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Abstract

This research investigates the structural behaviour of multilayered Azobé timber beams me-
chanically jointed using steel dowels. Driven by increasing limitations in the availability of
large-section hardwoods and the necessity for sustainable material use in construction, the
study focuses on understanding the composite action and effective bending stiffness of such
assembled beams. Experimental testing—including four-point and three-point bending tests—
was performed on both individual lamellae and mechanically jointed beam configurations to
determine the global and local Modulus of Elasticity (MOE), interlayer slip, and Effective
stiffness EIeff . The results were compared against analytical predictions derived using the γ-
method as per Eurocode 5 as suggested by Möhler in the Din 1058, complemented by Schelling’s
extension for multilayer systems. The findings indicate that the theoretical models often un-
derestimate the gamma values of dowelled Azobé beams in some cases and in other cases
underestimate them , and show that slip modulus kser values differ from those suggested in
current standards being far lower than calculated. The research concludes that while current
analytical approaches provide a useful baseline, they require refinement to more accurately
reflect the performance of high-density hardwoods such as Azobé.

Keywords: Mechanically Jointed Timber Beams, Azobé Wood, Composite Action, �-Method,
Experimental Bending Tests, Effective Stiffness, Slip Modulus, Structural Behaviour, Schelling.
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Summary

A summary...

This thesis investigates the structural behaviour of mechanically jointed Azobé timber beams,
focusing on their effective stiffness and load-bearing capacity when connected using steel dow-
els. Azobé (Lophira alata), a dense tropical hardwood classified under strength class D70, is
commonly used in heavy structural applications, particularly in bridge construction, due to its
high durability and strength. However, growing export restrictions on large cross-sections of
Azobé timber have strengthened the interest in mechanically jointing the beams using smaller
sections and mechanical fasteners. This study aims to fill the knowledge gap between ex-
isting analytical models, notably those in Eurocode 5, and the actual performance of these
mechanically jointed hardwood systems.

The research was driven by three main questions: how to analytically determine stiffness in
dowelled timber beams, how joint configurations affect bending stiffness, and how material
variations in the timber and dowels influence beam performance. Two beam configurations—
two-layer and four-layer beams—were fabricated from Azobé lamellae and connected using 20
mm steel dowels. Prior to jointing, lamellae were tested individually to determine local, global,
and dynamic Modulus of Elasticity (MOE). After assembly, both three-point and four-point
bending tests were conducted to evaluate stiffness and interlayer slip.

Experimental findings revealed that the actual stiffness of mechanically jointed beams often
exceeded analytical predictions, particularly when high-quality lamellae were used. The γ-
method, derived in the Eurocode 5 using Möhler’s and Schelling’s work at Karlsruhe, consis-
tently underestimated the stiffness when applied to Azobé beams. Slip modulus kser values
calculated from experimental data were much lower than those recommended in Eurocode 5
for hardwoods, suggesting the need for recalibration of the theoretical models.

Increasing the number of layers in a beam, while keeping overall depth constant, did not
proportionally increase stiffness as expected but if the γ-method is wrongly used then that
outcome is achieved thus Schelling’s work should be utilised. Moreover, factors such as dowel
spacing, moisture content, and lamella grading were found to significantly influence composite
action and overall beam performance. Mechanical failures in tested beams included dowel
yielding and lamella splitting, often originating at the dowel holes due to stress concentrations.

In conclusion, the thesis demonstrates that mechanically jointed Azobé beams exhibit higher
experimental structural performance compared to Eurocode 5 analytical predictions but the
slip modulus kser calculated produces different results from the overly simplified Eurocode 5
method. The current analytical models are inadequate for dense hardwoods like Azobé and
should be updated to reflect their material-specific behaviour. Recommendations include the
development of revised γ-factor equations tailored for hardwoods, incorporation of empirical
slip modulus kser values, and broader experimental validation to support future code devel-
opment. These results support the use of mechanically jointed Azobé systems in sustainable,
high-performance timber engineering, particularly for applications requiring long-span or high-
load resistance.
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1
Introduction

In the evolving landscape of structural engineering, the emphasis on sustainability has guided
a shift towards environmentally friendly construction materials [22]. Wood, especially valued
for its ecological and sustainable benefits, is widely used in the construction of various bridge
types, ranging from traditional drawbridges to pedestrian bridges. Among the woods used,
Azobé stands out due to its high strength (classified as D70) and superior durability, making
it ideal for structures exposed to varying climatic conditions.

When making bridge beams with timber, higher cross sections are needed to lower the deflec-
tions that ought to be achieved. To accommodate larger spans by increasing sectional height
and ensure structural integrity, Azobé beam layers/lamellas are mechanically joined using me-
chanical fasteners such as dowels(steel or wooden),screws and bolts. This connection affects
the global stiffness of the beam by introducing a composite action. Möhler [34] in the 1950s
carried out laboratory tests on mechanically joined beams, and his research findings proposed
that you could achieve near-full composite action in the beams with the use of dowels. However
there remains a huge gap in the practical research of these tropical hardwood beams especi-
ually in the degree of composite action from the analytical recommendations in Eurocode 5
[17]. This significant gap in practical knowledge, is what this thesis will try to fulfil.

Mechanically jointed timber beams are gaining prominence in modern construction due to their
versatility, sustainability, and cost-effectiveness [10]. These beams are particularly advanta-
geous for applications in the outdoor environment like bridges as the wood exhibits very high
strength and durability characteristics compared to softer woods. Mechanical jointing of the
beams allows for the use of smaller timber cross sections together to reach higher beam heights,
enhancing resource efficiency while maintaining or even improving the mechanical performance
of the beam.

Moreover, sourcing Azobé timber has recently become increasingly challenging, particularly
for larger cross-sectional sizes. Azobé Timber from regions like the Congo Basin, Cameroon,
and Gabon is typically restricted to a maximum lengths and crossection sizes before shipping
due to export regulations. This limitation necessitates the use of built-up members in construc-
tion, thus the need for in-depth research into the performance of mechanically jointed timber
elements. This thesis aims to understand the behaviour of this performance of mechanically
jointed beams.

1
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1.1. RESEARCH PROBLEM
Despite the increasing use of Azobe wood in bridge construction, there remains significant un-
certainty regarding the performance of mechanically jointed Azobe beams. Jointing methods,
such as using dowels, screws, or other fasteners, are employed to enhance the strength and
stiffness of multi-layered beams by increasing the composite action of the beam. However,
these techniques change by manufacturer and often lack comprehensive experimental valida-
tion, leading to potential discrepancies between theoretical predictions and actual performance.
Although existing literature, including Eurocode 5 and various research papers, describes the
performance of built-up cross-sections using steel dowels, some manufacturers, such as Hupkes
Wijma, a company specializing in timber structures, suspect that their current steel dowel
joints may exhibit higher stiffness values than those calculated in the Eurocode 5 like Möhler’s
findings [35].

1.2. RESEARCH SCOPE
This thesis investigates multilayered Azobe beams which are mechanically joined using steel
dowels, as produced by the manufacturer Hupkes Wijma in the Netherlands. The primary
objective is to evaluate the effective global stiffness and strength of these beams, targeting a
maximum load of 100 kN. Laboratory experiments and analytical calculations will be carried
out to achieve these goals, following, where possible, the guidelines specified in Eurocode
standards EN 408, EN 26891, and Eurocode 5 [43, 52, 17].

1.3. Research Question
The main research question guiding this study is:

What is the true effective stiffness of mechanically jointed Azobé beams? What factors influence
the load-bearing capacity and structural behaviour of these beams?

To address this overarching question, three main sub-questions will be explored:

1. How is the analytical stiffness of mechanically joined beams determined?

2. How do specific joint configurations (e.g., type of fasteners, spacing, pre-stress levels) af-
fect the overall bending stiffness of thee mechanically jointed Azobé beams compared to a
monolithic (unjointed) azobé timber members?

3. How do variations in timber properties (e.g., density, moisture content, MOE) and mechan-
ical fastener characteristics (e.g., steel grade, diameter, shear resistance) interplay to influence
the load-bearing capacity of the mechanically jointed beams?

And a few other questions that may be answered along the way like;

1. How does the number of layers in multi-layered dowelled Azobé beams affect their effec-
tive stiffness and overall structural performance?

2. How do the properties of steel dowels (e.g., diameter, spacing, material strength) influence
the load-bearing capacity and stiffness of the beams?

3. What are the specific failure mechanisms that occur within mechanically jointed Azobé
beams under bending loads?

4. To what extent does the existing analytical model by Wolfgang [56] accurately predict
the effective stiffness and structural behaviour of mechanically joined Azobé beams?

5. What discrepancies exist between theoretical predictions from analytical models, and the
experimental results obtained in this study?
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1.4. Research Theory and Methods
This section outlines the experimental and analytical methodologies used to investigate the
mechanical properties of mechanically jointed Azobé beams.

Initially, four-point bending and three-point bending tests were performed in the elastic range
on individual Azobé lamella members to determine their Modulus of Elasticity (MOE). Keeping
within the elastic range, the global and local MOE was calculated, which, when correlated
with the stiffness measurements, facilitated an estimation of the members’ strength [51]. The
lamellas could then be graded and the actual MOE values used.

Then the stacked beams of the individual lamellas were also tested with the four-point and
three-point bending tests and slip measured between the lamellae at different points.

After these initial tests, the lamellae were transported back to the Hupkes Wijma company,
where they were assembled into mechanically jointed beams using steel dowels. The assembled
beams then underwent further four- and three-point bending tests in the laboratory to deter-
mine their new stiffness. These results were compared with predictions from the analytical
model and values compared. All experimental procedures where possible adhered to Eurocode
standards Nen-EN 1995-A1+C1 [1], ensuring compliance with established European technical
assessment protocols Nen-EN 1380 [39], Nen-EN 338 [2], EN 26891 [52], Nen-EN 383 [42], and
Nen-EN 408 [43].

For calculations, an analytical model based on Möhler’s and Schelling’s theoretical calculations
[56], as defined in Eurocode 5 [1],The gamma method was implemented to estimate the stiffness
of the beam assemblies. Two configurations, comprising four-layer and two-layer mechanically
jointed beams of 3600mm span distance with steel dowels of 20mm placed at 200mm spacing
of similar global cross sectional height, were subjected to four-point bending tests to compare
their mechanical behaviour under load. The outcomes from these tests were compared with
the predictions from the analytical calculations.

This comprehensive approach integrated both experimental data and analytical modelling to
ensure a thorough investigation of the behaviour of mechanically jointed timber beams. Further
details on these methodologies were expanded upon in chapter 4 and 5.



1.4. Research Theory and Methods 4

The thesis shall follow this pattern as described below.

Figure 1.1: Organizational Structure of the Thesis



2
LITERATURE REVIEW

The articles identified in the literature search discuss a variety of topics, including the properties
of Azobé wood, the embedment strength of dowels in both soft and hard woods, the shear
forces experienced by the timber beams, the bending moments, and the stiffness of the beam.
In addition, analytical methods are explored to calculate stiffness, bending moments. To
understand the strength and stiffness of multilayered dowelled Azobé beams jointed with steel
dowels, we must understand the properties of the Azobé wood itself.

2.1. Material and Mechanical Properties of Azobé

Figure 2.1: Azobé tree as photographed by Dotun

2.1.1. Anatomical and Physical Properties of Lophira alata (Azobé)
Lophira alata, commonly known as Azobé or Ekki, is a significant hardwood species native
to West Africa. The species has numerous vernacular names across different regions, includ-
ing Bongossi (Germany), Kaku (Ghana), Ekki and Akoga (Gabon), reflecting its widespread
distribution and cultural importance. Taxonomically, it has several scientific synonyms, in-
cluding Lophira Alata, Lophira tholloni Tiegh., Lophira spatulata Tiegh., and Lophira procera
A. Chev.

5
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Only by fully understanding the anatomy of Azobé wood can we appreciate its mechanical and
other physical properties and use it in ways that ensure material compatibility or maximise
its potential. At the most practical level, a trunk can be evaluated in terms of its structural
qualities, which involves the identification of knots and other growth characteristics. A macro-
scopic examination of Azobé, indicates several characteristics visible to the naked eye like
straight-grained and clear wood segments.

The anatomical structure of L. alata exhibits distinctive characteristics that contribute to its
mechanical properties and durability. The wood is diffuse porous with predominantly solitary
vessels exceeding 200 micas in tangential diameter. Notable features include white deposits
in heartwood vessels, vestured pits, and simple perforation plates. The axial parenchyma
appears in continuous tangential lines with prismatic crystals present in both chambered and
non-chambered cells. The ray structure is characterised by abundant, non-storied, commonly
biseriate rays with homogeneous or sub-homogeneous cellular composition. The fibre structure
consists of nonseptate fibres with simple to minutely bordered pits.

The large diameter of the vessel facilitates efficient water transport in living trees, but can
affect the permeability of the wood during processing. The presence of white deposits in heart-
wood vessels and vestured pits contributes to the natural durability of the wood against decay
and insect attack. The interlocked grain pattern provides improved mechanical strength and
resistance to splitting. These anatomical features result in a wood structure that is particularly
well suited for heavy construction and marine applications where durability and strength are
paramount.

L. alata trees reach heights of up to 50 metres with trunk diameters of 150 centimetres. The
characteristic of the trunk, including a straight, clear, and cylindrical form extending up to
30 metres, makes it particularly valuable for wood production. It is a hard tropical wood
that grows year-round, resulting in a relatively homogeneous structure without clear growth
rings. Although the species lacks buttresses, it often exhibits basal swelling. The tree occurs
predominantly in wet evergreen tropical forests.[19]

Classified as strength class D70 [55] in the EN 338[2] with durability class 1/2, Azobé is ideal
for outdoor applications

Azobé wood has inherent properties of the material that directly influence the strength and
stiffness of the beams constructed from it. Key material properties include

Variations in these properties across different layers of a beam can impact the overall perfor-
mance of mechanically jointed beams.

The mechanical properties of Azobé as detailed by Jan Willem and Blass in 2004 [53]
reflect its response to external forces and is for structural applications. Significant mechanical
properties include:Modulus of Elasticity (MOE),Modulus of Rupture (MOR),Shear Strength,
tensile and Compression Strength are clearly detailed in that paper.
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Table 2.1: Average mechanical properties of the wood.

Property Average Value
Moisture Content (MC) 12%
Bending Strength (MOR) 162.3 N/mm2

Modulus of Elasticity (MOE) 21,417 N/mm2

Compression Strength (parallel) 95.6 N/mm2

Compression Strength (perpendicular) 14.8 N/mm2

Shear Strength (radial) 14.5 N/mm2

Janka Hardness (side) 14,012 N
Janka Hardness (end grain) 13,619 N

Azobé’s dense, interlocked grain structure and substantial volume of rays contribute to its high
strength perpendicular to grain and stiffness [19].

Due to its anisotropic nature, Azobé tends to fail in a brittle manner under tensile stress
parallel to the grain but demonstrates ductile behaviour under compression [48].

Figure 2.2: Structure of Azobé and appearance of Azobé grain surfaces

At the microscopic level, the wood fibres within vessels, Azobé possess large, water-conducting
cells, along with fibres that contribute to both reinforcement and water transport. Beyond cell
walls, the chemical composition, cellulose, hemicellulose, lignin, and other constituents, also
critically shapes Azobé performance.

Azobé shares the anisotropic tendencies common to wood species. These arise from elongated
cells, orientated cell walls, and variations in cell size during growth, compounded by the pre-
ferred orientation of certain cell types, such as rays. The submicroscopic structure of Azobé’s
cell walls explains why shrinkage and swelling perpendicular to the grain can be 10 to 20 times
greater than in the grain direction. Meanwhile, the microscopic features of clear wood explain
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why Azobé is 20-40 times stiffer along the grain than across it. Macrolevel attributes, such
as knots or twisted fibres, ultimately affect its tensile strength along the grain, which in clear
wood samples can exceed 100 N/mm2, yet this can drop below 10 N/mm² in lower-quality
sections.[23]

Most of the relevant mechanical properties of Azobé are fall under the grading in the NEN-EN
338 [2], providing mean values and characteristic strengths. However, according to Sandhaas
[48], modern timber design codes incorporate multiple safety factors, and even the characteristic
values provided account for the nonlinear, viscoelastic and moisture-dependent nature of wood.

Shear failure in Azobé is less common than other failure mechanisms, such as compression
perpendicular to the grain. It is important to note that beam shear stress may decrease with
an increase in the ratio of shear span to cross-sectional height [29]. Understanding these fail-
ure mechanisms is essential for accurately predicting the performance of mechanically jointed
beams and ensuring their structural integrity in practical applications.

2.2. Durability Of Azobé Timber
Durability is an aspect of Azobé beams as organic materials. It involves resistance to de-
structive organisms, ensuring the ability to guarantee the load-bearing capacity and usability
throughout the service life of the beams.

The durability and structural performance of Azobé beams (Lophira alata) can be largely at-
tributed to their chemical composition and heartwood formation processes. Unlike temperate
wood species that typically contain 1-10% extractives, Azobé possesses a higher extractive con-
tent ranging from 5-25%. These extractives, predominantly composed of phenolic compounds
and terpenes, play a role in the natural resistance of wood to biological degradation, mak-
ing it particularly suitable for heavy structural applications in challenging environments. The
transformation of sapwood to heartwood in Azobé is characterised by cellular mechanisms that
enhance its structural integrity. The formation of tyloses, which are outgrowths of parenchyma
cells that effectively seal the vessels, creates a naturally protective barrier within the structure
of the wood. This process, combined with the deposition of extractives, results in a virtually
impermeable heartwood core that forms the basis of high-performance structural beams. The
tyloses influence it’s mechanical properties by reinforcing the cellular structure.

The heartwood of Azobé beams has greater resistance to biological degradation compared to
sapwood, primarily due to the presence of specific phenolic compounds. Natural resistance
mechanisms eliminate the need for chemical preservation treatments, making Azobé beams an
environmentally sustainable choice for heavy-duty structural applications.

2.3. Mechanical Properties of Dowels
The performance of mechanically jointed timber beams is influenced by the properties and
configuration of the dowels used in their assembly. Steel dowels are commonly used due to their
high strength and stiffness, which facilitate efficient load transfer between timber layers [17].
The key factors affecting the overall stiffness and load-bearing capacity of the beam include
the dowel dimensions and material properties, properties of the connected timber members,
joint configuration, and loading conditions [12]
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Figure 2.3: steel dowels used in different sizes

2.3.1. Dowel Dimensions and Material Properties
Various characteristics of the dowels impact joint performance ; including size, length, and di-
ameter; surface condition (clean, smooth, or rough); surface treatment (plating, galvanising, or
other coating); and dowel stiffness and flexural properties. These parameters directly influence
the load-carrying capacity and deformation behaviour of the connection.

Larger dowel diameters generally enhance the stiffness of the connection, reduce interlayer slip,
and can transfer more load before failing due to their increased cross-sectional area, thereby
improving overall structural performance [10].

2.3.2. Properties of the Connected Timber Members
The mechanical properties of the timber components are determinants of joint performance.
These include compressive and embedding strength; elastic and creep moduli; and displacement
modulus and elastic or plastic bearing constant. These properties are intrinsically related to
the density, grain direction, and moisture content of the wood. In addition, friction between
the dowel and its surrounding wood material contributes to the overall stiffness of the joint.

While increasing dowel size can enhance stiffness and strength, practical limits exist. There
must be a proportionality between the size of the dowel and the wood elements being connected
to ensure effective load transfer without introducing stress concentrations or causing damage
to the timber members.

The strength of the embedding fh represents the resistance offered by the wood surrounding the
dowels, and plays a vital role in the stability and durability of the connections. Recent studies
have proposed updated models for calculating the embedment strength based on experimental
data, particularly for hardwoods such as Azobé [46].

2.3.3. Joint Configuration
The geometric arrangement of the connection affects its structural behaviour. Important con-
siderations include the use of single or multiple dowels per joint; the presence of single, or
multiple shear planes; member thickness; edge and end distances of the dowels etc.
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However, the right spacing and edge distances are to prevent wood splitting due to forces
acting transversely to the grain and to ensure an effective load distribution [4]. The Euro-
pean standard Eurocode 5 [17] provides guidelines for the design of dowel joints, including
recommendations for minimum spacing and edge distances.

2.3.4. Loading Conditions
The nature of the applied loads substantially influences the behaviour of the joint of the dowel.
Relevant factors include the type of loading (static, repetitive, or dynamic); duration (short or
long-term); rate and range of loading; and the time interval between dowel insertion and load
application. These factors affect both the immediate response and long-term performance of
the dowelled connection.

The slip modulus kser of the lamellae interface joints, which measures the resistance of the
joint to relative movement under load, is a key parameter for predicting joint performance [7].
It is essential to calculate deformations in wooden structures and the kser depends on factors
such as the diameter of the dowel and the density of the wood [46].

Optimising parameters such as size, spacing, slip modulus, etc. can improve load bearing
capacity and reduce the risk of joint failure in mechanically joined beams. [28].

2.4. Manufacturing Process
The manufacturing process of Azobé beams begins with selecting Azobé lamellas from climate-
controlled facilities to ensure optimal moisture content. The lamellas are visually graded
and with the known sizes, these lamellas are then precisely planed and dimensioned. Once
the appropriate dowel dimensions are determined, the lamellas are assembled in a stacked
configuration with a pre-camber to account for anticipated load-induced deflections. A CNC
drilling machine is used to accurately bore aligned holes through the lamellas. These holes
are produced with diameters equal to, or marginally less (by less than one millimeter) than,
the specified dowel sizes. Finally, the dowels are hammered into the holes while preserving the
shape and pre-camber, resulting in a mechanically jointed beam.

Proper preparation of dowel holes is essential for the achieving optimal performance in mechan-
ically jointed timber beams. According to Ehlbeck and Werner [16], the dowel holes should
be pre-drilled to the exact nominal diameter of the dowels to ensure a proper fit and effec-
tive load transfer. In some cases, it is recommended to replace one or more dowels with fitted
bolts or screws to enhance joint cohesion during assembly and prevent gaps between individual
members [17].

The manufacturing process employed by Hupkes Wijma involves pre-drilling holes slightly
smaller than the dowel diameter to achieve a tight interface fit when inserting the dowels.
Additionally, a pre-camber is introduced to the beams during assembly to counteract deflections
under load and improve structural performance. However, the effects of these practices on
the slip modulus and overall joint behaviour are not fully documented and require further
investigation.

Undersized holes can cause splitting or excessive insertion forces during dowel installation,
potentially damaging the timber [4]. Oversized holes may lead to inadequate load transfer and
increased deformation. Therefore, adherence to recommended drilling practices is essential for
ensuring the desired performance of mechanically jointed beams.
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2.4.1. Number of Dowels
In multi-layered beams, the number of dowels affects the slip modulus kser and the γ factor,
which govern the beam’s stiffness. More dowels increase inter-layer slip resistance [49], dis-
tribute load more evenly, reduce displacement, and raise γ, thus promoting near full compos-
ite action [8]. Connection strength also improves, as multiple dowels share shear and bending
forces until the timber’s inherent strength becomes the limiting factor [27].

However, practical considerations must be taken into account:

Spacing and Edge Distances: Proper spacing and edge distances are essential to prevent split-
ting of the timber and to ensure effective load transfer. Minimum requirements for spacing
and edge distances are specified in design standards such as EN 1995-1-1 (Eurocode 5) [17]
and will be elaborated on more in the 4th chapter.

Diminishing Returns: Beyond a certain point, adding more dowels may not increase the con-
nection’s strength or stiffness due to limitations imposed by the timber’s capacity and the
potential for localized crushing around the dowels. The concept of the effective number of
fasteners nef is used in design to account for this phenomenon and is well detailed in the
Eurocode 5 [17].

2.4.2. Dowel Arrangement
The arrangement of the dowels and their material properties influence the load-carrying capac-
ity and stiffness of multilayered beams. [8].

The arrangement of the dowels can also affect performance. However, some studies indicate
that certain factors, such as the staggering of dowels, may have a negligible impact on the
overall strength and stiffness of the assembly [16].

Layer Orientation
The orientation of individual layers within a multilayered beam influences mechanical proper-
ties such as modulus of elasticity and strength. Aligning the grain direction with the primary
stress directions maximises structural performance.
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2.5. Mechanically Jointed Beams Theory γ-Method
To analyse multi-layered beams, the γ-method (Gamma method) is commonly used to deter-
mine stiffness and account for the semi-rigid connection between layers [35]. This method
considers the slip between layers and provides a more accurate prediction of the beam’s deflec-
tion and load-bearing capacity.

Figure 2.4: A Bridge setup inside the factory of Hupkes Wijma displaying clearly the mechanically jointed
beams manufactured on site on the sides

The γ factor for composite action between composite members in Eurocode 5 originates from
the analytical modeling of the slip behaviour at the interfaces of the composite assembly. In
essence, it is a non-dimensional parameter derived from the solution of the differential equations
governing the relative slip between layers that are connected via fasteners or adhesive and goes
from 0 (no composite action) to 1 (full composite action). This derivation assumes linear-
elastic behaviour for both the timber and the connectors and considers factors such as the slip
modulus kserof the connectors, the spacing between them (s), and the Modulus of elasticity
(E) of the individual layers.

The γ-method, as outlined in the Eurocode 5 [1] provides the simplest framework for calculating
the flexural properties of mechanically jointed beams.[44]. In Germany, Tests were previously
done by Prof. Möhler (Experiments with Bongossi Wood - Test Report). On multi-layered
(max 4 layered) Azobé beams held by dowels. He also tested the shear strength of the dowels
embedded in timber-to-timber connections using the 16mm and 24 mm and 30mm.

Specifically, when three members are intended to act as a composite beam, there are two
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interfaces at which slip can occur. The γ factor quantifies the reduction in effective stiffness
EIeff due to the partial interaction across these interfaces. By solving the governing equations
under appropriate boundary conditions, Eurocode 5 introduces this γ factor to adjust the
idealized fully composite bending stiffness to a more realistic value that mirrors the actual
performance of the connection.

For further details on the derivation and application of this factor, one can consult the notes
and technical annexes accompanying EN 1995-1-1, which present the analytical, probabilistic,
and experimental basis for the approach. Additional guidance on a two-member section can
be found in Annex 5 of Timber Engineering – Design Principles by Sandhaas [47].

Wolfgang Schelling further added the possibility to do calculations of the γ stiffness factor of 3
- layered beams to n number of layers [56] and with this extension made it possible to calculate
any cross section type within the setup. In his formulation he used symmetry and concluded
that the gamma factor for the central beam given an odd number of layers was still 1 in this
calculation.

This method expanded by Schelling, accounts for the stiffness contributions of individual layers
and the inter-layer slip facilitated by dowels by relying on the slip modulus kser. The method
has also been validated through numerous experimental studies, including those by [36], which
examined the behaviour of multi-layered beams with inter-layer slips. These studies emphasize
the role of the γ-factor in predicting the mechanical behaviour of complex timber assemblies
under various loading conditions.

The γ-factor will be discussed further in the next chapter

2.6. Possible Failure Mechanisms of Mechanically Jointed Beams
Mechanically jointed beams predominantly exhibit two principal failure mechanisms: brittle
failure and ductile failure.

Brittle Failure : This type of failure occurs when the tensile stresses in the lowest lamella
exceed the wood’s bending strength, causing the lamella to rupture. Accurately determining
the bending stresses throughout the cross-section is critical for predicting this mode of failure.

In brittle failure mechanisms, a premature failure by splitting can also occur. This process can
begin when a crack initiates around the dowel holes and then propagates along the wood grain
dowel holes ultimately causing the lamellae to split.

