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Abstract

Advancements in the field of Information and Communication Technologies (ICT) has enabled the pos-
sibility to utilize the flexibility offered by responsive assets in a better way by employing Demand Re-
sponse (DR) schemes. This thesis analyzes the performance of one such DR scheme developed at TU
Delft called Forecast mediated Market Based Control (F-MBC), which aims to coordinate such flexible
assets by communicating ”self-fulfilling forecasts” [3].

The main aim of the project is to investigate the applicability of this method in real-world settings.
To do so , several simulation scenarios were formulated to understand how well F-MBC coordinates
heterogeneous populations of uninterruptible time shiftable loads over an extended time horizon, both
from the system perspective and devices’ perspective. The thesis also proposes an approach to test
the mechanism in a rolling horizon setup.

First, the performance of F-MBC is examined under several combinations of deferrable loads having
identical deadlines. Then, its ability to coordinate devices with dynamic load profiles under a complex
realistic setting is investigated. Trade-offs adopted when simulating such a setup is also highlighted.
Results indicate that while F-MBC achieves good overall performance when coordinating devices with
uniform power consumption profiles, its performance in scheduling heterogeneous populations of de-
vices with dynamic load profiles was quite variable. When devices that consume high power when
they start was considered for coordination, F-MBC was able found to allocate the devices in such a
manner that steered towards overall cost minimization. However, its performance if used to schedule
devices which consume low power when it starts was found to be undesirable. Hence, several recom-
mendations were provided to deduce better conclusions about the applicability of the mechanism in
reality.
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Chapter 1

Introduction

This chapter describes the motivation for pursuing the research project. Section 1.1 explains the need
for employing demand response programs. The main research questions that will be addressed in this
thesis is listed in Section 1.2. The chapter then concludes by describing the organization of the report
into different chapters in Section 1.3.

1.1 Background
Affinity towards sustainable power generation has increased due to the negative environmental impact
of fossil-fuel-based energy-producing units. The entire globe is witnessing a shift from the traditional
”top-down” method of electricity consumption towards a decentralized structure characterized by multi-
ple generating entities. In the ”top-down” approach, electricity is transmitted frommassive power plants
to the points of demand. On the other hand, decentralized architecture enables consumers to attain
the status of prosumers. They satisfy a share of their energy demand by deploying small energy gen-
erating units like rooftop PV generating units closer to their point of consumption. They can also feed
the excess generated electricity to the grid.

Such a change is associated with increased volatility caused by the fluctuating nature of renewable
generation and potential impacts of bi-directional flow of power, such as overloading of the network. To
handle these issues, the concept of smart grids is proposed. Smart Grid uses information and commu-
nication technologies to better utilize the assets available at all levels of the electricity network without
compromising the reliability of the system [12].

Variable nature is associated not only with power generation , but also with power consumption due
to difference in the preference of end users. Since the distributed structure makes the consumers
more active in terms of having options on how to consume energy, their behavioral patterns have a
significant impact on security of supply. This calls for a situation where innovative operational solutions
are needed to make the demand follow the generation [18][19]. This can be achieved by employing
Demand Response (DR) programs [41].

Demand Response influences the power consumption of the users by providing a financial motive
to alter their demand. Employing such schemes have several benefits associated like reduced invest-
ment expenditure, reduced energy bills , to name a few. User can participate in such schemes by
manually responding to the requests made by the utility .This is termed as manual demand response
[15].These schemes do not capture the full potential of DR that the user could offer. In automated
demand response programs, the users invest in intelligent devices to participate in the DR schemes.
These schemes have resulted in higher load reductions when compared to the manual method [2].
This thesis restricts itself in employing such DR schemes in the residential sector. The way in which
the flexibility can be harnessed in the residential sector depends upon the type of loads participating in
the DR scheme.
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2 1. Introduction

In general, flexible residential loads can be classified into the following categories [25]:

• Uninterruptible loads: Devices that have flexible start times or adjustable cycles. Only devices
that provide deferrable nature of flexibility are considered for coordination in this thesis. Typical
examples include washing machines, dishwashers etc.

• Continuously Controllable loads: Devices such as Electric Vehicles and batteries whose power
consumption can be adjusted.

This thesis explores one such demand response scheme developed at TU Delft, called the Forecast
mediated Market Based Control (F-MBC) [3]. The methodology aims to coordinate responsive flexible
assets over multiple time steps by communicating forecast prices determined by a facilitator. Agents
utilize a Markov Decision Process (MDP) based bidding strategy in formulating its bid function, taking
into account the device characteristics. The aggregated bids and supply functions are then cleared
in a centralized manner by an auctioneer. The methodology was found to exhibit good system level
performance when used for coordinating a single population of uninterruptible loads over a fixed time
horizon. However, its performance when used to schedule several populations of deferrable loads
under realistic setting needs to be investigated in detail.

1.2 Problem Statement and Research Questions
This project analyzes the behavior of F-MBC when used to coordinate different populations of de-
ferrable loads under realistic settings. Thus, this thesis aims in answering the following question:

How does F-MBC perform when coordinating heterogeneous populations of deferrable loads over an
extended duration?

To answer this, the following sub-questions were formulated:

• What are the main characteristics of F-MBC mechanism and what advantages does it offer when
compared to other transactive methods found in scientific literature ?

• What factors influence the deviation from the cost optimal allocation of heterogeneous populations
of deferrable loads under the F-MBC scheme ?

• How can the mechanism be tested when used for coordination in an infinite time horizon ? What
trade offs were adopted when simulating such a setting ?

• Is the mechanism effective in coordinating heterogeneous loads of deferrable loads with complex
load profiles ? What is the collective and individual cost performance of the approach?
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1.3 Thesis Layout
This section provides a general overview of the content described in this document. The methodol-
ogy adopted in addressing the research question stated in Section 1.2 is described by organizing into
several chapters. Every chapter consists of an introduction, the main body and the summary of the
main observations made in the particular chapter. The summary also explains the link that it has to the
subsequent chapters. The report is structured in the following manner:

Chapter 2 presents an overview of several DR schemes available in scientific literature and also de-
scribes the need for the development of the F-MBC mechanism by providing a very basic introduction
to the scheme.

Chapter 3 provides the necessary theoretical background pertaining to the concepts utilized in F-MBC
mechanism. The concepts discussed are used to describe the desired interaction behind the different
types of participants in the F-MBC mechanism and also the way in which self interested agents deter-
mine their optimal actions.

Chapter 4 introduces the F-MBC approach. It explains the main parts of the setup, its mathemati-
cal framework and summary of the results achieved in [3].

Chapter 5 describes the additional capabilities added to the developed mechanism which enables
the performance evaluation in realistic settings. It also explains about the parameters which will be
used in assessing the performance under several simulation scenarios considered in this thesis.

Chapter 6 focuses on determining the factors that influence the allocation of several populations of
deferrable loads, in a setup where all the devices are subjected to the same deadline. The chap-
ter explains the several combinations of populations considered in this setting and analyzes why the
F-MBC arrives at the schedule that was observed and its performance on both system and device level.

Chapter 7 analyzes the performance of the mechanism in a realistic setting, where load profiles of
commonly used residential devices are considered for coordination. The chapter explains the simula-
tion setup, the methodology used in generating the data used in simulation, the approach adopted in
performing the simulation, followed by the analysis of the results obtained.

Chapter 8 summarizes the work done in this thesis. It describes the main observations from the ex-
perimental studies carried out and also provides some recommendations for future research work.





Chapter 2

Overview of Demand Response
techniques

This chapter provides an overview of demand response , its significance and various methods found in
scientific literature. Section 2.2 highlights the benefits of demand response , followed by the descrip-
tion of various demand response schemes and control mechanisms in Section 2.3. The chapter then
highlights the difficulties associated with coordination of flexible Distributed Energy Resources (DERs),
which led to the development of F-MBC mechanism.The chapter then concludes by describing the
general features of F-MBC scheme in Section 2.4, which addresses these potential issues.

2.1 Introduction
The ongoing shift towards smart grids from the conventional centralized nature of electricity generation
has led to an increased proliferation of Distributed Energy Resources, like small scale flexible gen-
eration and renewable energy resources owned by customers closer to their points of consumption.
Due to the intermittent nature of renewable generation, supply demand matching becomes a compli-
cated task. Demand Response (DR) encourage the users to make effective usage of such generation
sources to match with the demand and thus is one of the drivers to switch to a smart grid paradigm
[51]. The upcoming sections provide a brief overview of demand response programs.

2.2 Demand Response
Federal Energy Regulatory Commission (FERC) defines DR as ”Changes in the electric usage by end-
use customers from their normal consumption patterns in response to changes in the prices of electricity
over time, or to incentive payments designed to induce lower electricity use at times of high wholesale
market prices or when system reliability is jeopardized” [7]. Thus, by presenting an attractive motive
to the end users , demand response results in the efficient use of generation facilities by altering the
demand curve. Typical alterations to the load profile that can be realized using DR schemes include
peak shaving, valley filling, load shifting, strategic conservation, strategic load growth and flexible load
shape[16], which are represented in Figure 2.1.
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Figure 2.1: Graphical representation of the modifications to the load profile that can be accomplished by employing DR.(Adapted
from [21]).

2.2.1 Advantages of DR
There are several benefits associated with the implementation of DR mechanism, both from consumer
and system point of view. They are:

Economic benefits

• From consumer’s perspective: Implementing DR strategies lead to reduced electricity bills for
the consumers without having to compromise on their consumption, which in turn encourages
them to participate in such schemes.

• From system perspective:

– Efficient use of DERs by using DR alleviates congestion or overloading of the network,
thereby prolonging huge investments to be made on upgrading the existing infrastructure.

– DR improves the market performance in the following ways:
⋄ By shifting the electricity consumption to off-peak hours, cost of generation gets signifi-
cantly reduced, which leads to a lower market prices [5]. This is graphically represented
in Figure 2.2.

Figure 2.2: Impact of DR on the market price.(Adapted from [5]).
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⋄ Improved responsiveness of the participants also helps in eliminating market power, a
situation where generation companies can increase its marginal cost under times of high
demand [4].

⋄ DR also leads to reduced price volatility.

Improved reliability

DR schemes enhances the reliability of smart grid as it improves the security of supply.

Environmental benefits

By employing schemes that incentivize users to consume energy at those instances when power gen-
erated by the renewable energy sources is high, DR reduces the dependency on conventional sources
of power generation.

2.3 Classification of DR
DR strategies are primarily classified into price based and incentive based schemes [4].

2.3.1 Price Based Programs
In Price Based Programs (PBP), DR is implemented by using electricity prices as the driving force to
influence the consuming pattern of consumer [54]. Based on how these price schemes are modelled,
they are classified into the following categories:

Time of Use pricing (ToU)

In this scheme, a price schedule is communicated to the consumers usually for a day, with peak and
off peak pricing defined at different blocks of the day. A typical rate structure under ToU scheme is
given for both weekdays and weekends [2]. The variations in the costs presented under this scheme
are subjected to average generation and delivery costs of electricity [4].

Critical Peak Pricing (CPP)

While ToU scheme can be used on a daily basis, Critical Peak Pricing schemes are used only under
those circumstances where is a need to curtail huge demands for certain period(s) of the day. By
generating a price schemes that reflect such huge demands by extreme prices ; participants avoid
consuming at those instances.

Real Time Pricing (RTP)

In this scheme, a dynamic price profile , reflecting the variability associated with electricity generation is
presented to the users [28]. ToU represents peak and off peak periods by having constant prices under
those blocks of the day, while RTP shows the actual costs at every interval of the day to the consumer
[38]. This enables the users to make better decisions about usage of their resources.
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2.3.2 Incentive Based Programs
While in price based schemes, the users react by modifying their consumption pattern in response to
the dynamic price signals received, Incentive Based Programs (IBP) focus on accomplishing the same
by offering customers additional incentives/discounts for shifting their demand. Different types of IBPs
include:

Classical schemes

Direct Load Control (DLC): As the name suggests, the system operator is provided the authority
to control or alter the consumption time of the loads in exchange for reduced tariffs. These types of
contractual agreements are made with residential loads such as air conditioners and water heaters.
Interruptible /Curtailable service (I/C): On agreeing to provide I/C services, the user is expected to
either lower the consumption or shift their cycle to another time. The difference of this scheme from
DLC is that the user can be penalized if they do not adhere to the contractual terms [24].

Market based schemes

There are 4 typical market based schemes namely Demand Bidding, Emergency Demand Response
Programs (EDRP), Capacity Market and Ancillary Service Markets.

In Demand Bidding Schemes,participants, usually large consumers, submit bids to reduce their loads
in the wholesale electricity market. If the market clears at a price greater than the submitted bid, then
the user has to act in accordance to the bid made. Failure to do so will subject the user to penalties.
When similar bids for load curtailment are made to provide ancillary services, it is then called Ancillary
Service Markets. EDRP schemes provide incentives to those customers who voluntarily reduce their
consumption during a contingency. Capacity market schemes allow users to commit for a pre-planned
load reduction in the event of a contingency. Under this scheme, the participants will be awarded with
guaranteed payments even if load curtailment facility offered by them is not being utilized [51].

2.3.3 Control strategies
Based on the control strategies , DR schemes described above can be classified into the following
categories:

Centralized control

In a centralized control architecture, the central controller acquires complete knowledge about all the
loads of the users taking part. Based on the available information, it decides on the consumption strate-
gies of the devices communicates the same to the devices. The control architecture is represented
pictorially in Figure 2.3.
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Figure 2.3: Centralized control architecture. (Adapted from [21]).

Main advantages offered by this control scheme is the better coordination that can be facilitated by
the central decision maker. This is because of the visibility that the entity has that enables to make well
informed decision. However the scheme suffers from various drawbacks. They are listed below:

• The scheme does not preserve the privacy of the participating agents.

• Implementation of the control scheme requires significant communication investments especially
when implemented in large systems [55].

• The system has a single point of failure. That is, the decision making entity can lead to the failure
of the entire system.

