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Regular article 

High-resolution computation predicts that low dissolved CO concentrations 
and CO gradients promote ethanol production at industrial-scale 
gas fermentation 
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A B S T R A C T   

Gradients in dissolved gas concentrations are expected to affect the performance of large reactors for anaerobic 
gas (CO, H2, CO2) fermentation. To study how these gradients, and the dissolved gas concentration level itself, 
influence the productivity of the desired product ethanol and the product spectrum of C. autoethanogenum, we 
coupled a CFD model of an industrial-scale gas fermentor to a metabolic kinetic model for a wide range of 
metabolic regimes. Our model results, together with literature experimental data and a model with constant 
dissolved gas concentrations, indicate high ethanol specificity at low dissolved CO concentrations, with acetate 
reduction to ethanol at very low dissolved CO concentrations and combined ethanol and acetate production at 
higher CO concentrations. The gradient was predicted to increase both the biomass-specific ethanol production 
rate and the electron-to-ethanol yield by ~25%. This might be due to intensified ferredoxin and NAD+ redox 
cycles, with the rate of the Rnf complex – a critical enzyme for energy conservation – as key driver towards 
ethanol production, all at the expense of a reduced flux to acetate. We present improved mechanistic under-
standing of the gas fermentation process, and novel leads for optimization and fundamental research, by coupling 
observations from various down-scaled lab experiments to expected microbial lifelines in an industrial-scale 
reactor.   

1. Introduction 

In the last few years, anaerobic gas fermentation (with CO, H2 and/or 
CO2 gas mixtures) has successfully been commercialized by the com-
pany LanzaTech for the production of ethanol from industrial waste 
streams [1,2]. Ethanol is the product of main interest, since it has an 
established use as fuel and because it can be upgraded to plastics, tex-
tiles, and fine chemicals, while the spent microbial biomass can be used 
as animal feed [1–4]. The industrial gas fermentation process with the 
acetogen Clostridium autoethanogenum is deployed in external-loop 
gas-lift reactors (EL-GLR), which has shown potential for achieving 
high gas-to-liquid mass transfer rates, at least in part due the 

coalescence-inhibiting properties of the produced ethanol [5,6]. 
In large-scale bioreactors (e.g., the mentioned EL-GLR of ~500 m3), 

gradients in (amongst others) liquid-phase substrate and dissolved gas 
concentrations are usually expected when the characteristic time of 
consumption is smaller than those of liquid circulation and mass 
transfer, respectively [7,8]. Moreover, variations in hydrostatic pressure 
and the gas composition were estimated to result in a gradient of factor 
35 [9]. The temporal fluctuations that micro-organisms experience as a 
consequence of these spatial gradients (lifelines) were found to enlarge 
population heterogeneity [10–12], and often lead to reduced perfor-
mance [13–15]. 

Recent works show that spatial dissolved gas concentration gradients 
are also expected in industrial-scale gas fermentation bioreactors, such 
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as bubble columns [16,17] and the EL-GLR [9]. From the microbial 
perspective, the spatial concentration variations in the EL-GLR were 
predicted to result in frequent and irregular (5 – 30 s) cycles in dissolved 
gas (CO, H2) concentrations with one order of magnitude [9]. Long 
periods (> 70 s) at low CO concentrations (ccrit

L,CO< 0.003 mol m− 3) were 
hypothesized to result into a starvation regime, with transcriptional 
changes as consequence, and reduced growth rates and product yields 
[16]. 

The impact of the concentration gradient on the cellular metabolic 
activity, and thus its product formation rate, can be studied by coupling 
a computational fluid dynamics (CFD) model of a bioreactor with a 
dynamic metabolic model (cellular reaction dynamics, CRD), in an 
Euler-Lagrangian computational framework. With a one-way coupled 
approach and kinetics applied to the Eulerian field, the impact of the 
concentration gradient on the microbial metabolism can relatively 
quickly be assessed, while with full Euler-Lagrangian two-way coupling 
the microbial metabolism also impacts the gradient. The first two-way 
coupled simulations for industrial fermentations were performed by 
Reuss and co-workers [12,18], after which follow-up work was done via 
various methodologies: Morchain et al. [19] used population balance 
models for microorganisms, while Haringa et al. [20] used a 9-pool 
dynamic kinetic model [21]. One-way coupled simulations for bubble 
column reactors were done for Saccharomyces cerevisiae [22] and 
C. autoethanogenum [9,16], and it was found that microorganisms in 
bubble columns typically experience shorter starvation periods than in 
stirred-tank reactors [23]. One of the major limitations of this approach 
is the computational power required for the high-resolution simulations, 
which can partially be relieved with the use of compartment models 
[24–26]. In recent years, the CFD-CRD modelling approach gained 
widespread attention, as it opens avenues towards more rational 
scale-up and optimization of industrial-scale bioreactors [27–29]. 

The metabolism of acetogens and the Wood-Ljungdahl pathway have 
extensively been described before [4,30,31]. Carbon (CO and CO2) is 
fixed via the Wood-Ljungdahl pathway, which contains two branches: In 
the carbonyl branch CO is converted into CO2 to reduce ferredoxins with 
the reversible carbon monoxide dehydrogenase (CODH) enzyme, while 
in the methyl branch CO2 is converted into formate, which is further 
reduced to an activated methyl group. CO and the methyl group are then 
combined into acetyl-CoA at the expense of 1 ATP, which is recovered 
downstream through acetate production [31]. By the establishment of a 
chemiosmotic gradient, ATP for growth and maintenance is produced: 
The Rnf complex exports protons via electron transfer from reduced 
ferredoxin (Fd2−

red) to NAD+ [30,32]. Ethanol is mainly produced via the 
AOR pathway (named after the enzyme acetaldehyde:ferredoxin 

oxidoreductase), which is thermodynamically feasible only when the 
intracellular acetate concentration passed the threshold of 1000 times 
the acetaldehyde level [33,34]. High intracellular acetate concentra-
tions are obtained at low extracellular pH (5.0) and high concentrations 
of undissociated acetic acid, since this neutral form of the acid can 
passively diffuse into the cell [34]. H2 uptake relates to ethanol pro-
duction, as its electrons are directly stored in Fd2−

red and NADPH [35,36]. 
A 12-pool CRD model was recently developed that could describe 

metabolic dynamics upon metabolic-induced self-oscillations [37] of 
C. autoethanogenum in a chemostat culture [38]. This model could 
explain how extracellular concentrations (of CO, H2, CO2, protons and 
the products acetic acid, ethanol and 2,3-butanediol), and the intracel-
lular carbon (formate, acetyl-CoA, acetate) and electron pools (Fd2−

red , 
NADH, NADPH), change upon fluctuations in any of these. From the 
self-oscillating culture, it was found that the biomass-specific ethanol 
production rate, qEtOH, varies proportionally to the uptake rate of the 
electron donors (CO and H2) [38]. By varying the redox potential among 
several batch cultures Grimalt-Alemany et al. (2021) observed severe 
dynamics (within one order of magnitude) in the NAD(H) pool size and 
the NADH/NAD+ ratio, and that dynamics in the latter positively 
correlated with the ethanol specificity. 

