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Abstract
To reach its goal of net greenhouse gas neutrality by 2050, the European Union seeks to massively
expand wind and solar power. Relying on weather-dependent power generation, however, poses
substantial risks if climate variability is not adequately understood and accounted for in energy
system design. Here we quantify European wind and solar generation variability over the last
century, finding that both vary on a multidecadal scale, but wind more strongly. We identify
hotspots and study dominant patterns of (co-)variability, finding that solar generation varies
mostly uniformly across Europe while the leading wind variability modes reveal cross-border
balancing potential. Combined wind and solar power generation in the current European system
exhibits multidecadal variability of around 5% and can be further reduced through European
cooperation or locally optimized wind shares, albeit the latter comes at the expense of significantly
enhancing seasonal to interannual variability. Improved spatial planning therefore offers multiple
options to mitigate long-term renewable generation variability but requires careful assessments of
the trade-offs between climate-induced variations on different timescales.

1. Introduction

By 2050, the European Commission aims to achieve
net greenhouse gas neutrality and considers renew-
ables to play an essential role in eliminating emissions
(European Commission 2019). Yet power genera-
tion from wind turbines and solar cells is weather-
dependent, complicating their integration into the
energy system (Bloomfield et al 2016, 2021, Collins
et al 2018, van der Wiel et al 2019). Strategic siting of
generators (Grams et al 2017, Santos-Alamillos et al
2017), optimized portfolios of different types of gen-
eration (Heide et al 2010) and large-scale transmis-
sion (Rodríguez et al 2014) are key mechanisms to
mitigate generation variability on the supply side.

The atmosphere features variability on many
scales (Williams et al 2017) and is connected to other
climate subsystems that induce long-term variabil-
ity such as the oceans (Keenlyside et al 2015, Farneti
2017). Quantifying long-term resource availability of

renewable power generation matters because wind
parks and solar systems are operated over many years
and need to reliably contribute to future zero emis-
sion power systems. There are two known relevant
climate processes in this context. First, dimming and
brightening refers to a decline in surface solar radi-
ation from 1950 to 1980 followed by a recovery in the
next decades (Wild 2016). Second, stilling describes
downwards trends in near-surface wind speeds over
land in the period 1980–2008 (Vautard et al 2010).
While stilling was initially thought to be mainly
driven by increased surface roughness (Wever 2012),
recent evidence of surface wind speed recovery since
2010 suggests a connection to multidecadal climate
variability instead (Zeng et al 2019).

The majority of current renewable energy model-
ling relies on 3D reconstructions of the atmosphere,
so called reanalyses, covering the satellite period
(around 1980 to today), and is consequently blind
to long-term resource variability extending beyond
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the past four decades (Pfenninger and Staffell 2016,
Staffell and Pfenninger 2016, González-Aparicio et al
2017).Nevertheless, previous studies demonstrate the
importance ofmulti-decadal wind or solar generation
variability based on station measurements (Müller
et al 2014), satellite data (Sweerts et al 2019), and
20th century reanalyses (Bett et al 2017, Wohland
et al 2019b). The current knowledge, however, is
fragmented due to earlier foci on single technologies
and/or small domains. In particular, the co-variability
of wind and solar power generation on long times-
cales or the effectiveness of transmission infrastruc-
ture to smooth multidecadal variability have not yet
been thoroughly investigated despite their potentially
pivotal role in future net zero power systems.

Climate data quality and reliability are major
obstacles for long-term renewable resource assess-
ments. In fact, the provision of reliable climate
information over the entire twentieth century is a
challenge that current centennial reanalyses fail to
always meet (Befort et al 2016, Bloomfield et al 2018,
Meucci et al 2020). Not a single current centen-
nial reanalysis provides both plausible wind and
surface radiation estimates (Wohland et al 2019a,
2020), complicating combined solar and wind power
assessments. However, their weaknesses have been
traced back to observational issues and methodolo-
gical assumptions. First, centennial reanalyses from
the European Centre for Medium Range Weather
Prediction (ECMWF) feature spurious wind trends
because the assimilated wind speed data already con-
tains these trends (Wohland et al 2019a). Trends
in observational marine wind speeds were extens-
ively studied and are largely due to an evolving
measurement technique (Cardone et al 1990, Ward
and Hoskins 1996). After trend removal, all centen-
nial reanalyses agree on long-term wind generation
variability. Second, centennial reanalyses from the
National Oceanic and Atmospheric Administration
(NOAA) and the Cooperative Institute for Research
in Environmental Sciences (CIRES) do not capture
dimming and brightening because they use constant
aerosols (Wohland et al 2020).

