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A B S T R A C T

Recent developments in data acquisition technology allow us to collect 3D texture meshes quickly. Those can
help us understand and analyse the urban environment, and as a consequence are useful for several applications
like spatial analysis and urban planning. Semantic segmentation of texture meshes through deep learning
methods can enhance this understanding, but it requires a lot of labelled data. The contributions of this work
are three-fold: (1) a new benchmark dataset of semantic urban meshes, (2) a novel semi-automatic annotation
framework, and (3) an annotation tool for 3D meshes. In particular, our dataset covers about 4 𝑘𝑚2 in Helsinki
(Finland), with six classes, and we estimate that we save about 600 h of labelling work using our annotation
framework, which includes initial segmentation and interactive refinement. We also compare the performance
of several state-of-the-art 3D semantic segmentation methods on the new benchmark dataset. Other researchers
can use our results to train their networks: the dataset is publicly available, and the annotation tool is released
as open-source.
. Introduction

Understanding the urban environment from 3D data (e.g., point
louds and 3D meshes) is a long-standing goal in photogrammetry and
omputer vision (Matrone et al., 2020; Hackel et al., 2017). The fast
ecent developments in data acquisition technologies and processing
ipelines have allowed us to collect a great number of datasets on our
D urban environments. Prominent examples are Google Earth (Google,
012), texture meshes covering entire cities (e.g., Helsinki, 2019), or
oint clouds covering entire countries (e.g., the Netherlands AHN Ned-
rland, 2019). These datasets have attracted interest because of their
otential in several applications, for instance, urban planning (Ran,
011; Czyńska and Rubinowicz, 2014), positioning and navigation (Cap-
elle et al., 2012; Peyraud et al., 2013; Li-Ta et al., 2015), spatial
nalysis (Reda et al., 2015), environmental analysis (Yichuan et al.,
016), and urban fluid simulation (García-Sánchez et al., 2014).

To effectively understand the urban phenomena behind the data,
large amount of ground truth is typically required, especially when

pplying supervised learning-based techniques, such as a deep Con-
olutional Neural Network (CNN). The recent development of ma-
hine learning (especially deep learning) techniques has demonstrated
romising performance in semantic segmentation of 3D point clouds
Qi et al., 2017a; Landrieu and Simonovsky, 2018; Thomas et al., 2019).
ompared to point clouds, a surface representation (in the form of a
D mesh, often with textures, see Figs. 1 and 2 for an example) of the
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urban scene has multiple advantages: easy to acquire, compact storage,
accurate, and with well-defined topological structures.

This means that 3D meshes have the potential to serve as input for
scene understanding. As a consequence, there is an urgent demand for
large-scale urban mesh datasets that can be used as ground truth for
both training and evaluating the 3D semantic segmentation workflows.

In this paper, we aim to establish a benchmark dataset of large-scale
urban meshes reconstructed from aerial oblique images. To achieve
this goal, we propose a semi-automatic mesh annotation framework
that includes two components: (1) an automatic process to generate
intermediate labels from the raw 3D mesh; (2) manual semantic refine-
ment of those labels. For the intermediate label generation step, we
have developed a semantic mesh segmentation method that classifies
each triangle into a pre-defined object class. This semantic initialization
allows us to achieve an overall accuracy of 93.0% in the classification of
the triangle faces in our dataset, saving significant efforts for manually
labelling. Then, in the semantic refinement step, a mesh annotation tool
(which we have developed) is used to refine the semantic labels of the
pre-labelled data (at the triangle and segment levels).

We have used our proposed framework to generate a semantic-rich
urban mesh dataset consisting of 19 million triangles and covering
about 4 km2 with six object classes commonly found in an urban en-
vironment: terrain, high-vegetation, building, water, vehicle, and boat
(Fig. 2 shows an example from our dataset). With our semi-automatic
vailable online 3 August 2021
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Fig. 1. Part of the semantic urban mesh benchmark dataset shown as a texture mesh.
annotation framework, generating the ground truth took only about
400 h; we estimate that manually labelling the triangles would have
taken more than 1000 h. The contributions of our work are:

• a semantic-rich urban mesh dataset of six classes of common
urban objects with texture information;

• a semi-automatic mesh annotation framework consisting of two
parts: a pipeline for semantic mesh segmentation and an annota-
tion tool for semantic refinement;

• a comprehensive evaluation and comparison of the state-of-the-
art semantic segmentation methods on the new dataset.

The benchmark dataset is freely available, and the semantic mesh
segmentation methods and the annotation software for 3D meshes are
released as open-source.1

2. Related work

Urban datasets can be captured with different sensors and be recon-
structed with different methods, and the resulting datasets will have
different properties. Most benchmark urban datasets focus on point
clouds, whereas our semantic urban benchmark dataset is based on
textured triangular meshes.

The input of the semantic labelling process can be raw or pre-
labelled urban datasets such as the automatically generated results
from over-segmentation or semantic segmentation (see Section 3.3).
Regardless of the input data, it still needs to be manually checked
and annotated with a labelling tool, which involves selecting a cor-
rect semantic label from a predefined list for each triangle (or point,

1 https://3d.bk.tudelft.nl/projects/meshannotation/.
109
depending on the dataset) by users. In addition, some interactive ap-
proaches can make the labelling process semi-manual. However, unlike
our proposed approach, the labelling work of most of the 3D benchmark
data does not take full advantage of over-segmentation and semantic
segmentation on 3D data, and interactive annotation in the 3D space.