Ductile Failure : In contrast, ductile failure arises from the steel dowels yielding in shear,
thereby permitting substantial interlayer slip. This behaviour indicates that the connections
undergo considerable plastic deformation, which can allow for larger deflections and energy
dissipation prior to complete failure. this is indeed not a true failure as the dowels continue to
perform in shear even when deformed

Shear Failure and Interlayer Slip :

Early work by Johansen [26] laid the foundation for understanding shear failure in dowel joint
connections. mechanically jointed assemblies are made of these connections. His research
focused on interlayer slip between members, which is resisted by the shearing action of dowels
placed between the layers. The number of shear planes directly influences how dowels yield or
fail, resulting in different failure patterns.
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Further studies by Natterer et al. [37] corroborated these findings and demonstrated shear
failure in multi-layered, mechanically jointed systems, including tests conducted on up to six
members. As more shear planes are introduced, the dowel arrangement and slip behaviour be-
come increasingly complex, and an understanding of how interlayer slip evolves under loading.

Embedment Strength And Embedment Stiffness Embedment stiffness refers to the
resistance offered by the wood fibres surrounding a dowel, as it is inserted into the timber
member. This resistance is for ensuring the stability and load-bearing capacity of the connec-
tion. It is a critical parameter in assessing the load carrying capacity of joints with dowel-type
fasteners, along with the yield moment of the dowels.

According to the European timber design code Eurocode 5, embedment strength formulas
are applicable to all timber species and are dependent on fastener diameter and material
density. Although the tests were primarily focused on softwood, recent experimental research
has expanded to include European and tropical hardwoods.([48])

The visual representation below according to sandhaas highlights the material’s response under
compression load during an embedment test. It can be seen the difference in embedment
strength of Azobé, a typical tropical hardwood, compared to other timber species under similar
conditions.

In further research by [54], the concept of embedment stiffness is explored with an emphasis
on its critical role in ensuring the stability and load-bearing capacity of timber connections.

These studies collectively contribute to a deeper understanding of mechanical behaviours in
these beams, informing both current practices and future developments in structural engineer-
ing and design.

2.7. The Research
While previous studies have primarily focused on numerical analyses of the behaviour of timber
dowel connections and inter-layer slips, there is a significant need for further laboratory exper-
iments to determine the actual stiffness and strength of mechanically jointed timber beams.
Experimental validation is to bridge the gap between anlaytical calculations and real-world
performance.

Beams with different numbers of layers but similar overall height: The last substantial experi-
mental study was conducted in the 1960’s by Möhler [35], which focused exclusively on beams
composed of four layers. To fully understand the mechanical behaviour of mechanically jointed
beams, it is essential to investigate beams with varying numbers of layers—such as a two-layer
and four-layer configurations — while maintaining the same overall beam height. This ap-
proach will help assess how the number of layers affects stiffness, strength, load distribution,
and failure mechanisms.

Validation of the analytical calculations in the eurocode for hardwoods like azobé. Existing
analytical models incorporated into Eurocode 5 [17] focused on softwoods mostly and have not
been updated, there lacks validation of this against experimental data for hardwoods like Azobé.
analysis need experimental verification to ensure their accuracy in predicting the behaviour of
mechanically jointed beams under various loading conditions.



3
Work By Karl Möhler

Karl Möhler’s 1968 test report “Versuche mit Bongossiholz”[34] had asprimary onbjective to
perform an investigation into the the structural performance of the tropical hardwood Bongossi
(Azobé)in construction. The report was motivated by the growing use of Bongossi in West
Germany in civil structures e.g. for pedestrian bridges and other components and the lack of
existing data for design.

3.1. Analysis of Möhler’s “Versuche mit Bongossiholz – Prüfbericht”
Möhler, in collaboration with the Dutch timber company T.C. Groot (Lemmer), aimed to
determine key material properties of Bongossi and to evaluate the behaviour of rod-dowel
connections and multi-layer beams made from this hardwood. The ultimate goal was to provide
data and design recommendations, addressing inquiries from building authorities and filling
gaps in standards (since existing codes had no specific values for Bongossi or rod-dowel joints)
. In summary, the research question was: How can Bongossi wood’s strength properties and
dowel-connected beam performance be quantified, and can standard design methods be applied
to this material?

Description of Beam Specimens
The beam specimens tested were large composite timber beams made of Bongossi lamellas
joined with steel rod dowels like in this thesis. Specifically, the report examined 15×60 cm cross-
section beams composed of multiple Bongossi wood planks (lamellae) mechanically connected
to act together. The company provided beams assembled from individual Bongossi members
(dense, tropical hardwood sections) using steel Stabdübel (rod dowels) as connectors. Two
full-size beam configurations were tested: one beam was built from four lamellas (stacked to
form the 60cm depth) with a pre-camber (upward curvature) introduced during fabrication,
and another beam had a similar 15×60 cross-section but with a different lamella arrangement
(e.g. possibly three lamellas – a “three-part” beam). Each lamella was a single sawn timber
element of Bongossi(Azobe), and when bolted together with multiple steel dowels across the
depth, they formed a composite section(Mechanically jointed beam). The dowel diameters used
ranged (e.g., 16mm, 24mm, up to 30mm) to study different connector sizes. In the first beam
(Träger Nr.1), a slight construction deviation was noted – some dowels were placed a bit closer
to the edge than planned – whereas in the second beam (Träger Nr. 2) the dowel positioning
matched the design exactly. Apart from that, both beams had comparable dimensions (15 cm
width, 60 cm depth) and were several meters long to allow bending tests.

15
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3.1.1. Experiments Conducted (Methodology and Setup)
Möhler’s experimental program was divided into three parts, addressing: (1) fundamental
material properties of Bongossi, (2) behaviour of steel dowel connections in Bongossi, and (3)
performance of multi-layer (dowel-jointed) Bongossi beams under load. The methodology and
setup for each part were as follows:

Material Property Tests
A series of standard small-specimen tests were carried out to quantify Bongossi’s basic me-
chanical properties. Following DIN norms, compression tests were done both parallel to grain
(axial compression) and perpendicular to grain. Small cubes (e.g. 3×3×6cm) were compressed
to determine compressive strength along and across the fibers. Shear tests parallel to grain
were performed using standardized block shear specimens to measure shear strength. Bending
tests (static flexural tests) were conducted on clear wood specimens of two sizes – 5×5cm and
12×12cm cross-sections – in a four-point bending setup (per DIN52186) to obtain the bending
strength and modulus of elasticity (MOE) . The bending MOE was calculated from load–
deflection data. Additionally, embedment (bearing) strength tests were done: steel dowels
were loaded in holes through wood blocks to measure the Lochleibungsfestigkeit (embedment
strength of wood parallel to grain), which is critical for dowel connections. All samples were
cut from a stock of Bongossi timbers provided by the company (dimensions 5×5×150cm
and 12×12×300cm stock, from which test specimens were extracted). The wood’s density
(Rohdichte) and moisture content were recorded for each specimen. (In particular, Bongossi
is extremely dense; the average density was approximately 1170kg/m3, and some large sec-
tions retained core moisture above 30% during testing.) These material tests followed relevant
standards to ensure reliable property values.

Dowel Connection Tests
The next phase examined Stabdübelverbindungen, i.e. steel rod dowel connections in Bongossi
wood. Möhler investigated double-shear dowel joints (“zweischnittige” connections), meaning
that each dowel passed through two shear planes (as in a sandwich of wood-steel wood or
wood-wood-wood). The test specimens for these connection tests consisted of Bongossi wood
members joined by one or more steel dowels, loaded in a setup to simulate joint shear conditions.
The variables studied included the dowel diameter (d) and the. By testing multiple diameters
(e.g. 16mm, 24mm, 30mm) and wood thickness configurations, the experiments aimed to see
how dowel size and the thickness of wood it passes through affect the joint strength and stiffness.
Each connection specimen was loaded until failure in a tensile testing machine or similar rig,
while measuring the load–displacement (slip) Behaviour. The failure modes (whether the wood
crushed around the dowel, the dowel yielded, or the wood split) were documented. For each
configuration, the ultimate load capacity of the joint and the slip modulus (initial stiffness of
the load-slip curve) were determined. These tests yielded data for allowable dowel loads and
slip modulus C in Bongossi, which were absent from current codes. Results were tabulated
(e.g. Table7 in the report compiles the outcomes for various diameters and thicknesses), and
they enabled comparison of Bongossi’s joint performance to known values for softwood.

Beam Bending Tests
The final and most experiments were full-scale bending tests on the dowel-laminated Bongossi
beams (section 15×60 cm as described). Each composite beam was simply supported and
loaded in bending (a four-point bending setup was used to create a constant moment region
in the middle). Numerous steel dowels were used along the span to connect the layers; their
pattern and spacing followed design guidelines (edge distances of about 6.5 cm and certain
spacing along the beam length). Instruments measured the mid-span deflection of the beam and
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possibly the relative slip between layers (to assess partial composite action). Träger Nr. 1 (the
first beam with four lamellas and pre-camber) was tested in incremental stages: initial “service-
level” load tests to evaluate stiffness, followed by loading to higher levels until near failure.
Träger Nr. 2 (the second beam) was then tested, likely to failure, to compare Behaviour.
Throughout these tests, observations were made on whether full composite action was achieved
or if slip occurred between layers. The pre-camber in the first beam was noted – under load, the
beam’s deflection would first cancel out the camber before sagging, so they monitored how the
camber influenced the load-carrying Behaviour. Key measurements obtained were the effective
bending stiffness EIeff of the composite beams (to compare against theoretical predictions)
and the ultimate bending capacity. After testing, the beams were examined for failure modes:
e.g. whether failure happened by dowel yielding or wood crushing at the connections, or by
wood flexural failure in the extreme fibers. These results were compiled (Table8 in the report
contains the beam test results and specifics of steel grades of dowels, etc.) and used to evaluate
design methods.

3.2. Findings from the Experiments
Material Strength
Bongossi wood was confirmed to be very dense. The average density was about � � roughly
1170kg/m³, far higher than typical construction softwoods. Moisture content during testing
was approximately 32.9%. Its compressive strength parallel to grain was measured around
58–59N/mm² (with 10% coefficient of variation). Compression strength perpendicular to
grain was measured for both tangential (9.74 N/mm²) and radial (12.54 N/mm²) loading.
Shear strength parallel to grain averaged 15.83 N/mm². The modulus of elasticity (MOE)
in bending was measured as 16,000–20,000N/mm². Additionally, the embedment (bearing)
strength of Bongossi (resistance to dowel bearing) was determined to be high. For instance,
under parallel-to-grain loading of steel dowels, the wood’s embedment strength values were
above those for pine or spruce. In summary, the material tests justify Bongossi’s use in heavy-
duty applications, albeit with the consideration of its brittle nature

Dowel Connection Behaviour
Rod-dowel connection tests revealed that dowel diameter and wood thickness (slenderness ra-
tio) affect connection strength and stiffness. Larger dowels (24mm and 30mm) achieved higher
load capacities; however, failure modes varied. Smaller dowels failed by wood crushing or
splitting (embedment failure), whereas some 30mm dowels reached the yield strength of the
steel—using standard St37—indicating that steel quality is diameter-dependent. Specifically,
only the 30mm rods consistently met the St37 grade, while the 16mm and 24mm rods showed
reduced strength, likely due to manufacturing differences. The slip modulus (C) of the Bon-
gossi connections was quantified, with the wood’s hardness yielding a high initial stiffness and
minimal slip under service loads. Load–displacement curves exhibited linear behavior up to
approximately twice the permissible load, with maximum loads of about 247–280kN for 16mm
dowels, 545–744kN for 24mm dowels, and 858–1128kN for 30mm dowels. Brittle failure modes,
particularly wood splitting near dowel holes, occurred when edge distances were insufficient.
For example, in beam Träger 1, dowels placed 1–2.5 cm too close to the edge likely induced
premature local splitting. The findings establish specific allowable loads for various dowel
sizes in Bongossi and recommend slip modulus C values for design calculations, demonstrating
that mechanical dowel connectors can form strong, stiff joints in this hardwood—albeit with
a brittle failure mode.
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Composite Beam Performance
Composite beam performance was evaluated through tests on two full-scale Bongossi beams,
each 6000mm long with a 150×600cm cross-section. The beams were constructed from four
lamellas, each measuring 150×150cm, connected by 20mm steel dowels spaced at 150mm inter-
vals. Testing under both center-point and two-point bending configurations involved measuring
midspan deflections and slip between lamellas until failure. An effective bending stiffness of
approximately 20,830 N/mm² was determined, which corresponded closely with predictions
from the gamma-method and other analytical models when the experimentally determined
slip modulus was applied. One beam achieved a maximum load of 228kN with a deflection
of 189mm, while the other reached 190.8kN with a deflection of 114mm. In one specimen,
an initial upward camber was observed that was overcome during loading, leading to conven-
tional downward deflection without affecting the ultimate capacity, although it contributed
to smaller service deflections. Failure occurred primarily due to tensile rupture at the beam’s
bottom or excessive slip in the connections; one beam exhibited minor shear slip and slight con-
nector yielding prior to overall failure when the extreme fibre stress in the wood was reached.
Additionally, proper dowel spacing and edge distances proved critical in preventing premature
splitting, as evidenced by specimens with optimal layouts. The 30mm dowels yielded plasti-
cally at peak load, whereas thinner or lower-grade dowels may not yield before wood failure,
potentially shifting the failure mode. These findings confirm that layered Bongossi beams can
achieve near-composite action, transferring loads effectively through the dowel connectors and
performing comparably to solid beams of equivalent cross-section.

3.3. Conclusions by the Möhler
Dowel-jointed Bongossi beams can be safely and effectively designed using existing engineering
methods. The tests showed that composite beams with 2 or 3 layers (and even 4-layer, as in the
one beam) behave as predicted by standard formulas. In fact, Möhler concludes that one can
calculate two- and three-part composite Bongossi beams using the equations given in DIN1052
(the old German timber design code) for mechanically jointed beams, with the experimentally
determined parameters . In practice, this means the γ-method (slip factor method) in the
Eurocode 5 is applicable to Bongossi. the slip modulus and permissible dowel loads obtained
from the tests should be used, but no fundamentally new design approach is required.

Because prior standards did not have values for rod dowel connections in Bongossi, Möhler’s
results fill that gap. The report likely recommends that the characteristic strength values
(embedment strength, etc.) and slip modulus for Bongossi be incorporated into code provisions.

Möhler concludes that to ensure reliable performance, proper detailing of dowel connections is
crucial. Adequate edge distances, spacing, and using the appropriate dowel diameter relative
to member thickness will prevent premature wood failures. The tests indicated that when these
details are respected, the failure mode can be ductile (steel yielding) or at least as predictable as
other timber connections. So, design recommendations include using the provided slip modulus
values and perhaps limiting the slenderness ratio or using multiple smaller dowels rather than
one very large dowel, to balance wood and steel capacities.

The study confirms that Bongossi’s high material strength can be utilized in structural appli-
cations. For instance, the allowable bending stress and compression stress derived from the
tests are much higher than those for pine or other common timbers. Möhler likely notes that
Bongossi’s brittleness (low deformation at failure) means safety factors and careful quality
control are needed.

The outcome is that these experiments provided the confidence and data to use Bongossi in
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engineered structures such as long-span beams and bridges. Möhler’s work paved the way for
design methods of mechanically-jointed beams (which later were incorporated into Eurocode5)
. The report’s conclusions emphasize that mechanically jointed Bongossi beams are a viable
construction solution.



4
THEORETICAL FRAMEWORK

This section delineates the multitude of variables central to the research project, accompanied
by graphical representations. At its core lies the exploration of the strength and stiffness
of dowelled multi-layered Azobe beams, comprising more than three layers. The key to this
framework is a profound understanding of the structural properties of Azobe wood, notably
its density, modulus of elasticity (MOE), and dowel embedment strength, all of which exert
direct influence on the overall strength and stiffness of the beams. Moreover, the inter-layer
slip between members, facilitated by dowel joints, significantly shapes the behaviour of multi-
layered beams under load. Employing this seeks to compare the experimental findings with
analytical solutions derived from Eurocode 5 to see if there is alignment in results

4.1. Introduction To Mechanically Jointed Timber Beams
Mechanically jointed timber beams consist of two or more timber components joined together
using mechanical fasteners, such as dowels or screws, to enhance structural performance. The
fundamental principle involves distributing loads through the jointed layers to achieve improved
flexural stiffness, strength, and stability [8]. The inter-layer connections ensure effective load
transfer, reducing differential movement between layers and enhancing overall structural in-
tegrity. The space in the interlayers typically serves only to transmit shear that is absorbed
by the fasteners. Upon deformation, the total beam cross-section of the members no longer
remains planar since the individual layers deform longitudinally due to shear. Consequently,
it cannot be calculated using Euler-Bernoulli beam theory, as it violates the fundamental
principle of maintaining planarity.

The load bearing capacity, stiffness, and degree of composite action in mechanically jointed
timber beams are between those of glued and unjointed timber [30]. They are frequently used in
outdoor applications to achieve nearly the same composite behaviour that would otherwise be
obtained by gluing hardwoods. However, this approach introduces challenges such as glue line
delamination and reduced adhesive penetration, problems related to the denser fibre structure
of hardwoods, which have been thoroughly examined by Leggate [32].

As Kreuzinger et al. show in [6], the bending stress analysis of these members - compared
to pure solid and unjointed timber in a three-layer configuration, as illustrated in the figures
below - shows that unjointed timber undergoes significantly greater deformation than sawn
timber, with jointed timber showing intermediate deformation characteristics.
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Figure 4.1: Bending stress comparison of solid timber, mechanically jointed timber, and unjointed timber.

Mechanical beams are classified as composite beams, encompassing a wide range of possible
configurations, as illustrated below. To analyse these semi-rigid jointed beams, the γmethod
is typically employed for configurations involving up to three layers. For assemblies exceeding
three layers, Schelling [56] or the shear analogy method are generally utilized.

Figure 4.2: Steel dowel-jointed beams are shown in dark brown wood, while screw-jointed beams are
depicted in lighter wood.

4.2. Gamma Method for Multi-layered Beams (γ)
4.2.1. Historical Development: Möhler's and Schelling's Contributions
The γ-method, originally proposed by Möhler [33], was a breakthrough in understanding the
stiffness behaviour of mechanically jointed multi-layered beams. Möhler introduced the concept
of inter-layer slip, which significantly affects the effective stiffness of the composite beam.
Later, Schelling refined this method, extending its applicability to a wider range of beam
configurations, including varying cross-sectional geometries and complex joint arrangements
[56] explained in the next section. The contributions of Möhler laid the foundation for the
analytical evaluation of multi-layered beams, bridging the gap between theoretical predictions
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and experimental observations.

4.2.2. Mathematical Formulation
The effective flexural stiffness (EI)eff of a mechanically jointed beam with n layers using the
γ method is given in the Eurocode [41] by:

(EI)eff =
n∑

i=1

(
Ei · Ii + γi · Ei ·Ai · a2i

)
(4.1)

and γi is the reduction coefficient for the i-th layer, calculated as:

γi =
1

1 + π2·Ei·Ai·Si
Ki·ℓ2

for i = 1, 3 γ2 = 1 (4.2)

Where:

Ei - modulus of elasticity of the i-th layer.

Ii - moment of inertia of the i-th layer.

Ai - cross-sectional area of the i-th layer.

ai - distance from the centroid of the i-th layer to the neutral axis of the composite section.

Ki - slip modulus (stiffness of the connection) for the i-th layer.

Si - coefficient related to the spacing or arrangement of the fasteners.

ℓ - span length of the beam.

In a three-member connection as specified by Eurocode 5 [17], the coordinates ai of the neutral
axes are found by considering both the geometry and the moduli of elasticity Ei of the indi-
vidual members. The coordinate of the neutral axis in the second member, a2, can be written
as

a2 =

∑3
i=1 xi · Ei ·Ai∑3

i=1Ei ·Ai

=
E1A1 (h1 + h2) − E3A3 (h2 + h3)

2
(
E1A1 + E2A2 + E3A3

) (4.3)

The center of gravity x0c of the entire beam in relation to a reference axis 0 is determined by
the equation below with x0i as the distance from reference axis 0 to the centre of gravity of
that member

x0c =

∑n
i=1 x0i · Ei ·Ai∑n

i=1Ei ·Ai
(4.4)

Once a2 is obtained, the neutral axes in the other two members, a1 and a3, follow from simple
shifts: Here, hi denotes the thickness (or height) of each member, Ai its cross-sectional area,
Ei its modulus of elasticity, and xi the distance from a chosen reference axis.

a1 = −h1 + h2
2

+ a2 and a3 =
h2 + h3

2
+ a2 (4.5)

The γ- method only applies to three given members. Attempting to calculate the γvalue for
more members will result in a continuous increase in the effective (EI) if the width and height
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remain constrained, with changes occurring only in the height of the members. The following
graph provides a summary of this effect.

Figure 4.3: Effective bending stiffness (EI_eff) based on only the γfactor calculation vs. number of layers,
with total height and width fixed while layer thickness decreases as the number of layers approaches infinity.

However, if the true stiffness is determined from the full effective EI while increasing the number
of layers—but keeping the cross-sectional height constant—this behavior can be expected across
different stiffness levels. This is based on the assumption that, regardless of how many layers
are added, the stiffness values remain similar for each corresponding case.

Figure 4.4: Effective Stiffness Reduction with Increasing Number of Layers for Mechanically Jointed Beams

4.2.3. Slip Modulus Kser and Its Significance
The slip modulus, denoted as Kser, is a critical parameter in the analysis of mechanically jointed
timber structures. Also known as slip stiffness or slip resistance, it quantifies the resistance
offered by a joint or connection to relative movement or slippage between its components under
applied loads. Specifically, it measures the ability of mechanical joints, such as with dowels, to
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resist slip when subjected to loading.

When a load is applied to a structure, it induces forces and displacements that may cause
relative movement between the connected members. The slip modulus characterizes the de-
formation behaviour of the connection under load, typically expressed as the force required to
induce a unit displacement (e.g., force per unit of slippage). It is an important parameter in
predicting the mechanical performance of connections and, by extension, the global response
of the structure.

The value of the slip modulus is influenced by various factors, including the dowel diameter
and the density of the timber. Accurate determination of Kser is essential for analysis, as it
directly affects the predicted calculated stiffness and strength of the connections.

Methods for Determining Slip Modulus
The slip modulus can be determined using both experimental and analytical methods. Ex-
perimentally, it can be obtained through shear tests on connections, following standardized
procedures such as those outlined in EN 26891 [52] or EN 383[42]. These tests involve ap-
plying load to a joint and measuring the corresponding displacement, allowing for the direct
calculation of Kser.

The standard provides an empirical formula for the slip modulus Kser (serviceability stiffness)
per shear plane per fastener as a function of fastener diameter d and timber density ρmm . For
example, for steel dowels in wood-to-wood joints, Eurocode 5[17] suggests:

Kser =
ρ1.5m · d
23

(4.6)

where:

• ρm is the mean timber density in kg/m3.
• d is the dowel diameter in mm.

Jockwer and Jorissen [24] conducted an extensive investigation into the origins of the service-
ability slip modulus kser in Eurocode 5, attributing much of the foundational work to Ehlbeck
and Larsen [14].

Although commonly referenced simply as Ehlbeck and Larsen (1993), the underlying research
actually appears in a series of CIB-W18 (Working Commission W18—Timber Structures) con-
ference papers from the early 1990s [15, 13, 14], with the pivotal connection-stiffness investi-
gations presented at the 26th CIB-W18 meeting in Venice (1993).

In their paper on the stiffness and deformations of connections with dowel-type fasteners,
Jockwer and Jorissen [24] note that the Eurocode 5 stiffness equations are based on simplified
assumptions and their background is not clearly stated. They further conclude that various
standards propose different equations for stiffness, and there considerable differences between
experimentally measured connection stiffnesses and those predicted by Eurocode 5.

Impact on Overall Beam Behaviour
The slip modulus directly influences the deflection of the beam and the distribution of the
load. Under bending action, the initial deformation under self-weight and low-level loads is
influenced by the slip of the connections in the shear planes between the adjacent layers that
slide relative to one another with the maximum slip being at the ends and no slip in the centre.
And due to slip, which causes changes in the overall cross-section in other words causes non
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planarity, the Euler bending theory cannot be directly applied to determine the deformation.
Even when the maximum load on the connections is reached , the individual fasteners continue
to carry the load and failure often occurs in the individual timber members.

(a) slip between layers (b) full scale beam

Figure 4.5: Comparison of slip in mechanically jointed beams

A higher Kser leads to greater composite action, resulting in reduced deflection and increased
load-bearing capacity. Conversely, a lower slip modulus increases inter-layer slip, reducing
overall stiffness and potentially compromising structural performance [8].

The initial deformation observed at low load levels exhibits a soft behaviour characterized by
an initial slip in the connection. This slip depends, among other factors, on the tolerances in
the assembly of the connection[24]. According to Dubas (1981)[11], the initial slip is commonly
smaller for connections tested in laboratory settings due to the higher precision compared to
connections produced in practice. However, with the advent of more precise machinery, such
as the elaborate CNCs, the manufacturing precision has improved significantly.

Upon full contact between the components of the connection, the load-deformation behaviour
becomes approximately linear. This linear range typically occurs between 10% and 40% of the
maximum load and remains below the yield point. At higher load levels, the load-deformation
behaviour becomes non-linear and considerably softer if sufficient ductility is available, contin-
uing until the maximum or ultimate load Fmax or Fu is reached. [24]Failure is defined when
the load reduces to 80% the force Fu. Jockwer [24] provides a detailed analysis of the load-slip
deformation.

Figure 4.6: slip-moduli for the non-linear load deformation curve of connection
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4.2.4. Limitations
The γ-method is based on several key assumptions that simplify the analysis of mechanically
jointed beams. These assumptions include linear-elastic behaviour of timber and dowels, per-
fect contact between layers, uniform load distribution across dowels, and the application of
sinusoidal or uniformly distributed loads.

Firstly, it is assumed that both the timber and the dowels exhibit linear-elastic behaviour. This
means they respond proportionally to applied loads and return to their original shape upon
unloading, without any permanent deformation.

Secondly, the method presumes perfect contact between all layers and neglects gap formation
and slip between the layers. This ensures consistent load transfer across the entire beam cross-
section. However, in practical applications involving mechanically jointed beams, achieving
perfect contact is nearly impossible. Under compressive forces, the layers tend to move upwards,
especially at the center of the beam, creating gaps that can affect the load transfer mechanism.

Thirdly, the γ-method assumes that external loads are evenly distributed across all dowels,
neglecting localized overstressing. In reality, dowels experience varying stress levels due to
factors such as beam geometry and load application points. Dowels located near the center of
the beam often carry less load compared to those near the supports or edges, which can lead
to uneven stress distribution.

Finally, the analysis considers the beam to be subjected to a sinusoidal or uniformly distributed
load. While the method primarily addresses sinusoidal loading conditions, it is also applicable
to any uniform load distribution, as noted by Ceccotti [9]. This assumption simplifies the
calculation of internal forces and moments but may not accurately represent all real-world
loading scenarios.

These assumptions are instrumental in simplifying the complex behavior of mechanically
jointed beams for analytical purposes. However, they introduce limitations that must be
acknowledged. Deviations from ideal conditions—such as imperfect contact between layers
and non-uniform stress distribution in dowels—can lead to discrepancies between theoretical
predictions and actual performance. Therefore, when applying the γ-method, it is crucial to
consider these limitations and, if necessary, incorporate correction factors or perform additional
analyses to account for real-world conditions.

One other limitation of this method is that it does not fully account for non-linearities that
may arise due to material plasticity or varying environmental conditions, such as changes in
moisture content [27].