• Response time of the system is also slow. For instance in [32] , it was found that centralized
control of air-conditioning units cannot be used for frequency regulation service because of the
inherent communication delays involved.

Decentralized control

In centralized schemes, there are concerns regarding the scalability and lack of privacy of the partici-
pating agents. These are addressed by utilizing distributed control schemes. In decentralized control
, there is no supervisory decision making authority involved. Each user takes decisions based on the
information provided, which is usually the price signals and alters its consumption pattern.

While completely decentralized control architecture provides quicker response than its counterparts,
prediction of demand response under this architecture was found to be more complicated [32]. This is
mainly because of the difficulty in predicting the user preferences, given the private nature of participa-
tion. For example, [53] highlights the difficulty associated in both testing and realization of a complete
decentralized system. It was observed the time taken for debugging a decentralized system was sig-
nificantly longer than its centralized counterpart.
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Transactive Control

Increased number of resources, both generation and load, being controlled by the users with different
preferences calls for a new DR approach that enables active participation of such assets . Transactive
control mechanisms have found to satisfy these requirements and thus is being widely investigated
[26]. According to Grid Wise Architecture Council, transactive control is defined as [30]: ”A system
of economic and control mechanisms that allows the dynamic balance of supply and demand across
the entire electrical infrastructure using value as a key operational parameter.” In transactive control
mechanisms (also known as Market Based Control), autonomous decisions are made by users based
on price signals received . Coordination of generation and demand is achieved based on market equi-
librium price. This section explains few market based control schemes commonly found in literature.

Iterative approaches: One of the most commonly explored iterative approaches in transactive control
is the development of P2P markets. These are characterized by establishing bilateral contracts be-
tween the agents [46]. There can be several categories of P2P market depending upon the degree of
decentralization that the mechanism offers. For instance, in full P2P design, the market enables the
participating agents to choose among the generating units and engage in transactions only with them
with complete autonomy.

While this setup can attract the agents because of the choices that the scheme offers, implementa-
tion of such a scheme requires the establishment of several communication links between the users
and generating sources, thereby affecting scalability. The system also becomes unpredictable in na-
ture because of the complete decentralized nature of implementation.

Negotiation schemes: In negotiation schemes, prosumers directly negotiate or employ Virtual Power
Plants (VPP) to negotiate with the aggregator to arrive at a feasible agreement which benefits all the
parties involved. For instance, in [6], a negotiation framework is developed wherein negotiations be-
tween VPP and the aggregator are performed by communicating offer packages. The offer packages
keep getting exchanged until the difference between the current offer package and the weighted offer
package determined based on the previous negotiations is less than a convergence tolerance.

The issue with this approach is that the time taken to reach convergence scales directly with the num-
ber of prosumers participating in the scheme, thereby affecting its usability in large systems.

Real time market based control: This method combines the advantages of both centralized and
decentralized methods of decision making. Agents representing loads submit their bid functions by
making local decisions, while the equilibrium point is determined by a centralized market clearing in
real time [3]. A bid function maps the demand with the price that the agent is willing to pay.

However, these mechanism perform poorly when used to coordinate uninterruptible loads. For ex-
ample, in [29], oscillatory behaviour was observed when coordinating a population of Thermostatically
Controlled Loads (TCL). This was found to be because of the variations in the bids submitted by the
agents in response to changing prices, which led to huge variation in the overall power demands.



2.4. Motivation for a new control approach 11

2.4 Motivation for a new control approach
Previous sections discussed the potential issues with commonly used transactive methodologies. This
section highlights how the F-MBC design approach addresses these drawbacks.

F-MBC is a real time market based control mechanism that utilizes Multi Agent Systems (MAS) to
represent the flexible entities. MAS is one of the most widely used modelling approaches for captur-
ing the complex interactions among self interested entities [52]. Game theoretical concepts such as
Markov Decision Process (MDP) is used to model the decision making strategy of flexible loads, which
is to minimize its payment. This also has less processing requirements. Uncertainty associated with
both generation and consumer preferences are taken into account by generating probabilistic forecasts.
To address the issue of bulk switching, tie breaking mechanism is formulated. The system is scalable
owing to the decentralized nature of decision making and privacy preserving because the agents only
submit their bid functions to the auctioneer, which does not contain any device level characteristics.

2.5 Summary
This chapter provided a brief introduction to the concept and significance of DR. First, different price
based and incentive based schemes were introduced, which was followed by the description of the
control strategies used to realize DR. It then proceeded with the description of Transactive Control,
which was found to be a convenient approach for coordination of DERs. The chapter then pointed out
some of the difficulties faced by such transactive mechanisms in coordinating flexible loads of inter
temporal nature, which served as the motivation behind the development of F-MBC mechanism.The
chapter then concludes by providing a brief introduction about the characteristics of F-MBC, which could
solve the issues found in the methods discussed. Game theoretical concepts used in the mechanism
will be explained in the upcoming chapter.





Chapter 3

Multi agent systems and Game theory

The goal of this chapter is to provide a brief insight into the some of the fundamental concepts in game
theory. It aims to provide some theoretical support for concepts being used to devise the decision
making model used by the participants in the F-MBC mechanism. Section 3.2 introduces the concept
of a game and its constituents. Section 3.3 describes the Markov Decision Process (MDP) , one of the
decision making strategies used by the agents. Section 3.4 deals with equilibrium points of a game
and explains in brief about backward induction, which is a method used in determining such equilibrium
points. The way in which the above-mentioned concepts are utilized in the F-MBC is briefly discussed
in Section 3.5.

3.1 Introduction
As explained in [23], Multi Agent System (MAS) based modeling techniques are gaining popularity in
the field of demand response because of their ability to capture the intermittent nature of Distributed
Generation and the uncertainty associated with the user consumption. In a MAS, each flexible entity
is represented by its agent, which is capable of making a decision by considering several factors into
account. Applications of MAS include electricity market modeling, load restoration and power system
protection [37].An Agent can be defined as a computer system that has the ability to make decisions
based on the information it perceives from the environment. The main characteristics of any agent is
[22][23]:

• Ability to communicate and react to any changes in their environment.

• Ability to make necessary transitions to satisfy their design objective.

3.2 Game theory
Game theory , developed from the contributions of von Neumann and Morgenstern [39],is a mathe-
matical tool that analyzes the interaction among such self interested agents [42]. Game theory has
been extensively used in several disciplines such as economics, politics, philosophy and engineering
science [14] [10]. It is an effective tool that helps in developing suitable strategies such that all the
participants are assured of a certain degree of payoff [9]. A game is a situation that involves a group
of autonomous decision makers , whose actions affect the overall outcome and also the rewards of all
the involved agents.

3.2.1 Important components of a game
To define a game for the purpose of analyzing the interaction among the players, it must contain the
following components [10]:
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• A finite set of players 𝑃 = {1, 2, ....𝑛}

• Strategy set for each player, 𝑆 = {𝑆ኻ, 𝑆ኼ...𝑆፧}. Strategy set refers to the all possible actions that a
player can perform in a game setup. By adopting a strategy , a player performs an action which
will affect its outcome. Given the current state of the game that the player finds himself in, the
players adopt those strategies that maximize their payoff.

• Information sets available to each player. Based on the information available, a player decides
on a particular strategy and performs an action.

• Utility function, 𝑈 = {𝑈ኻ, 𝑈ኼ, ....𝑈፧}, which is a set of rewards that each player attains for adopting
a strategy. In a setting of self interested agents, players prefer those strategies that maximize
their utility.

3.2.2 Categories of games
Depending upon their characteristics, games can be classified into the following categories [10]:

• Cooperative and Non cooperative games:
A game is considered to be cooperative, when the agents interact with each other and jointly work
towards achieving a common reward. Non-cooperative games are those in which agents focus
only on maximizing its payoff, rather than working in an alliance with other agents.

• Normal form and Extensive form games:
Normal form games are typically represented in a matrix format. It represents all possible actions
and the associated payoff for all the players in the game. It is also referred to as static or one-shot
games where the players make simultaneous and autonomous decisions [49].An example of a
normal form game is presented in Figure 3.1. Here , 1a and 1b indicates the action set of player
1, while player 2’s action set consists of 2a and 2b. The cells in the matrix denotes the payoff that
each player gets for performing an action simultaneously. For example : (𝑈ኻፚ , 𝑈ኻ፛) refers to the
utility that players 1 and 2 receive for performing actions 1a and 2a simultaneously.

Figure 3.1: Representation of a game in a normal form.

On the other hand, extensive form games, is a strategic situation where every each players move
over time in a sequential manner as in chess. An example of a sequential game is presented in
Figure 3.2 . Here each player is represented as a node of the tree and the branches indicate the
possible actions that a player can make. The branches terminate with the payoff that the players
receive as a consequence of the action branch trail that they follow. It is worthwhile to highlight
that in an extensive form game the payoff that the player receives depends on the order of actions
performed. In such games, each player uses a strategy to decide on the suitable action at every
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point of time based on its current state [8].Dynamic repeated games are analyzed using extensive
form representation[33].

Figure 3.2: Representation of a game in extensive form.The strategies of player 1 and 2 are highlighted in red and blue respec-
tively.

• Zero sum and non-zero sum games:
In games when the aggregated reward obtained by the players in a game is zero, they fall under
the category of zero sum games. This gets translated to the notion that in such games, one
player’s gain gets compensated with other player(s)’ loss, such as in basketball or poker. On the
other hand, non-zero sum games are those where the sum of the rewards of the players involved
are not zero, indicating that the players do have a possibility to win (or even lose) together. Such
games involve players who are not perfectly competitive as in zero sum games, but are often
found to have opposing interests[10]. Some famous examples of non-zero sum games include
battle of the sexes, prisoner’s dilemma etc. Both of these games fall under the category of static
games since decisions are made by the players without the knowledge of the actions of the other
players [34].

• Pure and Mixed strategy games: Pure strategy games refer to a situation where the players
have a deterministic action at each state of the game. If at least one state of the game can be
associated with more than one strategy set,then it becomes a mixed strategy game.

3.3 Markov Decision Process
Markov Decision Process (MDP) describes in detail how an agent makes its decision in the current
state to maximize its utility function in a stochastic environment [13]. It possesses the Markov (or)
memoryless property, implying that the future actions predicted by the agent is dependent only on the
current state. MDPs capture how the agent reacts to the information that it obtains from the external
environment and makes a suitable decision.The main components of a MDP are :

• State space

• Action space

• Transition Functions
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• Reward function

State space: State space, represented by 𝑆 = {𝑠ኻ, 𝑠ኼ, ....𝑠ፍ},is a collection of all possible states that an
agent can be. At any given time step , the agent finds itself in one of the states in 𝑆.

Action space: Action space, represented by 𝐴 = {𝑎ኻ, 𝑎ኼ, ....𝑎፩},is a collection of all possible actions
that can be undertaken by an agent. Depending upon the current state of the agent , the choice of
actions that an agent can make varies. This implies that the actions that can be agent is dependent on
its state s, i.e; 𝐴(𝑠) ⊆ 𝐴 [50].

Transition Functions: When an agent in a state 𝑠 ∈ 𝑆, applies an available action 𝑎 ∈ 𝐴(𝑠) , it
makes a transition to a new state 𝑠ᖣ ∈ 𝑆. Transition function, 𝑇 describes the probability distribution
of all possible successive states that an agent can transition into, based on its current state and the
possible actions that it can perform. It is mathematically expressed as 𝑇 ∶ 𝑆 ∗ 𝐴 ∗ 𝑆 ⟶ [0, 1] [50].

Reward or utility function: Reward can be considered as the most important component of MDP.
Maximizing the utility drives an agent to take an action and undergo a transition. 𝑅(𝑠, 𝑎, 𝑠ᖣ) represents
the expected reward that the agent receives for reaching the state s’ by doing action a , when its current
state s [13].

Now that all the components of MDP are introduced , we can define MDP as a tuple (S,A,T,R); which
represents the sequence of optimal actions that an agent will undertake given the local or global infor-
mation, to maximize its utility function. The goal of any MDP is to establish a policy 𝜋(𝑠) that results
in the maximization of long term reward [35]. Policy is a function that associates an action for a given
state. The whole process is summarized in Figure 3.3, where the MDP is pictorially represented as a
state transition graph.

Figure 3.3: Graphical representation of MDP(Adapted from [13])

One can view MDP as a stochastic game that involves only agent, represented by a single decision
maker in Figure 3.3, where the actions taken by the player does not influence the transition probabilities
to another state, when played again. On the other hand , in a MAS , each player is subjected to same
information which is used in developing a MDP model by all the agents to make a decision. The main
difference here is that the actions taken by each agent influences both the reward of all the agents and
the probabilistic transition into a certain game in the next iteration. This is represented in Figure 3.4,
where the actions of the agents made at the previous instant impacts the data being utilized for MDP
models at the current instant.
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Figure 3.4: Graphical representation of MDP used in MAS(Adapted from [13])

3.4 Solution concepts
In this section, a brief introduction into solution methodologies for the games is provided, in particular
Nash Equilibrium and Backward induction , which is a method to determine subgame perfect equilib-
rium.

3.4.1 Nash Equilibrium
The concept of equilibrium points was first introduced in the work of John Nash [27].Nash equilibrium
can be defined as that action profile or strategy profile which provides the best response of each agent
to all the participating agents. That action is considered to provide a best response of an agent i if the
payoff associated with performing it is atleast as high as any other possible strategy, given the strate-
gies of other players.

The reason that the Nash Equilibrium has garnered significant attention from the researchers is be-
cause that it is inherently stable [42]. It implies that in a game setting where the player has a certain
expectation of the action to be performed by all the other players, if the players choose the action profile
that leads to a Nash Equilibrium, they are better off than adopting a different action/strategy. This also
indicates that the players would not have any benefit from deviating from this equilibrium point.