We present in this section an overview of the publicly available
semantic 3D urban benchmark datasets categorized by sensors and
reconstruction types (see Table 1). More specifically, we elaborate on
the quality, scale, and labelling strategy of the existing urban datasets
regarding semantic segmentation.

2.1. Photogrammetric products

2.1.1. Dense point clouds
The Campus3D (Li et al., 2020) is to our knowledge the first aerial

point cloud benchmark. The coarse labelling is conducted in 2D pro-
jected images with three views, and the grained labels are refined in 3D
with user-defined rotation angles. The dataset covers only the campus
of the National University of Singapore and is thus not representative
of a typical urban scene.

SensatUrban (Hu et al., 2021) is another example of the photogram-
metric point clouds covering various urban landscapes in two cities of
the UK. The semantic points are manually annotated via the off-the-
shelf software tool CloudCompare (Girardeau-Montaut, 2016), and the
overall annotation is reported to have taken around 600 h. The dataset
also contains several areas without points, especially for water surfaces
and regions with dense objects. The leading causes are the Lambertian
surface assumption during the image matching and the inadequate
image overlapping rate during the flight.

Similarly, the Swiss3DCities (Can et al., 2021) was recently released
that covers three cities in Zurich but twice smaller than the SensatUr-
ban. The annotation work was conducted on a simplified mesh in the

https://3d.bk.tudelft.nl/projects/meshannotation/
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Fig. 2. Part of the semantic urban mesh benchmark dataset, showing the semantic classes (unclassified regions are in black).
software Blender (B. Foundation, 2002), and then the semantics were
transferred to the mesh vertices, which are regarded as point clouds, via
the nearest neighbour search. The mesh simplification may result in the
loss of small-scale objects such as building dormers and chimneys, and
the automatic transfer of the labels could have introduced errors in the
ground truth.

2.1.2. Triangle meshes
To the best of our knowledge, the ETHZ RueMonge 2014 (Riemen-

schneider et al., 2014) is the first urban-related benchmark dataset
available as surface meshes. The label for each triangle is obtained
from projecting selected images that are manually labelled from over-
segmented image sequences (Brostow et al., 2009). In fact, due to the
error of multi-view optimization and the ambiguous object boundary
within triangle faces, the datasets contain many misclassified labels,
making them unsuitable for training and evaluating supervised-learning
algorithms.

Hessigheim 3D (Kölle et al., 2021) is a small-scale semantic urban
dataset consisting of highly dense LiDAR point clouds and high resolu-
tion texture meshes. Particularly, the mesh is generated from both Li-
DAR point cloud and oblique aerial images in a hybrid way. The labels
of point clouds are manually annotated in CloudCompare (Girardeau-
Montaut, 2016), and the labels of the mesh are transferred from the
point clouds by computing the majority votes per triangle. However, if
the mesh triangle has no corresponding points, some faces may remain
unlabelled which resulted in about 40% unlabelled area. In addition,
this dataset contains non-manifold vertices, which makes it difficult to
use directly.
110
2.2. LiDAR point clouds

Unlike photogrammetric point clouds, LiDAR point clouds usually
do not contain colour information. To annotate them properly, addi-
tional information is often required, e.g., images or 2D maps. LiDAR
point cloud benchmark datasets are more common than photogram-
metric ones.

2.2.1. Street-view datasets
The Oakland 3D (Munoz et al., 2009) is one of the earliest mobile

laser scanning (MLS) point cloud datasets, which was designed for the
classification of outdoor scenes. It has five hand-labelled classes with
44 sub-classes, but without colour information and semantic categories
like roof, canopy, or interior building block, which are typical for all
street-view captured datasets.

Compared to Oakland 3D, Paris-rue-Madame (Serna et al., 2014)
is a relatively smaller dataset which used the 2D semantic segmen-
tation results for 3D annotation. Specifically, the point clouds were
projected onto images to extract the objects hierarchically with several
unsupervised segmentation and classification algorithms.

Although the 2D pre-labelled generation is fully automatic, different
semantic categories require different segmentation algorithms resulting
in difficulties in the classification of multiple classes.

The iQmulus dataset (Vallet et al., 2015) is a 10 km street dataset
annotated based on projected images in the 2D space. Specifically, the
user first needs to extract objects by editing the image with a polyline
tool and then assigns labels to the extracted object regions. Some
automatic functions are made for polyline editing in this framework,
but the entire annotation pipeline is still complicated.

Unlike other street view datasets, Semantic3D (Hackel et al., 2017)
is a dataset consisting of terrestrial laser scanning (TLS) point clouds
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Table 1
Comparison of existing 3D urban benchmark datasets.

