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Preface
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limited contact with medical imaging during my bachelor studies, I decided to gain some more
knowledge by taking a course about different medical imaging modalities.

During this course and the Medical Physics Symposium 2017 at TU Delft, I realised that under-
standing MRI follows the line of thinking I enjoyed the most: Starting from the underlying, concise
theory and description of Nuclear magnetic resonance, MRI has a vast range of topics from signal
generation, signal detection and signal processing that allows deepening ones knowledge in a per-
ceived infinite depth.
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while still being a student at TU Delft, an astonishingly easy-going way of working.

I want to thank my family and especially my parents, without whose longstanding support this
Master thesis couldn’t represent the end of my master studies.

The thesis at hand is structured into seven sequential chapters: The Introduction chapter gives
a brief summary of the state of art image reconstruction for Echo-planar imaging. Furthermore,
the thesis objective are presented here. Chapter two and three present the theoretical knowledge
needed to understand the implemented model-based reconstruction algorithm of this work. The
Methodology chapter presents all expects of modelling and iterative reconstruction in detail, which
were used to tackle the problem of Nyquist ghosting and field inhomogeneities leading to a concise
and joint reconstruction of EPI images. The Results of this reconstruction for phantom as well as
in vivo measurements can be found in chapter five. The thesis concludes with a Discussion of these
results, discussing the limits of the executed algorithm and leading to the Conclusion in chapter
seven.

Delft - September 17, 2018
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Abstract

Magnetic Resonance Imaging (MRI) is still a vital and fast evolving medical imaging modality. Espe-
cially, due it its excellent soft tissue contrast it is often one of the most preferred diagnostic imaging
technologies. Among the different data sampling schemes used is Echo Planar Imaging (EPI), which
is one of the fastest and most efficient sampling schemes, representing the workhorse for many time
and motion critical applications.

One of the most serious artefacts occurring in Echo-planar imaging (EPI) are Nyquist ghosts,
induced by eddy currents and the opposed gradient polarity of adjacent readout lines. On most
commercial scanners Nyquist ghosts are tackled by obtaining additional EPI reference data prior
to the actual imaging process. Therefore, the imaging protocol is prolonged. Furthermore, for a
multislice study the reference data looses validity, due to effects like coil heating associated with a
change of eddy currents.

This works demonstrates the replacement of the EPI reference scan with an image-based estima-
tion of phase errors. It is shown that with a separate image reconstruction of data acquired under
odd/even gradient polarity, a phase error can be estimated. Due to the effectively doubled acceler-
ation factor of this procedure and the g-factor induced noise amplification the resulting phase map
tends to be noisy. This effect increases non-linearly with the SENSE acceleration factor R. Artefacts
occurring in the phase map estimation are directly propagated into the final reconstruction, which
leads to image artefacts.

It is argued, that a 1D phase map, calculated by first masking areas of high g-factor in the 2D
phase map and subsequently calculating an average linear fit of all rows, can alleviate those effects.
With the usage of a full 2D phase map, the average Normalised root-mean-square error (nRMSE)
of R=1 compared to R=3 increases sixfold. Utilisation of the proposed 1D phase maps halves the
error increase to threefold. Therefore, up to R=3 images can be successfully reconstructed using
image-based phase maps. It is shown that for phantom measurements the obtained phase map re-
mains valid for adjacent slices.

All calculations are executed using a conjugate gradient (CG) algorithm. It is shown how vari-
able density slope sampling can be integrated into the reconstruction. Furthermore, it is argued that
the most efficient integration of field inhomogeneity maps is achieved by interpolating the sensitivity
profiles to mimic the effects of field inhomogeneity.
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1 | Introduction

1.1 Prior Art

Magnetic resonance imaging (MRI) is still a vital and fast evolving medical imaging modality. Espe-
cially, due it its excellent soft tissue contrast it is often one of the most preferred diagnostic imaging
technologies. Among the different data sampling schemes used is EPI [1], which is one of the fastest
and most efficient sampling schemes, representing the workhorse for many time and motion critical
applications. Thus, major applications for EPI can be found in functional Magnetic resonance imag-
ing (fMRI) which can map the variety of brain activity patterns and diffusion-weighted MRI which
finds applications in brain mapping too (fiber tracking), but which is also key in oncology driven
approaches such as tumour identification and characterisation.

Although introduced more than 3 decades ago and already adapted to daily clinical practice, EPI
definitively deserves and can benefit from some further improvements. Using the principle of paral-
lel reception, which increases the number of independent measurements and thus data redundancy,
modern and advanced model-based image reconstruction approaches can help to further improve
image quality, taking imperfections of the measurement process appropriately into account enforc-
ing data consistency.

One of the major EPI artefacts are Nyquist ghosts, also termed N/2 ghosts. Due to the opposing
echo readout of adjacent k-space lines, eddy currents induce a phase error that projects ghosts half
a field-of-view away. On most commercially available scanners, these phase-errors are addressed by
obtaining additional EPI reference data [2] [3] used to perform correction. Therefore, the imaging
protocol is prolonged. Furthermore, the reference data loose validity during the acquisition process,
due to effects like coil heating associated with a change of eddy currents.

Meanwhile, there are new approaches in literature [4] [5] showing how to obtain information
about the phase error only using the measurement data itself. These approaches form the starting
point for the algorithm implemented in this work.

1.2 Thesis Objectives

When EPI was introduced in 1977 by Sir Peter Mansfield [1], the simple yet efficient formulation of
gradient based k-space encoding [6] served as the basis of image reconstruction. While the core as-
sumptions of this reconstruction can still be regarded as valid, the technical development of the last
decades suggest an extension of this model. Therefore, one of the goals of this work is to revisit the
image acquisition and to appropriately integrate the most important effects into the measurement
model.

Using the principles of Parallel imaging (PI) [7], the model should account for multiple spa-
tially varying coil sensitivities Sensitivity encoding (SENSE) [8]. Furthermore, modern sampling
schemes like non-uniform sampling should be considered. One of the main artefacts of EPI are field
inhomogeneity induced geometric distortions. Information about these inhomogeneities should be
obtained by additional measurements and integrated into the reconstruction.

The core objective represents the calculation and integration of image-based phase maps, mod-
elling the eddy current induced odd/even phase errors. This leads to a measurement data driven
reconstruction of phase errors and image data. Therefore, this makes the need for an explicitly
acquired EPI reference scans obsolete.

Using an iterative image reconstruction, the overdetermined equation system can be solved in

1



CHAPTER 1. INTRODUCTION 2

an Signal-to-Noise ratio (SNR) optimal way. A CG algorithm is especially suited, since it converges
without special provisions as long as the system is positive definite [9]. It should be studied how
all mentioned effects can be integrated into the reconstruction, also considering the numerical effi-
ciency of the integration.

The offline reconstruction framework should be able to deal with real scanner data, to validate it
against the scanner reconstruction employing EPI reference data. This validation should be carried
out using a set of useful phantom and in vivo measurements. The objective is to study if image-
based phase maps enable a reconstruction which is qualitatively equivalent or better compared to
a reconstruction using EPI reference data. This analysis should be done for measurements with
different acceleration factors.

1.3 Outline

As the goal of this work is to revise the EPI image reconstruction, in the first chapter the physical
basis of MRI and EPI are explained. Starting from the principles of nuclear magnetic resonance, se-
lective excitation, spatial encoding and data sampling are introduced. Following one of the core
MRI developments of the last decades is introduced, which is termed PI. Using PI, SNR is improved
and accelerated measurements are enabled.

The third chapter summarises Spin echo (SE) and Gradient echo imaging (GRE) pulse sequences,
which represent the most important pulse sequences used for EPI measurements. Furthermore, the
considered imaging artefacts are being introduced. One on hand, field inhomogeneities should
be considered, while the core objective lies in the consideration of eddy current induced Nyquist
ghosts, which are the primary reason for the need of EPI reference scans. The chapter concludes by
explaining the modelling of an EPI measurement and by the introduction of an iterative solution of
such a model.

Chapter 4 summarises the methodology. First the software framework is introduced and the
obtained measurements stated. Second the preparation of the data to be used in the iterative al-
gorithm is shown. Furthermore, the integration of field maps in that scheme is introduced. The
chapter concludes with the integration of the obtained phase maps.

Chapter 5 shows the most important properties of the obtained phase maps. Furthermore, it is
shown that already for moderate acceleration factors the obtained phase maps tend to show arte-
facts which propagate into the final reconstruction. To alleviate these effects, phase map averaging
is introduced and it is shown that such an averaged phase map yields good reconstruction results.
It is demonstrated that the integration of field maps into the reconstruction can successfully recon-
struct data being subject to strong field inhomogeneity effects. The chapter completes by studying
the reutilisation of the obtained phase maps for multislice reconstructions.

The thesis closes with the discussion of the obtained results and a conclusion.



2 | Theoretical Background

2.1 Nuclear Magnetic Resonance

Nuclear magnetic resonance is a resonance phenomenon which arises in atoms that have either
an odd number of protons or neutrons. To generate sufficient detectable signal, the to be imaged
proton has to be abundant in adequate quantities. For Magnetic Resonance Imaging of the human
body the most important atom is 1H, as it is bound in water (H2O). Therefore, it represents around
50% - 75% of the human body. Other relevant atoms include 23Na and 31P. In the context of this
work only imaging of 1H is considered.

2.1.1 Polarisation and Resonance

All atoms intrinsically have the property of spin. While for atoms with an even number of protons
and atoms the spin angular momentum S = 0, for the mentioned above atoms S can take integer
values parameterised by the magnetic quantum number l. The magnetic quantum number l only
takes integer values. Therefore, S takes integers values with ħh being the constant of proportionality,
S = ħhl. Associated with S is a magnetic dipole moment pDP . Both properties are connected linearly
by the so called gyromagnetic ratio γ, hence pDP = γS. The gyromagnetic ratio differs for nuclei, in
the case of 1H it is found to be γ = 42.575 MHz

T .
It is crucial to keep in mind that while these odd proton numbered nuclei will experience a

non-zero magnetic moment, on average the spins will be oriented randomly and the resulting mag-
netisation vector summed over a unit volume M =

∑N
i=0 pDP ,i will be zero. However, by applying

a strong B0 field (for scanners used in in vivo applications usually between 1.5T and 7T) a macro-
scopic magnetisation M can be created, because the protons will be aligned in the direction of B0.
This basic notion is graphically visualised in fig. 2.1 - here it is also stated that the z direction is also
called longitudinal, while the x y plane is referred to as the transversal plane. This nomenclature
will be used in the following chapters of this work.

y
x

z longitudinal

xy = transverse

B0
M

Figure 2.1: Orientation of net magnetisation.
The applied B0 field creates a net magnetisation M in a unit volume, shown in blue. The schematic
is shown in the laboratory frame of reference. Adapted from [10].

When this magnetic flux density B0 is present, a magnetic dipole moment pDP has a potential en-
ergy of Ep = −pDPB0. For 1H the possible spin quantum numbers are l = −1/2, 1/2. Therefore, two

3



CHAPTER 2. THEORETICAL BACKGROUND 4

energy states exist. The so called parallel and anti-parallel states have a slightly different energy,
which is determined by the Boltzmann constant and the absolute temperature Tabs. Using the Lar-
mor frequency ω0 introduced below the spin excess can be calculated by spin excess ≈ N ħhω0

2 kBC Tabs
.

Therefore, for a magnetic field of strength 3T the excess is around 10 in a million, which explains
why the to be imaged proton density has to be abundant in large numbers and SNR is a problem
[11].

Another intrinsic feature of a magnetisation vector M when exposed to a static B0 can be ex-
hibited when M and B0 point in different directions. While torque can be calculated with the cross
product pDP × B0, the angular momentum is the time derivative of this cross product. Combining
M= γS with dS

dt = pDP ×B0 leads to

dM
dt
=M× γB0 . (2.1)

From eq. 2.1, which represents the basic equation of motion for the magnetisation and which shows
similarities to classic mechanics, we deduce the most famous equation in MRI, where γ is known as
the Larmor frequency

ω0 = γB0 . (2.2)

Therefore, we conclude that by applying B0 the magnetisation M will rotate in resonance with the
frequency ω0.

2.1.2 Relaxation and Bloch Equation

To acquire an MR signal an excitation pulse RF has to be added. This RF pulse is also denoted by B1
and is orthogonal to B0. Therefore, M is rotated by a specific angle through the application of the
excitation B1 as depicted in fig. 2.2. It should be noted that in this case B1 strength and duration
are picked in a way that the flip angle θ = 90◦.

x’
y’

z

M

B1

θ = 90◦

Figure 2.2: Rotation of net magnetisation to the transverse plane.
B1 induces rotation of M towards the transverse plane. Note that the schematic is shown in the
rotating frame, rotating at the Larmor frequency. Adapted from [10].

This behaviour is equivalent of stating that M is flipped in the transversal x y plane and can then
be denoted as Mx y . The flipped magnetisation M will continue to precess at the Larmor Frequency.
This precession phenomenon is characterised logically by 2 time constants: constant T1 which char-
acterises the return to the z-axis and constant T2 which characterises the decay in x y plane. T1 is
also called the spin-lattice time constant [10], because it is governed by the energy exchange be-
tween the nuclei and surrounding lattice. Therefore, T1 is the time constant which describes how
fast Mz is restored to the equilibrium nuclear magnetisation M0, which is the lowest possible energy
state [10]. Following a B1 excitation Mz follows

Mz =M0 (1− e−t/T1) . (2.3)

T2 depends on the transversal Mx y component and is also denoted as spin-spin time constant,
as it’s governed by the loss of phase coherence of Mx y . Because Mz is the lowest energy state the
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the magnetisation always has to return to this state. Universally the relation T2 ≤ T1 applies. The
dependence of Mx y on T2 can be described by

Mx y =M0 e−t/T2 . (2.4)

Combining eq. 2.1, eq. 2.4 and eq. 2.3, the Bloch equation can be derived. It describes the dynamics
of the nuclear magnetisation and reads

dM
dt
=M× γB −

Mx i+My j

T2
−
(Mz −M0)k

T1
, (2.5)

where i, j,k are the unit vectors in x , y, z direction. Another crucial rationale derived from eq. 2.5 is
that T1, T2 and the proton density v - which is linearly dependent on M0 - form the basic parameters
of contrast generation in MRI.

In reality T2 does not represent the actual decay of the transversal magnetisation. The decay is
governed by T ∗2 which depends on external field effects such as field inhomogeneities and can be
modelled using

1
T ∗2
=

1
T2
+

1
T2
′ . (2.6)

It is possible to reverse the effect of T2
′, which leads to Spin-Echo SE, see sec. 3.2.1.

By placing receiver coils oriented to detect these changes in the x y plane an Electromotive force
(EMF) will be induced into the receiver coils. The generated time signal is called the free induction
decay (FID). Following Faraday’s Law of Induction ∇ × E = ∂ B

∂ t the precessing magnetisation will
induce an EMF in the surrounding receiver coils, which depends on the rate of change of flux φ.
Thus, we conclude EM F = − ∂ φ∂ t .

While the upper explanation make clear how a measurable MRI signal can be generated, the
last thing that has to be considered is how to make the origin of the measured EMF locatable.
To reconstruct an image, localisation techniques have to be added. The smallest unit in a three
dimensional MRI image, which is represented by a signal density v, is called a voxel. To achieve
this spatial localisation linear magnet fields generated by gradients are used in addition to B0.

2.2 Image Acquisition and Imaging Parameters

2.2.1 Coordinate System

Before introducing methods to selectively excite voxels and add spatial localisation, the standard
coordinate system used in this work shall be stated. It has to be noted that different conventions
exist, as e.g. the orientation of the z-axis can be different in radiologic and neurologic publications.

In general, it is possible to state the coordinates of the MRI scanner in either in the logical or
physical coordinate system [12]. The physical coordinate system corresponds to the x , y, z coordi-
nates and is defined using the geometry of the magnet and the gradient coils.

For the definition of the nominal gradients it is common to use a logical coordinate system,
which is described by the Phase-Encode direction (PE), Read-Out direction (RO) and slice-selection
gradients.

As shown in fig. 3.1 the patient is placed head first into the gantry on a sliding patient table.
Assuming a single slice image and z value is fixed. The remaining two coordinates are described
using the x and y coordinates.

Without any loss of generality, in this work the PE direction corresponds to the x and the RO
direction to the y axis. All in vivo results presented are transverse slices, i.e. parallel to the x y
plane. The origin of the logical coordinate system is referred to as the isocenter.

2.2.2 Selective Excitation

For a usual imaging setup one slice in Longitudinal z direction (z) is selectively excited. This can
be achieved by adding a gradient Gz . By using a RF pulse with a rectangular frequency spectrum
which shares the width of the desired slice to be excited only a selective excitation will occur. From
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standard signal processing literature it is well known that the time-domain representation of a rect-
angular function is a sinc function. Therefore, it is infinite and not realisable. Consequently, the
"design" of such a RF function has to be performed with a finite support and special care, see e.g.
[11] for further information.

As already mentioned is the EMF induced in the receiver coils motivated from the rotating mag-
netisation vector M(x , y). As the transverse M(x , y) is rotating in the x y plane it can also be written
as M(x , y) = Mx(x , y) + jMy(x , y). This gives the notion that M(x , y) is a complex signal but re-
sults only from the physical rotation in the x y plane. Keeping in mind that a 2D imaging method
respectively selective excitation is applied, only the magnetisation within a slice is excited. A plane

centred at z = zo of thickness ∆z contains the signal density v(x , y) =
∫ zo+∆z/2

zo−∆z/2 Mo(x , y, z) dz. The
recorded signal is based on this integral over z. If only the described selective excitation would be
used, destructive interference originating from the phase dispersion across the slice. Therefore, a
slice refocusing gradient has to be used right after the selective excitation gradient. This refocusing
gradient has opposite polarity to Gz and half the area of the applied Gz and time product.

Mo(x , y, z) is the initial condition and v(x , y) is dependent on T1, T2, the proton density and
the timing.

