
Analysis of a Data Processing Pipeline for
Generating Knowledge Graphs from Unstructured

Data

Paras Kumar

Analysis of a Data Processing Pipeline for
Generating Knowledge Graphs from Unstructured

Data

Master’s Thesis in Computer Science
EIT Digital - Cloud Computing & Services

Distributed Systems Group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Paras Kumar

21st August 2020

Author
Paras Kumar

Title
Analysis of a Data Processing Pipeline for Generating Knowledge Graphs from Unstructured Data

MSc presentation
28th August 2020

Graduation Committee
Prof. dr. ir. D. H. J. Epema Delft University of Technology
Prof. dr. M.M. Specht Delft University of Technology
Dr. Gregor Lämmel Market Logic Software AG

Abstract

With the rapid growth of unstructured data across different mediums, it exposes
new challenges for its analysis. To overcome this, data processing pipelines are
designed with the help of different tools and technologies for the analysis of data
at different stages. One of the applications which we find useful for our company
is the creation of knowledge graphs for better representation and understanding of
relations in the data. Knowledge graph is a structure of representing information
where nodes represent the entities and edges define the relationships among them.
The construction of a knowledge graph is a process of extracting meaningful in-
formation of entities and relations from unstructured textual data and storing it in
a graph database. In this project, we are using Neo4j as a graph database for the
efficient storage of data in the form of nodes and relations.

To achieve this goal, our first research question proposes the architecture and
implementation of a data processing pipeline for the construction of knowledge
graphs using unstructured textual data. There are three major stages involved in
our pipeline and each component is implemented in a microservice architecture.
The first stage starts with the parsing of textual documents in two different formats
which are PDF and PPT. In the second stage, we are applying natural language
processing techniques for the extraction of meaningful information out of this raw
text. In the final stage, key pieces of data are stored into a graph database(Neo4j)
for the construction of knowledge graphs. We are running our pipeline on a local
machine for evaluating the performance and results of each component.

The core aspect of retrieving insights from this unstructured data is achieved with
the use of natural language processing. In order to investigate more on this com-
ponent, our second research question examines the cloud based natural language
processing services from three renowned providers which are Amazon, Google and
IBM. For choosing a suitable service among them, we evaluate their performance
on a common data set of category Marketing from wikipedia. Based on our exper-
imental analysis, IBM stands out among them from the perspective of the quality
of output, execution time, features and cost. The adoption of a cloud based service
not only leads to a faster development of business solutions but also reduces the
engineering effort, its cost and maintenance of our custom implementation only
with a little cost per our usage.

iv

Preface

I am writing this thesis for the completion of my master degree under EIT Di-
gital Master School in the track of Cloud Computing and Services. Based on the
requirement of industrial thesis, I got an amazing opportunity to work on the in-
dustry project with Market Logic Software AG in Berlin, Germany. Market Logic
provides a market insights platform which helps the world potential brands to pro-
duce and grow based on insights. This work was accomplished together with the
collaboration of academia and industry. For this company, it was the first ever ex-
perience of doing a master thesis with a student and I hope that I laid the foundation
for the future students at this place.

The company works with a huge amount of textual data gathered via many
sources as it’s the only fuel for generating useful and meaningful insights. As a
part of the data science team, I worked on a new research based project which
helps to extract meaning from unstructured textual data in the form of knowledge
graphs. The entire ecosystem of the data processing pipeline requires a in depth
study of many new tools and technologies which I never explored before in aca-
demic life. This project was a great mix of theoretical and practical tasks and I can
proudly say that over the period of the last 6 months, I was able to gain knowledge
of new technologies and frameworks which are widely used in the modern software
development practices. I am optimistic that the analysis and result of this project
will assist Market Logic in choosing the right tools and cloud based services for
this pipeline.

This contribution of work would not be possible without the tremendous support
and guidance of my company supervisor Dr. Gregor Lammel at every stage. I am
very thankful to my university supervisor at TU Delft, Prof.dr.ir. D.H.J. Epema,
for his permission and believing in me to work with this company. With the help
of his great feedback and comments, I have improved my thought process and the
quality of work.

Paras Kumar

Delft, The Netherlands
21st August 2020

v

vi

Contents

Preface v

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Approach . 3
1.3 Thesis Structure and Contributions 3

2 Background and Concepts 5
2.1 Data Processing Pipeline . 5
2.2 Data Extraction, Transformation and Loading 6

2.2.1 Extraction . 6
2.2.2 Transformation . 7
2.2.3 Loading . 8

2.3 Structured, Semi Structured and Unstructured Data 9
2.4 Graphs . 10

2.4.1 Knowledge Graph . 11
2.4.2 Graph Databases . 12
2.4.3 Neo4j . 13

2.5 Natural Language Processing . 13

3 Literature Analysis of Knowledge Graph Systems 15
3.1 Introduction of Knowledge Graph Applications 15
3.2 A scalable Knowledge Graph Platform 16
3.3 Community Question Answering System Using

Knowledge Graphs . 17
3.4 Domain Targeted Knowledge Extraction 19
3.5 Knowledge Graph from Unstructured Text 22
3.6 Summary . 23

4 Design and Implementation of Knowledge Graph Pipeline 25
4.1 Design of Knowledge Graph Pipeline 25
4.2 Document Parsing Service . 27

4.2.1 Integration of Apache PDFBox 27
4.2.2 Integration of Aspose.PDF 28

vii

4.2.3 Wikipedia Data Parsing 29
4.3 Data Storage . 30
4.4 Natural Language Processing Service 31
4.5 Knowledge Graph Service . 34

4.5.1 Integration of Spring Boot and Neo4j in Graph Processing
Service. 34

4.5.2 Neo4j Bolt Driver . 35
4.5.3 Spring Data Neo4j OGM - Object Graph Mapper 36

4.6 Overview of Experiments . 36
4.6.1 Experiment Requirements and Evaluation 37

4.7 Summary . 42

5 Analysis of Cloud Based Natural Language Processing Services 45
5.1 Introduction . 45
5.2 Amazon Comprehend . 46

5.2.1 Amazon Comprehend Custom 47
5.2.2 Pricing Analysis . 48
5.2.3 Performance Analysis 49

5.3 Google Cloud Natural Language API 53
5.3.1 Pricing Analysis . 55
5.3.2 Performance Analysis 55

5.4 IBM - Watson Natural Language Understanding 58
5.4.1 Pricing Analysis . 60
5.4.2 Performance Analysis 60

5.5 Comparison of Cloud based Natural Language
Processing Services . 62

5.6 Summary . 65

6 Conclusions and Future Work 67
6.1 Conclusion . 68
6.2 Future Work . 70

viii

Chapter 1

Introduction

In the early days, companies were struggling with the collection of data for ana-
lysis and decision making but now everyone is concerned with the drawing out of
meaningful information from this enormous data. The emergence of the internet
has provoked access to a large number of content creators to generate informa-
tion. Users are producing content in different formats such as text, images and
videos using various mediums such as pdf, blogs, YouTube etc. There is a massive
amount of information available and accessible to everyone on the web. In order
to generate useful bits of knowledge, we need a productive method to speak to this
information. One such technique is to represent information via knowledge graphs.
In brief, a knowledge graph is a graphical representation of a network of intercon-
nected data defining key relations between different types of entities. However, the
representation of the knowledge graph from this raw data requires critical meas-
ures and it exposes many new challenges from storage, processing, computation to
representation.

In the construction of a knowledge graph, different actions are needed to be per-
formed on each step. This process starts from the extraction of data from various
sources such as Wikipedia articles, pdf’s stored on a cloud storage or physical disk
to the generation of semantics using natural language processing libraries and in
the end signify it to the knowledge graph. By integrating existing tools at various
steps the robust application can be developed and deployed to help businesses un-
derstand their values in a better way.

There are several challenges encountered in the execution and generation of the
efficient knowledge graph by the Market Logic Software, the company where I’m
writing this thesis. Market Logic Software offers an online portal full of data in-
sights and intelligence which facilitates businesses to understand about the ongoing
marketing trends and learn from historical data to enrich their customer base in the
respective potential market. As part of my thesis internship, I’m currently doing
research on the analysis of the data processing pipeline for the generation of know-

1

ledge graphs. A notable part of this research encompasses the study of existing
tools and libraries to deal with each step of the processing pipeline. There are sev-
eral tools, libraries and services which enabled us to interpolate this information in
an effective manner. At Market Logic, we leverage the power of historical data to
gather deeper insights about future trends.

1.1 Problem Statement

As per the title of the thesis project, there are three major steps in the pipeline i.e.
extraction and processing of unstructured data from various data sources, trans-
formation of raw floating textual data into a unified format to be processed by any
natural language processing library for recognizing entities and relations which
later on will be converted into a knowledge graph using a graph database.