Name Platforms Year Data type Areaa

/Length
Classes Points/

Triangles
RGB Automatic

pre-labelling
Annotation Time cost

(hours)

Oakland 3D
(Munoz et al., 2009)

MLS 2009 Point cloud 1.5 km 5 1.6 M No No 3D manually Not reported

Paris-rue-Madame (Serna
et al., 2014)

MLS 2014 Point cloud 0.16 km 17 20 M No 2D semantic
segmentation

3D
Semi-manually

Not reported

iQmulus (Vallet et al.,
2015)

MLS 2015 Point cloud 10 km 8 300 M No No 2D
Semi-manually

Not reported

Semantic3D (Hackel et al.,
2017)

TLS 2017 Point cloud – 8 4000 M Yes No 2D & 3D
Semi-manually

Not reported

Paris-Lille-3D (Roynard
et al., 2018)

MLS 2018 Point cloud 1.94 km 9 143 M No No 3D manually Not reported

SemanticKITTI
(Behley et al., 2019)

MLS 2019 Point cloud 39.2 km 25 4549 M No No 3D manually 1700

Toronto-3D (Tan et al.,
2020)

MLS 2020 Point cloud 1.0 km 8 78.3 M Yes No 3D manually Not reported

ISPRS (Niemeyer et al.,
2014)

ALS 2014 Point cloud 0.1 km2 9 1.2 M No No 3D manually Not reported

AHN3 (Nederland, 2019) ALS 2019 Point cloud 41,543 km2 4 415.43 Bb No 3D semantic
segmentation

3D manually Not reported

DublinCity (Zolanvari
et al., 2019)

ALS 2019 Point cloud 2.0 km2 13 260 M No No 3D manually 2500

DALES (Varney et al.,
2020)

ALS 2020 Point cloud 10.0 km2 8 505.3 M No 3D semantic
segmentation

3D manually Not reported

LASDU (Ye et al., 2020) ALS 2020 Point cloud 1.02 km2 5 3.12 M No No 3D manually Not reported
ETHZ RueMonge
(Brostow et al., 2009;
Riemenschneider et al.,
2014)

Auto-mobile
camera

2014 Mesh 0.7 km 9 1.8 M
(lowres)c

Yes (per
vertex)d

2D
over-segmentation

2D
Semi-manually

230 (701
frames)e

Campus3D
(Li et al., 2020)

UAV camera 2020 Point cloud 1.58 km2 14 937.1 M Yes No 2D & 3D
manually

Not reported

SensatUrban (Hu et al.,
2021)

UAV camera 2021 Point cloud 6 km2 13 2847.1 M Yes No 3D manually 600

Swiss3DCities (Can et al.,
2021)

UAV camera 2021 Point cloud 2.7 km2 5 226 M Yes No 3D manually
(on mesh)

144 (1 M
triangles)f

Hessigheim 3D (Kölle
et al., 2021)

UAV Lidar &
camera

2021 Point cloud &
Mesh

0.19 km2 11 125.7
M/36.76 Mg

Yes (texture)h No 3D manuallyi Not reported

SUM-Helsinki (Ours) Airplane camera 2021 Mesh 4 km2 6 19 M Yes (texture)h 3D
over-segmentation
& 3D semantic
segmentation

3D
Semi-manually

400

aThe area was measured in a 2D map.
bThe number of total points (i.e., 415.43 billion) is estimated.
cThe low-resolution meshes contain 1.8 million triangle faces, according to the publications.
dAn RGB colour was assigned to each triangle vertex.
eThe frames were from video sequences.
fAbout one million triangles (16 tiles) from simplified mesh were labelled, which took around 6 to 12 h per tile.
gThe number of LiDAR points is 125.7 million and the number of triangle faces is 36.76 million.
hThe colour of each triangle face corresponds to a patch of the texture image.
iThe LiDAR point clouds were manually annotated and the labels were transferred to the mesh.
(the scanner is not moving and scans are made from only a few view-
points). It has eight classes and colours were obtained by projecting the
points onto the original images. There are two annotation methods: (1)
annotating in 3D with an iterative model-fitting approach on manually
selected points; (2) annotating in a 2D view by separate background
from a drawn polygon in CloudCompare (Girardeau-Montaut, 2016).
Although it covers many urban scenes and includes RGB information,
the acquired objects are incomplete because of the limited viewpoints
and occlusions.

The other three typical MLS point cloud datasets that were manually
abelled are Paris-Lille-3D (Roynard et al., 2018), SemanticKITTI (Behley

et al., 2019), and Toronto−3D (Tan et al., 2020).

2.2.2. Aerial-view datasets
As for ALS benchmark point clouds, representative datasets are

ISPRS (Niemeyer et al., 2014), DublinCity (Zolanvari et al., 2019), and
LASDU (Ye et al., 2020) covering various scales of city landscapes and
were annotated manually with off-the-shelf software. Instead of fully
manual annotation, the Dayton Annotated LiDAR Earth Scan (DALES)
(Varney et al., 2020) used digital elevation models (DEM) to distinguish
111
ground points with a certain threshold, the estimated normal to label
the building points roughly, and satellite images to provide contextual
information as references for annotators to check and label the rest
of the data. Similarly, the AHN3 dataset (Nederland, 2019) was semi-
manually labelled by different companies with off-the-shelf software.
Besides, since the ALS measurement is conducted in the top view
direction, unlike oblique aerial cameras, the obtained point clouds often
miss facade information to a certain degree.