Since the observed dynamics in both studies (in the order of days) are 
of metabolic origin (no proteomic differences were observed in [37]) 
and related to thermodynamics, they may help identify how the 
short-timescale dynamics occurring in the industrial-scale bioreactor (in 
the order of seconds) affect the metabolism. Based on the dynamics in 
these experimental studies, we hypothesize that the temporal-variations 
in dissolved gas concentration as occurring in the industrial-scale 
EL-GLR, lead to increased qEtOH, compared to a spatially- and tempo-
rally homogenous environment. 

In this work, we coupled the CRD model [38] with our previously 
developed CFD model of an industrial-scale EL-GLR [5,9] supplied with 
a gas mix containing 50% CO, 20% H2 and 30% CO2, to study how the 
dissolved gas concentration and its gradient may influence the meta-
bolic behaviour of C. autoethanogenum (with focus on the product 
spectrum, substrate inhibition, and energy conservation mechanisms). 
Computations were done with several biomass concentrations to study a 
wide range of fluctuations on dissolved gas concentrations, from con-
ditions with excess mass transfer to severe mass transfer limitations 
(from over-reduced to significantly under-reduced conditions). By 
comparing the CFD-CRD model results with those of a model with 
constant dissolved gas concentrations, the impact of the dissolved gas 
concentration and its dynamics on the metabolism and product spec-
trum of C. autoethanogenum could be studied. From the results, we could 

List of symbols 

Latin 
c Concentration (mol m− 3 or g L− 1) 
J Metabolic rate (mol molX− 1 h− 1) 
kLa volumetric mass transfer coefficient (h− 1) 
Np Number of particles for which the CRD model was solved 
q Biomass-specific rate (mol molX− 1 h− 1) 
r Volumetric rate (mol mL

− 3 h− 1) 
r̃i Particle-specific rate (mol particle− 1 h− 1) 
t Time (s) 
Δt Time step (s) 
tc Circulation time (s) 
tm 95% mixing time (s) 
V Volume(m− 3) 

Greek 
ε Elasticity coefficient (-) 

µ Growth rate (h− 1) 
τ Characteristic or turnover time (s− 1) 

Sub- and superscripts 
0 Initial 
EC Extracellular 
f Flow 
i Compound 
IC Intracellular 
j Reaction 
L Liquid 
ll lin-log 
p Particle 
ref Reference 
VE Volume element 
X Biomass  
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identify which metabolite pools, reactions and enzymes relate to ethanol 
production, establish several hypotheses for further research, and pro-
pose ways for reactor, strain and process optimization. 

2. Methodology 

2.1. CFD-CRD coupling approach 

The CFD model (geometry, flow pattern and operation conditions) of 
an external-loop gas-lift reactor (~500 m3) that was developed in our 
previous study [5], was complemented with a mass transfer model in 
[9], and, in the present work, with the CRD model developed in [38]. 
The hydrodynamic model was validated on pilot-scale data, while mass 
transfer rates of the EL-GLR corresponded with industrial standards by 
assuming bubbles with a constant diameter of 3 mm [5], possible due to 
coalescence inhibition [6]. The resulting Eulerian flow and concentra-
tion fields of the CFD simulation with black-box kinetics (with 5 gx L− 1) 
and gas-liquid mass transfer, described in [9], was used as an initial 
condition for the CFD-CRD model described here. 250,000 Lagrangian 
particles were released at t = 3000 s, and mixed for 200 s, to ensure a 
homogeneous distribution of particles in the reactor at the start of the 
CFD-CRD simulation. The pH was kept constant at 5.0, while the initial 
external product and intracellular metabolite and co-factor concentra-
tions were in the range of the ones used for the CRD model calibration 
[37,38] (Table A.1). 

As soon as the CRD model was activated, two-way reaction coupling 

was applied for CO, H2 and CO2 according to the method described in 
[40,41], so that the metabolic-kinetic model determines the concen-
tration fields and the gas hold-up. The basis for this two-way coupling 
procedure was described in [40]. A schematic overview of the model 
structure and its solving procedure is provided (Fig. 1). 

The development and parameterization of the metabolic kinetic 
model are described extensively in [38] and the relevant parts for 
two-way coupling in SI A.1. The MATLAB model, comprising 12 
metabolite pools and 12 reactions, was rewritten into C code, and 
implemented in an Euler-Lagrangian framework using the DPM_SCA-
LAR_UPDATE macro in Ansys FLUENT. This allowed tracking and 
updating of particle-associated variables, specifically the metabolite 
concentrations, at every particle time step Δtp, that was equal or smaller 
than the flow time step (Δtp ≤ Δtf = 5 ms). 

Since NADH has the lowest turnover time (~ 1 ms) the metabolic 
equations were integrated with a fixed – intracellular –time step ΔtIC of 
0.1 ms. As ΔtIC << Δtp, an integration routine was implemented using 
the Runge-Kutta 4th order algorithm. After each ΔtIC, the concentration 
vector was updated until Δtp was completed. The particle position was 
updated, while the CRD model was integrated again, until the Eulerian 
time step Δtf had been completed. At t + Δtp, the volumetric source 
terms for CO, H2, and CO2 were computed for each particle within each 
volume element (VE) during the time step r̃i(p,Δtp) using the concen-
tration differences in that particle (Eq. 1). It was assumed that the 
amount of Lagrangian particles for which the CRD model was solved, Np, 
are evenly distributed in the EL-GLR and that each particle equally 

Fig. 1. Overview of the CFD-CRD model and its solving procedure. a) Geometry of the EL-GLR wherein the equations for flow, turbulence and mass transfer are 
solved, together with the displacement of Lagrangian particles. b) Structure of the metabolic-kinetic model, taken from [38]. c) Stepwise solving procedure of the 
CFD-CRD model implemented. 
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contributes to the total biomass concentration. After Δtf the volumetric 
source terms for the dissolved species mass balances ri,VE were computed 
per volume element by summation of ̃ri(p,Δtp) over each particle and the 
number of Δtp required to reach Δtf. 

ri,VE =

∑Np,VE

p=1

∑Δtf

Δtp
r̃i(p,Δtp)

VL,VE
withr̃i(p,Δtp) =

ci|t+Δtp − ci|t

Δtp

VL,reactor

Np
(1) 

The metabolic model is based on lin-log kinetics, which is a good 
approximation of typical hyperbolic kinetics close to a given reference 
state [42,43], but leads to inaccurate and unstable behaviour in extreme 
regions [43,44]. Thus, results obtained with lin-log based metabolic 
models are most accurate within a rather narrow range of concentra-
tions (typically one order of magnitude around the reference state). Such 
behaviour could therefore be expected when the CRD model is solved 
outside its range of calibration, for example at very low dissolved gas 
concentrations (cL,CO < 0.025 mol m− 3). As wide concentration ranges 
occur in the large-scale reactor, several modifications have been made to 
the solving procedure of the metabolic-kinetic model to increase solu-
tion stability (SI A.2). This comprises rate reversibility and a rate limi-
tation mechanism based on a given set of minimum concentrations, 
preventing unrealistic rates and negative intracellular concentrations. 