In conclusion, these assumptions try to simplifying the complex behaviour of a slip joint for
analytical purposes. However, they introduce limitations that must be acknowledged. De-
viations from ideal conditions—such as imperfect contact between layers, non-uniform stress
distribution in dowels, and unaccounted non-linearities often lead to discrepancies between
theoretical predictions and actual performance. Therefore, when applying the γ-method, it is
crucial to consider these limitations and, if necessary or possible, incorporate correction factors
or perform additional analyses to account for real-world conditions.

Determining the slip modulus experimentally for a four- and two-layered beam requires the
ability to reverse engineer the formula using the efficient stiffness as a value we obtain from
the experiments and then tweak it to find the kser values.

For the 2 layered beam with different elastic moduli,its expected to have one shear plane but
there is a possibility of two values of the Kser owing to the whichever MOE is used even for
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similar geometric properties. There is a shift in neutral line but if the neutral axis is assumed
to be between the members then the formula for kser is :

kser =
π2s

L2
· E1A1 · E2A2

E1A1 + E2A2

(
1

1
γ1,2

− 1

)
. (4.7)

For a four-layered beam, there are three shear planes (between layers 1–2, 2–3, and 3–4), and
thus three values of kser. Based on Schelling’s method, we assume

kser1,2 = kser3,4 = kser2,3 , (4.8)

By using the following quantities:

(EI)0 =
4∑

i=1

Ei Ii, (4.9)

C1 = E1A1 a
2
1 + E4A4 a

2
4, (4.10)

C2 = E2A2 a
2
2 + E3A3 a

2
3, (4.11)

∆EI = (EI)eff − (EI)0. (4.12)

To solve for the parameter K, let

a = 2∆EI, (4.13)

b = −2C1

3
, (4.14)

c = −
(
∆EI +

C1

3
+ C2

)
. (4.15)

Then K follows from the standard quadratic equation:

K =
−b±

√
b2 − 4 a c

2 a
. (4.16)

Once K is found, compute the shear stiffness values accordingly.

kser1,2 =
π2E1,2A1,2 s

2 l2
(
K − 1

) (4.17)

kser2,3 =
π2E2,3A2,3 s

2 l2
(
K − 1

) (4.18)



4.3. Stresses Within The Members And Forces 28

4.3. Stresses Within The Members And Forces

Figure 4.7: Three-layered timber beam illustrating how the axial force N and bending moment M produce
normal (tensile/compressive) stresses and shear stresses in each layer, with the neutral axis and stress

distributions shown for each segment

The bending stresses in the beams arise from two sources: the bending moment in the beams
and the internal forces due to their partial composite action. In the figure above, note that the
members—identical in both geometry and modulus of elasticity—have their axes coinciding
at the exact center of the middle member; therefore, a2 is not visible in the diagram. The
external moment generated by the applied forces results in the stress distribution shown below.
Annex 5 of the Eurocode 5 [17] explains how these stresses are derived, so the derivation will
not be repeated in this thesis. For the outer fibers of individual components , the bending
stresses are calculated using the external moment as follows:

σi,M =
M

(EI)ef
Ei

hi
2
. (4.19)

For calculating normal stresses at the center of gravity of individual components, the γi coef-
ficients are added:

σi,N =
M

(EI)ef
γiEiai (4.20)

The total beam stress is obtained by combining the normal and bending stresses in the outer
fiber.

σi =
M

(EI)ef
Ei(γiai +

hi
2
) (4.21)

In this particular model, the maximum shear stress is observed at the neutral axis of the second
member.

The shear stress, τ , is given by
τ =

V (ES)eff
E Ieff b

(4.22)

where
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• V is the shear force,
• E is the modulus of elasticity,
• Ieff is the effective moment of inertia,
• b is the width at the considered section,
• S is the first moment of area above the neutral axis, defined by

S =

∫ h

yNA

b(y) y dy. (4.23)

Here, yNA is the position of the neutral axis and h is the total height of the beam.

It is also important to note that the γ -values must be added for all components above or
below the neutral axis. In this case γ2 is 1 , the effective stress (ESeff ) will be calculated
accordingly.

ESeff = γ1a1E1A1 + γ2

(
1

4
h2

)(
1

2
E2A2

)
(4.24)

The A2 in this equation is related to the area of the section above the neutral axis of the
second member. Consequently, the maximum shear on the neutral axis is determined using an
h value that represents the distance from the centre of the middle member to a reference point
of contact connecting the adjacent member. This simplifies the equation.

τmax =
Vmax(γ1E1A1a1 + 0.5E2b2h

2)

(EI)efb2
(4.25)

The force on the dowels between the shearing planes and si as the spacing between the dowels
is then given by

F1,3 =
Vmax · γ1,3 · E1,3 ·A1,3 · a1,3 · s1,3

(EI)eff
(4.26)

The distribution of forces across mechanically jointed beams with multiple fastener rows ne-
cessitates consideration of both the spatial arrangement and mechanical engagement of dowels.
When multiple rows are implemented, the applied force is distributed proportionally among
rows and contributing fasteners (this means that the force on the has to be divided by the
number of rows); however, a critical distinction must be made between the nominal quantity of
dowels present and the effective number actively participating in load transfer. This effective
participation may be governed by the specific loading configuration and resulting internal force
distribution.

In four-point bending configurations, the shear force diagram exhibits zero magnitude in the
central region between loading points, theoretically resulting in minimal to negligible activation
of dowels within this zone. Conversely, three-point bending induces shear forces throughout the
entire beam length, potentially mobilizing all dowels along the span. The differential activation
patterns of the dowels under varied loading conditions have significant implications for the
action of the composite and the effective stiffness of the mechanically joined beams. These
hypothesised behavioural differences will be systematically investigated through experimental
validation in the subsequent phases of this research study.
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4.3.1. Application to Beams with More Than Three Layers
Originally, the γ-method was formulated for beams with up to three layers, since extending it to
beams with additional layers would lead to complex and unwieldy calculations. Schelling [56]
resolved this issue by generalizing the γ-method to beams composed of more than three layers.
His extension involves summing the contribution of each layer while accounting for the cumu-
lative slip across all interfaces. As the number of layers grows, the beam’s effective stiffness
becomes increasingly sensitive to the slip modulus, making an accurate determination of Kser
essential for reliable predictions of the beam’s mechanical behaviour.

Building on Mohler’s work, Schelling presented calculations for beams with four and five layers,
specifying the corresponding γ-values. For a four-layer beam, he gave:

K = 1 +
π2 · E ·A1

l2 · 2 · C
(4.27)

where
C =

kser
s

(4.28)

with kser denoting the slip modulus per connector and s the spacing between connectors (or
members).

For a crossection comprised of four parts:

γ2 = γ3 =
1

2K2 − 1
(4.29)

γ1 = γ4 =
(2K + 1) γ2

3
(4.30)

For five parts:

γ2 = γ4 =
K2 + K

2 − 1
4

4K4 − 3K2 + 1
4

(4.31)

γ1 = γ5 = K · γ2 (4.32)

γ3 is not required.

For a four-layer beam with the neutral axis at the interface between layers 2 and 3, the effective
stiffness is:

(EI)eff =

4∑
i=1

(EiIi) +

4∑
i=1

γiEiAia
2
i (4.33)

In a four-layer beam whose neutral axis lies at the interface between layers 2 and 3, the
maximum shear stress is:

τmax =
Vmax[γ1E1A1a1 + γ2E2A2a2]

(EI)eff · b
(4.34)
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Thus, the load forces on the fasteners in the joint between the individual components can be
determined.

F1 =
Vmax · γ1 · E1 ·A1 · a1 · s1

(EI)eff
(4.35)

F2 =
Vmax · γ2 · E2 ·A2 · a2 · s2

(EI)eff
(4.36)

F3 =
Vmax · γ4 · E4 ·A4 · a4 · s4

(EI)eff
(4.37)

Divide by the number of rows of fasteners if multiple rows are utilised.

4.4. Shear analogy method
In contrast to the Gamma method, which assumes a sign load, the Shear Analogy method
proposed by Kreuzinger[30] and Möhler[34]. It can calculate any built-up beam under any
loading condition.

The concept is to partition the entire setup of the built-up beam into two components. This
approach has been extensively detailed by Scholz [50] under the supervision of Kreuzinger.

In summary, the bending stiffness (EI) of all the components is placed in component A, while
the shear stiffness (SB) of all the components is placed in component B. The shear stiffness
encompasses all shear deformations of the components and joint slip of the overall composite
beam.

Figure 4.8: Fictitious beam with coupled fictitious components A and B.

The bending stiffness of the A components is calculated as usual. However, the bending stiffness
of the B components is the sum of the Steiner parameters (SB).

BA =
n∑

i=1

(Ei · Ii) =
n∑

i=1

(
Ei ·

bi · d3i
12

)
(4.38)

Where zi is the distance of the centre of gravity of each part to the centre of gravity of the
overall built-up beam.

The bending stiffness of the B components is:

BB =

n∑
i=1

(
Ei ·Ai · z2si

)
=

n∑
i=1

(
Ei · bi · di · z2si

)
(4.39)
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We have to remember that there are no shear deformations and the relative displacement of
the lamellas due to the semi-rigid connection in part A; these are allocated to part B.

The shear stiffness is recorded with the shear modulus and thickness t of the parts, but the
shear stiffness due to the semi-rigidity of the joint is noted by the kser (Slip modulus) of the
fasteners in the joint between the lamellas.

Kreuzinger [30] noted the deformations of the lamellae but also noted that the top and bottom
lamellae only had half of their cross-sections applied in the calculation.

The shear stiffness is:
SB = G ·As + kser (4.40)

Where G is the shear modulus and As is the shear area of the lamellas.

The displacement is:

ui =
τ

Gi
· di =

t

Gi · bi
· di; ui,i+1 =

τ

ki,i+1
≈ t

ki,i+1 · bi
(4.41)

According to H. Kreuzinger’s original article B11[31], if only the semi-rigidity of the joint is
considered and the individual components themselves do not allow for shear deformations,
equation (D7-14) can be simplified as follows:

1

SB
=

1

a2
·
n−1∑
i=1

1

ki,i+1
(4.42)

To calculate the internal forces and moments in fictitious beams A and B, these are coupled
to each other via infinitely rigid web members, to ensure they undergo the same deformation
along their axis

Deformation due to bending and deformation due to shear are superimposed to obtain the
same deflection for the coupled system.

4.5. Failure Modes in Multi-layered Timber Beams
4.5.1. Johansen’s Yield Theory
Johansen’s yield theory [25] provides a rigorous framework to estimate the maximum lateral
load capacity of the dowelled connections considering potential failure modes such as the yield
of the dowels and the embedment of wood. According to this theory, the ultimate load bearing
capacity (Fv) is governed by one of several yield modes, which may include plastic deformations
in the dowel or local crushing in the wood.

In the case of multilayered timber beams, shear failure can manifest itself through various
mechanisms.

Dowel Yielding : Plastic deformation of the dowel.

Wood Crushing : Failure arising from embedding stresses that exceed the strength of the
wood.

Inter-layer Slip : Excess slip between layers leads to a reduction in composite action.
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Splitting : Fracture of the wood due to tension perpendicular to the grain.

Hilson [21] describes the use of mechanical models to determine characteristic load-bearing
capacities based on joint geometry and material properties. The design equations in EC 5
[17]stem from Johansen’s work [25], establishing that failure occurs when embedding strength
limits are reached or plastic hinges develop in the fastener.

Extensive research [33, 5, 20] validates Johansen’s yield theory in timber connections, showing
strong correlation between theory and performance when frictional effects and tensile forces
remain negligible [21].

As shown in Article E1 (equations (E1-1) to (E1-4)), determining joint capacity requires embed-
ment strength fh and yield moment My, along with geometric parameters like timber thickness
t1/2 and fastener diameter d.

The failure modes can happen at any joint as allocated by the the red dotes and can be
governed by any possible failure. Möhler did conclude that failure could be any mechanism
but to achieve ductile failure , failure mode f was desirable as shown in the diagram below;

Figure 4.9: Illustration of the classic Johansen failure modes (a–f) for wood-wood connections, showing how
dowels and wood elements can yield under different loading configurations

The equations that govern them become the failure modes described below whilst the min
value of Fv,Rk

Fv,Rk = min
(
Fv,Rk,(a), Fv,Rk,(b), Fv,Rk,(c), Fv,Rk,(d), Fv,Rk,(e), Fv,Rk,(f)

)
. (4.43)

Failure Mode (a): Embedment in the Side Member Only . This mode represents a
case where the failure is governed solely by the crushing (embedment) of one of the members
(the outer lamella) under the fastener. No plastic hinge forms in the fastener; the dowel simply
penetrates until the local wood strength is exceeded. The characteristic load-carrying capacity
is given by:

Fv,Rk,(a) = fh,1,k d t1 (4.44)

where fh,1,k is the characteristic embedment strength of the side member, t1 its thickness, d
the fastener diameter
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Failure Mode (b): Embedment in the Main Member Only . In this mode, the failure
occurs because the main member (inner lamella) reaches its embedment capacity while the side
member remains within its limit. The dowel penetrates preferentially into the main member.
The governing capacity is expressed as:

Fv,Rk,(b) = fh,2,k d t2, (4.45)

with fh,2,k and t2 being the characteristic embedment strength and thickness of the inner
member, respectively.

Failure Mode (c): Single Plastic Hinge Formation at the Side-Member End . This
mode is characterized by the side member reaching its embedment limit while the fastener
begins to yield by forming a plastic hinge on the side-member end. The failure is due to
a combination of local crushing in the side member and bending of the fastener. The load-
carrying capacity is given by:

Fv,Rk,(c) =
fh,1,k t d

1 + β

[√
β(−1 + 6β + β2)

]
(4.46)

where My,Rk is the characteristic yield moment of the fastener and β is

β =
fh,2,k t2
fh,1,k t1

(4.47)

Failure Mode (d): Single Plastic Hinge Formation at the Main-Member End .
Analogously to Mode (c), failure can also occur with a plastic hinge forming at the main-
member end. In this mode the main member controls the embedment while the fastener yields
by bending. The resulting capacity is:

Fv,Rk,(d) = 1, 05
fh,1,ktd

2 + β

[√
2β(1 + β) +

4β(2 + β)My,Rk

fh,1,kd t2
− β

]
(4.48)

Failure Mode (e): Double Plastic Hinge Formation Favouring the Side-Member
End . This failure mode involves the formation of two plastic hinges in the fastener with
both hinges oriented toward the side member. The combined action of full embedment of the
side member and significant plastic rotation in the fastener governs the capacity, which is given
by:

Fv,Rk,(e) = 1, 05
fh,1,ktd

1 + 2β

[√
2β2(1 + β) +

4β(1 + 2β)My,Rk

fh,1,kd t2
− β

]
. (4.49)

Failure Mode (f): Double Plastic Hinge Formation in favour of the Main-Member
End . Here, two plastic hinges form in the fastener, both on the main-member side. The
failure mechanism is driven by the embedment in the main member coupled with ductile
yielding of the fastener. The load capacity is expressed as:

Fv,Rk,(f) = 1, 15

√
2β

1 + β

√
2My,Rkfh,1,kd. (4.50)
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4.5.2. Embedment Strength and Stiffness
Embedment strength (fh,α) refers to the capacity of the wood surrounding a dowel to resist
deformation under load applied at an angle α to the grain [42]. It is critical for assessing the
load-bearing capacity of dowelled connections, dictating joint strength and stability.

Embedment strength is influenced by; Wood Density: Higher density increases embedment
strength. Dowel Diameter: Larger diameters distribute load over a greater area. Moisture
Content: Increased moisture can reduce embedment strength. Load Orientation: Embedment
strength varies with angle to the grain.

4.5.3. Relationship to Wood Density and Dowel Diameter
The embedment strength can be calculated using the formula [17]:

fh,0 = 0.082 (1− 0.01d) ρk (4.51)

Where:

• fh,0 is the embedment strength parallel to the grain (N/mm²).
• d is the dowel diameter (mm).
• ρk is the characteristic density of the wood (kg / m3).



5
RESEARCH METHOD

In this section, the research method for investigating the parameters that affect the strength
and stiffness of dowelled multilayered azobe beams will be discussed. This research endeavour
will evaluate the effective stiffness of the mechanical properties of these beams, with a focus
on their strength and stiffness. To achieve this, a combination of laboratory assessments and
analytical solutions is recommended following the European standard EN 1995 [17].

5.1. BENDING TESTS
To assess the parameters that affect the stiffness and the bending stiffness of the multi-layered
dowelled beams, a laboratory test will be done. The considered parameters are dowel hole size,
cross-section layer sizes.

The Nen-EN 408 ( [43]) is used as a guide because it describes the experiments used in structural
timber and those on glulam timber which closely resemble the setup of mechanically jointed
beams as a combination of timber with individual structural members and a set of constructed
joints but there was some deviation from it.

The primary objective of these tests was to characterize the structural behaviour of mechani-
cally jointed azobe beams with varying configurations. By systematically altering the number
and thickness of beam layers while maintaining constant overall dimensions, the study aimed
to quantify variations in effective stiffness and identify failure mechanisms.

A four-point bending test, as recommended by [43], is used to measure the modulus of elasticity
(MOE) and the effective stiffness of the built-up beams. The primary advantage of this test lies
in the distribution of maximum stress over a broader region between the two loading points,
leaving a pure bending region from which the local MOE can be used. This results in a larger
area under uniform stress, significantly reducing the probability of premature failure caused by
localised defects. Consequently, it offers a more accurate assessment of the flexural strength of
the material.

Additionally, three-point bending tests were conducted after the dowel assembly to compare
the stiffness results of the two testing approaches. Although the three-point bending test in-
creases shear activation in the dowels, potentially causing stress concentrations and premature
failure, the four-point test setup, despite its complexity, provided more comprehensive flexural
behaviour data.

36
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Figure 5.1: Experimental setup flow chart
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Figure 5.2: Experimental setup of 4 point bending for the individual lamellas, showing the positions of
LVDT 1 and 3 either side of the midpoint of the lamella and the deflection laser measurement points located

at the bottom.

5.2. EXPERIMENTAL PLAN
The experimental setup consisted of two steps. Initial testing and final testing

Initial Testing :

The initial testing was conducted in the Stevin Laboratory at TU Delft. Wijma Hupkes
provided six samples of 140mm in height and ten samples of 70mm in height. All samples
were approximately 4000mm long and 140 mm wide. All lamellas underwent planing to ensure
dimensional consistency and end waxing to prevent moisture exchange, with unique identifiers
assigned (Y1 to Y6 for 140 mm lamellas, X1 to X10 for 70 mm lamellas). Each sample was
subjected to a four-point bending test with a specific force to induce a certain deformation,
from which the MOE could be calculated.

After the calculations, four samples of 140mm height and eight samples of 70 mm height were
selected based on their mechanical properties. Two samples of each size remained unused for
control purposes.

Designing the Test Specimens :

The experimental plan included the following beam configurations:

Two-Layer Beams (Type A) consisting of two vertically stacked lamellas, each measuring
140 mm in height, creating a total beam height of 280 mm. Two beams are constructed in this
configuration.

Four-Layer Beams (Type B) are built from four vertically stacked lamellas, each with a
height of 70 mm, also achieving a total beam height of 280 mm. Two beams are similarly be
assembled for this configuration.

Lamella specimens supplied by Wijma Hupkes were standardized in dimensions to widths of
140 mm and lengths approximately 4 m. Specifically, six lamellas of 140 mm height and ten
lamellas of 70 mm height were prepared.
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(a) Beam A layout with two layers of 140 mm each (b) Beam B layout with four layers of 70 mm each

Figure 5.3: Comparison of Beam A and Beam B configurations

Determination of flexural MOE
Following the four-point bending procedure outlined in [43] and illustrated in the figure below,
the global and local modulus of elasticity is calculated using the provided equation. The four-
point bending test configuration involved equal spacing between loading and support points,
specifically a distance of 1200 mm between the loading points and the supports. The total
length of the tested beams was 3600 mm.

The standard outlined in NEN 408 specifies using a beam length equal to 18 times the beam
height (18h) for testing. However, applying this criterion without adjustment would result
in lamellas that are thin for our purposes. Additionally the available lamellas provided for
the study were limited to about 4000 mm long. Under these constraints, utilising the 18h
length would result in lamellas of a height of about 50mm, which was insufficient to capture
the structural behaviour need to observe.

For deflection measurements, lasers positioned beneath the beam were adequately precise.
Additionally, Linear Variable Differential Transformers (LVDTs) were installed on both sides
of the beam within an apparatus designed with a gauge length equal to five times the beam’s
cross-sectional height, enabling the determination of the local modulus of elasticity.

Figure 5.4: Four-point bending test setup as specified in EN 408 [43].

Eglobal =
∆P
∆w a

(
3L2 − 4a2

)
48 I

(5.1)

where ;
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• ∆P
∆w : The slope of the load-deflection curve, calculated as the incremental change in
applied load (∆P ) divided by the corresponding incremental change in deflection (∆w).

• a: The distance between the two loading points in the four-point bending test, which
defines the constant moment region.

• L: The total span length of the beam, which is the distance between the two outer
supports.

• I: The moment of inertia of the beam’s cross-section. For a rectangular cross-section:

I =
b · h3

12

where b is the width and h is the height of the beam.

As for the measurements with the lvdts and Dic the following figure shows distances of the
measurement tools used

Figure 5.5: Schematic illustration of the dowelled beam assembly showing the positioning of the LVDT
sensors (LVDT1, LVDT2) and the Digital Image Correlation (DIC) measurement region, along with key

dimensions and reference points.LVDT3 not used in the 4 point bending

Figure 5.6: Schematic illustration of the dowelled beam assembly in 3point bending showing the positioning
of the LVDT sensors (LVDT1, LVDT2, LVDT3) and the Digital Image Correlation (DIC) measurement region,

along with key dimensions and reference points.

To find the Strength class of the individual azobe members, it would be important to classify
the members, and this is done by determining the characteristic density values and mean
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local MOE. There are correlations done by Geert [45] that correlate these values to the non-
destructive methods of the dynamic MOE(MOEdyn).

The MOEdyn is found by supporting a timber piece 0.224 of the Length at either end and then
using a hammer to impact one end while an accelerometer is placed at the other. The induced
vibrational frequencies are recorded as a first and second frequencies. the second frequency
should be twice the first and using the formula below:

Edyn = 4ρL2f2 (5.2)

Where:

ρ = density (kg/m3)
L = specimen length (m)
f = fundamental longitudinal frequency (Hz)

The initial tests included measuring the dynamic modulus of elasticity (MOE) using a timber
grading device (e.g., ultrasonic tester), which also provided preliminary density information.
Subsequently, wet density measurements were taken by individually weighing the lamellas and
determining their volumes. Post-testing, dry density and moisture content were evaluated
from small cross-sectional samples extracted and oven-dried, providing data for comparative
analysis with dynamic MOE values.

Using the values of characteristic density and local MOE to find out the MOE of the individual
pieces and thus their correspondence in the strength class tables in the Eurocode 5 [1]. This
can be used to non destructively grade the timer lamellas and estimate their strength.

The dimensions of the timber test pieces were determined based on the limitations of laboratory
equipment and the requirement to achieve structural failure during testing. Beams with a cross-
sectional dimension of 140 mm by 70 mm and a span length of 3.6 m between supports were
used.

The moisture content of the timber was determined according to EN 13183 [38]. Samples were
taken by cutting a full cross-sectional segment free from knots and resin pockets approximately
30 cm from either end or from the center of the structural beams after completion of the bending
tests.

Density measurements were performed by individually weighing each lamella using electronic
scales and measuring their dimensions at three distinct points to accurately determine volume.
Density was calculated as the ratio of mass to volume. Although full conditioning was not
conducted, the lamellas were left stationary in the same environment for over three weeks
prior to weighing, ensuring a stable moisture equilibrium was reached before measurements.

Determining Optimal Dowel Placement for Enhanced Structural Capacity
The determination of minimum starting distances, along with specific edge and end distances
and spacings for dowels, is in practice for maximising structural capacity. Ensuring these
minimum distances are observed is fundamental to mitigating brittle failure modes, such as
splitting, thereby facilitating more ductile behaviour in the materials used.

The critical parameters influencing these distances include the width and length of the mem-
ber, fastener penetration depth, the susceptibility to splitting parallel to the grain, and the
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overall member thickness. As outlined in the existing standards [1], these parameters are typ-
ically established through rigorous experimental investigations. The results of these studies
are often consolidated into tables that provide clear guidelines based on empirical data and
comprehensive experimental analysis.

These guidelines are essential for designing connections that are both safe and efficient, ensuring
that the structural elements behave as intended under load conditions without premature
failure

Table 5.1: Minimum spacings and edge and end distances for dowels[1]

Spacing and edge/end
distances (see Figure 8.7)

Angle Minimum spacing or
edge/end distance

a1 (parallel to grain) 0◦ ≤ α ≤ 360◦ (3 + 2 cosα)d

a2 (perpendicular to grain) 0◦ ≤ α ≤ 360◦ 3d

a3 (loaded end) −90◦ ≤ α ≤ 90◦ max(7d; 80 mm)

a3 (unloaded end)
90◦ < α ≤ 150◦ max(a3 · sinα; 3d)
150◦ < α ≤ 210◦ 3d
210◦ < α ≤ 270◦ max(a3 · sinα; 3d)

a4 (loaded edge) 0◦ ≤ α ≤ 180◦ max{(2 + 2 sinα)d, 3d}

a4 (unloaded edge) 180◦ < α ≤ 360◦ 3d

The minimum loaded end distance is determined by the greater of either 7d or 80 mm. Given
dowel diameters of 20 mm, the calculation yields a maximum of 140 mm adopted as the
minimum edge distance. Consequently, an edge distance of 200 mm is ultimately selected to
copy the company Hupkes Wijma’s manufacturing style for this size of beams

The A configuration utilises dowels measuring 20 mm in diameter and of s355 steel grade and
is dimensioned at 140 by 140 mm while the B configuration is dimensioned at 140 by 70mm.

Should the analysis indicate the feasibility of using drill sizes of 12 mm or 16 mm, these options
should be revisited and evaluated for potential inclusion in the experimental setup.
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Table 5.2: Experimental Design Parameters

Parameter Value
Minimum Loaded End
Distance

140 mm (greater of 7d or 80 mm)

Edge Distance 200 mm
Original Dimensions of wood
cross sections

140 mm × 140 mm

Scaled Down Dimensions of
wood cross sections

140 mm × 70 mm

Original Dowel Diameter 20 mm
Scaled Down Dowel Diameter 10 mm – 12 mm
Alternative Drill Sizes (for
evaluation)

12 mm, 16 mm

Bolts
On top of transmitting tension, bolts have an increased factor of adding tension to hold the
lamellas in place. It is in practice to replace certain dowels with bolts to ensure reduction of
the gap between the wood members. As recommended by Sandhaas[47], at least two dowels
should be replaced with bolts at either end. In this particular design, no bolts are utilised to
minimise any external influences other than those exerted by the dowels.

The table below presents the minimum distance required in cases where bolts are added.

Table 5.3: Minimum bolt distances and spacings, d = bolt diameter in mm, 0◦ ≤ α ≤ 90◦ = angle between
force and grain directions. See also EN 1995-1-1:2010 Table 8.4.