2.2.3 Spatial Encoding and k-space

By adding a gradient G x , which is the so called readout gradient and a phase encoding gradient G y ,
one arrives at the total formulation for the FID following

s(t) =

∫

x

∫

y

v(x , y) e− jγG x (t) x t e− jγG y (t) y t d xd y . (2.7)

Equation 2.7 shows that every voxel in the slice can be identified by a unique frequency and phase
component. Furthermore, we clearly see similarity to a Fourier transformation. Indeed, we set up
the gradients Gx , Gy and Gz in the described way. Using the so called k-space formalism where

k represents the spatial-frequency variable, see [11], we substitute kx(t) = γ
∫ t

0 Gx(τ) dτ and

ky(t) = γ
∫ t

0 Gy(τ) dτ. Consequently, we arrive at the signal equation

s(t) =

∫

x

∫

y

v(x , y) e− jkx (t) x e− jky (t) y d xd y =F2D{ v(x , y) } . (2.8)

This equation summarises on of the most crucial features of the MRI gradient setup and the induced
emf: the measured signal is the 2D Fourier transform of the magnetisation vector density!

To ensure readability while maintaining a compact form for all future equations, we reformulate
eq. 2.8 using the spatial vector r, as

s(t) =

∫

V
v(r) e− jk(t)rdr . (2.9)

In general two 1D localisation methods are combined, which means frequency encoding in one and
phase encoding in the other direction. This method, used on most of todays commercial scanners, is
called spin-warp method. In practical terms this means that every readout line is collected using the
same frequency encoding gradient GRO. Readout lines differ only in an additionally applied phase
encoding gradient GPE .

By application of the phase encoding gradient Gy for a period t and following ky(t) = γ
∫ t

0 Gy(τ)
the k-space trajectory moves to a certain line in k space. In a similar manner the RO gradient Gx is
applied during readout. Subsequently, stacking these readout lines in an array and applying a 2D
FFT is the simplest method of obtaining an MRI image.

The time between the RF excitation pulse and the echo is defined as the echo-time T E, and the
time between the consecutive RF excitation pulses the repetition time TR. This idea summarises the
general idea of an MRI image acquisition. Spatially dependent gradients Gx , Gy and Gz are set up in
addition to the strong constant field B0 in z-direction. Using a B1 to excite a slice selectively with a
frequency matched RF function, one can record a signal s(t) which equals the 2D Fourier transform
of v(x , y) at some spatial frequency. Therefore, s(t) is dependant on the gradients and time integrals
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applied. v(x , y) is a function of T1, T2 and the proton density. Therefore, our generated image
contrast depends on one of these 3 parameters.

2.2.4 Data Sampling

The Field of view (FOV) is inversely related to the sampling rate ∆k as defined in eq. 2.10, where i
stands for one of the cartesian coordinates. As usual the Nyquist sampling criterion has to be taken
care of. Because the MR signal is sampled in the frequency (k) domain, aliasing will occur in the
spatial domain. In the following sec. 2.3 deliberate aliasing will be introduced, as undersampling
reduces the total scanning time and the occurring aliasing can be corrected using PI techniques, see
sec. 2.3. The FOV in one cartesian dimension i is defined as

FOV i =
1
∆ki

. (2.10)

The spatial resolution δ can be explained using the number of sampled points N in a FOV. Therefore,
δi =

FOV i
N i

, what can also be expressed as

δi =
1

2ki,max +
∆ki

2

. (2.11)

Fig. 2.3 shows the relation between FOV in spatial and frequency k-domain.

F
O

V
y

kPE

∆kRO

kRO
∆kPE

x

y

FOV x

kx ,max

ky,max

Figure 2.3: Sampling in k-space and corresponding replication in object domain.
The white circles are the object replicas and the grey circle is the object itself. If the sampling inter-
vals in k-space are chosen too small (∆k < 1

FOV ), the object replicas and the object will superimpose.
Adapted from [10].

2.3 Parallel Imaging

Parallel Imaging was originally referred to as Phased Array Imaging. The PI concept was introduced
in 1990 by Roemer et al. [7]. When the PI acquisition was initially presented, its main advantage
was seen as an increase in SNR. This notion can be derived from the fact that most noise in modern
MRI can be attributed to thermal noise in the subject. It is clear that this noise originates from the
whole body. Therefore, if each coil is only sensitive to a certain area it also picks up less noise.
This underlying idea of PI is visualised in fig. 2.4 where the blue coloured areas represent the
picked up noise. This notion in addition to the remarks made in sec. 2.3.3, can be summarised in a
straightforward and intrusive way. As the noise can be modelled as white and gaussian distributed,
spatially varying coil sensitivities reduce the noise that is picked up by the receive coils. Therefore,
the SNR increases.



CHAPTER 2. THEORETICAL BACKGROUND 8

head coil noise

surface coil noise

head coil

surface coil

coil array

coil array
noise

excited slice

Figure 2.4: Parallel imaging coil setup.
Parallel imaging coil setup: Note that for an array of surface coils - shown on the right - the picked
up cumulative noise is greatly reduced compared to the initial setup on the left. This reduction
stems from the spatially reduced surface coil sensitivities and the noise being modelled as white
and gaussian distributed.

2.3.1 Roemer Reconstruction

The concept of having 2 receiver coils with spatially varying coil sensitivities is display in fig. 2.5.

Surface Coil 2Surface Coil 1 Coil image 2Coil image 1

Figure 2.5: Concept of two receive coils with spatially varying coil sensitivities.
The figure illustrates the concept of using two coils with spatially different coil sensitivities to image
an object. To yield the shown coil image, the collected k-space data is 2D-FFT transformed. To com-
bine the coil images for the final reconstruction, reconstruction schemes Sum-of-Squares, Roemer
or SENSE are used. For the two latter the spatial coil sensitivities have to be measured separately
before the actual imaging sequence. Note that in a modern head imaging setup at least around a
dozen surface coils are used. Adapted from [13].

Rewriting our signal eq. 2.9 using multiple receive coils, we obtain per coil ξ

sξ(t) =

∫

V
cξ(r) v(r) e

− jk(t)rdr , (2.12)

where cξ(r) denotes the complex coil sensitivity c at spatial position r. Surface coils have a rapidly
weakening B1 receive field. The spatial variation of sensitivity maps is usually assumed to be smooth
[8], see sec. 4.2.2 for further remarks on the calculation of sensitivity profiles.

The receive field is a function of distance away from the coil surface. Therefore, the image
intensity in every coil image pξ varies according to the surface coil sensitivity as shown in fig. 2.5.
Neglecting measurement noise, the discretised measured data per coil ξ is

mξ,i = sξ(t i) i = 1, ..., nd . (2.13)

The sensitivity encoding of the coil is combined with the classic Fourier encoding. This leads to the
term E = e jkr cξ(r), per voxel located at r. Therefore, this type of encoding can be seen as a hybrid
encoding, utilising both gradient and sensitivity encoding.



9 2.3. PARALLEL IMAGING

As fig. 2.5 suggests in PI every coil picks up signal. Thus, nc images are obtained. We reformulate
the reconstructed signal density vector for ξ ∈ {0, ..., nc} as

pξ(r) = cξ(r) v(r) . (2.14)

Stacking these pictures into matrix form we obtain

P = C v , (2.15)

which leads to the intrusive question of how to solve this eq. with respect to v. Simply summing
all coil images would lead to image artefacts such as regional signal cancellation, as the sensitiv-
ity c is complex. An artefact free image can be obtained using the sum-of-squares method. Thus,

v(r) =
Ç

∑nc

ξ
|pξ(r)|2. The biggest benefit of this approach is that the sensitivity maps don’t have

to be known and consequently initial calibration scans are not compulsory. Calibration scans were
seen as a major drawback in the past because they were time-consuming.

In general, it is not possible to obtain an exact solution as the system of eq. 2.15 is overde-
termined and an exact inversion doesn’t exist. Using the Moore–Penrose pseudo-inverse for the
overdetermined case [14], we derive

CH P = CH C v

v= (CH C)−1 CH P
(2.16)

This approach gives a solution which is optimal in the least square sense. It has optimal SNR and
preserves the phase.

2.3.2 SENSE

Stemming from the Roemer reconstruction, SENSE is a generalisation of eq. 2.16 [8]. This gener-
alisation can also be applied in the case of undersampling. The basic notion of undersampling is to
omit sampling lines, as shown in fig. 3.4. Besides the basic benefit of PI nowadays the possibility of
undersampling the k-space facilitates rapid acquisition schemes used in the applications described
in chap. 3.1. This undersampling will lead to aliasing in the coil images p. This behaviour is shown
on the left side of fig. 2.6.

The aliasing typically occurs in PE respectively y direction as the phase encoding blips are costly
and consequently the number of PE steps is decreased by undersampling. It is possible to unfold
the aliasing in image space. This algorithm is shown in 2.6. In this method the superimposed pixels
in vector a can be separated by multiplying with an unfolding matrix. The aliased vector of pixels
s, can be formulated as

s= C̃a , (2.17)

using the nc × np matrix of coil sensitivities at the aliased positions C̃ and the initial pixel values
a. The system is solvable when nc ≥ np. Using the Moore-Penrose pseudoinverse, eq. 2.17 can be
solved with respect to the np pixels a:

a= (C̃H
Ψ̃
−1C̃)−1C̃

H
Ψ̃
−1

s . (2.18)

Ψ̃ is the receiver noise matrix for the involved channels in C̃ . The noise levels and correlations
are only considered to minimise noise in the final image. To eliminate the noise matrix it can
be taken as identity which leads to skipping of noise assessment. Furthermore, using Cholesky
decomposition virtual receiver channels can be generated which then exhibit unit noise levels and
no mutual noise correlation. Ψ̃ can be measured using a statistical analysis of reference samples
collected in a calibration measurement prior to an actual MRI signal [9].

It should be emphasised again that following eq. 2.13 the SENSE reconstruction integrates
the coil sensitivities implicitly in the encoding function E = e jkr cξ(r), hence the name Sensitivity
encoding.
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Figure 2.6: Schematic of aliasing in a parallel imaging setup.
The aliased pixel in the image from coil1, marked by a white square, contains the sum of the spin
density v at location 1 and the spin density v at location 2 multiplied by the coil sensitivity at location
2, likewise for coil 2. If the coil sensitivities are known (the maps shown) then these equations are
solvable for the spin density at both locations. A different set of equations can be constructed for
each pixel in the sub-sampled images [13].

2.3.3 Noise Considerations

The main source of noise in MRI is of is of thermal origin. It stems from Brownian motion of
electrons in a conductor and generates electrical fluctuations in the receive coils. The contributors
to this motion are the resistance of the receive coil, the resistance of the human body and the
receive electronics resistance. Although it should be noted that most noise originates from the body.
In total all three effects can be added and denoted as R, since they have an additive effect on the
noise variance. Taking the bandwidth (BW) into account, the noise variance can be calculated as

σ2
m = 4kBC T R BW . (2.19)

Any signal acquired during an MRI measurement will have an additive effect on the measured signal.
Therefore, the noisy signal m̃ can be calculated with

m̃(k) = m(k) + ε(k) . (2.20)

The measurement error ε can be assumed as an Additive White Gaussian Noise process. The noise
in k as well as spatial domain can be assumed as Gaussian [15].

Using this model, the spectral density rε( f ) can be derived as rε( f ) = σ2
m, in a discrete mea-

surement setting this result sustains the interpretation that every measured k-space sample has the
same noise variance σ2

m. In image domain, the noise variance will be reduced by the number of

voxels σ2
0 =

σ2
m

N , see [11] for a derivation of this equation. Considering the noise statistics, a single
coil acquisition the noise can be modelled as a complex Gaussian process, where the real and the
imaginary part have zero mean and equal variance σ2

m. For most cases the magnitude signal of the
reconstructed image is modelled as non-zero mean and consequently as Rician distributed [15]. For
background region which exhibit mostly noise contribution the magnitude statistics can be simpli-
fied as Rayleigh distribution and with the same approach statistics for regions of very low noise can
be considered as Gaussian distributed [10].

To have a quantitative assessment of noise usually the SNR is used. In most technical applications
the SNR refers to a signal in relation to noise power, in the field of MRI a definition in relation to
the noise standard deviation is common. Therefore, SNR in a Region-of-interest (ROI) follows
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SNR=
mean(ROIsignal)

std(ROInoise)
. (2.21)

Usually the SNR is then converted to SNRdB = 20 log (SNR). The SNR depends on physical and
instrumentation parameters - increases e.g. with B0, the geometry of the receiver coils and the
conductivity of the sample. Also the SNR depends on imaging sequence parameters like the scan
time, spatial resolution, sequence timing. In general, signal levels increase with v. To assess the
relation to T1 and T2, the to be imaged tissue characteristics have to be considered as well. MRI raw
data is acquired in k-space, which is an inverse space to the spatial domain. Therefore, increasing
the voxel dimensions ∆x ,∆y,∆z increases the SNR and we obtain

SNR∝∆x∆y∆z
Æ

Ny Ts f (v, T1, T2) . (2.22)

This linear dependance should be seen as a rule of thumb, as it also depends on the spatial-frequency
properties of the imaged object and sampling trajectories. In eq. 2.22 Ny Ts can be explained as the
cumulative readout duration. More signal can be collected when the readout duration is increased.
It is clear that the limit of such an increase are T2

∗ effects which modulate the decreasing signal
amplitude.

Second, unlike a matrix representation of an Fast Fourier transform (FFT), a SENSE reconstruc-
tion matrix generally is not unitary. As a consequence, unlike images obtained with one receive
coil, the noise level in an image obtained with PI SENSE techniques varies from pixel to pixel due
to inter-pixel noise correlation.

The geometry factor g can be calculated [8] per voxel ρ following

gρ =
r

[(C̃H
Ψ̃
−1C̃)−1]ρ,ρ(C̃

H
Ψ̃
−1C̃)ρ,ρ ≥ 1 . (2.23)

The geometry factor characterises the ability to separate pixels superimposed by aliasing and is
sometimes referred to as noise amplification factor. Together with the reduction factor R it defines
an upper bound for the SNR obtained when undersampling is applied. SNRred

p is exhibited when
undersampling is performed

SNRred
ρ =

SNRfull
ρ

gρ
p

R
, (2.24)

while SNRfull
p is obtained under full Fourier encoding. The reduction factor R is the ratio of reduced

number of samples with respect to full Fourier encoding. A reduction factor of R = 2 is visualised
in fig. 3.4.





3 | Principles of Echo-Planar
Imaging

3.1 Applications and Scanner Overview

EPI is mainly used for the imaging of the head. Major applications have been fMRI and Diffusion
weighted imaging (DWI). Because it is noninvasive and no ionising radiation is used, fMRI has been
the dominant tool for brain mapping research. Using fMRI, brain activity patterns can be mapped
using Blood oxygenation level dependent (BOLD) contrast. BOLD contrast can be generated due to
the properties of haemoglobin. Haemoglobin is diamagnetic when oxygenated and paramagnetic
when deoxygenated. The other major application termed DWI finds applications in brain mapping
too but also in fiber tracking. Using additional gradients the diffusion of water molecules, which is
then used to generate contrast.

Figure 3.1 shows the system of an MRI system used in this work. The description of the underly-
ing coordinate system can be found in sec. 2.2.1. The head coil array consists of multiple channels
and is also shown in fig. 2.4. The different receive channels are located in a circular manner around
the head and consists of more than 10 receive channels. The patient or phantom is placed on the
movable patient table, which locates the table in a way that the head will be in the isocenter of the
scanner. The liquid helium cools the main field coils below the critical temperature of around 4.2 K,
needed for the superconducting electromagnets of the main field coils. The scanner reconstruction
unit processes the acquired data and enables the export of raw data, see sec. 4.1.3.

3.2 Pulse Sequences

The last sections provided an overview of the physical background of MRI, the acquisition and spatial
localisation of a signal. The following remarks should give an overview of the actually applied
sequences, leading to an understanding of the EPI sequences used to obtain the results of this work.
Both SE, introduced in the following sec. 3.2.1 and GRE sequences, sec. 3.2.2 are used for EPI
trajectories. Both techniques rely on manipulating the Free induction decay (FID) in a way that an
echo is generated instead of recording the FID directly. One of the main advantages of this approach
is that the data measurement occurs far away from the excitation which needs high voltages and
can hinder the recording of the significantly smaller FID signal.

Restating eq. 2.12 we obtain

s(t) =

∫

V
c(r) v(r) e− jΦ(r,t)dr . (3.1)

In a practical term the phase accrual term e− jΦ(r,t) not only considers phase accrual due to gradients,
but also due to field inhomogeneities ∆ωB0 and chemical shift ∆ωCS . Therefore, it can be divided
into these three additive parts

Φ(r, t) =∆ωB0(r) t +∆ωCS(r) t + γ

∫ t

0

G(τ) dτ . (3.2)

13
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Figure 3.1: MRI system setup.
The Systems components are given in black and the four tomographic imaging directions are stated
in dark blue. The head of the patient is located at the isocenter of the magnet. The bandpass filtered
signal is demodulated and forwarded in the image processing unit. The reconstruction unit has a
modular structure. After any module the raw data and certain image parameters can be exported
via an output node. See sec. B for an overview of the exported data. Therefore, the output node
resembles the input node of the offline reconstruction pipeline.

An echo occurs at the moment when the space-variant phase shifts are minimised. Therefore, a
peak in strength and coherence of the signal is observed. While in GRE sequences these peaks are
achieved by undoing the phase shifts from gradient fields, SE sequences neutralise the phase shifts
due to ∆ωB0 and ∆ωCS .

3.2.1 Spin Echo Imaging

As note by eq. 2.6 the external field effects stemming from field inhomogeneities can be reverted
by SE sequences. Fig. 3.2a) shows different spins dephasing until the point in time τ, after which
the 180◦ excitation is applied. The phase right before the π excitation can be denoted as

Φ(r,τ−) = [∆ωB0(r) +∆ωCS(r)]τ
− . (3.3)

This second excitation negates the spin phases. The phase right after the π excitation is therefore
given by

Φ(r,τ+) = −Φ(r,τ−) . (3.4)

Consequently, all of the spins will be realigned at time 2τ. This realignment is called a spin echo.