2.2. Model convergence and solution 

During Δtp the metabolite concentrations get updated, while the 
mass balances of the extracellular gas species only get updated after 
solving one flow time step Δtf. As we assumed ci,IC = ci,EC for the gases, 
their extracellular concentrations should be updated as often as possible 
to preserve the mass balances, requiring very short Δtf. This implies that 

the integrated gas uptake rate of a particle during Δtp, ri,p =
ci |t+Δtp − ci |t

Δtp , 
should be equal to the derivative at the beginning of that time step, ri,p =

dci
dt

⃒
⃒
⃒
⃒
t
(Equations A.3-A.6). As the flow time step directly affects the total 

simulation duration, we set Δtf to 5 ms, a compromise between simu-
lation accuracy and computational efficiency; Np was fixed at 80,000 on 
similar grounds (SI A.5, Figures A.3, A.4). 

The CFD-CRD model was solved for 1000 s flow time using Ansys 
Fluent 2021R2 for three biomass concentration cases, with cx of 100, 
150 and 200 mol m− 3 (2.5, 3.75 and 5 g L− 1). Computations were done 
using the Snellius supercomputer with 128 cores of AMD Rome 7H12 
CPU’s, with an estimated simulation duration of 530 h per case. 

Carbon and electron balance closure (relative error < 5%) for the 
lifelines were checked for model verification after completion of the 
CFD-CRD simulations. This was done for i) the original, unmodified 
(“raw”), CRD model (model α), ii) the CRD model with rate-limiting 
modifications (model β), and iii) by not considering the values ob-
tained for cL,CO < 0.025 mol m− 3 (model γ). 

2.3. Post-processing 

The following data was exported from FLUENT every 75 ms: the 
concentrations of each metabolite pool, the qi of CO, H2, CO2, acetate 
and ethanol, and the position and the local number of particles Np,VE 
were written (for 4000 particles, to prevent excessive data transport and 
storage). With this data, concentration profiles, derivatives and rates 
could be reconstructed by solving the CRD model for each moment in 
time in MATLAB, this approach was checked by additionally writing the 
derivatives for 20 particles. Lifeline data was analysed after removing 
the first 100 s (approximately one 95% mixing time). For visualization, 
the data was smoothed using MATLAB’s smoothdata function, according 
to the moving mean algorithm with smoothing factor of 0.05. 

Average particle metabolite concentrations and their derivatives 
were stored in every volume element, according to a rolling-average 

routine. The number of particles that was present in each volume 
element was registered and used to calculate the rolling average of these 
variables. 

2.4. Model with constant concentrations 

In order to determine the actual influence of the concentration gra-
dients in the CFD-CRD model, the CRD model was also solved at constant 
dissolved gas concentrations. This was done for a wide range of fixed 
dissolved CO and H2 concentrations. The CO concentration range was 
determined from the lifeline averages for each cx, while the cL,H2 was 
found to be correlated to cL,CO and determined via linear regression 
(Figure B.1); the CO2 concentration was kept constant (Table B.1). The 
model was integrated with the same Runge-Kutta scheme as the CFD- 
CRD model, resetting the dissolved gas concentrations after each ΔtIC 
of 0.1 ms. The CRD model was solved for an interval of 1000 s 
(~1.5 min/simulation). This duration of 1000 s was chosen to be com-
parable with the CFD-CRD simulations, even if after this time the 
metabolism does not reach steady state. 

3. Results and discussion 

The results of our modelling study are presented first in terms of 
mass- and electron balances, to check the influence of the model mod-
ifications (Section 3.1). We look into the global reactor performance, in 
Section 3.2.–3.4, by analysing energy conservation, characteristic times 
and averages of individual lifelines. Then in Section 3.5, we zoom in to 
discuss the metabolic behaviour and the role of key cellular reactions 
(particularly the Rnf complex). Several hypotheses that emerged from 
the study are discussed in Section 3.6, while in the last section, 3.7, 
practical recommendations are provided for further optimizing gas 
fermentors. 

3.1. Mass balances in the biomass phase 

After solving the CFD-CRD model, we examined mass- and electron 
balance closure for various model modifications (Fig. 2). This analysis 
reveals that the electron balance never closed for the unmodified CRD 
model (α), with gaps of 10–20%. Implementation of the rate-limiting 
mechanism (model β) damped excessive rates (most prominently in 
JFDH, JCODH, JEtS and JRnf). The mechanism ensured mass balance closure 
(within 5%) and resulted in a substantial reduction in qEtOH from 0.4 mol 
molx− 1h− 1 to a more realistic 0.15 mol molx− 1h− 1. 

The lin-log structure of the CRD model induced a numerical deple-
tion of formate, at concentrations outside the range of calibration 
(Figure SI A.5). The rate-limiting mechanism dampens the formate 
depletion (cf., model α with β), although it could not entirely be avoided, 
due to the high minimum concentration that was required to solve the 
formate pool (10− 4 vs. <10− 8 mol m− 3 for other metabolites). As the 
rate-limiting modifications were only activated at low cL,CO, the 
numerically generated formate escalated ethanol production rates 
(qEtOH increased from 0.09 to 0.15 mol molx− 1h− 1, cf., β and γ). This 
results in uncertainty in the model predictions in the low CO concen-
tration range. As both direct CO2 reduction to formate (CO2 + H2 → For−

+ H+) [45], and a formic acid import and formate export mechanism 
were not included in the CRD model, and as net CO2 consumption was 
never observed, inclusion of these reactions in future work could 
improve the physical reliability of the model at lower cL,CO. 

Irrespective of the used model, clear trends in the rates were 
observed: for example, at increased cx higher qEtOH was observed at the 
expense of acetate production (Ac−IC + AcT), while this was partly due to 
extracellular acetate consumption at increased cx. As substantial parts of 
the reactor are operated under low CO conditions, removal or modifi-
cation of these values from the lifelines would severely affect the 
magnitude and interpretation of the lifeline results. We hence proceed 
with model β in further analyses, considering the uncertainty in the 
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model results at low CO concentrations. 

3.2. Spatial distribution of energy conservation 

In line with the gas hold-up profile in the EL-GLR, there is a clear 
spatial gradient in dissolved CO concentration, cL,CO, of around one 
order of magnitude between the high and low concentration zones 
(Fig. 3a, b). Similar εG and cL,CO distributions were obtained in our 
previous study with Haldane-type CO uptake kinetics [9], indicating 
that such simulation results are largely insensitive to the model choice. 
High cL,CO is observed in locations with high εG, such as in the gas plume 
that is being pushed towards the left side due to the liquid flow exiting 
the downcomer, and in the gas plume that tends to converge towards the 
middle of the column. A small cL,CO pocket is present in the downcomer, 
due to some gas accumulation. The cL,CO we derived is still significantly 
higher than the ones reported in [16] due to the severe mass transfer 
limitations that were adopted in their simulations (kLa ≈ 40 h− 1, here 
360 h− 1). qCO follows cL,CO (Fig. 3b, c) since uptake inhibition related to 
cL,CO was not predicted by the CRD model (see Sections 3.4 and 3.5). 