3. The semantic urban mesh dataset

3.1. Dataset specification

We have used Helsinki’s 3D texture meshes as input and anno-
tated them as a benchmark dataset of semantic urban meshes. The
Helsinki’s raw dataset covers about 12 km2, and it was generated in
2017 from oblique aerial images that have about a 7.5 cm ground
sampling distance (GSD) using an off-the-shelf commercial software
namely ContextCapture (B. SYSTEMS, 2016). The source images have

three colour channels (i.e., red, green, and blue) and are collected
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from an airplane with five cameras that have 80% length coverage and
60% side coverage. To recover the 3D water bodies that do not fulfil
the Lambertian hypothesis, 2D vector maps and ortho-photos are used
when performing the surface reconstruction. Furthermore, processing
like aerial triangulation, dense image matching, and mesh surface
reconstruction were all performed with ContextCapture. It should be
noticed that the entire region of Helsinki is split into tiles, and each of
them covers about 250 m2 (KIGA-digi, 2019). As shown in Fig. 3, we
ave selected the central region of Helsinki as the study area, which
ncludes 64 tiles and covers about 4 km2 map area (8 km2 surface area)
n total.

.2. Object classes

We define the semantic categories for urban meshes by the most
ommon objects in the urban environment with unambiguous geometry
nd texture appearance. Moreover, each triangle face is assigned to a
abel of one of the six semantic classes. Ambiguous regions (which ac-
ount for about 2.6% of the total mesh surface area), such as shadowed
egions or distorted surfaces, are labelled as unclassified (see Fig. 4).
he object classes we consider in the benchmark dataset are:

• terrain: roads, bridges, grass fields, and impervious surfaces;
• building: houses, high-rises, monuments, and security booths;
• high vegetation: trees, shrubs, and bushes;
• water: rivers, sea, and pools;
• vehicle: cars, buses, and lorries;
• boat: boats, ships, freighters, and sailboats;
• unclassified: incomplete objects like buses and trains, distorted

surfaces like tables, tents and facades, construction sites, under-
ground walls.

.3. Semi-automatic mesh annotation

Rather than manually labelling each triangle face of the raw meshes,
e design a semi-automatic mesh labelling framework to accelerate

he labelling process. Fig. 5 shows the overall pipeline of our labelling
orkflow.

Given the fact that urban environments consist of a large number
f planar regions in the data, we opt to label the data at the segment
evel instead of individual triangle faces. Specifically, we over-segment
he input meshes into a set of planar segments. These segments can
nrich local contextual information for feature extraction and serve as
he basic annotation unit to improve annotation efficiency.

Instead of randomly choosing a mesh tile as input for annotation
nd refinement, which is insufficient for manual annotation progress,
e favour picking a mesh tile that is more difficult to classify. Similar

o active learning, we first compute the feature diversity (see Eq. (1)) to
ptimally select a mesh tile containing a variety of classes and objects
t different scales and complexity. The feature diversity 𝐹𝑚 of tile 𝑚 is
omputed as

𝑚 =
∑𝑁𝑓

𝑖=1
(

𝑓𝑖 − 𝑓
)2

𝑁𝑓
(1)

here 𝑓𝑖 represents each handcrafted feature which describe in Sec-
ion 3.3.1, and 𝑓 is mean value of a 𝑁𝑓 dimensional feature vector. To
cquire the first ground truth data, we manually annotate the mesh
with segments) that is selected with the highest feature diversity.
hen, we add the first labelled mesh into the training dataset for
he supervised classification. Specifically, we use the segment-based
eatures as input for the classifier, and the output is a pre-labelled
esh dataset. Next, we use the mesh annotation tool to manually refine

he pre-labelled mesh according to the feature diversity. Finally, the
ew refined mesh will be added to the training dataset to improve the
utomatic classification accuracy incrementally.
112
.3.1. Initial segmentation
To avoid redundant computations of numerous triangles, we first

pply mesh over-segmentation (i.e., linear least-squares fitting of
lanes) based on region growing on the input data to group triangle
aces into homogeneous regions (Lafarge and Mallet, 2012). Such
rouped regions are beneficial for computing local contextual features.
e then extract both geometric and radiometric features from those
esh segments as follows:

∙ Eigen-based features are computed from the covariance ma-
trix of the triangle vertices with respect to the average
centre within each segment, which is beneficial for identi-
fying urban objects with various surface distributions. The
linearity = (𝜆1 − 𝜆2)∕𝜆1, sphericity = 𝜆3∕𝜆1 and change of
curvature = 𝜆3∕(𝜆1 + 𝜆2 + 𝜆3) are computed based on the
three eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0. The local eigenvectors
𝐧𝑖 and the unit normal vector 𝐧𝑧 along 𝑍-axis are used to
compute the verticality = 1 − |

|

𝐧𝑖 ⋅ 𝐧𝑧|| (Hackel et al., 2016).
Note that many eigen-based features have been studied in
literature (Hackel et al., 2016; West et al., 2004; Weinmann
et al., 2013), and some of them were designed for and
tested on LiDAR point clouds. These eigen-based features
are mostly computed per point based on its spherical neigh-
bourhood, which often contains noise and does not form a
surface. Our chosen eigen-based features are defined on a
segment representing the surface of a mesh, and thus they
can capture non-local geometric properties of an object.
Additionally, in this work, we have tested all eigen-based
features from the literature (Hackel et al., 2016), and we
only present the ones that are effective for texture meshes.