2. Methods and data

While individual centennial reanalysis fail to provide
plausible wind and solar radiation data, their weak-
nesses can be overcome by informed combination of
multiple reanalyses. We base input dataset selection

on their performance in representing wind speeds
and surface radiation on multidecadal timescales,
suggesting that NOAA’s Twentieth Century Reana-
lysis version 3 (20CRv3; Slivinski et al 2019) is a
good choice to understand wind variability while
ECMWF’s coupled reanalysis of the twentieth cen-
tury (CERA20C; Laloyaux et al 2018) captures sur-
face radiation variability well (Bloomfield et al 2018,
Wohland et al 2019a, 2020). In this study, we combine
both reanalyses in a way that fully maintains internal
consistency on short timescales of hours to months
while capturing dimming and brightening and avoid-
ing spurious wind trends.

To quantify uncertainty, we use the full CERA20C
ensemble (ten members) and, after verifying that
ensemble spread is small, choose a 20CRv3 sub-
sample that captures the full sea surface temperat-
ure (SST) forcing spread (members 1–8, the remain-
ing members 9–80 were forced with the same set of
SSTs). We use the CERA20C forecast fields for 100 m
wind speeds and surface solar radiation downwards
because only one of them is also available as an ana-
lysis field. Choosing the forecast in both cases thus has
the advantage of using two consistent fields (rather
than using two fields that were processed differently).
Both datasets have three hourly resolution and cover
at least the period 1901–2010. Spatial resolution is
slighlty different, and CERA20C (1.125◦ · 1.125◦) has
a coarser grid compared to 20CRv3 (0.5◦ · 0.5◦). We
use data on the highest common temporal and spatial
resolution, permitting us to capture the daily weather
cycle and resolve themain orographic features such as
mountain ranges and islands.

2.1. Plausibility-checked twentieth century
renewable generation
To provide internally consistent and physically plaus-
ible, non-interrupted PV and wind power generation
over a century, which we call ‘plausibility-checked’
timeseries, we follow a two-step approach:

2.1.1. Low-frequency correction of CERA20C wind
speeds
We use CERA20C as our main data source and
compute both wind and solar generation from
it, thereby ensuring that short-term variability is
synchronous. However, the CERA20C long-term
wind trends require correction. We therefore sub-
tract the long-term variability from CERA20C
and substitute with the one from 20CRv3:

s ′CERA20C(x, t, i) = sCERA20C(x, t, i)+
[
⟨s20CRv3(x, t, jrep)⟩− ⟨sCERA20C(x, t, irep)⟩

]︸ ︷︷ ︸
correction

, (1)
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where s ′CERA20C (sCERA20C) denotes the corrected
(uncorrected) CERA20C wind speeds calculated
from the 100 m wind components in CERA20C,
s20CRv3 are 20CRv3 wind speeds that were remapped
bilinearly on the CERA20C grid, and i∈ 1..8 is the
CERA20C ensemble member. Time and location are
referred to as t and x, respectively. The brackets ⟨.⟩
denote Lanczos filtering over 4.5 years and we only
report the corrected wind speeds where the filter
is fully defined. We evaluated the correction term
for all possible 80 combinations of CERA20C and
20CRv3 ensemble members at three latitude bands
(approx. at 35◦N, 46◦N, 58◦N) and found that the
mean spread is generally smaller than 0.1 m s−1

which is considerably smaller than other sources of
uncertainty and can be safely neglected (details in
supplementary information A (available online at
stacks.iop.org/ERL/16/064026/mmedia)). We there-
fore identified representative members irep = 7 and
jrep = 5 as the median members of their respective
ensemble.

2.1.2. Conversion to wind and solar power generation
The conversion to power generation relies on estab-
lished and open source methods, namely the Global
Solar Energy Estimator (Pfenninger and Staffell 2016)
and the windpowerlib (Haas et al 2019), assessing the
influence of panel geometry, and capturing the full
spread of currently available wind turbines. We con-
sider three different wind turbines: the E-126/7580,
SWT120/3600 and SWT142/3150. They were identi-
fied using all >2.5 MW turbines from windpowerlib
(Haas et al 2019) as those turbines with the lowest,
median and highest normalized generation at 7m s−1

wind speed (details in supplementary informationB).
Power curves are smoothed to account for subgrid-
scale turbulence using the approach detailed in Knorr
(2016) and a turbulence intensity TI = 0.1246 (see
figure B2).

The solar power model GSEE was modified to be
more robust around sunset. In the initial implement-
ation, direct normal radiation

dni∝ 1

cos(solar_zenith(thelp))
, (2)

experienced a singularity at sunset (solar_zenith =
90◦). The three-hourly solar irradiance input data in
combination with the helper time variable thelp = t+
30 mins, lead to distorted daily profiles and arch-like
spatial structures in winter capacity factor maps. The
new approach uses additional intermediate timesteps
and calculates the mean of 1

cos contributions, not
allowing for solar zenith angles> 87◦ when the Sun is
about to set and PV generation is therefore essentially
zero anyway.