The core facet of this pipeline heavily relies on the natural language processing
component and it requires the right choice of library among various open source
libraries. With the fast development of cloud technologies, there are a number
of cloud based natural language processing services already offered by different
cloud providers such as Amazon Comprehend, Google Cloud Natural Language
API and IBM Natural Language Understanding service. As a part of this research,
we will analyze and compare the ease of integration, cost, performance and features
provided by these leading cloud based natural language processing services.

From the design and implementation perspective another challenge will be the
execution of microservices and storage required for the data processing pipeline.
The interdependence between services should be minimum such that it does not
affect the agility of the design. The steps in the data processing pipeline are tightly
coupled as output of one process will act as an input to the other process.

The research topic can be summarized into two following research questions:

1. RQ1: How to design and implement a data processing pipeline for generat-
ing knowledge graphs?

2. RQ2: How to choose the most suitable cloud based natural language pro-
cessing service based on cost, performance analysis along with features and
flexibility of individual service with other cloud providers?

This ongoing research project in Market Logic will be based on a microservice
architecture, which runs different tasks of the pipeline and will be deployed on
google cloud platform for running the system in the production environment. We
are working on this project to discover more available options at each step of the
data processing pipeline. As part of the study, different tools and technologies
will be studied for the design and development of the pipeline. As a part of the
first research question we will propose a design, implementation and architecture
for the data processing pipeline. We will run experiments on a sample dataset for
the evaluation of the services running in the pipeline. One of the second research

2

questions is to compare existing cloud based natural language processing services
and analyze them based on different perspectives of cost, features, ease of use and
the performance.

1.2 Research Approach

The key concept behind this research area is to turn the most of unstructured data
into useful information in corresponding domains. The preferable method of re-
search is mingled with study of existing tools, libraries and leveraging their features
towards the design, implementation and experimentation of the data processing
pipeline. For the very first research question, various state of the art techniques
of pipeline will be studied and we will design our own custom architecture using
existing frameworks and libraries to get the end result of a knowledge graph from
unstructured raw data. Furthermore, we will run experiments on a sample data set
to test the performance of each component of the data processing pipeline.

Natural language processing is an essential component of the pipeline, as it will
discover the useful and meaningful information from the raw text for the construc-
tion of knowledge graphs. Natural language processing reflects the context of the
content which will help businesses to understand market values. In order to speed
up this natural language processing without major engineering effort, we take the
advantage of cloud based natural language processing services. There are several
cloud based natural language processing services are available but choosing one
will require further research and experimentation. Our second research question
will deeply analyze the features, performance, cost etc of such services from fam-
ous cloud providers such as Amazon, Google and IBM.

1.3 Thesis Structure and Contributions

The thesis consists mainly of five chapters. The contribution of the following next
chapters is summarized as follows.

In Chapter 2, we first introduce the core concepts, terminologies and technolo-
gies at different stages of the data processing pipeline used in the research topic.
As a part of the background chapter, we will also introduce the basic underlying
components involved in the data processing pipeline. In Chapter 3, we will high-
light existing approaches related to this domain problem, which will be done with
the help of thorough literature review. In Chapter 4, we will propose the architec-
tural design and implementation of a data processing pipeline for construction of
knowledge graphs from unstructured data. As a second part of this chapter, we will
run an experiment on each service based on sample data and evaluate their outputs.
This chapter will describe and evaluate RQ1. In Chapter 5, we will analyze the
cloud based natural language processing services and get the measures on RQ2. In
addition, the key takeaways about experimental results on each cloud based service

3

will be discussed in this chapter. Finally, Chapter 6 will conclude the research find-
ings and analysis of our pipeline based on different tools and libraries, summary of
the thesis work and possible improvements and extensible features as a future work.

Our main contributions are as follows.

• We describe an overview of the existing scientific literature in the corres-
ponding domain for processing of unstructured data into a knowledge graph.

• We propose the design and architecture of a data processing pipeline for the
construction of knowledge graphs using different components and libraries.
We implement and evaluate results of each component of the pipeline.

• We study the cloud based natural language processing services and evaluate
them based on the cost, performance, feature analysis etc. This will help in
selecting the suitable cloud based natural language processing service, which
will reduce further engineering effort for the organization.

4

Chapter 2

Background and Concepts

In this chapter, we introduce the main concepts and elements relevant to this thesis.
In Section 2.1, we describe the high-level abstract view of the data processing
pipeline. Following Section 2.2, it defines the core operations involved in the data
processing pipeline. In Section 2.3, we explain different formats of data available
to be processed. In Section 2.4, we investigate the concept of graphs and a graph
database. In the last Section 2.5, we introduce the concept of natural language
processing which is useful for contextual understanding of data and helping us in
construction of feasible input for the knowledge graphs.

2.1 Data Processing Pipeline

In computer science, the notion of pipeline brings up the orderly execution of vari-
ous tasks and instructions by the processor in an organized manner. Pipelines are
designed in order to break a bunch of processing steps into different components.
These individual components in the pipeline can be easily developed, managed and
monitored independently. A pipeline also known as a data processing pipeline, is
a set of data processing components connected in a series, where the output of one
component is propagated as the input of the next one in the line. Based on the
requirement of the application, the connected components in the pipeline can be
executed in parallel or in time-sliced (round robin) fashion [23].

The architecture of data processing pipelines allows us to capture and route data
in such a way that it can be used for gaining meaningful information and later
transforming it into reporting, analysis and using data easier. One out of many
advantages of using a data pipeline is that they reduce the human annotated work
and data noise of providing information, which is not relevant to the end goal of
business decision making [10].

In our project, the data processing pipeline components for the creation of know-
ledge graphs are highly dependent on each other. We can integrate different tools

5

to connect different cloud services, software applications and data sources to create
robust and resilient data pipelines. In general, a data pipeline improves the speed of
our development by offering an easy to use abstract methodology for working with
batch and streaming data in our applications. Mainly, there are three core stages of
a data processing pipeline, which are defined in the next section [7].

2.2 Data Extraction, Transformation and Loading

The short term ETL for Extract, Transform and Load is widely used in data pro-
cessing pipelines and also became a popular concept in the research area of data
warehousing. It is the generic approach of retrieving data from numerous sources
(that are not optimized for analytics) into a target system [14]. With the growing
speed of data in every domain, ETL is a very crucial fraction of business intelli-
gence processes. The data in bulk can be analyzed programmatically in one place
for the discovery of hidden patterns and useful insights. The task of ETL is sched-
uled hourly, daily, weekly or monthly for enriching the data in data warehouses.

In practice, the ETL process is agile and it keeps changing with the passage of
time as per business requirements. The new cloud based software as a service ap-
plication offers powerful analytics warehouses like Amazon Redshift and Google
BigQuery that have significant power to perform ETL operations in place rather
than a need for a special staging area. Today, data is analyzed repeatedly in raw
form rather than preloaded transactional summaries in databases. This has granted
the development of delicate, adaptable and transparent ETL systems. Usually in
the ETL process, data is extracted from databases, online transactions but in our
project we are extracting data from PDF documents and wikipedia articles.

The three main operations of ETL are briefly explained below.

2.2.1 Extraction

The first step of the ETL process begins with the extraction of raw data from dif-
ferent homogeneous or heterogeneous sources. The application should be aware of
the logical data map before data is extracted and loaded physically into the system.
The data map defines the correlation between sources and target data. After extrac-
tion, data should be validated before it moves to the next stage of transformation.
It is a very crucial aspect of the pipeline as the correct extraction defines the level
of success of subsequent processes. Data extraction is commonly done by using
one of the three following methods [1].

The method is chosen based on the source system, performance and business
needs.

1. Full Extraction: In some systems, it is hard to track the changes being
made to the existing data. For such system reloading of the entire data is the
only possible way to get data out of the system. In this extraction technique,

6

we need to maintain a copy of the last extraction so that new records can
be identified. It is used when data needs to be extracted for the first time
and also useful for small tables or a last resort, as it demands a high rate of
data volume transfer. Full extraction also reveals the current amount of data
present in the source system [12].

2. Incremental Extraction: In this method, modifications in the source data
can be identified since the last successful extraction. Only these data changes
will be retrieved and loaded. We can detect these changes from the source
data that has the latest timestamp. Apart from this, a new table can be created
to keep track of changes in case data is fetched from any database. One
disadvantage of incremental approach is that it may not be possible to detect
deleted records in source data. The other alternative for incremental changes
is to extract whole data and then perform the difference operation with the
current data and last extraction. And this alternative will highly affect the
performance of the system [12].