∙ Elevation is divided into absolute elevation 𝑧𝑎, relative
elevation 𝑧𝑟 and multiscale elevations 𝑧𝑚. Where 𝑧𝑎 is the
average elevation of the segment; the relative elevation is
computed as 𝑧𝑟 = 𝑧𝑎−𝑧𝑟𝑚𝑖𝑛 ; the multiscale elevation (Verdie
et al., 2015; Rouhani et al., 2017) 𝑧𝑚 =

√

𝑧𝑎−𝑧𝑚𝑖𝑛
𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛

.
And 𝑧𝑟𝑚𝑖𝑛 denotes the lowest elevation of the local largest
ground segment computed within a cylindrical neighbour-
hood with 30 m radius around the segment centre. 𝑧𝑚𝑖𝑛 and
𝑧𝑚𝑎𝑥 represent the local minimum and maximum elevation
values of a cylindrical neighbourhood within the scale of 10
m, 20 m, and 40 m. Such large cylindrical neighbourhoods
allow to find the local ground considering the resilience to
hilly environments, and the square root ensures that small
relative height values (i.e., values smaller than 1 m) get a
larger elevation attribute to enlarge elevation differences
between small objects and the local ground (e.g., cars
against the ground, boats against the water surfaces). More
importantly, due to the influence of terrain fluctuations and
various scales of urban objects, the elevation of these three
categories can complement each other.

∙ Segment area is computed as 𝑎𝑟𝑒𝑎(𝑆𝑘) =
∑𝑁

𝑖=1 𝑎𝑟𝑒𝑎(𝑓𝑖), where
𝑓𝑖 denotes a triangle of the segment 𝑆𝑘, and 𝑁 denotes the
total number of triangles in 𝑆𝑘.

∙ Triangle density is defined as 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑆𝑘) = 𝑁
𝑎𝑟𝑒𝑎(𝑆𝑘)

, which
reveals the object complexity, especially for adaptive urban
meshes.

∙ Interior radius of 3D medial axis transform (InMAT) (Ma
et al., 2012; Peters and Ledoux, 2016) of a segment 𝑆𝑘

is formulated as 𝑟𝑘 =
∑𝑀

𝑖=1 𝑟𝑖
𝑀 , where 𝑀 denotes the total

number of triangle vertices of 𝑆𝑘, and 𝑟𝑖 denotes the interior
radius of the shrinking ball that touches the vertex 𝑣𝑖 within
the segment 𝑆𝑘. It is designed to distinguish objects with
different scales.

∙ HSV colour-based features are derived from the RGB channel
of the entire texture map. We use the HSV colour space
since it can better differentiate different objects than RGB.
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Fig. 3. Overview of the semantic urban mesh benchmark. Left: the texture meshes covering about 4 km2 map area. Right: the ground truth meshes. More views of the same scene
(with different visualization styles) are shown in Figs. 1 and 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. Ambiguous regions are labelled as unclassified (in black). (a) Shadow region with texture. (b) Shadow region with semantic colour. (c) Distorted region with texture. (d)
Distorted region with semantic colour.

Fig. 5. The pipeline of the labelling workflow.
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Table 2
Basic operations in our annotation tool.

Categories Operations Objects

View

Translate Camera
Rotate Camera
Zoom in/out Camera
Set pivot Camera

Selection

Multi-selection/Lasso Triangles/Segments
Expand/Reduce Triangles/Segments
Semantic selection Segments
Split region Segments
Planar region extraction Triangles
Split mesh Triangles

Annotation
Probability slider Segments
Segment area slider Segments
Progress bar Triangles
Switch semantic view Triangles
Labelling Triangles/Segments

We compute the average colour, the variance of the colour
distribution of all pixels within each segment, and we fur-
ther discretize it into a histogram that consists of 15 bins
of the hue channel, five bins of the saturation channel, and
five bins of the value channel.

∙ Greenness 𝑎𝑔 is used to classify objects that are similar to
green vegetation. Specifically, it is computed according to
the averaged RGB colour of each segment via 𝑎𝑔 = 𝐺−0.39 ⋅
𝑅 − 0.61 ⋅ 𝐵 (McKinnon and Hoff, 2017).

ll the above features are concatenated into a 44-dimensional fea-
ure vector used by our random forest (RF) classifier in the initial
egmentation.

.3.2. Annotation tool for refinement
Because of the under-segmentation errors and the imperfect results

f the semantic mesh segmentation process, we design a mesh annota-
ion tool (see Fig. 6) to manually correct the labelling errors. Our mesh
nnotation tool is developed based on the labelling tool of CGAL (The
GAL Project, 2020).

As shown in Table 2, it consists of three operation categories:
iew, selection, and annotation. The view operations provide essential
unctions for the user to manipulate the scene camera, such as translate,
otate, zoom, or set the new pivot for the scene. In addition, to use
extures as a reference for labelling, we map texture and face colour
ith a certain degree of transparency, and we visualize the segment
order to differentiate each segment.

The selection operations allow the user to select or deselect either
riangle faces (see Fig. 7) or segments (see Fig. 8) freely via a brush
r a lasso. Specifically, the face selection operation is used to fix
he under-segmentation errors and generate new segments, and the
egment selection operation is to fix incorrect segment labels.

We also allow the user to edit the selection of each individual
egment with splitting functions (see Fig. 9) and automatic extraction
f the most planar region (see Fig. 10).

As for splitting, we first detect the potential planar and non-planar
egments marked by user strokes, and then the non-planar one is split
ccording to the vertex-to-plane distance. It allows generating candi-
ate non-planar regions (with respect to the detected planar segment)
or the user to edit, and it is useful to split a segment that covers large
on-planar regions or contains more than one dominant planar area.