GSEE is driven with surface radiation (total
and direct) and temperature data. This combination

provides amethodological challenge because both are
reported at the same time step but have substantially
different meaning. While radiation is reported as a
cumulative variable (i.e. the 9 AM radiations is the
sum from 6 AM to 9 AM), temperature is instantan-
eous. As PV generation is highly sensitive to the pos-
ition of the Sun, we decided to shift radiation data by
half a timestep, thereby making it a centered mean,
and to interpolate temperature linearly to the new
timesteps. As a consequence, wind and solar power
generation are off by 90 min which does not matter
in the subsequent steps as they focus on longer time
scales.

Following Pfenninger and Staffell (2016), we
define three panel orientation scenarios. Constant
panel geometry refers to constant tilt (25◦) and azi-
muth (180◦) angles. Variable azimuth uses the same
constant tilt but azimuth angles are drawn from a
Gaussian (mean 180◦, standard deviation 40◦). Vari-
able azimuth and tilt uses tilt and azimuth angles
drawn from Gaussians (azimuth: mean 180◦, stand-
ard deviation 40◦; tilt: mean 25◦, standard deviation
15◦).

We are ultimately interested in the amplitude
of generation variability which we compute from
the maximum (minimum) generations Gmax (Gmin)
as

amplitude=
Gmax −Gmin

Gmin
. (3)

Division with the minimum generation was
chosen to ease interpretation as, for example, an amp-
litude of 10% implies that Gmax is 10% larger than
Gmin.

2.2. Univariate andmultivariate EOF analysis
We use univariate and multivariate empirical ortho-
gonal function (EOF) analysis to identify leading
modes of spatio-temporal renewable generation vari-
ability. EOF analysis decomposes spatiotemporal
input data into temporally varying principle com-
ponents and spatially varying patterns by solv-
ing an eigenvalue problem, and often allows for
substantial complexity reductions when large vari-
ance shares can be explained using only a few
EOFs (Storch and Zwiers 1999, van den Dool
2007). We use the implementation by Dawson
(2016).

2.3. Optimization of wind and solar shares on
different timescales
In the optimization, wind turbines are chosen
following the principle to build the biggest tur-
bine that is suitable at a location given the wind
conditions:

3
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ĈFw(x, t) =


CFw, E-126_7580(x, t) , if ⟨CFw, E-126_7580⟩⩾ θ1

CFw, SWT120_3600(x, t) , if ⟨CFw, E-126_7580⟩< θ1 and ⟨CFw, SWT120_3600⟩⩾ θ2

CFw, SWT142_3150(x, t) , if ⟨CFw, E-126_7580⟩< θ1 and ⟨CFw, SWT120_3600⟩< θ2 and ⟨CFw, SWT142_3150⟩⩾ θ3

0 , otherwise

(4)

where CFw,k(x, t) denotes the wind capacity factor
for turbine k and ⟨⟩ is the 20 year mean from 1980 to
2000. The thresholds are chosen as θ1 = 0.3, θ2 = 0.25,

θ3 = 0.2. For solar PV, we only use the constant panel
geometry scenario and exclude offshore domains
and those with very low solar potentials (θs = 0.1):

ĈFs(x, t) =

{
CFs, constant(x, t) , if ⟨CFs, constant⟩⩾ θsand location onshore

0 , otherwise.
(5)

We group adjacent countries together to obtain
country combinations with sufficiently large areas of
at least 80 grid boxes (see table 1). To account for off-
shore wind energy, we include the exclusive economic
zones. Only using suitable locations as defined above,
we assume that installed capacity Cw,s is uniform
within each domain.We argue that this simplification
is justified as we focus on large-scale resource vari-
ability rather than realistic high-resolution expansion
planning.Meanwind capacity factors in a domain can
thus be written as

CFw, domain = ⟨ĈFw⟩domain, (6)

where ⟨⟩domain denotes the spatial mean. We define
solar generation CFs, domain analogously.

Total domain-wide wind and solar genera-
tion Gdomain thus only depends on the wind share
α∈ (0, 1) and total installed capacity Cinstalled as

Gdomain = Cinstalled [α ·CFw, domain

+ (1−α) ·CFs, domain] . (7)

We normalize generation per domain by division
with its long-termmean aswe are interested in the rel-
ative evolution of the combined wind-and-solar gen-
eration rather than absolute values. The normaliza-
tion ensures that total long-term power generation
remains unchanged when the wind share α is mod-
ified despite differences in wind and solar capacity
factors. Note that the relative changes in Gdomain are
independent of the installed capacity, and thus also
do not depend on the electricity consumption and the
renewable shares in a country group. The wind share
is optimized using two different approaches:

