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New insight into the lens design landscape  

Florian Bociort* 
Dept. of Imaging Physics, Faculty of Applied Sciences, TU Delft, 2628CJ Delft, Netherlands 

Abstract. Novel formulas have been derived for the primary spherical 
aberration, coma and axial color of systems of thin lenses in contact.  Even 
in complex optical systems, groups of lenses can be modelled as thin lenses 
in contact. The new mathematical formalism helps explaining significant 
qualitative properties of the lens design landscape. 

1 Introduction 
The assertion that the venerable theory of primary aberrations still has potential for 
significant new insights may surprise lens designers. However, we show that the novel 
formalism described below provides a simple explanation both for established (but 
insufficiently understood) and for recent findings. Consider a system of L thin lenses, all with 
the same refractive index n, in air and in contact with each other (i.e. all axial thicknesses are 
set to zero). Below, all N=2L lens surfaces are considered spherical and have variable 
curvatures 𝑐𝑐𝑘𝑘 , but aspheres can be included. The system has the fixed total power K and has 
the fixed marginal ray angles 𝛼𝛼 in the object space and 𝛼𝛼 − ℎ𝐾𝐾 in the image space, where h 
is the common marginal ray height at all surfaces. Because groups of lenses in a larger system 
can also be modelled as thin lenses in contact, this new formalism can explain properties of 
the design landscape even for highly complex systems such as lithographic objectives. 

2 New variables  
We introduce new surface variables 𝑧𝑧𝑘𝑘 that, as shown below, reveal a more straightforward 
relationship between the primary aberrations and the constructional data than in the standard 
formalism. The new variables satisfy the constraint 

∑  𝑧𝑧𝑘𝑘𝑁𝑁
𝑘𝑘=1 = 1.      (1) 

When all N z-values of the system are found, the powers 𝑃𝑃2𝑚𝑚−1for the first and 𝑃𝑃2𝑚𝑚for the 
second surface of each lens m turn out to be  

𝑃𝑃2𝑚𝑚−1 = 𝐾𝐾 �𝑧𝑧2𝑚𝑚−1 + 2�𝑛𝑛2−1�
(𝑛𝑛+2)

�∑ 𝑧𝑧𝑖𝑖2𝑚𝑚−1
𝑖𝑖 − 𝛼𝛼

ℎ𝐾𝐾
��   (2) 

𝑃𝑃2𝑚𝑚 = 𝐾𝐾 �𝑧𝑧2𝑚𝑚 − 2�𝑛𝑛2−1�
(𝑛𝑛+2)

�∑ 𝑧𝑧𝑖𝑖2𝑚𝑚−1
𝑖𝑖 − 𝛼𝛼

ℎ𝐾𝐾
��   (3) 

respectively, and the corresponding surface curvatures are then 𝑐𝑐𝑘𝑘 = 𝑃𝑃𝑘𝑘/𝛥𝛥𝛥𝛥. Because the 
power of lens m, 𝑃̄𝑃𝑚𝑚 = 𝑃𝑃2𝑚𝑚−1 + 𝑃𝑃2𝑚𝑚 = 𝐾𝐾(𝑧𝑧2𝑚𝑚−1 + 𝑧𝑧2𝑚𝑚) is proportional to the sum of the 
two corresponding z-values, the variables 𝑧𝑧𝑘𝑘 are called quasi-powers.  
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3 New primary aberration formulas and why they are useful 
The Seidel sum for the 3rd-order spherical aberration is derived from well-known aberration 
formulas [1] as 

𝑆𝑆 = ℎ4𝐾𝐾3𝑛𝑛
3(𝑛𝑛+2)

�(2𝑛𝑛+1)2

(𝑛𝑛−1)2
∑ 𝑧𝑧𝑘𝑘3 − 3 � 𝛼𝛼

ℎ𝐾𝐾
�
2

+ 3 𝛼𝛼
ℎ𝐾𝐾
− 1𝑁𝑁

𝑘𝑘=1 �.  (4) 
(However, the derivation is non-trivial.) As an example, S has a minimum when we have 
equal values 𝑧𝑧𝑘𝑘 = 1/𝑁𝑁  for all N surfaces. For N=2 we recover the well-known singlet with 
optimal bending that has minimal spherical aberration [1]. For a quartet (N=8) with object at 
infinity (i.e., 𝛼𝛼 = 0) and all 𝑧𝑧𝑘𝑘 = 1/8, the square bracket for the minimal S value becomes 
zero for n=1.5. This is the remarkable Fulcher quartet [2] in which zero spherical aberration 
was achieved with four spherical lenses having equal powers (but different bendings that 
with the present approach result immediately from Eqs. (2) and (3)). If this system is chosen 
as starting point for further design, then the resulting design is arguably the most relaxed 
system (or lens group) encountered in lens design [3]. Such Fulcher groups can also be 
observed in a slightly modified form in e.g. both bulges of dioptric lithographic objectives. 
 
As shown in detail in the special case of doublets and triplets when spherical aberration S is 
the most significant aberration present, the new formalism helps answering a fundamental 
question in lens design: why do we have so many local minima in the design landscape? 
Because in Eq. (4) the quasi-powers appear as a sum of cubes, if a certain set of variables 
𝑧𝑧𝑘𝑘   corresponds to a local minimum, then any permutation of these variables will have the 
same value of S and will correspond to a different minimum. This permutation symmetry 
increases the number of existing minima significantly. This symmetry was not observed 
earlier, because of the sequential character of ray propagation (first through surface 1, then 
through surface 2 etc.). However, the present formalism reveals this symmetry because the 
sequential character of ray propagation is completely absorbed in Eqs. (2) and (3). 
 
When the aperture stop is at the lens, then the Seidel sum for the 3rd-order coma given by 

𝐶𝐶 = −𝐴̄𝐴ℎ3𝐾𝐾2

2(𝑛𝑛+2) �
(𝑛𝑛+1)(2𝑛𝑛+1)

𝑛𝑛−1
∑ (−1)𝑘𝑘𝑧𝑧𝑘𝑘2𝑁𝑁
𝑘𝑘=1 − 2 𝛼𝛼

ℎ𝐾𝐾
+ 1�.  (5) 

where 𝐴̄𝐴 = 𝑛𝑛𝚤𝚤 ̄ is the (constant) refraction invariant for the chief ray. In the example above, 
because N is even for all systems with 𝑧𝑧𝑘𝑘 = 1/𝑁𝑁, including the Fulcher quartet, the sum over 
k in Eq. (5) is zero.  As expected, coma is zero for 𝛼𝛼 = ℎ𝐾𝐾/2 , which corresponds to the case 
of equal conjugates. For an arbitrary stop position, the stop-shift formulas can be used [1]. 
 
Using the Abbe number Vm for lens m, the axial color is given by 

𝐴𝐴 = ℎ2𝐾𝐾∑ 𝑉𝑉𝑚𝑚−1(𝑧𝑧2𝑚𝑚−1 + 𝑧𝑧2𝑚𝑚)𝐿𝐿
𝑚𝑚=1 .    (6) 

The remaining primary aberrations can be handled as usually [1]. We also show how the new 
formalism enables a simpler explanation of the four well-known achromatic doublet 
configurations (Fraunhofer, Gauss, Reversed Gauss and Steinheil).  
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