with relatively equal
number of agents having distant opinions, and finally in perfect consensus, all agents have very
similar, and possibly extreme, opinions. The average radical weight directly relates to how extreme
the population’s opinions are.

Overall, the behaviour and intrinsic properties of the Classification-based model can be sum-
marised as follows:

• Regardless of where the initial opinions are located in the Agreement Plot, they will move
towards a ‘convergence region’ which depends on the agent parameters and the underlying
digraph. It is possible for the convergence region to be located near the boundaries of the
(0,0), (1,−1), (1,1) triangle, but that is not necessary.

• Although the agent parameters have a significant effect in the opinion evolution, the pre-
dicted opinion distribution location is also highly dependent on the underlying digraph,
much more than in the Friedkin-Johnsen and BEBA models.

• For a given underlying digraph and initial opinion, the collection of possible opinion out-
comes for a wide variety of agent parameters forms a connected and possibly convex region
in the Agreement Plot that contains the initial point.
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• It is extremely rare for predicted opinions to be located near the y = ±x and x = 1, mean-
ing that almost always there are some agents that agree and others that disagree, and that
outcomes where all agents have extreme opinions are quite rare.

• The relation between qualitative outcomes and initial opinions and agent parameters is
remarkably intricate. However, in general, the average radical weight is a good indication of
which qualitative outcome is more likely.

• The only qualitative outcome that is very unlikely is dissensus. All the other categories have
a significant number of cases where the probability of occurring is around 50%. Also, no
qualitative category is almost guaranteed to occur in a majority of the considered cases.

7.3. SUMMARY AND CONCLUSIONS
We have proposed a novel agent-based opinion formation model that has two fundamental dis-
tinctive features. First, the model drops the unrealistic assumption that agents can measure the
opinion of their neighbours with infinite precision, which drastically affects the opinion evolu-
tion, and introduces a novel classification-based approach that more realistically replicates the
way individuals assess and evaluate the opinions of their neighbours, by classifying them as agree-
ing much less, less, comparably, more or much more. Second, the model captures the complex-
ity of the behaviour of individuals by introducing three different internal traits, associated with
conformism, radicalism, and stubbornness. Instead of considering agents of different types, the
model allows all these tendencies to coexist in each agent, thus representing multifaceted psycho-
logical and sociological phenomena in action within each individual.

Five types of simulation analyses were carried out: (i ) simulations over simple digraphs and
agent parameters to gain insight into the model behaviour; (i i ) simulations with varying model
parameters to perform a parameter sensitivity analysis; (i i i ) simulations with parameters chosen
through the approximate solution of two optimisation problems to assess the model’s potential
to predict opinions similar to those seen in real life; (i v) comparison with the Friedkin-Johnsen
model; and (v) Agreement Plot and Probabilistic Analysis.

We used real data from the World Values Survey to assess the capability of our classification-
based model to mimic actual opinion evolutions seen in real life. Despite its simplicity, the model
can yield opinions similar to the ones in survey results and can also produce a rich and wide va-
riety of collective behaviours, comparable to the ones obtained when other mechanisms, such as
bounded confidence, randomness, biassed assimilation, or backfire effect are used.

Possible further directions for future work include a more detailed study of the effects of dif-
ferent network topologies on the opinion evolution, and an investigation of what happens if the
opinion evolution parametersΩ are agent-dependent.

7.4. APPENDIX A: NETWORK METRICS
The signed digraph is represented by the weight matrix W ∈ {−1,0,1}N×N , where wi j is associ-
ated with the edge going from vertex j to vertex i . We consider the following network metrics:
average path length (APL), clustering coefficient (CC ), clustering variance (σ(CC )), mean in- and

out-degree (δi n , and δout ), in- and out-degree variance (σ(δi n ) and σ(δout )), positive edges (PE),
negative edges (NE), diameter (D), bidirectional coefficient (BC), and balance index (BI). This ap-
pendix explains how these metrics are computed.