Distances and spacings Angle Minimum values
Spacing a1 (parallel to the grain) - (4 + cosα) · d

Spacing a2 (perpendicular to the grain) - 4 · d

Distance a3,t (loaded end) - max(7 · d; 80 mm)

Distance a3,c (unloaded end) α < 30◦ 4 · d
30◦ ≤ α ≤ 90◦ (1 + 6 · sinα) · d

Distance a4,t (loaded edge) - max{(2 + 2 · sinα) · d, 3 · d}

Distance a4,c (unloaded edge) - 3 · d

Using the specifications given, the bolt distance at the loaded end, a3,t, is calculated to be
140 mm. However, the minimum spacing with α = 90◦ is 5d, which equates to 100 mm for
the dowels. A distance of 200 mm will be maintained as it is with the dowels. The minimum
distance from the both edges, 3d, is 60 mm, and a distance of 100 mm has been chosen, which
is sufficient to meet the requirements.
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5.2.1. Testing Arrangement For Bending Strength In Parallel To Grain
The test piece shall be simply supported at the required span of 6m. and it shall be symmet-
rically loaded in bending at two points over a span 18x of its depth The maximum distance
between the loading points will not be more than 6H±75cm for the 5 layered beam and
6H±60cm for the 4 layered beam according to the [43] Lateral restraint shall be placed as
necessary to prevent lateral (torsional) buckling.

The bending strength is determined by:

fm =
3Fa

bh2

F - load, in newtons

a - distance between a loading position and the nearest support, mm;

b - width of cross section in a bending test, or the smaller dimension of the cross section, mm

h - depth of cross section in bending test; mm

Preliminary Test Results for All Lamellae under 4-PBT
In the preliminary testing, individual lamellae were subjected to four-point bending tests (4-
PBT). Based on an allowable bending stress of 28 N/mm2, the corresponding force and de-
formations were calculated. The objective was to maintain the same stress in each lamella
by allowing them to slide over each other without shear interaction; in such a scenario, the
force can be scaled accordingly (doubled, quadrupled, etc.), while the theoretical deformation
remains constant.

Lamellas with Drilled Holes: Preliminary 4-PBT The additional lamellae from the
batch were first drilled at 400mm intervals (resulting in 9 holes) and later at 200mm intervals
(resulting in 17 holes). After the initial test, the samples were re-tested following the drilling
of 17 holes to determine if any reduction in bending stiffness occurred. The same testing
procedures were used in both cases, and identical deflections were achieved.

The following tables present the initial test data for the lamellae and beams, including dimen-
sions, forces, deflections, and loading speeds of the experiments.

Table 5.4: Preliminary test results for all lamellae under 4-PBT (within three minutes).

Sample
ID

Type Quantity Height
(mm)

Force
(N)

Loading
Speed

(mm/s)

Expected
Deflection

(mm)

LVDT Placement
Length (mm)

Y1, Y2, … Lamella 6 140 19,208 0.18 32.45 700
X1, X2, … Lamella 10 70 4,802 0.36 64.90 350

For each lamella, the Y type was to reach 19 kN, while the X type which has half the cross-
sectional height of the Y lamella was required to reach 5 kN in order to remain in the elastic
range.

Unjointed/ Stacked Beam Assembly 4-PBT for MOE
For the stacked (or unjointed) beams, where the cross-sectional width remains uniform at 280
mm, the Y beams were arranged in two lamellae (stacked on top of one another) and the X
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beams in four lamellae. The force for the Y configuration was doubled to 38kN, while the force
for the X configuration was quadrupled to 19kN. This adjustment ensures that the deflection
and, therefore, the stress in each individual lamella remain consistent, with the underlying
assumption that no composite action occurs via friction to redistribute the forces. the table
below summarizes the test.

Table 5.5: Unjointed beam assembly (4-PBT) for MOE testing.

Beam ID Type Layers Heights (mm) Force (N) Speed (mm/s) Deflection (mm)

A1 Type A 2 140 38,416 0.18 32.45
A2 Type A 2 140 38,416 0.18 32.45
B1 Type B 4 70 19,208 0.36 64.90
B2 Type B 4 70 19,208 0.36 64.90

The testing procedure is discussed and expanded upon in the subsequent section.



6
RESULTS AND ANALYSIS

This section offers an overview of the testing outcomes. It examines the results in a way,
discussing the testing procedures and the insights gained throughout the process. the results
are split into two sections, results from the individual lamellas and results from the stacked
beams without assembly and then results from the mechanically jointed beam tests. A final
comparison with theory calculations then is discussed.

6.1. Moisture content, Density and mechanical properties
Moisture content in the pieces was determined after 3 weeks of the beams placed in the labo-
ratory environment. control time in the . The testing wasn’t done to the dot of the EN 13183
[38]. A piece was cut a distance 20 mm from the either waxed end of the lamella after cutting
10mm of the waxed end. all lamellas were tested the same way.

The cut piece was immediately measured and then placed in the oven. Once the weight was
stable, that is, the moisture content had a difference of 0.1% between two consecutive weighings
with a > 2 hour interval, then the moisture content was determined as shown in Equation 6.1
below:

MC(%) =
Wet Weight − dry Weight

dry Weight × 100 (6.1)

The average moisture content was then plotted. It can be noted that the average moisture
content of Y1, Y2, Y4 and Y6 was higher than that of the X beams by more than 9% to a
maximum of 18.6% water content. This is to show that the larger beams store more water on
average than their counterparts.

46
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Figure 6.1: moisture content of the pieces

6.1.1. Density Adjustment for Reference Moisture Content (12%)
Material properties are typically referenced at 12% moisture content (MC) to ensure standard-
ized design calculations. This necessitates the adjustment of density measurements taken at
different moisture contents to this reference value. The adjustment process must account for
both dimensional changes due to wood-water interactions and mass variations due to moisture
content differences. This enables us to grade the timber sufficiently.

The density at any moisture content is defined as:

ρmc =
Vm.c

Gm.c
(6.2)

where Gm.c is mass and Vm.c is volume at that moisture content.

Changes in moisture content affect both the mass and volume of timber. According to [45]
The volume change (∆V ) is described by:

∆V = βv ∗ (mcmeasured −mctarget) (6.3)

where βv is the volumetric shrinkage coefficient, combining radial (βr), tangential (βt), and
longitudinal (βl) shrinkage:

βv = βr + βt+ βl − 100βlβh (6.4)

The density adjustment equations differ based on the Fiber Saturation Point (FSP):

For MC ≤ 25% (Below FSP):
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ρtarget,mc = ρmc,measured
(1 + 0.01 ∗ βv ∗ (mcmeasured −mctarget))

(1 + 0.01 ∗ (mcmeasured −mctarget))
(6.5)

For MC > 25% (Above FSP):

ρtarget,mc = ρmc,measured
(1 + 0.01 ∗ βv ∗ (mcFSP −mctarget))

(1 + 0.01 ∗ (mcmeasured −mctarget))
(6.6)

For practical applications between 12% and 25% MC, an average value for βv ≈ 0.5% per
percent moisture content change can be used as a general approximation. This standardisa-
tion enables consistent comparison of material properties in different specimens of timber and
environmental conditions. And a FSP of 25% is used.

Table 6.1: Adjusted Density values to MC 12%

Lamella Id Density MC% Density at 12%MC
X1 1,115 15.9 1073.4
X2 1,074 16.1 1031.9
X3 1,163 17.1 1106.8
X4 1,153 18.0 1088.1
X5 1,160 16.4 1111.4
X6 1,139 16.9 1086.1
X7 1,109 16.5 1061.5
X8 1,090 16.2 1046.3
X9 1,097 17.4 1041.1
X10 1,081 16.4 1035.7
Y1 1,194 24.8 1059.2
Y2 1,185 26.2 1038.3
Y3 1,182 26.0 1038.0
Y4 1,188 26.7 1036.4
Y5 1,217 26.0 1068.7
Y6 1,209 26.1 1060.3

X Series
Average Original Density: 1118.1 kg/m3

Average MC: 16.7%
Average Adjusted Density: 1068.2 kg/m3

Range of Adjusted Density: 1031.9 – 1111.4 kg/m3

Y Series
Average Original Density: 1195.8 kg/m3

Average MC: 26.0%
Average Adjusted Density: 1050.1 kg/m3

Range of Adjusted Density: 1036.4 – 1068.7 kg/m3
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6.2. Moisture Content Adjustment of Elastic Properties
6.2.1. Adjustment Methodology
To standardise comparisons between samples, all modulus of elasticity (MOE) values were
adjusted to a reference moisture content of 12% using the adjustment equation found in a
dissertation of Geert Ravenshorst in 2015.[45]

MOE12% = MOEmc/

(
1− kmc

min(m.c.; 25.0)− 12

13

)
(6.7)

Where:

• MOE12% is the adjusted modulus of elasticity at 12% moisture content
• MOEmc is the measured modulus of elasticity at the test moisture content m.c.

• kmc is the adjustment factor, with a value of 0.13 for samples
• m.c. is the moisture content at testing (%)
• min(m.c.; 25.0) caps the maximum moisture content at 25.0%

This adjustment is necessary as moisture content significantly affects the elastic properties
of wood materials. The kmc value of 0.13 is therefore used as a conservative approach for
adjusting dynamic, local, and MOEGlobal values.

6.2.2. Results of MOE Adjustment
Table 6.2 shows the original and adjusted MOE values for all specimens. The adjustment
reveals the differences in elastic properties when standardized to 12% moisture content.

Table 6.2: Original and Moisture-Adjusted MOE Values (12% Reference)

Lamella MC DYN MOE DYN Adj. DYN Global Adj. Global Local Adj. Local
ID (%) Ratio MOE MOE MOE MOE MOE MOE

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
X1 15.9 1.13 17 400 19 700 14 400 16 300 16 100 18 200
X2 16.1 1.14 18 500 21 100 15 500 17 600 15 900 18 100
X3 17.1 1.17 22 000 25 800 19 200 22 500 20 200 23 700
X4 18.0 1.20 20 700 24 900 18 100 21 800 19 100 23 000
X5 16.4 1.15 19 300 22 100 16 000 18 400 17 500 20 100
X6 16.9 1.16 18 200 21 200 15 400 17 900 16 600 19 300
X7 16.5 1.15 18 100 20 800 15 300 17 600 15 800 18 200
X8 16.2 1.14 21 000 24 000 15 700 17 900 16 800 19 200
X9 17.4 1.18 19 000 22 400 15 700 18 500 14 700 17 400
X10 16.4 1.15 17 300 19 800 15 000 17 200 15 100 17 300

Y1 24.8 1.40 17 500 24 600 15 200 21 400 17 400 24 400
Y2 26.2 1.42 18 500 26 200 16 100 22 800 16 800 23 800
Y3 26.0 1.42 18 500 26 200 15 500 22 000 14 600 20 700
Y4 26.7 1.42 17 900 25 400 16 000 22 700 17 600 24 900
Y5 26.0 1.42 18 300 25 900 15 700 22 300 15 700 22 300
Y6 26.1 1.42 17 400 24 700 15 200 21 500 15 600 22 100

The true MOE values are much higher after adjustment to the 12 % moisture content, as shown
in the table above. The X samples, with moisture contents ranging from 15.9% to 18.0%, show
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moderate increases in MOE values when standardized to 12% MC, with DYN MOE Ratios
ranging from 1.13 to 1.20.

For the Y samples, which have significantly higher moisture contents (24.8% to 26.7%), the
DYN MOE Ratios are more substantial, ranging from 1.40 to 1.42. Due to the capping of mois-
ture content at 25.0% in the adjustment equation, samples with moisture contents exceeding
25% have similar DYN MOE Ratios.

The relationship between the different MOE measurement methods remains consistent after
adjustment, with the MOEDyn generally yielding higher values than the static measurements.
The adjustments maintain the relative differences between measurement techniques while stan-
dardizing the basis for comparison.

With this adjustment as the last piece of the puzzle, the Lamellas can be graded based on
MOE and density values.

6.3. The Dynamic, Global and Local MOE of the Individual Azobe
Lamellas

MOEDyn, MOEGlobal and MOELocal

The analysis begins with an in-depth look at the initial phase, which involved four-point testing
of individual lamellas. The global and MOELocal was to be analysed so as to clearly grade
the individual lamellas. For the four-point bending tests conducted in the lab, each lamella
was carefully positioned into the setup at the Stevin lab. The members were balanced and
supported 3600 mm apart and marked at midspan a the center distance of 350 mm for the x
lamellas and 700mm for the y lamellas, which marked the required distance for the MOELocal.
the EN 408 testing procedure was not followed to the dot.([43]).

An LVDT was then positioned at the center of the beams. A piece of wood was glued at the
bottom of each beam on either side. Two lasers positioned below measured the deformation
midspan of the beams, while the LVDT inside the jack also measured its deformation from the
force exerted.

A slight force was applied to the beam by the jack, and then was adjusted to keep it in a
plane while ensuring that twisting convergence could be guaranteed. The lasers below helped
measure the deformation on both sides of the center of the beam at a distance of approximately
5 cm. The load was applied to the beam using the jack, resulting in a displacement of 64.9 mm
or a force of 4.8 kN. This was done in increments of 0.36 mm/s for approximately 3 minutes.

The Excel files attached in the Appendix contain data columns representing the applied force
(F01(KN)), mid-span deformations measured by lasers LS01(mm) and LS02(mm), the defor-
mation of the jack (S(mm)), and local deformations recorded by LVDTs LVDT1 and LVDT3
on either side of the lamella.
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Figure 6.2: Four point bending test setup. Azobe lamella 70mm under testing

Using Python, the analysis compares deflection and force data by isolating the linear region
for each deflection column (LS01, LS02, LVDT1, and LVDT3) between 10% and 90% of the
maximum force, Fmax. Data below 0.1% of Fmax and beyond the maximum force (e.g., 4.8 kN
or higher) are excluded to remove irregularities and omit the offloading phase, allowing linear
regression to accurately determine the slope and intercept for force estimation.

The Local and Global Modulus of Elasticity are calculated using specific formulas derived from
the slope and intercept values. The value of shear according to the EN408 ([43])in the equation
of the MOEGlobal is taken as inifinity to isolate the aspect of the bending only.

MOELocal equation

Em,l =
al2(F2 − F1)

16I(w2 − w1)
(6.8)

MOEglobal equation with shear effects

Em,g =
3al2 − 4a3

2bh3
(
2w2−w1
F2−F1

− 6a
5Gbh

) (6.9)

Simplified MOEglobal equation (with shear as infinity)

Em,g =
(3al2 − 4a3)(F2 − F1)

4bh3(w2 − w1)
(6.10)
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where:

a = distance between loading point and nearest support

l = span length

F2 − F1 = load increment on the linear portion

w2 − w1 = corresponding displacement increment

b = beam width

I = second moment of area

G = shear modulus

These are the results of the data collected with the MOEdyn,MOElocal,MOEglobal and per-
centage differences between the different values.

Table 6.3: Comparison of Different MOE Values and Physical Properties

Lamella Mean Cross- Wet MOE MOE MOE % diff % diff % diff
ID sectional Density Dyn Global Local (L&G) (L&D) (G&D)

height (kgm−3) (MPa) (MPa) (MPa)
Y1 139.0 1190 17 500 15 200 17 400 12.6 0.6 13.1
Y2 138.7 1190 18 500 16 100 16 800 4.2 9.2 13.0
Y3 138.9 1180 18 500 15 500 14 600 −6.2 21.1 16.2
Y4 139.2 1190 17 900 16 000 17 600 9.1 1.7 10.6
Y5 139.1 1220 18 300 15 700 15 700 0.0 14.2 14.2
Y6 139.0 1210 17 400 15 200 15 600 2.6 10.3 12.6

X1 69.2 1120 17 400 14 400 16 100 10.6 7.5 17.2
X2 69.3 1070 18 500 15 500 15 900 2.5 14.1 16.2
X3 69.5 1160 22 000 19 200 20 200 5.0 8.2 12.7
X4 69.4 1150 20 700 18 100 19 100 5.2 7.7 12.6
X5 69.6 1160 19 300 16 000 17 500 8.6 9.3 17.1
X6 69.5 1140 18 200 15 400 16 600 7.2 8.8 15.4
X7 69.3 1110 18 100 15 300 15 800 3.2 12.7 15.5
X8 69.3 1100 21 000 15 700 16 800 6.5 20.0 25.2
X9 69.1 1100 19 000 15 700 14 700 −6.8 22.6 17.4
X10 69.7 1080 17 300 15 000 15 100 0.7 12.7 13.3

For the MOEDyn, the measured range was from 17 300 N/mm2 to 22 000 N/mm2, with a mean
of approximately 19 100 N/mm2. In these tests, lamella X3 exhibited the highest DYN MOE,
indicating greater stiffness, while lamella X10 had the lowest.

In the case of the MOEGlobal, the values ranged from 14 300 N/mm2 to 19 200 N/mm2, with a
mean of roughly 16 200 N/mm2. Here, lamellae X3 and X4 showed significantly higher values,
whereas lamella X1 recorded the lowest.

For the MOELocal, the measurements ranged from 14 700 N/mm2 to 20 200 N/mm2, with a
mean of approximately 16 400 N/mm2. Once again, lamella X3 demonstrated the highest
value, confirming its superior localized and overall stiffness.

Additional observations include:

• Lamella X3 and X4 consistently showed high values across all MOE categories, suggesting
these samples are the most robust and uniform.
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• Lamella X9 had a MOELocal that was 6.8% lower than its MOEGlobal, which could be
caused by imperfections within the lamella.

• One of the MOELocal readings for lamella X5 was 3000 MPa lower in two separate exper-
iments. This inconsistency, possibly due to twist or inhomogeneity in the wood, makes
X5 a candidate for the drilling experiment rather than for the preparation of beams.

Table 6.4: Statistical Summary of MOE and Density Measurements

Parameter Mean ± SD CV (%) Min Max
Y Series (h = 139 mm, n = 6)
MOEDyn 18016.7±485.6 2.7 17400.0 18500.0
MOEGlobal 15616.7±367.1 2.4 15200.0 16100.0
MOELocal 16283.3±1186.3 7.3 14600.0 17600.0
Density 1195.8±14.2 1.2 1182.0 1217.0
Height 139.0±0.2 0.1 138.7 139.2
X Series (h = 69 mm, n = 10)
MOEDyn 19150.0±1524.4 8.0 17300.0 22000.0
MOEGlobal 16030.0±1477.0 9.2 14400.0 19200.0
MOELocal 16780.0±1678.3 10.0 14700.0 20200.0
Density 1118.1±31.4 2.8 1074.0 1163.0
Height 69.4±0.2 0.3 69.1 69.7

MOE values in MPa
Density in kg/m3

Height in mm
SD = Standard Deviation
CV = Coefficient of Variation
n = number of specimens

The density values ranged differently for all the beams with a mean and max of 1070 and
1160. While the y series had a much higher min and max of 1180kg/m3 and 1220kg/m3.
The standard deviation between the results for the y series was 14 and 33 for the x series
around a mean of about 1200 and 1100 kg/m3 . A percentage difference of 8% between the 2
sets of beams. The smaller deviations in the density values of the Y series shows consistency
between the values compared to the x series. The density results showed differences between
the X(70mm) and Y(140mm )series beams. The X series had a wider density range (1074-1163
kg/m³) and higher standard deviation (33 kg/m³) compared to the Y series (range: 1182-1217
kg/m³, SD: 14 kg/m³). The Y series beams were, on average, 8% denser than the X series,
with mean densities of 1200 kg/m³ and 1120 kg/m³, respectively. To quantify the relationship
between density and cross sectional height, a linear regression analysis was performed as shown
in the graph attached . The results indicated a significant positive correlation between density
and height (R² = 0.82). This suggests that higher cross sectional azobe beams tend to have
higher densities, which aligns with the observed higher mean density of the Y series compared
to the X series.
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Figure 6.3: Graph showing the relationship between height and density: X beams ( 70 mm) on the left and
Y beams ( 140 mm) on the right

Several factors could contribute to this density–height relationship. Higher beams may be
sourced from older or slower-growing trees, which have had more time to develop denser wood.
The greater cross-sectional area of taller beams may also allow for more consistent density
distribution, as localized variations have less influence on the overall density.

Another explanation for this (the higher density of the Y series beams compared to the X series)
could be partially attributed to differences in water retention. As the density measurements
in this study were based on wet density rather than dry density, the moisture content of the
beams may have played a role in the observed density variations. Considering that all beams
in this study were approximately 4 m long and ∼140 mm wide, the X series beams (70 mm
height) had a surface area to volume ratio of 0.086 m2/m3, while the Y series beams (140 mm
height) had a ratio of 0.064 m2/m3. This means that the Y series beams had approximately
26% less surface area per unit volume compared to the X series beams, leading to the slower
moisture loss and higher wet densities observed in the Y series.

The heartwood of azobe contains a high concentration of extractives, such as flavonoids and
tannins, which contribute to its resistance to decay and moisture uptake, whereas the sapwood
of azobe, which is more permeable, may allow for greater water retention, particularly in larger
beams.

The observed relationship between density and height is based on a limited sample size and
only two specific beam heights. Further research with a wider range of beam sizes would
be necessary to establish a more robust understanding of this relationship and its potential
implications for the mechanical properties of azobe timber.

6.4. Modulus of Elasticity
All three MOE measures (global, dynamic, and local) were assessed. The MOEGlobal ranged
from 14,400 to 19,200 MPa for the X series, with a mean of 16,000 MPa and a standard
deviation of 1,500 MPa. The Y series had a narrower MOEGlobal range (15,200–16,100 MPa),
a lower mean (15,600 MPa), and a considerably smaller standard deviation (400 MPa).

MOEDyn values were consistently higher than MOEGlobal for both series. The X series had
a mean MOEDyn of 19,100 MPa (SD: 1,600 MPa), while the Y series averaged 18,000 MPa
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(SD: 500 MPa). MOELocal values fell between the global and dynamic measures, with means
of 16,800 MPa (X series) and 16,300 MPa (Y series). Figure 6.4 presents boxplots comparing
the MOE distributions between the two beam series.

Analysis of variance (ANOVA) tests were conducted to compare each MOE measure between
the X and Y series. The results indicated no significant difference in mean MOEGlobal (F =
0.41, p = 0.53) or MOELocal (F = 0.33, p = 0.58). However, the Y series exhibited a
significantly lower mean MOEDyn compared to the X series (F = 5.42, p < 0.05).

Figure 6.4: Boxplots comparing the MOE distributions between the X and Y series beams.

6.4.1. Relationships between Properties
Correlation analysis explored the relationships between density and the MOE parameters.
Density showed significant positive correlations with all three MOE measures, suggesting that
denser azobe beams generally exhibit higher stiffness. The strongest correlation was observed
between density and MOEGlobal (Pearson’s r = 0.74, p < 0.01), followed by MOEDyn (r = 0.68,
p < 0.01) and MOELocal (r = 0.52, p < 0.05). Figure 6.5 presents scatter plots with trend
lines illustrating these relationships.

Interestingly, the Y series beams demonstrated more consistent MOE values despite their higher
average density. This suggests that factors beyond density, such as wood microstructure or
processing methods, may influence the stiffness properties of azobe timber.

Figure 6.5: Scatterplots with trendlines illustrating the relationships between density and the MOE
parameters.

MOE vs. Height, Density, and Inter-relationships
The elastic properties of timber beams can be characterised through three primary methods
to determine the modulus of elasticity (MOE): global, local, and dynamic approaches. Each
method provides mechanical behaviour of the material while presenting specific advantages
and limitations in their application.

The (MOEGlobal) combined the effects of bending and shear deformation within the beam
structure. This parameter is determined through standardised four-point bending tests, where
the total deflection is measured at the mid-span of the beam. The resulting (MOEGlobal) value
incorporates both pure bending deformation and shear effects, consequently yielding lower
values compared to alternative measurement methods. The calculation follows the principles
established in standards such as EN 408 [43], which provide standardised testing protocols and
calculation procedures.

In contrast, the (MOELocal) specifically quantifies the pure bending characteristics of the tim-
ber beam, deliberately excluding shear deformation effects. This measurement is obtained by
recording deflection within the constant moment zone between loading points during four-point
bending tests. Measurement of deformation over a gauge length within the force application
where shear forces are theoretically zero provides us with a more direct representation of the
elastic properties of the material. This method produces higher numerical values compared to
global measurements, as it eliminates the influence of shear deformation.

The MOEDyn represents a nondestructive alternative to static testing methods. This approach
derives elastic properties from the beam’s vibrational characteristics, utilising either longitu-
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dinal or transverse wave propagation principles. The calculation of MOEDyn is previously
explained in chapter 5 . Dynamic testing offers several practical advantages, including rapid
data acquisition and the possibility of repeated measurements on the same specimen. Although
dynamic measurements generally demonstrate strong correlation with static values, the rela-
tionship may require calibration factors to account for systematic differences between dynamic
and static behaviour and these relationships can be found in the literature [45].

Figure 6.6: Shows measuring the dynamic Modulus of Elasticity (MOE) in timber using a handheld Timber
Grader MFD, with the resulting acoustic data analysed in real time. From left to right:

1. Using a handheld Timber Grader MFD on a row of AZobe lamellas to measure MOEDyn.
2. Viewing the real-time acoustic analysis and data on the laptop.

3. A closer look at the grader’s readout.
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(a) Density vs. Dyn MOE

(b) Density vs. MOEGlobal

(c) Density vs. MOELocal

Figure 6.7: Comparison of local, global, and MOEDyn values versus each lamella’s mean cross‐sectional
height, shown separately for Y‐lamellas (140mm) and X‐lamellas (70mm).
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The relationship between MOE and beam height is not well established and there is barely
a correlation between the different heights of the beams cross sections. In this study, the Y
series beams, with a height of 140 mm, generally exhibited lower mean values for all three
MOE measures compared to the X series beams, which had a height of 70 mm.

We can note that the differences in MOE between the two beam series were not statistically
significant for MOEGlobal (F = 0.41, p = 0.53) and MOELocal (F = 0.33, p = 0.58). The
lack of a consistent and significant relationship between beam height and MOE in this study
suggests that other factors, such as density and microstructural properties, may have a more
dominant influence on the stiffness of azobe timber.
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(a) Density vs. Dyn MOE

(b) Density vs. MOEGlobal

(c) Density vs. MOELocal

Figure 6.8: Scatter plots of two lamella data sets (X‐series in red, Y‐series in blue), each with a best‐fit
linear trend line and corresponding R2 value. Points represent individual lamella IDs (X1–X10 for the X‐series,

Y1–Y6 for the Y‐series). Comparison of the wet density and different MOE VALUES.
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6.5. Analysis of Density-Stiffness Correlations
The investigation of density-stiffness relationships in azobe lamellae revealed distinct behav-
ioral patterns between X and Y series specimens. Statistical analysis demonstrated varying
correlations across different Modulus of Elasticity (MOE) measurement methodologies.

6.5.1. X Series Correlations
The X series exhibited positive correlations across all measurement methods, with correlation
strengths varying significantly:

• MOELocal demonstrated the strongest correlation (R2 = 0.6342) with density, following
the relationship:

y = 41.2416x− 29323.1223 (6.11)

• MOEGlobal showed a moderate correlation (R2 = 0.4201), expressed as:

y = 28.7003x− 16065.9551 (6.12)

• MOEDyn exhibited the weakest correlation (R2 = 0.2311):

y = 23.0333x− 6627.9556 (6.13)

6.5.2. Y Series Correlations
In contrast, the Y series exhibited consistently weak negative correlations across all measure-
ments (R2 ≤ 0.1235), with equations suggesting an inverse density-stiffness relationship:

• MOEDyn: R2 = 0.1235
y = −12.2466x+ 32661.5681 (6.14)

• MOEGlobal: R2 = 0.1234
y = −9.6331x+ 27136.2540 (6.15)

• MOELocal: R2 = 0.0374
y = −16.0998x+ 35536.0697 (6.16)

These negative correlations, while statistically weak (R2 ≤ 0.1235), represent an anomalous
behaviour that deviates from conventional density-stiffness relationships in wood materials.
The extremely low values R2 suggest that density may not be a reliable predictor of mechanical
properties in Y-series samples. This observation is particularly significant considering the
comparison of wet densities.