3.2.2 Gradient Echo Imaging

In contrast to SE imaging presented in the section above, GRE imaging does not negate the phase
shift from field inhomogeneities and chemical shifts, but only from gradient fields itself. When
the gradient field reverses at τ, the phase wrapping accrued from 0 to τ starts to unwind. This
means that the GRE sequence only rephase spins that are also dephased by the gradient application.
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Figure 3.2: Phase evolution plots of Spin Echo and Gradient Echo sequences.
a) SE phase plot: Spin Echo-Spins at different resonant frequencies disperse in phase. At time τ,
the 180◦ pulse reverses the phase about τ. The slope of phase accrual remains the same after the
180◦ pulse and at time 2τ, the spins rephase and an echo occurs.
b) GRE phase plot: Gradient Echo-Phase progression of spins at x1, 0, −x1. Spins at higher fre-
quency from time 0 to τ (gains phase), lower frequency from τ (loses phase). At time 2τ, spins
have rephased producing an echo.
Adapted from [10].

Therefore, the dephasing created is also symmetric, as noted by spins at x1 and −x1. Having a
perfect main field inhomogeneity and no chemical shift the phase trend can be described by

Φ(r, t) = γ

∫ t

0

G(τ) dτ . (3.5)

Considering a constant readout gradient, fig. 3.5b) represents the phase accrual from 0 to τ. After
the gradient reverses, the spins start to unwind and an echo is formed at 2τ. If the gradient is
applied longer the spins start to dephase again after the time point 2τ.

As the spin echo dephasing due to field inhomogeneities and chemical shift is not compensated,
GRE sequences are especially sensitive to∆ωB0 and∆ωCS effects. This explains that GRE sequences
produce T ∗2 weighted contrast, while SE sequences measure contrast modulated by T2 constants.

3.2.3 Echo Planar Imaging

EPI is an imaging technique where a whole slice is acquired following a single RF excitation or a
small number of RF excitations. Using only one excitation is also denoted as Single-Shot EPI, con-
sequently the use of multiple excitations is called Multi-Shot EPI. In this work only Single-Shot EPI
sequences were considered. Thus, the usage of the term EPI implicitly contains this choice.

Fig. 3.3 shows part of SE EPI sequence. In general it is possible to obtain images with GRE as
well as SE excitation and the following excitations are equivalent for both contrast mechanisms. To
achieve an EPI trajectory at first a slice of several millimetre thickness is selectively excited using a
gradient Gz . Afterwards, both GRO and GPE are applied to move to the lower left spatial frequency
in Fourier domain. Following the π rephasing pulse (for SE sequences), line by line is being readout
by applying a readout gradient GRO of alternating polarity. The echoes are sampled using an Analog-
Digital converter (ADC). To move from one line to another a so called phase-blip Gy is applied. As
mentioned for a Single-Shot EPI acquisition a whole slice is imaged following a single RF excitation.
Therefore, fig. 3.3 would contain as many phase-blip as sampled echoes.

An intrinsic problem of that approach is that any phase error exhibit by measured voxels is ac-
crued, since for Single-Shot EPI all voxels are recorded in a successive fashion. Therefore, voxels
lying at the end of the readout train are exposed to more phase errors than voxels recorded close
to the RF excitation. One of the core advantages of EPI is imaging speed. Additionally, using EPI
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several artefacts arise. All of these artefacts, described in the following sections, arise in the PE
direction. This behaviour stems from the fact that due to the high sampling rate of the ADCs the
BW in RO direction is high, while the BW in PE direction is very low.

RF

Gz

GPE

GRO

ADC

π
π
2

Phase Blips

Ramp shaped
RO gradient
(see fig. 4.3)

TE/2

Figure 3.3: A Spin-Echo EPI imaging sequence.
Part of a SE EPI Imaging Sequence. In the experiments conducted for this work more than a hundred
echoes per imaged slice were collected. The time difference between the π

2 and π pulse is defined
by half the echo time, denoted as TE

2 . As the ratio between TE and T2 determines the amount of
collectable signal, the slopes of the ramp shaped gradients are sampled. See fig. 4.3 for further
explanations. The phase blips are applied to reach the next readout line. Adapted from [11].

One of the technological challenges in the development of EPI were high hardware requirements.
Performant gradient coil systems, gradient amplifiers and ADCs are needed [3]. The readout of a
whole slice has to executed before the T2 respectively T ∗2 weighted signal has diminished. Using PI
techniques it has been a major improvement because only a fraction of the imaging plane has to be
sampled. Such an undersampled trajectory is displayed on the right of fig. 3.4.

The reduction factor R denotes the ratio of sampled phase-encoding steps in relation to the total
number of phase-encoding steps. Therefore, full cartesian sampling is equivalent to R = 1, while
sampling every second phase-encoding step results in R = 2. This is visualised in fig. 3.4. As for
most of the MRI signal is recorded at k = 0, the phase-encoding step at k = 0 is never omitted.

Using a reduced number of acquisition steps has several major advantages. First of all, the total
imaging time is reduced approximately by 1

R . The reduced imaging time can be used for better
temporal resolution. Furthermore, because a single slice is imaged faster, the signal will also be
decayed less which can be beneficial imaging tissue with short T2 or T ∗2 constants. Another crucial
benefit can be reduced artefacts. As noted earlier, susceptibility artefacts are accumulated during
the readout. Therefore, using accelerated measurements can lead to less artefacts.

On the downside following eq. 2.24 the SNR is reduced by 1p
R
. Also the increasing g, calculated

with eq. 2.23, describes through the occurring noise amplification an algorithmic limit for the
separation of superimposed pixels.

3.2.4 Field Inhomogeneities

There are multiple effects that can lead to field inhomogeneity effects. First of all susceptibility
effects in the patients can induce the so called susceptibility gradients. The magnetic susceptibility
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Figure 3.4: Scheme of a fully sampled and accelerated EPI trajectory.
Scheme of a fully sampled cartesian EPI trajectory on the left, which corresponds to a reduction
factor of R=1. On the right ∆kPE is doubled and consequently the FOV halved, respectively R =
2. Such an accelerated measurement approximately halves the imaging time, but leads to aliasing.
The aliasing can be unfolded using PI image reconstruction techniques.

quantifies how susceptible a magnetic material is to the magnetic field and is denoted by χ. For
linear materials χ is the constant of proportionality between M and H and consequently M = χH.
As usual the susceptibility generalises to a tensor representation for non-linear cases.

Recalling the fact that B= µH it is possible to derive χ = µr −1. From this eq. it becomes clear
the χ is a dimensionless quantity. Furthermore, we formulate

B= µ0 (H+M) = µ0 H (1+χ) . (3.6)

As already mentioned in sec. 2.2.2, the signal density is v(x , y) =
∫ zo+∆z/2

zo−∆z/2 M o(x , y, z) dz.
Therefore, using eq. 3.6, we can relate B to the recorded signal described in eq. 2.8. This depiction
is useful to analyse the recorded signals in the vicinity of interfaces. Such an interface is depicted in
fig. 3.5. In the human brain this concept has a particular importance at water air interfaces which
are for instance located at the borders of sinus cavities.

B

B’

µ′

µ

Bt

B’t

B’n

Bn

interface

Figure 3.5: Flux density boundary condition.
Note that the normal component of B is continuous across the interface, while the tangential com-
ponent is discontinuous. A practical example for EPI measurements are interfaces at the borders of
the sinus cavities.

The boundary conditions for such an interface are

Bn −B′n = 0

Ht −H′t = J̄ .
(3.7)
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Most tissue in the body consists of water. The susceptibility difference between tissue and air
can see local frequency shifts in the order of several ppm [16]. As the precession frequency is
determined by the local field, these interfaces can induce additional susceptibility gradients. These
gradients prevent correct spatial encoding, as described in 2.2.3, potentially leading to gross image
distortion.

Another crucial source for field inhomogeneities is the so called water-fat shift. The shift between
water and fat is ≈ 3.5ppm. On a 1.5T scanner the Larmor frequency is ω0 ≈ 64Mhz. Consequently,
the difference in resonance frequency is around 220Hz. Therefore, proper fat suppression gains
importance with increasing main field strengths.

3.2.5 Nyquist Ghosts

Nyquist ghosts are one of the most prominent artefacts occurring during EPI acquisitions. An EPI
trajectory is shown in fig. 3.4. To perform an image reconstruction the echoes sampled in an odd
manner have to be reversed. This is necessary because the spatial frequencies are sampled in an
opposed order for odd compared to even lines.

Only when even and odd echoes are perfectly mirror-reversed the odd echo flip can be performed
without introducing errors in the image reconstruction. In reality the rapid switching of the gradi-
ents needed to obtain an EPI image, induce eddy currents in coils and all conducting surfaces. These
eddy currents yield a EM F = − ∂ φ∂ t . Following Lenz’s law the fields created by these currents always
oppose the applied gradient fields. Therefore, the effective gradient is reduced and as a result the
timing is delayed.

Assuming a local background gradient G’ resulting from eddy currents, the measured qth echo
will exhibit a shift of

∆kshift,q = (−1)q γ G′ TEq . (3.8)

Because the polarity of odd and even echoes is opposite they will exhibit k-space shifts of opposite
sign. Following the Fourier shift theorem, the 1D-FFT of that echo will see a linear phase variation

v̂(x) = v(x) e− j2π∆kshift,q x . (3.9)

This linear phase variation is shown in fig. 3.6b). This asymmetry leads to aliasing in the spatial
domain which results in a ghost shifted half a FOV respectively N

2 pixels away. Nyquist Ghosts are
often also called N/2 Ghosts. Fig. 3.6c) shows an example of such Nyquist ghosting obtained by
simulation.

Nyquist ghosting
y

x

ky
π

−π

a) b) c)

x

ky

x

Figure 3.6: Phase rolls for EPI echoes and resulting Nyquist ghosting
a):Phase roll for a spin warp data set will not cause ghosting artefacts. b):Phase roll for echoes of
an EPI data set acquired in opposite kx directions, after FFT in RO direction. These discontinuities
are the principal cause of ghosting artefacts in EPI. .
b): Simulated Nyquist Ghost obtained by misaligning all odd echoes by one ∆kx .

To emphasise the Nyquist ghost problem, it can be stated that for BOLD MRI a N/2 ghost would
imply that the brain activity is projected into a region half a FOV away [17].
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Furthermore, it also has to be noted that all filters have non-zero phase responses which result
in k-space misregistration and phase errors [18] [2].

3.3 Model Based and Iterative Image Reconstruction

When looking at the reconstruction problem of MRI, it becomes clear that the reconstruction pro-
cedure can be formulated as an inverse problem. The measured data m can be formulated as

m= Av , (3.10)

in relation to the reconstructed image v via the system matrix A. In this simplest model-based for-
mulation of eq. 3.10 the system matrix A denotes the Fourier encoding A = e jkr. This underlines
why the Inverse fast Fourier transform (IFFT) has been used as the standard tool for reconstructing
images obtained under conventional full cartesian spin-warp imaging.

There are multiple benefits stemming from this model-based formulation of the EPI reconstruc-
tion. First of all, it is possible to integrate effects like phase errors, field inhomogeneity effects
and non-uniform or non-cartesian sampling patterns directly into the reconstruction. Second of all,
prior information can be used to enforce smoothness and also support constraints, like e.g. phase
constraints. On the downside it has to be noted, that an extension of the signal model complicates
the reconstruction procedure [19].

The following sec. 3.3.1 gives an overview of the formulation and assumption used for A. In sec.
3.3.2 an iterative algorithm for the solution of eq. 3.10 is described.

3.3.1 Model-Based Formulation of Reconstruction

While the measurement m is discrete, the reconstructed signal densities v(r) are unknown continuos-
space functions. Therefore, object functions have to be used to enable estimation v for this ill-posed
problem. A widely used object function is a rect function. This mathematical choice can be visualised
by assuming square voxels. Therefore, the signal densities v can be approximated using

v(r) =
N
∑

j=1

v j rect(
r− r j

FOV
) , (3.11)

where N denotes the number of voxels. We can obtain a simplified discrete model per coil ξ

sξ(t j) =
N
∑

j=1

aξi j v j . (3.12)

As outlined in sec. 2.3.1 and 2.3.2 using SENSE the coil sensitivity profiles are integrated into the
encoding function E. Therefore, aξi j in eq. 3.12 are the elements of our system matrix A. As an
example for the extension of the signal model, the field inhomogeneity effects are taken into account
as well. Therefore, the system matrix elements can be written as

aξi j =

∫

rect(
r− r j

FOV
) c(r) e− jk(t)re− j∆ωB0 t dr≈ c(r j) e− jk(t)r j e− j∆ωB0 t . (3.13)

Using the system matrix elements aξi j in eq. 3.13 leads to the matrix formulation of eq. 3.10, m =
A v. Also further effects like binary sampling masks Ms and phase maps can be integrated into the
system matrix, see sec. 4.5.2.

3.3.2 Iterative Methods

In a usual setup image dimensions are in the range of matrices of 256× 256 pixels and more than
10 receive coils are used. Therefore, the system matrix can contain more than a million elements.
It is clear that is costly to invert such a system analytically, as the complexity is of order O (N3).
Furthermore, the system can be ill-conditioned. Inverting such a ill-conditioned system, numerical
errors are introduced into the solution.
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Furthermore, using PI methods the inverse problem is also overdetermined due to multiple re-
ceive channels. Therefore, a prominent tool to solve these large systems are iterative algorithms.

Instead of looking for an exact solution of 3.10 in the iterative method the difference between
left and right side is minimised [20]. This difference is specified using the so-called residual vector
r = Av−m. Therefore, the iterative algorithm should minimize a norm of this residual vector. The
so called cost functional is defined by

J(v) = ||Av−m||2 . (3.14)

Consequently a solution v̂ can be found by minimising

v̂= arg min
v

J(v) . (3.15)

As this is another formulation for a minimisation of the sum of |r|2, the minimisation problem ist
often referred to as a least-squares problem.

The condition number cond(A) can be stated as the ratio of the largest to the smallest singular
value cond(A) = maxσ0(A)

minσ0(A)
[21]. Having a high condition number corresponds to an ill-conditioned

system. One of the main issues with ill-conditioned systems is that small errors in the input data
will result in large errors in the output data. For example noisy MRI signals could result in large
errors in the reconstructed image.

One option to deal with an ill-conditioned system is to discard a fraction of the smallest singular
values, which is called the Truncated SVD or TSVD [21]. In the case of SENSE this algorithm is not
really fitting as the number of singular values is already very small [13]. Other methods include the
Newton’s method, the Steepest Decent Method or CG methods. See sec. 4.3 for explanations on the
iterative algorithm implemented in this work.

One possible solution to deal with ill-conditioning due to noise or artefacts are regularisation
methods. A regularisation can stabilise the solution for high iteration counts and also includes the
possibility to include prior information [22]. We therefore extend the previous equation to

v̂= argmin
v

||Av−m||2 +λβ(v) . (3.16)

An example for a regularisation method is the widely used Tikhonov regularisation. The chosen
regulariser β(v) = ||v||2 adds the λ weighted 2-norm of the solution vector to the minimisation
problem. It is also possible to include prior knowledge respectively a reference image v̄ to the
regulariser, β(v) = ||v− v̄||2 [22]. See e.g. [22] for other possible regularisers. . The regularisation
parameter λ can be determined using the L-curve method, see [20] for further details.
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4.1 System Setup

All Philips scanners have an on board reconstruction unit, which is composed in modules. First the
radiologist or researcher picks desired options in the user interface, like for example TE or the desired
imaging sequence. When the examination of the scanner starts, first the SENSE reference scan is
taken. It consists of two parts: Initially the sensitivity of the RF body coil is measured. The second
part consists of measuring the sensitivities of the channels in the head coil array. The processing
of the SENSE reference scan data is explained in sec. 4.2.2. After the initial reference scans are
executed, the MRI scanner performs the EPI reference scan to yield information about phase errors,
see sec. 4.5.1. While the sequence shown in fig. 3.2 is performed, the reconstruction unit assembles
the modules for the reconstruction pipeline. This pipeline is referred to as recon2. After a slice
measurement has been performed, the data is passed through the recon2 pipeline leading to a final
image. Using a Philips Research internal format, the reconstructed image can be exported and loaded
into a Python environment described in sec. 4.1.3. After any recon2 module a data export can be
triggered. The exported data used in this work is listed under table B.1.

4.1.1 MRI System

The measurements were obtained on a Philips Ingenia 1.5T [23] and a Philips Ingenia 3.0T [23]
scanner (Koninklijke Philips N.V.). The detailed measurements obtained on each scanner are listed
under table A.1. Both scanners have an open bore diameter of 70cm and a maximum FOV of 55cm.
The gradients have an maximum amplitude of 45mT/m and a maximum slew rate for each axis of
200 T/m/s. All scans were conducted with digital dStream head coils. The surface coil array uses a
maximum of 15 channels achieving a maximum coverage of 30cm [24].

Several advantages and disadvantages for the usage of a high-field MRI should be noted. As
stated earlier the SNR increases approximately proportional to B0 and consequently it is favourable
to use a higher B0 field system. Furthermore, T1 increases with B0. This can be favourable in pro-
ducing T1 weighted images.

On the downside, off-resonance effects like susceptibility variations, see sec. 3.2.4, and water-fat
shift increase with B0. The main spectral peak of fat and water differ by 3.5ppm of B0. For a scanner
with B0=1.5T the frequency variation can be calculated as∆ f = γ B0 3.5ppm ≈ 64MHz 3.5ppm ≈
220Hz. For a 3.0T system ∆ f would be approximately doubled to 440Hz. Therefore, the 3.0T
system are predestined to be used to study effects of field inhomogeneity on the reconstruction al-
gorithm. Furthermore, the RF wavelength can be reduced many times over, since the field length is
inversely proportional to B0. For even higher field strengths like commercially available 7T scanners,
standing waves in the FOV can become visible [25]. The Specific Absorption Rate (SAR) describes
the RF power deposited in the imaged human tissue. Relating safety concerns due to patient heating
it is strongly regulated, and is not allowed to increase 3.2 W

kg in the head [26].
Unless stated otherwise in table A.1 all phantom measurements were conducted with a 3.5l bot-

tle filled with salt water solution. As stated in the same table also other phantoms were used, which
show more susceptibility artefacts. In vivo scans were performed following the Philips Research in-
ternal regulations.