3. Update Notification: This approach is the most convenient as the applica-
tion is notified for extraction of data whenever a change has occurred in the
source system. It is useful when the initial data is extracted using the full
extraction and then apply update notification for further change of data. The
system which has a high frequency of updates will overwhelm the applica-
tion with too many update notifications [12].

2.2.2 Transformation

Data extracted from various sources can have different variants. In this stage, an-
omalies in the data are perceived and data is transformed into a valid schema [12].
The generalized pattern of data is defined based on the underlying database stor-
age schema and needs of the business requirements (A process of converting flat
files into tables). Transformation also refers to the filtering, cleaning and mapping
of data before any analysis can be carried out in next stages. Data transformation
techniques enable you to understand more in depth about your business, customers,
market trends and competitors and make it more accessible to everyone. This is the
crucial step in data processing pipelines which add a certain value and amend the
data such that interesting insights can be revealed. Data which does not need any
transformation is called direct move [12].

Some basic operations of transformation are discussed below [12].

1. Cleaning: Removal of null values or replacing null with zero, conversion of
generic terms to defined letters such as size of items (Large to L, Medium
to M, Small to S, extra small to XS, extra large to XL etc) and unifying of
different date formats into a standard format.

2. Deduplication: Removing duplicate tuples in the raw data which creates a
hassle of handling redundancy and an overhead of storage.

7

3. Format Revision: Raw data comes from different sources which means that
it has measurement of the same article in different units. Such as time in
hours can be mapped to days, distance in kilometers can be converted to
meters etc.

4. Key Restructuring: Relationships across different tables can be defined as
well.

Few advance operations of transformation are discussed below.

1. Derivation: Derive meaningful information from existing sources of data
by means of calculations, statistics etc. For example, create a metric of loss
per item from total loss for a particular category of items, deriving revenue
without taxes, etc.

2. Filtering: Raw data contains too many data points that may not be relevant
and will be dropped in this stage. In other words, only select useful data.

3. Joining: Same kind of data from different sources can be linked together and
it can be easily differentiated by introducing a source tag. such as revenue of
ads from google ads, Facebook ads, etc.

4. Splitting: It is more feasible to divide a large chunk of data into multiple
columns.

5. Data Validation: On the basis of some user defined rules, several data items
are rejected or accepted for further analysis. Such as any sentence of length
greater than 20 words is rejected, a row with only one column of null value
is accepted, etc.

6. Summarization: Data is summarized to obtain full figures which are dis-
persed at various levels. It can be occurences of a word in a document,
summing all the purchases a customer has made to create a total purchase,
etc.

7. Aggregation: Different data elements across various data sources can be
combined together for the generation of useful insights and the improvement
of business recommendations, which couldn’t be discovered with one source.

8. Integration: Based on the particular chunk of data having standard name
and definition. We can perform customized operations to reconcile among
different data names and values for the same data element.

2.2.3 Loading

This is the last step of ETL data processing pipelines. This stage relies on your
application oriented goals intended to bring in with the help of transformed data
into the data warehouse. In our project, we are using transformed textual data as an

8

input for a natural language processing module for further processing and semantic
analysis. This process is highly dependent on the system of what you’re loading
data. In the world of big data, huge volume is dumped into databases in a couple of
iterations (relatively in short shifts - when the system is ideally idle) and it should
be optimized for better performance [12]. Failure is the norm in such systems and
it is inevitable. Hence fault tolerance mechanisms should be configured to ensure
data integrity in case of failures. As per prevailing performance of the system,
loads can be cancelled or resumed later [12].

There are two main techniques of loading data.

1. Full Load: It takes place when the data is loaded very first time into the data
warehouse and populates all tables in case of relational or any other format
in case of non relational databases [13].

2. Incremental Load: In the data processing pipelines, extraction and trans-
formation of data is an ongoing process which runs after every interval of
scheduled time period. Hence it causes load operation to occur at regular
intervals. Only a delta of source data is dumped in the warehouse and it is
calculated using timestamp. Incremental load is mainly of two forms and it
depends on the amount of data to be dumped [13].
Streaming Incremental Load: It is useful for loading small volumes of
data.
Batch Incremental Load: It is useful for loading huge volumes of data.

In short, ETL (Extract, Transform, Load) takes raw data, extracts the information
required for analysis, transforms it into a format that can serve business needs, and
loads into a data warehouse. Data sources are diverse and we usually increase it
with the period of time in order to learn more. Overall the best practice is not to
clean entire data as it takes too long and business might not be willing to pay the
cost of waiting. Loading becomes complex when you start loading it incrementally
due to various factors [13]. Such as the data type of a column in the warehouse is
string and it started receiving integers etc. All these changes can be deadly for data
warehouses and eventually data will become in an inconsistent state. Hence ETL
typically summarizes data to reduce its size and improve performance for certain
types of analysis.

2.3 Structured, Semi Structured and Unstructured Data

There are three categories of data that can be analyzed and stored in the world of
big data and analytics.

1. Structured Data: This is the most organized format of data, which can be
easily programmed for searching and analyzing. It refers to the data stored
in the predefined fields in the form of rows and columns in relational data-
bases. The properties of structured data makes it straightforward to store and

9

analyze. We can manage structured data using structured query language
known as “SQL” developed by IBM in the 1970’s for relational databases.
Relational keys are used to define relations between different types of data
and can easily be mapped into existing fields. It is the most processed format
of data in the development and simplest way to manage information [11].

2. Semi Structured Data: This is a partially structured format of data also con-
sidered as a mix of structure and unstructured data. It has some consistent
properties but does not ensure a rigid structure as found in relational data-
bases. This type of data requires a processing before stored in the relational
database. An example of such a data format is xml, it has some meaningful
tags and headers defined in the whole document which makes it recognizable
but still a lot of floating text [11].

3. Unstructured Data: This is the most widely available format of data in the
world. Unstructured data cannot be stored directly in the relational database
and does not fit into any data model. It is hard to analyze and parse this data
as it comes in several variants [11]. The absence of proper structure in this
data makes it more hard to analyze, search and manage. Small to medium
sized companies cannot afford the cost of processing this complex nature
of data and hence it is often discarded. The modern techniques of machine
learning and artificial intelligence algorithms made it easier to process this
data. In our project, we are retrieving and processing unstructured text from
wikipedia articles and PDF’s for the generation of knowledge graphs.

2.4 Graphs

A graph is a better representation of real world objects and technology works well
with the representation of reality. In the case of graphs the reality is about connec-
tions between different things. Formally, graph is a collection of vertices and edges
or a set of nodes which defines the discrete object and each of which has some set
of relationships that connect them together [34]. Graph represents entities in a way
that these are related to the world as relationships. Data in the graph is usually ex-
pressed in the form of entities and relations that are centered in a particular domain.

There is a huge value in linking information that can be derived from graphs
and it allows us easy traversal of links to discover distant parts of a particular
domain model relating to each other. A graph is one of the most flexible formal
data structures, so you can easily map other data formats to graphs using generic
tools and pipelines.

10

2.4.1 Knowledge Graph

The embedding of data as a knowledge graph was introduced by Google in 2012
for enhancing the search results of a user’s query and helping users in discovering
the information quickly and easily. It’s a mechanism of converting a huge amount
of information into knowledge which is easily accessible. One of the research stud-
ies has defined a knowledge graph in a way that “A knowledge graph acquires and
integrates information into an ontology and applies a reasoner to derive new know-
ledge.” [37]. Knowledge graph is also considered as a large network of entities,
their types, properties and relationship among them. Relations are first class cit-
izens of the graph data model. From the perspective of programming, it’s a method
to model a knowledge domain with the help of subject matter experts and data in-
terlinking using different algorithms.

The semantical meaning of the data can be found in the graph data in the form of
ontology, which is the primary basis of the knowledge graph. We can run queries
on the graph data in a similar way to natural language but using certain vocabulary
constraints and rules. Precisely, we can show data in the form of entity and rela-
tion names related in a particular context. The numerous connections between data
in a knowledge graph assists in improving the search efficiency, discovery of new
trends and bridging the communication gap between businesses and customers.

The graph computation techniques can also be applied on the knowledge graphs
for various applications such as shortest path, network analysis, etc. This makes
the knowledge graph more intelligent over the stored data. The nature of schema
is quite different from SQL as in contrast it is flexible in structure and easy to ex-
tend over the time. Knowledge graphs have the ability to retrieve miscellaneous
metadata such as origin or versioning information which make it powerful for
dealing with dynamic dataset. There are many potential applications of know-
ledge graphs which includes semantic search, finding fraud rings, risk and impact
analysis, social network, logistic and routing, content based recommendation and
knowledge management system. At market logic software, we are trying to create
a rich knowledge graph for better understanding about behaviour, desire and need
of the customers for our clients in different domains.