It is important to understand that not all Nash Equilibrium can lead to a global optimum, which maxi-
mizes the player’s utility. An example of such a situation is the infamous game of Prisoner’s dilemma
[10], in which the optimal action of both isolated prisoners is to confess about the crime committed by
the other. Here, the utility maximizing action of the players involved is to turn the other player in. To
quantify the effect of selfish actions taken by the agents, the term price of anarchy is usually used [40].
It is defined as the ratio between the worst possible utility and the utility that offers maximum social
welfare.
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3.4.2 Determining subgame perfect equilibria

Every finite extensive game with perfect information has a subgame perfect nash equilibrium, which
can be determined by employing backward induction, according to Zermelo’s theorem [44]. To under-
stand how backward induction works, the terms ’subgame’ and ’perfect information’ are first discussed.

• Subgame is that part of the game which has one starting node and all the other successive
nodes. For the extensive game shown in Figure 3.2, there are 3 subgames : The entire game ,
and the two possible nodes that player 2 . This is represented in Figure 3.5.

Figure 3.5: Identification of subgames in a finite horizon extensive game.

• Perfect information denotes that each player knows the ”history” of all the actions taken in the
previous plays , that has led to the current stage of the game [17].

It is a bottom up analysis, usually performed at the last possible node of the game (usually at the leaf
node or final payoff node) and reasoning backward all the way up to the top node of the game tree to
decide on a sequence of actions that result in the maximum payoff of the agent at each of the nodes.
By determining the equilibrium of each subgame, this method helps in eliminating those branches of
the subgame tree which will not be chosen by rational player, in order to arrive at the Nash Equilibrium
of the original game.

3.5 Application of described concepts in F-MBC scheme

This section describes how the concepts discussed in the previous sections are applied to the F-MBC
scheme.

As introduced in Chapter 1, the agents representing the loads receive forecast prices from the fa-
cilitator. Based on the device level constraints such as deadlines, duration and power consumption
profile, agents submit a bid function to a double auction market. The bid function is modelled using a
MDP based bidding policy. Based on the current state of the load and the forecast prices, agents deter-
mine the optimal action that it has to perform by performing backward induction from the last possible
timestep (the timestep at which it has to be scheduled to meet the deadline) to the current timestep, by
applying the MDP model. These aspects are dealt in better detail in the upcoming chapter.
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3.6 Summary
In this chapter, the concept of agents and gameswas introduced. Post the description of important char-
acteristics of agents and the constituents of games, different types of games were introduced.Markov
Decision Process, which is the decision making paradigm for agents in a stochastic setting was de-
scribed post which the concepts of the equilibrium was introduced. The chapter then provided a very
brief explanation of backward induction, which is a method used to determine the equilibrium of ex-
tensive games with perfect information. The chapter then concluded in relating the above discussed
concepts to the F-MBC mechanism, which will be discussed in the upcoming chapter.





Chapter 4

System description

This chapter aims to explain the underlying principles involved in establishing the F-MBC mechanism,
as introduced in [3]. The chapter begins with describing the main constituents of the co-ordination
mechanism and their functions in Section 4.2 . Section 4.3 explains how the forecasts generated by
the facilitator is simulated. Finally, Section 4.4 provides a brief description of experimental verification of
the developed method in [3]. It also highlights some of the unexplored experimental aspects to analyze
the application of F-MBC mechanism in practical settings.

4.1 Introduction
It was seen in Chapter 2 that scheduling privacy preferring self interested agents representing unin-
terruptible loads over multiple time steps resulted in undesirable performance both at the system and
the device perspective, when same information was communicated to all the agents. Forecast Medi-
ated Real Time Market Based Control (F-MBC) mechanism aims to solve this problem by developing
a framework for bid formulation for decentralized decision making by individual agents and centralized
clearing by using an auctioneer. This method does not require the agents to communicate its device’s
characteristics , thereby maintaining its privacy and is also scalable [3]. The aim of the F-MBC mech-
anism is to co-ordinate or schedule a set of deferrable loads over a scheduling horizon such that the
overall generating cost is minimized. This problem is described as ”optimal coordination problem” in [3].

In order to understand the working principle, let us consider a coordination problem with the aim to
schedule a set of deferrable loads , subjected to device level constraints. These constraints include
the deadlines set by the device owner, the power consumption profile of the device and the nature of
the device (deferrable loads imply that the flexibility is offered only by shifting their start times. Once the
device is scheduled, i.e; it starts, it cannot be interrupted). Each of these devices are represented by
a device agent in a double auction market. The market is cleared successively for each time-step. It is
assumed that each of the device agents acts on its self-interest. The main complexity of the problem is
to schedule the devices in such a way that the optimality is achieved both at the system level (minimiza-
tion of the generation cost over the scheduling horizon) and also at the device level, where the devices
are scheduled at those time-steps which ensures that their economic interest is addressed,which would
be to reduce their electricity consumption costs. The F-MBC mechanism aims to address this issue by
the generation of ”self-fulfilling forecasts” [3].

21



22 4. System description

4.2 Main components of F-MBC mechanism

The main overview of F-MBC mechanism , highlighting the flow of information from one component to
another is illustrated in Figure 4.1.

Figure 4.1: Pictorial representation of F-MBC approach.(Based on [3])

As seen in Figure 4.1, the approach involves the interaction between three types of agents:

• Facilitator

• Device Agent

• Auctioneer

4.2.1 Facilitator

The facilitator is the unit that generates reference prices that are communicated to the device agents.
These prices are generated by taking into account several factors such as inflexible load and weather
forecast, system model and so on. The resulting outcome is probabilistic in nature , therefore account-
ing for the presence of uncertainty. These prices are then communicated to the device agents. Based
on these prices, the device agents submit their bids to the auctioneer. The facilitator generates an
updated price forecast at each time step based on the allocation at the previous timestep.

4.2.2 Device Agents

Device agents refer to the agents representing flexible loads in the market. The main aim of these
agents is to ensure that the devices get scheduled at those instances which guarantee the completion
of their cycle before the deadlines set by the respective owners and also lead to reduced costs. The
agents must also represent the nature of flexibility offered by these devices. It does so by submitting a
bid function 𝑏ፚ፭ (𝑥), based on the prices received from the facilitator at time 𝑡. The forecast prices ,𝑋፭ are
assumed to have independent probabilities for each instant with bounded expectation i.e; 𝔼(𝑋፭) = ̄𝑥፭.
The bid function formed by the agent at time 𝑡 depends on a value which is termed as threshold price,
̂𝑥፭. The threshold prices are determined by making use of a Markov Decision Process (MDP) based

bidding strategy, based on the price forecast obtained at time t and also the device level constraints.
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Bidding strategy

As mentioned earlier, the device agents bid in the spot market representing its economic best interest.
It is assumed that the agent truthfully notifies the device’ demand at time t via its bid function. The
agent tries to reduce the total running cost of the device. Since deferrable loads are the participating
agents, the action space consists only two possible alternatives, namely: on or off . The state space
is represented by the status of the device represented by agent a in time t , denoted as 𝑠ፚ፭ . Duration of
one cycle of operation of the device is denoted as 𝐷ፚ. The possible alternatives for the state space at
time instant t are [3]:

• 𝑠ፚ፭ = 0, when the device has not started its cycle yet.

• 𝑠ፚ፭ = {1....𝐷ፚዅኻ}, when the device is running.

• 𝑠ፚ፭ = 𝐷ፚ, when the device has completed its cycle.

The reward that drives the agent to make a transition from the off to on state, is based on the optimal
expected cost at time t. Let us consider a device represented by its agent a, with duration 𝐷ፚ and
deadline 𝑑ፚ. When switched on, the devices consumes power as per its power consumption profile ,
indicated as {𝑃ፚኺ ....., 𝑃ፚፃᑒዅኻ}. If the device starts at time t with a corresponding market clearing price 𝑥፭,
the total running cost incurred by the device is given by Equation 4.1.

𝐶፬,ፚ፭ (𝑥፭) = 𝑥፭ ⋅ 𝑃ፚኺ ⋅ Δ𝑡 +
ፃᑒᎽᎳ

∑
።዆ኻ

𝑥̄፭ዄ። ⋅ 𝑃ፚ። ⋅ Δ𝑡 (4.1)

The first term in Equation 4.1 is cost of starting at time t. The second term is the cost paid by the
device for the reminder of its cycle , calculated using the expected costs at the respective timesteps.
The definition of threshold bids determined under each possible states is given by Theorem 1 of [3]. A
brief explanation of the same is provided here.

Threshold bid determination

Case 1: When the device has to start in order to complete the deadline set by its owner.

This situation occurs for unscheduled devices at timesteps. 𝑡 ≥ 𝑑ፚ − 𝐷ፚ. In this case, the device
needs to start irrespective of the market outcome. Thus, their agent bids inf. The corresponding ex-
pected costs is also considered optimal, since it is the only optimal action to take by the device.

Case 2: When the device has completed its cycle.

In this case, the devices bid with a threshold price of − inf, implying that it will not turn on irrespec-
tive of how low the clearing price is.

Case 3: When the device is in the waiting state

When the device has not yet been scheduled at time t, it means that the devices have the option
to evaluate the benefit or drawback of starting at t. It does so by calculating the optimal expected cost
from 𝑡 = 𝑑ፚ − 𝐷ፚ recursively upto t , via backward induction. The optimal expected cost is given by
Equation 4.2 [3].

𝐶∗ፚ፭ = 𝑃𝑟(𝑋፭ > ̂𝑥ፚ፭ ) ⋅ 𝐶∗ፚ፭ዄኻ + 𝑃𝑟(𝑋፭ ≤ ̂𝑥ፚ፭ ) ⋅ 𝔼[𝐶፬,ፚ፭ (𝑋፭)|𝑋፭ ≤ ̂𝑥ፚ፭ ] (4.2)

where
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̂𝑥ፚ፭ : Threshold bid determined by agent a at time t.

If the cost of starting at t is less than the cost of waiting and starting at a later time step, the opti-
mal action is on. Conversely , if starting at a later time step is seems to be beneficial than starting
at t, then the optimal action is off for time t. However, if the cost of starting at time t is equal to the
optimal expected cost at t+1, i.e; when 𝐶፬,ፚ፭ (𝑥፭) = 𝐶∗ፚ፭ዄኻ, then the agent is indifferent from starting and
waiting. In that case, the threshold bid is determined by equating Equations 4.1 and 4.2. This is given
in Equation 4.3.

𝑥ፚ፭ =
𝐶∗ፚ፭ዄኻ − ∑

ፃᑒዅኻ
።዆ኻ 𝑥̄፭ዄ። ⋅ 𝑃ፚ። ⋅ Δ𝑡
𝑃ፚኺ ⋅ Δ𝑡

(4.3)

This simply means that at time t , a device in the waiting state will start only if the market clears at a
price that ensures that it pays lesser than or equal to the optimal clearing price at the subsequent time
instant, else it will wait and start later. In this way, the bidding strategy adopted reflects the economic
self-interest of the device.

The bid function 𝑏ፚ፭ (𝑥) submitted by an agent 𝑎 under different cases mentioned above,is given by
Theorem 1 of [3]. It can be summarized as follows:

𝑏ፚ፭ (𝑥) = {
𝑃ፚ 𝑥 ≤ 𝑥̂ፚ፭
0 𝑥 > 𝑥̂ፚ፭ (4.4)

𝑃ፚ = { 𝑃
ፚ
፬ᑒᑥ

if 𝑠ፚ፭ < 𝐷ፚ
0 otherwise (4.5)

𝑥̂ፚ፭ = {
−∞ if 𝑠ፚ፭ = 𝐷ፚ
∞ if 𝑠ፚ፭ = 1,… , 𝐷ፚ − 1
𝑧ፚ፭ if 𝑠ፚ፭ = 0

(4.6)

𝑧ፚ፭ = {
∞ 𝑡 ≥ 𝑑ፚ − 𝐷ፚ
ፂᑒᑥᎼᎳዅ∑

ᐻᑒᎽᎳ
ᑥᎾᎳ ፱̄ᑥᎼᑚ⋅ፏᑒᑥ ⋅ጂ፭
ፏᑒᎲ ⋅ጂ፭

𝑡 < 𝑑ፚ − 𝐷ፚ (4.7)

4.2.3 Auctioneer
The auctioneer is responsible for market clearing at each time step. The bid curve representing the de-
mand of the system, is the aggregation of the bid functions submitted by all the participating agents and
the inflexible load that needs to be satisfied at that instant. The offer/supply curve is the aggregation
of both flexible and inflexible generation. The market clears at the intersection of these two curves, or
at the point where the supply matches with the demand. The clearing price, 𝑥፭ is then communicated
to all the device agents, as depicted in Figure 4.1.

Apart from market clearing, the auctioneer in the F-MBC mechanism also has an additional feature
called tie- breaking [3]. A tie is defined as a situation when several device agents submit equal thresh-
old bids. This situation can arise when the deadlines of the devices are equal. Since the bid function
of each agent is a function of the threshold price, having the same threshold price leads to a situation
in which aggregation of bids submitted by these agents happens at the same price, leading to a big
step in the overall bid curve as seen in Figure 4.2. This might lead to bulk-switching, i.e; a consider-
able number of devices being scheduled at a particular time step, when provided the same information
(price forecasts).

In order to prevent this bottleneck, each agent submits a random number 𝜌ፚ to the auctioneer along
with its bid function. In case of a tie, the auctioneer determines a cut-off random number 𝜌∗, such
that the devices with random number less than or equal to the cut-off number is only allocated. The
cut-off random number 𝜌∗, is determined in such a way that the supply almost meets the demand at
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Figure 4.2: Auction curves (i.e; the supply and demand curves) in event of a tie at clearing price ፱ᑥ. The portion of the bid
curve highlighted using a box represents the large step in the curve which results a consequence of having same threshold
price.(Adapted from [3]).

the threshold bid 𝑥፭.This cut off random number is communicated along the market clearing price.