Near the sparger, with locally high cL,CO and qCO, high rates of 
ferredoxin reduction are observed (Fig. 3d). This indicates that our 
model predicts fast uptake (by diffusion) and utilization of the inflowing 
CO by CODH, and thus rapidly varying ferredoxin reduction rates, as 
was hypothesized [46] and measured before [47]. Higher up in the riser, 
cL,CO and qCO are still high, but moderate reduction and oxidation rates 
are observed since the cells might be saturated with Fd2−

red. At zones with 
low cL,CO and qCO (downcomer, in the riser near the downcomer outlet, 
and close to the walls near the top separator), high re-oxidation rates of 
ferredoxin are observed. As soon as Fd2−

red is oxidised, NAD+ is reduced 
and ethanol is produced (Fig. 3e, f). The model predicts an inverse 
relationship between the ferredoxin redox state and the ethanol pro-
duction rate; in zones where ferredoxin is reduced, little ethanol is 
produced, while ethanol is produced in zones where ferredoxin is oxi-
dised. As a consequence, ethanol is mainly produced in zones with low 
gas hold-up and cL,CO (cf. Fig. 3b, e). From a microbial point of view, 
faster variations in dissolved gas concentration are expected to lead to 
faster ferredoxin oxidation/reduction cycles, and increased variations in 
qEtOH. 

Our model predicts via correlation analysis of lifeline data a signif-
icant delay (at least 15 s, with 5 and 3.75 gx L− 1, and even 30 s with 
2.5 gx L− 1) between CO consumption and ethanol production, governed 
by the dissolved gas concentration gradient: only when cL,CO (and cFd2−

red
, 

Section 3.5) decrease, qEtOH increases. This lag time is slightly shorter 
(~25%) than the circulation time, indicating that ethanol is being pro-
duced in a rather short period within the circulation. This is in sharp 

contrast with results from black-box and genome-scale metabolic 
models (using dFBA simulations), which both assume metabolic steady- 
state and show high production rates at locations with high gas uptake 
rates [48]. In our case the reactor can be subdivided in two zones: (1) a 
ferredoxin reduction zone and (2) a re-oxidation zone. Video S1 clearly 
shows the consequential differences in ethanol production zones 
compared to the black-box model. While further research is required to 
confirm these predictions, the model suggests a process design and 
operation that produces multiple, but smaller, of these zones, leading to 
shorter redox cycles, and improved ethanol productivity. 

3.3. Analysis of characteristic times 

Estimation of characteristic and turnover times is a widely used 
method for quick assessment of reactor performance and identification 
of limiting processes [7,8,49]. From the CFD-CRD model of the EL-GLR 
becomes clear that mixing and mass transfer are equally slow and 
generally slower (i.e., higher characteristic time) than CO uptake 
(Fig. 4), indicating that a dissolved CO gradient exist (in the cases with 
3.75 and 5 gx L− 1), which was confirmed in Fig. 3b. H2 uptake is 
significantly slower than CO uptake, and its high characteristic time is 
expected to lead to a spatially well-distributed cL,H2. The slow H2 uptake 
mechanism was expected from experiments [35], as H2 is thermody-
namically the less preferred electron source in a gas mixture [50], and 
the cell can generate more ATP and reducing equivalents (Fd2−

red, NADH, 
NADPH) per electron from CO than H2 [51]. The H2 uptake rates pre-
dicted with the CFD-CRD model are significantly lower than the ones 
that were predicted with the Monod kinetics used in our previous study 
(see SI C), indicating differences between models on the kinetic 
behaviour of H2 uptake. 

The model predicts that electron storage is done mainly via the 
ferredoxin pool. The Fd2−

red pool has a similar turnover time compared to 
CO uptake, especially in the transport limited regime with 5 gX L− 1. The 
turnover times mainly depend on the concentrations of the metabolite 
pools, causing that NADH and NADPH show a 100 and 10 time lower 
turnover time, respectively, which indicate even faster redox cycles of 
NAD+ and NADP+. The ferredoxin can thus be hypothesized as an 
electron buffer for the cell. As the intracellular concentration of Fd2−

red 
was never measured, this hypothesis remains to be verified, although 
low concentrations of NADH and NADPH have indeed been measured 
before [37]. 

Similarly, the turnover time of acetate is high, while the other in-
termediates in the Wood-Ljungdahl pathway (formate and acetyl-CoA) 
are depleted significantly faster, in the cases with higher cx. This 
shows a relatively fast pathway from acetyl-CoA to acetate production, 

Fig. 2. Influence of the CRD model choice on the balances (denoted via metabolic rates) of post-processed lifelines. The a) carbon and b) electron mass balances are 
provided for the three cx cases with the α: unmodified CRD model; β: CRD model with rate-limiting modifications; γ: model β applied for cL,CO > 0.025 mol m− 3. These 
low cL,CO occurred in all cx cases (62% of data at 5 g L− 1 < 0.025 mol m− 3, 29% at 3.75 g L− 1and 10% with 2.5 g L− 1. Metabolic rates (colouring in legend) were 
averaged for 4000 lifelines during 900 s and balanced according to their respective carbon and electron contents. The relative mass balance error was calculated via 
the difference between the sum of positive and negative rates (as %). 
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despite the high concentrations of intracellular acetate due to the low pH 
(5.0) and the high extracellular concentration of acetic acid 
(90 mol m− 3). An interesting observation is the high formate turnover 
time: In the case with 2.5 gx L− 1, large amounts of formate are over-
produced at highly reduced conditions (with very high cFd2−

red
, and 

correspondingly at high cL,CO) (Figure D.1). Formate production has 
been observed experimentally to relate with pressure [53,54], or with 
very low biomass concentrations [55], both resulting into very high cL, 

CO. 
The fast turnover time of CO suggests that the two-way coupling is 

not needed for the prediction of the cL,CO gradient, since a one-way 

coupling routine (with the Haldane kinetics) could also predict a 
similar gradient and lifelines. The CO and H2 uptake rate in the CRD 
model are, however, predicted by considering the intracellular con-
centrations, which could lead to an inhibition effect (see Section 3.5). In 
order to account for such effects, implementation of a two-way coupling 
strategy is required. 

3.4. Influence of dissolved CO on product spectrum 

To study the influence of the concentration gradient on the global 
reactor performance, the results from the CFD-CRD simulations, based 

Fig. 3. Spatial variations in gas hold-up and metabolites in the EL-GLR. Surface plots in the zy-plane (x=0) of the EL-GLR with time-averaged a) εG, b) cL,CO, c) qCO, d, 
e) ferredoxin and NADH reduction rates (red) and oxidation rates (blue) respectively, f) qEtOH. The results are time-averaged during the whole simulation duration of 
1000 s, with cx = 5 g L− 1. 
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on their time-averaged biomass-specific uptake, product formation 
rates, and observed concentrations, were compared with the results 
from the model with constant dissolved gas concentrations (Fig. 5). To 
check the correspondence of the model predictions with experimental 
trends and values, we retrieved qi and calculated cL,CO for several che-
mostat experiments. Overall, the trends and the values of the experi-
mental studies corresponded well to those predicted by the model. 

