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INFERRING TIME VARYING SIGNALS OVER UNCERTAIN GRAPHS

Mohammad Sabbaqi and Elvin Isufi

Delft University of Technology, Delft, The Netherlands

ABSTRACT

Inference of time varying data over graphs is of importance
in real-world applications such as urban water networks, eco-
nomics, and brain recordings. It typically relies on identify-
ing a computationally affordable joint spatiotemporal method
that can leverage the patterns in the data. While this per se
is a challenging task, it becomes even more so when the net-
work comes with uncertainties, which, if not accounted for,
can lead to unpredictable consequences. To target this setting,
we model graph uncertainties as Gaussian noise on the edges
and design a stochastic partial differential equation (SPDE)
based on it. We use this SPDE as a state equation to model the
time varying signal evolution and extend it further to a state-
space model where the observations are graph-filtered ver-
sions of the state. This allows us to have a joint spatiotempo-
ral expressive kernel that can be estimated online via Kalman
filtering and which parameters can also be estimated online
via maximum likelihood principles, ultimately, reducing the
computational cost. We corroborate the proposed approach
on numerical experiments, showing a superior performance
to approaches ignoring either the uncertainty or considering a
separable spatiotemporal kernel.

Index Terms— Time-varying graph signals, Stochastic
partial differential equations, Gaussian processes on graphs.

1. INTRODUCTION

Inference of time varying signals over graphs plays a key
role in network-based systems to interpolate missing values,
forecast a certain horizon, and detect anomalies, to name a
few [1]. This is a challenging problem because the spatiotem-
poral coupling in the data needs to be exploited in a compu-
tationally affordable manner due to the problem dimensions
(large graphs, long time horizon). This task becomes even
more challenging when the graph is imperfect, which is typ-
ically the case in almost all physical networks (water, power,
transport) but also when it is estimated from a finite amount
of data [2, 3]. Topological uncertainties have been studied in
different settings including graph filtering [4], graph signal
processing [5], graph neural networks [6–9], and PDE-based
approaches [10, 11].

THIS WORK IS SUPPORTED BY THE TU DELFT AI LABS PRO-
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A natural way to infer time varying signals on graphs is to
extend graph kernels [12] into a spatiotemporal form, where
due to computational aspects, a separable spatiotemporal ker-
nel is favored [13, 14]. Another approach is to design a la-
tent space model where independent Gaussian processes pass
through a graph filter to account for both the temporal and the
spatial connections in the data [15,16]. The work in [17] also
builds around Gaussian processes but designs a joint (non-
separable) kernel based on SPDEs. The latter is more inter-
pretable and expressive than the separable kernels but it is
computationally heavier. In this work, a general diffusion ma-
trix is considered to propagate the stochasticity which limits
applicability to small graphs and short temporal windows.

To overcome the above, we propose a graph SPDE for
modeling edge uncertainties leading to a joint spatiotempo-
ral kernel for time varying data over the graph. The graph
as an inductive bias structure rules the noise diffusion act-
ing. We use this SPDE-based kernel in a state-space model
to target more general graph processes that are not limited to
low-pass behaviors on the graph. We approach the proposed
model with Kalman filtering and maximum likelihood esti-
mation to predict the process and estimate model parameters,
ultimately, compensating for the graph uncertainties in a scal-
able setting. The proposed approach is tested numerically on
three datasets to emphasize the importance of compensation
for topological imperfections.