(a) Minimize seasonal to interannual variability
by minimizing the standard deviation of nor-
malized Gdomain using 20 years of monthly data
1980–2000

(b) Minimizemultidecadal variability byminimiz-
ing the standard deviation of normalizedGdomain

using eighty years of twenty-year running mean
smoothed annual data (1917–1997, full duration
over which smoothing is well defined)

which yields two different wind capacity shares (sea-
sonal αseason and multidecadal αlongterm). Approach a
mimics the current state of the art of using relatively
short climatic input data that captures monthly, sea-
sonal and interannual variability in capacity alloca-
tion optimization. Due to the dominant role of the
seasonal cycle, we refer to the approach as ‘seasonal’
for ease of reading even though it encompasses mul-
tiple temporal scales. The state-of-the-art is contras-
ted with the longer-term assessment of approach b
which we refer to as multidecadal, where we chose to
follow Wohland et al (2019b) in averaging over 20y
which corresponds to the reasonable lifetime of wind
parks and solar panels.

2.4. Spatial balancing assessment
We investigate spatial balancing potential between the
country groups using different scenarios of the wind
βw
domain and solarβ

s
domain installed capacity shares. The

shares are defined relative to the European wind plus
solar installed capacity

CEurope =
∑

domain

(Cw
domain +C s

domain) (8)

4
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as

βw,s
domain =

Cw,s
domain

CEurope
. (9)

Total European generation is consequently defined as

GEurope = CEurope

∑
domain

[βw
domain ·CFw, domain

+ βs
domain ·CFs, domain] .

(10)

Generation in an individual country group (isol-
ated) and in Europe excluding a country group
(others) are obtained by modifying CEurope and the
sum accordingly. Note that we report relative amp-
litudes throughout this study which is not affected by
changes in the total installed capacity CEurope.

We use 2019 values for installed wind and solar
capacitiesCw,s

domain (IRENA 2020). The continent-wide
wind to solar capacity ratio is 60% to 40% and capa-
city is unevenly distributed across the continent (see
SI table I1 for more details). We define the aut-
arky penalty as the difference between the capacity
weighted mean amplitude of multidecadal variabil-
ity and the European multidecadal amplitude under
cooperation.

To study the effects of different design choices
independently, we construct three scenario groups:

(a) In the Current capacity and distribution scenario
group, there are three sub-scenarios.Both corres-
ponds to the combined wind and solar genera-
tion fleet as it existed in 2019.Wind (Solar) cor-
responds to the wind (solar) fleet only, keeping
the relative shares between countries unaffected.

(b) The Current capacity and even plant distribu-
tion group consists of three sub-scenarios that
leave the continental wind to solar capacity
ratio unchanged while modifying the distribu-
tion between countries. While the Even wind
(Even solar) scenario distributes wind generation
evenly over the country groups (each one getting
1
9 of European wind(solar) capacity), the Even
both scenario assumes that both wind and solar
are distributed evenly.

(c) Lastly, the Current plant distribution and adjus-
ted wind share scenarios change the continent-
wide wind and solar shares while keeping the
inter-country distribution unchanged. The 40%
wind scenario assumes a 20% reduction of the
wind share while the 80% wind assumes a 20%
increase.

3. Results

3.1. Multidecadal changes stronger for wind than
solar power
We find that both wind and solar generation feature
multidecadal variability irrespective of the chosen

turbine or panel geometry (see figure 1). Wind shows
multiple variability hotspots, for example, off the Por-
tuguese coast, where the biggest turbine E-126_7580
experiences more than 15% difference between the
strongest and weakest 20 year period, in the Eng-
lish Channel, and over Sweden. Particularly strong
variability also occurs in Southern Norway, but may
be of limited practical relevance due to low mean
capacity factors in the area. In contrast, the off-
shore area northwest of Great Britain features excep-
tionally stable multidecadal generation characterist-
ics. Dependent on long-term capacity factors, we
classify wind sites as low quality (0.15< CF< 0.25),
medium quality (0.25< CF< 0.35) and high qual-
ity (0.35< CF< 0.45). Larger turbines are impacted
more strongly by multidecadal wind changes as illus-
trated by increased likelihoods of large multidecadal
amplitudes. For instance, the likelihood of multi-
decadal variability in excess of 10% is approximately
10% higher for the biggest turbine (E-126_7580) at
medium and high quality sites as compared to the
other two turbine models (see figures 2(b) and (c)).
The trend to build ever larger turbines thus comes
at the cost of increased multidecadal wind generation
variability.