21
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4.1.2 Measurements

All measurements executed and used for this work are listed under table A.1. These can be struc-
tured into multiple groups:

The first group consists of all phantom measurements with the 3.5l salt-water solution filled
phantom. As this phantom has few field inhomogeneity effects and is smooth inside it is suitable
to study the limits of the off-line reconstruction algorithm. The second group consists of phantoms
which show more susceptibility artefacts and also have sharp edges.

Third of all strong field inhomogeneity effects were simulated using ω0 offsets and spatially lin-
early varying gradient offsets.

Also multiple in vivo measurements were obtained. These tend to have the highest demand on
the reconstruction algorithm, as the obtained data is noisier than in phantom cases.

A multislice study was conducted to study the reusability of the calculated phase map for adja-
cent slices.

Fig. 4.1a) shows an example of the loaded raw data in k-domain. As expected the majority
of the signal can be found in the around the zero frequency. Fig. 4.1b) shows the corresponding
2D-FFT of the data. Note that fig. 4.1a) respectively fig. 4.1b) represent only one out of up to 15
receive channels. The result of the offline reconstruction is shown in fig. 4.1c).
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Figure 4.1: Input Data in k and spatial domain. Offline Reconstruction.
a): Shows input data of a single channel (logarithm of magnitude). Data collected using SE se-
quence with R=2 and fat suppression. PE denotes the phase-encode and RO the readout direction.
b): 2D-FFT of a) Note that due to oversampling in readout direction and non-uniform slope sam-
pling the dimensions of the input data and the final reconstruction vary significantly.
c): Offline reconstruction calculated using the algorithm described in this work.

4.1.3 Software Framework

The offline reconstruction was implemented in Python 3.6. Based on the Anaconda environment
Spyder 3.1.4 was used as an editor. All algorithms were implemented using numpy [27]. The
following table B.1 shows the data and parameters used in for this work. Table B.2 describes the
implemented Python functions.

4.2 Preparation of EPI Data

Before the actual iterative image reconstruction can be executed, preprocessing steps need to ap-
plied. These include interpolation steps as explained in the next section as well as preconditioning,
see sec. 4.2.2, which can reduce the number of iterations.
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4.2.1 Interpolation of Matrices

The zero-fill factor in one cartesian coordinate i can be described as

Z f ,i =
rows/columns in final k-space matrix

rows/columns in acquired k-space matrix
. (4.1)

There are multiple reasons why a zero interpolation is useful. The number of rows correspond
to the number of PE encoding steps. This number is also called the EPI factor. For an EPI acquisition
it is always an odd number. In RO direction the number of sampling points is always even to achieve
an even signal distribution between −kx ,max and kx ,max . Therefore, to achieve a square matrix for
the multiplications of sec. 4.3 the matrix needs to be filled with at least one row full of zeros. By
convention this lower row is filled in the lower half plane.

As for R 6= 1 the raw data only contains the actually sampled echoes, the omitted readout lines
need to be zero filled. Thus, the acquired data matches the coil sensitivity matrices, sec. 4.2.2. The
area ration of zero-filling in relation to total area was chosen to be ∼ 15% in this work.

4.2.2 Calculation and Processing of Sensitivity Profiles

Due to the fact that unfolding is achieved by using spatial receive coil sensitivities, the knowledge
of those is a prerequisite to obtain a valid reconstruction. Spatial sensitivities are complex functions
that vary smoothly [8]. To obtain the coil sensitivity profiles a SENSE reference shot is taken. As
mentioned these reference shots measure the RF body coil sensitivity and the sensitivities of the
surface head coils.

As noted in table B.1 the body coil sensitivity as well as the sensitivities from the surface coils
were loaded into the Python environment. As the surface coil sensitivity profiles from the SENSE
reference shot still contain anatomical information, every surface coil sensitivity profile ξ= 1, ..., nc
is divided by the body coil, following

cξ(r) =
cξ(r)

cbodycoil(r)
. (4.2)

The division of the surface coils sensitivities by the body coil is already performed in the recon2
reconstruction unit and thus it has not to be performed in the Python environment.

Fig. 4.2a) shows a body coil sensitivity profile. Using this profile the Object indicator map Ω is
calculated. Pixels with a magnitude smaller than 20% of the maximum magnitude of the body coil
sensitivity are marked as zero, see fig. 4.2b). In terms of SNR such a thresholding is favourable, as
the SNR increases with reduced aliasing. Furthermore, the number of superimposed pixels is also
reduced.

A surface coil sensitivity profile is shown in fig. 4.2c). For the calculation first the shown surface
coil sensitivity is thresholded with Ω. Following it is divided by the square root of the sum. This
intensity correction follows

Iρ,ρ =
1

Ç

∑nc

ξ
|c(rρ)|2

, (4.3)

and reduces the number of iterations needed to solve an iterative algorithm [9].

4.2.3 Readout Resampling

In the development of EPI the rapidly vanishing signal amplitude, modulated by T2 respectively
T ∗2 , has always been a challenge since it limits the possible Echo train length. Depending on the
technique used the time window to record the signal s(t) is usually between 30ms and 200ms. Sec.
2.2.2 introduced the spatial encoding by gradients, which enables image reconstruction using FFTs.
For EPI the readout gradient GRO can be modelled as a trapezoidal, see the red dotted line in fig.
4.3a). Therefore, the gradient can be described by a rise time, slew rate and gradient amplitude.
Usual values for the used gradient system in this work are given in sec. 4.1.1. Sampling only on the
constant gradient amplitude shown in light orange in fig. 4.3a) the k-space trajectory will traverse
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a) b) c)

Figure 4.2: Body coil reference, Object indicator map Ω and Surface coil sensitivity profile.
a) Shows the body coil image obtained from the low resolution SENSE reference shot. The Object
indicator map Ω as shown in b) is obtained by excluding pixels that are smaller than 20% of the
maximum magnitude of the body coil sensitivity. c) shows the sensitivity profile of a single surface
coil obtained by first dividing by the body coil sensitivity, following eq. 4.2. Following the sensitivity
profile is masked with Ω and intensity corrected following eq. 4.3.

the k-space with a constant k-space velocity. For EPI it is beneficial to also sample on the slopes
of GRO, since this improves the sampling efficiency. The fraction of the gradient slope used for
sampling is referred to as slope-fraction and shown in light purple in fig. 4.3a). Following kRO(t) =
γ
∫ t

0 GRO(τ) dτ it is clear that a non-constant GRO results in a non-uniform k-space trajectory, as
shown in 4.3a) in green.
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Figure 4.3: Non-uniform k-space sampling and Kaiser-Bessel window used for regridding.
a) shows a trapezoidal readout gradient GRO used. The areas in purple are sampled and are referred
to as slope fraction. Slope sampling results in a non-uniform k-space sampling. The areas coloured
in bright orange are sampled uniformly. The spikes denote the Ш function, used to describe a Dirac
Comb.
b) shows a Kaiser-Bessel window of width 4∆k, used to regrid the non-uniform k-space trajectory.

Taking this into consideration, the sampled data ms can be described as

ms =m O . (4.4)

O is a sampling function

O(kx , ky) =
P
∑

j=1

2δ(kx − kx , j , ky − ky, j) , (4.5)

which samples in PE direction and RO direction. Therefore, O consists of P two-dimensional delta
functions representing the sampling grid [28]. Only the sampling pattern in RO direction is consid-
ered to be non-uniform. The sampling pattern in PE direction is always uniform, but might exhibit
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an acceleration factor R - see fig. 3.4.
It should be noted that the term Non-Uniform sampling (NUS) is also referred to non-uniform

sampling patterns in time. This can be used in order to receive a uniform sampling density of k-space
[11]. Using∆kx = γ

∫ ts

ts−1
Gx(τ) it is clear that by picking non-uniform sampling times (ts−1, ts),∆kx

can be constant. However, the noise statistics are distorted, making other adaptions necessary. In
this work only the first approach of non-uniformity in k-space sampling density is considered.

To yield m from ms the influence of the non-uniform sampling introduced by O needs to be
considered. While the collected k-space data is 2-dimensional the following explanations are made
for the readout direction, in which the non-uniform sampling occurs. Without any loss of generality
kx = kPE . Consequently, in PE direction no regridding is necessary.

Methods to consider this sampling and consequently to reconstruct non-cartesian data can be
categorised in three approaches [29]: grid driven interpolation methods try to estimate grid points
by interpolating adjacent k-space data. Furthermore, methods exist which try to locally approxi-
mated optimum interpolators for a specific location.

The method used in this work and in most of today’s reconstruction algorithms is a data driven
approach, which adds data points to adjacent grid points. Therefore, the data is resampled to a
cartesian grid. The contribution of data to grid points is determined by fitting kernels. An example
of such a kernel is shown in fig. 4.3b). While this is very favourable in terms of SNR, it complicates
the calculation as e.g. a density compensation needs to be implemented, see the explanations below.

The first basic idea of a gridding algorithm is to divide the k-space plane into a uniformly spaced
grid, denoted by Ш(kx). Therefore, Ш(kx) defines a sum of equally spaced two-dimensional delta
functions. Then, for every gridpoint, all data points falling to a region of it, are summed [28].

The gridding operation is not an exact interpolation. Rather the gridding operation approxi-
mates the gridded function within some region. However, this is an accurate representation as long
as the width of a region is smaller or equal than distance between two cartesian grid points [30].

Optimally this gridding procedure would use a sinc convolution function, which is not feasible
due to its infinite nature. The choice for the convolution function is made following two conflicting
arguments: computational complexity and performance of the function. In [28] it is shown how
different functions compare and that the Kaiser-Bessel is a good compromise between computational
complexity and accuracy.

The Kaiser-Bessel window WKB(kx) implemented for this work, follows

WKB(kx) =
1
α

I0[β

√

√

1− (
2kx

α
)2 ] . (4.6)

A graphical representation of this function is shown in fig. 4.3b). In eq. 4.6 I0 denotes the modified
Bessel function of the first kind, order 0. The width α is chosen as α = 4∆kx and the design
parameter β as β = πα

2 . The value β can be found by minimising a functional which describes the
amount of aliasing at the edges of the FOV [28].

The convolution and resampling to a uniform grid than follows

mSCS(kx) = [mS(kx) ? WKB(kx)]Ш(kx) . (4.7)

As the sampling density is not uniform across the k-space plane, a density compensation function
ρA(kx) needs to be introduced and applied, ρA(kx) = O(kx) ?WKB(kx). Oversampled k-space areas
consequently have a larger area density vice versa undersampled areas will have a smaller one.
ρA(kx) is either applied as part of a postcompensation or precompensation. When applying it in
a postcompensation fashion, to rapidly changing densities can’t be taken care of [29]. Therefore,
density compensation was applied prior to the convolution and the gridding algorithm reads as

mSCS(kx) =
�

mS(kx)
ρA(kx)

? WKB(kx)
�

Ш(kx) . (4.8)

As a last step after applying the convolution gridding algorithm, the resulting complex image
(Fourier transformed to spatial domain) has to be divided by the Fourier transform of the convolution
kernel WKB(kx). This division is also referred to as deapodization.

The Fourier transform of eq. 4.6 is the impulse response WKB(x) given by

WKB(x) = sinc(
Æ

(πα x)2 − β2) . (4.9)
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A rolloff effect due WKB(x) will show up as an attenuation towards the sides of the image. To
account for this the data is collected using an oversampling factor of 2.0, which leads to good
sidelobe suppression. This explains why the number of points in readout direction NRO in fig. 4.4a)
is significantly larger than in fig. 4.4b). Without oversampling replica sidelobes will superimpose
with the image at the edge of the FOV. By introducing an oversampling a transition band can be
introduced, aliasing and apodization can be reduced. A oversampling can be conceived by sampling
the k-space data in a denser way than the actual grid.

Fig. 4.4 shows the result of applying the convolution gridding algorithm explained above.

a) b)

Figure 4.4: Readout regridding: Raw data and resulting coil image.
a) shows a coil image obtained by taking the k-space data of a single surface coil, flipping all odd
echoes and then executing a 2D-FFT. Note that the data was collected using an oversampling factor
of 2.0 and 80% of the gradient slopes were used for sampling. b) shows the same coil data, after
readout regridding has been performed as described in this section.

4.3 Implementation of Iterative Image Reconstruction

As noted for SENSE accelerated measurements, the encoding matrix E can be stated as

E(ξ,κ),ρ = e jkκrρ c(rρ) , (4.10)

where ρ is the voxel index, κ represents the sampling position in k-space and ξ = 0, ..., nc is the
coilindex. Using the encoding matrix the so called forward model the measurement can be formu-
lated as

m= Ev . (4.11)

Using this equation the goal is to estimate the signal density v in every voxel located at spatial posi-
tion r and are stacked in the vector v. Therefore, for a square image the dimension of E is ncnd ×N .
The vectors v and m have a length of N2 respectively nc nd .

It is clear that to find a direct calculation of v, a matrix inversion of E would be needed. Due to
very large dimension of E this is not really feasible, as E might also ill-conditioned or even singular.

To find a decoding matrix F there are two main approaches: For the first approach the goal is
to optimise the voxel shape, this is termed as strong reconstruction. A common assumption for an
optimal voxel shape are e.g. box functions.

The second second aims for optimal SNR, weakening the optimal voxel shape condition, termed
weak reconstruction. This can be achieved by requiring an orthogonality between F and E. There-
fore, the weak voxel condition is defined with the identity matrix I as

FE= I . (4.12)

If eq. 4.12 is underdetermined, the remaining degrees of freedom can be used for SNR optimisation
[9].

Assuming τ independent Gaussian noise sources, each distributed with N (0,σ2
τ). Per receive
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channel ξ, the τ noise sources are individually weighted by a complex factor ωξ,τ. The nc × nc
receiver noise matrix Ψ is then defined as

Ψ =
∑

τ

σ2
τ ωξ,τ ω

∗
ξ,τ . (4.13)

Ψ depends on the coil geometry, coil sensitivities and load. Thus, it should be determined in the
actual imaging setup. Ψ can be determined by analysing samples, consisting only of noise, before
the actual imaging procedure. A sufficiently large number of samples, usually at least 103 is time av-
eraged to calculate Ψ. To refer Ψ to all nd k-space sampling positions Ψ̃ is calculated by Ψ̃ = Ψ⊗Ind

.
Ind

is the identity matrix of size nd × nd .
Thus, the noise in the image is given as the ρth diagonal entry of F Ψ̃ FH . This matrix prod-

uct, termed the image noise matrix, should be minimised to achieve optimal SNR. Accordingly, the
minimisation problem reads as

minimize
F

F Ψ̃ FH

subject to FE= I .
(4.14)

Using the Lagrange function Lρ with Lagrange multiplicators Λρ,ρ′ is used find the solution to the
minimisation problem eq. 4.14. Thus, the Lagrangian is defined as

Lρ = (F Ψ̃ FH)ρ,ρ +
∑

ρ′

Λρ,ρ′(FE−Iρ,ρ′) . (4.15)

Setting all partial derivates
∂Λρ
∂ F to zero and considering all receive channels ξ= 0, ..., nc we obtain

2
∑

ξ′

Fρ,(ξ′,κ) Ψξ′,ξ + 2
∑

ρ′

Λ∗ρ,ρ′ E(ξ,κ),ρ′ ∀ρ,ξ,κ

∑

ξ,κ

Fρ,(ξ,κ)E(ξ,κ),ρ′ = δρ,ρ′ ∀ρ,ρ′ .
(4.16)

This can be restated in matrixform as

�

2Ψ̃ E
EH 0

� �

FH

ΛH

�

=
�

0
I

�

. (4.17)

Inversion and left multiplication leads to the solution of the weak reconstruction, which defines the
SNR optimal decoding F:

F= (EH Ψ̃ E)−1 EH Ψ̃
−1

. (4.18)

Equation 4.18 defines an estimate in the least-squares sense, which includes the prewhitening via
Ψ̃
−1

. Leaving Ψ̃ out is possible, but leads to the fact that noise assessment is skipped in the final
estimate. Furthermore, it is possible to apply Ψ̃ to the coil sensitivity profiles and measured data,
to achieve prewhitened, virtual channels [9]. Defining the Cholesky decomposition by Ψ = LLH

leads to the decorrelation of eq. 4.19.

mdecorr
ξ,κ =

∑

ξ′

(L−1)ξ,ξ′ mξ′,κ

cdecorr
ξ =

∑

ξ′

(L−1)ξ,ξ′ cξ′(r)

Edecorr
(ξ,κ),ρ = e jkκrρ cdecorr

ξ (rρ) .

(4.19)

As eq. 4.19 is applied as a prewhitening step in the scanner reconstruction unit, the solution reduces
to

v= (EH Ψ̃ E)−1 EH Ψ̃
−1

m=

�

�

�

�

E=Edecorr

m=mdecorr

(EH E)−1 EHm . (4.20)
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As noted earlier an intensity correction I, defined in eq. 4.3, can be used as a preconditioner. There-
fore, precondition can be seen as a scheme used to accelerate the calculation. Thus, it reduces the
number of iteration steps to solve eq. 4.20 iteratively [21]. Therefore, eq. 4.20 is rearranged and
left-multiplied with I2 leading to

(I2 EH E) v= I2 EH m . (4.21)

However, to restore positive definiteness, needed to solve eq. 4.21 with a CG algorithm, I−1 is
left-multiplied. Together with insertion of I in the form of I I−1 this leads to the final eq. 4.22

(I EH E I) (I−1 v) = I EH m . (4.22)

The calculation of the algorithm eq. 4.22, via a CG method, is visually depicted in fig. 4.5. Using a
CG algorithm the N2 × N2 estimate is found in maximal N2 iteration steps.
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Figure 4.5: Schematic of iterative image reconstruction.
The depicted schematic follows the algorithm of eq. 4.22. The receive channels represented under-
sampled k-space data sitting on a cartesian grid. Adapted from [9].