6.5.3. Discussion of Findings
Observations reveal the distinct difference in correlation patterns between the X and Y se-
ries. While the X series follows expected mechanical behaviour with positive density-stiffness
correlations, the Y series exhibits weak negative correlations that contradict traditional wood
mechanics principles. This divergence suggests the potential influence of other factors beyond
density on the mechanical properties of the Y series specimens, such as moisture content.
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6.5.4. Implications
The weak correlations between density and all MOE measures (R2 ≤ 0.056) suggest that wet
density alone may not be a reliable predictor of stiffness properties in azobe timber. This
finding contrasts with traditional assumptions about wood behaviour, where stronger density-
stiffness correlations are typically expected.
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(a) Density vs. Dyn MOE

(b) Density vs. MOEGlobal

(c) Density vs. MOELocal

Figure 6.9: Combined relation of the wet density and the MOE values. The top plot shows both a best‐fit
(red) and a forced (blue) regression line over the data points (green), along with their respective R² values.

The middle plot illustrates the same data and best‐fit line on a different scale, while the bottom plot presents
a separate data set (purple) with its own best‐fit line and R².
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(a) (C) DYN MOE vs MOELocal

(b) DYN MOE vs MOEGlobal

(c) MOEGlobal vs MOELocal

The relationship between the measured MOE values
of only X lamellas with published data in red for
tropical hardwoods found in the literature ([45]).

(d) (C) DYN MOE vs MOELocal

(e) (A) DYN MOE vs MOEGlobal

(f) (B) MOEGlobal vs MOELocal

The combined relationship between the measured
MOE values of X and Y lamellas with published
data in red for tropical hardwoods found in the

literature ([45]).

6.6. Analysis of MOE Measurement Relationships
The relationship between different Modulus of Elasticity (MOE) measurement methods was
investigated to establish reliable correlations for structural assessment of mechanically jointed
azobe beams. Three primary relationships were analysed: MOEGlobal versus MOELocal,
MOEDyn versus MOEGlobal, and MOEDyn versus MOELocal.

6.6.1. MOEGlobal and MOELocal Relationship
The relationship between Global and MOELocal demonstrates a consistent positive correlation
in all test specimens. Analysis revealed that MOELocal values were generally higher than
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MOEGlobal measurements, with best-fit slopes ranging from 1.01× to 1.06×. This relationship
exhibited varying degrees of correlation strength, with the highest coefficient of determination
(R2 = 0.65− 0.77) observed in the final iteration of the test.

A forced linear regression from Geert [45] consistently showed lower R2 values (0.2− 0.4) com-
pared to the best-fit analysis, suggesting that the relationship may not be linearly correlated
with the tested data. It should also be noted that the forced linear regression was based on
tropical woods of varying material properties and not only Azobe.

6.6.2. MOEDyn and MOEGlobal Correlation
The most robust correlation was observed between the MOEDyn and MOEGlobal measurements.
This relationship demonstrated:

• Highest correlation coefficient of determination (R2 = 0.70− 0.74)
• Consistent best-fit slope of approximately (0.70×−0.79×)
• Minimal scatter in data points compared to other relationships
• Strong agreement between forced and best-fit regression models at higher MOE values

The strength of this correlation suggests that MOEDyn measurements could serve as a re-
liable predictor of MOEGlobal in mechanically jointed azobe beams, potentially offering a
non-destructive assessment method for structural applications.

6.6.3. MOEDyn and MOELocal Analysis
This relationship revealed a moderate correlation coefficient, with coefficient of determination
(R2) values ranging from 0.431 to 0.644 across the test series. The forced linear regression
analysis from literature implemented a coefficient of 0.95 compared to the 0.75 and 0.86 which
demonstrated an overestimation of the relationship compared to empirical observations.

Statistical analysis indicated significantly higher variance in the data distribution compared to
the dynamic MOEGlobal correlation, suggesting an increased sensitivity to local material prop-
erties and joint behaviour. Furthermore, the correlation strength exhibited notable variation
across multiple test iterations, indicating potential influence of specimen-specific factors such
as local material heterogeneity.

6.6.4. Conclusions
The analysis of the three MOE measurement relationships reveals several key findings:

• MOEDyn measurements provide the most reliable correlation with MOEGlobal

• MOELocal measurements show higher absolute values but greater variability
• Dynamic testing methods could be implemented for rapid, non-destructive assessment to

quickly gauge the overall stiffness of the beam

It should be noted that acoustic methods are sensitive to the overall vibrational properties of
the beam. In contrast, global and MOELocal are based on static bending tests that directly
measure the beam’s deformation under load.

The positive correlations among all three MOE measures suggest that they capture related as-
pects of the beam’s stiffness, but each method provides distinct information that can contribute
to a more understanding of the elastic behaviour of azobe timber.
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Figure 6.11: A correlation heat map relating all parameters affecting lamella stiffness
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6.7. Effect of the drilling holes into the lamellas

Figure 6.12: 20 mm hole drilled into the lamella

It was interesting to investigate the stiffness of the lamellas once they have been drilled. It
was noted that there are changes in the structural stiffness in this lamella but by how much
and what kind of relationship does it have with volume reduction . Is it a linear relationship
or nonlinear one.

Table 6.5: MOEGlobal and MOELocal of X2, X5 and X9

Wet
Density
(kg/m³)

TEST 1 TEST 2 % difference between
values

ID MOEGlobal MOELocal MOEGlobal MOELocal MOEGlobal MOELocal

X2 1074 15500 15100 15500 15100 0.0 0.0
X5 1160 16200 18000 16000 17500 1.2 2.8
X9 1097 15800 14700 15700 14700 0.6 0.0

Table 6.6: MOEGlobal and MOELocal of X5 and X9 when drilled

Wet
Density
(kg/m³)

Before drilling
holes

After drilling
9 holes

After drilling
17 holes

ID MOEGlobal MOELocal MOEGlobal MOELocal MOEGlobal MOELocal

X5 1160 16000 17500 16000 16200 15300 15700
X9 1097 15700 14700 15200 14100 14700 13700
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Table 6.7: MOEGlobal and MOELocal of X5 and X9 when drilled

Wet
Density
(kg/m³)

% decrease After
drilling 9 holes

% decrease After
drilling 17 holes

% decrease After drilling
17 holes from 9 holes

ID MOEGlobal MOELocal MOEGlobal MOELocal MOEGlobal MOELocal

X5 1160 0.0 7.4 4.4 10.3 4.4 3.1
X9 1097 3.2 4.1 6.4 6.8 3.3 2.8

The investigation focused on understanding the impact of drilling holes on the structural stiff-
ness of azobe beam lamellas. Initial testing confirmed the consistency of stiffness measurements
across randomly selected specimens (X2, X5, and X9), establishing a baseline for further anal-
ysis.

Specimens X5 and X9 were subjected to progressive drilling of 9 and 17 holes to evaluate the
resulting changes in structural properties.

The preliminary testing showed good consistency in stiffness measurements, with variations
typically below 3% between repeated tests. Specimen X5 showed some small variations of
approximately 500MPa, while X9 exhibited almost no significant change in both the global
and MOELocal after the second test.

The MOELocal showed greater sensitivity to drilling, with higher reduction percentages across
both specimens. The MOEGlobal demonstrated more stability, particularly in X5’s initial
drilling phase.

Figure 6.13: reduction of stiffness in the lamellas

6.7.1. Volume and Mass Reduction Analysis
The drilling process resulted in quantifiable reductions in both volume and mass of the speci-
mens. The holes drilled are 20mm and through the thickness of the specimen. The calculations
yielded a volume/ mass percentage reduction of approximately 22,000 mm³ per hole. With
an Initial volume of 0.0392 m³. The Volume and mass reduction percentages were : - 9 holes:
0.50- 17 holes: 0.95
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The MOELocal measurements showed higher sensitivity to volume reduction in the higher den-
sity specimen X9 and the MOEGlobal measurements demonstrated more consistent relationship
with volume reduction across both specimens.

Unfortunately there were only two sample lamellas drilled and they showed a nonlinear rela-
tionship. The volume reduction between specimens varied by only 0.01% for both 9 and 17
holes. However, the stiffness reduction varies by up to 7.43%. This indicates that factors
beyond simple material removal significantly influence stiffness changes.

6.7.2. Conclusion
It is consistent that there is reduction in the stiffness of the lamellas after drilling and even
though its not properly quantifiable and needs further research.
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6.8. Arrangement of the beams lamellas
To arrange the beam lamellas after choosing which lamellas will be used. X1, X2, X3, X4, X6,
X7, X8, X10, and Y1, Y2, Y4 ,Y6 were decided on due to having less imperfections. Both a
four point bending and three point bending were then done on the stacked beams to obtain
results. The placement of the beam lamellas was made in such a way that the stiffness were
varied. For instance by placing a stiffer beam at the bottom or placing it in the middle. It was
to be found out if it matters where then beams are placed or does it have no influence on the
results. For that matter, the beam setups were then made based on the MOEGlobal values as
the MOELocal of a stacked beam is that of only an individual lamella.

(a) Four-point bending test (b) Three-point bending test

Figure 6.14: Side-by-side comparison of four-point bending (left) and three-point bending (right) test for X
setups.

(a) Four-point bending test (b) Three-point bending test

Figure 6.15: Side-by-side comparison of four-point bending (left) and three-point bending (right) test for Y
setups.

To achieve a neutral axis (line of zero bending stress) in the middle of the arrangement for each
beam, the stiffness distribution must be symmetric. This means the top and bottom layers
of each beam should have similar stiffness properties, and the central layers should balance
the arrangement. Given the MOE values (DYN MOE, MOEGlobal, MOELocal) and assuming
lamellas have the same dimensions, we will calculate the neutral axis placement and arrange
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them accordingly.Symmetric Pairs have been identified and ones with the highest stress are
placed on the outside. Neutral Axis ensure the stiffness (MOE) distribution is symmetric about
the center.

6.8.1. Beam Configurations
Beam A1
This arrangement had the stiffest lamella at the lower middle of the arrangement.

Top Layer: Y1 (15200 N/mm2)
Bottom Layer: Y2 (16100 N/mm2)

Figure 6.16: Beam A1

The neutral line will be found in the lower part.

Beam A2
This arrangement had the stiffest lamella at the lower middle of the arrangement.

Top Layer: Y6 (15200 N/mm2)
Bottom Layer: Y4 (16000 N/mm2)

Figure 6.17: Beam A2
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The neutral line will be slightly in the lower half but closer to the center

Beam B1-1
This arrangement had the stiffest lamella at the very bottom of the arrangement.

Top Layer: X8 (15700 N/mm2)
Upper Middle Layer: X6 (15400 N/mm2)
Lower Middle Layer: X10 (15000 N/mm2)
Bottom Layer: X4 (18100 N/mm2)

Top MOE: X8 + X6 = 15700 + 15400 = 31100
Bottom MOE: X10 + X4 = 15000 + 18100 = 33100

the neutral line will be captured slightly in the lower half

Figure 6.18: Beam B1-1

Beam B1-2
This arrangement had the stiffest lamella at the middle top of the arrangement.

Top Layer: X8 (15700 N/mm2)
Bottom Layer: X4 (18100 N/mm2)
Upper Middle Layer: X6 (15400 N/mm2)
Lower Middle Layer: X10 (15000 N/mm2)

Top MOE: X8 + X4 = 15700 + 18100 = 33800
Bottom MOE: X10 + X6 = 15000 + 15400 = 30400
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Figure 6.19: Beam 1-2

the neutral line will be above the central beam

Beam B2-1
This arrangement had the stiffest lamella at the top of the arrangement.

Top Layer: X3 (19100 N/mm2)
Upper Middle Layer: X2 (15500 N/mm2)
Lower Middle Layer: X7 (15300 N/mm2)
Bottom Layer: X1 (14400 N/mm2)

Top MOE: X7 + X9 = 19100 + 15500 = 34600
Bottom MOE: X3 + X2 = 15300 + 14400 = 29700

Figure 6.20: Beam B2-1

the neutral line will be in the upper half of the beam

Beam B2-2
This arrangement had the stiffest lamella at the lower middle of the arrangement.
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Top Layer: X7 (15300 N/mm2)
Upper Middle Layer: X1 (14400 N/mm2)
Lower Middle Layer: X3 (19100 N/mm2)
Bottom Layer: X2 (15500 N/mm2)

Top MOE: X7 + X9 = 14400 + 15300 = 29700
Bottom MOE: X3 + X2 = 19100 + 15500 = 34600

Figure 6.21: Beam B2-2

The stacked unjointed azobe beams were experimentally evaluated using both three-point
and four-point bending tests in the elastic deformation range. The effective bending stiffness
(EIeff ) was determined using the following formulae for each testing method.

For the four-point bending test, the effective bending stiffness (EIeff ) was calculated using
the following equation:

EIeff = slope × (3aL2 − 4a3)

48
(Nmm2) (6.17)

where a represents the distance from the support to the nearest load point, L is the span length,
and slope is the linear relationship between applied load and deflection.

For the three-point bending test, the effective bending stiffness (EIeff ) was determined using:

EIeff =
slope · L3

48
(Nmm2) (6.18)

where L is the span length, and slope represents the load-deflection relationship in the elastic
region.

The experimental results from both testing methods were compared with analytical predictions
to evaluate the structural performance of the stacked unjointed azobe beam configurations.
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Table 6.8: Comparison of Analytical and Four-Point Bending Test Results for Stacked Unjointed Beams

Beam Setup

Analytical
stiffness

(EIeff ) ×1011

(Nmm2)

Four-point
stiffness

(EIeff ) ×1011

(Nmm2)

%
difference

A1 Y1-Y2 10.05 10.31 −2.57
A2 Y6-Y4 9.99 10.18 −1.92
B1-1 X8-X6-X10-X4 2.58 2.77 −7.46
B1-2 X8-X4-X6-X10 2.58 2.85 −10.43
B2-1 X3-X2-X7-X1 2.58 2.72 −5.59
B2-2 X7-X1-X3-X2 2.58 2.71 −4.97

Only a slight or negligible difference in effective stiffness was observed when the lamellae
were placed in different positions. Specifically, beams B2-1 and B2-2 exhibited a percentage
difference of merely 0.4%, whereas B1-1 and B1-2 showed a higher discrepancy of 4.6%. These
results suggest that the placement of the stiffest lamella in the beams may indeed influence the
overall stiffness, despite current Eurocode 5 [17] calculations disregarding this factor. However,
further investigation is required to fully understand the implications of lamella positioning on
beam performance.

In the four-point bending tests, the discrepancy between the analytical predictions and the
experimentally measured bending stiffness reached 10.4% in one of the tests but was overall
higher in all arrangements. This outcome indicates the presence of an additional parameter
influencing the combined stiffness of the stacked beams. A plausible explanation involves
friction between the lamellas, which creates a shear interaction effect. However, further research
is required to thoroughly investigate and quantify this phenomenon.

Table 6.9: Comparison of Analytical and Three-Point Tested Stiffness for Beams

Beam Setup

Analytical
stiffness

(EIeff ) ×1011

(Nmm2)

Three-point
stiffness

(EIeff ) ×1011

(Nmm2)

%
diff.

A1 Y1-Y2 10.05 10.44 −3.84
A2 Y6-Y4 9.99 9.48 5.13
B1-1 X8-X6-X10-X4 2.56 2.63 −2.50
B2-2 X7-X1-X3-X2 2.58 2.56 0.62

After selecting the stiffest configurations, three-point bending tests were performed on the
remaining specimens. The results indicated that all bending stiffness values, calculated using
different methods, fell within a ±6% margin of each other. Specifically, two of the beam
arrangements exhibited greater stiffness than the analytical prediction, while two were slightly
less stiff, one of which measured 5% below the analytical value.
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Table 6.10: Comparison of Analytical, 4-point and 3-point Bending Stiffness for Beams

Beam Setup

Analytical
bending
(EIeff )

x1011 Nmm2

4-point
bending
(EIeff )

x1011 Nmm2

3-point
bending
(EIeff )

x1011 Nmm2

%difference
4-point and

3-point

Beam A1 Y1 Y2 10.05 10.31 10.44 -1.25
Beam A2 Y6 Y4 9.99 10.18 9.48 6.92
Beam B1-1 X8X6X10X4 2.56 2.77 2.63 5.20
Beam B2-2 X7X1X3X2 2.58 2.71 2.56 5.50

Overall there is very close agreement between the analytical and experimental values. For each
beam, the analytical stiffness is within a few percent of the experimental results (both 4- and
3-point). Beam A1 has its differences are on the order of 2–4%. Beam A2 has its differences
in the 2–5% range. Beams B1-1 and B2-2 have their differences range from about 3–8%.

When comparing three-point and four-point bending tests, it is evident that the four-point
configuration typically produces a higher estimated effective stiffness. This occurs because, in
the three-point bending test, shear stiffness acts along the entire beam, leading to a slightly
lower stiffness estimate. In contrast, the four-point bending test minimizes the influence of
shear, thus resulting in a higher measurement. Nonetheless, the difference between three-point
and four-point bending results is relatively small—usually less than about 7%. This indicates
that both methods provide reasonably consistent stiffness values, although local effects (e.g.,
the concentrated load in three-point bending) can cause minor shifts in the measured results.

The analytical predictions appear reasonably accurate, matching the experimental data (both
3- and 4-point bending) within a small percentage. This lends confidence that the theoretical
model used to calculate EIanalytic is sound.
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Figure 6.22: Global stiffness(analytical vs experimental)

In three of the cases, the 3-point stiffness is consistently lower than the 4-point stiffness with
the exception of the first case, which can be attributed to experimental error. The difference
between 3-point and 4-point bending test results is relatively small, typically less than about
7%. That suggests that both testing methods yield fairly consistent stiffness values, although
local effects (e.g., load concentration in 3-point bending) can shift the measured results slightly.

6.9. Grading of the Timber Lamellas
6.9.1. Characteristic Density Determination
Characteristic density (ρk) is a key parameter for timber grading according to EN 384[18]
and NEN-EN 14358 [40]standards. It is defined as the 5% fractile of the density distribution,
representing the value that 95% of the population is expected to exceed. For moderate sample
sizes, the characteristic density can be approximated using:

ρk ≈ ρ̄− k × s (6.19)

where:

• ρ̄ = sample mean density,
• s = sample standard deviation (unbiased),
• k = fractile factor (typically ∼1.645 for 5% fractile with sufficiently large n; for smaller

sample sizes, EN 14358[40] prescribes specific factors).

Based on the density values adjusted to 12% moisture content from our specimens, we obtain:

Mean density at 12% MC = 1061.4 kg/m3

Standard deviation = 25.8 kg/m3
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5%-fractile ρk = 1019.1 kg/m3

The characteristic density at 12% MC is approximately 1,020–1,040 kg/m3, which is excep-
tionally high compared to the density requirements in EN 338’s hardwood strength classes.
In the EN 338 of strength classes [2] qualifies all the timber for beyond D80 requirement as
this requires requires a characteristic density of 900 kg/m3, while our specimens significantly
exceed this threshold.

6.9.2. Local MOE Values at 12% Moisture Content
The local modulus of elasticity (MOE) values adjusted to 12% moisture content provide another
important parameter for strength class assignment. Table 6.2 presents the adjusted MOELocal

values for all specimens. the adjusted value at the MC 12% value can be directly used as the
mean MOE in the strength class tables in the EN 338[2]

Statistical analysis of the adjusted MOELocal values yields:

Mean MOELocal (all samples)= 20,794 MPa

Mean MOELocal (X samples)= 19,446 MPa

Mean MOELocal (Y samples) = 23,042 MPa

taking the mean value of the local moe , the memebr sare then assigned a D70

6.9.3. Strength Class Assignment
According to EN 338[2], the strength classes of the wood are defined by a combination of
characteristic values of the properties of strength, stiffness, and density. Table 6.11 shows how
our specimens compare to the EN 338 hardwood strength classes in terms of both density and
mean modulus of elasticity requirements.

Table 6.11: Comparison of Specimen Properties with EN 338 Hardwood Strength Classes

Strength Characteristic Mean Mean MOE Comparison
Class Density Density E0,mean

ρk (kg/m3) ρmean (kg/m3) (MPa)
D80 900 1080 24,000

Specimens exceed most
requirements with
ρk ≈ 1019 kg/m3,
ρmean = 1061 kg/m3,
E0,mean = 20 794MPa

D70 800 960 20,000
D60 700 840 17,000
D50 620 740 14,000
D40 550 660 13,000
D35 540 650 12,000
D30 530 640 11,000

The characteristic density (ρk ≈ 1019 kg/m3) is approximately 13% higher than the D70
requirement (900 kg/m3). The mean MOELocal at 12% MC (20,794 MPa) is approximately
4% higher than the D70 requirement (20,000 MPa).

The Y samples exhibit particularly high stiffness, with a mean MOELocal of 23,042 MPa,
exceeding the D75 of 22,000 Mpa requirement

The X samples, while still exhibiting high stiffness properties with a mean MOELocal of 19,446
MPa, fall just below the D70 threshold but well above the D65 requirement of 18,500 MPa.
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The analysis shows that the samples substantially exceed the EN338 [2] requirements for hard-
wood class D70 in terms of both density and modulus of elasticity. Unfortunately, the bending
strength properties could not be readily determined.

These mechanical properties measured more than the given indicate that the Eurocode 338 [3]
should revise the strength classes of the D sector upward, thereby enabling these woods to be
appropriately graded and utilised by the industry.



7
Results and Discussions on

Experiments on Mechanically Jointed
Beams

The mechanically jointed beams were evaluated using both four-point and three-point bending
tests, with the focus on the elastic behaviour of the dowelled beams. The experimental cam-
paign commenced with a four-point bending test, during which two LVDTs were installed on
the left side at 200mm and 800mm from a reference point. The test results confirmed that
the beams remained within the elastic range, as predicted by theoretical analyses.

79
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Figure 7.1: 4 point bending of dowelled beam B1-1

7.1. Four-Point Testing of Dowelled Beams in the Elastic Range
The deformation we predicted was quite off compared to the force we predicted. The beams
were tested with a speed of 0.4 mm/s. And theEIeff stiffness was calculated from the same
formula we used for the individual beams

Table 7.1: Beam Test Results

Beam Max Force Max Deflection Loading Speed Effective Stiffness
(kN) (mm) (mm/s) (×1012 Nmm2)

Beam A1 51.40 19.55 0.10 2.16
Beam A2 50.94 18.55 0.10 2.27
Beam B1-1 39.87 23.80 0.13 1.54
Beam B2-2 34.84 24.00 0.13 1.13

Its to note that in the post processing all the graphs remained in the elastic region but beam
B1-1 showed slight plasticity for the given load and displacement

The loading speeds were in such away to have the test finished within a 3 - 5 minutes and the
loading speed was calculated by dividing the expected displacement by 180s. The offloading
stage was abit faster in all cases but increasing the speed by 1.5 times.
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(a) 4-point bending stiffness of the dowelled beams (A1,
A2, B1-1, B2-2).

(b) Comparative stiffness of the dowelled beams in
4-point bending.

Figure 7.2: Comparison of stiffness characteristics of dowelled beams under 4-point bending.

As anticipated, beams A1 and A2 exhibited substantially higher effective stiffness compared
to B1-1 and B2-2. This outcome corresponds to the expected decrease in stiffness that results
from further bisecting cross sections, as was done with the stacked configurations. Additionally,
the greater effective stiffness observed relative to the stacked beams confirms that composite
action is taking place.

Beam B1-1 began to exhibit plastic behaviour at an early stage, despite having a higher stiffness
than B2-2. Upon visual inspection, a crack was identified running along the grain between
two staggered dowels, which may explain the onset of plastic behaviour. Although the nearest
dowel was located 400 mm away—significantly more than the recommended minimum spacing
of 7d (i.e., 140 mm)—the crack still formed. The staggered positioning of the dowels probably
mitigated a more extensive split by restricting the propagation of the crack across the beam.
The damage appears to have originated before testing, possibly during the hammering of dowels
into the lamellas, showing the importance of thorough inspections of such defects immediately
after fabrication. The edge distances are indeed correct / verified, but during manufacturing
care has to be placed so as not to induce cracks.
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Figure 7.3: dowelled beam B1-1 with running cracks from the dowel holes

7.1.1. Interlayer Slip at the Interface
Interlayer slip between the composite beam’s layers was monitored using LVDTs at the interface.
Transducers were placed at distances of 200 mm, 800 mm, and 1400 mm from the support along
the beam length (corresponding to near one support, mid-span, and near the other support,
respectively). These gauges captured the relative displacement (slip) between the top and
bottom layers at those locations.
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Figure 7.4: The load-slip displacement curve from LVDT1 (located at 200 mm from the support) for various
beams.

Beams A1 (blue line) and A2 (red line) both demonstrate much higher stiffness and composite
action, reaching higher loads for the same slip values. However, beam A2 initially shows a
steeper linear slope, indicating a higher initial stiffness and greater composite action compared
to A1. (Investigate the cause of this initial resistance.)

Beam A1 exhibits a more linear trend from the start and eventually catches up with A2 at
higher loads.

Beam B1-1 (pink line) Displays a trend similar to beam A2, but with a gradual change in slope,
indicating moderate performance compared to the two-lamella beams. A small irregularity in
the curve is attributed to a brief stop during the experiment.

Beam B2-2 (cyan line) Demonstrates the lowest stiffness with a nearly linear load-slip relation-
ship after initial settling, similar in trend to beam A1.

All beams exhibit initial nonlinear behaviour in the 0–10 kN range, representing the initial
engagement of the mechanical connections. Beyond this range, the curves become more linear,
reflecting effective composite action.

The differences between the curves are more pronounced at higher loads, suggesting that the
efficiency of load transfer mechanisms becomes increasingly critical as the loading increases.
The two-lamella beams (A1 and A2) outperform the four-lamella beams (B1-1 and B2-2) in
terms of absolute stiffness, although all beams show good structural performance.

The graph indicates that the dowelled connections facilitate significant load transfer while
permitting controlled slip at the interfaces.

It should be noted that the observed slip is of the order of only 1 mm, even at high forces,
showing the excellent composite action of the beams.
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Figure 7.5: Enter Caption

When a bar chart depicting the deformation measured by LVDT1 under various applied forces
is examined, the differences in displacement among the beams become more apparent. It is
crucial to note that a positive slip denotes relative sliding between the layers when loaded, and
its magnitude reflects the strength of the shear interaction within the beams. However, other
factors—such as the stiffness of individual beam layers—also influence these measurements, so
any direct comparison should take these variables into account.

Overall, the least stiff beam (B2-2) exhibited the highest rate of slip between its center lamella.
In fact, the slip in the B-type beams was approximately 41% greater than that observed in
the A-type beams. Moreover, the slip in beam B2-2 developed much more rapidly at different
force levels compared to the other beams. This behaviour raises questions about whether the
observed deformation can be attributed solely to the applied force and beam properties or
whether additional factors also play a significant role.

Figure 7.6: Comparison of LVDT1 and LVDT2 displacement measurements for beams A1, A2, B1-1, and
B2-2 under varying load levels
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When examining the LVDT2 measurements, a similar overall trend is observed. Although the
displacement slopes appear somewhat higher, this can be attributed to the increased resistance
encountered near the beam’s center, where zero slip is expected.

7.2. Three point testing of the dowelled beams in elastic range

Figure 7.7: Experimental setup for a multi-layer composite beam test. LVDT sensors are attached at various
layers to measure displacement and slip under loading, allowing assessment of shear interaction and overall

bending response.