Multidecadal solar variability is weaker than

wind variability. We group solar photovoltaic loc-
ations as low quality (0.1< CF< 0.15), medium
quality (0.15< CF< 0.2) and high quality (0.2<
CF< 0.25). While virtually all sites feature mul-
tidecadal wind variability greater than 4% irre-
spective of the chosen turbine (figures 2(a)–(c)),
the same threshold is never crossed at high qual-

ity PV sites (figure 2(f)), rarely crossed at medium
quality PV sites (figure 2(e)), and crossed at 80%
of the low quality PV sites (figure 2(d)). The rel-
ative amplitude of multidecadal solar variabil-
ity shows negligible changes under varying panel
tilt and azimuth angles. We will consequently
only report the scenario with constant panel
geometry.

For solar power, there is a distinct latitude
dependence in variability that is inversely related to
latitude dependence of capacity factors.While surface
radiation generally increases further south, the rel-
ative amplitude of multidecadal variability decreases
towards the south. Continent-wide, the best areas for
solar photovoltaics are therefore those least affected
by multidecadal variability (figures 2(d)–(f)). 80% of

low quality sites feature multidecadal amplitudes of
6% or less and 80% of high quality sites feature mul-
tidecadal amplitudes of 2% or less. The amplitude
of multidecadal generation variability also declines
with site quality for wind, but the relationship is
much weaker (see figures 2(a)–(c)): the 80th percent-
ile only drops from11% to 10% for the biggest turbine
when comparing low quality and high quality wind
sites.

5
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Figure 1. Hotspots of multidecadal wind (a)–(c) and solar (d)–(f) generation variability using different turbines and solar panel
geometries. Gmax (Gmin) denote the maximum (minimum) of 20y running mean generation G. Hatching marks areas with
capacity factors lower than 0.15 (wind) or 0.1 (solar). Values denote the ensemble mean. Wind turbines (E-126_7580,
SWT120_3600, SWT142_3150) in a-c were chosen to sample the full performance range of currently available turbines (see SI
section B). Solar constant panel geometry refers to constant tilt (25◦) and azimuth (180◦) angles. Solar variable azimuth uses the
same constant tilt but azimuth angles are drawn from a Gaussian (mean 180◦, standard deviation 40◦). Solar variable azimuth
and tilt uses tilt and azimuth angles drawn from Gaussians (azimuth: mean 180◦, standard deviation 40◦; tilt: mean 25◦, standard
deviation 15◦).

Figure 2. Cumulative density functions (CDFs) of the amplitude of multidecadal wind (a)–(c) and solar (d)–(f) variability. Gmax

(Gmin) denote the maximum (minimum) of 20y running mean generation G. Columns denote different capacity factor brackets,
in improving order from left to right, and we refer to them as low quality (a) and (d), medium quality (b) and (e), and high quality
(c) and (f) sites. Each subplot displays the distribution of amplitudes over all sites that lie in the respective capacity factor bracket.

6
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Figure 3. Correlation analysis between wind (SWT120_3600) and solar (constant panel geometry) generation on a multidecadal
(a) and seasonal to interannual timescale (b). Multidecadal correlations are computed from the long-term 20y running mean
filtered solar and wind generation covering 1917–1997 while seasonal correlations are based on the monthly mean solar and wind
generation from 1980 to 2000.

3.2. Multidecadal local wind and solar generation
complementarity is rare
The annual cycles of wind and solar power genera-
tion in Europe allow smoothing seasonal generation
variability locally: high solar generation in the sum-
mer is complemented with relatively low wind gen-
eration; high wind generation in autumn and winter
can compensate for reduced solar generation. This
complementarity is reflected by pronounced negative
correlations between monthly mean wind and solar
generation everywhere on the continent (see figure 3),
and it is robust for all turbines (cf figure F1).

Our results show, however, that wind and solar
generation are mostly positively correlated on mul-
tidecadal timescales, implying that above average
wind and solar generation tend to coincide. Even
though some locations with negative correlations
exist (e.g. in Italy, Scotland, and Eastern Scandinavia,
see figure 3(b)), negative correlations are much less
frequent on themultidecadal than the seasonal times-
cale. Local multidecadal co-variability is thus funda-
mentally different from seasonal co-variabiality and
strategies to mitigate seasonal variability are likely
ineffective on multidecadal scales.

3.3. Conflicting timescales in optimizing local
wind shares
We quantify the potential to minimize generation
variability locally by optimizing wind generation
shares. As explained in the Methods section, the
optimal wind share (i.e. wind to solar ratio) is derived
for (a) twenty years of monthly mean data (referred
to as seasonal due to the dominance of the sea-
sonal cycle) and (b) eighty years of twenty-year run-
ning mean smoothed annual data. By isolating spe-
cific parts of the variability spectrum, this approach
enables comparison of the seasonal timescale with the
multidecadal timescale.

Overall, the amplitude of multidecadal variability
is higher in seasonally optimized systems than inmul-
tidecadally optimized systems. While the amplitude
lies between 2.5% and 5.0% with a mean around 4%
in seasonally optimized systems, it drops to between
2.4% and 4% (mean approx. 3%) in multidecadally
optimized systems (table 1).