2. PROBLEM FORMULATION

Let G = {V, E} be an undirected graph with node set V of
N nodes and edge set E of M edges. Let also A be the
weighted adjacency matrix where entry Aij = aij ≥ 0 in-
dicates the weight of edge eij . We can represent the graph
structure also via its incidence matrix B ∈ RN×M that cap-
tures weighted proximities between nodes and edges. Con-
sequently, the graph Laplacian is L = diag(A1) − A =
BB⊤, with 1 the all one vector and diag(·) the diagonaliza-
tion operator. For completeness, we also denote the eigen-
decomposition of L = VΛV⊤, with eigenvectors across
the columns of V and eigenvalues on the main diagonal of
Λ = diag(λ1, . . . , λN ). One the nodes of G, we consider
a time-varying graph signal, which is a continuous mapping
f : V × R → R that assigns a time series to each node. For
discrete time instants, we can represent the signal in the ma-
trix form X = [x1, . . . ,xT ] ∈ RN×T where each snapshot
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xt ∈ RN is a graph signal.

2.1. Stochastic Partial Differential Equations

Since the Laplacian matrix discretizes the Laplace operator,
a class of diffusion processes over graphs can be represented
as a partial differential equation in terms of L [10, 18]. For
instance, the popular heat diffusion kernel is a solution to

dx = −cLxdt (1)

where constant c describes the spatial diffusivity [19]. Build-
ing on this analogy, the work in [17] defined a heat SPDE to
design joint spatiotemporal kernels for time varying data over
networks. This SPDE reads as

dxt = −cLxtdt+ Sdβt, (2)

where βt is a V -dimensional standard Brownian motion and
S ∈ RN×V is the diffusion matrix. Under Gaussian initial
conditions x0 ∼ N (µ0,Σ0), the solution of (2) is a Gaussian
process of the form xt ∼ GP(µt,Σt,s(L)) [17]. The mean
process µt is a heat diffusion on graphs µt = exp(−cLt)µ0

with exp(·) the matrix exponential. The covariance function
is Σt,s(L) = VCt,sV

⊤, where matrix Ct,s has (i, j)th entry

[Ct,s]ij =
[V⊤SS⊤V]ij
c(λi + λj)

(e−cλi|t−s| − e−c(λit+λjs)). (3)

This covariance matrix defines a spatiotemporal kernel that
suppresses higher graph frequencies and imposes low-pass
properties. If the matrix SS⊤ is analytic in L, this kernel
shrinks into a spectral Gaussian process over the graph.

While the kernel in (3) has shown a great performance in
interpolating and extrapolating networked time series, it has
three main limitations. First, its complexity is of order cubic
O(N3T 3), limiting its applicability to small graphs. Second,
its solution is limited to low-pass processes over graphs be-
cause of the first-order diffusion with L. Third, the Brownian
motion diffuses over the network regardless of the topology
via a general diffusion matrix S. Our goal is to propose an
alternative to the SPDE (2) that overcomes all these issues.

2.2. Problem Motivation

We consider the observed graph L matches the support of the
true graph L⋆ but its edge weights differ slightly because of
estimation error. This could be seen as a relative estimation
error [4, 6, 20], and it is common in many applications in-
volving physical networks such as water, transportation, and
power networks. We model this error as

L⋆ = L+Bdiag(w)B⊤, (4)

where w ∈ RM is a normal noise modeling the uncertainties
over each edge independently. A heat diffusion model over
the underlying graph can then be written as

dxt = −cL⋆xtdt = −cLxtdt− cBdiag(w)B⊤xtdt, (5)

where process xt is the superposition of the diffusion over the
observed graph L and of the relative error graph Bdiag(w)B⊤.

This SPDE is time-variant because of the term αt =
B⊤xt. For processes xt that are smooth over the graph in
each t [21], we can consider α = αt and get the linear
time-invariant (LTI)-SPDE

dxt = −cLxtdt+Bdiag(α)dβt, (6)

with dβt = wdt. This means that the Brownian motion βt

has independent entries with different energies α that depend
on the graph signal differences B⊤xt. Thus, the uncertainty
will play a bigger role on edges with a bigger signal dif-
ference. Contrasting (6) with (2), we can also see that the
noise diffusion matrix S = Bdiag(α) is graph dependent,
ultimately, allowing for a more interpretable model and less
parameters to estimate –M values of α in (6) instead of NV
values of S in (2).