Since ties are bound to happen only among the devices that do not have the obligation to start at
that instant, the unscheduled devices that bid with the same threshold will eventually expect to pay the
same price as that of the devices that were allocated. This is because at 𝑡 < 𝑑ፚ − 𝐷ፚ , the agents
are indifferent between starting and waiting and thus have threshold bids as described in Equation 4.3.
This means that the device agents do not have any motive to game the tie breaking functionality.

Post market clearing, the information used in generating the forecasts gets updated based on the
control actions taken by the devices and this process continues until T.

4.3 Simulation of the facilitator
This section explains how reference prices were generated in [3]. In reality, such prices would be gen-
erated employing a forecaster. However, to illustrate the importance of generating optimal prices by
the facilitator, a facilitator with complete information was modelled. It was proved in Theorem 4 of [3]
that the allocation realized by using a facilitator with perfect foresight using linear marginal cost function
corresponds to a Nash Equilibrium. This means that, in order to achieve an optimal coordination by
using the F-MBC, the facilitator should aim to realize these optimal prices.

When simulating facilitator with complete information about both generation and loads,the reference
prices correspond to the outcome of Mixed Integer Quadratic Program (MIQP) that determines the opti-
mal number of starts at each time step over the scheduling horizon such that the objective function ,i.e;
the overall generation cost is minimized.Since identical devices with same power consumption pattern
are being considered, the demand presented by these flexible devices can be determined by knowing
the number of devices running at time 𝑡.The mathematical formulation is described in the upcoming
section.
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4.3.1 MIQP formulation
Consider a scheduling horizon T, with fixed time intervals Δ t , where t={1,2,..T}. The optimal co-
ordination problem involves schedulingN uninterruptible deferrable loads, each of which is represented
individually by its device agent a. It is assumed that the deadlines are assigned by the user at a time
step t ≤T. The duration of the devices is denoted as 𝐷. The inflexible load and the renewable gen-
eration over the above mentioned period is given by 𝑃፭፥ and 𝑃፭፫ respectively. The flexible generation
is represented by a marginal cost function, denoted as 𝑚፭(𝑃).The MIQP problem is formulated in the
following manner [3]:

minimize
ፏᑘᑥ ,᎟ᑥ ,፨ᑥ

∑
፭∈ፓ

1
2 .
(𝑃፠፭ )ኼ
𝑘 .Δ𝑡 (4.8)

subject to ∀𝑡 ∈ 𝑇

𝑃፠፭ ≥ 0 (4.9)

𝑃፠፭ + 𝑃፫፭ ≥ 𝑜፭ .𝑃ፚ + 𝑃፥፭ (4.10)
፭

∑
።዆ኻ
𝜎። ≥ 𝜙፝(𝑡 + 𝐷), 𝑡 ≤ T− 𝐷 (4.11)

፭

∑
።዆ኻ
𝜎። = 𝜙፝(T), T− 𝐷 + 1 ≤ 𝑡 ≤ T (4.12)

𝜎፭ ≥ 0 (4.13)

𝑜፭ = {
∑፭፣዆ኻ 𝜎፣ 𝑡 ≤ 𝐷
𝜎፭ + (𝑜፭ዅኻ − 𝜎፭ዅፃ) 𝑡 > 𝐷 (4.14)

where
𝑜፭: Number of devices running at time t.
𝜎፭:Number of device starts at time t.
𝜙፭: Number of devices whose deadline is at or before the time instant t.

Description of the problem formulation

Objective function
From Equation 4.8, it can be seen that the marginal cost function is modelled as a linear function with
a constant slope as indicated in Equation 4.15 [3].

𝑚(𝑃፠) = 𝑃፠
𝑘 , 𝑃

፠ ≥ 0 (4.15)

Power balance constraint
Equation 4.10 ensures that the power generated by the flexible and renewable generation can satisfy
the demand of the flexible and inflexible loads.

Deadlines satisfaction constraints
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Equations 4.11 and 4.12 belong to this category. Equation 4.11 implies that the sum of device starts
upto time t is atleast equal to the number of devices that have their deadlines fixed at t+D, thereby
ensuring that the deadlines of the devices are met. Equation 4.12 implies that the total number of
device starts in the last time steps should be equal to the total number of devices that needs to be
coordinated,N.

Uninterruptibility constraints
Since the system consists of uninterruptible loads, it is imperative to include constraints in the opti-
mization problem that describes the nature of these loads. Equation 4.14 describes the same in the
formulation. It simply implies that in the initial time steps, from 𝑡 = 1..𝐷, the number of devices running
is equal to the sum of device starts upto t. At instances greater than D, the number of devices that have
completed their cycle is subtracted from the total number of running devices at the previous time step.
This ensures that we do not take into account those devices that turn off. The resultant is then added
to the number of starts at time t , in order to determine the total number of devices running at that instant.

At each time step, the optimal prices were generated by taking into account system information un-
til 𝑇, in order to take into account the outcome at the preceding instant. This results in generating an
”updated” forecast. However, in situations where devices keep becoming available at each instant, the
scheduling problem becomes a continuous one and the forecasts will be generated on a ”rolling ” basis.
To explain the rolling forecast setting, the following terms are introduced :

• Prediction Horizon (PH): The length of system information considered for the optimization prob-
lem.

• Control Horizon (CH) The interval at which the decision is taken by the agents.

Optimal prices are generated by taking into account the system information of length PH . Using these
prices, the agents submit their bid functions in the double auction market. Based on the market out-
come at the first CH, agents take their decisions to either start or wait. The updated information, based
on the actions taken by the agents at the previous CH is used for solving the optimization problem
in the next PH. In this way, the scheduling problem keeps moving forward in time. This is pictorially
represented in Figure 4.3.
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Figure 4.3: Graphical representation of a rolling horizon framework (Adapted from [45])

4.3.2 Generation of probabilistic reference prices
As seen in Figure 4.1, the probabilistic reference prices are communicated to the device agents. This
section explains how they are developed from the optimal reference prices.

Such forecasts are generated by adding noise to the optimal reference prices. Let the optimal refer-
ence prices be represented by 𝑥∗፭ . It was assumed that the price forecasts at time t, 𝑋፭ are lognormally
distributed with a standard deviation 𝑆𝐷፭, which is a function of the day ahead uncertainty 𝜈ኼኾ፡ as illus-
trated in Equation 4.16 [3].

𝑆𝐷፭ = 𝑥∗፭ ⋅ 𝜈ኼኾ፡ ⋅
𝑡 − 𝑡ᖣ
24ℎ (4.16)

The values 𝑆𝐷፭ was communicated along with the expected costs ̄𝑥፭ to each of the device agents, based
on which the bid functions are formulated. The expected prices are sampled from the log-normal dis-
tribution with mean 𝑥∗፭ and standard deviation 𝑆𝐷፭.

4.4 Main results achieved
In order to validate the developed mechanism, F-MBC scheme was used to coordinate a single popu-
lation of deferrable loads with different deadlines set by the owners. The simulation had a span of one
day , with 5 min market clearing intervals. The optimal reference prices were distorted with negligible
day ahead uncertainty and then was communicated to the agents.

F-MBC was able to follow the initial optimal schedule predicted by the facilitator thereby realizing the
cost-optimal load profile with minor deviations. This points towards attaining good system level per-
formance. It was also observed that the total cost of starting using F-MBC coincide with the costs
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determined using MIQP prices, indicating that the coordination realizes good device performance as
well. The robustness of the approach with different noise levels was also demonstrated.

However, the following aspects are yet to be investigated:

• The simulation was performed for a predetermined number of iterations. In practice, the schedul-
ing problem is continuous in nature. Therefore, the performance of the scheme in an infinite time
horizon is yet to be evaluated.

• The ability of the mechanism to coordinate multiple populations of deferrable loads has to be
studied.

These topics will be dealt in the remaining chapters of this document.

4.5 Summary
This chapter introduces the F-MBC scheme for coordinating uninterruptible time-shiftable loads over
multiple time steps.By simulating a particular case study where optimal prices with negligible uncertainty
was communicated to the device agents, the mechanism was found to be able to schedule devices in
such a manner that led to good overall performance , both at the system level and device level . This in-
dicates that by communicating optimal prices to the devices, the agents are incentivized to attain these
prices. The tie breaking phenomena of the scheme helps in scheduling devices who are indifferent
between starting and waiting. The concepts introduced in this chapter acts as a base to understand
the behaviour of the F-MBC mechanism in generalized applications and also the simulation scenarios
analyzed in this thesis.





Chapter 5

Facilitator generalizations and
performance indicators

This chapter explains in detail the extensions made to the facilitator that allows it to generate prices
that can be used to coordinate different populations of deferrable loads. Section 5.2 explains the func-
tionalities added to the optimal prices generation by the facilitator. Post this, Section 5.3 explains in
detail how realistic settings can be investigated by performing simulations and what are the additional
constraints added to the facilitator to test the robustness of the approach.Then, the metrics that will be
used to assess the performance of the mechanism under different simulation scenarios are described
in Section 5.4.

5.1 Introduction
The previous chapter provided the simulation results of the F-MBC mechanism, where it was able to
achieve good overall performance both at the system and device level, when coordinating single popu-
lation of uninterruptible loads. However, the performance of the scheme when used to schedule several
populations of deferrable loads is still to be analyzed. Therefore, in order to do that, the formulation of
the MIQP problem was extended to accommodate several populations of such loads, having different
power consumption profiles (refer Figure 5.1), duration and deadlines set by their respective owners,
therefore serving as a generalization of the facilitator. Here ,a single population refers to a collection of
identical devices having the same duration and same demand at every timestep throughout their cycle,
but can differ in their deadlines.

5.2 MIQP formulation for several populations of deferrable loads
The following equations describe theMixed Integer Quadratic Program (MIQP) that provides the optimal
number of device starts at each time step for n populations of identical, uninterruptible, time-shiftable
devices (𝜎ኻ፭ ...𝜎፧፭ ), such that the total generation cost is reduced. As mentioned before, the devices in
each population vary in their duration ( 𝐷ኻ....𝐷፧) and power consumption patterns.

31
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The extended formulation is given below:

minimize
ፏᑘᑥ ,᎟Ꮃᑥ ...᎟ᑟᑥ

∑
፭∈ፓ

1
2 .
(𝑃፠፭ )ኼ
𝑘 .Δ𝑡 (5.1)

subject to, ∀𝑡 ∈ 𝑇

𝑃፠፭ ≥ 0 (5.2)

𝑃፠፭ + 𝑃፫፭ ≥ 𝑃፟፥፞፱፭ + 𝑃፥፭ (5.3)

𝑃፟፥፞፱፭ =
፧

∑
፣዆ኻ
𝑃፟፥፞፱,፣፭ (5.4)

𝑃፟፥፞፱,፣፭ =
፦።፧(፭,ፃᑛ)

∑
፛዆ኻ

𝜎፣፭ዅ፛ዄኻ.𝑃፣፛ (5.5)

𝜎፣፭ ≥ 0 (5.6)

∑፭።዆ኻ 𝜎
፣
። ≥ 𝜙

፣
፝(𝑡 + 𝐷፣), 𝑡 ≤ 𝑇 − 𝐷፣

∑፭።዆ኻ 𝜎
፣
። = 𝜙

፣
፝(𝑇), 𝑇 − 𝐷፣ + 1 ≤ 𝑡 ≤ 𝑇

} ∀𝑗 ∈ [1, 𝑛] (5.7)

where :

n: number of populations of flexible devices
𝑃፟፥፞፱፭ : Power consumed by all flexible devices at time t
𝑃፟፥፞፱,፣፭ : Power consumed by the flexible devices of population j in time t
𝑃፣፛ : Power consumption of flexible devices in population j in 𝑏፭፡ stage of their power consumption
profile
𝐷፣ : Duration of flexible devices of population j
𝜎፣። : Number of device starts in population j in time i
𝜙፣፝(𝑡): Number of devices in population j that has a deadline at or before 𝑡

5.2.1 Description of the formulation
Power balance constraints

Equation 5.4 indicates that the total power demand of the flexible devices is the sum of the power
demands of the individual populations. Equation 5.5 expresses the demand of each population at time
t. Power consumption of the scheduled devices at a particular time step is the total demand presented
by the devices running at 𝑡. Demand of the devices that gets scheduled at any instant is the product of
the number of starts at that instant and the power consumed by the device at that instant. The power
demand of population 𝑗 at time 𝑡 ,when 𝑡 > 𝐷፣ is given by the sum of the power consumed by the
devices scheduled from 𝑡 − 𝐷፣ + 1 to 𝑡. Similarly, when 𝑡 < 𝐷፣ , the total demand of the population
𝑗 is the demand associated with devices starts in that population from 1 to 𝑡. This equation ensures
uninterruptibility and avoids scheduling devices that have completed their cycle. It is important to note
that this equation enables us to schedule not only loads with equal power consumption throughout its
cycle , but also devices that undergo multiple paths/states as indicated in [11]. An example of one such
load profile is given in Figure 5.1.
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Figure 5.1: Graphical representation of load profile of a device with multiple paths during its cycle.( Adopted from [11] )

Equations 5.4 and 5.5 together account for the term 𝑃፟፥፞፱፭ in Equation 5.3.

Deadline satisfaction constraints

Equation 5.7 ensures that the devices of all populations satisfies the deadlines assigned to them.These
are simply the extensions of Equations 4.11 and 4.12 explained in Section 4.3.1.

5.3 Simulating the facilitator in realistic setting
Asmentioned in Chapter 1, the main aim of the project is to simulate the coordination in a more complex
setting. This involves treating it as an infinite horizon problem wherein forecasts are generated on
a rolling basis. However, when simulation needs to be terminated at some point to investigate the
performance. This is pictorially represented in Figure 5.2.To avoid the end of horizon effects due to
this termination, the length of the scheduling horizon must be long enough [43]. The total number of
iterations considered is termed as Scheduling Horizon (SH).