A directed path is a K -tuple of vertices (p1, p2, . . . , pi , pi+1, . . . , pK ) such that there is an edge
from vertex pi to vertex pi+1 for i = 1, . . . ,K −1. The length |p| of a directed path p is the number
of edges that it crosses. Let P (i , j ) be the set of all directed paths from vertex i to vertex j (if there
are none, then P (i , j ) = ;). Denote by d(i , j ) the length of the shortest directed path from i to j ,
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i.e., d(i , j )Bminp∈P (i , j ) |p|. Let C (W ) be the set of vertex pairs (i , j ) such that there exists a direct
path from i to j and i 6= j , i.e. C (W ) = {(i , j ) | P (i , j ) 6= ; and i 6= j }. Then the average path length
and diameter of the digraph W are:

APL = 1

|C (W )|
∑

(i , j )∈C (W )
d(i , j ) and D = max

(i , j )∈C (W )
d(i , j ) (7.16)

Note that, because all the networks are strongly connected, |C (W )| = N (N −1).

To compute the mean and variance clustering, consider agent i , with ki in-neighbours exclud-
ing itself: ki = |Ñi |, where Ñi B { j ∈ V | wi j 6= 0, i 6= j }. Then there are at most ki (ki −1) directed
edges between these neighbours. The fraction ci of these edges that is actually present is the clus-
tering coefficient of agent i . If agent i has only one in-neighbour, then its clustering coefficient is
1, and if it has no in-neighbour but itself ci is not defined:

ci =


|{( j ,k)| j 6=k and i ,k∈Ñi }|

ki (ki−1) if ki > 1

1 if ki = 1

nan if ki = 0

(7.17)

The mean and variance clustering of the network are thus the average and variance of the
clustering coefficients of all agents with at least one in-neighbour excluding themselves. The mean
clustering is also sometimes called the clustering coefficient and simply denoted CC (defined by
extending to digraphs the definition for undirected graphs by [214]).

For the connectivity degree measures, consider a vertex i . The in-degree (respectively, out-
degree) of vertex i is denoted δi n (resp. δout ) and is the number of edges that enter (resp. exit)
vertex i . Since each vertex has an individual in- and out-degree it is possible to compute the mean
and variance of this collection of numbers.

The number of positive and negative edges are computed as

PE = ∑
i , j∈V:wi j >0

1 and N E = ∑
i , j∈V:wi j <0

1 (7.18)

The bidirectional coefficient is computed as the ratio between edges for which an edge con-
necting the same vertices exists in the opposite direction, and the total number of edges. Mathe-
matically it can be computed by:

BC =
∑

i 6= j∈V |wi j w j i |∑
i 6= j∈V |wi j |

(7.19)

The numerator of Equation (7.19) counts the number of edges for which there is an edge con-
necting the same vertices in the opposite direction, and the denominator the total number of
edges, excluding self-loops.

Finally, the balance index is computed as

B I = tr (exp(W ))

tr (exp(D))
(7.20)

where tr (·) is the trace operator, exp(·) is the matrix exponential, and D = |W | component-
wise. This formula is a direct extension of the balance index for undirected graphs proposed by
[70, 71].
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7.5. APPENDIX B: SIMULATION PROCESS
The free optimisation problem in Equation (7.10) with sets W = W̃ and A = Ã was solved using
the algorithm:

1. Input: survey answers for waves 5 and 6 for a given country.
2. Set w0 =∞; this will be the minimum cost across all networks
3. For network W ∈ W̃

• For question q ∈ {1,2, . . . ,30}

– Set vq =∞ to be the minimum cost for question q

– For inner traits assignation ψ(l ) ∈ Ã

¦ Compute the predicted opinions ỹq after K iterations evolving over the net-

work W with inner traits assignation ψ(l ) starting with initial opinions xq .
These initial opinions are the survey results to question q in wave 5.

ỹq =FΩ(xq ,W,ψ(l ),K )

¦ Compute the mismatch J (Equation (7.15)) between these predicted opin-
ions ỹl and the real opinions yl given by survey results of question q in wave
6.

¦ if J (ỹq , yq ) < vq

· Set vq = J (ỹq , yq ) as the current minimum cost across all inner traits
assignations.

· Set �ψ(q) =ψ(l ) as the inner traits assignation that gives the lowest cost for
question q .

– Add all the minimum costs to obtain the minimum cost for the network W

JTotal =
30∑

q=1
vq

• if JTotal < w0

– Set w0 = JTotal as the current minimum cost across all networks for this country.