The models overestimate the average CO uptake rate compared to 
experimental data at high cL,CO (Fig. 5a). This led to a rather constant 
qCO while there was a large spread in cL,CO in our model, rendering qCO 
unsuitable for trend analysis. This is partly due to the calibration of the 
CRD model, which predicted qCO consistently around 1 molCOmolx− 1h− 1 

while more variation was observed in the experimental data [38]. The 

(Haldane) kinetic models that have been developed so far (e.g., [38,60, 
61]), are unable to predict the high qCO that is observed experimentally 
(e.g., [35]). We noticed wide variability in qCO in chemostat experiments 
with low cL,CO. Due to this variability and the lack of models that 
adequately link cL,CO and qCO, we are unable, at this point, to establish 
any hypotheses or trends based on qCO, and decided to focus our analysis 
on the role of cL,CO on the product spectrum. 

Acetate production (Fig. 5b) is slightly underestimated by the model 
in all scenarios, but the trend clearly corresponds: more acetate is pro-
duced at higher cL,CO. The trend of qEtOH and the ethanol-per-electron 
yield (Fig. 5c,d) match surprisingly well with the experimental data, 
and is clearly inverse to the acetate trend: more ethanol is produced at 
lower cL,CO. This relationship is also visible in the acetate-per-ethanol 

Fig. 4. Characteristic times for metabolite consumption, mass transfer and mixing. A spatial gradient may be present when the characteristic times are below the 
dashed grey zone, representing transport limitations. Turnover times of the metabolite pools were computed as the median of the ratio of the metabolite pool size and 
its depletion rate for 4000 lifelines (τi = ci/Ji). Error bars represent the standard deviation over 4000 lifelines considering a normal distribution. Following the 
models in [9], kLa was derived as the 900 s time-and-volume-averaged kLa of CO, with the error bars representing the standard deviation during that period, while the 
circulation time tc was estimated via tm (1/4 of the 95% mixing time of 90 s in every case [52]). 

Fig. 5. Comparison of lifeline-averages from the CFD-CRD model with the constant concentration model and experimental data. The average biomass-specific rates 
and yields are plotted against the average dissolved cL,CO: a) qCO, b) qAcT, c) qEtOH, d) the electron-to-ethanol yield qEtOH/qe- (qe- = ½(qCO + qH2), and e) the acetate- 
per-ethanol ratio qAc/qEtOH. The scatters, with varying transparency to reduce overplotting, represent 900 s averages for ~4000 lifelines for each cx simulation (blue 
2.5; green 3.75; yellow 5 g L− 1), the dashed line simulations with constant dissolved gas concentrations at the indicated biomass concentrations, and the markers 
reconciled experimental chemostat data [38,56]: ◆ [57]; ■ [36] (CO + H2); ● [36] (CO); ▴[58]; ◄ [35]. cL,CO in ▸[59], was estimated using their provided kLa. 
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ratio (Fig. 5e), where it is clear that qEtOH > qAcT at cL,CO < 0.1 mol m− 3. 
Our model and experimental data suggest that ethanol is produced at the 
expense of acetate at lower cL,CO, while acetate is produced at the 
expense of ethanol at high cL,CO. 

The CFD-CRD model suggests that the gradients expected at scale 
benefit ethanol production, since consistently a significant (~25%) 
higher qEtOH and qEtOH/qe- and lower acetate production are predicted, 
compared to the results obtained without concentration fluctuations (p 
< 10− 4 in all cx cases using a one-sample t-test, wherein the distribution 
of lifelines is compared to the mean result of the constant concentration 
model in that respective range). Section 3.5 further explores potential 
reasons behind this behaviour. Another interesting observation is that at 
large-scale, population heterogeneity is likely to be observed, visible 
from the wide scattering of the lifeline-averages in Fig. 5. The relatively 
short simulation duration of the CFD-CRD model could be a factor un-
derlying the scattering, but given the currently available computational 
resources longer two-way coupled simulations with such a resolution are 
practically unfeasible. For example, to match the long simulation time of 
the P. chrysogenum industrial fermentation (70 hours) with the current 
model setup, ~14 years of simulations would be required. The devel-
opment of reduced order models (e.g., compartment models) could be a 
solution to alleviate this problem [24–26]. 

Our model, in conjunction with experimental data, indicates that cL, 

CO is a key factor influencing the onset of solventogenesis. At high cL,CO, 
acetogenesis prevails; however, as cL,CO decreases below ~0.1 mol m− 3, 
ethanol production rate surpasses that of acetate production (e.g., sol-
ventogenesis). A phase guided by electron supply shortages and energy 
starvation has been observed at very low dissolved gas concentrations 
(cL,CO < 0.05 mol m− 3). In this phase, there is a net consumption of 
acetate. Acetate is reduced to ethanol, with CO serving as an electron 
source essential for growth and maintenance (through ATP production 
via Rnf). As the re-oxidation of the electron carriers occurs via the AOR 
route, acetate – which freely diffused into the cell as acetic acid – is being 
converted into ethanol [34,46]. This phenomenon was also observed in 
the second reactor in [62], with biomass recycle and high CO conversion 
and probably very low cL,CO, where both acetate and CO consumption 
resulted into very high ethanol productivity, although this particular 
result could also be linked to shortages of essential nutrients as vitamins 
and metals. It is well known that acetate supplementation enhances the 
ethanol productivity [55,63,64], while it has been demonstrated that 
exogenously introduced 13C-labeled acetate was converted into 
13C-labeled ethanol on CO-grown C. autoethanogenum [64]. All these 
observations lend support to the feasibility of this starvation-induced 
metabolism at low cL,CO. 

A simple thermodynamic analysis could explain why more ethanol is 
produced at lower cL,CO (Table E.1). During ethanol production, more 
ATP is produced (~2 vs. 1.5 molATP/molproduct) [34,65] since its pro-
duction releases more energy (kJ/molCO) [66] compared to acetate 
production (1.5 molATP/molproduct), and it is thus not a surprise that 
ethanol production relates to growth, confirmed both experimentally 
[35] and in our model (Figure E.3). When more CO is available, acetate 
might be produced since there is enough carbon and energy resource for 
growth, relating to the hypothesis of maximum energy dissipation [67]. 
The resulting acetic acid decreases pH (increasing the proton motive 
force used for energy generation), safeguarding sustainable growth in 
the future. From an evolutionary perspective, it might be that this pre-
sents a competitive advantage against other microorganisms [68], and 
thus a survival strategy in nature. Ethanol production via solvento-
genesis might then only be a (stress) reaction to preserve more energy at 
low dissolved gas concentrations, while in case with even lower cL,CO, 
the starvation metabolism is employed for increased energy generation. 