Roughly we can define four steps for the creation of a knowledge graph.

• Identify use cases for knowledge graphs in a particular domain.

• Collecting and organizing relevant data.

• Mapping of relationships across the data is defined.

• Keep adding knowledge to the data using any graph database.

The below figure 2.1 represents an example of a knowledge graph with several
nodes and relationships. The nodes of graph are representing title of the movies,

11

actors participated in the movie with different roles in each movie which is further
represented as a relation between node of movie and actor in the form of edge.
From this graph it is evident that few actors played multiple roles in few movies
and each movie has more than one actor.

Figure 2.1: A sample knowledge graph of a movie dataset.

2.4.2 Graph Databases

Databases are classical systems used to store information in different formats.
Graph database is a database that uses graph structure for semantic queries with
nodes, edges and properties to store and represent data. Graph database is de-
signed to treat the relationships between data as equally important to the data itself
[29]. The graph database queries data efficiently because it stores, processes and
embraces relationships natively. Graph database outperforms at managing connec-
ted data and complex queries irrespective of the size of the data set. Traditional
SQL databases compute relationships at query time by applying expensive JOIN
operations through different tables but on the other hand graph database stores con-
nections alongside the data in the model [29]. Accessing nodes and relationships
in a native graph database is an efficient, constant-time operation and allows you to
quickly traverse millions of connections per second per core [29]. In our project,
we are using Neo4j, one of the most popular graph databases available.

12

2.4.3 Neo4j

Neo4j [29] is an open source, NoSQL, graph database that provides an ACID
(Atomicity, Consistency, Isolation, Durability) compliant transactional support for
our application with native graph storage and processing of data. It implements the
property graph model down to the level of storage, meaning that data is stored the
way we imagine in a graph world and the database uses pointers to navigate and
traverse over this graph. In contrast to graph processing or in-memory libraries,
Neo4j also provides full database characteristics, including cluster support, and
fault tolerance which makes it desirable to use graphs for data in production [29].
Neo4j provides a declarative query language known as Cypher which is similar to
SQL but highly optimized for graph databases. Neo4j has constant time traversals
along the depth and breadth of graphs due to efficient representation of nodes and
relationships. It can be easily scalable to billions of nodes on commodity hardware
[29]. The graph schema is quite flexible as it readily adopts changes over time,
addition of new relationships and gauge up the business data as per requirement
and agility. Neo4j is widely used by many companies and organizations due to its
above-mentioned properties, community support and performance.

2.5 Natural Language Processing

Natural language processing(NLP) gives the machine an ability to read, understand
and derive information from human languages [20]. It is concerned with the un-
derstanding of conversations between computers and human language. There is a
huge volume of unstructured data in the form of text that needs to be processed
and analyzed by the computer programs just like we do for other types of data.
Text analytics is a type of natural language processing that turns text into data for
analysis. Many companies are using text analytics to drive better customer exper-
iences, business needs and improve daily life. Unstructured text data comes from
almost every domain such as social media newsfeed, public posts, reviews and
feedback for various applications, health records, research papers in many areas
and much more. All hidden insights can be revealed in word streams with the
help of natural language processing. Natural language processing is helpful for
reconciling ambiguity in language and adding a structure to the data for many ap-
plications, such as speech recognition or text analytics [20].

In our project, a natural language processing module is embedded in the pipeline
for the recognition of entities (subject, object, predicate) and relationships required
for the construction of a knowledge graph. We are not exploring the natural lan-
guage processing techniques mechanics in depth but we are leveraging this method
for analysis purposes. There are many popular open source libraries of natural lan-
guage processing available, which provides extraction of meaningful information
from the raw text. With the rapid development in the field of cloud computing,
cloud providers started offering natural language processing services which will

13

take away the complexity of this task from the user and will assist them to focus on
the core aspect of the application. For answering our second research question, we
will study cloud based natural language processing services provided by different
cloud providers. More advanced research is in progress in the domain of natural
language processing that will make machines more smarter in recognizing human
language.

There are two main techniques used to fulfil natural language processing tasks,
Syntactic analysis and Semantic analysis [25].

1. Syntax: It describes the structure and arrangement of words in the sen-
tence. The syntactical analysis outlines how well the grammatical rules are
enforced in the sentences. Different algorithms are used to apply these rules
and extract meaning from them. It takes the charge of metadata information
in the sentence [25]. Various syntactical techniques can be applied such as
parsing of a sentence based on the grammar rules, applying boundaries on
the sentences, identifying the part of speech among sentences. It requires
the process of lemmatization that is reducing various inflected words into
one form for easy analysis and cutting the inflected word to their root form
which is known as stemming [25].

2. Semantic: It is one of the difficult tasks in natural language processing. It
provides the meaning of the text in a certain context. The output of a nat-
ural language processing module is highly dependent on this method and this
cannot be resolved completely. Human language is not easy to understand
when it comes to specifically in various contexts. Different algorithms can
be used for the understanding of words and structure of sentences in dif-
ferent paradigms. It implies the extraction of the parts of the text that can
be categorized and identified as places, persons etc known as named entity
recognition. Contextual ambiguity is also detached and specifies the appro-
priate meaning based on the context. With the help of an external database
it improves the semantic intentions of words and converts it to human lan-
guage, known as natural language generation [25].

14

Chapter 3

Literature Analysis of Knowledge
Graph Systems

In this chapter we introduce the existing approaches and techniques of building
the knowledge graph pipelines. In Section 3.1, we introduce the applications of
knowledge graphs and related research approaches for handling these challenges.
In Section 3.2, we discuss a Dstlr platform of creating a knowledge graph using
existing tools and frameworks. In Section 3.3, we highlight an application of a
knowledge graph and how it can deal with the question answer based applications
using a knowledge graph. It creates a semantic based graph of keywords for re-
lating the existing knowledge with new questions. In Section 3.4, we present an
architecture of extracting knowledge and building a knowledge base of a specific
domain. In Section 3.5, we explain another approach of creating a knowledge
graph based on enrichment at each step of the pipeline. In the last section, we
summarized our analysis based on this literature.

3.1 Introduction of Knowledge Graph Applications

Knowledge graphs are widely used in many applications and creating a rich know-
ledge graph from unstructured data is a very challenging task. In the past research-
ers have made many contributions to this emerging field with the growing amount
of data. The Semantic Knowledge Graph has numerous applications, including
automatically building ontologies, identification of trending topics over time, con-
cepts related to failure scenarios from free text, data cleansing, document summar-
ization, semantic search interpretation and expansion of queries, recommendation
systems, etc [38]. A research defined that construction of a knowledge graph is a
three step process which includes knowledge extraction, Entity mapping and data
integration [39]. The area of knowledge extraction from unstructured text is a never
ending process that learns to read the web [39]. One of the approaches is to extract
only triples from sentences by using syntactic and lexical patterns [39]. This tech-
nique works well for extraction of triples from unstructured text but still misses the

15

mapping of entities. This leads to the result of ambiguous entity extractions [39].
There is also a lot of work done on relation extraction, linking of entities and

related technologies but a scalable platform that performs end to end knowledge
graph construction is not available [36]. Another research we found which worked
in a similar direction as our project but with a little different perspective.

The extraction of context and discovery of knowledge from the textual data in-
volves the role of natural language processing. The challenge is not only to extract
the meaningful information but to store it in an efficient graph based data store to
represent it in the format of graph [40]. The graph based structure helps in the
linking of information among each other and in particular we can run our custom
queries to generate desired insights.

3.2 A scalable Knowledge Graph Platform

Dstlr is an open source project for scalable, end-to-end knowledge graph construc-
tion from unstructured text [15]. It takes a collection of documents and extracts
mentions and relations to create a raw knowledge graph, links mentions to entit-
ies in wikidata and then enriches the knowledge graph with facts from wikidata
[15]. This project proposed the construction of a knowledge graph by integrating
four existing tools which are Apache Solr, Apache Spark, Stanford CoreNLP and
Neo4j. It supported the entire data management life cycle of documents. It is using
wikidata for the purpose of verification of mentions extracted from the raw text. In
this context, mention and entity are treated differently. There are four assumptions
which are as follows.

1. Each document consists of zero or more mentions.

2. Each document may have zero or more relations between mentions. Men-
tions can occur in any number of relations.

3. Each mention in the document has zero or exactly one link to an entity in the
external knowledge graph of wikidata.

4. Entities are linked in a random number of facts in the external knowledge
graph.

In the below Figure 3.1, it shows the flow of data across different stages of the
Dstlr platform. In the extraction phase, textual documents are filtered into a raw
knowledge graph which is enriched with the facts from an external knowledge
graph [36]. Spark is used for execution in a scalable manner and Neo4j is respons-
ible for storing data in the form of nodes and relationships. Applications built on
top of this platform leverage the power of declarative cypher query language for

16

the manipulation of the data in the knowledge graph [36].