Figure 5.2: Pictorial representation of rolling forecasts generation when performing simulations. The simulation terminates after
n iterations.
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To test the robustness of the mechanism with the considered scheduling horizon, optimistic and
pessimistic forecasts are generated by the facilitator. This analysis is important to validate the perfor-
mance of the mechanism in situations when the actual environment in which the F-MBC might be put
into practice is different from what is being simulated [43]. Since the forecast prices play an important
role in influencing what decision the agent will make at any given time, optimistic and pessimistic sce-
narios are formulated with respect to how the forecasts are generated by the facilitator.

A facilitator with complete information can be considered to generate an ”optimistic” forecast when it
provides the prices corresponding to the optimal allocation of only those devices that has to be sched-
uled. Prices corresponding to this allocation are expected to be lower and hence the term optimistic.
On the other hand, the ”pessimistic” forecast aims to allocate all the devices that becomes available.
This means that the prices are expected to be higher than the optimistic forecast. In a realistic setting
in which devices become available at each instant and forecasts are communicated on a rolling basis,
this means that a pessimistic forecast might not fully utilize the flexibility offered by the devices, espe-
cially of those which become available at the end of the forecast horizon.

To understand the formulations behind generating such forecasts, consider a prediction horizon of
length T. Based on the availability and the deadlines, the devices can be grouped into four categories,
namely:

• Category 1: Devices that become available at t <=T and have their deadlines at or before T.

• Category 2: Devices that become available at t<= T, their deadlines are after T; but they must be
scheduled to start to satisfy their deadlines.

• Category 3: Devices that become available at t<=T and have their deadlines after T , but can be
scheduled after T to satisfy their deadlines.

• Category 4: Devices that become available after T.
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5.3.1 Optimistic forecast formulation
The MIQP formulation to generate optimistic forecasts is given below.

minimize
ፏᑘᑥ ,᎟Ꮃᑥ ...᎟ᑟᑥ

∑
፭∈ፓ

1
2 .
(𝑃፠፭ )ኼ
𝑘 .Δ𝑡 (5.8)

subject to, ∀𝑡 ∈ 𝑇

𝑃፠፭ ≥ 0 (5.9)

𝑃፠፭ + 𝑃፫፭ ≥ 𝑃፟፥፞፱፭ + 𝑃፥፭ (5.10)

𝑃፟፥፞፱፭ =
፧

∑
፣዆ኻ
𝑃፟፥፞፱,፣፭ (5.11)

𝑃፟፥፞፱,፣፭ =
፦።፧(፭,ፃᑛ)

∑
፤዆ኻ

𝜎፣፭ዅ፤ዄኻ.𝑃፣፤ (5.12)

𝜎፣፭ ≥ 0 (5.13)

∑፭።዆ኻ 𝜎
፣
። ≤ ∑

፭
።዆ኻ 𝛾

፣
።

∑፭።዆ኻ 𝜎
፣
። ≥ 𝜙

፣
፝(𝑡 + 𝐷፣)} ∀𝑗 ∈ [1, 𝑛] (5.14)

where:

𝜎፣። Number of device starts in population j in time i
𝛾፣። Number of devices of population j available at time i
𝜙፣፝(𝑡 + 𝐷፣) Number of devices in population j that has a deadline at or before 𝑡 + 𝐷፣

Explanation of the constraints

The optimistic forecast aims to provide the optimal allocation pertaining to the devices that must be
scheduled at or before T in order to satisfy their deadlines. This means that this formulation consid-
ers the devices belonging to category 1 and category 2, as devices belonging to category 3 can be
scheduled after 𝑇 and still meet their deadline. This is mathematically expressed in Equation 5.14.The
formulation also ensures that the total number of devices scheduled at any instant does not exceed the
number of devices available.
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5.3.2 Pessimistic forecast formulation
The optimization problem to generate pessimistic forecasts is given below.

minimize
ፏᑘᑥ ,᎟Ꮃᑥ ...᎟ᑟᑥ

∑
፭∈ፓ

1
2 .
(𝑃፠፭ )ኼ
𝑘 .Δ𝑡 (5.15)

subject to, ∀𝑡 ∈ 𝑇

𝑃፠፭ ≥ 0 (5.16)

𝑃፠፭ + 𝑃፫፭ ≥ 𝑃፟፥፞፱፭ + 𝑃፥፭ (5.17)

𝑃፟፥፞፱፭ =
፧

∑
፣዆ኻ
𝑃፟፥፞፱,፣፭ (5.18)

𝑃፟፥፞፱,፣፭ =
፦።፧(፭,ፃᑛ)

∑
፤዆ኻ

𝜎፣፭ዅ፤ዄኻ.𝑃፣፤ (5.19)

𝜎፣፭ ≥ 0 (5.20)
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። , 𝑇 − 𝐷፣ + 1 ≤ 𝑡 ≤ 𝑇

⎫

⎬
⎭

∀𝑗 ∈ [1, 𝑛] (5.21)

where

T Prediction horizon
𝛾፣። Number of devices of population j available at time i
𝜎፣። Number of device starts in population j in time i
𝜙፣፝(𝑡 + 𝐷፣) Number of devices in population j that has a deadline at or before 𝑡 + 𝐷፣

Explanation of the constraints

The difference between 5.3.1 and 5.3.2 is the last sub-equation in 5.21. It states that the total number
of devices scheduled must equal the total number of devices available. This means that all devices
that become available, i.e; devices belonging to categories 1 to 3 are scheduled in this formulation.
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5.4 Performance Indicators
This section introduces the quantities that will be used in the upcoming chapters to evaluate the per-
formance of F-MBC mechanism as a coordination scheme.

5.4.1 Overall objective function
The allocation predicted by the facilitator with complete function which minimizes the overall generation
costs characterized by affine marginal cost function with a constant slope, corresponds to a Nash
Equilibrium, according to Theorem 4 of [3]. Therefore, comparing the value of the objective functions
achieved using the demand predicted by the facilitator with complete information about the system and
the demand resulting as a consequence of using F-MBC , it can be determined whether the approach
attains good system level performance or not.

5.4.2 Cost of starting
Cost of starting refers to the total price paid by the agent when it gets scheduled at time t. By computing
the cost of starting using the prices determined by the optimizer in the initial run and market clearing
prices , it can be determined whether the agents pay close to the optimal costs or not. Cost of starting
can also highlight the monetary advantage accompanied with taking part in the F-MBC scheme, when
compared to a situation when the loads are not subjected to the coordination mechanism. Therefore,
this metric can be used to answer the question :

What is the benefit of participating in F-MBC mechanism ?

5.4.3 Regret
While the cost of starting compares the actual costs the participating agents pay with the optimal costs
that the agents could have paid, regret compares among the costs paid by the agents when coordinated
using the F-MBC scheme. Regret is defined as the difference between actual cost paid by the device
and the lowest possible cost that it could have achieved by using the mechanism. It is evaluated for
each device participating in the scheme. With 5.4.2 and 5.4.3, the following question can be answered:

Does F-MBC mechanism achieve good device level performance ?

5.5 Summary
This chapter introduces and explains the extensions made to the MIQP formulation used by the facili-
tator. These help in determining the optimal outcome when scheduling heterogeneous populations of
uninterruptible loads that can differ in their duration and/or power consumption, thereby enabling to test
the ability of F-MBC in scheduling them. The chapter concludes by laying out the metrics which helps in
assessing the performance when tested under different operation conditions, which will be discussed
in the upcoming chapters.





Chapter 6

Coordination of heterogeneous
populations using F-MBC

This chapter aims to investigate the attributes that affect the coordination of heterogeneous populations
of deferrable loads with different device characteristics under a weakly deadline ordered case. Section
6.2 introduces the different cases considered , followed by detailed analysis of the considered test
cases is presented in Section 6.3.

6.1 Motivation
This chapter aims in answering the research question ,”What factors influence the allocation of popu-
lations with different characteristics ?” This question is important to address when different populations
of flexible devices are considered, because the information used by the agents when applying the bid-
ding policy by the agents differ according to the device’s characteristics, which eventually affects the
schedule and performance of the mechanism when its application is extended to accommodate loads
with different attributes.

In order to determine that, a system in which agents have identical deadlines is modelled in this chap-
ter.Since the results presented in [3] consisted of a system with single population of devices with uni-
form power consumption, two populations of devices with uniform power consumption are considered
for analysis in this chapter. The simulations are performed in MATLAB. The MIQP problem formulation
is modelled using YALMIP optimization toolbox [31] and solved using Gurobi optimizer.

6.2 Simulation setup
The aim of this chapter is to analyze the performance of the performance of the scheme when co-
ordinating two populations of devices with simple load profiles. Load profiles characterized by more
dynamic power consumption pattern is analyzed in Chapter 7.

In general, the three main attributes of any load profile is :

• Duration

• Power Consumption at each time step

• Overall energy consumption

Since the analysis presented in this chapter restricts itself to scheduling two populations of uniform
power consuming loads, overall energy consumption is dependent on the duration and power con-
sumption.

39
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Therefore, by using these attributes, 2ኼ = 4 combinations of populations of devices can be formu-
lated. These are illustrated in Table 6.1.

Table 6.1: Possible combinations when considering two populations of devices with uniform power consumption

Duration Power consumption at each step Overall Energy Consumption
Different Different Same
Same Different Different
Different Same Different
Different Different Different

The upcoming sections will deal with the analysis of each of these highlighted combinations. The
parameters introduced in Section 5.4 will be used to assess the performance of the mechanism.

Since this is a first attempt to extend the mechanism to heterogeneous loads, a simple experimen-
tal setting is considered. For analysis, 2 populations of 500 devices each are simulated under the
following conditions.

• The scheduling horizon for the simulation, i.e; T=96.

• All devices are available from t=1.

• The deadlines of all the devices are at t=96.

• Inflexible load and renewable generation values are set to zero.

• Forecasts are assumed to have almost zero day ahead uncertainty.

6.3 Simulation test cases

6.3.1 Combination 1: Devices with same overall energy consumption , but
with different duration

Under this combination, we consider two populations of devices with the following characteristics:

• Population 1: 8 kW * 3 timesteps

• Population 2 : 3 kW * 8 timesteps

They are graphically represented in Figure 6.1.
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(a) Population 1 (b) Population 2

Figure 6.1: Graphical representation of the populations of devices: Combination 1

Results and analysis

The demand profile obtained by using F-MBC and the optimal demand profile predicted by the facilita-
tor is given in Figure 6.2.

Figure 6.2: Demand profile comparison : Combination 1

To begin the analysis, the objective function is compared because the main motive behind utilizing
optimal prices is to ensure that the overall generation costs are reduced. The values of the overall
objective function obtained is listed in Table 6.2.

Objective function value : Optimal Objective function value : F-MBC
3.031811 e+05 3.035572 e+05

Table 6.2: Objective function comparison : Combination 1

From Table 6.2, it can be observed that the deviation from the optimal coordination is only about
0.124 %. However, from Figure 6.2, it can be observed that there are some instances where the de-
mand realized using F-MBC is lower than the demand from the MIQP, especially at the initial timesteps.
This gets compensated by achieving demand higher than the optimal at the end of the horizon.
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In order to understand the reason behind this, the schedule achieved by the F-MBC mechanism for
population 1 and 2 , and the scheduled predicted by the optimizer is presented in Figure 6.3.

(a) MIQP schedule (b) F-MBC schedule

Figure 6.3: Schedule comparison : Combination 1

From Figure 6.3a, it can be seen that the optimizer determines the demand at each timestep by schedul-
ing a certain number of devices belonging to both populations, for instance 4 and 72 devices of popu-
lation 1 and 2 respectively at t=1. From the bidding perspective, this means that these devices must
have the submit corresponding threshold bids in order to realize that demand. However, the character-
istics of the devices and the fact that the devices are deadline ordered, lead to schedule presented in
Figure 6.3b.For instance, on upon looking into the threshold bids submitted by the devices belonging
to both populations in Figure 6.4 , we can observe that the threshold bids submitted by the agents in
these populations at the first timestep are 24.7 and 24.6 a.u respectively. Since the agents are weakly
deadline ordered, the bids of all the agents in a population is the same. Moreover since all devices are
available from the first timestep , each device will submit their bids to the auctioneer and even minor
differences in their threshold bids (0.1 a.u for t=1 ) can lead to a possibility of them not getting allocated,
especially at the initial timesteps, thereby leading to a lesser demand obtained than what was predicted
by the optimizer. This is seen in Figure 6.5, where only the devices in population 1 get allocated.

Figure 6.4: Threshold bids submitted by the last allocated agent belonging to population 1 and 2
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Figure 6.5: Auction curve at t=1

There are many factors that lead to a population having a higher threshold bid. To understand that,
the equation for threshold bid for a population belonging to population j at time t is given in Equation 6.1.
The main attribute affecting the threshold price calculation are the prices that are taken into account
for calculation of the optimal expected cost, abbreviated in Equation 6.1. Since the deadlines of all
the devices are all at the last timestep, the duration determines from which timestep the calculation of
optimal expected costs commence via backward induction (from 𝑡 ≤ 𝑑፣ −𝐷፣ ) and also the prices that
are taken into consideration for calculation of each of the terms in Equation 6.1. From Figure 6.4, it can
be seen that the unallocated agents of population 1 bid higher as they approach their deadline, at the
end of the scheduling horizon.
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𝑧፣፭ =
𝐶∗፣፭ዄኻ − ∑

ፃᑛዅኻ
።዆ኻ 𝑥̄፭ዄ። ⋅ 𝑃፣። ⋅ Δ𝑡
𝑃፣ኺ ⋅ Δ𝑡

(6.1)

where:

𝐶∗፣፭ዄኻ: Optimal expected cost at 𝑡 + 1
∑ፃ

ᑛዅኻ
።዆ኻ 𝑥̄፭ዄ። ⋅ 𝑃፣። ⋅ Δ𝑡 : Expected cost for the reminder of the device’s cycle, when scheduled at time 𝑡.
𝑑፣: Deadline of the device
𝐷፣: Duration of the device

In order to determine the effect of such deviations from the optimal schedule from the device’s point
of view, the total cost paid by the device as a result of starting at a particular timestep , (referred to
as the cost of starting), for the devices in population 1 and 2 determined based on the MIQP and F-
MBC schedule are presented in Figure 6.6. The cost of starting here is represented in terms of unit
energy ,since in the upcoming cases, populations with different energy consumption will be considered.