As large parts of the data used for the generation of Fig. 5 were 
outside the calibrated range of the model (i.e., cL,CO < 0.025 mol m− 3), a 
similar figure was generated without considering data in this range 
(Figure E.1). Obviously, this led to higher average cL,CO and a lower 
spread in cL,CO amongst lifelines. More interestingly is the decreased 

qEtOH for the 5 g L− 1 case (that was also noted in Section 3.1), while the 
trends for all compounds remained similar among the complete cL,CO 
domain. The gradient still led to significant (p < 10− 4) increases in qEtOH. 
The uncertainty in the very low cL,CO range requires caution for quan-
titative analysis under these conditions. 

3.5. Metabolism of C. autoethanogenum during dynamic conditions 

The effect of the dissolved gas concentration fluctuations in the EL- 
GLR on the concentrations of metabolites and the modelled rates are 
schematically depicted in Fig. 6. This representation allows us to follow 
the route of the carbon (blue lines) and electrons (green lines) and gives 
an impression on which processes drive the production of ethanol. 

Following the carbon, a direct coupling between CO uptake and 
acetate synthesis is seen. The Wood-Ljungdahl pathway, represented 
with the ACAS flux (JACAS) in Fig. 6, is almost always activate with fairly 
constant rate, although it gets an impulse during a period at low cL,CO 
due to the increased NADH availability in the cell. Consequently, the 
AcCoA concentration pattern follows the peaks of dissolved CO, 
although it is slightly influenced by the periods at low CO. The net 
amount of AcCoA slowly decreased during the analysis, a trend also 
observed in the simulation with constant dissolved gas concentrations 
(Figure A.2). The rate of acetate formation (JAcS) follows the CO avail-
ability, albeit slightly lower than JACAS, since small amounts of AcCoA 
are also being used for the formation of biomass and 2,3-BDO. The cell is 
continuously busy with the acetate import/export cycle: High rates of 
JAcX and JHAcD were predicted (~0.45 and ~0.40 mol molx− 1h− 1, 
respectively), around three times higher than its formation rate via JAcS. 
Despite these efforts, there is still some acetate accumulation in the cell. 
In the case with less biomass, there is more acetate export, but also more 
intracellular acetate accumulation, while lower intracellular acetate 
concentrations are obtained in the case with more biomass. In the latter 
case, there is net consumption of acetic acid (JHAcD > JAcX), which leads 
to increased ethanol production rates; the starvation-induced meta-
bolism, as explained in the previous section. 

Most (~75%) of the consumed CO is being used for electron capture 
with CODH, thereby producing CO2 (JCODH > JFDH), and reducing 
ferredoxin. cFd2−

red
follows the same profile as cL,CO, but its fluctuations are 

slower and less steep, showing its electron buffering capacity. Around 
70% of the reduced ferredoxin is re-oxidized due to Rnf activity, the 
enzyme that shuttles the electrons from Fd2−

red to NAD+ [69], and trans-
locates protons across the cell membrane for the generation of the 
proton motive force and ATP [32]. NADH, in turn, is mostly used to 
drive the Wood-Ljungdahl pathway (ACAS) and for the production of the 
NADPH (via Nfn) that is required for ACAS and FDH. 

In a period with low cFd2−
red

, qH2 is increased which relates to increased 
qEtOH (Figure C.2, E.3). The first observation could relate to inhibition of 
qH2 by reduced ferredoxin, while a similar (but weaker) trend was ob-
tained for CO uptake. This caused that decreased CO and H2 uptake rates 
were actually observed at high reduced ferredoxin concentrations, and 
not at high CO or H2 concentrations per se (cf., Figure C.1 and C.2). 
Inhibition of gas uptake could thus, next to binding of CO to hydroge-
nases, also be explained by a highly reduced intracellular state (i.e., too 
high intracellular concentrations of electron carriers), as was hypothe-
sized before [70]. Our model results and chemostat experiments [35,36] 
show that qH2 proportionally relates to qEtOH. The ferredoxin that is 
reduced due to hydrogen uptake is probably instantaneously being 
re-oxidized again to drive EtS and Rnf (Fig. 6), because of the temporary 
lack of reducing equivalents, this mechanism guarantees electron inflow 
even at cL,CO. 

At dynamic conditions, a direct relationship between and cFd2−
red 

and 
cL,CO (cFd2−

red 
increases with cL,CO) is observed (Fig. 7a), while cFd2−

red 
shows 

an inverse hyperbolic relationship to qEtOH (Fig. 7b). This indicates that, 
irrespective of other phenomena occurring in the cell, qEtOH is mostly 
determined by the temporal cFd2−

red
. If other phenomena would have 
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influenced qEtOH, a larger spread in qEtOH would be observed at the each 
cFd2−

red
. The NADH concentration shows a strong relationship with cFd2−

red 

(cNADH decreases with cFd2−
red

), so on its turn cNADH proportionally relates 
to qEtOH, as was shown experimentally [34,39,71]. We could thus predict 
that, at some point, with low cL,CO and thus low cFd2−

red
, high amounts of 

NADH and consequentially increased qEtOH are obtained. The increased 
qEtOH is due to decreases acetate production (Fig. 7b), this way 
conserving mass balances (Figure A.5). 

The delay that is observed between CO uptake and ethanol produc-
tion (a peak in qEtOH ~50 s; Fig. 6) is present when cL,CO and, and 
consequentially cFd2−

red
, decreased enough to stimulate ethanol 

production. For example, no clear increase in qEtOH is observed after 
peaks in cL,CO, until cFd2−

red 
decreases to ~6 mol m− 3, when also JAcS slows 

down, reducing acetate production. Therefore, the delay is caused by the 
dynamics in the EL-GLR and causes that the microorganisms cycle be-
tween two states: one state with high cL,CO and cFd2−

red
, and thus low cNADH 

and qEtOH, and another state with low cL,CO and cFd2−
red

, but with increased 
cNADH and qEtOH. 

Dissolved CO concentration fluctuations (e.g., increased cx 
(Figure F.2)) induce the mentioned redox cycling and ethanol produc-
tion. This happens at the expense of the intracellular acetate pool and 
JAcS, and in the long term at the expense of the extracellular acetate 

Fig. 6. Metabolism of C. autoethanogenum during large-scale syngas fermentation. 100 seconds of a lifeline for the case with 3.75 gx L− 1 is shown with its con-
centration (in mol m− 3) and rate (in mol molx− 1h− 1) fluctuations. Pool sizes and arrow thickness are approximative to the median concentrations and rates during the 
whole lifeline. The metabolism in the cases with 2.5 and 5 gx L− 1 are provided in the supplementary material (Figure F.1 and F.2). Shaded areas in the plots mark 
zones with cL,CO < 0.025 mol m− 3. 
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concentration. The non-linear behaviour of metabolism (here described 
by lin-log kinetics), the irregular duration and the large variation in cL,CO 
in low concentration zones (< 0.05 mol m− 3) might cause that non- 
linear increases in ethanol productivity are observed upon concentra-
tion fluctuations. The effect of such variations has never been deter-
mined experimentally, a good start for experimental verification would 
be the developed scale-down simulator in our previous paper [9]. 