Apache Solr is used to store all documents to be processed instead of holding it
in the file system which will be significantly slower. The integration of document
store provided Dstlr search capability of doing analysis on the subset of documents.
Anserini is a toolkit which connects Apache Solr and dump the textual documents
into it.

The execution layer of this platform heavily relies on the Apache Spark and it
performs two major steps of knowledge graph construction, extraction and enrich-
ment [36]. It will populate the raw knowledge graph with mentions, entities and
relations discovered from the unstructured text. This research also finds the Stan-
ford CoreNLP is the most useful toolkit for the analysis of natural language. Dstlr
is using Spark to scale out the tasks of Stanford CoreNLP and process large docu-
ment collections in a scalable fashion [36].

In the enrichment phase, it extracts entities from the external knowledge graph
which is wikidata that occurs in the unstructured text and then enriches its own
knowledge graph [36]. The external knowledge graph facts are used as a support
of high quality end results. Spark stores each entity, relations and its mapping in
the RDD (Resilient Distributed Datasets). The execution of the enrichment pro-
cess is coordinated by Spark via the manipulation of DataFrames. For each entity
in the corpus, it produces a row in a Spark DataFrame containing the entity URI,
the relation type, and its value. These are then bulk-loaded into Neo4j [36].

The fact verification is done by matching the high quality external source such
as wikidata, and it concluded that with reasonable certainty the information found
in the source document is valid. There are some ambiguities in cases that further
require human validation where source data does not match in wikidata, which is a
huge collection of all entities. As per this research, existing knowledge graphs are
typically constructed through a combination of different processes, ranging from
manual entry to semi-automated techniques [36].

3.3 Community Question Answering System Using
Knowledge Graphs

Traditionally, a simple user query returns a lot of search results that are more or
less relevant. This takes a lot of time for the user to review many of them and
filter the most suitable answer. The community based question answer forums
such as Stack Overflow [27], Quora [24], yahoo answers [17], etc generate useful
knowledge by the experts of relevant domains. A research is published to examine
the content of existing questions in order to answer a new question based on the

17

Figure 3.1: The architecture diagram of Dstlr platform [36].

knowledge graph structure by linking new questions to the graph of keywords [35].

It used a semantic graph based approach as questions and answers are very
short in length hence the statistical methods are not useful here. The frequency
of keywords is not enough to capture the information of the question hence this
makes it difficult to match existing questions with new one as the text is of very
short length. For the better understanding of limited input text it also takes the help
of existing knowledge bases such as wikipedia, DBpedia, etc to build their own
semantic graph of a particular domain. It uses the DBpedia knowledge base for the
linking of entities extracted from current information and these are validated from
wikipedia knowledge base. The end result is a semantic graph of keywords [35].

The construction of a knowledge graph begins with the input from an expert of
domain with relevant titles and subtitles of the subject. There are three types of
main nodes in the graph which represent relation from high level concept to spe-
cific details of keywords of a particular subject. The first node is the main title of
the subject, then titles and subtitles nodes are added in the given hierarchy. Then,
to each title, it adds the previously validated term sets of the title preprocessing
step, as “keyword nodes” [35]. In the below Figure 3.2 it shows the architecture
diagram of the graph construction process for this system. This is not a fully auto-
mated approach for the construction of a semantic knowledge graph of keywords
for a particular domain. It uses data extracted from DBpedia knowledge base into
a specific domain for representation of knowledge [35]. It has three major steps for
the construction of a semantic graph of keywords.

18

Preprocessing

The input to this pipeline is provided by the expert of the domain of a specific sub-
ject. It contains main titles, chapter titles and subtitles. The system removes the
stop words and generates different combinations of keywords and the teacher will
choose the most meaningful terms [35]. It also defines multiple rules to avoid the
duplicate keywords and merge them into one node of a graph. Initially the graph is
in the form of tree structure as the first node represents the main title of the subject
and on top of that it adds further titles and subtitles nodes in the given hierarchy.
In each title, it adds previously validated term sets of the title preprocessing step as
keyword nodes [35].

Extraction

In this phase, it extracts keywords from DBpedia which are found in the titles. For
each node in the graph, it searches DBpedia pages with titles and labels similar to
the node using SPARQL queries. In these pages there are wikilinks which mention
this page inside them as well and it shows the inter connection between two pages
which led to the idea of two concepts are semantically related to some degree
[35]. They are extracting such pages using SPARQL queries and forming a list of
candidate keywords which is used in the next stage. The result can be ambiguous
as different phrases have different meanings based on the theme of the article such
as IP stands for Internet protocol, Intellectual property, Industrial policies etc. It
filters these pages by comparing the categories to the titles of its input and selects
the most likely one.

Validation

After performing the linking of initial nodes with keywords of DBpedia it validates
the relevance using the information from Wikipedia pages. Some of the results
extracted from DBpedia might not be relevant to the content of the subject. Thus,
it filtered the candidate keywords in order to remove irrelevant terms and it is done
using a weight function which considers few parameters in the relevance validation
phase. In the end , the graph is optimized and organized by removing duplicate
keywords [35].

3.4 Domain Targeted Knowledge Extraction

One of the interesting research we found is about knowledge extraction based on
a domain to grow its knowledge base. It is fully focused on the construction of
a high precision knowledge base only containing (subject, predicate, object) sen-
tences about the world for supporting the question answers of some application

19

Figure 3.2: A semantic based graph construction pipeline [35] .

[41]. There are existing knowledge bases which are rich in terms of named entit-
ies but they are limited in general knowledge about common nouns. The existing
resources also provide limited information about a domain of interest and construc-
ted using a small set of relations [41].

To overcome these challenges, this research proposed a pipeline to produce do-
main specific high precision knowledge extraction by using Open IE (information
extraction), crowd sourcing and a canonical schema learning algorithm that pro-
duces the knowledge of a particular domain.

This research proposed a scalable knowledge extraction pipeline with six stages
that is able to extract a large number of targeted facts of a particular domain but
it is building a knowledge base instead of knowledge graph [41]. The knowledge
base can be used as a baseline for the construction of a knowledge graph. With
the help of a knowledge graph we can discover more inter-relations among these
triples.

The input to the pipeline is a corpus, a defined domain vocabulary, and a small
set of entity types. The pipeline uses a combination of text filtering, Open IE,
Turker annotation on samples, and precision prediction to generate its output [41].
The step 4 is about annotating and scoring the tuples extracted from Open IE and
15% of data is marked by humans. Based on this percentage of data, it trained a

20

model to annotate the rest of relations. In the last stage, it uses a set of schema
mapping rules over the tuples that identify the similar relations and map them to
a canonical generalized relation [41]. These canonical, generalized relations are
known as canonical schemas, and the induction algorithm is called CASI (Canon-
ical Schema Induction) [41].

Below Figure 3.3 shows the knowledge extraction pipeline for building a highly
rich domain specific knowledge base.

Figure 3.3: A six stage architectural pipeline of extraction and creating a domain
specific knowledge base [41].

In the below Figure 3.4 it shows the output at different stages of the pipeline
mentioned in Figure 3.3. In the first stage it takes a large collection of corpus along
with vocabulary and types of information in that domain. This research did an
experiment on the science domain. The search engine will select the top relevant
sentences from the corpus, which are further annotated as candidates for the tuple
generation. In the later stage, it generates the tuple using open IE and also performs
some filtration of some keywords. In the refinement process humans will score the
15% of the data and remaining data is annotated with the help of a model which is
trained based on the 15% of annotated data.

In the 5th step, for each headword it retrieves the original phrasal triples and
adds sub-phrase versions to these phrasal tuples to the knowledge base [41]. For
all constructed phrasal tuples, it computes a count threshold of PMI statistics fea-
ture which is the statistics of subject-predicate-object count and entire tuple in the
google N-gram corpus. [41]. The phrasal tuple is valid and variants are also cor-
rect if the PMI score and count thresholds are equal. In the final stage, generalized
relations are known as canonical schemas and all these are treated as tuples in the
final knowledge base.

One of the drawbacks of this pipeline is it demands high quality vocabulary and
type of information as input. There are domains for which it is hard to provide.
The end output is highly dependent on the input provided by the expert, domain
vocabulary and end task requirements. On the other hand, triples can only identify
the limited information but not the details of those events. This approach only or-

21

Figure 3.4: The output of each stage of extraction pipeline [41].

ganized entities and relations into flat entity types and schema clusters [41]. The
pipeline is adaptable to any domain set if we know the vocabulary, type of inform-
ation and the expert to annotate the tuples extracted via the open IE mechanism.