4.4 Field Maps

In EPI spatial and intensity distortions due to inhomogeneous static magnetic fields play a crucial
role. Some comments should illustrate why field inhomogeneity correction is of such importance.
Fig. 3.4 introduced the typical cartesian k-space trajectories in the non-accelerated and accelerated
case. Analysing fig. 3.4a) closely, reveals that any error made in the course of the readout are
accrued throughout trajectory. Therefore, voxels lying at the end of the readout train are per se
affected more by inhomogeneities. Furthermore, due to the low pixel bandwidth in phase encode
direction, inhomogeneities have a stronger effect in PE direction. One of the most pronounced
field inhomogeneity effects is produced near air-water interfaces, e.g. near to the sinus cavities
in the brain. It is common to use EPI for imaging of the brain. Thus, these interfaces always
have to be considered. In general, GRE sequences are affected more than SE sequences by field
inhomogeneities. For GRE sequences no refocusing of the phase dispersion is used to achieve T ∗2
contrast. Therefore, intrinsically GRE sequences are more sensitive to field inhomogeneities.

While there are shimming solutions available, not all inhomogeneities can be shimmed out. Even
when a perfect shimming solution is available, the patient itself introduces field inhomogeneities.
Therefore, the magnetic field inhomogeneity is a priori unknown [31] and an estimation of field
inhomogeneities should always be implemented. As a core application of EPI is fMRI it can be
stated that uncorrected field inhomogeneities can mislead activation near sinus cavities.
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4.4.1 Field Map Estimation

As previously noted the recorded signal follows

s(t) =

∫

V
v(r) e− jΦ(r,t)dr Φ(r, t) =

∫

t

∆ωB0(r) + γ G(t) d t . (4.23)

When field inhomogeneities are considered, the phase is not only determined by the applied gra-
dients but also by field inhomogeneities. Thus, the field inhomogeneity has an influence of the
position of a voxel in the final reconstruction [32]. Therefore, to account for field inhomogeneities,
a method to measure those needs to be implemented. The de facto standard on todays scanners is
based on two low angle Fast Low-Angle Shot (FLASH) [33] measurements, which are termed FFE
on a Philips scanner. For this work the measurements were conducted using a flip angle of θ=10◦.

Using two FLASH measurements with different echo time differing by ∆TE the field inhomo-
geneity can be determined by

∆ωB0(r) =
∆Φ(r)
∆TE

. (4.24)

As noted the field inhomogeneity leads to a shift in the voxel position in EPI. To assess these
shifts a so called Voxel shift map (VSM) is calculated. Because the proportionality constant between
VSM and ∆ωB0 is the bandwidth BW, eq. 4.25 results.

In general voxels can be shifted in PE and RO direction. Due to the very low bandwidth in PE
direction only shift in PE direction are considered, as the shifts in RO direction are two orders of
magnitude smaller and can be neglected [31]. Without any loss of generality the PE direction cor-
responds to the cartesian y axis in this work. Consequently, the VSM is determined by

VSM =
∆ωB0

BW PE
. (4.25)

A calculated VSM is shown in fig. 4.6b). In this measurement a linearly increasing field inhomo-
geneity was deliberately generated. Diving the obtained ∆ωB0 map by the bandwidth yields the
VSM.

4.4.2 Integration of Field Maps into Reconstruction Scheme

Reconsidering eq. 4.23 it becomes clear that the effects of field inhomogeneities are non-constant in
the signal equation integral. Consequently, field inhomogeneity effects can’t be directly accounted
for in k-space. Therefore, the VSM has to be applied in spatial domain.

The voxels affected by voxel shifts are also termed wrapped voxels yw. To calculate the un-
wrapped voxels yuw, the voxel-shift quantified by the VSM has to be undone. Thus, unwrapped
pixels can be calculated by

yuw = yw − VSM(yuw) . (4.26)

Because the VSM does not only contain integer values, interpolation or gridding algorithms have
to be used for the calculation. To enable a successful SENSE reconstruction, it is crucial that the
sensitivity maps match the collected data. Exhibiting field inhomogeneities in the subject, this as-
sumption in general is not valid anymore. The sensitivity maps collected as a preparatory steps are
only by a negligible extend exposed to pixel shifts induced by field inhomogeneities. To account for
the ∆ωB0 shift problem in EPI, there are two differing approaches. On the one hand, the collected
coil images can be unwrapped. Such a coil image is shown in 4.6a). On the other hand, the sensitiv-
ity maps C can be wrapped to mimic the spatial distortion introduced by the field inhomogeneities.
The resulting construction v has then to be unwrapped in a final step.

Two factors summarise why the wrapping of sensitivity maps is more favourable. First of all,
the coil sensitivities can be assumed to be smooth functions [8], Thus, prior knowledge about the
result of the wrapping is available.

Second of all, looking at fig. 4.5 it is clear that the wrapping has to be done for the forward
and the unwrapping for the reverse part of the loop. Therefore, this procedure has to be repeated
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twice per iteration. As mentioned wrapping the sensitivity and unwrapping the final image is always
achieved in two calculations. Thus, the sensitivity wrapping approach has a numerical advantage
by a factor proportional to the number of iterations needed to solve the CG loop.

Therefore, the implemented algorithm uses the VSM to calculate wrapped sensitivity profiles C̃ .
The result of such a wrapping is shown in 4.6d), being in accordance with the coil image 4.6a). Here
it becomes also clear, that using the initial coil sensitivity profile C̃ for the reconstruction will result
in significant reconstruction errors. This is due to the different shape of the coil image and C̃ . The
wrapped sensitivities C̃ are fed into the reconstruction algorithm of fig. 4.5, where a final recon-
struction is calculated in the usual fashion, accounting also for Nyquist ghosts. This reconstruction
ṽ is then inversely interpolated to yield the final image v.

a) b) c) d)

Figure 4.6: Integration of VSM into the reconstruction pipeline.
a) shows the coil image of a single surface coil, which is obtained by applying a 2D-FFT to the
k-space data of one coil. As seen the data exhibits strong spatial distortions due to deliberately
generated field inhomogeneities.
b) shows the VSM obtained by estimating field inhomogeneities like explained above and dividing
by the bandwidth in phase-encode direction.
c) shows the sensitivity map C̃ before the wrapping algorithm is applied. It is visible that the shape
of the sensitivity map does not match the coil image in a).
d) shows a wrapped sensitivity map C̃ used to calculate the reconstruction ṽ.
The third column of fig. 5.10c) shows the final reconstruction result v.

4.5 EPI Phase Maps

As mentioned earlier most of today’s commercial scanners tackle EPI Nyquist ghosts by executing
reference shots prior to the actual image reconstruction. The aim of this work is to estimate phase
maps using only the obtained image data. At the same the usage of reference shot data in the
iterative reconstruction scheme is also implemented. As a result the reconstruction results with
image-based phase map can be compared to reconstruction results with reference data, as done in
chapter 5 where the results are presented.

4.5.1 Reference Calibration Scans

For an EPI reference calibration scan, phase-encoding gradients GPE are turned off. Using a readout
gradient GRO data is acquired in the same way as in a common EPI measurement. Under ideal
conditions, all collected echoes should be identical, because GPE is absent. Figure 4.7a) shows a
schematic of such a reference scan, obtained. In fig. 4.7b) it is visible, that the argument of two
adjacent phase trends is not equivalent.

Due to the background gradients introduced by eddy currents, described in sec. 3.2.5, a k-space
shift results. The shift∆kshift respectively linear phase variation, defined in eq. 3.8 and eq. 3.9, lead
to the behaviour that odd and even echoes are not aligned and the echo positions alternate from row
to row.



31 4.5. EPI PHASE MAPS

Ti
m

e

Pixel in RO
ar

g

a) b) c)

Pixel in RO

Pixel in RO

ar
g

ar
g

Pixel in RO

Figure 4.7: Measurement and calculation of EPI reference data.
a) shows the measurement of EPI reference data. The shown image represents the data loaded from
one coil of the surface coil array. As seen different echoes are collected. Odd echoes are already
reversed in the image.
b) shows the argument of the even echo on the top, and the argument of odd echo on the bottom.
c) shows the angle between the odd and even echoes depicted in the middle column. As expected,
the argument shows a linear trend. Thus, the phase error stems from eddy current induced echo
misalignment.

Denoting the echo ν and the measured data of the calibration scan as mC
ν (kx), the phase distorted

signal is denoted as mC ′
ν (kx). The 1D-FFT in RO direction is termed m̃C ′

ν (x). The relation between
the distorted and undistorted signal of the calibration scan is then given by

mC ′
ν (kx)

1D−F F T
−−−−−→ m̃C ′

ν (x) = m̃C
ν (x) e jΦC

ν (x) . (4.27)

m̃C
ν (x) is the undistorted signal. The phase ΦC

ν (x) can be found by calculating the angle between
an odd and even echo. Figure 4.7b) shows the phase of an odd respectively even echo. The angle
between these two echoes is displayed in fig. 4.7c). As expected the phase trend is linear. The cal-
culated phase difference can be used to correct for Nyquist ghosting by the definition of a correction
phase. This phase is defined by

ΦCORR
ν (x) = −ΦC

ν (x) . (4.28)

In this work the correction phase is termed ∆ΦREF = ΦCORR. Thus, ∆ΦREF corrects the phase error
stemming from Nyquist ghosts for all odd echoes. It is applied to the actual measured odd echoes
mM ′
ν (kx) in the ky -x domain [2], thus

mM ′
ν (kx)

1D−F F T
−−−−−→ m̃M

ν (x) = m̃M ′
ν (x) e jΦCORR

ν (x) . (4.29)

This way the non-distorted signal m̃M
ν (x) is found. Applying the correction phase in that way is

termed a non-linear phase correction [3]. It is ideal because it also corrects for phase errors not
stemming from eddy current induced phase shifts. An example for these effects are the cutoff char-
acteristics of applied filters. A linear phase correction is based on performing an echo peak detection,
then calculating linear and constant phase terms for the correction. This can lead to remnant ghosts
as e.g. these cutoff characteristics of applied filters are not considered [3].

Fig. 4.8 shows the result of performing the introduced non-linear phase correction on a coil
image.
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a) b)

Figure 4.8: Coil image before and after applying EPI reference based phase correction.
a) shows input data of a single surface coil channel after applying a 2D-FFT.
b) shows the single surface coil channel, after the phase correction described in this section was
applied. Consequently all odd echoes were phase corrected with data obtained from a EPI reference
measurement.

The applied phase reference is a 1D correction, since all odd echoes are corrected with the same
phase, derived by dividing an odd and an even echo in the area with the highest SNR.

An extension to this method uses two RF excitations, shifting the second image by one echo [3].
Therefore, odd echoes of the first dataset are even echoes in the second and vice versa. This can help
to alleviate effects stemming from time dependent phase effects like field inhomogeneities because
corresponding echoes are measured at the same time after excitation.

4.5.2 Image-Based Phase Maps

As noted earlier the main objective of this work is to replace the EPI reference scan with an image-
based phase map. This phase map should be jointly estimated with the image itself. Fig. 4.9 shows
the input node of the calculation which represents the full set of raw k-space data.

First the raw k-space is split using binary sampling masks Mso and Ms e. These set all odd re-
spectively even echoes to zero. Therefore, the resulting image obtained by reconstruction does not
exhibit any Nyquist ghosts.

Using the binary sampling mask Mso, which sets all even echoes to zero, the cost functional

J(vo) = ||Avo −m||22 A= MsoEC , (4.30)

is used to find the reconstruction vo. In the same manner the even reconstruction is found [4] using

J(ve) = ||Ave −m||22 A= Ms eEC . (4.31)

Using these two reconstructions, a full phase map ∆ΦFU LL is obtained with

∆ΦFU LL = ar g(v∗e vo) . (4.32)

The application of the binary sampling masks introduces additional undersampling and increases
the g-factor non-linearly, as quantified in eq. 2.23. The SNR reduction scales with 1p

R
. Therefore, the

SNR reduction increases non-linearly with additional undersampling. This can introduce additional
artefacts in the obtained ∆ΦFU LL , as shown in sec. 5.1.

To alleviate g related noise amplification, odd and even echoes are reconstructed jointly [4] using
a so called Model 2 reconstruction

J(v) = ||Av−m||22 A=
2
∑

k=1

Ms
k E C Φk

Ms
1 = Ms e , Ms

2 = Mso Φ1 = e j0 , Φ2 = e j∆ΦFU LL .

(4.33)

The obtained phase map∆ΦFU LL is integrated into the sensitivity maps, yielding so called composite
sensitivity profiles [34]. Therefore, in the Model 2 reconstruction the number of sensitivity profiles
is effectively doubled. Thus, using three iterative CG reconstructions Nyquist ghosts and the images
are jointly reconstructed. This whole procedure is visualised in fig. 4.9.
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Figure 4.9: Calculation of image-based phase maps.
The imported k-space raw data is divided into odd only and even only echoes using binary sampling
masks. Separate images are reconstructed and are used to calculate the 2D phase map ∆ΦFU LL .
Finally, a joint reconstruction of all data is performed, termed Model 2 reconstruction. Therefore,
a joint image reconstruction and Nyquist ghost correction is performed while minimising g-factor
noise amplification.
The processing steps are explained in sec. 5.2

Some intriguing questions can be derived directly from this procedure and shall be answered
in the following results chapter. First of all, it is interesting how the usage of this 2D phase map
∆ΦFU LL compares to the usage of∆ΦREF , obtained by separate reference measurement beforehand.
To study this effect the reference correction was applied in the preprocessing step of the presented
iterative reconstruction fig. 4.5. Therefore, the reconstruction follows the same algorithm as the
reconstruction using image-based phase map. Thus, in the reconstruction using reference data only
one iterative reconstruction is needed. This iterative solution is equivalent to eq. 4.33, without ex-
tension of the sensitivity profiles to composite sensitivity profiles. This procedure is needed because
the reconstruction in the MRI scanner has multiple other modules which are not considered for this
work. This includes filtering of the final reconstruction. Furthermore, the scanner reconstruction
unit uses an analytical SENSE instead of an iterative solution. The advantage of this proposed it-
erative reconstruction algorithm is, that the algorithm to numerically solve the model can easily be
exchanged. Furthermore, different regularisation methods can be added. The final reconstruction
using an iterative algorithm is compared to the scanner reconstruction in fig. 5.4-5.6.
∆ΦREF is an example of a 1D phase map, since all odd echoes are corrected in the same man-

ner, using the ΦCORR defined in eq. 4.28. By contrast using ∆ΦFU LL the correction for odd echoes
is performed differently depending on the y respectively PE direction. Using averaging, it is also
possible to transform the ∆ΦFU LL phase map to a 1D maps. Therefore, it should be compared how
the usage of such a 2D phase map compares to the usage of a 1D phase map.

Another crucial assessment if the behaviour of the algorithm in cases of high acceleration. Due
the effectively doubled acceleration factor in the calculation of ∆ΦFU LL this iterative algorithm is
especially sensitive to high acceleration.

While the results presented in the next chapter were obtained for single slice measurements,
with slices being located close to the isocenter, it will also be studied if phase maps can be reused to
reconstruct adjacent slices. If the phase map can be reused, the number of iterations of algorithm
depicted in fig. 4.9 reduces from three to one.
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5.1 Image-Based Phase Maps for Accelerated and Non-Accelerated
EPI Measurements

First multiple non-accelerated phantom and in vivo measurements were performed. Two different
∆ΦFU LL are shown in fig. 5.1. Figure 5.1a) shows the phase map obtained when measuring a
phantom. Fig. 5.1b) shows the phase map for an in vivo measurement. Both phase maps were
obtained from measurements with no acceleration R=1. Nonetheless as explained in sec. 4.5.2 the
phase maps are calculated with an effective acceleration factor of R=2, due to the fact that odd and
even echoes are treated separately in the reconstruction.

5.1.1 Phase Map Trend as a Function of Coordinates

For all plotted rows of the phase map linear phase variation across the phase map is visible. Follow-
ing the theory on Nyquist ghosts, introduced in sec. 3.2.5, this behaviour was expected. Further-
more, fig. 5.1a) shows three different rows of the phase map. A linear fit can be used to assess the
difference between these three rows. The calculated slope k and intercept d per row varied slightly.
For the top row the calculated values were k1 = 0.034 rad

pixel and d1 = −0.361pixel, based on the
zero pixel located at the left end of the image. The fit coefficients for the row in the middle were
k2 = 0.035 rad

pixel and d2 = −0.363pixel. The row on the bottom shows slightly varying coefficients

of k3 = 0.036 rad
pixel and d3 = −0.372pixel. The average variation of all fitted slopes was found to be

2.15%, while the average variation of intercepts was found to be 1.65%.

Therefore, it can be concluded that for the phantom measurement, the steepness of the
slope increases slightly for different rows in the phase map. In contrast for the in vivo measurement
also fitting coefficient were found, but not showing a clear trend for the trend in variation. For the
top row k1 = 0.051 rad

pixel and d1 = −2.286pixel. The results for the middle row coefficients were

k2 = 0.052 rad
pixel and d2 = −2.367pixel. For the bottom row k3 = 0.051 rad

pixel and d3 = −2.551pixel
was found. Therefore k varied on average by around 6.44% and the variation of d was on average
6.54%.

As suggesting for the presented value, the steepness of the linear phase trend increases for fig.
5.1a) from top to bottom. Fig. 5.1b) in contrast shows a similar steepness for the rows on the top
and bottom. This behaviour is different for every measurement, therefore no general rule for the
slope and intercept variation was derivable.