The only reaction that reduces NAD+ to NADH in our model is the 
Rnf, which is active in the whole domain of reduced ferredoxin con-
centrations (Fig. 7c). The resulting NADH is mostly used in the Wood- 
Ljungdahl pathway (by ACAS), while a small fraction is used for 
NADPH generation, which is also required in ACAS. At lower cL,CO and 
cFd2−

red
, Rnf activity increases while the majority of the resulting NADH is 

re-oxidized via the Ethanol Synthesis pathway. Thus, the increased Rnf 
activity at slower cFd2−

red
, can be associated to increases in qEtOH. Metabolic 

models have previously predicted that increased Rnf activity relates 
with increased ethanol production in syngas fermenting Clostridium spp. 
[35,51,57,58], although such relationships have never been observed 
experimentally. A proportional relationship between Rnf and ethanol 
production was found, however, in C. thermocellum grown on cellobiose 
[72]. 

The CFD-CRD model also predicts a coupling between ethanol pro-
duction and growth rate. At higher growth rates, more ethanol is pro-
duced (Figure E.3) which complies with experimental observations (e.g., 
[35]). This might be because growth happens when there is more ATP 
available and that is the case when Rnf is more active as Rnf increases 
the proton motive force. No relation, however, between acetate pro-
duction (qAcT) and growth rate was observed (Figure E.3), which might 
explain the contrasting experimental data regarding growth rate. 

3.6. Emerging hypotheses 

By mathematically modelling syngas fermentation, we derived a 
mechanistic understanding on how the dissolved gas concentration (and 
its fluctuations) influence the product spectrum of C. autoethanogenum, 
which we could support with experimental evidence. Thus far, experi-
mentalists made statements that, for example, i) higher dilution rates 

increase qEtOH [35,46], ii) that lower mass transfer rates result in lower 
CO concentrations [55], or iii) that increased pressure leads to increased 
formate production [53]. But, by linking cL,CO (and potentially qCO) to 
the product spectrum, we could merge such statements into one over-
arching explanation, by suggesting that i) qEtOH is increased at lower cL, 

CO, ii) that acetogenesis occurs at increased cL,CO and that iii) formate 
accumulates in over-reduced situations (very high cL,CO and cFd2−

red
). In 

practice, this might mean that, for example, the faster growth in [35], 
coupled to high qCO, might have let to the fall in cL,CO so that qEtOH is 
increased. The inverse relationship between qCO and cL,CO indicates a 
very low KS (supported by thermodynamics [66]) and low inhibition 
constant KI for Haldane kinetics, consistent with the experimentally 
expected fast CO uptake [31,35,73]. Meanwhile, the increased acetate 
concentration should be noted in the discussion [55,63]. To test our 
observations, the influence of cL,CO on qCO and qEtOH should be studied in 
chemostats with CO measurements (e.g., using the protocol in [74] or 
estimated following [56]) and with fixed operating conditions (i.e., 
constant growth rates and liquid phase concentrations). As a result, re-
searchers on gas fermentation should link their results to microbial ex-
periences, and thus dissolved gas concentration, and not to operational 
factors at the reactor-level such as pressure, dilution, or mass transfer 
rate (e.g., governed by stirrer speed). 

The trends in Fig. 7b might seem remarkable, from a steady-state 
point of view. For example, in chemostats it has been observed that 
increased electron (or dissolved gas) uptake rates increases qEtOH [35, 
46]. As electron uptake is associated to reduction of ferredoxin, which 
should lead to increased cNADH and thus qEtOH, it might seem contro-
versial that, in our results, high qEtOH is only obtained at low cFd2−

red
. We 

identified four hypotheses why we observed this trend in Fig. 7b. The 
first i) is that cFd2−

red 
is around 100 times higher than cNADH, causing that 

each NAD+ molecule needs to be reduced and re-oxidized 100 times in 
order to re-oxidize 100 ferredoxin molecules. This might cause that 
NAD+ is the limiting component in the Rnf reaction. This hypothesis 
might be tested by determining the cFd2−

red
/cNADH ratio during 

over-reduced and under-reduced conditions, although it is experimen-
tally very challenging and never done so far in gas fermenting bacteria. 
Another hypothesis ii) might be related to the thermodynamics of the 

Fig. 7. Mechanism towards ethanol production in a lifeline. a) The relationship between the concentration of electron carriers Fd2−
red (blue) and NADH (orange) is 

shown and their corresponding cL,CO (cFd2−
red ,max = 11.5 mol m− 3, cNADH,max = 0.04 mol m− 3). b) the relationships between acetate production (extracellular + intra-

cellular) (black) and ethanol production (green) with cFd2−
red

. c) the rates of NADH production (Rnf, darkblue) and consumption (Nfn, light blue; ACAS, green; Ethanol 
Synthesis, gold; BDO Synthesis; yellow) as function of cFd2−

red
. The scatters mark temporal observations during a lifeline (between 100 and 1000 s), and their density 

denotes the probability of occurrence. Figure c) is an energy balance that can be made since τNADH << τFd2−
red

. Shaded areas mark zones with cL,CO < 0.025 mol m− 3. 
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AOR pathway (acetate to ethanol reduction) as discussed in [39], 
wherein it is stated that – at constant reduced ferredoxin concentrations, 
due to long-lasting batch conditions – there is a linear relationship be-
tween the NADH/NAD+ ratio and the ethanol-to-acetate ratio (similar to 
our results, since qAcT decreases when qEtOH increases). If the Fd2−

red/Fdox 

ratio is increased in their model, at a constant ethanol-to-acetate ratio, a 
lower NADH/NAD+ ratio may be expected, similar to our model results 
in Fig. 7. Furthermore iii), the timescale in a chemostat (order of days) is 
significantly longer than that of liquid circulation and mass transfer 
(usually > 20 s) and intracellular metabolite and uptake (< 1 s; Fig. 3), 
which could lead to concentration gradients at lab-scale and similar 
cFd2−

red
/cNADH fluctuations. The last hypothesis iv) relates to binding of 

dissolved CO to iron-sulfur complexes present in Rnf [69,75] or in fer-
redoxins [30], similarly to its binding to the Fe-S complexes in hy-
drogenases [4,76,77], and thereby inhibiting Rnf activity. When cL,CO 
(and thus cFd2−

red
) decreases, less Rnf inhibition might be obtained causing 

that its rate could be increased. 
Clearly, too little is known at this moment on the metabolism of 

acetogens at low dissolved gas concentrations, and during dynamic 
conditions. To improve our understanding, experiments should be per-
formed wherein C. autoethanogenum is exposed to short (5 – 30 s) 
shortages in cL,CO, so that the effect of a metabolic stall can be studied, 
which can be used for model updates. Development of measurement 
methods for cFd2−

red 
and dissolved CO at such conditions would be highly 

relevant. The ratio of reduced-to-oxidized ferredoxin was estimated to 
be high during batch fermentations, while the NADH/NAD+ ratio was 
more dynamic [39], although such results have not yet been obtained 
from chemostats or during conditions with dynamic gas supply, such as 
in the scale-down simulator described in [9]. 