Using the multidecadally optimal wind share,
however, amplifies seasonal variability: the country-
average amplitude of seasonal fluctuations almost
doubles from 180% to 300% (supplementary table
H1). Reductions of multidecadal variability thus
increase seasonal variability and vice versa, highlight-
ing that optimizing for one of these temporal scales
conflicts with the other one.

We evaluate the optimal wind share on a country
group level and find that the multidecadally optimal
wind share is lower than the seasonally optimal one
in seven out of nine groups. In other words, the mul-
tidecadal optimum favors solar power. This prefer-
ence for solar power is caused by the lower amplitudes
of multidecadal solar generation variability and the
mostly positive correlations between wind and solar
generation. Spain and Portugal are an extreme case:
solar generation variability is particularly low, wind
generation variability particularly high, and mul-
tidecadal correlations are positive virtually every-
where. This combination reduces the wind share to
zero. Completely eliminating wind power, however,
strongly conflicts with the seasonally optimal gener-
ation share of 57% and more than doubles the sea-
sonal variability amplitude (see supplementary table
H1). In other country groups, like the UK and Ire-
land, the drop in wind share is more modest because
multidecadal correlations are partly negative and the
difference in amplitudes of multidecadal wind and
solar generation is smaller. Again, two out of nine
country groups feature slightly increased wind shares
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Table 1. Local wind share optimization. Displayed wind generation shares that minimize the combined wind and solar generation
standard deviation evaluated for country combinations. The optimization is performed on a seasonal to interannual timescale
(1980–2000) and a multidecadal timescale (20y running means covering 1917–1997). Shares are expressed in terms of installed capacity
(i.e. α from equation (7)) and generation (i.e. long-term wind generation divided by longterm wind and solar generation) separately in
two columns. The multidecadal amplitude Gmax−Gmin

Gmin
is calculated using the wind shares that are seasonally optimal and multidecadally

optimal.

Seasonal share (%) Multidecadal share (%)
Multidecadal variability

amplitude (%)

Country
combination Capacity Generation Capacity Generation

Seasonal
optimum

Multidecadal
optimum

United Kingdom,
Ireland

33 67 18 46 3.5 3.1

Portugal, Spain 42 57 0 0 4.2 2.4
France, Belgium,
Netherlands

34 57 8 18 4.3 3.4

Germany, Denmark 34 61 13 31 4.2 3.8
Italy, Austria,
Switzerland, Slovenia

28 43 34 50 2.6 2.7

Sweden, Norway 42 73 9 26 4.8 3.7
Poland, Czech
Republic, Slovakia,
Hungary

35 57 22 40 4.4 4.0

Lithuania, Latvia,
Estonia, Finland

43 69 15 35 5.0 3.8

Greece, Bulgaria,
Serbia, Croatia, Bosnia
and Herzogovina,
Romania, Albania

43 60 50 67 2.5 2.6

owing to negative correlations over larger parts of
their domains, and thus benefit from local balancing
potential.

Multidecadal fluctuations are generally stronger
using seasonally optimized wind shares (e.g. Por-
tugal and Spain, Sweden and Norway). However, in
two cases, the fluctuations remain largely unchanged
when either the seasonally optimized or multi-
decadally optimized wind shares are used (difference
of 0.1% for Italy, Austria etc and Greece, Bulgaria
etc). In the few close cases, seasonally optimal wind
shares even lead to slightly lowermultidecadal variab-
ility amplitudes. This seeming contradiction is rooted
in our approach: we minimize the standard deviation
and report the amplitude, which can deviate slightly.

When interpreting the percentages of the seasonal
andmultidecadal variability amplitudes, the different
durations need to be considered. Given that 20 years
contain 240months, amonthly deviationmust be 240
times stronger than a 20y mean deviation to induce
the same energy deviation (in TWh). While the per-
centages are substantially higher for seasonal variabil-
ity, the energy equivalents are higher formultidecadal
variability.

We conclude that isolating the seasonal and mul-
tidecadal timescales leads to substantially different
optimal wind and solar mixes and, in the mul-
tidecadal case, the optimization sometimes yields
trivial solar-only solutions. In most country groups,
mitigation of multidecadal variability is thus not

a by-product of locally mitigating seasonal-scale
variability.