A few remarks should be added to the validity of this calculation. First of all the statistical popu-
lation is small and consequently it is difficult to draw a conclusion from this analysis. Furthermore,
the calculated values only differ in the third decimal place. The slope variation for different rows
was also noted in other work [4].

In general it was found to be favourable to use a slight denoising before using the phase maps.
Therefore, all phase maps were wavelet filtered [35]. As shown in fig. 5.1 the unfiltered trend (in
blue) shows small signal fluctuation. These fluctuations were successfully filtered out using wavelet
filters, as the orange trends suggests.

35
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a) b)

Figure 5.1: 2D phase map∆ΦFU LL for a phantom and in vivo measurement for R=1 measurements.
a) shows the phase map for a phantom measurement. The image was collected using a SE sequence
with a FOV of 280mm and 8mm thick slices in the isocenter. The three rows show different phase
map trends, showing a linear variation from left to right.
b) is the phase map of an in vivo measurements collected using a GRE sequence with a FOV and
4mm thick slices.
For a) and b) the blue original trend represents one row of the phase map. The filtered trend was
obtained by applying a wavelet filter as explained in this section.

5.1.2 Reduction Factor Dependent Phase Map Artefacts

The phase maps shown in fig. 5.1 were collected for unaccelerated measurements. For increas-
ing acceleration, noisy propagation behaviour is visible. Fig. 5.2 shows that already for a g-factor
increase to around 3, as shown in fig. 5.2b), strong artefacts in the phase map are visible. Thus,
already for R=2 measurements artefacts are visible.

In the case of a noise only signal, the distribution of the phase noise is uniform [36]. This can be
visualised by noting that noise only complex data for a noise only vector has the same probability
for all directions. If a signal is present, the phase noise can be modelled as gaussian. The variance of
the gaussian distribution decreases inversely proportional to the SNR. Therefore, with a decreasing
SNR the angle calculated between the even and odd reconstruction shows greater variation. In the
case of a SENSE reconstruction the SNR decreases nonlinearly with increasing acceleration, see sec.
2.3.3. Therefore, the calculation of the angle between the even and odd reconstruction is especially
sensitive to high acceleration factors.

Estimation errors in the phase propagate into the final reconstruction, see also [37]. This is
clearly visible for the final reconstruction in 5.2b) and 5.2c). It can be concluded, that for these
cases the usage of a full 2D phase map ∆ΦFU LL is not appropriate. The problem of noisy phase
maps is aggravated by the fact that the effective reduction factor for the calculation of phase maps
is doubled, see fig. 4.9.

5.2 Phase Map Averaging and Masking

Figure 5.4 shows different reconstructions for measurements with no acceleration. For SE acqui-
sitions in fig. 5.4a) and 5.4b) the usage of ∆ΦFU LL yields the reconstruction v∆ΦFU LL

. No artefacts
are visible for these reconstructions. Figure 5.4c) shows a R=1 measurement obtained with a GRE
sequence. For the reconstruction with ∆ΦFU LL some artefacts are already visible.

Furthermore, when acceleration is used, 2D phase maps ∆ΦFU LL show strong artefacts. As
explained in the last section for an acceleration factor of R=2, artefacts are induced in the final
reconstruction. This is in accordance with the in vivo result of fig. 5.5c), where the most left picture
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a)

b)

c)

Coil image g map ∆ΦFU LL Offline Recon.

Figure 5.2: 2D phase map, g-factor map and final offline reconstruction for increasing acceleration.
a) was collected using a non-accelerated R=1 image. For b) R=2 and c) R=3 reduction was used.
The first column shows the coil images, which is the 2D-FFT of the input data of one single surface
coil. The total number of coils for the whole set of measurements was nc=13. The second column
shows the g-factor map for an effectively doubled acceleration.
Errors in the full ∆ΦFU LL phase map propagate into the final reconstruction.

shows artefacts.
Therefore, two additions to the phase map procedure were introduced to alleviate the noisy be-

haviour of ∆ΦFU LL . These two methods are denoted ∆ΦAV G and ∆ΦAV G,M . To calculate those, first
the full phase map ∆ΦFU LL is calculated. An example of such a phase map, obtained from an R=3
measurements is shown in 5.3b). To calculate ∆ΦAV G from the 2D phase map ∆ΦFU LL , a linear fit
for all rows in the phase map is obtained. Such a fit yields an intercept k and slope d. The collected
slopes and intercepts of all rows are averaged to calculate kavg and davg . Using kavg and davg a
linear phase ramp can than be calculated, which is equal for all rows. Following this the phase map
is fitted into the object indicator map Ω obtained from thresholding sensitivity maps, see sec. 4.2.2.
This procedures yields ∆ΦAV G shown in fig. 5.3c). Therefore, the phase variation in ∆ΦAV G is the
same for all lines and can be calculated using kavg and davg .

For the calculation of ∆ΦAV G,M the procedure is in principle repeated. For increasing
acceleration the phase maps tends to show a lot of non-smooth, fluctuating behaviour. Stemming
from this observation, the lines used in the fitting algorithm are reconsidered. ∆ΦFU LL in fig. 5.3b)
shows noisy behaviour in the central image area. As these areas exhibit a lot of phase fluctuation a
linear fitting algorithm produces wrong or inconsistent results. Figure 5.3b) shows that the areas of
strong noise artefacts resemble the g-factor map in fig. 5.3a). To calculate the g-map in fig. 5.3a),
the mean of all non-zero g-factor values was taken. All values lying more than 20% above the mean
of the g are masked and thus are shown in white. Therefore, the white values define a mask, which
leads to exclusion of the masked values in the linear fitting process. To be specific, every row which
includes such a white, masked value is not used for the calculation of average intercept and slope
values, denoted kavg,m and davg,m. This masking reduces the number of total rows used in the fitting
process. It can also potentially help to reduce the number of rows which are too noisy to fit properly
and which consequently result in faulty coefficients.

Afterwards analogue to the previous 1D method the calculated kavg,m and davg,m are used to
calculate ∆ΦAV G,M , shown in fig. 5.3d). It is visible that this averaged phase map varies to the one
in 5.3c). Therefore, in general ∆ΦAV G and ∆ΦAV G,M are not identical.
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Masked g-map ∆ΦFU LL ∆ΦAV G ∆ΦAV G,Ma) b) c) d)

Figure 5.3: Averaging procedure for two-dimensional phase maps.
a) Shows a g-map, where values larger than 20% of the mean g value are masked. The masking is
indicated by the white areas. b) shows a full 2D phase map ∆ΦFU LL , obtained from an R=3 mea-
surement. Thus, the effective acceleration factor of the phase map calculation is R=6. This explains
the noisy behaviour in the central phase map region.
c) shows a 1D phase map, calculated by averaging all linear fit coefficients of b). The calculated
phase trend using the average fit coefficients is then masked with the object indicator map Ω, yield-
ing the result seen and denoted as ∆ΦAV G . The algorithm to calculate ∆ΦAV G,M as shown in d) is
qualitatively equivalent to the one of the calculation of c). The key difference is that for the calcu-
lation of ∆ΦAV G,M , the values in b) which are masked by the white mask of a) are excluded from
the fitting procedure.

5.3 2D and 1D Phase Maps for Increasing Acceleration Factors

To assess the viability of image-based phase maps the Python framework was prepared to read-in
the EPI reference data. Per measurement this reference data consists of nc data sets. Using the
principles elaborated in sec. 4.5.1, the EPI reference data is used for the coil-wise correction of
the measurements. The corrected and uncorrected data for one surface coil is shown in fig. 4.8.
Because the Nyquist ghost is already accounted for, there is no need to calculate image-based phase
maps. Therefore, the corrected data is used to directly calculate a final off-line reconstruction using
the reconstruction defined via. eq. 4.22.

The third column of fig. 5.4-5.6 shows the reference image calculated in this way. On the out-
most right of fig. 5.4-5.6 the image as reconstructed by the MRI scanner’s recon2 pipeline is shown.
A few things can be noted from the comparison of these two. First of all it is visible, that both
reconstructions yield images with an equivalent quality. There are no residual Nyquist ghosts visi-
ble. Second of all the scanner reconstruction still differs slightly. This difference can be explained
by the fact that the scanner’s recon2 reconstruction pipeline has multiple modules which were not
implemented in the off-line reconstruction pipeline for this work. An example for this are different
filtering modules.

For the assessment of the different introduced image-based phase maps multiple reconstruction
were implemented and compared. The structure of this assessment can be seen in the fig. 5.4-5.6.
First the reconstruction using full 2D phase maps ∆ΦFU LL , the averaged phase maps ∆ΦAV G and
∆ΦAV G,M are calculated. This represents the first to third column, thus the reconstructions v∆ΦFU LL

,
v∆ΦAV G

and v∆ΦAV G,M
. Following the EPI reference data is used for the correction of Nyquist ghosts,

and the corrected data is used to calculate a reference image vre f .
Therefore, vre f can be seen as a reference. Using this reference an error of the image-based

reconstructions can be obtained. The second column of fig. 5.4-5.6 shows the absolute magni-
tude difference of the reconstruction and the reference image vre f . The values stated below are
the nRMSE error of the magnitudes added over all pixels. Therefore, the nRMSE for the offline
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reconstruction using the full phase map ∆ΦFU LL , can be calculated by

nRMSE =

√

√

√

√

∑N
n ( |vn,∆ΦFU LL

| − |vn,re f | )2
∑N

n ( |vn,re f | )2
. (5.1)

In this eq. the error is added over all pixels. The nRMSE for v∆ΦAV G
and v∆ΦAV G,M

are calculated in the
same manner. The results for measurements obtained without acceleration are shown in fig. 5.4. As
mentioned before, the calculation of the phase map ∆ΦFU LL is done with an effective acceleration
factor of R = 2. First the SE results in fig. 5.4a) and fig. 5.4b) shall be examined. It is visible
that the three different phase maps produce results that are equivalent to vre f . Therefore, the joint
calculation of the image and the phase maps produces equivalent results to the usage of reference
data. In fig. 5.4a) and fig. 5.4b) it is also noticeable that the nRMSE of v∆ΦFU LL

is slightly larger
than for v∆ΦAV G

and v∆ΦAV G,M
. At the same time the visual quality of the reconstruction is equivalent

for all reconstructions. Nonetheless, even for these measurements obtained without acceleration it
seems favourable to use an averaged phase map.

For data collected with GRE sequences, phase inconsistencies can lead to artefacts in the final
reconstruction. One example is shown in fig. 5.4c), where the usage of ∆ΦFU LL leads to artefacts
in areas where pixels are superimposed. Due to the effectively doubled acceleration factor of the
phase map calculation, these artefacts already occur in for R=1 measurements. Therefore, in these
cases the usage of ∆ΦAV G or ∆ΦAV G,M does significantly improve the reconstruction. From this it
can be concluded that for measurements obtained with GRE sequences the usage ∆ΦFU LL results
in artefacts. Consequently, GRE measurements should always be reconstructed with an averaged
phase map.

In general in can be concluded that while the usage of the 2D phase map ∆ΦFU LL is possible for
measurements obtained without acceleration and with SE sequences. In case of GRE sequences the
usage of∆ΦFU LL can already induce artefacts. Thus, GRE sequences should always be reconstructed
using ∆ΦAV G or ∆ΦAV G,M . It should also be noted that the usage of ∆ΦFU LL is computationally less
demanding. The averaging process described in sec. 5.2 requires a phase unwrapping procedure
which is computationally expensive.

Figure 5.5 summarises the results for R=2. The phantom results shows that ∆ΦFU LL can still
produce a ghost free image in the case of twofold acceleration. In this case use to the small cross
section of the phantom, v∆ΦAV G

has some small residual artefacts. This is alleviated with the usage
of v∆ΦAV G,M

.
For the in vivo measurements in fig. 5.5b) and 5.5c) v∆ΦFU LL

show significant artefacts in the
central image area. v∆ΦAV G

and v∆ΦAV G,M
produce equivalently artefact free images. Thus, for the R=2

case the usage of∆ΦAV G and∆ΦAV G,M is favourable to yield results equivalent to vre f . Nonetheless,
the result for v∆ΦAV G,M

5.5c) shows a slightly higher nRMSE than the result for v∆ΦAV G
. Inspecting vre f

and v∆ΦAV G,M
shows, that v∆ΦAV G,M

actually exhibits less artefacts. Thus, this results points out limits
in the assessment of the reconstruction with an nRMSE. If v∆ΦAV G,M

has less artefacts than vre f , this
will result in a high nRMSE, which incorrectly indicates reconstruction errors.

Figure 5.6 shows different in vivo results for the R=3 case. In all cases v∆ΦFU LL
contains severe

artefacts, which massively alter the reconstruction. The large amount of faulty values is represented
by a nRMSE of around 0.40. Both v∆ΦAV G

and v∆ΦAV G,M
alleviate these artefacts and lead to better

reconstruction. v∆ΦAV G,M
is a reconstruction qualitatively equivalent to vre f . For fig. 5.6b) v∆ΦAV G,M

can
be seen as an improved reconstruction compared to vre f or the scanner reconstruction. Therefore,
equivalently to fig. 5.5c), this shows that when the scanner reconstruction contains artefacts itself,
the reference image respectively the calculated nRMSE error looses validity.
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v∆ΦFU LL
v∆ΦAV G

v∆ΦAV G,M
vre f Scanner

c)

a)

b)

SE

SE

GRE

Figure 5.4: Reconstruction results for R=1.
a) shows a phantom measured in an oblique plane. The magnitude error of v∆ΦFU LL

, v∆ΦAV G
and

v∆ΦAV G,M
are of similar appearance. The nRMSE for v∆ΦFU LL

is slightly higher, with around 0.05.
b) shows an in vivo image collected in a B0=1.5T system. On the top left a slight geometric distortion
is visible. Note that in contrast to the usual setup of this work, the phase-encode direction is from
left to right. All results produce qualitatively similar results. No residual ghosts are visible.
c) shows the final reconstruction for a phantom measurement, imaged with a GRE sequence. As
visible the usage of v∆ΦFU LL

leads to residual ghosting in the final reconstruction.
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v∆ΦAV G,M
vre f Scanner

c)

a)

b)

v∆ΦAV G
v∆ΦFU LL

GRE

SE

SE

Figure 5.5: Reconstruction results for R=2.
a) shows the reconstruction of a phantom. Due to the small cross section cross section, The nRMSE
of v∆ΦAV G

is higher than v∆ΦFU LL
.

b) shows an in vivo image collected with a GRE sequence. The reconstruction using ∆ΦFU LL pro-
duces the highest nRMSE. As seen in the difference image on the final reconstruction v∆ΦFU LL

, this
stems from the fact that there is a significant ghost remaining in the central image area.
c) shows the offline reconstruction an in vivo measurement collected with a SE sequence. The usage
of v∆ΦFU LL

leads to significant reconstruction artefacts in the central image area. Both v∆ΦAV G
and

v∆ΦAV G,M
are qualitatively equivalent to vre f . Nonetheless nRMSE of v∆ΦAV G,M

is slightly higher.
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v∆ΦFU LL
v∆ΦAV G

v∆ΦAV G,M
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GRE
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Figure 5.6: Reconstruction results for R=3.
a) shows that v∆ΦFU LL

has severe artefacts. This is quantified by a nRMSE of 0.39. v∆ΦAV G
and v∆ΦAV G,M

gradually improve the reconstruction. As shown v∆ΦAV G,M
is visually equivalent to vre f .

b) and c) show that for again that the usage of ∆ΦFU LL yields impractical reconstruction results.
This effect can be alleviated by using v∆ΦAV G,M

. As shown b), the slight ghost remaining in v∆ΦAV G,M

has a different structure than the ghost in vre f , leading to a comparably large nRMSE. Nonethe-
less, the reconstruction v∆ΦAV G,M

can be interpreted as having less artefacts than and the scanner
reconstruction.
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Figure 5.7 summarises the results presented in this section. To calculate the bar plots the nRMSE
of every reconstruction was stored. Second the measurements were categorised by acceleration fac-
tor R and phantom or in vivo measurements. The obtained nRMSE were averaged per category to
yield an average nRMSE.

Figure 5.7a) shows that for measurements with no acceleration all three proposed image-based
phase maps - ∆ΦFU LL , ∆ΦAV G and ∆ΦAV G,M - yield reconstructions with low nRMSE. As presented
earlier for R=1 measurements obtained with GRE sequences, e.g. fig. 5.4c), artefacts were ob-
served. This behaviour stems from phase inconsistencies in the areas where pixels are superimposed.
This results in a slightly higher average nRMSE of 0.081 and 0.085 for the phantom respectively in
vivo case. No difference was seen exhibited for the usage of ∆ΦAV G compared to ∆ΦAV G,M . Both
methods result in an average nRMSE of 0.071 in the phantom and of 0.056 for the in vivo case.

As mentioned earlier in the case of R=2, distinct artefacts can be seen. An example of these
artefacts was presented in fig. 5.5b) and 5.5c). This reflects in the large decrease of nRMSE for the
usage of ∆ΦFU LL to ∆ΦAV G , see fig. 5.7b). While the usage of ∆ΦFU LL in the in vivo case yields an
average nRMSE of 0.171, ∆ΦAV G and ∆ΦAV G,M results in an average nRMSE of 0.048 respectively
0.043. For phantom measurements the values in fig. 5.7b) from left to right are 0.125, 0.107 and
0.109.

Figure 5.7c) and fig. 5.6 show in accordance that the usage of ∆ΦFU LL leads to severe arte-
facts respectively very large nRMSE. For ∆ΦFU LL the average nRMSE amounts to around 0.395 for
phantom and 0.504 for in vivo measurements. For phantom measurements ∆ΦAV G resulted in an
average nRMSE of 0.093 and 0.173 for the in vivo case. The values for∆ΦAV G,M were slightly lower,
amounting to 0.085 for phantom and 0.159 for in vivo measurements. This shows that a successful
reconstruction in the case of R=3 accelerated measurements requires ∆ΦAV G,M .