We realize that the lin-log structure of the CRD-model bears several 
limitations. Results of lin-log models are good estimations around the 
reference conditions (i.e., around which they have been calibrated) 
[43], but in the CFD-CRD model, intra- and extracellular conditions far 
away from the reference concentration may locally occur (see 
Table A.1). For example, the small “gap” in Fig. 7c, corresponds to the 
reference concentration of NADH (i.e., 0.011 mol m− 3, Fig. 7b), de-
viations in this reference concentration might impact our model results 
and interpretation. Despite the implemented rate limitation modifica-
tions that were required for model stability, the CFD-CRD model still 
contained, although significantly dampened, numerical errors (Fig. 2). 
We would therefore not recommend to use the lin-log structure for CRD 
models if they are to be coupled with CFD models, but instead stick to 
hyperbolic equations, analogous to [78,79] using mechanistic rate 
equations for intracellular reactions. Another limitation is the ultra-long 
simulation time of our CFD-CRD model, due to the large number of 
particles simulated (Np = 80,000), the short ΔtIC (0.1 ms) for integra-
tion, and poor parallelization of the particle-based metabolic model. As 
a consequence, our simulations had a significant power consumption 
and environmental burden (~0.45 MWh and ~200 kg CO2). The 
development and parametrization time of the kinetic model took one 
year, and incorporation in the CFD model lasted around 6 months, so 
that development of CFD-CRD models should not be considered to be 
trivial. This demonstrates the balancing act between model purpose, 
complexity and resource availability. 

Lastly, the CRD model could be improved by implementing several 
additional reactions. An export and back-diffusion cycle for formate 
should be added, together with the reaction for CO2 reduction to formate 
with H2. Furthermore, there is some evidence that hydrogen can be 
produced from formate, using a NADP+-based hydrogenase [70], which 
might be the cause of the simultaneous formate and hydrogen produc-
tion in [55]. The parameters regarding the acetate export cycle are 
probably not well calibrated in the CRD model, since the model at low cx 
predict large intracellular accumulation of acetate (Figure A.2). Imple-
mentation of an ATP balance or maintenance might also improve the 
model in this respect. The clear spatial discrepancy between ethanol and 

acetate production zones might result in significant pH variations, in 
turn affecting the local qAcT/qEtOH ratio. Metabolic models that can 
predict variations in extracellular pH should be developed, and coupled 
with CFD to minimise the effect of non-ideal mixing and improve pH 
buffering. 

3.7. Towards better gas fermentation bioreactors 

The presented CFD-CRD model and its results could enable ways 
towards rational optimization of gas fermentation, by adjusting oper-
ating conditions, the reactor geometry, and by strain engineering. 

In terms of reactor operation, mass transfer limitations are desired: In 
case there are no mass transfer limitations, CO inhibition prevails, 
leading to low CO and H2 conversion rates, while lower cL,CO and higher 
conversion rates are obtained when there are mass transfer limitations 
[9]. In order to sustainably obtain high qEtOH at industrial-scale, the 
average cL,CO as experienced by the micro-organisms should be kept in a 
narrow range, around the predicted optimum cL,CO of ~0.05 mol m− 3 

according to our model (Fig. 5e). A lower cL,CO will induce too much 
acetate consumption, while at higher cL,CO acetate will be produced at 
the expense of ethanol. When operating in a mass transfer-limited 
regime, high operational flexibility regarding cL,CO can be obtained via 
the incoming gas flow rate, as this directly influences the gas hold-up 
and thus the mass transfer rate. For example, when there is too much 
acetate production (cL,CO is too high), one could decrease the gas flow 
rate, which would decrease cL,CO, so that produced acetate might be 
consumed again, leading to high ethanol productivities. 

In terms of reactor geometry, clear zonation was obtained in the EL- 
GLR (Fig. 3), with CO uptake and ferredoxin reduction in one zone, and 
the ferredoxin re-oxidation and ethanol production in the other zone. As 
both processes can happen quite fast (order of seconds), and cellular 
transition between the zones was found advantageous for ethanol pro-
duction, forced zonation can be an interesting way to increase ethanol 
productivity. To improve industrial-scale reactor design, future (lab and 
modelling) research could focus on determination of the ideal residence 
times in both zones, which can be implemented by altering the interior 
and exterior reactor geometry, and related operation conditions. 

Lastly, increases in JRnf were found to be directly related to increases 
in qEtOH (Fig. 7c). Overexpression of Rnf (with deletion of hydrogenase) 
has been proven as a viable method to increase ethanol production in 
C. thermocellum [72]. Overexpressing Rnf may be a method to amplify 
JRnf at high cFd2−

red 
and might increase qEtOH even further in 

C. autoethanogenum. 

4. Conclusion 

In this work, we coupled a CFD model of an industrial-scale reactor 
for gas fermentation to a metabolic kinetic model to study the influence 
of the dissolved CO concentration and its gradient on the productivity 
and product spectrum of C. autoethanogenum. By comparing our model 
results with experimental data, we uncovered that the dissolved CO 
concentration (and potentially qCO) is a major factor steering the prod-
uct spectrum: Very low cL,CO (< 0.05 mol m− 3) result in high ethanol 
production rates by reducing extracellular acetic acid, in a starvation- 
induced metabolism, slightly higher concentrations (0.05 < cL,CO <

0.1 mol m− 3) were related to solventogenesis (CO to ethanol conver-
sion), while high concentrations (cL,CO > 0.1 mol m− 3) were associated 
with acetate production. The gradient at industrial-scale led to a ~25% 
increase in ethanol production rate and yield, at the expense of acetate 
production. This increase was explained by redox cycles of ferredoxin 
and NAD+, which are imposed when there is a gradient in cL,CO. Due to 
the gradient, the concentration of reduced ferredoxin gradually de-
creases, while NADH increases due to Rnf activity. The re-oxidation of 
the resulting NADH caused increased ethanol production rates. We 
identified several hypotheses to support these results, made suggestions 
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for follow-up research and developed a mechanistic understanding on 
the gas fermentation process. 
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Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.bej.2024.109330. 

References 

[1] N. Fackler, B.D. Heijstra, B.J. Rasor, H. Brown, J. Martin, Z. Ni, K.M. Shebek, R. 
R. Rosin, S.D. Simpson, K.E. Tyo, R.J. Giannone, R.L. Hettich, T.J. Tschaplinski, 
C. Leang, S.D. Brown, M.C. Jewett, M. Köpke, Stepping on the gas to a circular 
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E. Marcellin, H2 drives metabolic rearrangements in gas-fermenting Clostridium 
autoethanogenum, Biotechnol. Biofuels 11 (2018) 55, https://doi.org/10.1186/ 
s13068-018-1052-9. 

[37] V. Mahamkali, K. Valgepea, R. de Souza Pinto Lemgruber, M. Plan, R. Tappel, 
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