Figure 6.6: Top panel: Cost of starting based on MIQP schedule.
Bottom panel: Cost of starting based on F-MBC schedule.

Upon comparison , it was observed that the optimizer has scheduled the devices of population 1 and 2
with an average of 25.28 a.u and 25.24 a.u respectively, while F-MBC was able to achieve an average
cost of starting of 25.21 a.u and 25.14 a.u for the respective populations. Slightly lesser average values
using F-MBC indicates that a significant number of devices in both the populations get scheduled at
those instances when the demand realized is less than the optimal demand.

Now, the regret of the device agents is computed. Regret is defined as the difference between the
actual price paid by the agent and the lowest possible price that could have been achieved in hindsight.
Figure 6.7 represents the distribution of regret for both populations as a consequence of participating
in the F-MBC scheme, expressed in percentage of the actual cost paid by the agent.
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Figure 6.7: Distribution of regret of device agents: Combination 1

It can be observed from Figure 6.7 that the range of regret is larger for population 1. This is mainly
because the devices belonging to population 1 get scheduled both at the initial timesteps and also at
the last few timesteps closer to its deadline, thereby leading to those agents paying a higher cost than
the agents scheduled at the beginning, despite having the same availability and deadline. On the other
hand, the devices belonging to population 2 have a smaller regret with an average of 3.76 % , because
most of the devices get scheduled at those instances (t=14 to t=75) when the total cost realized by the
agents are not that significantly different from each other.

6.3.2 Combination 2: Devices with different power consumption , but with
same duration

Since duration of the devices was identified as an important factor influencing the deviation from the
optimal allocation, two populations having the same duration are considered in this section. The char-
acteristics of the devices are as follows:

• Population 1: 3 kW * 7 timesteps

• Population 2 : 5 kW * 7 timesteps

These are represented in Figure 6.8.
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(a) Population 1 (b) Population 2

Figure 6.8: Graphical representation of the populations of devices: Combination 2

Results and Analysis

Similar to the previous case,the demand profiles obtained based on the MIQP schedule and the F-MBC
outcome is compared in Figure 6.9 .

Figure 6.9: Demand profile comparison: Combination 2

The corresponding total generation cost values are listed in Table 6.3.

Objective function value : Optimal Objective function value : F-MBC
4.13202 e+05 4.14846 e+05

Table 6.3: Objective function comparison : Combination 2

The relative error when compared to optimal generation cost is only about 0.397 %, which indicates
towards system level performance. Similar to the previous testcase, when compared with the optimal
profile, higher demand is observed at the end of the scheduling horizon due to lower demand realized
at earlier time intervals.
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(a) MIQP schedule (b) F-MBC schedule

Figure 6.10: Schedule comparison : Combination 2

As anticipated from the conclusion in Section 6.3.1 , devices from both the populations get allocated
as seen in the F-MBC schedule from Figure 6.10b. This is because the prices used for calculating the
optimal expected cost and the cost for the reminder of the cycle are essentially the same, as a conse-
quence of having the same duration. Since populations of devices with constant power consumption
are considered, the power consumption of the populations do not affect the threshold bid, as it simply
acts as a scaling term. This means that all the devices bid with the same thresholds throughout the
course of simulation as seen in Figure 6.11a. This means that the tie breaking mechanism resolves ties
between bids of both populations, unlike in the previous combination, where ties are cleared among
bids belonging to one population. This is seen in the auction curve shown in Figure 6.11b, where the
demand curve is simply one large step.

(a) Threshold bids (b) Auction curve

Figure 6.11: Threshold bids and auction curve - Combination 2
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Though this testcase presents the possibility to schedule agents from both populations, it can be
observed from the demand profile that the demand predicted by the optimizer is not being met at some
instances. Moreover, the scheduled achieved by F-MBC is different from the optimizer. Also from the
F-MBC schedule, it can be observed that despite having the same threshold bids, the number of de-
vices that get allocated in each population is different. This can be linked to the working of tie breaking
mechanism. As mentioned earlier in Section 4.2, when a tie situation occurs, the auctioneer selects
the cut-off random number is such a way that supply matches the demand. Graphically, this indicates
the point of intersection of supply and demand curves. Depending upon the demand of the system,
that power consumption of the devices play a role in the number of devices that get should allocated
at a particular timestep, even if the device agents have the same threshold bid.

Similar to the previous testcase, the optimality from the agents’ perspective can be investigated by
evaluating the cost of starting based on MIQP and F-MBC schedules, as seen in Figure 6.12.The
optimizer was able to achieve an average cost of starting of 29.5 and 29.53 for population 1 and 2
respectively. The F-MBC allocation led to an average cost of starting of 29.3 a.u and 29.4 a.u for pop-
ulation 1 and 2.

Figure 6.12: Cost of starting comparison: Combination 2
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Lastly the regret distribution of the participating agents is presented in Figure 6.13. The agents
belonging to both populations have similar range of regret, with average values of 10.36 and 10.63
respectively. This is primarily because the devices have same duration. Agents with the highest regret
will be the ones that get scheduled at the end of the horizon and the agents with the lowest regret will
be the ones that were scheduled at those instances when the cost of starting is low (from t=30 to 40,
from Figure 6.12).

Figure 6.13: Distribution of regret of device agents: Combination 2
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6.3.3 Combination 3: Devices with same power consumption , but with differ-
ent duration

To investigate further the role of power consumption in allocation of device agents, devices with same
power consumption are studied in this section. The characteristics of devices considered are as follows:

• Population 1: 6 kW * 4 timesteps

• Population 2 : 6 kW * 7 timesteps

These are represented pictorially in Figure 6.14.

(a) Population 1 (b) Population 2

Figure 6.14: Graphical representation of the populations of devices: Combination 3

Results and Analysis

Similar to the previous case,the demand profiles realized based on the MIQP and F-MBC schedule is
compared, as represented in Figure 6.15 .

Figure 6.15: Demand profile comparison: Combination 3
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The corresponding objective function values are listed in Table 6.4.

Objective function value : Optimal Objective function value : F-MBC
5.73213 e+05 5.73829 e+05

Table 6.4: Objective function comparison : Combination 3

From Table 6.4, it can be seen that the F-MBC was able to coordinate these devices with an over-
all deviation of 0.1074 % from the optimal solution, thus indicating good overall performance.

(a) MIQP schedule (b) F-MBC schedule

Figure 6.16: Schedule comparison : Combination 3

To understand the reason behind the deviation from the optimal allocation, the schedules of MIQP
and F-MBC are studied.From Figure 6.16a, it can be seen that the facilitator predicted the optimal de-
mand profile by scheduling certain number of devices in both the populations similar to the previous
testcases. However, from Figure 6.16b, it can be seen that the devices that get of population 2 get
more rapidly allocated when compared to population 1, especially from t=25 to t=61. All the devices in
population 2 get scheduled at t=65, while only 127 devices in population 1 were scheduled upto that
timestep. However, in spite of the mentioned difference in allocation, the F-MBC was able to attain
the demand predicted by the facilitator at most instances. This is because the power demand of these
populations are same , which implies the predicted demand can be realized by scheduling a certain
number of devices in either populations.

Now,in order to understand the reason for this allocation, the threshold bids of the last allocated agent
in both populations are given in Figure 6.17. It can be seen that both populations bid very closely, with
a maximum difference between the populations being as low as 0.001 from t=3 to t=25. However since
all unscheduled devices of population 2 bid with the same price, even minor differences in the bids can
lead to the devices from population 1 not being allocated.

To understand the reason behind high threshold bid and the consequent allocation of population 2
in the initial timesteps, the optimal expected costs and the corresponding threshold prices are calcu-
lated by backward induction based on the prices forecasted at t=1 is given in Figure 6.19a and Figure
6.19b respectively. From the Figure 6.19a, we can see that the optimal expected costs calculated for
both the populations undergo a similar trend with a drop in the prices between the timesteps t=63 to
t=56, due to the dip in the forecasts in the same instances. From figure 6.19b, we can see that at t=52,
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Figure 6.17: Threshold bids submitted by the agents belonging to population 1 and 2: Combination 3

both populations have the same threshold bids calculated. However, from the next iteration backward
upto t=1, the bids change to 29.975 and 26.4 for population 1 and 2 respectively. To analyze the rea-
son for this, the formula for determining the threshold prices given in Equation 6.1 is considered again
.Though the optimal expected costs at t=52 are equivalent to their energy difference (1411.2/806.25=
1.75=42/24), the duration of reminder of the cycle is twice for population 2 (6 timesteps) when com-
pared to population 1 (3 timesteps). Since the forecast prices were the same from t=1 to t=52 as seen
in Figure 6.18, this led to the case where the difference between the optimal expected cost calculated
and the cost of the reminder of the cycle if started at t=1 to be higher for population 2 than for population
1. Since the threshold bid was about 29.975 , the auction cleared with the same price, leading to 50
devices being allocated post the tie breaking mechanism.

Therefore, we can see here that the duration has an impact on the threshold bids and the number
of devices allocated in the population that bids higher depends on the difference between the demand
at the equilibrium point of auction curves and the devices scheduled at previous instances. In other
instances when the threshold bids were higher for population 2, means that the difference between the
optimal expected cost and the cost for the reminder of the cycle was higher than that of population 1.

Figure 6.18: Prices forecasted at t=1
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(a) Optimal expected cost calculated by backward induction at t=1

(b) Threshold bids calculated by backward induction at t=1

Figure 6.19: Optimal expected costs and threshold bids calculated by devices based on the prices forecasted at t=1 :Combination
3

Now, the impact of this allocation on device level can be assessed by determining the total cost
of starting based on MIQP schedule and F-MBC schedule as shown in Figure 6.20. It was found that
based on the MIQP schedule , the average total cost of starting for population 1 and 2 are 34.72 a.u
and 34.69 a.u respectively, while F-MBC was able to achieve an average starting cost of 34.93 a.u and
34.52 a.u for the respective populations. Average cost of starting is higher for population 1 because
more than 70 % of the devices were scheduled at the end of the horizon, thereby being subjected to
higher market prices.

Figure 6.20: Top panel: Cost of starting based on MIQP schedule.
Bottom panel: Cost of starting based on F-MBC schedule.
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Similar to previous testcases, the regret distribution of the agents is compared. Based on Figure
6.21, it can be seen that the range of regret of the agents belonging to population 1 is higher than of
population 2. Again, the possible reason could be due to the fact that the devices in population 1 get
scheduled at the very beginning when the demand is the lowest and also the end of the horizon, during
which the demand is the highest. The lower regret associated with population 2, with an average of
3.78 %, can be explained with the almost flat cost of starting in Figure 6.20 between t=2 and t=51,during
which about 80 % of the devices in the population were scheduled.

Figure 6.21: Distribution of regret of device agents: Combination 3
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6.3.4 Combination 4: Devices with different power consumption and different
duration

This testcase can be used to validate the conclusions drawn in the previous combinations. The only
difference of this testcase when compared to the simulation setup in Section 6.3.1 is that the optimal ex-
pected costs will be different here, while it was almost the same in the latter as the energy consumption
of the devices are the same.

• Population 1: 4 kW * 6 timesteps

• Population 2 : 7 kW * 5 timesteps

These are represented in Figure 6.22.

(a) Population 1 (b) Population 2

Figure 6.22: Graphical representation of the populations of devices : Combination 4

Results and Analysis

The analysis is carried out in the same sequence as in the previous testcase. First, the demand profiles
obtained based on the MIQP schedule and the F-MBC outcome is compared, as represented in Figure
6.23 .
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Figure 6.23: Demand profile comparison: Combination 4

The corresponding total generation cost values are listed in Table 6.5.

Objective function value : Optimal Objective function value : F-MBC
4.58062 e+05 4.59058 e+05

Table 6.5: Objective function comparison : Combination 4

From Table 6.5, it can be seen that the overall generation cost obtained by using F-MBC deviates
as little as 0.217 % from the optimal solution, thereby indicating its ability to achieve good system level
performance, when used for scheduling the above mentioned populations of devices.

The observations made in the previous simulation scenarios can be used in explaining the deviation of
the allocation from the optimal allocation as seen in Figure 6.24.The devices in the populations have dif-
ferent duration, which imply that the prices used for determining the threshold bids will be different.The
facilitator was observed to resolve ties among the devices in the population with higher threshold bids
.Again, the number of devices that get allocated among the devices with higher bids was found to be
dependent on the power consumption of the devices and the demand at the equilibrium point of the
supply and demand curves in the double auction market.

(a) MIQP schedule (b) F-MBC schedule

Figure 6.24: Schedule comparison : Case 4
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Now to investigate the optimality from the device perspective, the cost of starting based on the MIQP
and F-MBC schedule is shown in Figure 6.25. It can be observed that the optimizer schedules the de-
vices belonging to population 1 and 2 with an average of 31 and 31.17 respectively. F-MBC allocates
the same with an average of 31.68 and 30.42 respectively. Lower average cost for devices belonging
to population 2 indicate that they were scheduled at those timesteps when the realized demand was
less than the optimal.