To extract the most planar region, we apply the region growing
lgorithm (Lafarge and Mallet, 2012) within the selected segment to
utomatically generate the candidate triangle faces with user-defined
hresholds (i.e., the maximum distance to the plane, the maximum
ccepted angle, and the minimum region size). Such an operation
llows the user to filter out some small bumpy regions of the selected
egment.
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Besides, probability and area-based sliders and a progress bar are
rovided in the annotation panel to improve annotation efficiency and
xperience, respectively. Specifically, the probability slider is intro-
uced for the user to visually inspect the segments that are most likely
isclassified. Moreover, the user can further use it to inspect a specific

lass by switching the view to highlight a specific semantic class. The
egment area slider is used to identify isolated tiny segments, which
ommonly appear as errors. The progress bar is used to indicate the
stimated labelling progress during the annotation. After performing
he selection, the user can easily assign the corresponding label to the
elected area.

. Experiments

.1. Data split

To perform the semantic segmentation task, we randomly select 40
iles from the annotated 64 tiles of Helsinki as training data, 12 tiles as
est data, and 12 tiles as validation data (see Fig. 11(a)). For each of the
ix semantic categories, we compute the total area in the training and
est dataset to show the class distribution. As shown in Fig. 11(b), some
lasses, like vehicles and boats, only account for less than 5% of the
otal area, while the building and terrain together comprise more than
0%. The unbalanced classes impose significant challenges for semantic
egmentation based on supervised learning.

.2. Evaluation metric

Since the triangle faces in the meshes have different sizes, we
ompute the surface area for semantic evaluation instead of using the
umber of triangles. The performance of semantic mesh segmentation
s measured in precision, recall, F1 score, and intersection over union
IoU) for each object class. The evaluation of the whole test area is
pplied with overall accuracy (OA), mean per-class accuracy (mAcc),
nd mean per-class intersection over union (mIoU).

.3. Evaluation of initial segmentation

We have implemented the semantic mesh segmentation and anno-
ation tool in C++ using the open-source libraries include CGAL (The
GAL Project, 2020), Easy3D (Nan, 2018), and ETHZ random for-
st (Walk, 2014).

Our proposed pipeline for initial segmentation only takes a few
nput parameters, which are shown in Table 3. The over-segmentation
s intended to find all planar regions in the model, for which we set the
istance threshold to 0.5 m. This threshold value specifies the minimum
eometric features we would like the over-segmentation method to
dentify. In other words, the region growing-based over-segmentation
ethod will not be able to distinguish two parallel planes with a
istance smaller than this threshold. We set the angle threshold to
0 degrees, which is large enough to cope with high levels of noise
e.g., the distance value is small, but the angle between the triangle
ormal and the plane normal is large). Moreover, the minimum area
s set to zero to allow planar segments of any arbitrary size. As for
he random forest classifier, we set the parameters initially to those of
ouhani et al. (2017) followed by fine-tuning using the validation data.
pecifically, using 100 trees is sufficient to guarantee the stability of the
odel, and using the depth of 30 is adequate to avoid over-fitting and
nder-fitting for training.

Rather than classifying about 19 million triangle faces (i.e., the
ntire dataset), we use 515,176 segments that are clustered during
ver-segmentation. Although both semantic segmentation and labelling
efinement can benefit from mesh over-segmentation, the degree of
he under-segmentation error cannot be avoided. Since our mesh over-
egmentation does not intend to retrieve the individual objects and
he purpose is to perform semantic segmentation, we measure the
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Fig. 6. The interface of our annotation tool for 3D texture meshes.
Fig. 7. An example of labelling by selecting triangles using the lasso tool (blue edges: segment boundaries). (a) Before selection. (b) Lasso selection result (in red). (c) The correct
label has been assigned to the selected region. In this example, the label of the selected region has been changed from ‘ground’ to ‘vehicle’. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. An example of segment labelling. (a) Part of a wall of the building was previously labelled as ‘high vegetation’ (in green). (b) Segment selection result (in red). (c) The
label of the selected segment has been corrected with the new label ‘building’. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Table 3
Parameters used in our approach.

Method Parameters Value

Region growing
Minimum area 0 m2

Distance to plane 0.5 m
Accepted angle 90◦

Random forest Number of trees 100
Maximum depth 30

maximum achievable performance by calculating the IoU instead of

using under-segmentation errors to evaluate it. The upper bound IoU of
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each class we could achieve for semantic segmentation is presented in
Table 4, and the upper bound mean IoU (mIoU) over all classes is about
90.9% as shown in Table 5. In addition, the results of our experiment
in Tables 4 and 5 are reported based on the average performance of ten
times experiments with the same configuration.

For semantic segmentation, a detailed evaluation of each class is
listed in Table 4, and we achieve about 93.0% overall accuracy and
66.2% mIoU as shown in Table 5. The qualitative evaluation of it is
shown in Fig. 12. As shown in Fig. 12(e), most of the prediction errors
occur at small-scale objects such as vehicles and boats due to fewer
training samples and errors from over-segmentation.