3.4. Wind enables international multidecadal
balancing
In addition to correlations and amplitudes of mul-
tidecadal changes, their spatio-temporal structure is
important as it determines to which extent inter-
national transmission can be effective. The lead-
ing two EOF modes of long-term solar power gen-
eration reveal a spatially uniform evolution over
the entire continent and explain most of the signal
(85% of the variance, see figure E2). The first prin-
ciple component strongly resembles dimming and
brightening, with an inflection around 1980 and an
early dimming in the 1940s (which is more pro-
nounced in the ten-year running mean filtered data,
see figure E3(e)), and is therefore backed up by a
knownphysical phenomenon. Since these changes are
largely uniform and synchronous across the contin-
ent, attempts to smoothmultidecadal solar variability
via international transmission are ineffective. Exclud-
ing locations further north than 70◦ (about Tromso,
Norway), which excludes areas heavily affected from
sea-ice loss and consequently changes in albedo and
backscattering, demonstrates robustness of our res-
ults to domain redefinition (figure E4).

Investigating wind and solar power jointly, how-
ever, reveals that the leading multivariate EOF
(MEOF) wind modes are multipoles, that is, exhibit
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Figure 4.Multivariate EOF analysis of multidecadal wind and solar generation. The first line shows the wind patterns (a)–(d), the
second line illustrates the solar patterns (e)–(h), and the last line gives the corresponding principle component timeseries
(i)–(l). The explained joint variance per MEOF is given in the titles of (a)–(d) (e.g. the wind and solar patterns and the principle
component timeseries in the first column (a), (e), (i) explain 42.4% of joint variance). MEOF analysis is performed on the 20y
running mean normalized solar (constant panel geometry) and wind generation (E-126_7580). Note that the MEOFs and the PC

timeseries have arbitrary units, only their product has the same units as
G20y

Gmean
.

spatial variability which could be exploited to bal-
ance power supply (see figure 4). For instance, the
first wind MEOF has a different sign in Germany,
Poland, and the Czech Republic than in France and
the Iberian Peninsula, indicating that above aver-
age wind generation in one country group corres-
ponds to below average generation in the other. The
second MEOF has a clear North-South divide, and
the next two MEOFs also feature domains of differ-
ent signs, pointing towards international balancing
potential. MEOFs for the other turbines are qualit-
atively identical, implying that the spatio-temporal
structure of large scale variability is insensitive to the
specific turbine choice (figures G1 and G2).

We quantify the effect of multidecadal wind com-
plementarity on balancing potentials by comput-
ing the amplitude reductions that can be achieved
through electricity transmission between the coun-
try groups (figure 5). Using the currently installed
per-country capacities (IRENA 2020), we find that
the continent as a whole and seven out of nine
country groups would benefit from multidecadal
international balancing (figure 5(a)). Cutting off the
‘Portugal and Spain’ country group from the contin-
ental transmission system would increase the mul-
tidecadal amplitude both on the Iberian peninsula
and in the rest of the continent compared to the

full European region (shown by amplitude increases
relative to the purple line). In many other country
groups, we find a strong amplitude increase if the
group is cut off from transmission, along with a mild
decrease in the continent-wide amplitude. In other
words, the cost of self-sufficiency, in terms of multi-
decadal variability, is high for most individual coun-
try groups. One of the groups that does not benefit
on the multidecadal scale (IT, AU, CH, SI) still bene-
fits from reduced variability on the seasonal scale,
making inter-country transmission appealing in any
case (SI figure I1(a)). The other group that does not
benefit on the multidecadal scale is located in South-
Eastern Europe (including Greece and Bulgaria), and
currently only has limited wind and solar installa-
tions, each corresponding to around 4% of European
capacity. As this country group catches up with the
others in terms of installed capacity, the isolated mul-
tidecadal amplitude approaches the continental one
(SI figure I2(b)).

Moreover, comparing hypothetical wind-only or
solar-only systems, we find that the amplitudes of
multidecadal solar and wind variability are similar
on a continental scale despite the substantial local
differences. In fact, both the current wind and solar
fleets feature the same amplitude of 3.5% given suffi-
cient inter-country group transmission (figure 5(b)),
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Figure 5.Multidecadal spatial balancing potential of wind and solar generation. The amplitude of multidecadal variability is given
per country group for the currently installed wind and solar capacities (a), and for the entire continent using different scenarios
(b). ‘Others’ denotes an interconnected European system excluding a country group and ‘isolated’ refers to the case of no
transmission between a country group and the rest of Europe. ‘Mean with isolation’ is the (capacity-weighted) mean of all
variability amplitudes, ‘mean with cooperation’ denotes the case of unlimited transmission and we refer to the difference between
them as ‘autarky penalty’. As visualized by the arrow in (a), the difference can likewise be interpreted as the ‘benefit of
cooperation’. The scenarios in (b) include the current capacity layout (‘current capacity and distribution’), altered spatial
distributions that leave the continental wind and solar share unchanged (‘current capacity and even plant distribution’), and
altered continental wind and solar shares with unchanged spatial distributions (‘current plant distribution and adjusted wind
share’). Wind shares of 40% and 80% correspond to a 20% deviation from the current 60% share. Scenarios generally include
both wind and solar generation with the exception of the current wind and current solar scenarios which consider the respective
technology in isolation.