Figure 6.25: Cost of starting comparison: Combination 4

Finally, the regret of the device agents are presented in Figure 6.26. Here, the devices of popula-
tion 1 have a slightly higher range of regret , with an average of. Again this can be reasoned with the
timesteps at which the agents get scheduled and the realized cost of starting. The higher regret can be
also be due to the availability of all the unscheduled device agents of the considered population being
available , and thus consequently submitting the same bid function. The reason for them not getting
allocated is again because of the demand determined during market clearing. The regret of agents
belonging to population 2 , with an average of 3.73% ( almost half of the average regret of population
1 , 7.4 %) is less because significant percentage of the agents start at those timesteps when the cost
of starting is almost flat.
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Figure 6.26: Distribution of regret of device agents: Combination 4

6.4 Summary
This chapter investigates the ability of the F-MBCmechanism to coordinate heterogeneous populations
of deferrable loads with uniform power consumption throughout their cycles. It focuses on highlighting
the factors that lead to the deviation from the initial optimal schedule and the corresponding demand
profile predicted by the facilitator with complete information. A simulation setup with all the participating
agents having the same deadline is considered.While the considered testcases involved only two pop-
ulations of devices, the conclusions hold good for n populations of devices that fall under the category
of the testcases considered, because the prices predicted by the facilitator and thus the threshold bids
will also change according to the devices considered for coordination. The key takeaways from the
analysis can be summarized as follows:

• The facilitator allocates a particular number of devices from both populations to realize the opti-
mal demand and each timestep. To attain the same , devices must respond with corresponding
threshold bids.

• Given that the same prices are communicated to the devices having identical deadlines, it was
observed that the duration of the device influences the information taken into account for threshold
bid formulation (deadline-duration).

• The number of devices that get allocated depends on the power consumption of the populations.
Section 6.3.2 highlighted that despite having the same threshold bids, there can be instances
when the devices from a certain population might not get scheduled, depending upon the demand
determined at the equilibrium point of the aggregated supply and demand functions.

In all the considered testcases, it was found that F-MBC mechanism was able to coordinate devices
having uniform power consumption with good system level and device level performances, with little
deviations from the optimal overall generation cost. The least relative error was found to be in situation
where the power consumption of the populations were the same, indicating that the optimal demand
could be realized with the F-MBC schedule even if it deviates from the optimal allocation, provided the
power consumption of the populations are same. Or in other words, the cost minimizing solution is not
unique.

The optimality from device’ perspective is evaluated by determining the cost of starting and the re-
gret of the device agents. In all the four testcases, the mechanism was able to achieve almost same
cost of starting per unit energy for the populations of devices. At some instances, the average cost of
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starting using the F-MBC schedule was found to be lesser than that the corresponding optimal values,
indicating that significant fraction of the population got scheduled at instances when the realized de-
mand using F-MBC is lesser than the optimal demand.

In all the four testcases, it was observed that those populations had a higher range of regret, which got
scheduled both at the beginning at the end of the scheduling horizon. This indicates the regret of the
agent is dependent on the device’s availability and deadline,as they influence the payments considered
for its determination . While the system coordinates the devices with positive regret values for both the
populations, collectively the allocation of the devices is close to the optimal coordination. This implies
that on a system level, agents have no benefit from deviating from this schedule.This indicates that the
devices benefit from paying close to the optimal costs, thus providing favorable reasons to the users
to participate in the F-MBC scheme.





Chapter 7

Application of F-MBC in realistic
setting

This chapter aims to evaluate the performance of F-MBC mechanism in a realistic setting with infinite
time horizon where it is used to coordinate two populations of devices with complex power profiles.
Section 7.1 explains the method in which the data used in the experiments were generated. Section
7.2 describes parameters considered for performing simulations in MATLAB. Section 7.3 provides a
detailed analysis of the results which is summarized in Section 7.5.

7.1 Simulation setup
Chapter 6 consisted of experiments which were characterized by devices having the same power con-
sumption throughout their cycle. This chapter investigates the performance of the mechanism when
the flexible loads have dynamic load profiles, with different duration and overall energy consumption.
The second difference between the experiments conducted in this chapter when compared to chapter
6 is that not all devices are available from the start of the simulation. When simulating a real world
setting, devices are started at different times throughout the day depending on the user’s preferences.
This means that the flexibility that can be offered by the system in such a setting directly depends on
the availability of the devices and the deadlines set by the device owner. This section explains how a
real world setting is created by means of simulation.

7.1.1 Devices considered for coordination
This section introduces to the devices that will be coordinated in this chapter. Among the residential
devices used in the Netherlands, the highest penetration rates belong to Washing Machines (WM) and
Dish Washers (DW) with 94 % and 58 % respectively [48]. The load profile of WM and DW is presented
in Figure 7.1.
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Figure 7.1: Load profiles of Washing Machine and Dish Washer respectively. (Adapted from [48]).

The generic pattern of Washing Machine has a duration of 1 hour and 45 min and consumes about
0.89 kWh per cycle [48]. Cycle of WM operation begins with filling the drum of the machine with water,
which consumes only about 0.1 kW. Post that the water in the drum is heated , which is represented
by the timesteps 2 and 3 in Figure 7.1a. Most of the power consumed by the device is utilized in this
stage of the cycle. Subsequent stages in the cycle involve rotation of the drum, draining out the water,
followed by a spin cycle.

Figure 7.1b represents the generic power consumption profile of Dish Washers [48]. At first, water
is pumped into the tub located at the base of the DW. This step consumes very little amount of power.
Then appropriate voltage is applied across the heating element, which raises the temperature of the
water. This water is pumped to several spraying arms located at the top and the bottom of the device,
post which the water is sprayed onto the loaded dishes. The washed dishes are dried by again heating
the collected water to a high temperature. Post this, the water is drained out from the machine. Similar
to the WM , the highest power consumption points in the load profile of DW also occur when water is
heated to a certain temperature. This happens at the first and the last rinse cycles. A typical operational
cycles consumes about 1.19 kWh of energy and runs for about 2 hours.

Since the load profile used is represented in 15 min intervals, the market is also assumed to clear
for every 15 min throughout this chapter.

7.1.2 Availability generation
Availability of the devices here refer to the time at which the device is loaded with clothes (for WM)
or with dishes(for DW) and is ready to start. This experiment generates the availabilities of the ma-
chines based on the average start times observed over the year 2013 in an experimental setup based
in Utrecht and Amersfoort [47]. It is assumed that 1000 WM and 1000 DW become available at each
day.

From [47], it was evident that the preferable time for the operation of WM is in the morning hours,
with 70 % percent of the users starting their devices between 8:00 and 17:00 hrs. To generate similar
usage profile, the availability of WM was generated around 10:00 AM, log-normally distributed with
mean 15 min and standard deviation of 7.5 min, rounded to nearest 15 min timestep . The availability
trend of DW is quite different from WM. From the experimental data presented in [47], it was observed
that majority of the devices were operated at the late night and early hours of the day. To simulate this
user preference, the availabilities generated were centered around 18:00 hrs log-normally distributed
with standard deviation of 7.5 minutes.

From [47], it was evident that the preferable time for the operation of WM is in the morning hours.
to generate similar usage profile, the availability of WM was generated around 10:00 AM, lognormally
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distributed with mean 15 min and standard deviation of 7.5 min, rounded to nearest 15 min timestep .
The availability trend of DW is quite different from WM. It can be seen from the bottom panel of Figure
7.2, the devices are available to start in large numbers from evening until early hours in the morning.
To depict this situation, the availabilities were centered around 18:00 hrs log-normally distributed with
standard deviation of 7.5 minutes. Suitable grouping of the data generated led to the availability distri-
bution of devices shown in Figure 7.2.

Figure 7.2: Top panel: Average number of WM available in a day
Bottom panel: Average number of DW available in a day

7.1.3 Deadlines generation
To generate the deadlines, the findings from the SMART-A project is used in conjunction with the avail-
abilitiy data generated as explained in Section 7.1.2. It was found in [48] that the majority of the users
who own devices with a delay function embedded in their devices prefer to defer their cycles for about
3 hours from the time their devices are available to start. Therefore, deadlines are generated from
the time at which the devices become available with a standard deviation of 0.5 hours. The deadline
distribution of the devices in a day is given in Figure 7.3. It can be noted from Figure 7.3, devices that
become available at the last few hours of the day have their deadlines at the next day.
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Figure 7.3: Top panel: Deadline distribution of WM
Bottom panel: Deadline distribution of DW

7.1.4 Inflexible load and generation

Inflexible load refers to the base load that needs to be satisfied by the system. Base load data was
generated from [36], which was scaled to a peak of 350 kW and averaged to 15 min intervals.

Inflexible generation here refers to renewable generation. A wind turbine model with a peak gener-
ation of 100 kW [1], which utilizes the windspeeds from [20] averaged to 15 min intervals is used in this
experiment. The inflexible load and generation data is given in Figure 7.4.

Figure 7.4: Inflexible load and generation data used.

The data discussed in this section namely the availabilities, deadlines of both WM and DW, inflexi-
ble load and generation are identical for each day. This is done to avoid end of horizon effects.



7.2. Implementation 65

7.2 Implementation
The experiments conducted in this chapter are performed by generating forecast prices on a rolling
setting as introduced in 4.3.1 as introduced in Section 5.3. This section introduces the parameters
used in simulating such a setting.

The Scheduling Horizon , Scheduling Horizon is fixed to be 5 days split into 15 min intervals, lead-
ing to 480 iterations. At each instant, day ahead forecast prices are generated. This means that the
forecast length is 96 intervals (24 *4). It is worthwhile to highlight that in order to generate a forecast
of length PH intervals, the data considered is PH+𝐷፦ፚ፱, where 𝐷፦ፚ፱ represents the longest duration
among the flexible devices that needs to be scheduled.

It is assumed that at any time t, only the device that become available at t and the unscheduled devices
from the previous market clearings submit their bid.

The experiment was performed by simulating both optimistic and pessimistic scenarios to analyze the
robustness of the methodology to variations in the prices.

7.3 Results and Analysis
This section presents the analysis of the results for the experiment performed with the methodology
explained in Section 7.2.

7.3.1 Optimistic forecast scenario
Description of cost minimizing solution

Before analyzing the performance of the performance of the F-MBC mechanism, the optimal solution
predicted by the facilitator at t=0 is discussed. As seen in Figure 7.5, the demand profile is almost
flat for most of the instances, except at the beginning and at the end of the day. Those instances are
also characterized with low inflexible net load and slightly lesser number of devices available as seen
from Figure 7.2. Inflexible net load refers to the difference between the inflexible load and renewable
generation. This indicates that the ability of the facilitator to provide almost flat profiles depends upon
the availability of the devices for coordination.

Figure 7.5: Optimal solution compared with inflexible net load .
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Analysis of F-MBC performance

Figure 7.6 shows the demand profile achieved using F-MBC is compared with the optimal allocation
predicted by the facilitator for the five days and the inflexible net load of the system. For easier refer-
ence to a particular time of the day, the horizontal axis is numbered in timesteps.

Figure 7.6: Demand profile under optimistic forecasts.

As in Chapter 6, analysis begins with the comparison of the objective function, as provided in Ta-
ble 7.1.

Objective function value : Optimal Objective function value : F-MBC
2.58713 e+06 2.75065 e+06

Table 7.1: Objective function comparison : Optimistic forecast scenario

Though the relative error is about 6.32%, the demand profile is observed to be very fluctuating in nature,
with the maximum and minimum power consumption being 723.63 kW and 126.618 kW respectively.
The reason for such an allocation is explained in Section 7.3.1

Analysis

To begin with, the schedule predicted by the facilitator is compared with schedule realized by F-MBC
as shown in Figure 7.7.

The F-MBC schedule graphs of both Washing Machines (WM) and Dish Washers (WM) are char-
acterized by occasional big steps, as pointed out in Figure 7.7b. This indicates that a large number of
devices are getting allocated at a particular time step.
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(a) MIQP schedule (b) F-MBC schedule

Figure 7.7: Schedule comparison: Optimistic forecast scenario

To understand the reason behind this allocation, the first peak in the graph, which occurs at t=6 is
investigated in detail. At this timestep, 57 DWs get scheduled. It can be observed from Figure 7.8b that
though the deadlines of the participating agents vary between 21 and 29, the threshold bids submitted
by all the agents are the same. This is because the optimal expected costs calculated by the agents
based on the price forecasts received via backward induction, leads to the same optimal expected
cost at t=7 for all the agents , inspite of commencing their threshold bid determination from different
timesteps depending upon their deadlines. This is pictorially represented in Figure 7.9.

(a) Price forecast at t=6

(b) Threshold bids of the agents

Figure 7.8: Day ahead price forecast and threshold bids calculated by the agents with different deadlines bidding at t=6
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Figure 7.9: Optimal expected costs calculated by the agents bidding at t=6

This indicates that the agents differing in deadlines can also have the same threshold price depend-
ing upon the forecast prices it receives from the facilitator. The market was found to be cleared at a
price higher than the submitted threshold bids thus leading to all the devices getting allocated as seen
in Figure 7.10.

Figure 7.10: Auction curve at t=6

However, upon looking into the aggregated bid curve, it can be identified that the bid function here
bids for the power consumption at the first time step , which is 0.08 kW. This means that even in a sit-
uation when the market encounters a tie situation, the equilibrium point determined by the tie breaking
mechanism is based on the aggregation of the bid functions that have extremely low power consump-
tion values. This presents the possibility of bulk switching due to the amplification of the threshold bid,
which can lead to very high bid submissions by the agents leading to their allocation.To understand this
statement further, the formula for determining the threshold bid is restated again in Equation 7.1.

𝑧፣፭ =
𝐶∗፣፭ዄኻ − ∑

ፃᑛዅኻ
።዆ኻ 𝑥̄፭ዄ። ⋅ 𝑃፣። ⋅ Δ𝑡
𝑃፣ኺ ⋅ Δ𝑡

(7.1)
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where:
𝐶∗፣፭ዄኻ: Optimal expected cost at 𝑡 + 1
∑ፃ

ᑛዅኻ
።዆ኻ 𝑥̄፭ዄ። ⋅ 𝑃፣። ⋅ Δ𝑡 : Expected cost for the reminder of the device’s cycle, when scheduled at time 𝑡.
𝑃፣ኺ : Power consumption of the devices belonging to population j at the first step of their cycle.