– Set Ŵ =W as the network that produces the minimum cost for this country.

4. Output: network Ŵ and set of inner traits assignations (ψ̂(l ))30
l=1 that give the minimum

total cost across all questions.

In the algorithm used to solve the constrained optimisation problem in Equation (7.11), both
the network and the inner traits assignations are the same for each question:

1. Input: survey answers for waves 5 and 6 for a given country.
2. Set w0 =∞; this will be the minimum cost across all networks and inner traits assignations
3. For network W ∈ W̃

• For inner traits assignation ψ ∈ Ã

– For question q ∈ {1,2, . . . ,30}

¦ Compute the predicted opinions ỹq after K iterations evolving over the net-
work W with inner traits assignation ψ starting with initial opinions xq .
These initial opinions are the survey results to question q in wave 5.

ỹq =FΩ(xq ,W,ψ,K )
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¦ Compute the mismatch J (Equation (7.15)) between the predicted opinions
ỹq and the real opinions yq given by survey results of question q in wave 6.

– Add all the costs to obtain the cost for the network W and the inner traits assig-
nation ψ.

JTotal =
30∑

q=1
vq

– if JTotal < w0

¦ Set w0 = JTotal as the current minimum cost across all networks and inner
traits assignations for this country.

¦ Set Ŵ =W as the network that produces the minimum cost for this country.

¦ Set ψ̂=ψ as the inner traits assignation that gives the minimum cost for this
country.

4. Output: network Ŵ and inner traits assignations ψ̂ that give the minimum total cost across
all questions.

7.6. APPENDIX D: COUNTRIES AND QUESTIONS
We report here the list of countries and the list of questions we considered, from the real data
collected by the World Values Survey. Table 7.17 reports the countries used in the Transition Table
analysis of Section 6.2. Table 7.18 reports the countries used in the Optimisation problems of
Section 7.2.3. Table 7.19 reports the questions from the World Values Survey used in Section 6.2
and Section 7.2.3.

C1 Argentina C2 Australia C3 Brazil
C4 Chile C5 China C6 Colombia
C7 Cyprus C8 Egypt C9 Germany
C10 Hong kong C11 Iraq C12 Jordan
C13 Japan C14 Malaysia C15 Mexico
C16 New Zealand C17 Peru C18 Romania
C19 Russia C20 South Korea C21 Thailand
C22 Taiwan C23 Turkey C24 Ukraine
C25 United States

Table 7.17: Countries used in the Transition Table analysis of Section 6.2

C1 Australia C2 Brazil C3 Chile
C4 China C5 Cyprus C6 Georgia
C7 Ghana C8 India C9 Jordan
C10 Japan C11 Malaysia C12 Mexico
C13 Poland C14 Romania C15 Slovenia
C16 South Africa C17 Spain C18 Sweden
C19 South Korea C20 Thailand C21 Trinidad
C22 Taiwan C23 Turkey C24 Ukraine
C25 United States C26 Uruguay

Table 7.18: Countries used in the Optimisation problems of Section 7.2.3
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Q1 Some people feel they have completely free choice and control over their lives, while other people feel that what they do has no real effect
on what happens to them. Please use this scale where 1 means no choice at all and 10 means a great deal of choice to indicate how much
freedom of choice and control you feel you have over the way your life turns out

Q2 All things considered, how satisfied are you with your life as a whole these days? Using this card on which 1 means you are completely
dissatisfied and 10 means you are completely satisfied where would you put your satisfaction with your life as a whole?

Q3 How satisfied are you with the financial situation of your household? Please use this card again to help with your answer (1 is completely
dissatisfied, 10 is completely satisfied)

Q4 How would you place your views on this scale? 1 means you completely agree with the statement Incomes should be made more equal; 10
means you completely agree with the statement We need larger income differences as incentives for individual effort. And if your views fall
somewhere in between, you can choose any number in between.

Q5 How would you place your views on this scale? 1 means you completely agree with the statement Private ownership of business and indus-
try should be increased; 10 means you completely agree with the statement Government ownership of business and industry should be
increased. And if your views fall somewhere in between, you can choose any number in between.

Q6 How would you place your views on this scale? 1 means you completely agree with the statement The government should take more respon-
sibility to ensure that everyone is provided for; 10 means you completely agree with the statement People should take more responsibility
to provide for themselves. And if your views fall somewhere in between, you can choose any number in between.