3.5 Knowledge Graph from Unstructured Text

This is another approach of creating a knowledge graph from unstructured text
known as T2KG. Many approaches to create a knowledge graph focus on the map-
ping of entities to its identical entity in an existing knowledge graph which is the
subject or object of a triple [39]. The mapping of predicates extracted from unstruc-
tured text to its identical predicate is not considered and this research contributed to
it. This way of mapping can reduce the heterogeneity of two graphs and increase
the search ability over a knowledge graph. It proposed a hybrid combination of
rule based approach and similarity based approach for mapping a predicate to its

22

identical predicate in a knowledge graph [39].

Below in Figure 3.5, it shows the architecture diagram of the T2KG system. It
has five stages to process the unstructured text and at each stage it enriches the cor-
responding content using existing knowledge from knowledge graphs. In the first
component it maps the entities followed by all Coreference resolution of entities
in the second component. In the third stage triples are extracted which are a com-
bination of subject-predicate-object. In a triple integration step, it generates text
triples by using outputs from entity mapping component, the coreference resolu-
tion component and triple extraction component [39]. In the previous component
we extract relation triples from unstructured text but the entity mapping and core-
ference resolution among the entities of such triples are not performed which leads
to an ambiguous set of triples and interlinking to entities in the knowledge graph
is not established [39]. Finally the predicate component will map the predicate of
a text triple to a predefined predicate in existing knowledge graphs.

Figure 3.5: The Architectural data flow diagram of the T2KG system [39].

This is an automatic knowledge construction process which highly focuses on
existing knowledge at each step in parallel with creating its own. The hybrid
approach of mapping predicates using rule based and similarity based is used to
achieve the goal of more homogeneity and reducing the sparsity of data.

3.6 Summary

In this chapter we have studied existing approaches which are used for the construc-
tion of a knowledge graph. The process of creating a knowledge graph consists of
multiple stages and integrating tools together to achieve this task. By combining
different technologies in an efficient way we can achieve better results. There are
still challenges in the processing of unstructured data such as parsing of PDF and
PPT formats to extract the textual data for further processing. It requires further

23

processing and engineering to generate a knowledge graph, which is proposed in
our project in the next chapter. Our project will enable businesses to understand
their raw text and discover the insights and relations among them.

24

Chapter 4

Design and Implementation of
Knowledge Graph Pipeline

In this chapter, we introduce the architectural design and implementation of the
data processing pipeline that is the basis for the construction of knowledge graphs
from unstructured data. It targets RQ1: How to design and implement a data
processing pipeline for generating knowledge graphs? In Section 4.1, we present
how data will flow across multiple stages of the pipeline and mention the document
types as a source of unstructured data. In Section 4.2, we define the extraction of
raw text from these documents using different libraries. In Section 4.3, we describe
the storage of processed unstructured data into a defined data model mapped to a
Mongo database. In Section 4.4, we explain about how we make sense out of this
raw data using natural language processing techniques, which helps in finding key
aspects in the raw data. Subsequently in Section 4.5, we explain the last stage of
the pipeline which is how the creation of a knowledge graph is achieved using a
graph database and the integration of Neo4j in our graph processing service. In
Section 4.6, we are evaluating the performance of our pipeline on a sample data set
and summarizing this chapter in the Section 4.7.

4.1 Design of Knowledge Graph Pipeline

Knowledge Graphs are an important aspect for offering wide ranging integrated
data to intelligent applications and ease out the ways of discovering underlying re-
lations inside the data. We aim for the design and development of a data processing
pipeline from an engineering perspective, which is designated for the construction
of a knowledge graph. The data flows across three multiple stages in the pipeline,
document parsing, natural language processing and sinking into a graph database.
Our pipeline has two different data stores (Mongo Database and Neo4j Graph Data-
base). Mongo database is dedicated to store textual data extracted from documents
and Neo4j stores only key information such as entities and their relationships in the
form of graph structure, which is further extracted from this text using natural lan-

25

guage processing as explained in the Section 4.4. At each step of the pipeline, data
is manipulated and made ready for the next step. In Figure 4.1, the architecture
diagram of the knowledge graph pipeline shows the flow of the data along various
components.

Figure 4.1: Knowledge Graph Pipeline for Unstructured Data.

Data Collection Sources

The execution of the pipeline is highly dependent on the data source. In our
case, we are focusing on the processing of unstructured textual data originating
from documents of different formats mainly PDF and PPT. All these documents
are provided by the clients and other means of sources will be stored on the on-
premises hardware or on the cloud storage. This storage acts as an access point
for our document parsing service and all documents will be accessible for further
processing. For the purpose of analysis, we are also crawling textual data from
wikipedia articles of a relevant category and its subcategories.

Dependency Management Tool

In the pipeline, our core services are based on Java programming language and we
use gradle as a build automation tool. Gradle is an open source build automation
system mainly used for JVM(Java virtual machine) based languages. In our ser-
vices, it compiles various dependent jars of libraries mentioned in the build.gradle

26

file. It also provides an easy way to customize the default behaviour and retrieves
dependencies from Maven repository.

4.2 Document Parsing Service

The document parsing service extracts text from documents into an intermediate
data format for further analysis. Due to the heterogeneous nature of these docu-
ments, the parsing not only transforms information but also misses out some rel-
evant information. Thus, the result is an abstraction of the original document that
means some of the information is lost. It is important to preserve a minimum
amount of information that is needed to understand the parsed data by humans or
machines. Primarily, we are only interested in the textual data and our pipeline does
not analyze images and tabular data. Moreover, document parsing is the first step
in the chain of data processing pipeline where we will precisely extract sentences,
paragraphs and other metadata information such as title, font type, font name etc.

There are many libraries available which helps us in the building of custom
implementation for the extraction of textual data from documents. Various libraries
have support under different technology frameworks and programming languages.
In below Table 4.1, we list some of the popular libraries widely used for parsing
and text extraction from documents.

Table 4.1: Document Parsing Libraries.

Name Cost Language Sup-
port

Apache PDFBox Free - Open Source
Java, Python wrap-
per

iText Free - Open Source Java, C#
PDFMiner Free - Open Source Python

Aspose.PDF
Paid - based on several paramet-
ers (From $999)

Java, C++, C#

PDFTRON Paid - $4500 per year.
C++, Java, Python,
PHP, Ruby, C

PDFTextStream
Paid - based on several services
(From $100)

Java, C#

In our project, we are developing our document parsing service based on two
different libraries which are discussed in the section below.

4.2.1 Integration of Apache PDFBox

The most challenging part of PDF documents are they do not have a well defined
structure or specifications with columns like in CSV or tags such as in XML. It is a
type of document with floating text with different styles on each page. These doc-
uments are designed from the perspective of humans not computers. To overcome

27

these challenges, we build our own document parsing service with the high level
support of Apache PDFBox. We integrate this library using the gradle dependency
management tool in Java programming language. Using this library, we will query
our documents to search, filter, merge, sort and extract floating text from any PDF
documents in a useful way.

Apache PDFBox is an open source tool written in Java programming language
and it is widely used for working with PDF documents. In our project, we are
leveraging this library only for the purpose of text extraction. Apart from text
extraction, it supports creation of new PDF documents and editing of existing PDF
documents. This library is developed by Apache Software Foundation [5].

We investigate extraction of text using the PDFTextStripper class and other prop-
erties such as font type, font size etc. The text can be extracted in the form of words,
lines, paragraphs and also along with coordinates of characters. The formatting and
arrangement of the chunks of text is not taken under consideration by this class.
The end goal is to retrieve text of each page of the PDF document. We map the
output text in the form of a data model which has different properties such as title,
page number, list of sentences, font type and font size.

4.2.2 Integration of Aspose.PDF

With this library, we are processing both PDF and PPT documents for the purpose
of text extraction. We develop our second document parsing service by integrating
this library using Maven dependency tool which provides underlying interfaces.
For PDF, we transform the streams of bytes from PDF into a unified Document
class which is analyzed by paragraphAbsorber to split it into pages. Each page
processes sections of a page and provides text out of it. In the case of PPT, the byte
stream is transformed into a Presentation wrapper class which is further converted
into the collection of slides. Each slide is processed to retrieve text boxes in it with
the help of a text frame. For both formats we mapped corresponding output to our
defined data model.

Apart from text extraction, it also supports creation of new PDF documents and
editing of existing PDF documents. This library is developed by a company called
Aspose Pty Ltd [2]. It is a family of products which offers a wide range of libraries
for working with more than 100 file formats. The Aspose.PDF is a commercial
library developed for working with documents and supports multiple document
formats together with PDF and PPT. This library provides support in Java, C++
and .Net (a framework of C). In our project, we choose java based implementation
as our many existing services are written in Java and it is also fast and lightweight.