Model (6) is however a heat diffusion process and thus it is
limited to low-pass graph signals at each snapshot. To achieve
a more general version, we extend it to a state-space model
where the state follows the LTI-SPDE (6) and the observation
model follows the discrete-time graph filtering model

yk = M(H̃(L)xtk + ṽk) := M(
∑K

i=0hiL
ixtk + ṽk), (7)

where yk is the observation at snapshot k, xtk is the sampled
value of the continuous state variable xt, M ∈ RF×N is a
sampling matrix, and ṽk ∼ N (0, σ2IF ) is the observation
noise. Here, H̃(L) :=

∑K
i=0 hiL

i is the graph convolutional
filtering matrix and expresses observation as a linear combi-
nation of the discretized states xtk from neighbors up to K
hops away [21, 22]. We define H = MH̃ for notational con-
venience.

The filter in (7) has O(K) parameters h = [h0, . . . , hK ]⊤

that are independent of the graph size and a computational
complexity of order O(KM) [22]. These are favorable fig-
ures as they allow modeling a wide class of measurement
models with affordable computations. Thus, with this state-
space formulation, we can model time-varying data over
graphs with arbitrary spectral behaviors in a recursive man-
ner and a lower complexity as we shall detail next.

2.3. Problem Formulation

Consider the continuous-discrete state-space model{
dxt = −cLxtdt+Bdiag(α)dβt

yk = H(L)xtk + vk

, (8)

with initial condition x0 ∼ N (µ0,Σ0). Given a set of tempo-
ral observations y1, . . . ,yT , our goal is to estimate the edge
uncertainties α and the filter coefficients h in a Gaussian pro-
cess framework. This can be achieved by maximizing the
likelihood function obtained from the solution of the state-
space model. Given these parameters, yk can be inferred via
Kalman filtering.
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Remark 1 (Gaussian process regression) Since both the
initial condition x0 and the Brownian motion βt are Gaus-
sian, the solution to the state equation (6) is a Gaussian
process. Hence, the state-space model (8) can be indicated
as yk = H(L)f(xtk) + vk, where f(·) is a non-separable
spatiotemporal Gaussian process. In turn, this enables a
Bayesian framework for parameter estimation.

Remark 2 (Edge imperfections) We compensate for the
edge imperfections only in the state model (via estimating α)
since it may lead to poor modeling performance due to tem-
porally overgrowing error. Instead, we do not compensate for
the edge imperfections in the observation equation as graph
filters have shown to be stable to topological perturbations;
see e.g., [4, 20, 23].

3. INFERENCE ALGORITHM

Our inference algorithm consists of first discretizing the
SPDE and then using Kalman filtering with an online param-
eter estimation via maximum likelihood.

3.1. Discretization of Continuous State

Given data with a high temporal resolution and uniform inter-
vals △t, the continuous state can be discretized with a negligi-
ble error. Since the transition matrix of the LTI-SPDE (6) is an
exponential function exp(−cL(t − s)), we can discretize (6)
by multiplying both sides with the transition matrix and in-
tegrating over interval [0,△t] [24]. The discretization yields
the state equation

xtk+△t = L̃xtk + qk, qk ∼ N (0,Q) (9)

with transition operators

L̃ = exp(−c∆tL) (10a)

Q =
∫∆t

0
e−cL(∆t−s)Bdiag2(α)B⊤e−cL(∆t−s) ds (10b)

where diag2(·) stands in for the square of the diagonal ma-
trix [25]. Using the matrix fraction method in [26], we can
solve the integral in (10b) by first defining the matrix

exp

([
cL Bdiag(α2)B⊤

0 −cL

]
△t

)
=

[
F1 G
0 F2

]
, (11)

and then setting the solution to Q = F⊤
2 G.