Q7 How would you place your views on this scale? 1 means you completely agree with the statement Competition is good. It stimulates people
to work hard and develop new ideas; 10 means you completely agree with the statement Competition is harmful. It brings out the worst in
people. And if your views fall somewhere in between, you can choose any number in between.

Q8 How would you place your views on this scale? 1 means you completely agree with the statement In the long run, hard work usually brings
a better life; 10 means you completely agree with the statement Hard work doesn’t generally bring success—it’s more a matter of luck and
connections. And if your views fall somewhere in between, you can choose any number in between.

Q9 How much you agree or disagree with the statement Science and technology are making our lives healthier, easier, and more comfortable..
For this questions, a 1 means that you “completely disagree” and a 10 means that you “completely agree.”

Q10 How much you agree or disagree with the statement Because of science and technology, there will be more opportunities for the next
generation.. For this questions, a 1 means that you "completely disagree” and a 10 means that you “completely agree.”

Q11 How much you agree or disagree with the statement We depend too much on science and not enough on faith.. For this questions, a 1
means that you "completely disagree” and a 10 means that you “completely agree.”

Q12 All things considered, would you say that the world is better off, or worse off, because of science and technology? 1 means that "the world is
a lot worse off,” and 10 means that “the world is a lot better off.”

Q13 How important is God in your life? 10 means "very important” and 1 means “not at all important.”
Q14 Indicate if the action of Claiming government benefits to which you are not entitled can be never justified (1); always justified (10); or

something in between in a scale from 1 to 10.
Q15 Indicate if the action of Cheating on taxes if you have a chance can be never justified (1); always justified (10); or something in between in a

scale from 1 to 10.
Q16 Indicate if the action of Someone accepting a bribe in the course of their duties can be never justified (1); always justified (10); or something

in between in a scale from 1 to 10.
Q17 Indicate if the action of Homosexuality can be never justified (1); always justified (10); or something in between in a scale from 1 to 10.
Q18 Indicate if the action of Abortion can be never justified (1); always justified (10); or something in between in a scale from 1 to 10.
Q19 Indicate if the action of Divorce can be never justified (1); always justified (10); or something in between in a scale from 1 to 10.
Q20 Indicate if the action of Suicide can be never justified (1); always justified (10); or something in between in a scale from 1 to 10.
Q21 Indicate if the action of For a man to beat his wife can be never justified (1); always justified (10); or something in between in a scale from 1

to 10.
Q22 Governments tax the rich and subsidize the poor. an essential characteristic of democracy? Use this scale where 1 means "not at all an

essential characteristic of democracy” and 10 means it definitely is “an essential characteristic of democracy”
Q23 Religious authorities interpret the laws. an essential characteristic of democracy? Use this scale where 1 means "not at all an essential

characteristic of democracy” and 10 means it definitely is “an essential characteristic of democracy”
Q24 Is People choose their leaders in free elections. an essential characteristic of democracy? Use this scale where 1 means "not at all an essential

characteristic of democracy” and 10 means it definitely is “an essential characteristic of democracy”
Q25 Is People receive state aid for unemployment. an essential characteristic of democracy? Use this scale where 1 means "not at all an essential

characteristic of democracy” and 10 means it definitely is “an essential characteristic of democracy”
Q26 Is The army takes over when government is incompetent. an essential characteristic of democracy? Use this scale where 1 means "not at all

an essential characteristic of democracy” and 10 means it definitely is “an essential characteristic of democracy”
Q27 Is Civil rights protect people7s liberty against oppression. an essential characteristic of democracy? Use this scale where 1 means “not at

all an essential characteristic of democracy” and 10 means it definitely is “an essential characteristic of democracy”
Q28 Is Women have the same rights as men. an essential characteristic of democracy? Use this scale where 1 means "not at all an essential

characteristic of democracy” and 10 means it definitely is “an essential characteristic of democracy”
Q29 How important is it for you to live in a country that is governed democratically? On this scale where 1 means it is "not at all important” and

10 means “absolutely important" what position would you choose?
Q30 And how democratically is this country being governed today? Again using a scale from 1 to 10, where 1 means that it is "not at all democratic"

and 10 means that it is "completely democratic,” what position would you choose?