emphasizing that wind generation can be equally reli-
able as solar generation on long timescales and over
large geographic areas. The autarky penalty (i.e. the
difference between an interconnected and isolated
power system), however, is one order of magnitude
larger for wind than for solar power dominated sys-
tems (2.3% vs. 0.2%). While current wind capacity is
highly clustered, with more than one third installed
in Germany and Denmark, uniform capacity distri-
bution across the continent would reduce contin-
ental multidecadal variability further to 3%, making
spatially diversified combined systems less vulnerable
than those relying on solar power only. Continentally
uniform solar generation distribution, in contrast,
leaves the continental amplitude unchanged and even
mildly increases the isolation penalty.

4. Discussion

Four strategies to cope with with multidecadal
wind and solar generation variability are imagin-
able: building power systems whose generation is
invariant under multidecadal climate variability
(e.g. through optimized portfolios and international

transmission), relying on flexibility provided by other
parts of the energy system (e.g. through electricity
storage, backup power plants, or sector coupling),
installing wind and solar overcapacity, or anticipating
climate conditions over the next one or two decades
and adapting capacity expansion accordingly. While
there is potential for decadal-scale predictions in the
North Atlantic area (e.g. Årthun et al 2017, Smith et al
2020), and the translation of seasonal climate predic-
tions to energy-relevant variables has been demon-
strated (Clark et al 2017), it remains unclear if and
when this last option will become reliable enough
to inform multi-billion Euro investments in energy
infrastructure. Installing overcapacity on the order of
5% may be the simplest and most robust approach,
but comes with potentially prohibitive additional
costs, loads on transmission lines, and land require-
ments. Equally, the storage or flexibility potentials
required to balance a relative generation shortfall
lasting twenty or more years are likely to be cost-
prohibitive. However, identifying capacity layouts
that are less or not at all affected by multidecadal cli-
mate variability is a winning strategy in any case: it
minimizes both risks and costs, and still leaves the
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possibility open to also rely on the other options at a
later stage. Consequently, minimizing multidecadal
fluctuations should be added to design criteria for
highly renewable power systems.

It is important to note that the amplitudes
of multidecadal variability reported in this study
are of the same magnitude or larger than climate
change impacts on renewables calculated using cli-
mate model output for the 21st century (Pryor and
Barthelmie 2010, Jerez et al 2015, 2019, Reyers et al
2016, Tobin et al 2016, 2018, Wohland et al 2017,
Müller et al 2019). For example, Tobin et al (2016)
find wind farm yield changes of less than 5% formost
regions and models and Müller et al (2019) report
annual PV potential changes between -6% and+3%.
The similar amplitudes of presumably forced signals
and long-term climate variability thus further com-
plicate the separation of signals (i.e. climate change
impacts) from noise (i.e. manifestations of climate
variability), see Hawkins and Sutton (2009). In order
to reliably attribute climate change impacts on renew-
ables, we need more in-depth investigations to clarify
the extent to which multidecadal wind and solar gen-
eration variability is captured in current global cli-
mate models, for example, based on unforced long-
term simulations (Rugenstein et al 2019).

We here conducted the first century-scale and
continent-wide wind and solar generation assess-
ment with uninterrupted and plausibility-checked
historic climate input data. Climate-induced multi-
decadal renewable generation variability has an amp-
litude exceeding 10% for wind power generation in
many locations and different correlations between
wind and solar generation than on seasonal times-
cales and could therefore threaten power system sta-
bility in future highly renewable power systems if it
remains unaddressed. It is unlikely to be manage-
able with any existing or foreseen storage technology
given the long storage durations. However, incorpor-
ating long-term climate information in energy sys-
tem planning, in particular with respect to relative
wind and solar shares and strategic siting of wind
farms, would permit a substantial reduction of mul-
tidecadal variability, thereby minimizing the need for
renewable overcapacity or backup generation infra-
structure. Our long-term wind and solar generation
data is openly available to enable further research
which could, for instance, investigate spectral prop-
erties, extremes, or the impacts on a sector-coupled
energy system model.

Code and data availability

We provide three hourly ensemble mean wind
and solar power generation timeseries and the
country group timeseries via the data sharing
platform zenodo (doi: https://doi.org/10.5281/
zenodo.4280851). The code is written in Python and
is available on github (https://github.com/jwohland/

wind_n_solar). Input data from NOAA-CIRES and
ECMWF are available free of charge online, for
example, via https://portal.nersc.gov/archive/home/
projects/incite11/www/20C_Reanalysis_version_3/
everymember_anal_netcdf/mnmean/UGRD100m
and https://apps.ecmwf.int/datasets/data/cera20c-
enda/levtype= sfc/type= fc/.
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