Comparing fig. 5.7a) to 5.7c) shows that in general the average nRMSE increases with higher
acceleration factors R. The increase for the usage of∆ΦFU LL is very large, from around 0.08 for R=1
to 0.4-0.5 for R=3. The nRMSE of∆ΦAV G and∆ΦAV G,M is 0.056 in the in vivo case, and increases to
0.173 respectively 0.159 for R=3. Therefore, for a full phase map∆ΦFU LL an increase from R=1 to
R=3 leads to a sixfold increase of average nRMSE. Masking and averaging, respectively the usage
of ∆ΦAV G,M , only increases the nRMSE threefold for the same increase in acceleration.

Figures 5.4-5.6 summarise that image-based phase maps can be used for the reconstruction of
EPI measurements. For all reconstructions the usage of ∆ΦFU LL compared to ∆ΦAV G resulted in an
equivalent or higher nRMSE. Thus, the reconstruction showed no improvement when using the full
2D phase map ∆ΦFU LL compared to the averaged phase maps ∆ΦAV G or ∆ΦAV G,M . To yield artefact
free images for high acceleration factors, the phase map should be masked and and averaged. The
usage of ∆ΦAV G,M yields results that are equivalent or in some cases even better than the vre f or
scanner reconstruction.

∆ΦFU LL

a) R=1

∆ΦAV G ∆ΦAV G,M ∆ΦAV G,M∆ΦAV G∆ΦFU LL ∆ΦFU LL∆ΦAV G ∆ΦAV G,M

nRMSE

b) c)R=2 R=3
nRMSE nRMSE

Figure 5.7: Average nRMSE of all reconstructions.
The bar plots summarises the results presented in this section. The average nRMSE for all measure-
ments are shown for different acceleration factors. First these plots show that the average nRMSE
for all measurements increases with acceleration. Second the approach method of averaging and av-
eraging and masking leading to∆ΦAV G respectively∆ΦAV G,M help to reduce the increase of nRMSE.
Therefore, when using a ∆ΦFU LL nRMSE increases sixfold from R=1 to R=3. With the usage of
∆ΦAV G,M this increase is only threefold.
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Figure 5.8 shows different reconstructions, obtained using v∆ΦAV G,M
. Using fig. 5.6b) and 5.6c)

as a starting point, the data is further by applying a binary sampling mask Ms. With the applica-
tion of Ms additional echoes were zeroised, to achieve a higher acceleration factor. The effect of
this additional, simulated acceleration is then assessed by calculating a offline reconstruction using
∆ΦAV G,M . For R=3.2 no additional artefacts are visible. The results show that a further increase
of acceleration lead to additional, severe artefacts. This behaviour stems from the effectively dou-
bled acceleration of the phase maps and the difficulty to obtain a valuable linear fit coefficients for
noisy phase maps. Therefore, it can be concluded that the proposed image-based phase maps and
the following procedure to obtain ∆ΦAV G,M allow successful reconstruction of data collected with
an acceleration factor of R=1 to R=3. This was shown in fig. 5.4-5.6. For high acceleration the
masked and averaged phase map∆ΦAV G,M has to be used. The reconstruction depends on obtaining
a valid average slope and intercept. For acceleration factors R>3 the linear fitting procedure for the
calculation of the average slope and intercept produces faulty values. Thus, significant errors in the
reconstruction results, as visible in the figure below.

a)

b)

R = 3.2 R = 3.4 R = 3.6 R = 3.8

R = 3.2 R = 3.4 R = 3.6 R = 3.8

Figure 5.8: Reconstruction results for R>3.
The measurements of fig. 5.6b) and c) were further accelerated by zeroising collected echoes with
a sampling mask Ms. The reconstructions were obtained using ∆ΦAV G,M .
For an acceleration factor of R=3.2 no effect is visible. The results show that a further increase of
acceleration lead to additional, severe artefacts. This behaviour stems from the effectively doubled
acceleration of the phase maps and the difficulty to obtain a valuable linear fit coefficients for noisy
phase maps.

5.4 Consideration of Off-Resonance Effects

In the methodology chapter under sec. 4.4.2 it was presented how measure ∆ωB0 maps and con-
sequently obtain a VSM. Furthermore, it was shown how to integrate VSM into the reconstruction
algorithm. It was concluded that the most efficient integration can be achieved by mimicking the
effect of ∆ωB0 on sensitivity profiles. Thus, a wrapped sensitivity profile is calculated by linear
interpolation and the result of the iterative algorithm is unwrapped as a final step of the reconstruc-
tion pipeline.
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To assess the performance of this method, first a constant ∆ωB0 was simulated by offsetting ω0
by −300Hz. Fig. 5.9 summarises for the results. On the first column the so called coil image is
shown, which is the 2DFFT of the data collected with one surface coil. The second column shows
the VSM that was used to interpolated the sensitivity maps and inversely interpolate the final re-
construction, as described in sec. 4.4.2. The final offline reconstruction is presented in the third
column, and the scanner reconstruction in the fourth column.

First the validity of the proposed algorithm was tested by assuming a VSM which is uniformly
zero, which represents the assumption of neglectable field inhomogeneities. As shown in the third
and fourth column of fig. 5.9a), the final offline reconstruction and the scanner reconstruction are
equivalent. Therefore, it can be concluded, that in the case of diminishing field inhomogeneities
the extended algorithm, which also accounts for field inhomogeneities, yields a Nyquist ghost free
reconstruction.

Figure 5.9b) shows the application of a constant Larmor frequency offset which results in a VSM
with a constant offset ∼ 50 pixels. As shown in the first column, for such an offset the scanner
reconstruction has significant errors. First due to the shifted coil sensitivities, signal cancellation
occurs. Second of all is the SENSE reconstruction corrupted, as shown by the ripples on the bot-
tom of the image. By contrast, the implemented offline reconstruction successfully reconstructs the
image as shown in the third column. Also the non-smooth signal edge on the top is successfully
reconstructed.

Coil image VSM Offline Recon. Scanner Recon.a)

b)

Figure 5.9: Effect of constant field inhomogeneities on the reconstruction.
The first column shows the 2DFFT of a single surface coil data set. The second row shows the VSM,
found by dividing the field inhomogeneities by the bandwidth in phase-encode direction. The third
column is the offline reconstruction obtained by the algorithm, which is compared by the scanner
reconstruction in the fourth column.
a) Shows that the extended reconstruction proposed under sec. 4.4.2 works successfully when no
field inhomogeneity is present, thus VSM is uniformly zero. In this case the implemented offline
reconstruction and scanner reconstruction are equivalent. Thus, the extended algorithm account-
ing for field inhomogeneities yields a successful reconstruction without Nyquist ghosting when no
inhomogeneities are present.
b) By offsetting the Larmor frequency by -300Hz before the data acquisition, a constant field inho-
mogeneity is simulated. This results in a VSM of ∼ 50 pixels. As shown the scanner reconstruction
has SENSE errors and errors due to the shifted coil image. The offline reconstruction does not show
these artefacts. The image is successfully reconstructed without Nyquist ghosting.

Following, a linear offset was generated by adding an offset to the gradients. The results for
three different cases of linear offset are shown in fig. 5.10. For fig. 5.10a) the applied gradient lead
to a buckling of the coil image. The same buckling effect is visible in the scanner reconstruction.
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The offline reconstruction in contrast has the correct and shape and no significant artefacts. A slight
ringing below the non-linear edges is present for the offline reconstruction. For the reconstructions
in fig. 5.10b) and fig. 5.10c) no ringing occurs. This could be due to the fact that for the case where
a buckling effect occurs in the coil image, the number of points available for the approximation of
the linear interpolation is smaller than in the case when a dilation occurs.

Figure 5.10b) and 5.10c) show the application of a gradient, which leads to a dilation of the
data, as seen in the coil image. For 5.10b) the offline reconstruction successfully reconstruct the
image without exhibiting any artefacts. The scanner reconstruction has SENSE errors leading to
the ripple on the top and bottom of the final reconstruction. Furthermore, a geometric distortion
is still present. For an increasing dilation effect as shown in 5.10c) the scanner reconstruction has
more severe artefacts. For these strong geometric distortion the offline algorithm still successfully
reconstructs an image.

c)

Coil image VSM Offline Recon. Scanner Recon.

b)

a)

Figure 5.10: Effect of linearly increasing field inhomogeneities on the reconstruction.
a) The applied gradient offset leads to a buckling of the coil image. The scanner reconstruction
shows a distorted shape. The distortion is qualitatively similar to the buckling of the coil image.
The offline algorithm successfully reconstructs the image without geometric distortions.
b) and c) The applied gradient offset leads to a dilation of the coil image. The scanner recon-
structions show increasing SENSE errors leading to the ripple on the top and bottom of the final
reconstruction. The offline algorithm successfully reconstructs the image without geometric distor-
tions.

Figure 5.11 shows the geometric distortion for an in vivo measurement. The VSM shows that
on the top of the image a strong patient susceptibility induced field inhomogeneity is present. This
field inhomogeneity leads to a geometric distortion on top of the scanner reconstruction. The of-
fline reconstruction which incorporates the field inhomogeneity information shows no geometric
distortion. Therefore, the shape of the reconstructed image is successfully corrected.
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Coil image VSM Offline Recon. Scanner Recon.

Figure 5.11: Correcting field inhomogeneities in an in vivo measurement.
Equivalently to the images above, the coil image and VSM are shown. The measurement was ob-
tained using a SE sequence. The offline reconstruction is compared to the scanner reconstruction.
It is visible, that the shape of the reconstructed image is successfully corrected. The scanner recon-
struction does not perform a correction. Thus, the shape of the reconstruction is distorted.

5.5 Multislice Reconstruction and Concomitant Field Modelling

The last sections described the incorporation of a joint estimation of phase maps and image data.
The considered slices were collected very close to the MRI scanners isocenter, which has the coor-
dinates (x , y, z) = (0,0, 0). For a usual fMRI study a multislice acquisition is used, which means
that multiple slices are acquired sequentially. An intriguing question is if the calculated phase map
is also valid for adjacent slices. When only few slices are collected coil heating can be neglected
and thus eddy current induced Nyquist ghosts should be equivalent for adjacent slices. Therefore,
in principal it can be expected that the phase map does not change.

To asses the reusability of phase maps, 20 slices of 4mm slice thickness were collected. The slices
are located between -13.2mm to 62.8mm in relation to the MRI scanners isocenter. First, the usual
reconstruction procedure was executed using ∆ΦFU LL , yielding v∆ΦFU LL

. These reconstructions are
shown in fig. 5.12a) for different slices. Then the phase map closest to the isocenter was stored. The
slice for which the phase map was stored is indicated by the green frame in fig. 5.12. This stored
phase map is termed ∆ΦFU LL , ISO.

Using ∆ΦFU LL , ISO instead of the actual phase map, the reconstruction is repeated for all slices.
These reconstructions v∆ΦFU LL , ISO

are shown in fig. 5.12b). The magnitude difference between the
v∆ΦFU LL

and ∆ΦFU LL , ISO are plotted in fig. 5.12c). As expected for the slice with the location -
1.2mm, the difference was zero. This is due to the fact that the stored and actual phase map are
identical for this slice. Fig. 5.12a) and 5.12b) are visually not distinguishable. Therefore, indeed
it can be concluded from this analysis, that reconstruction using stored phase maps is possible and
leads to no artefacts.

Still, fig. 5.12c) shows that there is a small difference in the magnitudes. This difference in-
creases for slices further away from the isocenter, hinting at effects stemming from concomitant
fields.

To understand concomitant fields it first has to noted that the main magnetic fields introduced
in sec. 2.2.2 and in other explanations is often simplified. Often only the main magnetic field B0
and the gradient vector G are stated as the magnetic field components in the imaging procedure.
Therefore, the total field B is usually modelled as B = B0 + G x x + G y y + Gzz. However, as the
Maxwell equations show, this is a simplification. To asses the total magnetic field, the Gauss’s law
for magnetism and Ampère’s circuital law have to be taken into consideration. For an infinitesimal
current density J and constant electric field, as can be assumed for the case of voxels sufficiently far
away from interface boundaries, Gauss’s law for magnetism and Ampère’s circuital law reduce to

∇ ·B= 0

∇×B= 0 .
(5.2)
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Figure 5.12: Reutilisation of image-based phase maps.
a) shows the reconstruction v∆ΦFU LL

for multiple slices. The slice location with respect to the isocen-
ter is given on the x-axis and is identical for all three subgraphs. Therefore, a) represents the usual
reconstruction using ∆ΦFU LL . The phase map of the slice framed in green was stored, and is de-
noted as ∆ΦFU LL , ISO.
b) The procedure was repeated using the stored phase map ∆ΦFU LL , ISO for the reconstruction of
all slices. The reconstructions for different slices are shown in b). A small difference for these re-
construction vs. the reconstruction in a) can be observed.
c) Shows the magnitude difference of a) and b). It is observable that the difference increases with
distance from the isocenter, hinting on effects stemming from concomitant maxwell fields.

Therefore, the total magnetic field of the lowest order [38] follows

B(x , y, z) = B0 + G x x + G y y + Gzz +
1

8B0
G2

z x2 +
1

8B0
G2

z y2 +
1

2B0
(G2

x + G2
y)z

2

−
1

2B0
G y Gz yz −

1
2B0

G x Gz xz .
(5.3)

For transversal slices several simplifications can be made [39]: Due to the fact that G y and Gz
respectively G y and Gz are never used at the same time, the last two terms of eq. 5.3 are dropped.
Furthermore, the slice selection gradient Gz is applied for a significantly smaller than the readout
gradients G x and G y . Therefore, for a transversal slice, as used for this work, the field can be
approximated following

B(x , y, z) = B0 + G x x + G y y + Gzz +
1

2B0
(G2

x + G2
y)z

2 . (5.4)

The concomitant field term is then calculated by

Bc(x , y, z) =
1

2B0
(G2

x + G2
y) z2 . (5.5)

Two other simplifications are made. First, a constant readout gradient is assumed and conse-
quently non-uniform ramp sampling neglected. Therefore, Φc is linear in time. Also neglecting
the phase-blips G y , since they are substantially smaller and activated for a shorter period than the
readout gradient G x , we can calculate the concomitant phase Φc following

Φc = γ 2π
1

2B0
G2

x z2 t , (5.6)

where t denotes the time between the odd and even echo peak per slice.

Using this expression the concomitant phase Φc was simulated. As mentioned earlier 20 slices
were collected , lying between z = −13.2mm and z = 62.8mm. The measurements were conducted
on a B0 = 3T system using a readout gradient of GRO = 0.02 T

m .
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Figure 5.13: Simulation, calculation and correction of concomitant phase term.
a) shows the simulated concomitant phase Φc obtained by simulation using eq. 5.6. The actual
phase difference between phase maps of slices and the phase map of the isocenter slice was used
for the calculation, shown in orange. In general it is visible that the calculation and simulation are
in good agreement.
b) shows the nRMSE per slice. It is derived by calculating the error between the reconstruction with
the actual phase map and the reconstruction using the stored phase map. Therefore, it is the error
between fig. 5.12a) and fig. 5.12b). After applying a correction term derived from a) to the stored
phase map, the reconstruction error is slightly reduced.

First the expected concomitant field term was simulated with eq. 5.6. The result is plotted in
blue in fig. 5.13a). As expected a quadratic dependance of the error to the slice location results.
Second of the phase difference between the actual phase maps ∆ΦFU LL and the stored phase map
∆ΦFU LL , ISO was calculated per slice. This result is shown in fig. 5.13b). It is observable that the
simulation and calculation are in good agreement. This suggests that the change of the phase map
between adjacent slices is indeed contributed to effect of concomitant maxwell fields.

The derived concomitant maxwell phase term Φc were used to correct the stored phase map
∆ΦFU LL , ISO. Fig. 5.13b) shows in blue the nRMSE for the usage of ∆ΦFU LL , ISO. Therefore, this
is the nRMSE between fig. 5.12a) and fig. 5.12b). The nRMSE is as usual defined by eq. 5.1.
To reduce this error, the slices are reconstructed using the stored phase map ∆ΦFU LL , ISO with an
additional slice-dependent correction of concomitant maxwell phase terms Φc . This concomitant
phase term, obtained from the simulation in fig. 5.13a) respectively eq. 5.6, is subtracted from
∆ΦFU LL , ISO. Consequently, the corrected phase can be directly used in the offline reconstruction.
Fig. 5.13b) shows that when using the corrected phase terms, the nRMSE is slightly reduced. The
magnitude difference in fig. 5.12 also hints at a small change of object geometry further away from
the isocenter. A small change in the object diameter for adjacent slices could explain the increasing
error visible at the edges.





6 | Discussion

This work aimed to replace the EPI reference scan data with an image-based phase map. Thus,
phase errors and image data can both be estimated with the measurement data. This leads to a
measurement data driven reconstruction, making the EPI reference scan obsolete.

For non-accelerated measurements collected with SE sequences, the 2D phase maps which were
only processed by wavelet denoising provided reconstruction results comparable to vre f . Also the
introduced 1D phase maps obtained by averaging and masking ∆ΦFU LL showed reconstruction re-
sults without artefacts. Still, the nRMSE was on average slightly higher when using ∆ΦFU LL . In
general 2D phase maps can provide better reconstruction when cross-term eddy currents occur or
when imaging with oblique scan planes [4] [37] [40]. Figure 5.4a) shows a measurement obtained
in a oblique scan plane. As visible all reconstructions are visually equivalent, while the nRMSE of
v∆ΦFU LL

is slightly higher. This raises the question if v∆ΦFU LL
is actually a better reconstruction than

vre f . As fig. 5.4a) suggest, the usage of nRMSE for the assessment of the reconstruction can not
give a definite answer. SNR maps could be used to further compare v∆ΦFU LL

and vre f [41]. Still, also
for R=1 measurements the averaged phase maps v∆ΦAV G

and v∆ΦAV G,M
provided the best nRMSE on

average. For measurements obtained with GRE sequences artefacts were already visible for R=1
measurements. Consequently, GRE measurements should always be reconstructed using v∆ΦAV G

or
v∆ΦAV G,M

.
The image-based phase maps confirmed the assumption of linearly varying phase trend. There-

fore, the main effect leading to Nyquist ghost are the introduced eddy currents. Since other effects,
like filtering procedures, have the same effect on odd and even echoes these effects will not appear in
image-based phase maps. The results showed that the linear phase trend varies slightly at different
locations in PE direction. It was shown that the slope and intercept variation is on average only few
percent. This variation was also noted by [4] and [42]. The origin of this small variation remains
unclear. On the other hand, the performance of the linear fitting algorithm itself should also be
considered. When plotting two linear phase trends which a slope difference only occurring in the
third decimal, the difference can not be spotted visualy.