Table 7.19: Questions from the World Values Survey used in Section 6.2 and Section 7.2.3.

7.7. APPENDIX E: TABLES
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8
CONCLUSION

Following the self-contained nature of this dissertation’s different parts, the conclusion chapter
will present a brief overview of the results achieved in each part and their value and implications
for society. We refer the reader to the specific chapters for more detailed, particular conclusions.

In the previous six chapters, we have studied and analysed different types of interconnected
systems from a variety of perspectives and with various objectives. We provided topology-
independent necessary conditions and sufficient conditions for the robust stability of LTI
interconnected MIMO systems in Part 1, in the frequency (Chapter 3) and in the time (Chapter
4) domain. These conditions do not require complete information about the network topology
and, in most cases, can be checked locally. They provide stability guarantees even when the inter-
connected systems have additive or dynamical uncertainties. In addition to stability certificates,
a sufficient condition for convergence in a bounded time interval was also presented. Because
of their generality, the provided conditions can be applied in various fields and contexts. Some
examples were detailed in the corresponding chapters (a suspension bridge in Chapter 3 and a
compartmental tumour system in Chapter 4), and others were mentioned.

Part 1 of the dissertation was rooted at the core of classical control theory. The studied systems
were represented by transfer function matrices in the frequency domain and by ordinary differen-
tial equations in the state space in the time domain. The main goal was to find robust asymptotic
stability conditions, which is a fundamental property of interest for dynamical systems. The tools
used to prove the results are also classical in the context of system analysis.

On the one hand, the topology independence and robust properties of the provided conditions
make them very general. However, on the other hand, their theoretical nature limits their immedi-
ate applications to real-world problems. Although very general and open from a theoretical point
of view, some of the assumptions we make may be too constraining or difficult to guarantee in a
real application. However, this is the case with most theoretical results, and transforming them
into applicable tools is a challenge on its own.

For this reason, the actual value of the results and analysis presented in Part 1 of the disser-
tation is that of compiling and slightly advancing the tools and knowledge in the field of stability
of interconnected LTI systems. The information, views, techniques, and results presented in this
part are not intended to be applied directly to real applications but to be built upon.

There are many relevant directions to go from Part 1. These include exploring the case where
both dynamical and additive uncertainties are present. Trying to prove similar results when the
subsystems are slightly nonlinear, for instance, with Lur’e or linearised systems. Pursuing different
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objectives besides asymptotic stability, such as coordination or synchronisation. Doing a similar
analysis for discrete-time systems.

In many ways, Part 2 is very contrasting with Part 1. Part 2 studies opinion formation, which
is a completely applied and ‘down to earth’ subject: everyone has an opinion, and we hear about
opinions all the time. The subsystems that make the interaction network now are agents or people,
‘thinking’, ‘forming’, and ‘exchanging’ opinions. These subsystems are far from simple or well-
defined as a LTI MIMO system is. In many ways, one could argue that we don’t know what opinions
are and whether modelling opinion formation mathematically makes any sense.

Because of their very nature, large-scale population opinions have a more complex behaviour
than interconnected LTI MIMO subsystems we have considered in Part 1. The latter can be unsta-
ble, marginally stable, and asymptotically stable, whereas opinions (represented by real numbers)
can have all sorts of chaotic behaviours. Because of this, asymptotic stability is no longer of in-
terest in Part 2. Instead, we are interested in understanding and analysing agent-based opinion
formation models.

To do that, we first need to develop concepts and a complete framework to meaningfully and
systematically evaluate opinion formation models. This includes introducing new definitions,
asking relevant questions to direct our attention towards, defining qualitative behaviours to sim-
plify and streamline the analysis of multiple opinion distributions, and defining different network
topologies. The context and foundations required to build the framework are presented in Chapter
5.

Continuing from the bases in Chapter 5, we introduce a complete methodology to analyse
agent-based opinion formation models in Chapter 6. This methodology comprises four tech-
niques: the Histogram-based Sorting Algorithm, Transition Tables, Agreement Plot, and Probabilis-
tic Analysis. Collectively, these techniques use numerical simulations to investigate (i ) the intrin-
sic properties and patterns in opinion formation models; (i i ) how these models change depending
on agent parameters, initial opinions, and underlying interaction networks; and (i i i ) the potential
the models have to mimic opinion transitions observed in real life.