The test setup was arranged similarly to the four-point bending configuration, but with the
addition of a third LVDT positioned 140,mm from the nearest support. Digital Image Cor-
relation (DIC) was performed on the opposite side of the beams to capture full-field strain
measurements. The beams were tested at speeds comparable to the four-point bending tests,
ensuring the deformation rates remained consistent.

Table 7.2: Summary of Beam Test Results

Beam Max Force Reached Max Deflection Reached Loading Speed Effective Stiffness
(kN) (mm) (mm/s) EIeff (×1012 Nmm2)

A1 26.77 11.94 0.1 1.81
A2 34.08 14.46 0.1 2.17
B1-1 21.82 16.84 0.1 1.15
B2-2 20.20 17.40 0.1 1.07
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Figure 7.8: (Left) Load–displacement responses for beams A1, A2, B1-1, and B2-2 in 3 point bending,
illustrating the varying stiffness and deformation behaviour.(Right) Comparison of effective stiffness among

the same beams in bar-chart form.

Just as observed under four-point bending, the three-point load–displacement curves exhibit
similar slopes among all tested beams, including a slight plastic response in beam B1-1. Beams
A1 and A2 demonstrate substantially higher stiffness compared to B1-1 and B2-2: their initial
load–deflection slopes (effective bending stiffness) are approximately an order of magnitude
greater than those of the B-series beams. The Table and bar graph above summarize these
stiffness values for comparative purposes.

The graph belowillustrates the load–slip relationships for four mechanically jointed azobe
beams (A1, A2, B1-1, and B2-2) measured at the beam neutral axis during 3 point bend-
ing. Displacements were recorded 200,mm, 800,mm, and 1400,mm from the nearest support,
thereby capturing the progression of slip between lamella interfaces: specifically, between the
two lamellas in A1 and A2, and between the second and third lamella in B1-1 and B2-2.
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Figure 7.9: The load-slip displacement curve from LVDT1 in 3 point bending (located at 200 mm from the
support) for various beams

Beam A2 (red line) exhibits the highest initial slip resistance, transitioning to a nearly linear
trend over most of the load range. This behaviour mirrors the results from the four-point tests,
showing both the beam’s superior stiffness and its higher load-carrying capacity compared to
the other beams.

Beam A1 (blue line):Displays an initially linear load–slip relationship, rapidly increasing in
resistance to slip and eventually surpassing the slope of B1-1. This indicates early engagement
of the dowels and enhanced composite action. After the initial non-linear phase, A1 attains a
slope comparable to A2, albeit with greater overall slip.

Beam B1-1 (pink line) Shows a relatively high initial resistance to slip, then transitions to a
more gradual stiffness increase as loading progresses. This response suggests that significant
composite action occurs once the dowels reach a certain engagement force, thereby elevating
slip resistance.

Beam B2-2 (cyan line) Possesses the lowest stiffness and slip resistance of all tested beams.
Nonetheless, its slip response remains consistent, implying that composite action was present
from the outset—likely reflecting a well-fitted dowel assembly.

All beams display some degree of non-linear behaviour, particularly noticeable in the initial
loading phase. This non-linearity is likely due to initial settlement of the mechanical joints and
engagement of the dowels. After this initial phase, the curves become more linear, indicating
that the interface connections are fully engaged.

The significant differences between the two-lamella beams (A1, A2) and the four-lamella beams
(B1-1, B2-2) suggest that the composite action is more effective in the simpler two-lamella
configuration. This might be related to the efficiency of the mechanical connections and load
transfer mechanisms between multiple interfaces in the four-lamella beam .
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(a) The load-slip displacement curve from LVDT 2 (located at 800 mm from the support)
for various beams

(b) The load-slip displacement curve from LVDT 3 (located at 1400 mm from the
support) for various beams

Figure 7.10: The load-slip displacement curve from LVDT 1,2 and 3 ( located at 200, 800 and 1400 mm from
the support) for various beams

When the slip is observed in the different areas LVDT1, LVDT2, and LVDT3, it is worth
noting that the trends are quite similar and follow the same pattern. This confirms the action
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explained along the beam.

7.2.1. Comparison of the 3-point and 4-Point Bending test Results in the elastic
range

As expected, the beams exhibited higher stiffness under four‐point bending than under three‐point
bending. As shown by the dotted lines in the plot, all of the beams were effectively stiffer when
the load was applied at two points rather than one. In a four‐point test, the mid‐span experi-
ences a constant moment region without shear, so the beam is less influenced by shear forces
and behaves closer to a fully composite section over a larger portion of its length. This confirms
that loading conditions do affect the overall stiffness of the beam.

(a) Slip Distribution Under 3-Point Bending (b) Slip Distribution Under 4-Point Bending

Figure 7.11: Comparison of Slip Distribution Under 3-Point and 4-Point Bending

The four-point tests reached higher load levels compared to the three‐point tests. For example,
the initial stiffness of beam A1 rose from 1.81 × 10¹²Nmm² in the three‐point test to 2.16 ×
10¹²Nmm² under four‐point loading, as shown in the bar graph. Even the more flexible beam
B2‐2 showed an increase from 1.07 × 10¹²Nmm² to 1.13 × 10¹²Nmm². Among all beams tested,
the percentage increase ranged from 4.4% (A2) up to 25% (B1‐1). Beam A1 and B2‐2 showed
16% and 5% increases, respectively, while A1 and B1‐1 exhibited the largest overall changes.

7.2.2. Slip comparisons in the dowelled beams between the 4points and 3points
bending tests

A quick look at the load–displacement graphs reveals a striking contrast in slip behaviour
when the beams are tested under 3-point versus 4-point bending. In the 3-point setup, the
shear force extends throughout half the beam’s length, causing the slip to accumulate steadily
from the supports toward the middle of the span and resulting in greater slip magnitudes
near the centre. In contrast, the four-point configuration features a constant moment region
between the load points, which means there is minimal shear through the middle of the beam.
Consequently, slip develops primarily near the supports, with little additional movement be-
tween layers beyond the loading points. These observations underscore how loading conditions
shape stress distributions in mechanically doweled beams: 3-point bending concentrates slip
in the mid-span, while 4-point bending confines it to the outer spans, leading to more uniform
behaviour in the centre.
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Figure 7.12: slip comparisons between dowelled and stacked beams at four point and 3 point loading in the
LVDT 1 position

Comparisons among stacked beams reveal intriguing behaviour in specimens A1 and A2, with
A1 in particular exhibiting a pronounced stick–slip pattern. The dowels appear to amplify the
slip response at lower loads but delay more significant displacement until relatively high load
levels. In most cases, this indicates that the mechanical action of the dowels enhances load
transfer by limiting the movement of the interlayer until the beam is subjected to higher forces.

Figure 7.13: slip comparisons between dowelled and stacked beams at four point and 3 point loading in the
LVDT 2 position

When examining the LVDT2 results, the trend line for the A2 stacked beam aligns closely
with that of the doweled beam at lower load levels. However, as the applied force increases,
the response of the stacked beam changes to a more distinct and linear slope. This behaviour
is potentially influenced by friction at the interfaces, which can dominate in the initial stages
of loading. A similar pattern is also observed in other stacked beam specimens, reinforcing
the hypothesis that friction significantly affects the early load-transfer mechanism in stacked
configurations.

Conclusions

The A beams consistently show smaller deflections and slip at a given load compared to the
B beam, in both loading configurations. Meanwhile, for a given beam, 4-point bending tends
to produce slightly smaller deflections and slips than 3-point bending at the same total load,
because the load is distributed (reducing shear and deflection in the centre).
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These trends can be visualised by comparing load–deflection curves or load–slip curves for the
different tests. For instance, if we plot load vs. mid-span deflection for all beams, the curves
for A1 and A2 would lie much steeper (stiffer) than B1 and B2. Likewise, plotting load vs.
end-slip would show B beams accumulating slip much faster with load than A beams. At
around 20–25 kN, B-type beams already have a slip on the order of 5–10 mm slip, whereas
A-type might only be 1̃ mm.

7.3. Loading to 100 KN in 3-Point Bending
In these tests, all four dowelled beams, A1, A2, B1-1 and B2-2, were loaded to approximately
97-100kN using a 3-point bending set-up. Although failure was not anticipated, the beams did
not reach full collapse at that load level. Two principal failure mechanisms were considered:
1. Brittle Failure Occurs when the lowest lamella ruptures due to tensile stresses that exceed
the bending strength of the wood. 2. Ductile Failure Involves the steel dowels yielding in
shear and allowing significant interlayer slip, indicating extensive plastic deformation within
the connection

To push a beam to its ultimate bending failure, it must first reach a sufficiently high load level.
As predicted by analytical estimates, this was still insufficient to achieve ultimate failure,
although each beam displayed subtle differences in behaviour.

For most of the loading range (up to around 80 kN), the two A series beams performed very
similarly, which shows the consistency in their manufacture and assembly. The beams of the
B series also exhibited comparable load-deflection characteristics, except for a noticeable quirk
in beam B1-1 (discussed further on). In general, the flexural strength of the timber governed
the ultimate capacity in this 3-point setup, rather than the dowels themselves. Even the more
flexible and slip-prone B series achieved the full potential of the timber section predicted by
the gamma factors, indicating that the dowel connections effectively transferred shear between
layers.

The larger deflections observed in the B series did not decrease the maximum load. Instead,
these beams simply reached the same maximum capacity with greater deformation, a testament
to their partial composite action, where sufficient connectors were present to develop nearly
full bending strength.
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Figure 7.14: Load deflection curve to the 100KN mark

Beam A1 began to show early signs of distress around 80kN, but managed to carry loads
beyond 100kN. The primary failure mechanism involved a tensile crack in the bottom lamella,
running perpendicular to the grain. In contrast, A2 reached approximately 100.1 kN without
any visible signs of impending failure - its test was simply limited by the available load capacity.

Both B1-1 and B2-2 reached around 97–98kN. Although B2-2 showed an angled fracture that
followed the grain in the bottom lamella, the beam did not fully fail; instead, its stiffness
briefly rebounded once the jack reached its maximum stroke. These observations suggest that,
under 3-point bending, the dowel connections were sufficiently robust that none of the beams
experienced connector failure. Instead, tensile stresses in the laminations governed the ultimate
capacity.

Significantly, a multilayer beam (for example, B2-2) can reach the same peak load as a stiffer
configuration (e.g., A2) despite exhibiting larger deflections and therefore poorer serviceability
performance. Monitoring the evolution of the stiffness confirmed a gradual reduction with
increasing deformation, forming a non-linear trend that approached near-zero slope at higher
loads. However, in beam A1, the near-flat slope after 100 kN reflected the force limit of the
test equipment rather than the true zero stiffness.

A similar anomaly occurred in B1-1, whose initial test used a jack with insufficient travel. Once
repeated with a longer stroke jack (shown by a dotted line), the beam displayed a lower initial
stiffness but converged with the original stiffness trend near 75 kN, then matching the slope
of B2-2.
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Figure 7.15: Stiffness evolution of the beams

By plotting the local slope of the load-deflection curve (that is, stiffness) against mid-span
deflection, it can be visualised how the beam’s capacity to resist additional deformation dimin-
ishes as it nears failure. Initially, the slope remains relatively high, reflecting stiffer behaviour.
However, as failure accumulates under increasing loads, the slope steadily declines, indicating
a progressive loss of stiffness until it approaches near zero at the ultimate failure. Once local
failure occurs, it can regain a bit of its stiffness as this graph is based on a simple slope and is
not a true predictor of failure.
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7.4. DIC Technology
The DIC (Digital Image Correlation) technology was also used to compare the results from the
lvdts because it could give more information on not just horizontal deformations but vertical
ones as well. Unlike LVDTs, which are typically installed with a slight vertical offset from the
metal reference surface and provide only linear measurements, DIC allowed measurements at
points located closer to the interface between the lamellas. This proximity can reduce errors
that arise as the beam curvature changes and LVDT readings become less accurate. Essentially,
while LVDTs only capture linear displacements, there is a lot of advantages of setting up a DIC
to track the movements of a random speckle pattern on the beam’s surface through sequential
images taken before and after deformation, thereby offering full-field displacement and strain
data.

Figure 7.16: Horizontal strain fields captured via Digital Image Correlation (DIC) in the tested beam,
illustrating the localized deformation in the x-direction at multiple points along the lamella interface.

The color‐coded strainlike distribution map and its accompanying plots provide a comprehen-
sive depiction of the deformation behaviour of the beam and its multiple layers under load.
This approach offers improved accuracy compared to traditional LVDT (Linear Variable Dif-
ferential Transformer) measurements by capturing full‐field displacement and strain responses
rather than merely recording linear displacements.

The analysis was done in the Zeiss Correlate software. Points were selected on each lamella
along a vertical line—approximately 250mm and 1000mm from the support and at additional
distances like at 300mm. The relative distances between these points were recorded and com-
pared at various time intervals. The top graph illustrates the relative displacement of these
points from their original positions. In the graph below, relative movement between the adja-
cent points are recorded. This is usually a difference calculation of the values recorded by the
points.



7.4. DIC Technology 95

Figure 7.17: Illustration of the x-direction displacement field obtained using DIC software, showing the
relative movement of selected points along the beam surface

Ideally, the displacement should increase linearly till the maximum load, as observed in the
initial portion of the top graph. However, the latter half of the graph reveals diminished
deformation, indicating the presence of rigid-body movement. This effect causes the points
located further back to move in the opposite direction, thereby introducing inconsistencies in
the readings provided by the LVDTs. as the beam moves downwards with the deformation and
all parts rotate differently as well.

Specifically, points 15 and 16 in the figure above, located approximately 300mm from the
support, exhibited a relative movement of 5.1mm and points while points 3 and 4 located
1000mm from the support recorded a maximum value of 3.2mm . In contrast, LVDT 1, located
roughly 200mm from the support, measured a relative inter-layer displacement of 8.456mm and
LVDT 2, positioned about 800mm from the support—recorded a displacement of 7.17mm. Both
showing higher values than those indicated by the DIC. While the locations of the measurement
points for the DIC and LVDTs aren’t exactly identical (with the DIC points being at 300mm
and 1000mm and the LVDTs at 200mm and 800mm, respectively), these values show that
the DIC system underestimates the displacement by approximately 40–55% compared to the
LVDTs

The table below presents the maximum slip values recorded by the LVDTs during the peak
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load conditions. The sensors are positioned at specific distances from the support: LVDT1 is
located 200 mm from the support, LVDT2 at 800 mm, and LVDT3 at 1400 mm.

Table 7.3: LVDT Slip Measurements for the Jointed Azobe Beams

A-Series (Large Cross-Section) B-Series (Small Cross-Section)
A1 A2 B1-1 B2-2

Max Load (kN) 100 100 99 97
LVDT1 Max Slip (mm) 3.49 3.16 8.46 8.44
LVDT2 Max Slip (mm) 3.81 2.69 7.17 7.15
LVDT3 Max Slip (mm) 1.94 1.51 4.08 4.02

In summary, the DIC analysis using Zeiss Correlate effectively captures the beam’s relative
horizontal movement but falls short in accurately quantifying the deformation values along
that axis. The displacement values obtained at specific points do not fully match the LVDT
measurements, likely due to distortions introduced by rigid body motion. On the other hand,
the software may consistently capture the vertical displacement at the beam’s center as only
rigid body movement should be recorded there indicating that while DIC offers more data to
work with, it may need further calibration for the stacked beam analysis or complementary
methods to match the precision of traditional LVDT measurements.
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7.5. Revisit of the bending strength of the beam lamellas

Figure 7.18: Beam A3 after failure

Initially, it was hypothesized that if the classification were solely based on density, all lamellas
would exceed D80, and the mean modulus of elasticity (MOE) would be the decisive factor.
Fortunately, a third pair of y lamellas, y5 and y3, were stacked to construct stacked beam A3,
which was subjected to failure testing. Subsequently, using this equation, the bending strength
of beam A3 was determined through a three-point bending test.

fm =
3
(
Fmax
2

)
L

2 b h2
=

3Fmax L

4 b h2
. (7.1)

It was discovered that the bending strength of each lamella is 86 MPa. However, unfortunately,
without using more samples which were not readily available, thus the characteristic bending
strength of lamellas Y5 and Y6 could not be deduced in order to grade their bending strength.

In comparison to the stacked beams of A1 and A2, which were subjected to elastic range testing
in the same three-point test, it was observed that the slopes were remarkably similar. This
observation suggests that the bending strength of the stacked beam may be comparable but
often this isnt the case.
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Figure 7.19: A series load deflection comparison

The stacked beam A3 also showed lower slope and breaking stress than the dowelled beams
with composite action.

A final word on the failure Modes seen in 3-Point Bending Tests on all the mechanically
jointed Beams
Tensile rupture of wood - Three of the beams ultimately exhibited or approached tensile failure
in the wood (bottom fibre cracking) once the bending moment capacity was reached. This is
the natural failure mode for a bending lamella at 100kN. The final drop in load in B1-1 and
B2-2 also suggests a possible timber fracture. However, because of the dowel connectors, timber
rupture was not sudden – the beams did not snap immediately when the first crack formed.
Instead, other mechanisms kicked in to provide reserve capacity, and often times there was
hope of regaining the lost stiffness.
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Figure 7.20: Beam B2-2 exhibiting cracks in failure, with rupture at the bottom

Interlayer Slip – Beams B1-1 and B2-2 showed extensive interlayer slip throughout loading.
This slip is evidenced by their low stiffness and extremely large deflections (over 180mm at
peak load). Such slip means the layers were sliding relative to each other due to partial
composite action. While interlayer slip is not a “failure” in itself, excessive slip contributed
to the failure process by altering how the load was shared. In B-series beams, long before
the wood ruptured, the lamellas were essentially acting in partial union, connected by yielding
dowels. This mechanism absorbed energy and deformation by damaging the bearing strength
of the azobe timber or yielding the dowels. By the time these beams failed, the connections had
already significantly yielded (and possibly some began to fail in shear), but the slip allowed a
slow progression of failure instead of a single catastrophic break.

Figure 7.21: Azobé lamellas exhibiting minor embedment failure, characterized by localized splitting and
slight stress-induced deformations.

Dowel Yielding (Connector Plasticity) – A major failure mechanism was yielding of the steel
dowels in shear. this doesnot lead to the failure of the beam persay but ot leads to excessive
slip that increases the midspan deformation. The load–deflection curves for B1-1 and B2-2
sustained 98kN through very large deflection increments. These plateaus indicate the dowels
had yielded, turning the connection into a plastic hinge that could deform further at roughly
constant load. In other words the connections reached their yield strength and started deform-
ing plastically, which delayed the final failure. This is characteristic of a ductile failure mode –
the connectors yielded before the wood completely fractured. this also led to the embedment
failure of the wood as to accommodate The benefit is that the beams could tolerate additional
deflection and redistribute forces. By contrast, if the wood had cracked first (a brittle failure),
we would see an abrupt drop in the load at peak with little plateau . The experiment showed
dowel yielding provided considerable ductility, allowing the beams to maintain high load even
as cracks developed.
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Figure 7.22: Left: Dowel extracted from the edge position of the beam B2-2 after slight failure with
markings of the lamellas’ position. Right: Plastic hinges line drawn to show the shape of the dowel after

tensile rupture of beam B2-2.

In conclusion, the 3-point bending failures were ductile. All beams exhibited significant yielding
and slip at the higher loads. Beam A2, never had a sudden drop and still had more than
sufficient capacity to reach failure even at the 100KN loading. Beam A1 had a similar behaviour
until a tensile crack formed at the bottom which led to a further investigation of the true
bending strength of the individual lamellas, and this was achieved with the A3 beam. From
the bending failure of beam A3 was deduced a bending strength of approximately 86Mpa per
lamella in the Y category. Beams B1-1 and B2-2 failed in a two-stage manner: first extensive
slip and dowel yielding ( larger deformations) and eventually rupture in the lower most tensile
fibers of the individual lamellas, but by then the structure had given ample warning (gradual
load decrease). These modes can be described as tensile rupture of the wood preceded by
interlayer slip and dowel yielding. The observed ductility is a direct result of the steel dowels
performing in shear before the brittle capacity of the wood was exceeded - a desirable failure
pattern for safety.
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7.6. Comparisons between EIeff , Kser values and γ values
Effective Stiffness EIeff and Gamma γ-values
The effective flexural rigidity, EIeff , is derived from the slope of the load-deflection curve, while
the γ values are obtained from the stiffness measured during the 3-point bending test up to
100 kN. Both A and B beams exhibit uniform effective stiffness within their respective groups,
indicating a similar load-carrying capacity.

Table 7.4: Stiffness Measurements and Gamma Factors for Various Beam Configurations

Parameter A-Series B-Series
(Large Cross (Small Cross

Section) Section)
A1 A2 B1-1 B2-2

Stiffness Values EIeff (Nmm2 × 1012)
Analytical stiffness 2.24 2.24 1.924 1.924
3-point bending stiffness (Test to 100KN) 2.33 2.26 1.35 1.36
3-point bending stiffness 2.17 2.17 1.15 1.07
4-point bending stiffness 2.160 2.270 1.540 1.13
Full composite stiffness (EIfull) 4.100 4.100 4.100 4.100

Gamma Factors (γ)
Experimental γ1 and γ4 0.421 0.397 0.291 0.294
Theoretical γ1 and γ4 0.391 0.391 0.435 0.441
Deviation from theory (%) +7.7% +1.5% -33.1% -33.3%
Experimental γ2 and γ3 0.421 0.397 0.194 0.196
Theoretical γ2 and γ3 0.391 0.391 0.344 0.350
Deviation from theory (%) +7.7% +1.5% -43.6% -44.0%

The γ values revealed that the A beams - with their larger cross sections -exhibited a higher
composite behaviour than the smaller B beams. In contrast, Möhler’s experiments conclude
having achieved near full composite action, a result that may be attributed to the fact that
his beams had an additional bolt connections at each end and used four lamellas with a 150
× 150 mm cross section. These tests suggest that possibly, larger members tend to develop a
more pronounced composite action, which could explain the discrepancies observed between
our results and Möhler’s findings.

7.6.1. Effective Stiffness EIeff and the Slip Modulus Values Kser

Kser: When reverse-engineered to determine the Kser values, the table below summarizes the
experimentally observed and Eurocode-derived values, explaining the discrepancies. For beams
consisting of two layers with differing elastic moduli, it is generally expected to encounter one
shear plane, thus yielding a single Kser value. However, variations in the modulus of elasticity
(MOE), even for beams with similar geometric characteristics, causes a shift in the neutral axis
position. If the neutral axis is assumed to lie in the middle of the beam precisely between the
members to avoid complications, the formulas for Kser become for a two-layered beam:

kser =
π2s

L2
· E1A1 · E2A2

E1A1 + E2A2

(
1

1
γ1,2

− 1

)
. (7.2)

For a four-layered beam, there are three shear planes (between layers 1–2, 2–3, and 3–4), and
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thus three values of kser. Based on Schelling’s method, the K value was defined in Section 3,
and the shear stiffness values are calculated accordingly.

kser1,2 =
π2E1,2A1,2 s

2 l2
(
K − 1

) (7.3)

kser2,3 =
π2E2,3A2,3 s

2 l2
(
K − 1

) (7.4)

Table 7.5: Comparison of slip modulus kser values

Beam Configuration Dimensions kser from kser derived from % Difference
Type per Layer EC5 3-point test

(mm×mm) (N/mm) (N/mm)
A1 2-layer 140 × 140 30 864 14 854 −108
A2 2-layer 140 × 140 30 864 14 082 −119

B1-1 4-layer 140 × 70 30 864 12 581 −145
B2-2 4-layer 140 × 70 30 864 19 133 −61

Table 7.6: % difference is computed as (Derived)−(Eurocode)
(Derived) × 100%

When Kser values are derived for the four lamella beams, to obtain similar results using the
Schelling method. The values obtained are several percentage points lower in all four cases by
a factor of around 2. This discrepancy needs further investigation into why the values came
short but as the EUROCODE 5 ‘kser value is only dependent on dowel size and wood density.



8
CONCLUSIONS AND

RECOMMENDATIONS

The thesis was guided by two central research questions:

What is the actual effective stiffness of mechanically jointed Azobé beams?

Which factors affect the load-bearing capacity and structural behaviour of these beams?

The effective stiffness of the beams is dependent on the composite action parameters, par-
ticularly the γ-value, which itself is based on the shear stiffness or slip modulusKser. This
modulus is directly influenced by the quality of the connection between the dowels and the
lamellas. By working backwards from the determined effective stiffness (EIeff ) to obtain the
corresponding γ-values, a comparative table was produced to compare experimental findings
with the analytical predictions. as in section 7.3.

Reverse-calculated γ values closely match the analytical predictions with deviations below
10% in two-layered beams (favouring experimental results). In contrast, four-layered beams
show deviations up to 40% (favoring analytical results). These discrepancies require further
investigation.

For the four-lamella beams, Kser values determined via the Schelling method (based on effective
stiffness) are lower by several percentage points in all cases, approximately a factor of 2 lower.
This discrepancy merits further examination, particularly given that the EUROCODE 5 Kser

depends solely on dowel size and wood density.

Industry implications - Practitioners should exercise caution when directly applying Möhler
or Schelling models. Current observations indicate that the Schelling method tends to slightly
overestimate composite action, while findings for the Möhler’s (γ) model vary; one experiment
suggested a slight underestimation, and other a slight overestimation. More research is needed
to clarify the source of these discrepancies.

Analysis of MOE and density values of the Azobe lamellas showed that the samples substan-
tially exceed the requirements of EN338 [2] for the D70 class of hardwood in terms of both
density and modulus of elasticity. Unfortunately, the bending strength properties could not
be readily determined. These mechanical properties indicate that the Eurocode should revise
the strength classes of the D sector upward, allowing these woods to be properly graded and
used by the industry.
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There is a reduction in the bending stiffness of the lamellas of around 7% for a 0.01% reduction
in volume when the holes are drilled in a lamella, and this needs further investigation to find
out what the new value of MOE is when the holes are filled with steel or any other material.
The implication being that the MOE values we use to calculate are overestimated.

Further research is required to investigate the friction within the beam lamellas. The initial
load displacement diagrams exhibited a stack slip behaviour, characterised by a high initial
stiffness and a subsequent constant linear slope.

The alternating of the higher-grade lamellas into positions of maximum stress (outer layers)
could potentially enhance the overall stiffness of the beam. The most significant failure mech-
anism observed in the tests was tensile failure in the lowest fibre of the individual lamellas
in the position of high tensile stress. According to the results, the stiffness values were 2.9%
higher when the most stiff lamella was placed in the middle compared to other beam B2
lamella combinations. Further research is necessary to explore this phenomenon. However, by
understanding the stresses of the beam and having observed the failure mechanisms, it can be
recommended to align the higher stiffness lamellas in the lower and higher posts. In industry,
non destructive methods can be used to measure the MOEDyn.

DIC technology was used to monitor the slip deformations of beam lamellas over time. How-
ever, its measurements did not align with those of the LVDT due to an inability to clearly
separate the slip of individual lamellas from the overall rigid body movement. Although rela-
tive distances were used to indicate slip, the program did not distinctly define the difference
between rigid body movement and slip, leading to overestimated absolute values. In contrast,
DIC captures well vertical displacements primarily reflecting rigid body movement so those
magnitudes can be trusted. Therefore, when measuring slip, it is required that the relative
movement is properly isolated from any global beam movement.

Although dowel failure was defined by failure mode a or b from calculations, the retrieved
dowel exhibited yielding. This observation warrants further investigation into the overall force
redistribution within the beam for even when a dowel yields, the beam retains its load-carrying
capacity as forces transfer to the stiffer dowels located near the center.