To better understand the relevance of the features, we measure the
feature importance and perform ablation studies (see Table 5). We
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Fig. 9. An example splitting planar and non-planar regions. (a) The user draws a stroke (in red) across the border of the non-planar segment and the planar segment. (b) The
detected non-planar segment has been split into two parts (i.e., a non-planar region shown in red and a planar segment shown in green). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Editing an individual segment. (a) A segment is selected (highlighted in green) for splitting. (b) Automatic extraction of the most planar region (shown in red) within
the selected segment according to user-defined thresholds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Fig. 11. Overview of the data used in our experiment. (a) The distribution of the training, test, and validation dataset. (b) Semantic categories of training (including validation
dataset) and test dataset.
can observe that the radiometric features (which account for 62.8%)

are more important than geometric ones (which account for 37.2%).

Moreover, after removing individual feature vectors, the performance

will decline, indicating each feature contributes to the best results.
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4.4. Evaluation of competition methods

To the best of our knowledge, none of the state-of-the-art deep
learning frameworks of 3D semantic segmentation can directly be used
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Fig. 12. Part of our semantic segmentation results. The first column shows the input texture meshes; the second column shows the over-segmentation results; the third column
shows the predicted semantic meshes; the fourth column shows the ground truth meshes; the last column shows the error maps (red: errors; green: correct labels). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 4
Overall evaluation of our method. The Upper bound IoU refers to the maximum
achievable IoU in theory.

Class Precision
(%)

Recall
(%)

F1 scores
(%)

IoU
(%)

Upper bound
IoU (%)

Terrain 87.7 94.3 90.9 83.3 93.9
High vegetation 96.3 93.8 95.0 90.5 96.2
Building 94.6 97.7 96.1 92.5 99.0
Water 97.0 88.3 92.5 86.0 92.7
Vehicle 77.9 41.7 54.4 37.3 73.2
Boat 77.9 7.5 13.7 7.4 90.5

on large-scale texture meshes. Additionally, although the data struc-
tures of point clouds and meshes are different, the inherent properties
of geometry in the 3D space of the urban environment are nearly
identical. In other words, they can share the feature vectors within the
same scenes. Consequently, we sample the mesh into coloured point
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clouds (see Fig. 13) with a density of about 10 pts/m2 as input for the
competing deep learning methods. In particular, we use Monte Carlo
sampling (Cignoni et al., 1998) to generate randomly uniform dense
samples, and we further prune these samples according to Poisson
distributions (Corsini et al., 2012) and assign the colour via searching
the nearest neighbour from the textures.

To evaluate and compare with the current state-of-the-art 3D deep
learning methods that can be applied to a large-scale urban dataset, we
select five representative approaches (i.e., PointNet Qi et al., 2017a,
PointNet++ Qi et al., 2017b, SPG Landrieu and Simonovsky, 2018,
KPConv Thomas et al., 2019, and RandLA-Net Hu et al., 2020). We
perform all the experiments on an NVIDIA GEFORCE GTX 1080Ti GPU.
Note that these deep learning-based methods downsample the input
point clouds significantly as a pre-processing step. In our experiments,
the point sampling density is limited by the GPU memory, and increas-
ing or decreasing the sampling density within a reasonable range may
lead to slightly different performance. It should be noted that no matter
how dense the input point clouds are, almost all state-of-the-art deep



ISPRS Journal of Photogrammetry and Remote Sensing 179 (2021) 108–120W. Gao et al.
Fig. 13. Sampling point cloud from texture meshes. Our sampled points preserve both geometric and radiometric information of the original mesh.
Table 5
Ablation study of the features in our approach. The Upper bound (Perfect) refers to the
maximum achievable performance in theory.

Model OA (%) mAcc (%) mIoU (%) 𝛥mIoU (%)

Upper bound (Perfect) 98.1 91.6 90.9 –
Ours (best) 93.0 70.6 66.2 0.0
Without sphericity 93.0 70.5 66.1 −0.1
Without segment area 92.9 70.5 66.0 −0.2
Without triangle density 92.9 70.4 66.0 −0.3
Without variance HSV 92.9 70.3 65.9 −0.3
Without absolute elevation 93.0 70.2 65.9 −0.3
Without relative elevation 92.9 70.3 65.8 −0.4
Without curvature 92.9 70.2 65.8 −0.4
Without multiscale elevations 92.8 69.8 65.1 −1.1
Without linearity 91.8 66.6 62.0 −4.2
Without greenness 91.9 66.6 61.9 −4.3
Without InMat 91.6 66.4 61.6 −4.6
Without average HSV 91.7 66.1 61.4 −4.8
Without verticality 91.4 66.1 61.3 −4.9
Without HSV histogram bins 91.5 66.0 61.1 −5.1

learning architectures (such as PointNet, PointNet++, RandLaNet, KP-
Conv, and SPG, etc.) downsample the input point clouds significantly,
and they are still able to learn effective features for classification.
Besides, different deep learning-based point cloud classification frame-
works exploit different strategies for downsampling the input points.
In addition, we also compare with the joint RF-MRF (Rouhani et al.,
2017), which is the only competition method that directly takes the
mesh as input and without using GPU for computation.