We exemplified the techniques presented in Chapter 6 with several opinion formation models
found in the literature: the French-DeGroot, Weighted-Median, Bounded Confidence, Quantum
Game, Friedkin-Johnsen, and Backfire Effect and Biased Assimilation models. The results demon-
strated the application of the proposed framework and provided an interesting insight into the
behaviour of these models and real-life opinions.

To study real-life opinions, we used data from the World Values Survey (the WVS is a research
project that explores people’s values and beliefs by conducting global surveys approximately every
five years). Using the available data, we identified five qualitative categories to which any opinion
distribution belongs. From this data, we could see that real-life transitions between all qualita-
tive categories are possible and that the proportions of opinion distributions belonging to each
category remain approximately constant.

In Chapter 7, we proposed the Classification-based model, an opinion formation model with
two novel characteristics: first, it drops the assumption that agents have perfect access to the
opinions their neighbours are communicating (whether or not those are their real opinions) and
instead introduces a classification-based mechanism to represent how agents may interpret and
process the opinions of others. Second, it combines three psychological traits well-known and
studied in opinion formation literature: conformism, radicalism, and stubbornness. By assign-
ing different weights to these traits, the model can produce agents that have diverse individual
behaviours when forming their own opinion. Combined, these two characteristics embed the
Classification-based model with a flexible and rich capacity for creating opinion transitions seen
in real-life. After introducing the proposed model, Chapter 7 uses the framework presented in
Chapter 6 to analyse the model’s intrinsic characteristics and behaviour.
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By its very nature, the study of opinion formation processes and models has a much more
direct impact on society than the theoretical work in Part 1. Regarding the ethical implications
related to the study of this subject, we believe that the study of agent-based opinion formation
models with the objective of understanding the processes behind opinion formation is valuable
because it provides a complementary approach to that of sociology and psychology. In addition
to this, it requires the analysis of complex interconnected systems and the techniques developed
with this purpose can potentially be used in other applications, for instance, epidemic modelling.
In this sense, opinion formation research is valuable and can positively impact society.

However, when the study of these models intends to control or influence populations’ opin-
ions, we believe that is unethical and, even with ‘good intentions’, should not be done. This belief
is not restricted to the cases when the opinions are influenced by using systems and control ap-
proaches. Large-scale opinion manipulation by exploiting opinion formation mechanisms, such
as biases and and conformist traits, is unethical independent of whether it is done from a systems
and control perspective, fake news, or targeted advertisement. People should be able to make
their own judgements in an unbiased environment free of tactics or control laws that exploit our
intrinsic opinion formation mechanism, bypassing our judgement.

We are aware that already for a long time internal biases and psychological mechanisms have
been used to steer public opinion, whether it is to buy something, to act in a certain way, or to
support a given cause. Also, one could argue that every time someone presents information in a
certain way to convince a given individual of something, it is probably using information on the
individual to convince her/him of something. There are many ambiguous cases in which it is not
clear whether biases and psychological mechanisms are exploited, or information is simply ar-
ranged in a smart way to convince someone. Nevertheless, there are cases in which psychological
traits, and biases in particular, are clearly exploited in an attempt to systematically control people’s
opinion beyond their judgment at large-scale. Those cases are unethical.

With this in mind, all the techniques presented in Part 2 of the dissertation are with the intent
of analysing models and are on purpose designed so that it is easy to export them to other research
fields. In this sense, we encourage adapting the knowledge presented in Part 2 to other research
fields that use agent-based models, especially when models are complex and have different intrin-
sic properties that are challenging to grasp or understand. Similarly, we deter future research from
using our results to design control algorithms to steer a population’s opinion to a desired state,
even if the intentions are judged to be ‘good’ by the researchers. Please, let people be, and let them
make their own opinions.

Ultimately, the value of this dissertation can be found in the individual contributions to the
collective knowledge of interconnected systems, a field so varied and diverse that it is only possible
to investigate local problems, as reflected in the two parts of the dissertation. In this sense, the
present dissertation can be seen as a compilation of ideas, approaches, techniques, and results
related to the study of interconnected systems.
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