In conclusion, the experiments confirm that the effective stiffness of mechanically jointed Azobé
beams hinges on the slip modulus, friction, connection quality, lamella arrangement, and real
modulus of elasticity, all of which influence the composite action. Larger cross sections generally
show improved composite behaviour, while strategic placement of higher-grade lamellas in
areas of maximum stress may further increase the effective stiffness. Although analytical
models such as those by Möhler and Schelling offer useful approximations, they may over-
or underestimate composite action. Investigations indicated that Azobé lamellas exceed the
EN338 D70 hardwood classification in both density and stiffness. However, drilling holes in
dowels can reduce bending stiffness, and testing also revealed that the yielding of one dowel
does not lead to abrupt failure, as forces are redistributed to other dowels. These findings show
the need for ongoing research to use DIC technology for measurements, to account for friction
and potential stiffness reductions, and optimise lamella placement for maximum structural
efficiency.
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A
LOAD DEFLECTION DIAGRAMS

A.1. LOAD DEFLECTION DIAGRAMS FOR THE INDIVIDUAL LAMEL-
LAE MOE-GLOBAL

(a) X1

(b) X2

(c) X2a

(d) X3

(e) X4

(f) X5 (9BH)

Figure A.1: Load‐deflection diagrams (Global MOE).
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(a) X5 (17CH)

(b) X5

(c) X5a

(d) X6

(e) X7

(f) X8

(g) X9 (9BH)

(h) X9 (17CH)

Figure A.2: Load‐deflection diagrams (Global MOE).
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(a) X9

(b) X9a

(c) X10

(d) Y1

(e) Y2

(f) Y3

(g) Y4

(h) Y5

Figure A.3: Load‐deflection diagrams (Global MOE)
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Figure A.4: Load‐deflection diagram (Global MOE).
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A.2. LOAD DEFLECTION DIAGRAMS FOR THE INDIVIDUAL LAMEL-
LAE MOE-LOCAL

(a) X1

(b) X2

(c) X2a

(d) X3

(e) X4

(f) X5 (9BH)

(g) X5 (17CH)

(h) X5

Figure A.5: Load‐deflection diagrams (LOCAL-MOE).
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(a) X5a

(b) X6

(c) X7

(d) X8

(e) X9 (9BH)

(f) X9 (17CH)

(g) X9

(h) X9a

Figure A.6: Load‐deflection diagrams (LOCAL-MOE).
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(a) X10

(b) Y1

(c) Y2

(d) Y3

(e) Y4

(f) Y5

(g) Y6

Figure A.7: Load‐deflection diagrams for the (LOCAL-MOE).
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A.3. Stacked Beams
A.3.1. 4-Point Loading

Table A.1: Stacked Beam performance parameters

Beam Configuration Maximum Maximum Permanent EIeff Elastic
Type Load Deflection Deformation Stiffness

(kN) (mm) (mm) (Nmm2) (kN/mm)
A1 2-layer (140 × 140) 36.79 27.99 0.30 1.24e+12 1.27
A2 2-layer (140 × 140) 35.14 26.80 0.62 1.20e+12 1.23

B1-1 4-layer (140 × 70) 19.20 55.62 1.06 3.25e+11 0.33
B2-2 4-layer (140 × 70) 19.19 57.45 1.63 3.18e+11 0.33

Table A.2: EIeff represents the effective bending stiffness of the jointed beam system.

The effective bending stiffness EIeff is computed using the following formula:

EIeff = slope ×
(
3 aL2 − 4 a3

)
48

(in Nmm2) (A.1)

In this expression, L represents the length of the beam where L = 3600mm and a = 1200mm.

(a) Load displacement curve Beam A1 (b) Load displacement curve Beam A2

(c) Load displacement curve Beam B1-1 (d) Load displacement curve Beam B2-2

Figure A.8: Load-displacement curves for stacked beams in the 4point deformation series.
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A.3.2. 3-Point Loading
Table A.3: stacked Beam performance parameters

Beam Configuration Maximum Maximum Permanent EIeff Elastic
Type Load Deflection Deformation Stiffness

(kN) (mm) (mm) (Nmm2) (kN/mm)
A1 2-layer (140 × 140) 22.35 20.23 0.25 1.04e+12 1.07
A2 2-layer (140 × 140) 20.16 19.88 0.12 8.79e+11 0.90
A3 2-layer (140 × 140) 87.74 173.38 38.46 9.92e+11 1.02

B1-1 4-layer (140 × 70) 12.61 42.58 1.16 2.62e+11 0.27
B2-2 4-layer (140 × 70) 12.85 43.48 0.28 2.66e+11 0.27

Table A.4: EIeff represents the effective bending stiffness of the jointed beam system.

The effective bending stiffness EIeff is computed using the following formula:

EIeff =
slope · L3

48
(in N mm2) (A.2)

In this expression, L represents the length of the beam, where L = 3600mm.
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(a) Load displacement curve Stacked Beam A1 (b) Load displacement curve Stacked Beam A2

(c) Load displacement curve Stacked Beam A3 (d) Load displacement curve Stacked Beam B1-1

(e) Load displacement curve Stacked Beam B2-2

Figure A.9: Load-displacement curves for all tested stacked beams. The A-series (A1, A2, A3) and the
B-series (B1-1, B2-2) represent different stacking configurations.
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A.4. Mechanically Jointed Beams In 3-Point Loading To 100KN
Table A.5: Beam performance parameters

Beam Configuration Maximum Maximum Permanent EIeff Elastic
Type Load Deflection Deformation Stiffness

(kN) (mm) (mm) (Nmm2) (kN/mm)
A1 2-layer (140 × 140) 100.06 62.35 6.27 2.33e+12 2.40
A2 2-layer (140 × 140) 100.06 54.52 4.45 2.26e+12 2.32

B1-1 4-layer (140 × 70) 75.44 89.66 9.81 1.35e+12 1.38
B1-1* 4-layer (140 × 70) 98.86 163.90 27.62 - 1.03
B2-2 4-layer (140 × 70) 97.37 171.04 31.15 1.36e+12 1.39

Table A.6: EIeff represents the effective bending stiffness of the jointed beam system. *Denotes repeated
test reaching further loading.

The effective bending stiffness EIeff is computed using the following formula:

EIeff =
slope · L3

48
(in N mm2) (A.3)

In this expression, L represents the length of the beam. L = 3600mm
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(a) Load displacement curve Beam A1 (b) Load displacement curve Beam A2

(c) Load displacement curve Beam B1-1 (d) Load displacement curve Beam B2-2

(e) Load displacement curve Beam B1-1*

Figure A.10: Load-displacement curves for all tested beams. The A-series (A1, A2) consists of 2-layer
beams, while the B-series (B1-1, B1-1*, B2-2) consists of 4-layer beams. The asterisk (*) denotes a repeated

test with higher load.
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B
annex 2

Table B.1: Moisture content MC%

Lamella Id Mass Old mass % change New mass % change MC % Average MC %
X1a 256.52 222.01 15.5 221.72 0.1 15.7 15.9X1b 252.93 218.14 15.9 217.88 0.1 16.1
X2a 252.28 216.08 16.8 215.77 0.1 16.9 16.1X2b 247.21 214.66 15.2 214.44 0.1 15.3
X3a 264.54 229.37 15.3 229.07 0.1 15.5 17.1X3b 276.20 232.95 18.6 232.64 0.1 18.7
X4a 274.07 232.85 17.7 232.57 0.1 17.8 18.0X4b 262.20 222.27 18.0 222.0 0.1 18.1
X5a 255.18 218.45 16.8 218.19 0.1 17.0 16.4X5b 242.59 209.51 15.8 209.27 0.1 15.9
X6a 260.40 224.31 16.1 224.03 0.1 16.2 16.9X6b 236.45 201.17 17.5 200.97 0.1 17.7
X7a 263.97 227.05 16.3 226.81 0.1 16.4 16.5X7b 262.64 225.53 16.5 225.35 0.1 16.5
X8a 256.07 219.56 16.6 219.37 0.1 16.7 16.2X8b 243.63 210.69 15.6 210.47 0.1 15.8
X9a 244.72 208.59 17.3 208.40 0.1 17.4 17.4X9b 255.16 217.79 17.2 217.50 0.1 17.3
X10a 258.85 222.94 16.1 222.64 0.1 16.3 16.4X10b 253.22 217.36 16.5 217.16 0.1 16.6
Y1a 640.1 519.96 23.1 519.94 0.0 23.1 24.8Y1b 545.61 431.37 26.5 431.33 0.0 26.5
Y2a 320.83 254.16 26.2 254.12 0.0 26.3 26.2Y2b 521.69 413.29 26.2 413.27 0.0 26.2
Y3 0 0 — 0 — — 25.9
Y4a 555.50 441.26 25.9 441.22 0.0 25.9 26.7Y4b 528.09 414.40 27.4 414.36 0.0 27.4
Y5 0 0 — 0 — — 26.0
Y6a 379.55 303.81 24.9 303.79 0.0 24.9 26.1Y6b 508.09 399.11 27.3 399.07 0.0 27.3
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Table B.2: Beam Configuration Analysis

Case Beam Dimensions I Force Deformation Bending
Configuration (mm) (mm4) (KN) (mm) Stress(MPa)

1 Single Lamella 140× 140 3.20× 107 14.2 24 28
2 Single Lamella 140× 70 4.00× 106 3.6 48 28
3 Two stacked lamellas 2× (140× 140) 6.40× 107 28.4 24 –
4 Four stacked lamellas 4× (140× 70) 1.60× 107 14.4 48 –

Table B.3: Analytical vs. Four-Point Tested Stiffness for Beam Types and Setups with Percentage Differences

Beam type Setup Analytical stiffness
(Em,g) (N/mm2)

Four point bending
stiffness (Em,g)

N/mm2

Three point tested
stiffness

Em,g N/mm2

Beam A1 Y1 Y2 15,600 16,100 16,300
Beam A2 Y6 Y4 15,600 16,000 14,800
Beam B1-1 X8X6X10X4 16,100 17,300 16,400
Beam B1-2 X8X4X6X10 16,100 17,800 -
Beam B2-1 X3X2X7X1 16,100 17,000 -
Beam B2-2 X7X1X3X2 16,100 16,900 16,000

Table B.4: Summary Statistics of Mechanically Jointed Beam Tests

Beam ID Maximum Maximum Left Left Average
Force (kN) Displ. (mm) at Max Force (mm)

Test 4p Doweled A1 (Y1-Y2) 51.40 1.03 0.65
Test 4p Doweled A2 (Y6-Y4) 50.94 0.97 0.59
Test 4p Doweled B1-1 (X8-X6-X10-X4) 39.87 1.09 0.63
Test 4p Doweled B2-2 (X7-X1-X3-X2) 34.84 1.17 0.71

Table B.5: Interpolated Displacement and Percentage Differences

Displacement (mm) Percentage Difference (%)
Force (kN) A1 A2 B1-1 B2-2 A2 vs A1 B1-1 vs A1 B2-2 vs A1

0.0 – – 0.000 – – – –
5.0 0.066 0.013 0.020 0.082 −80.45 −69.81 23.45
10.0 0.138 0.051 0.077 0.206 −63.26 −43.98 49.06
15.0 0.199 0.112 0.144 0.317 −43.74 −27.43 59.41
20.0 0.258 0.177 0.210 0.418 −31.37 −18.45 62.12
25.0 0.315 0.245 0.304 0.514 −22.36 −3.76 63.10
30.0 0.374 0.312 0.410 0.613 −16.61 9.76 63.97
35.0 0.433 0.378 0.531 – −12.74 22.55 –
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ANNEX

In the context of determining the experimental bending stiffness EIeff of composite beams, the
experimental EIeff values are initially calculated as discussed in the preceding sections. EC5
provides a framework for deriving the effective bending stiffness of composite beams, utilizing
a series of equations based on the gamma method (γ-method). This method focuses on the
theoretical calculations of EIeff :

EIeff =
n∑

i=1

(
Ei × Ii + γi × Ei ×Ai × a2i

)
(C.1)

Here, γi quantifies the efficiency of each lamina within the composite, taking into account
mechanical connectors. It is calculated by the following equation:

γi =

(
1 +

π2 × Ei ×Ai × Si

Kser,i × l2

)−1

(C.2)

The slip modulus of the fasteners, Kser,i, is a function of the fastener’s density (ρm) and
diameter (d), detailed in Equation (C.3):

Kser,i =

(
ρ1.5m × d2

23

)
(C.3)

This study evaluates various EIeff values, from experimental to fully composite, utilizing the
framework of Equations. Additionally, Equation (C.4) can be used to assess the efficiency µ
of the composite in laminated beams:

µ =
EIcomp − EImin

EImax − EImin
(C.4)

This approach enables a comprehensive understanding of the composite behaviour under vary-
ing mechanical conditions.

To calculate the deformation caused by a force in a four-point bending test for an Azobe lamella
(beam), and to ensure that the member remains within the elastic phase (so it returns to its
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original shape after the load is removed), follow these steps: A stress value that is 40% the
characteristic bending strength is used

C.1. Calculate the Moment of Inertia (I)
For a rectangular cross-section, the moment of inertia I is calculated using:

I =
bh3

12

C.2. Beam Specifications
Where:

• b = width of the beam
• h1 = height of the 2-lamella beam
• h2 = height of the 4-lamella beam

Given:

b = 140mm

h1 = 140mm

h2 = 70mm

C.3. 2. Determine the Loading Configuration
In a four-point bending test, two equal loads P are applied symmetrically at a distance a from
each support.

Given:

• Total length of the beam (span): L = 3.5m

The loads P are applied at L
3 at each end:

For lamellas of H1,H2 and H(full beam height)

a =
L

3
= mm

C.4. Calculate Maximum Bending Moment (Mmax)
The maximum bending moment occurs between the load points and is constant:

Mmax = P × a

C.5. 4. Ensure that maximum stress is within elastic limits
The maximum bending stress σmax must not exceed the proportional limit (elastic) of the
material σallow:

first for the normal stresses for the individual lamellas are to be calculated with these two
formulas to account for the joint stiffness. thus

σm,i =
0.5hiM

(I)
(C.5)
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The maximum shear force will also be calculated as The general formula for the shear stress
(τ) in a beam is given by:

τ =
V Q

Ib

Where:

• V = Shear force at the section
• Q = First moment of the area above (or below) the point where shear stress is being

calculated about the neutral axis

For a singular rectangular cross-section, the moment of inertia (I) and the first moment of
area (Q) are calculated as follows:

Q =
bh · h

4

2
=

bh2

8

τmax =
3V

2bh

C.6. Calculate Maximum Deflection (δmax)
Use the deflection formula for a simply supported beam under four-point bending:

δmax =
Pa(3L2 − 4a2)

48EI

Where:

• E = Modulus of Elasticity of Azobe = 18, 500 N/mm2̂)
• P = load at each point

when the beams have no composite action (free sliding): Like in the cases 3 and 4, there is no
shear connection at all, and the lamellas simply lie on top of each other without transferring
shear, they do not form a stiffer composite section. Instead, each lamella essentially bends
independently. If both lamellas are identical and the load is equally shared, the effective
stiffness is roughly the sum of their individual stiffnesses in parallel, but without gaining the
stiffness that would come from a composite section. For two identical lamellas each with
moment of inertia I0, and no shear coupling, the effective bending stiffness is simply twice I0
because they do not gain extra stiffness by acting as a taller section. for the 4 layered beam ,
the logic follows.

In that case:

for 2 layered beam :

δmax =
P a(3L2 − 4a2)

24E(2I0)
=

P a(3L2 − 4a2)

48EI0

for 4 layered beam :

δmax =
P a(3L2 − 4a2)

24E(4I0)
=

P a(3L2 − 4a2)

96EI0



C.7. calculations 125

• Allowable bending stress: σallow = 28N/mm2

• Beam span: L = 4000mm

• Timber grade: D70, with an approximate mean modulus of elasticity: taking the mean
value of MOE

E0,mean ≈ 21000N/mm2.

We consider a four-point bending setup with two loads P placed at one-third points of the
span. Thus the distance from each support to the load is a = L/3.

C.7. calculations
• Allowable bending stress: σallow = 28N/mm2

• Allowable shear stress: τallow = 2N/mm2

• Beam span: L = 4000mm

• Timber grade D70: E0,mean ≈ 21000N/mm2 (for deflection calculations)
• Four-point bending with loads P at L

3 from each support.

C.8. Formulas
C.8.1. Bending Capacity
For a rectangular cross section of width b and height h:

I =
bh3

12
, y =

h

2
.

The bending stress in the upper and lower extreme fibres is:

σ =
My

I
.

Given M = P ∗ L
3 (for loads at one-third points) and σallow:

σallow =
M h

2

bh3/12
=⇒ σallow =

6M

bh2
.

Thus:
M =

σallowbh
2

6
.

Since M = P L
3 :

P
L

3
=

σallowbh
2

6
=⇒ P =

σallowbh
2

2L
.

Substitute σallow = 28N/mm2:

P =
28bh2

2L
=

14bh2

L
.
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C.8.2. Shear Capacity
For a single rectangular cross section, the maximum shear stress τ is:

τmax =
3V

2bh

where V is the shear force.

In this loading scenario, the maximum shear occurs in the supports. The total load is 2P , and
each support reaction is R = P . Thus, the maximum shear force V = P .

The allowable shear stress gives:
τallow =

3P

2bh
.

So:
τallow =⇒ 2 =

3P

2bh
=⇒ P =

2bh · 2
3

=
4

3
bh.

From shear:
Pshear =

4

3
bh.

C.8.3. Deflection Under Four-Point Bending
As derived previously, for two equal loads P at the one-third points:

δmax =
Pa(3L2 − 4a2)

24EI
, a =

L

3
.

Substituting a = L/3 yields:

L3 − 4a2L+ 4a3 = 0.7037L3,

so:
δmax ≈ 23PL3

648EI
≈ 0.035494

PL3

EI
.

C.8.4. Case 1: Single Lamella 140× 140mm
b = 140mm, h = 140mm, L = 4000mm.

Bending Limit

Pbend =
14bh2

L
=

14× 140× 1402

4000
.

Calculate h2 = 1402 = 19600:

bh2 = 140× 19600 = 2,744,000.

Thus:
Pbend =

14× 2,744,000

4000
=

38,416,000

4000
= 9,604N.
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Shear Limit

Pshear =
4

3
bh =

4

3
× 140× 140.

140× 140 = 19,600.

So:
Pshear =

4

3
× 19,600 =

4× 19,600

3
=

78,400

3
≈ 26,133.3N.

Shear capacity (26,133.3N) is greater than bending capacity (9,604N), so bending governs.

Pmax = 9,604N.

Substitute σallow = 28N/mm2, b = 140mm, h = 70mm, and L = 4000mm:

h2 = 702 = 4900.

bh2 = 140× 4900 = 686,000.

Thus:
Pbend =

14× 686,000

4000
=

9,604,000

4000
= 2,401N.

Shear Capacity
For a rectangular section, maximum shear stress τmax is:

τmax =
3V

2bh
,

where V is the shear force. Under symmetrical loading,

Vmax = R = P (each support reaction).

The allowable shear stress condition:

τallow =
3P

2bh
.

Given τallow = 2N/mm2:
2 =

3P

2bh
=⇒ P =

2bh · 2
3

=
4bh

3
.

Substitute b = 140mm and h = 70mm:

bh = 140× 70 = 9,800.

Pshear =
4× 9,800

3
=

39,200

3
≈ 13,066.7N.

C.8.5. Case 2: Single Lamella 140× 70mm
Compare bending and shear capacities:

Pbend = 2,401N, Pshear ≈ 13,067N.

Bending is more restrictive:
Pmax = Pbend = 2,401N.
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Deflection at Maximum Load
The second moment of area:

I =
bh3

12
=

140× 703

12
.

Compute 703:
703 = 343,000.

Thus:
I =

140× 343,000

12
=

48,020,000

12
= 4,001,666.7mm4.

The maximum deflection for loads at one-third points:

δmax ≈ 0.01466
PL3

EI
.

L3 = 40003 = 64× 109 = 64× 109 mm3.

Substitute P = 2,401N, E = 21,000N/mm2, I = 4,001,666.7mm4:

δmax ≈ 0.01466
2,401× 64× 109

21,000× 4,001,666.7
.

Evaluating this expression gives approximately:

δmax ≈ 26.8mm.

For a single lamella of 140× 70mm:

Pbend = 2,401N, Pshear = 13,067N.

Bending governs the allowable load:

Pmax = 2,401N.

At this load, the midspan deflection is about:

δmax ≈ 26.8mm.

C.9. Case 3: Two Lamellas (140x140 mm) Stacked, No Composite
Action

Without composite action, each lamella still has the same bending and shear limits as a single
lamella. Stacking does not effectively increase the bending or shear capacity if there is no
connection, because each lamella would be stressed similarly. Thus, the same limiting load P
applies:

Pmax = 9,604N (from bending).

Shear is not governing since it allows much more load.
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C.10. Case 4: Four Lamellas (140x70 mm) Stacked, No Composite
Action

For one lamella b = 140mm, h = 70mm:

Bending Limit

Pbend =
14bh2

L
=

14× 140× 702

4000
.

Compute 702 = 4900:
bh2 = 140× 4900 = 686,000.

Thus:
Pbend =

14× 686,000

4000
=

9,604,000

4000
= 2,401N.

Shear Limit

Pshear =
4

3
bh =

4

3
× 140× 70.

Compute 140× 70 = 9,800:

Pshear =
4× 9,800

3
=

39,200

3
≈ 13,066.7N.

Again, shear capacity (≈ 13,067N) is higher than bending capacity (2,401 N), so bending
governs:

Pmax = 2,401N.

C.11. Deflection at Maximum Load (Case 1 as Example)
For Case 1:

I =
bh3

12
=

140× 1403

12
.

1403 = 2,744,000, I =
140× 2,744,000

12
=

384,160,000

12
= 32,013,333.3mm4.

At Pmax = 9,604N:

δmax ≈ 0.01466
PL3

EI
.

L3 = 40003 = 64× 109 mm3.

Substitute E = 21,000N/mm2, I = 32,013,333.3mm4:

δmax ≈ 0.01466
9,604× 64× 109

21,000× 32,013,333.3
.

Numerically:
EI = 21,000× 32,013,333.3 ≈ 6.7× 1011 N · mm2,

9,604× 64× 109 ≈ 6.14656× 1014.
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δmax ≈ 0.01466× 6.14656× 1014

6.7× 1011
≈ 0.01466× 916 ≈ 13.4mm.

Thus, the deflection at maximum load for the single 140×140 mm lamella is about 13.4mm.

C.12. Conclusion
Case 1 (Single 140×140 mm):

Pbend = 9,604N, Pshear ≈ 26,133N =⇒ Pmax = 9,604N.

Deflection at
Pmax ≈ 13.4mm.

Case 3 (Two 140×140 mm Stacked, No Composite):** Bending still governs:

Pmax = 9,604N.

Deflection was roughly doubled from the single-lamella scenario at the same load.

C.12.1. Case 3
(Four 140×70 mm Stacked, No Composite)

Pbend = 2,401N, Pshear ≈ 13,067N =⇒ Pmax = 2,401N.

(Deflection would be about four times the single lamella (140×70) deflection at this load)

C.13. Calculating the Modulus of Elasticity (MOE)
If you have experimental data for the deflection δmax under a known load P , you can rearrange
the deflection formula to solve for E:

E =
Pa(3L2 − 4a2)

24δmaxIL

By measuring δmax during your test and knowing P , you can calculate the MOE
to ensure the member remains elastic.

The bending stress has two components.

Moment Component, σi,m

σi,m =
M

(EI)ef
Ei

hi
2

Normal Force Component, σi,t(c)

σi,t(c) =
M

(EI)ef
γ1Ei ai

Total Bending Stress

σB =
M

(EI)ef
Ei

(
hi
2

+ γ1 ai

)
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For a 4-layered Beam
Following the same principle but accounting for multiple layers and interfaces, the bending
stress is given by:

σB =
M

(EI)ef
Ei

(
hi
2

+ γ1 ai

)
Let’s solve this step by step using the formula:

σB =
M

(EI)ef
Ei

(
hi
2

+ γ1 ai

)

Given:

• Target stress: σB = 25MPa = 25N/mm2

• Effective bending stiffness: (EI)ef = 2,209,142,991,708.122N · mm2

• γ1 = 0.38102449

• Modulus of elasticity: E = 16,100MPa = 16,100N/mm2

• hi = 140mm
• ai = 70mm
• For 3-point bending: M = P L

4

Rearrange the equation to solve for M :

25 =
M

2,209,142,991,708.122
· 16100 ·

(
140

2
+ 0.38102449 · 70

)
Notice that:

140

2
= 70 and 0.38102449 · 70 ≈ 26.67171.

Thus, the equation becomes:

25 =
M

2,209,142,991,708.122
· 16100 · (70 + 26.67171)

or
25 =

M

2,209,142,991,708.122
· 16100 · 96.67171.

Solving for M , we obtain:

M =
25× 2,209,142,991,708.122

16100× 96.67171
.

Evaluating the expression yields:

M ≈ 35,714,285.71N · mm.

For 3-point bending, the moment is related to the applied load P by:

M =
P L

4
with L = 3600mm.
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Thus,
35,714,285.71 =

P × 3600

4
.

Solving for P :
P =

35,714,285.71× 4

3600
,

P ≈ 39,682.54N,

or approximately,
P ≈ 39.68 kN.

We start with the bending stress formula

σB =
M

(EI)ef
Ei

(
hi
2

+ γ1 ai

)
,

and substitute the given values:

σB = 25 MPa = 25 N/mm2,

(EI)ef = 1.924× 1012 N · mm2,

γ1 = 0.435,

Ei = 16,100 N/mm2,

hi = 70 mm,

ai = 105 mm.

For 3-point bending, the moment is given by

M =
P L

4
,

with L = 3600 mm.

Step 1. Substitute the values into the stress equation:

25 =
M

1.924× 1012
· 16100 ·

(
70

2
+ 0.435 · 105

)
.

Step 2. Simplify the terms in parentheses:

70

2
= 35 and 0.435× 105 = 45.675.

Thus,
35 + 45.675 = 80.675.

So the equation becomes:

25 =
M

1.924× 1012
· 16100 · 80.675.

Step 3. Solve for M :

M =
25× 1.924× 1012

16100× 80.675
.
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Evaluating this expression gives:

M ≈ 37,142,857.14 N · mm.

Step 4. Determine the load P for 3-point bending:

Using
M =

P L

4
,

with L = 3600 mm, we have:
37,142,857.14 =

P × 3600

4
.

Solving for P :
P =

37,142,857.14× 4

3600
≈ 41,269.84 N.

Expressed in kilonewtons,
P ≈ 41.27 kN.

We wish to calculate the maximum deflection, δmax, under 3-point bending using the formula:

δmax =
PL3

48(EI)eff
.

For the 2-Layered Beam
Given:

• P = 39682.54N

• L = 3600mm

• (EI)eff = 2.209× 1012N ·mm2

First, compute:
L3 = 36003 = 46,656,000,000 mm3.

Substitute into the deflection formula:

δmax =
39682.54× 46,656,000,000

48× 2.209× 1012
.

Notice that:
48× 2.209× 1012 = 106.032× 1012.

Thus, the deflection is:

δmax =
39682.54× 46,656,000,000

106.032× 1012
≈ 17.48mm.
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For the 4-Layered Beam
Given:

• P = 41269.84N

• L = 3600mm

• (EI)eff = 1.924× 1012N ·mm2

Again, with:
L3 = 36003 = 46,656,000,000 mm3,

the deflection formula becomes:

δmax =
41269.84× 46,656,000,000

48× 1.924× 1012
.

Here, the denominator evaluates to:

48× 1.924× 1012 = 92.352× 1012.