There are multiple approaches to compute a matrix expo-
nential [27] but since the data is available with a relatively
high resolution (small △t), we can rely on a first-order Taylor
approximation for both equations (10a) and (11). Hence, we
get the approximations 1

L̃ ≃ I− c△tL (12a)

Q ≃ △tBdiag2(α)B⊤. (12b)

1We have also tested the second-order Taylor approximation for these
matrix exponentials but they lead to numerical instabilities due to H−1(L).

Equation 12b suggests that the covariance matrix of the sys-
tem noise has rank M . It is parameterized by α, and accounts
for the graph structure. Bringing all together, we obtain the
discrete-time state-space model

xk = L̃xk−1 + qk, yk = Hxk + vk, (13)

where the covariance matrix of the system and observation
noises are Q = Bdiag2(α)B⊤ and R = σ2I, respectively.
Note that we merged △t with α in Q for notation conve-
nience.

3.2. Parameter Estimation

Given the model parameters, α, σ2, and H(L), the solu-
tion of state space model (13) can be obtained via discrete
Kalman filtering. Given the updates up to iteration k − 1 of
the state variable xk−1

k−1 = E[xk−1|y1, . . . ,yk−1] and the re-
spective covariance matrix Pk−1

k−1 = Cov[xk−1|y1, . . . ,yk−1]
the Kalman updates can be computed as:
Prediction step:

xk−1
k = L̃xk−1

k−1; (14a)

Pk−1
k = L̃Pk−1

k−1L̃+Bdiag2(α)B⊤; (14b)

Correction step:

Kk = Pk−1
k H⊤(HPk−1

k H⊤ + σ2I)−1 (15a)

xk
k = xk−1

k +Kk(yk −Hxk−1
k ); (15b)

Pk
k = Pk−1

k −KkP
k−1
k K⊤

k ; (15c)

where Kk is the Kalman gain at iteration k. Due to its online
nature, the Kalman filter has an order of complexity that is
linear in time O(N3T ).

Running the Kalman filter (14a)-(15c) with fixed parame-
ters leads to the distribution

p(yk|y1, . . . ,yk−1) = N (Hxk−1
k ,HPk−1

k H⊤+σ2I) (16)

which allows us to compute the marginal likelihood. The neg-
ative log-likelihood function can be computed recursively as

Lk(α,h) = Lk−1(α,h) + 1
2 log |Sk| (17)

+ 1
2 (yk −Hxk−1

k )⊤S−1
k (yk −Hxk−1

k )

with Sk = HPk−1
k H⊤ + σ2I and | · | denoting the matrix

determinant. We can then obtain the estimates for α and h
via a simple alternating minimization on Lk(α,h) first on
α and then on h. For this, we use online gradient descent,
where a gradient update occurs at each time stamp. As the
loss function is written recursively, all the updates can also be
computed recursively as

αk = αk−1 − γ1∇αLk(αk−1,hk−1),

hk = hk−1 − γ2∇hLk(αk,hk−1).
(18)
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Table 1. Interpolation task performance for both synthetic
and weather temperature dataset. The experiments are per-
formed based on different portions of unobserved data.

rNMSE
Synthetic Weather Traffic

10% 20% 30% 10% 20% 30% 10% 20% 30%
LMS 0.40 0.46 0.46 0.42 0.43 0.49 0.41 0.45 0.48
StarGP 0.31 0.31 0.36 0.25 0.24 0.31 0.21 0.25 0.29
G-SPDE 0.12 0.14 0.16 0.13 0.14 0.17 0.16 0.15 0.27
No-α 0.24 0.27 0.30 0.23 0.28 0.31 0.27 0.33 0.37
Fixed-α 0.24 0.26 0.29 0.22 0.26 0.29 0.24 0.27 0.36
Learn-S 0.23 0.20 0.20 0.21 0.21 0.27 0.19 0.22 0.34

The gradient can be computed in closed form but its explicit
expression is omitted here for the sake of space.