For measurements with twofold acceleration, the usage of ∆ΦFU LL resulted in serious artefacts
in the phase map. These artefacts propagate in the final reconstruction. Therefore,∆ΦAV G was used
to obtain valid reconstruction results without artefacts. As mentioned, cross-term eddy currents or
measurements obtained under oblique scan planes could induce phase errors which can’t be repro-
duced with a 1D phase map. With the measurements obtained with this work, this situation did not
occur. Thus, the nRMSE was always equivalent or lower for v∆ΦAV G

compared to v∆ΦFU LL
.

As the g-factor increases non-linearly with acceleration, the linear fitting algorithm calculated
faulty values for R=3 measurements. Thus, a mask for the g map was derived. This mask excluded
values above 20% of the mean g-factor from the averaging procedure. Therefore, this can be seen as
an extension to the introduced averaging algorithm. Using the masking and averaging procedure,
R=3 accelerated measurements can be reconstructed. For lower acceleration factors the usage of
∆ΦAV G yields equivalent results to ∆ΦAV G,M . Consequently, also for R=1 and R=2 measurements
∆ΦAV G,M can be used. For R=3 only v∆ΦAV G,M

yields artefact free reconstructions.
The described averaging and masking procedure are computationally intensive. For the linear fit-

ting procedure a phase unwrapping procedure is necessary. Especially for areas of g-factor induced
noise amplification this procedure is computationally expensive. The masking procedure requires
the calculation of the g-map as an initial step. The g-factor only has to be calculated for superim-
posed voxels, since the g-factor is equal to one when no aliasing occurs. Still, for all other voxels five
matrix multiplication with an order of at least O (N2.373) and a matrix inversion with computational
complexity of order O (N3) are needed. Therefore, it can be concluded that the proposed averaging

51



CHAPTER 6. DISCUSSION 52

and masking procedures are effective, but significantly increase computational complexity.
For in vivo measurements the proposed algorithm including averaging and masking can success-

fully reconstruct artefact free images to an acceleration of around R=3.2. For higher acceleration
the algorithm leads to residual artefacts, since through the occurring noise amplification leaves few
rows in the phase map for the linear fitting algorithm respectively the remaining rows exhibit a lot of
fluctuation due to noise amplification. Thus, a reconstruction for acceleration factors R>3 does not
seem promising. This is due to the fact, that the proposed fitting algorithm is hindered by the strong
g-factor induced noise amplification. To reconstruct measurements with threefold and higher accel-
eration, it should be considered to integrate the phase map into the iterative reconstruction itself,
enforcing smoothness of the phase map [43]. This way it could be possible to reconstruct higher
accelerated measurements.

All calculation were conducted using a CG gradient without regularisation. As shown, an in-
trinsic problem of the image-based phase map estimation is the effectively doubled acceleration.
Due to the non-linear g-factor increase and consequently occurring noise amplification, the phase
map estimation is very sensitive to noise acceleration. These effects could be mitigated by adding
appropriate regularisation. In principal the proposed algorithm consists of two steps. In the first
step images using only odd and even echoes are reconstructed to yield the phase map. Therefore,
this calculation should be subject to regularisation enforcing smoothness. A smoothness constraint
generally comes at the cost of spatial details in the phase map, since a smoothness requirement is
a relation of neighbouring pixels. Since the actually reconstructed images of this first step are dis-
carded, a reconstruction enforcing mainly smoothness by appropriate regularisation can be used.
For the second step of the algorithm, which includes the calculated phase map into the sensitivity
profiles and reconstructs the final image, a different regularisation with a better balance between
spatial details and smoothness can be used.

The integration of VSM maps into the iterative reconstruction proved as successful and numeri-
cally efficient. As shown in the comparison to the scanner reconstruction, leaving out field inhomo-
geneity correction can lead to errors stemming from the shifted coil sensitivities as well as SENSE
errors in the reconstruction. In contrast to most publications, e.g. [4], the field inhomogeneities
were not directly integrated into the forward and reverse model. Such an integration would need
non-uniform FFT methods, based on gridding or interpolation [44]. This is necessary to mask the
odd or even echoes correctly. This masking is represented by the pink area in fig. 4.5. Therefore,
per iteration the gridding has to be conducted twice, leading to a costly calculation. The proposed
method of interpolating the sensitivity maps as an initial step and inversely interpolating the final
reconstruction proved to yield good reconstructions. This combines with a reduction of computa-
tional complexity by the number of iterations.

Furthermore, the algorithm for the correction of field inhomogeneities was assessed with non-
accelerated measurements. In principal the same procedure is used for accelerated measurement.
As mentioned to yield artefact free images for higher acceleration, a phase map obtained by masking
and averaging the full 2D phase map should be used. Since this masking depends on the g-map,
it has to be extended to calculate the g-map of the interpolated sensitivities mimicking the field
inhomogeneities. Using this recalculated g-map, the phase map ∆ΦAV G,M can also be calculated
when incorporating field inhomogeneities. The algorithm can then be used for higher acceleration
factors.

Using phantom measurements it was shown that the calculated phase map is also valid for adja-
cent slices. Two things have to be noted to the practical consideration of this implementation. First,
the concomitant phase calculation can easily be added to the calculation of the phase map. Due to
the long readout trajectories these have a special importance for single-shot EPI trajectories. Second
of all, the calculated effect of the concomitant phase is relatively small. As shown a reconstruction
using a saved phase map without concomitant phase correction, the obtained reconstruction still
does not show significant artefacts. There is now visible difference in the reconstruction using a
saved vs. the actual phase map. Furthermore, for longer fMRI protocols the phase map change is
also governed by increasing temperature of the gradient coils and consequently strongly varying
eddy currents. Therefore, it is questionable that phase maps could be reused for practical in vivo
protocols. It has to be noted that the reutilisation only reduces computational complexity. In princi-
pal calculating the full phase map for every slice is the most beneficial options. Nonetheless, using
the developed model for the concomitant phase, the phase map of adjacent slices can be seen as
sort of a prior knowledge to the calculated phase map.



7 | Conclusion

The goal of this work was to revise the EPI image reconstruction, integrating the most important
effects directly into the reconstruction model. Furthermore, the core objective of this work lies in
the replacement of the EPI reference scan with an image-based phase map.

For non-accelerated measurements obtained with SE sequences, a 2D phase map provided recon-
structions qualitatively equivalent to a reconstruction using EPI reference data. As shown, artefacts
induced by higher acceleration or for measurements obtained with GRE sequences can be treated
by masking and averaging the 2D phase map. Even for low acceleration such 1D phase maps pro-
vided better reconstruction results than the full 2D phase maps. Therefore, further studies should
examine the effects lying beneath the phase trend differences in the phase maps.

Other work [4] [5] noted this differences as well. This methods rely either on an analytical so-
lution of the model [5] or employ regularisation methods and a larger number of coils in the head
array. Consequently, they did not employ averaging methods and used only denoising. Therefore,
these approaches should be tested as well to study if the artefacts in the phase map can be reduced.
If the 2D phase map exhibits less artefacts for measurement with acceleration, the proposed aver-
aging and masking method could enable fourfold and higher acceleration.

In total, the core objective, the calculation and integration of image-based phase maps, was
achieved. This leads to a measurement data driven, joint reconstruction of phase errors and image
data. Therefore, for an acceleration up to R=3 a reconstruction could be obtained without EPI ref-
erence scan data.

Furthermore, the integration of VSM into the reconstruction was successful. Only few additional
computational complexity was added, obtaining good reconstruction results. Further in vivo mea-
surements should be made testing the limits of this algorithm.

The proposed iterative reconstruction comes at the price of increased computation. Especially
due to increasing hardware capabilities, it is predictable that this will play no significant role in the
future. Proper regularisation methods should be added to the iterative reconstruction, as these are
expected to decrease the noise amplification and will consequently improve the algorithm. One of
the significant advantages lies in the fact that for the solution of equation system defined by the
model, multiple numerical solution algorithms can be used. Thus, the approach is not dependent
on the usage of a CG algorithm.

The proposed model can be seen as a first step. It contains the possibility of including other
effects in the model. It was shown how concomitant maxwell fields can be integrated easily into the
model-based reconstruction. There are also other effects that can be incorporated into the model
and would improve the reconstruction. Examples are signal decay due to T ∗2 or motion correction
for DWI measurements.

The work shows that an appropriate modelling process of the EPI image acquisition is still an in-
triguing research question. This leads to the interesting problem of estimating the model parameters
either by separate reference scans or jointly with the data. This work contributed to the data-driven
joint reconstruction of model parameters and the image itself. Using such data-driven approaches,
the scan efficiency can be further improved.
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The following table summarises the measurement obtained for this work. These measurements
were used to calculate all presented results.

Name Date B0 Object Sequence R NUS Remark
20171201_2 1-12-17 1.5T Phantom SE 2 Yes
20171201_3 1-12-17 1.5T Phantom SE 3 Yes
20171201_4 1-12-17 1.5T Phantom GRE 1 Yes
20171201_5 1-12-17 1.5T Phantom GRE 1 Yes
20171212_1 12-12-17 1.5T Phantom SE 1 Yes
20171212_2 12-12-17 1.5T Phantom SE 2 Yes
20171212_3 12-12-17 1.5T In vivo SE 1 Yes
20171212_4 12-12-17 1.5T In vivo SE 2 Yes
20180124_1 24-1-18 1.5T Phantom SE 1 Yes ω0 -300Hz
20180124_2 24-1-18 1.5T Phantom SE 1 Yes ω0 -300Hz
20180124_3 24-1-18 1.5T Phantom SE 2 Yes ω0 -300Hz
20180124_4 24-1-18 1.5T Phantom SE 2 Yes ω0 -300Hz
20180124_5 24-1-18 1.5T Phantom SE 1 Yes Linear AP gradient offset
20180124_6 24-1-18 1.5T Phantom SE 1 Yes Linear AP gradient offset
20180124_7 24-1-18 1.5T Phantom SE 1 Yes Linear AP gradient offset
20180124_8 24-1-18 1.5T Phantom SE 1 Yes Linear AP gradient offset
20180124_9 24-1-18 1.5T Phantom SE 1 Yes Linear AP gradient offset
20180124_10 24-1-18 1.5T Phantom SE 2 Yes Linear AP gradient offset
20180124_11 24-1-18 1.5T Phantom SE 1 Yes Linear AP gradient offset
20180309_1 9-3-18 1.5T In Vivo SE 1 Yes PE Direction Changed
20180309_2 9-3-18 1.5T In Vivo SE 2 Yes PE Direction Changed
20180309_3 9-3-18 1.5T In Vivo SE 3 Yes PE Direction Changed
20180309_4 9-3-18 1.5T In Vivo GRE 1 Yes PE Direction Changed
20180309_5 9-3-18 1.5T In Vivo GRE 2 Yes PE Direction Changed
20180309_6 9-3-18 1.5T In Vivo GRE 3 Yes PE Direction Changed
20180419_1 19-4-18 3.0T Phantom GRE 1 Yes
20180419_2 19-4-18 3.0T Phantom GRE 2 Yes
20180419_3 19-4-18 3.0T Phantom GRE 3 Yes
20180419_4 19-4-18 3.0T Phantom GRE 4 Yes
20180419_5 19-4-18 3.0T Phantom GRE 1 Yes Linear AP gradient offset
20180419_6 19-4-18 3.0T Phantom GRE 2 Yes Linear AP gradient offset
20180419_7 19-4-18 3.0T Phantom GRE 3 Yes Linear AP gradient offset
20180419_8 19-4-18 3.0T Phantom GRE 4 Yes Linear AP gradient offset
20180419_9 19-4-18 3.0T Phantom GRE 1 Yes Different Phantom
20180419_10 19-4-18 3.0T Phantom GRE 2 Yes Different Phantom
20180419_11 19-4-18 3.0T Phantom GRE 3 Yes Different Phantom
20180419_12 19-4-18 3.0T Phantom GRE 4 Yes Different Phantom
20180419_13 19-4-18 3.0T Phantom GRE 1 Yes Different Phantom
20180423_1 23-4-18 3.0T Phantom GRE 1 Yes
20180423_2 23-4-18 3.0T Phantom GRE 2 Yes
20180423_3 23-4-18 3.0T Phantom GRE 3 Yes
20180423_4 23-4-18 3.0T Phantom GRE 4 Yes
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20180423_5 23-4-18 3.0T Phantom GRE 1 Yes
20180423_6 23-4-18 3.0T Phantom GRE 2 Yes
20180423_7 23-4-18 3.0T Phantom GRE 3 Yes
20180423_8 23-4-18 3.0T Phantom GRE 4 Yes
20180507_1 7-5-18 1.5T Phantom SE 1 Yes
20180507_2 7-5-18 1.5T Phantom SE 1 Yes Phase Blips off
20180507_3 7-5-18 1.5T Phantom SE 1 Yes 1D test mode
20180507_4 7-5-18 1.5T Phantom SE 2 Yes
20180507_5 7-5-18 1.5T Phantom SE 3 Yes
20180613_1 13-6-18 3.0T Phantom GRE 1 Yes
20180613_2 13-6-18 3.0T Phantom GRE 2 Yes
20180613_3 13-6-18 3.0T Phantom GRE 3 Yes
20180613_4 13-6-18 3.0T Phantom SE 1 Yes
20180613_5 13-6-18 3.0T Phantom SE 2 Yes
20180613_6 13-6-18 3.0T Phantom SE 3 Yes
20180613_7 13-6-18 3.0T Phantom SE 1 Yes Multislice: 20 Slices
20180613_8 13-6-18 3.0T Phantom SE 2 Yes Multislice: 20 Slices
20180613_9 13-6-18 3.0T Phantom SE 1 Yes Oblique Plane
20180613_10 13-6-18 3.0T Phantom SE 1 Yes Double Oblique Plane
20180613_11 13-6-18 3.0T Phantom SE 1 Yes Channel Delay Offset
20180613_12 13-6-18 3.0T In vivo GRE 1 Yes
20180613_13 13-6-18 3.0T In vivo GRE 2 Yes
20180613_14 13-6-18 3.0T In vivo GRE 3 Yes
20180613_15 13-6-18 3.0T In vivo SE 1 Yes
20180613_16 13-6-18 3.0T In vivo SE 2 Yes
20180613_17 13-6-18 3.0T In vivo SE 3 Yes
20180613_18 13-6-18 3.0T In vivo GRE 1 Yes
20180615_1 15-6-18 3.0T In vivo GRE 1 Yes
20180615_2 15-6-18 3.0T In vivo GRE 2 Yes
20180615_3 15-6-18 3.0T In vivo GRE 3 Yes
20180615_4 15-6-18 3.0T In vivo SE 1 Yes
20180615_5 15-6-18 3.0T In vivo SE 2 Yes
20180615_6 15-6-18 3.0T In vivo SE 3 Yes
20180615_7 15-6-18 3.0T In vivo GRE 1 Yes
20180615_8 15-6-18 3.0T In vivo GRE 2 Yes
20180615_9 15-6-18 3.0T In vivo GRE 3 Yes
20180615_10 15-6-18 3.0T In vivo SE 1 Yes
20180615_11 15-6-18 3.0T In vivo SE 2 Yes
20180615_10 15-6-18 3.0T In vivo SE 3 Yes

Table A.1: Obtained measurements



B | Program Structure

The following table B.1 summarises the loaded data and the loaded parameters from the .hdf5 file.
The data and parameters were used to calculate the results of this work. For the calculation of the
results multiple scripts and functions were implemented. An overview of the implemented functions
is given in table B.2.
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Name Type Size Description

Body coil sensitivity Data N y × N x Sensitivity matrix for RF body coil
Coil array sensitivities Data nc × N y × N x Sensitivity matrices for surface coil ar-

ray
Raw data Data EPI factor

×N x factor
Measured data in k-domain, factor is
dependent on slope fraction used for
sampling and oversampling factors

Sense data Data N y × N x Coil images before SENSE unfolding
Phase data Data EPI factor×N x EPI reference scan
Field map Data N y × N x Field map in Hz
BW in PE direction Parameter 1 Bandwidth in PE direction, calculated

with echo times
Oversampling factors Parameter 1× 1 Oversampling factors in PE and RO di-

rection
Scan resolution Parameter 1× 1 Number of collected echoes × sam-

pling points in readout direction
Reconstruction resolu-
tion

Parameter 1× 1 Size of matrices used for reconstruc-
tion in the scanner

R Parameter 1 Reduction Factor in PE direction
PE direction Parameter 1 PE direction in x or y direction
Odd echo direction Parameter 1 Odd echo in −x or x direction
Sampling points Parameter 1 Sampling points in RO direction

Table B.1: Loaded data and parameters

Function Description

b0interpolation.py Function to interpolate and inversely interpolate sensitivity
maps

conjugategradient.py Multiple functions of calculating conjugate gradient with in-
tegration of image-based phase maps

deadface_io_python3.py Read and write files from scanner recon unit
filtering.py Wavelet and median filters
gridding.py Readout gridding, data padding
hdf5.py Load Data from hdf5 file, see table B.1 for table of loaded

data
measurements.py Dictionary with all obtained measurements, see table A.1

for measurement list
phasemap.py Calculation of phase map and different processing algo-

rithms
readout.py Load parameters from sin file, needed if hdf5 import fails
window_functions.py Kaiser-Bessel window functions

Table B.2: Implemented functions
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