Keeping the load profiles of WM and DW in mind, it can be seen from Equation 7.1 that the differ-
ence between the optimal expected cost at t+1 and the expected cost for reminder of the cycle upon
starting at t gets scaled by 12.5 and 10 times respectively. Depending upon the numerator, there exists
a chance that the aggregation of bids could happen at a very higher price, which can lead to the market
clearing at a price lesser than the submitted threshold , again leading to their allocation.Also, once they
are allocated, due to their uninterruptible nature, devices stop only after completing their cycle. The
auction curves depicting the occurrence of both these possible explanations is presented in Figure 7.11.

(a) Auction curve t=285 (Tie breaking based on bid functions with low power
consumption values

(b) Auction curve at t=381 (Devices bidding with high threshold prices)

Figure 7.11: Effects of submitting bid functions with low power consumption

The bulk allocation caused by the low power consumption at the initial stage , followed by the huge
power consumption at the subsequent time steps leads to the peaky demand profile as seen in Figure
7.6. The magnitude of the peaks observed is directly proportional to the number of devices that get
scheduled due to the reasons explained and the load profiles of the devices. Two close subsequent
peaks are due to consumption of 2 kW by the DW at the first and the last spin cycles.
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7.3.2 Pessimistic forecast scenario
It is expected that when the SH is long enough, both optimistic and pessimistic scenarios yield the same
results. Hence, the demand profile achieved by communicating day ahead forecast which determines
the optimal number of starts under pessimistic formulation is also compared with the optimal outcome
in the previous section in Figure 7.12.

Figure 7.12: Demand profile under pessimistic forecast scenario.

Similar to the optimistic forecast scenario, a peaky profile is obtained. But the range of the demand
profile is found to be higher when pessimistic forecasts are used. The maximum and minimum points
in the demand profile are 824.397 kW and 115.1547 kW respectively. A higher objective function value
was also realized under this case with a relative error of 6.45 % from the optimal solution as seen in
Table 7.2.

Objective function value : Optimal Objective function value : F-MBC
2.58713 e+06 2.75401 e+06

Table 7.2: Objective function comparison : Pessimistic forecast scenario

Analysis

To identify the reason behind the higher objective function in the pessimistic forecast scenario, the al-
location of devices using this forecast is compared with the allocation realized using optimistic forecast.

It can be observed from Figure 7.13a and Figure 7.13b that the schedules of both WM and DW exhibit
deviations when coordinated using optimistic and pessimistic forecasts. To investigate the underlying
reason behind this, threshold bids submitted by an agent available at t=1 based on both these forecasts
is considered. An agent representing a DW which is available at t=1 and having a deadline at t=26 is
considered for analysis. The determination of threshold bid by backward induction starts from deadline
-duration, i.e; from t=18. The price forecasts from t=1 to 18 at the first time step using both formulations
is given in Figure 7.14.
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(a) Schedule comparison of WM (b) Schedule comparison of DW

Figure 7.13: Comparison of device schedules under optimistic and pessimistic forecast scenarios

Figure 7.14: Prices forecasted at t=1 under optimistic and pessimistic scenario

While the forecast prices from t=1 to t=18 almost overlap with deviations as little as 0.6 a.u, the
threshold bids submitted by the agent based on these forecasts are 13.9761 and 21.8907 respectively.
The clearing prices at t=1 were 19.064 and 19.1760 respectively, meaning that the device gets sched-
uled under pessimistic forecast scenario but does not get scheduled when optimistic forecasts are used
by the agents.

This indicates that the threshold bid when divided by low power consumed by the agents at the first
stage of their cycle makes it very sensitive to small deviations in the forecast prices. Since the forecasts
get updated based on the control actions taken at the previous market clearing, the effect of having
different threshold prices results in the realization of different schedules for the system with same char-
acteristics, as seen in Figure 7.13.

Also, it was observed from the simulation data generated that the maximum difference between the
deadline and availability of the devices was 27 timesteps.The forecast length of 96 intervals is seen
to be able produce almost same prices from t=1 to t=28 at the first iteration for both optimistic and
pessimistic formulation , as seen in Figure 7.14. Hence, it can be concluded that the forecast length
considered is suitable for testing the robustness of the mechanism.
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Effect of allocation from device perspective

To understand the effect of this allocation from the point of view of an agent, the total cost paid by the
agent for starting at time t when coordinated with F-MBC and the cost minimizing solution is compared
as shown in Figure 7.15. It is expressed in terms of unit energy.

Figure 7.15: Cost of starting comparison

It can be seen from the first panel that the agents pay almost a flat price, except at the start and
the end of the day. This can be linked to the lower number of devices that become available and also
the inflexible net load at those instances.

The bulk switching leads to high payments incurred for both WMs and DWs. It can be observed from
Figure 7.15 that the maximum values of cost of starting under the optimal allocation for both WM and
DW are 139.28 a.u and 139.7 a.u respectively. But, costs paid by the agents of WM and DW are ob-
served to go as high as 228.41 a.u and 251.3 a.u respectively in the F-MBC allocation using optimistic
forecasts . Similar effects were also found under schedule realized using pessimistic forecasts wherein
maximum payments made by WM and DW amount to 257.64 a.u and 259.24 a.u respectively. This is
because large number of devices were get allocated by using bid functions corresponding to low power
consumption and due to the uninterruptible nature of these loads, the devices do not stop until they
finish their cycle. The updated forecasts provide large prices depending upon the number of devices
that get scheduled. Since these prices also get associated with the highest power consumption of the
device, the overall cost paid by the device ends up being high.
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7.4 Performance under modified load profiles
It was observed in the previous section that the low power consumption of the devices at the first stage
of their cycle led to undesirable outcome, both at the system level and device level. Therefore, the
power consumption profiles of both the devices were modified in such a manner that devices have the
highest power consumption at the initial stage, to analyze the performance of F-MBC in this setup. The
modified load profiles are graphically represented in Figure 7.16.

Figure 7.16: Modified load profiles of Washing Machine and Dish Washer respectively

Results and analysis

The demand profiles realized by using both optimistic and pessimistic forecasts almost overlapped with
the initial optimal demand predicted by the facilitator as seen in Figure 7.17.

Figure 7.17: Demand profile when threshold bids are function of high power consumption profile
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This is because the numerator in the threshold price formula given in Equation 7.1 gets divided by
2 which prevents the possibility of bidding higher than the inflexible loads that needs to be satisfied.
Moreover, the bid functions are function of the highest power consumption in their respective load pro-
files. The equilibrium points determined under this case, even in a tie situation leads to significantly
lower number of devices getting allocated. The height of the bids submitted by the agents are also
larger. An example of one such auction curve is given in Figure 7.18 .

Figure 7.18: Auction curves when the threshold bids are function of the highest power consumption of the device

Apart from good system level performance, the allocation also provided good device level performance.
This can be seen by the cost of starting plots as shown in Figure 7.19, where the devices pay almost
the same prices as the cost minimizing solution.

Figure 7.19: Cost of starting comparison when modified load profiles were considered for coordination
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7.5 Summary
This chapter investigates the performance of F-MBC mechanism when used for scheduling deferrable
loads with dynamic load profiles under a realistic setting. Load profiles of commonly used residential
appliances, such as Washing Machines (WM) and Dish Washers(DW) were considered for coordina-
tion. Availabilities and deadlines of the devices were generated based on the start times observed in
[47] and the preferred delay times of the users as determined in [48]. For the purpose of analyzing the
performance of the mechanism, simulation of the infinite coordination problem had to be terminated.
But to avoid end of horizon effects that could arise, the setting was tested by having a long schedul-
ing horizon. The robustness of the simulation implementation was tested by including optimistic and
pessimistic constraints in the optimal coordination problem.The forecasts were developed on a rolling
basis, by which day ahead optimal prices were made available to the agents at each time step. The
key observations from the simulation results can be summarized as follows:

The scheduled realized by F-MBC when used to schedule devices with dynamic load profiles was
found to be sensitive to the threshold bids submitted by the agents. Threshold bids are inversely pro-
portional to the power consumption of the devices at the first time step (𝑃ኺ).

Depending upon the value of 𝑃ኺ and its difference from the highest power consumed by the device
during its cycle (𝑃፦ፚ፱), two possible situations were explored:

• When the difference between 𝑃ኺ and 𝑃፦ፚ፱ is quite large:

In this case, the bid functions submitted by the agents are a function of very small amount of
power. This can potentially lead to two possibilities:

– The amplification of the threshold bids by the lower power consumption of the devices may
make the agents submit very high threshold bids, thereby leading to their allocation.

– In situations when a tie occurs among the agents, the tie breaking mechanism resolves ties
based on the equilibrium point determined by the aggregation of bid functions that are a
function of very low power consumption. This leads to the problem of bulk switching.

Since deferrable loads are considered for coordination, once allocated, these devices will not
turn off until their cycle is complete. Due to these reasons, very high peaks were observed in the
demand profiles realized by using both optimistic and pessimistic forecasts. The magnitude of
the peaks obtained is relative to the number of devices that get scheduled . Also, it was observed
that the threshold bids were very sensitive to minor deviations in the forecasts achieved using the
optimistic and pessimistic MIQP formulations.

From the device perspective, higher costs were paid by the agents in the former setting when
compared to the latter, under both optimistic and pessimistic forecasts.

• When 𝑃ኺ is highest power consumed by the device in its cycle:

In this situation, the opposite effect occurs.

– Bid functions submitted are functions of highest power consumption of the participating de-
vices, which leads to well defined steps in the aggregated demand curve.

– Due to this, even when ties are observed in the system, significantly less number of devices
get scheduled when compared to the situation when the participating devices consume less
power initially.

The demand profiles realized under this setting using both optimistic and pessimistic forecasts
were observed to coincide with the initial demand profile predicted by the facilitator. Device agents
were also observed to pay almost same prices as that of the cost minimizing solution, under both
optimistic and pessimistic scnerios.
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Thus, from the results presented in this chapter, it can be concluded that when F-MBC coordinates
several populations of devices which do not consume the highest power required by them at the start
of their cycle, the resultant allocation can suffer deviations from the optimal allocation ,proportional to
the difference 𝑃ኺ and 𝑃፦ፚ፱. However, when the devices consume maximum power once they start,
the F-MBC is able to achieve good overall system level and device level performance. This is be-
cause the allocation of the devices is based on the threshold bids submitted by the agents, which is
inversely dependent on 𝑃ኺ. While the analysis presented in the chapter compares the performance of
the mechanism only belonging to either category, it would be interesting to analyze how the mechanism
performs when coordinating populations belonging to both categories and different inflexible net load
of the system.



Chapter 8

Conclusions and recommendations

This chapter summarizes the work carried out in the thesis. First, the main findings of the research
work is summarized in Section 8.1, and establishes how it answers the main research question. The
chapter then concludes with relevant suggestions for future work in Section 8.2.

8.1 Main conclusions

The main aim of the project is to analyze the applicability of the F-MBC in a realistic setting. The first
step towards answering that is to evaluate its performance when used to coordinate heterogeneous
population of deferrable loads. The main findings from the experimental analyses performed in this
project helps in providing a better understanding of the same.

Chapter 6 analyzed the ability of the mechanism in coordinating several combinations of deferrable
loads having uniform power consumption over a fixed time horizon. The devices were assumed to
have identical deadlines. Results obtained indicate that the mechanism was able to allocate the de-
vices in such a manner that led to good overall system level performance and device level performance.

Chapter 7 deals with a much complicated experimental setup, attempting to demonstrate a real world
setting. Devices with complex power profiles were considered for coordination in this chapter. Two
populations of devices with dynamic load profiles varying in duration, availabilities and deadlines were
considered for coordination. Day ahead forecasts were broadcasted to the agents at each time step
and was generated on a rolling basis. While the actual coordination problem is of infinite length, in order
to analyze how effectively the mechanism coordinates in such a setup, the simulation was terminated
while having a long scheduling horizon. To test the robustness of the mechanism when implemented
in different experimental setups, optimistic and pessimistic forecasts were communicated to the partic-
ipating agents and the performance was investigated.

Results in Chapter 7 indicated the allocation of devices using the mechanism is highly dependent on the
threshold bids of the participating agents. It pointed out that when devices with low power consumption
at the initial stage, the aggregation of corresponding bid functions happen either at high prices due to
amplification of the threshold prices, or leads to bulk switching.This resulted in undesirable outcomes
at system and device levels. Such devices were also found to be very sensitive to the price deviations
when coordinated using optimistic and pessimistic forecasts. On the other hand, the mechanism was
able to provide close to optimal allocation when dynamic load profiles consume high power when it
starts.

This opens up several possible avenues to extend the current research work to draw definitive conclu-
sions about the usability of the approach. This will be discussed in the upcoming section.
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8.2 Recommendations for future work
Based on the analysis presented in this thesis, relevant extensions for future work are listed below.

• Analysis presented in Chapter 7 considered two extreme cases : populations with low initial
power consumption and populations with high initial power consumption. To better understand
the performance of the mechanism, populations of devices belonging to both categories can be
simulated.

• The performance of the mechanism in different deadlines, availabilities and inflexible load and
generation profiles can be investigated to better examine the behavior of the mechanism. De-
vices belonging to each population and the number of populations of flexible devices can also be
increased.

• Additional functionality can be added to the auctioneer to identify the number of bids that get ag-
gregated at a particular threshold price tomake it aware about the potential issue of bulk switching.
This also does not demand any private information from the participating agent as it can be ac-
quired from the bid function submitted. This might help in developing better methods to allocate
the devices, atleast in a tie situation.



Appendix A

Additional results: Realistic setting

A.1 Demand profiles under different day ahead uncertanties

𝜈ኼኾ፡ = 0.001

Figure A.1: Demand profile comparison with ᎚ᎴᎶᑙ ዆ ኺ.ኺኺኻ

𝜈ኼኾ፡ = 0.01

Figure A.2: Demand profile comparison with ᎚ᎴᎶᑙ ዆ ኺ.ኺኻ
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𝜈ኼኾ፡ = 0.1

Figure A.3: Demand profile comparison with ᎚ᎴᎶᑙ ዆ ኺ.ኻ
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