The document parsing service implementation is based on the Java program-
ming language using two different libraries, Apache PDFBox and Aspose.PDF. We
choose Apache PDFBox because it is widely used by many developers. The library
is continuously evolving with rapid development by open source contributors and
holds extensive community support. One of the biggest non profit organizations,

28

Apache foundation is maintaining its releases and it is available free for use. We
choose Aspose.PDF as it supports PPT, other formats which we can integrate in
the future and our company already owns license from the respective provider.

4.2.3 Wikipedia Data Parsing

The main purpose of this project is to analyze client’s data which comes in PDF
and PPT documents but due to the confidentiality agreement of the client data, the
results of their data cannot be published under this thesis. Our company mainly fa-
cilitates clients for developing business with insights of ongoing marketing trends.
In order to make a relatively suitable analysis we choose to explore the content
of wikipedia from the category of Marketing. Wikipedia is a multilingual online
repository of textual data created and maintained as an open source project by a
community of volunteers altering, using a wiki-based editing system [32].

Wikipedia has a wide collection of text based on different categories and sub
categories belonging to different dimensions. The wikipedia data is structured and
organized to a certain proportion with sections and tags which makes its parsing
and extraction easier by using different libraries. There are many libraries available
in python programming language for accessing this knowledge base programmat-
ically. One of them is called urllib that provides necessary methods to pull content
from HTML based web pages from this source.

In our project, we use one of the most popular python based libraries named
Wikipedia-API. It’s easy to use and supports extraction of texts, sections, links,
categories, translations, etc from Wikipedia [33]. It also simplifies the design of the
script by invoking wikipedia pages with only the name of category as a parameter
instead of complete URL as in urllib. Based on the need, we can also define the
depth of subcategories articles to be processed. The Wikipedia library helps us in
the extraction of references listed in the article.

In our pipeline shown in Figure 4.1, we can feed the PDF articles mentioned
in the references as a further on top analysis to the original article. As a part of
this thesis, we analyze wikipedia text of a specific category Marketing [8] for the
construction of a knowledge graph.

We can rely on this data as this is managed by non profit Wikimedia foundation
and they provide essential infrastructure for hosting free knowledge. The data is
also verified by volunteers of the world and also shares information that represents
human diversity as well [31]. With our research and understanding about different
libraries available in different languages we use them to extract data in a proficient
way.

From Figure 4.1, we replace the two components of the knowledge graph pipeline
and update the pipeline for wikipedia data parsing in the below Figure 4.2.

29

Figure 4.2: Knowledge Graph Pipeline for Wikipedia Data.

4.3 Data Storage

The distinct instances of document parser service use different libraries for the
extraction of data from different types of documents and open source knowledge
space such as Wikipedia. Upon extraction of textual data from various sources the
intermediary output is stored in the Mongo database. We define a data model which
maps the output of the document parser service in a JSON format and pushes data
as a JSON document in the Mongo database. The Mongo database provides integ-
ration of its functionality with many programming languages and we only use it
in Java and python (as our document parsing services are written in these two pro-
gramming languages). In our project, we are using a community version of Mongo
database which is open source and free to use. There is an enterprise edition avail-
able based on subscription with advanced features and comprehensive deployment
support of Mongo database, on disk encryption, auditing etc [19]. Based on our re-
quirements, we get all the needed basic functionality with the community version.

There are many relational and non relational databases available but we choose
MongoDB for the following characteristics. MongoDB is an object-oriented, simple,
dynamic and scalable NoSQL database [30]. Unlike traditional relational data-
bases, MongoDB stores data in the form of documents in a collection instead of
storing the data into columns and rows. MongoDB stores data in flexible, JSON-
like documents meaning fields can vary from document to document and data

30

structure can be changed over the period of time [19]. The aim of MongoDB is
to implement a data store that provides high performance, quality and automatic
scaling [30], which eventually will expedite our pipeline intermediary phase. The
document storage mechanism of MongoDB makes it faster than MYSQL because
the entire related data is in one place rather than in different tables. Hence, the
retrieval speed of data is faster to fetch a single document from MongoDB than to
apply JOIN across different tables is MYSQL.

Our needs are not mainly composed of transactional systems that fully comply
with ACID properties and it makes NoSQL a better choice here than SQL. Mon-
goDB is also an ideal fit for the cloud deployment as it is enabled with horizontal
scale-out architecture empowered by sharding and agility supported by the cloud
computing [30]. The down side of MongoDB is it does not support the execution
of stored procedures and functions for binding logic at the level of the database. In
our project, we are not using anything related to it so it will not affect the design of
our pipeline. MongoDB is also highly recommended for storing content of articles
and blogs.

Data stored in the MongoDB can be accessed through a rich query language
which supports all read and write operations. Our document parsing services will
only insert data into mongoDB whereas retrieval is done by the natural language
processing module for further processing.

4.4 Natural Language Processing Service

The main perspective of building sense out of unstructured textual data is enabled
by a sub field of artificial intelligence namely natural language processing. This
raw format of data cannot be easily converted into rows and columns directly to
store in a relational database, however, we need to extract useful features out of it
to make it more sensible. The textual data extracted in the earlier step is ingested to
this stage for further syntactical and semantical analysis by using natural language
processing techniques. The module of natural language processing is considered
as the intermediary and highly centralized component in our pipeline.

There are several natural language processing libraries available which helps
in the extraction of insights from the mostly used natural languages. The major
challenge for all natural language processing libraries is the process, storage and
maintenance. The task of building a natural language processing pipeline is not
an easy process as it is the mixture of several functionalities such as splitting of
sentences, POS(Part of Speech) tagging, lemmatization, etc. For better results, a
large processing power is required to build models from large and diversified data
sets. For our data processing pipeline, we overcome this challenge by using the
Stanford coreNLP library that provides default models which are trained on huge

31

data sets.

Stanford CoreNLP, a very popular library for natural language processing is de-
veloped by Stanford university. The library is written in Java programming lan-
guage and offers a variety of other mediums for interaction such as command line,
native Java programmatic APIs or deployed as a web API server [22]. In our data
processing pipeline, we are interacting with this library in a programmatic way by
including gradle dependencies in our Java based natural language processing ser-
vice. It provides basic building blocks of semantic analysis and packaged with the
predefined set of state of the art trained models for running natural language pro-
cessing tasks. It supports many natural languages but in our project we only use it
for the purpose of English.

From the implementation perspective, our natural language processing service
instantiate an annotation pipeline with several annotators to annotate textual data.
This pipeline object is a map with the key annotators in the sequence. The annot-
ators are declared as an individual task that should be applied on the text assigned
in the annotation object.

In the beginning, the annotation object contains only raw text and the annotation
pipeline will execute the declared annotators to construct the result object. This
result object will contain all the examination data included by the annotators and
the output can be in XML or plain text forms. An annotation object stores the
results of each annotator in a map data structure. Due to map data structure, we
can access results in O(1) time complexity, which makes it faster. Each annotator
is also defined with the key from the annotation object then it applies natural lan-
guage processing on it and writes the result back to the annotation object. As we
have multiple annotators, hence the result of each one is written under different
keys rather than being overwritten.

we are examining the Stanford coreNLP library for the purpose of named entity
recognition, semantic analysis, POS tagging for multi-word expressions and rela-
tion extraction which will be helpful for the construction of a knowledge graph and
defining correspondence between named entities. Apart from built in named entity
recognition models, we can define our own custom models for this purpose which
will make the context of particular domain text much clearer and meaningful. The
library offers very flexible and extensible methods which can be easily configured.
It provides necessary basic building blocks for developing higher level and domain
specific customization of textual analysis.

The Figure 4.3 presents the system architecture of Stanford coreNLP annotation
pipeline and it represents the execution flow of the annotation pipeline and some
widely used annotators in our natural language processing service.

Annotators mentioned in Figure 4.3 are widely used in natural language pro-

32

Figure 4.3: Stanford CoreNLP Annotation Pipeline [22].

cessing and briefly described below [22]. Our natural language processing service
is using a subset of these mentioned to extract relevant semantics out of text.

1. Tokenize: It is considered as the first processor used in the pipeline. It is
the process of dividing text into smaller chunks known as tokens. Tokens
can be words, numbers and punctuation marks. The annotator does this task
by locating boundaries of words. The character offsets of each token is also
saved by the tokenizer.