The hyper-parameters of all the competing methods are tuned ac-
cording to the validation data to achieve the best results we could
acquire. Besides, the results of each competitive method (see Table 6)
are demonstrated in average performance based on ten times experi-
ments with the same setting. From the comparison results, as shown in
Table 6, we found that our baseline method outperforms other methods
except for KPConv. Specifically, our approach outperforms RF-MRF
with a margin of 5.3% mIoU, and deep learning methods (not including
KPConv) from 16.7% to 29.3% mIoU. Compared with the KPConv,
the performance of our method is much more robust, which can be
observed from Table 6 that the standard deviation of our method is
close to zero (i.e., the standard deviation of mIoU of our method is
about 0.024%). The reason is that in our method, we set 100 trees in
the random forest to ensure the stability of the model, but in KPConv,
the kernel point initialization strategy may not be able to select some
parts of the point cloud, which leads to the instability of the results.
Furthermore, compared with all deep learning pipelines, our method
is conducted on a CPU and uses much less time for training (including
feature computation). This can be explained by the fact that we have
fewer input data (triangles versus points), and the time complexity of
our handcrafted features computation is much lower than the features
learned from deep learning.

4.5. Evaluation of annotation refinement

Following the proposed framework, a total of 19,080,325 triangle
faces have been labelled, which took around 400 working hours. Com-
pared with a triangle-based manual approach, we estimate that our
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framework saved us more than 600 h of manual labour. Specifically, we
have measured the labelling speed with these two different approaches
on the same mesh tile consisting of 309,445 triangle faces and 8,033
segments. It took around 17 h for manual labelling based on triangle
faces, while with our segment-based semi-automatic approach, it took
only 6.5 h.

We also evaluate the performance of semantic segmentation with
different amounts of input training data on our baseline approach
to understand the required amount of data to obtain decent results.
Specifically, we use ten sets of different training areas with ten times
experiments with the same configuration of each set, and we linearly
interpolate the results as shown in Fig. 14. From Figs. 14a, 14b,
and 14c, we can observe that our initial segmentation method only
requires about 10% (equal to about 0.325 km2) of the total training
area to achieve acceptable and stable results. In other words, using a
small amount of ground truth data, our framework can provide robust
pre-labelled results and significantly reduce the manually labelling
efforts.

5. Conclusion

We have developed a semi-automatic mesh annotation framework
to generate a large-scale semantic urban mesh benchmark dataset cov-
ering about 4 km2. In particular, we have first used a set of handcrafted
features and a random forest classifier to generate the pre-labelled
dataset, which saved us around 600 h of manual labour. Then we have
developed a mesh labelling tool that allows the users to interactively
refining the labels at both the triangle face and the segment levels.
We have further evaluated the current state-of-the-art semantic seg-
mentation methods that can be applied to large-scale urban meshes,
and as a result, we have found that our classification based on hand-
crafted features achieves 93.0% overall accuracy and 66.2% of mIoU.
This outperforms the state-of-the-art machine learning and most deep
learning-based methods that use point clouds as input. Despite this,
there is still room for improvement, especially on the issues of imbal-
anced classes and object scalability. For future work, we plan to label
more urban meshes of different cities and extend our Helsinki dataset
to include parts of urban objects (such as roof, chimney, dormer, and
facade). We will also investigate smart annotation operators (such
as automatic boundary refinement and structure extraction), which
involve more user interactivity and may help reduce further the manual
labelling task.
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Table 6
Comparison of various semantic segmentation methods on the new benchmark dataset. The results reported in this table are per-class IoU (%), mean IoU (mIoU, %) ±standard
deviation, Overall Accuracy (OA, %) ±standard deviation, mean class Accuracy (mAcc, %) ±standard deviation, mean F1 score (mF1, %) ±standard deviation, and the time cost of
training (𝑡𝑡𝑟𝑎𝑖𝑛, hours). The running times of SPG include both feature computation and graph construction, and RF-MRF and our baseline method include over-segmentation and
feature computation. We repeated the same experiment ten times and presented the mean performance.

Terrain High vegetation Building Water Vehicle Boat mIoU OA mAcc mF1 𝑡𝑡𝑟𝑎𝑖𝑛
PointNet (Qi et al., 2017a) 56.3 14.9 66.7 83.8 0.0 0.0 36.9 ±2.3 71.4 ±2.1 46.1 ±2.6 44.6 ±3.2 1.8
RandLaNet (Hu et al., 2020) 38.9 59.6 81.5 27.7 22.0 2.1 38.6 ±4.6 74.9 ±3.2 53.3 ±5.1 49.9 ±4.8 10.8
SPG (Landrieu and Simonovsky, 2018) 56.4 61.8 87.4 36.5 34.4 6.2 47.1 ±2.4 79.0 ±2.8 64.8 ±1.2 59.6 ±1.9 17.8
PointNet++ (Qi et al., 2017b) 68.0 73.1 84.2 69.9 0.5 1.6 49.5 ±2.1 85.5 ±0.9 57.8 ±1.8 57.1 ±1.7 2.8
RF-MRF (Rouhani et al., 2017) 77.4 87.5 91.3 83.7 23.8 1.7 60.9 ±0.0 91.2 ±0.0 65.9 ±0.0 68.1 ±0.0 1.1
KPConv (Thomas et al., 2019) 86.5 88.4 92.7 77.7 54.3 13.3 68.8 ±5.7 93.3 ±1.5 73.7 ±5.4 76.7 ±5.8 23.5
Baseline 83.3 90.5 92.5 86.0 37.3 7.4 66.2 ±0.0 93.0 ±0.0 70.6 ±0.0 73.8 ±0.0 1.2
Fig. 14. Effect of the amount of training data on the performance of the initial segmentation method used in the semi-automatic annotation. We repeated the same experiment
ten times for each set of training areas and presented the mean performance.
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