Altogether, the proposed approach consists of model-
ing the spatiotemporal process via the state-space model (8)
where the state equation is an LTI-SPDE that accounts for
the edge uncertainties and the observations are discrete-time
signals that are aggregated by a graph convolutional filter.
Upon discretizing the state-space model (13), we solve it re-
cursively by alternating between the Kalman filtering updates
in (14a)-(15c) to infer the spatiotemporal data and the maxi-
mum likely estimates of the parameters in (18) to compensate
for the uncertainties. We conclude with the following remark.

Remark 3 (Maximum a posteriori) If prior information
over α or h is available, we can add to (17) the negative
log-priors − log pα(α) and − log ph(h). We can consider
the Gaussian prior α ∼ N (0, σ2

pdiag(B̃⊤d)) where B̃ is
the unweighted and undirected incidence matrix and d is the
degree vector. This means that edges connected to nodes with
higher degrees are more susceptible to uncertainty which is
closely tied to relative perturbations over graphs.

4. NUMERICAL EXPERIMENTS

We corroborate the proposed graph SPDE (G-SPDE) ap-
proach on spatiotemporal interpolation and extrapolation
(forecasting) tasks on the following three datasets:
• Synthetic: A numerically generated SPDE over a stochas-

tic block model of 200 nodes and 4 communities with
inter/intra community probabilities of 0.8/0.2, and 10000
snapshots. The observation noise energy is σ2 = 0.01.
Both α and h are multivariate normal and we report the
average performance over different realizations.

• NOAA: Contains 8579 hourly temperatures across 109 sta-
tions in the U.S. and we used the setting in [28].

• METR-LA: A traffic dataset of four months with a 5-
minute resolution over 207 nodes in Los Angeles. The
graph is an exponential kernel of distance matrix as in [6].

In all the experiments, we split the datasets temporally
into 10 parts and reported the average performance of the
models. In each experiment, up to the starting 10% of the
data are used for training and stabilizing parameter estima-
tion. The constants c = 0.75 and △t = 1 are considered
throughout the experiments. For the interpolation task, we

Fig. 1. Traffic forecasting performance in rNMSE for pro-
posed models with different prediction horizons.

consider the prediction (14a) as the reconstructed state and
pass it through the graph filter to obtain the missing val-
ues. For the extrapolation task, we forecast the trajectory
via Kalman equations with the estimated parameters α and
h using a random noise generator with variance σ2 in equa-
tion (15b). All the initial mean values and the initial max-
imum likelihood function in (17) are zero, while the initial
covariance matrix Σ0 comes from Riccati’s equation as the
steady-state solution of ordinary differential equation [25].
As alternatives, we consider the standard least mean square
(LMS) approach and StarGP from [15] that is based on Gaus-
sian processes. The hyperparameters for these baselines are
selected based on [15].

The top three lines of Table 1 and Fig. 1 compare the
methods for the interpolation and the extrapolation task, re-
spectively. We see that the proposed approach outperforms
the alternatives by a margin and this is attributed to the fact
that we compensate for the graph perturbations. We further
investigate the role of the different components in our method:
i) No-α is the model ignoring edge uncertainties; ii) Fixed-
α assumes the noise energy is known; and Learn-S ignores
graph structure and estimates a matrix S. In all cases, we see
that imposing a graph structure in S and compensating for the
uncertainties reduces drastically the estimation error.

5. CONCLUSION

This paper proposed a method to infer spatiotemporal graph
signals on networks with edge uncertainties. We consider
a state-space model, where the state equation is based on
stochastic partial differential equations tailored to the graph
perturbations, and the observation matrix is a graph filter. By
leveraging a Kalman filter approach we solved the state-space
model and used its prediction distribution to estimate both the
covariance matrix of the edge uncertainties and the filter
coefficients in an online fashion. The latter allows for com-
pensating the graph uncertainties. The proposed approach can
also be seen as having a joint spatiotemporal kernel over the
graph as a latent variable where the observations are obtained
through a graph filter. Experimental results showcase the su-
periority of the proposed method compared with alternative
solutions.
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