So,
δmax =

41269.84× 46,656,000,000

92.352× 1012
≈ 20.81mm.

/

C.14. Analytical calculation of effective stiffness of Mechanically
Jointed Azobe Beam

Basic Parameters Each layer is 70 mm high Total height is 280 mm (4 layers) The center line
of the beam is between layers 2 and 3 Width (b) = 140 mm

General Formulas Distance (ai) from each layer’s center to the overall beam center Area of
each layer: A = b ·h = 140 ·70 = 9, 800 mm2 Second moment of area for each layer: Ii = bh3

12 =
140·703

12 = 4, 001, 666.7 mm4

C.14.1. Calculation of Effective Flexural Rigidity (EI)eff
The effective flexural rigidity is given by:

(EI)eff =

n∑
i=1

(EiIi + γiEiAia
2
i )

Where: - Ei is the modulus of elasticity for layer i - Ii is the second moment of area for layer
i - γi is the shear correction factor for layer i - Ai is the cross-sectional area of layer i - ai is
the distance from the center of layer i to the neutral axis

Beam Arrangements
Beam A1 This arrangement has the stiffest lamella at the lower middle of the arrangement. -
Top Layer: Y1 (15,200 N/mm²) - Bottom Layer: Y2 (16,100 N/mm²)

Beam A2 This arrangement has the stiffest lamella at the lower middle of the arrangement. -
Top Layer: Y6 (15,200 N/mm²) - Bottom Layer: Y4 (16,000 N/mm²)

Beam B1-1 This arrangement has the stiffest lamella at the very bottom of the arrangement.
- Top Layer: X8 (15,700 N/mm²) - Upper Middle Layer: X6 (15,400 N/mm²) - Lower Middle
Layer: X10 (15,000 N/mm²) - Bottom Layer: X4 (18,100 N/mm²)
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Beam B2-2 This arrangement has the stiffest lamella at the lower middle of the arrangement.
- Top Layer (1): X7 (15,300 N/mm²) - Upper Middle Layer (2): X1 (14,400 N/mm²) - Lower
Middle Layer (3): X3 (19,100 N/mm²) - Bottom Layer (4): X2 (15,500 N/mm²)

Detailed Calculations for Beam B2-2
Layer distances from neutral axis: - a1 = 105 mm (furthest top layer) - a2 = 35 mm (second
layer) - a3 = 35 mm (third layer) - a4 = 105 mm (bottom layer)

Layer 1 (Top): - E1I1 = 15, 300 × 4, 001, 666.7 = 6.122 × 1010 Nmm2 - γ1E1A1a
2
1 = 0.435 ×

15, 300× 9, 800× 1052 = 7.324× 1010 Nmm2

Layer 2 (Upper Middle): - E2I2 = 14, 400× 4, 001, 666.7 = 5.762× 1010 Nmm2 - γ2E2A2a
2
2 =

0.344× 14, 400× 9, 800× 352 = 5.373× 109 Nmm2

Layer 3 (Lower Middle): - E3I3 = 19, 100× 4, 001, 666.7 = 7.643× 1010 Nmm2 - γ3E3A3a
2
3 =

0.344× 19, 100× 9, 800× 352 = 7.128× 109 Nmm2

Layer 4 (Bottom): - E4I4 = 15, 500 × 4, 001, 666.7 = 6.203 × 1010 Nmm2 - γ4E4A4a
2
4 =

0.435× 15, 500× 9, 800× 1052 = 7.419× 1010 Nmm2

Sum of all components:

(EI)ef =

4∑
i=1

(EiIi + γiEiAia
2
i )

(EI)ef = 4.173× 1011 Nmm2

Detailed Calculations for Beam B1-1
Layer 1 (Top): - E1I1 = 15, 700 × 4, 001, 666.7 = 6.283 × 1010 Nmm2 - γ1E1A1a

2
1 = 0.435 ×

15, 700× 9, 800× 1052 = 7.514× 1010 Nmm2

Layer 2 (Upper Middle): - E2I2 = 15, 400× 4, 001, 666.7 = 6.163× 1010 Nmm2 - γ2E2A2a
2
2 =

0.344× 15, 400× 9, 800× 352 = 5.747× 109 Nmm2

Layer 3 (Lower Middle): - E3I3 = 15, 000× 4, 001, 666.7 = 6.003× 1010 Nmm2 - γ3E3A3a
2
3 =

0.344× 15, 000× 9, 800× 352 = 5.597× 109 Nmm2

Layer 4 (Bottom): - E4I4 = 18, 100 × 4, 001, 666.7 = 7.243 × 1010 Nmm2 - γ4E4A4a
2
4 =

0.435× 18, 100× 9, 800× 1052 = 8.665× 1010 Nmm2

Sum of all components:

(EI)ef =
4∑

i=1

(EiIi + γiEiAia
2
i )

(EI)ef = 4.301× 1011 Nmm2
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ANNEX 3

D.1. Calculating the Modulus of Elasticity (MOE)
If you have experimental data for the deflection δmax under a known load P , you can rearrange
the deflection formula to solve for E:

E =
Pa(3L2 − 4a2)

24δmaxIL

By measuring δmax during your test and knowing P , you can calculate the MOE to ensure the
member remains elastic.

D.1.1. The bending stress has two components
Moment Component, σi,m

σi,m =
M

(EI)ef
Ei

hi
2

Normal Force Component, σi,t(c)

σi,t(c) =
M

(EI)ef
γ1Ei ai

Total Bending Stress

σB =
M

(EI)ef
Ei

(
hi
2

+ γ1 ai

)

For a 4-layered Beam
Following the same principle but accounting for multiple layers and interfaces, the bending
stress is given by:

σB =
M

(EI)ef
Ei

(
hi
2

+ γ1 ai

)
Let’s solve this step by step using the formula:

σB =
M

(EI)ef
Ei

(
hi
2

+ γ1 ai

)

136
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Given:

• Target stress: σB = 25 MPa
• Effective bending stiffness: (EI)eff = 2.209× 1012 N · mm2

• For outermost layer: γ1 = 0.38102449

• Modulus of elasticity: E = 16100 N/mm2

• hi = 140 mm
• ai = 70 mm
• For 3-point bending: M = P L

4

Rearrange the equation to solve for M :

25 =
M

2,209,142,991,708.122
· 16100 ·

(
140

2
+ 0.38102449 · 70

)

Notice that:
140

2
= 70 and 0.38102449 · 70 ≈ 26.67171.

Thus, the equation becomes:

25 =
M

2,209,142,991,708.122
· 16100 · (70 + 26.67171)

Solving for M , we obtain the following:

M ≈ 35,714,285.71N · mm.

For 3-point bending, the moment is related to the applied load P by:

M =
P L

4
with L = 3600mm.

Thus,
35,714,285.71 =

P × 3600

4
.

Solving for P :

P ≈ 39.68 kN.

We start with the bending stress formula

σB =
M

(EI)ef
Ei

(
hi
2

+ γ1 ai

)
,
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and substitute the given values:

σB = 25 MPa = 25 N/mm2,

(EI)ef = 1.924× 1012 N · mm2,

γ1 = 0.435,

Ei = 16,100 N/mm2,

hi = 70 mm,

ai = 105 mm.

For 3-point bending, the moment is given by

M =
P L

4
,

with L = 3600 mm.

Step 1. Substitute the values into the stress equation:

25 =
M

1.924× 1012
· 16100 ·

(
70

2
+ 0.435 · 105

)
.

Step 2. Simplify the terms in parentheses:

70

2
= 35 and 0.435× 105 = 45.675.

Thus,
35 + 45.675 = 80.675.

So the equation becomes:

25 =
M

1.924× 1012
· 16100 · 80.675.

Step 3. Solve for M :

M =
25× 1.924× 1012

16100× 80.675
.

Evaluating this expression gives:

M ≈ 37,142,857.14 N · mm.

Step 4. Determine the load P for 3-point bending:

Using
M =

P L

4
,

with L = 3600 mm, we have:
37,142,857.14 =

P × 3600

4
.

Solving for P :
P =

37,142,857.14× 4

3600
≈ 41,269.84 N.
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Expressed in kilonewtons,
P ≈ 41.27 kN.

We wish to calculate the maximum deflection, δmax, under 3-point bending using the formula:

δmax =
PL3

48(EI)eff
.

For the 2-Layered Beam
Given:

• P = 39682.54N

• L = 3600mm

• (EI)eff = 2.209× 1012N ·mm2

First, compute:
L3 = 36003 = 46,656,000,000 mm3.

Substitute into the deflection formula:

δmax =
39682.54× 46,656,000,000

48× 2.209× 1012
.

Notice that:
48× 2.209× 1012 = 106.032× 1012.

Thus, the deflection is:

δmax =
39682.54× 46,656,000,000

106.032× 1012
≈ 17.48mm.

For the 4-Layered Beam
• P = 41269.84N

• L = 3600mm

• (EI)eff = 1.924× 1012N ·mm2

Again, with:
L3 = 36003 = 46,656,000,000 mm3,

the deflection formula becomes:

δmax =
41269.84× 46,656,000,000

48× 1.924× 1012
.

Here, the denominator evaluates to:

48× 1.924× 1012 = 92.352× 1012.

So,
δmax =

41269.84× 46,656,000,000

92.352× 1012
≈ 20.81mm.
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D.2. Equations for the kser values and gamma values reverse engi-
neered

D.2.1. Kser Equation Derivation for Two-Layered Beam
For a two-layered beam, the effective stiffness is given by:

(EI)eff = E1I1 + E2I2 + γ
(
E1A1a

2
1 + E2A2a

2
2

)
. (D.1)

The factor γ can be extracted from the experimental results:

γ =
(EI)eff −

(
E1I1 + E2I2

)
E1A1a21 + E2A2a22

. (D.2)

For two identical layers with spacing s, the relationship between γ and kser is:

γ = 1 +
π2E As

Kser L2
. (D.3)

Solving for kser:

kser =
π2E As(
1
γ − 1

)
L2

. (D.4)

for the 2 layers with different elastic moduli, a more precise formula is:

kser =
π2s

L2
· E1A1 · E2A2

E1A1 + E2A2

(
1

1
γ − 1

)
. (D.5)

D.2.2. Kser Equation Derivation for Four-Layered Beam
Let us start with the effective stiffness equation for a four-layered beam:

(EI)eff =

4∑
i=1

EiIi + γ1E1A1a
2
1 + γ2E2A2a

2
2 + γ3E3A3a

2
3 + γ4E4A4a

2
4. (D.6)

the relationships for the γi factors according to Schelling :

γ2 = γ3 =
1

2K2 − 1
, (D.7)

γ1 = γ4 =
2K + 1

3 (2K2 − 1)
. (D.8)

The parameter K is then defined as:

K = 1 +
π2E A1

l2 · 2 · kser
s

= 1 +
π2E A1 s

l2 · 2 · kser
. (D.9)

Introduction of auxillary constants

Define the following constants:
4∑

i=1

EiIi = (EI)0, E1A1a
2
1 + E4A4a

2
4 = C1, E2A2a

2
2 + E3A3a

2
3 = C2.
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Then the effective stiffness equation becomes:

(EI)eff = (EI)0 +
(2K + 1)

3 (2K2 − 1)
C1 +

1

2K2 − 1
C2. (D.10)

Rearrange this to isolate the terms involving K. First, let

∆EI = (EI)eff − (EI)0.

Hence,
∆EI =

1

2K2 − 1

[
(2K + 1)

3
C1 + C2

]
. (D.11)

Multiply both sides by (2K2 − 1) to get:

∆EI
(
2K2 − 1

)
=

(2K + 1)

3
C1 + C2. (D.12)

Rewrite the above in standard polynomial form:

2∆EI K2 −∆EI =
2K C1

3
+

C1

3
+ C2.

Collect like terms to form a quadratic aK2 + bK + c = 0:

2∆EI K2 − 2C1

3
K −

(
∆EI +

C1

3
+ C2

)
= 0.

Identifying coefficients:

a = 2∆EI, b = −2C1

3
, c = −

(
∆EI +

C1

3
+ C2

)
.

The solution for K is:
K =

− b ±
√
b2 − 4ac

2a
. (D.13)

Since K is a physical parameter and must be positive, we typically take the positive root.

D.2.3. Final Expression for kser
Once K is found, we can compute Kser using:

kser1,2 = kser3,4 , (D.14)
(D.15)

kser1,2 =
π2E1,2A1,2 s

2 l2 (K − 1)
, (D.16)

(D.17)

kser2,3 =
π2E2,3A2,3 s

2 l2 (K − 1)
. (D.18)

This provides a direct method to obtain kser from the experimentally determined (EI)eff for a
four-layered beam.
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D.2.4. Quadratic Equation in K
We define:

a = 2∆EI,

b = −2C1

3
,

c = −
(
∆EI +

C1

3
+ C2

)
.

The solution for K follows the standard quadratic formula:

K =
−b±

√
b2 − 4 a c

2 a
.

D.2.5. Required Quantities

(EI)0 =
4∑

i=1

Ei Ii,

C1 = E1A1a
2
1 + E4A4a

2
4,

C2 = E2A2a
2
2 + E3A3a

2
3,

∆EI = (EI)eff − (EI)0.

D.3. Slip Modulus Kser Calculations for the Mechanically Jointed
Azobe Beams

D.3.1. Two-Layered Beam (A1)
The two-layered beam consists of two lamellae (Y1 and Y2) with dimensions 140 mm × 140
mm each.

Material Properties

E1 = 24, 439 MPa (Y1) (D.19)
E2 = 23, 807 MPa (Y2) (D.20)

(D.21)

Section Properties
For each layer (140 mm × 140 mm):

A = 140× 140 = 19, 600 mm2 (D.22)
(D.23)

I =
140× 1403

12
= 32, 006, 667 mm4 (D.24)
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Individual Layer Stiffness

(EI)1 = E1 × I1 = 24, 439× 32, 006, 667 = 7.82× 1011 N · mm2 (D.25)
(D.26)

(EI)2 = E2 × I2 = 23, 807× 32, 006, 667 = 7.62× 1011 N · mm2 (D.27)
(D.28)

(EI)0 = (EI)1 + (EI)2 = 1.54× 1012 N · mm2 (D.29)

Neutral Axis Position
Assuming origin at the bottom of the beam:

y1 = 210 mm (centroid of top layer) (D.30)
y2 = 70 mm (centroid of bottom layer) (D.31)

(D.32)

ȳ =
E1A1y1 + E2A2y2
E1A1 + E2A2

(D.33)

(D.34)

=
24, 439× 19, 600× 210 + 23, 807× 19, 600× 70

24, 439× 19, 600 + 23, 807× 19, 600
(D.35)

(D.36)
= 141.14 mm (D.37)

Distance from Layer Centroids to Neutral Axis

a1 = |210− 141.14| = 68.86 mm (D.38)
a2 = |70− 141.14| = 71.14 mm (D.39)

Composite Term Calculation

E1A1a
2
1 + E2A2a

2
2 = 24, 439× 19, 600× 68.862 + 23, 807× 19, 600× 71.142 (D.40)

(D.41)
= 4.633× 1012 N · mm2 (D.42)

Gamma Calculation
Given experimental EIeff = 2.33× 1012 N · mm2:

γ =
(EI)eff − (EI)0

E1A1a21 + E2A2a22
(D.43)

(D.44)

=
2.33× 1012 − 1.54× 1012

4.63× 1012
(D.45)

(D.46)
= 0.171 (D.47)
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Slip Modulus Calculation
Given span length L = 3600 mm and fastener spacing s = 200 mm:

Eavg =
E1A1 + E2A2

A1 +A2
= 24, 123 MPa (D.48)

(D.49)

Kser =
π2EavgAs

L2
(

1
γ − 1

) (D.50)

(D.51)

=
π2 × 24, 123× 19, 600× 200

36002 ×
(

1
0.171 − 1

) (D.52)

(D.53)
= 14854 N/mm (D.54)

D.3.2. Beam A2 (Y6Y4)
This is a two-layered beam with dimensions 140 mm × 140 mm per layer.

Input Parameters
:

Top Layer (Y6) : E1 = 22, 113 MPa (D.55)
Bottom Layer (Y4) : E2 = 24, 945 MPa (D.56)

Each layer: 140 mm × 140 mm, EIeff = 2.26× 1012 N · mm2, L = 3600 mm, s = 200 mm

Section Properties

A = 140× 140 = 19, 600 mm2 (D.57)

I =
140× 1403

12
= 32, 013, 333 mm4 (D.58)

Individual Layer Stiffness

(EI)0 =
2∑

i=1

EiIi (D.59)

(D.60)
= 22, 113× 32, 013, 333 + 24, 945× 32, 013, 333 (D.61)

(D.62)
= 1, 507, 123, 494, 414 N · mm2 (D.63)
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Neutral Axis Position
Assuming origin at the bottom of the beam:

y1 = 210 mm (centroid of top layer) (D.64)
y2 = 70 mm (centroid of bottom layer) (D.65)

(D.66)

ȳ =
E1A1y1 + E2A2y2
E1A1 + E2A2

(D.67)

(D.68)

=
22, 113× 19, 600× 210 + 24, 945× 19, 600× 70

22, 113× 19, 600 + 24, 945× 19, 600
(D.69)

(D.70)
= 136.0 mm (D.71)

Distance from Layer Centroids to Neutral Axis

a1 = |210− 136.0| = 74.0 mm (D.72)
a2 = |70− 136.0| = 66.0 mm (D.73)

Calculate γ

E1A1a
2
1 + E2A2a

2
2 = 22, 113× 19, 600× 74.02 + 24, 945× 19, 600× 66.02 (D.74)

(D.75)
= 4, 506, 830, 281, 600 (D.76)

γ1,2 =
EIeff − (EI)0

E1A1a21 + E2A2a22
(D.77)

(D.78)

=
2.26× 1012 − 1, 507, 123, 494, 414

4, 506, 830, 281, 600
(D.79)

(D.80)
= 0.167 (D.81)

Calculate (Kser)

Eavg =
E1 + E2

2
=

22, 113 + 24, 945

2
= 23, 529 MPa (D.82)

(D.83)

Kser =
π2 × Eavg ×A× s

L2 ×
(

1
γ − 1

) (D.84)

(D.85)

=
π2 × 23, 529× 19, 600× 200

(3, 600)2 ×
(

1
0.167 − 1

) (D.86)

(D.87)
= 14, 082 N/mm (D.88)
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D.3.3. Beam B1-1 (X8X6X10X4)
This is a four-layered beam with dimensions 140 mm × 70 mm per layer.

Top Layer (X8) : E1 = 19, 184 MPa (D.89)
Upper Middle Layer (X6) : E2 = 19, 335 MPa (D.90)

Lower Middle Layer (X10) : E3 = 17, 319 MPa (D.91)
Bottom Layer (X4) : E4 = 22, 989 MPa (D.92)

Each layer: 140 mm × 70 mm, EIeff = 1.35× 1012 N · mm2, L = 3600 mm, s = 200 mm

Section Properties

A = 140× 70 = 9, 800 mm2 (D.93)
(D.94)

I =
140× 703

12
= 4, 000, 833 mm4 (D.95)

Individual Layer Stiffness

(EI)0 =

4∑
i=1

EiIi (D.96)

(D.97)
= 19, 184× 4, 000, 833 + 19, 335× 4, 000, 833 + 17, 319× 4, 000, 833 + 22, 989× 4, 000, 833

(D.98)
(D.99)

= 315, 373, 684, 091 N · mm2 (D.100)

Neutral Axis Position
Assuming origin at the bottom of the beam:

y1 = 245 mm (centroid of top layer) (D.101)
y2 = 175 mm (centroid of upper middle layer) (D.102)
y3 = 105 mm (centroid of lower middle layer) (D.103)
y4 = 35 mm (centroid of bottom layer) (D.104)

(D.105)

ȳ =
E1A1y1 + E2A2y2 + E3A3y3 + E4A4y4

E1A1 + E2A2 + E3A3 + E4A4
(D.106)

(D.107)

=
19, 184× 9, 800× 245 + 19, 335× 9, 800× 175 + 17, 319× 9, 800× 105 + 22, 989× 9, 800× 35

19, 184× 9, 800 + 19, 335× 9, 800 + 17, 319× 9, 800 + 22, 989× 9, 800
(D.108)
(D.109)

= 135.74 mm (D.110)
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Distance from Layer Centroids to Neutral Axis

a1 = |245− 135.74| = 109.26 mm (D.111)
(D.112)

a2 = |175− 135.74| = 39.26 mm (D.113)
(D.114)

a3 = |105− 135.74| = 30.74 mm (D.115)
(D.116)

a4 = |35− 135.74| = 100.74 mm (D.117)

Calculation of C1 and C2

C1 = E1A1a
2
1 + E4A4a

2
4 (D.118)

(D.119)
= 19, 184× 9, 800× 109.262 + 22, 989× 9, 800× 100.742 (D.120)

(D.121)
= 4, 532, 267, 770, 196 N · mm2 (D.122)

(D.123)
C2 = E2A2a

2
2 + E3A3a

2
3 (D.124)

(D.125)
= 19, 335× 9, 800× 39.262 + 17, 319× 9, 800× 30.742 (D.126)

(D.127)
= 452, 519, 689, 060 N · mm2 (D.128)

∆EI Calculation

∆EI = EIeff − (EI)0 (D.129)
(D.130)

= 1.35× 1012 − 315, 373, 684, 091 (D.131)
(D.132)

= 1, 034, 626, 315, 909 N · mm2 (D.133)

Quadratic Equation Setup for K

a = 2×∆EI = 2× 1, 034, 626, 315, 909 = 2, 069, 252, 631, 818 (D.134)
(D.135)

b = −2C1

3
= −2× 4, 532, 267, 770, 196

3
= −3, 021, 511, 846, 797 (D.136)

(D.137)

c = −(∆EI +
C1

3
+ C2) (D.138)

(D.139)

= −(1, 034, 626, 315, 909 +
4, 532, 267, 770, 196

3
+ 452, 519, 689, 060) (D.140)

(D.141)
= −2, 997, 901, 928, 368 (D.142)
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Solve for K

K =
−b

√
b2 − 4ac

2a
(D.143)

=
3, 021, 511, 846, 797 +

√
(−3, 021, 511, 846, 797)2 − 4× 2, 069, 252, 631, 818× (−2, 997, 901, 928, 368)

2× 2, 069, 252, 631, 818
(D.144)

= 2.138,−0.678 (D.145)

Discard the negative value

Calculate Kser

E1, E2, E3, E4 = 19184, 19335, 17319, 22989 (D.146)
(D.147)

kser1 =
π2 × E1 ×A× s

L2 × 2× (K − 1)
(D.148)

(D.149)

=
π2 × 19, 184× 9, 800× 200

(3, 600)2 × 2× (2.138− 1)
(D.150)

(D.151)
= 12, 581 N/mm (D.152)

D.3.4. Four-Layered Beam (B2-2)
The four-layered beam configuration has the following arrangement:

Top Layer (X7) : E1 = 18, 203 MPa (D.153)
Upper Middle Layer (X1) : E2 = 18, 245 MPa (D.154)
Lower Middle Layer (X3) : E3 = 23, 658 MPa (D.155)

Bottom Layer (X2) : E4 = 18, 099 MPa (D.156)

Section Properties
For each layer (140 mm × 70 mm):

A = 140× 70 = 9, 800 mm2 (D.157)
(D.158)

I =
140× 703

12
= 4, 000, 833 mm4 (D.159)

Individual Layer Stiffness

(EI)0 =
4∑

i=1

EiIi (D.160)

(D.161)
= 18, 203× 4, 000, 833 + 18, 245× 4, 000, 833 + 23, 658× 4, 000, 833 + 18, 099× 4, 000, 833

(D.162)
(D.163)

= 312, 904, 903, 417 N · mm2 (D.164)
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Neutral Axis Position
Assuming origin at the bottom of the beam:

y1 = 245 mm (centroid of top layer) (D.165)
y2 = 175 mm (centroid of upper middle layer) (D.166)
y3 = 105 mm (centroid of lower middle layer) (D.167)
y4 = 35 mm (centroid of bottom layer) (D.168)

(D.169)

ȳ =
E1A1y1 + E2A2y2 + E3A3y3 + E4A4y4

E1A1 + E2A2 + E3A3 + E4A4
(D.170)

(D.171)

=
18, 203× 9, 800× 245 + 18, 245× 9, 800× 175 + 23, 658× 9, 800× 105 + 18, 099× 9, 800× 35

18, 203× 9, 800 + 18, 245× 9, 800 + 23, 658× 9, 800 + 18, 099× 9, 800
(D.172)
(D.173)

= 138.94 mm (D.174)

Distance from Layer Centroids to Neutral Axis

a1 = |245− 138.94| = 106.06 mm (D.175)
(D.176)

a2 = |175− 138.94| = 36.06 mm (D.177)
(D.178)

a3 = |105− 138.94| = 33.94 mm (D.179)
(D.180)

a4 = |35− 138.94| = 103.94 mm (D.181)

Calculation of C1 and C2

C1 = E1A1a
2
1 + E4A4a

2
4 (D.182)

(D.183)
= 18, 203× 9, 800× 106.062 + 18, 099× 9, 800× 103.942 (D.184)

(D.185)
= 2, 007, 429, 118, 048 N · mm2 (D.186)

(D.187)
C2 = E2A2a

2
2 + E3A3a

2
3 (D.188)

(D.189)
= 18, 245× 9, 800× 36.062 + 23, 658× 9, 800× 33.942 (D.190)

(D.191)
= 324, 711, 456, 157 N · mm2 (D.192)
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∆EI Calculation
Given experimental EIeff = 1.36× 1012 N · mm2:

∆EI = EIeff − (EI)0 (D.193)
(D.194)

= 1.36× 1012 − 312, 904, 903, 417 (D.195)
(D.196)

= 1, 047, 095, 096, 583 N · mm2 (D.197)

Quadratic Equation Setup for K

a = 2×∆EI = 2× 1, 047, 095, 096, 583 = 2, 094, 190, 193, 166 (D.198)
(D.199)

b = −2C1

3
= −2× 2, 007, 429, 118, 048

3
= −1, 338, 286, 078, 699 (D.200)

(D.201)

c = −(∆EI +
C1

3
+ C2) (D.202)

(D.203)
= −(1, 047, 095, 096, 583 + 669, 143, 039, 349 + 324, 711, 456, 157) (D.204)

(D.205)
= −2, 040, 949, 592, 089 (D.206)

Solve for K

K =
−b+

√
b2 − 4ac

2a
(D.207)

(D.208)

=
1, 338, 286, 078, 699 +

√
(−1, 338, 286, 078, 699)2 − 4× 2, 094, 190, 193, 166× (−2, 040, 949, 592, 089)

2× 2, 094, 190, 193, 166
(D.209)
(D.210)

= 1.355,−0.718 (D.211)

Discard the negative value

Calculate Kser

Given span length L = 3600 mm and fastener spacing s = 200 mm:

kser1 =
π2 × E1 ×A1 × s

L2 × 2× (K − 1)
(D.212)

=
π2 × 18 203× 9 800× 200

(3 600)2 × 2× 0.355
(D.213)

=
π2 × 18 203× 9 800× 200

25 920 000× 0.71
(D.214)

= 19 133N/mm (D.215)



D.3. Slip Modulus Kser Calculations for the Mechanically Jointed Azobe Beams 151

D.3.5. Empirical Formula Calculation
The empirical formula for Kser is:

Kser =
ρ1.5 × d

23
(D.216)

(D.217)

Given wood density ρ = 1080 kg/m3 and dowel diameter d = 20 mm:

Kser =
10801.5 × 20

23
(D.218)

(D.219)
= 30, 864 N/mm (D.220)
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