2. Ssplit: It is used to split a sequence of tokens into sentences.

3. POS: It is used for labelling each token with corresponding parts of speech
tag.

4. Lemma: It generates the word by normalizing the tokens to their root forms.

5. NER: The named entity recognition annotator helps in identifying and then
categorizing key information in the text. The tokens are labelled based on
the predefined models. NER in English by default identifies entity type of
person, company, location, currency, number, date, time, etc.

6. Parse: The parse annotator figures out the grammatical structure of the sen-
tences and outputs syntactical analysis in the form of phrase structure tree.
It also provides basic to advanced dependencies.

7. Sentiment: It assigns an overall score to the given text and classifies its
sentiments as a positive, negative or neutral. It is built upon a deep learning
model and computes sentiments based on the composition of words in longer

33

phrases. It is not easy to fool the system as the prediction is not a summation
of count based approach of individual positive and negative words. With this
intent of the text is lost and important knowledge is lost.

8. openIE: It stands for open information extract which represents the domain
triples and considered as very useful information for the construction of a
knowledge graph. It defines subject, a relation and the object of relation.

4.5 Knowledge Graph Service

Knowledge graph service is the final stage of our data processing pipeline. The
natural language processing service will produce data for the generation of a know-
ledge graph. The data in the form of nodes and relationships is dumped in the graph
database known as Neo4j [21]. The graph structure provides a better visualiza-
tion of knowledge in a more convenient and understandable manner. The relations
between different things are easy to discover for the end user.

There are many graph databases available but we choose the most popular and
widely used Neo4j in our data processing pipeline because it is the leading native
graph database and graph platform. Apart from this, a very vast documentation is
provided by Neo4j organization which makes the concepts clear and easier to in-
terpret for developers, many big organizations are also using this in production and
a lot of community support is available too. In this project, we are using the com-
munity version 4.0.4 of Neo4j although there is a commercial license for enterprise
with extra features and support is present, such as security, high performance and
clustering of multiple nodes.

Neo4j helps us in representing the information in the form of a graph. Neo4j
supports integration of its driver for connecting and interacting with database in
many programming languages natively such as Java, .Net, JavaScript, Go and Py-
thon. There are wrappers that exist in other programming languages which are
contributed by the community as an extension of existing one.

The Neo4j database can be installed on the local machine or on any commodity
node in the cloud. When we start Neo4j as a server it provides an interactive user
interface via a built in Neo4j browser application that is running locally on the
hosted machine. Using Cypher query language we can run queries on the browser
based console and explore results in different formats (graph, table, code and text).

4.5.1 Integration of Spring Boot and Neo4j in Graph Processing Ser-
vice.

Our graph processing service is based on Java programming language using the
popular framework Spring Boot which also provides many wrappers supporting
Neo4j operations. Our graph processing service interacts with Neo4j database pro-
grammatically in Java. There are various components used in our graph processing

34

service for the integration of Neo4j. Below Figure 4.4 depicts the high level archi-
tecture of the integration design.

Figure 4.4: Spring Boot Data and Neo4j Integration Architecture Diagram.

4.5.2 Neo4j Bolt Driver

The graph processing service creates a connection to Neo4j using a Bolt binary
protocol. It is mainly used for client server communication in database applica-
tions and is also used for Neo4j [26]. The underlying dependencies of drivers are
managed by a build automation tool known as Gradle and it provides necessary
interfaces and methods for its successful creation. The credentials are provided us-

35

ing a configuration object. The configuration object is used by the SessionFactory
which is required by spring data Neo4j to create a Session object as needed. The
classpath of the data models package which are mapped to the nodes and relation-
ships in the Neo4j is also provided to the SessionFactory as a second parameter
for scanning all domain objects. We configure SessionFactory in such a way that
it inspects all required packages. The session is managed by the Neo4j Transac-
tion Manager which handles the transaction of the database at the application level.
Our application is connected to the only one instance of Neo4j, hence there is one
SessionFactory per application.

4.5.3 Spring Data Neo4j OGM - Object Graph Mapper

The output of natural language processing service will be transformed in the form
of a data model which will be stored in the Neo4j database. This is a user defined
data model which is mapped to the graph database with the help of object graph
mapper. Neo4j object graph mapper is a powerful library that provides a simple
mechanism to manage domain objects with Neo4j. It maps nodes and relation-
ships to the objects in the domain model defined as a plain old java object, POJO
classes. The class attributes are mapped to the properties of node or relationship.
This wrapper simplifies the persistence and retrieval of data to and from Neo4j
by providing key abstractions which takes away all the complexities of low level
drivers [16].

With the support of object graph mapper we can also run custom native queries
where default query operations are not sufficient. The basic create, read, update and
delete - CRUD operations are easily performed with the help of Neo4JRespository
interface, supported by this library. Once the output is retrieved from the graph
database, the graph can be returned in the JSON format to a user interface (frontend
application) for displaying it to the end user.

In Figure 4.5 the diagram shows the flow of data from graph processing service
to and from Neo4j and then forwarding it on any frontend application.

4.6 Overview of Experiments

We are doing experiments for the analysis of performance of our services involved
in the data processing pipeline. The performance analysis is based on the quality
of output and the execution time. The execution time will help us to examine the
computational expensive component in the pipeline. The experimental analysis
will help us to further improve the architecture and design of the pipeline. We
want data extraction and parsing of documents as fast as possible because further
components in the pipeline are dependent on this step.

Our experiments with respect to each component are as follows.

• Document parsing service will evaluate the execution time of parsing of each
page from documents and compare the result between two parsers.

36

Figure 4.5: Data Flow across Graph Processing Service, Neo4j and User Interface.

• Wikipedia parsing service will present the details of data extraction and the
next component will analyze this raw text.

• Natural language processing service will analyze the results and execution
time of key features which helps us in understanding the semantics of the
raw text extracted in the earlier step.

• The knowledge graph service will show an example of a knowledge graph
retrieved from Neo4j, the graph database.

4.6.1 Experiment Requirements and Evaluation

Each service is dedicatedly designed for one task, which will make it highly flex-
ible, maintainable, scalable and testable. With the microservice architectural design,
all services are loosely coupled and can be deployed independently. It also makes
organization and fixing of bugs easier with less ripple impact on other components
in the system. For our testing purpose, each service is executed manually and out-
put of one service is used by the following service which means that we cannot
run all services in parallel for the same input text. We run individual service which
are designed and developed for dedicated tasks in the pipeline as shown in Figures
4.1 and 4.2 on a machine with the following hardware specifications and required
software packages.

37

Hardware Specifications

Operating System: Macintosh Operating System Catalina, Version 10.15.4
CPU: 2.2 GHz Quad-Core (4 cores) Intel Core i7
Random Access Memory: 16 GB
Solid State Drive Storage: 256 GB

Software Package Specifications

There are some software package requirements listed below for the execution of
each service.

1. Document Parser Service: Document parser service is based on the Java
programming language, hence it requires a Java Development Kit (JDK) of
version 11 installed on the machine. The service itself consists of several
gradle dependencies such as spring boot framework of version 2.0.3, Apache
PDFBox library of version 2.0.14 , Mongo database driver of version 3.10.2
and lombok plugin of version 1.18.4 which reduces the boiler plate code by
providing specific annotations such as @Data. The second instance of the
document parsing service works similarly but with a major difference of the
Aspose library dependency of version 18.5.

2. Wikipedia Data Parsing Service: Wikipedia data parsing service is based
on the Python programming language, hence it requires Python3 package
version 3.7 installed on the machine. This service depends on two libraries
wikipedia-API and wikipedia. The installation of these two libraries is done
using a python package manager known as PIP3 which comes along with the
Python3. It also uses a Mongo database of version 3.10.2 installed via PIP3.

3. Natural Language Processing Service: The natural language processing
service is based on the Java programming language, hence it also requires a
Java Development Kit (JDK) version 11 installed on the machine. The ser-
vice itself consists of several gradle dependencies of spring boot framework
of version 2.0.3, Stanford coreNLP library of version 3.9.1 with models for
English language, Mongo database driver of version 3.10.2 and Neo4j de-
pendencies which are mentioned in knowledge graph service.

4. Knowledge Graph Service: The knowledge graph service is based on the
Java programming language, hence it also requires a Java Development Kit
(JDK) of version 11 installed on the machine. The service also consists of a
gradle file which manages core dependencies for Neo4j such as Neo4j-ogm-
core of version 3.2.11, spring data Neo4j of version 2.3.0, neo4j-ogm-api of
version 3.2.11 and spring boot framework of version 2.0.3.

38

Parser Performance Evaluation

For the performance evaluation of document parser service based on different lib-
raries, we run each parser 1000 times on PDF documents with increasing range
of pages with the factor of 5. The line chart in Figure 4.6 shows the comparison
between Apache PDFBox and Aspose.PDF based implementations. From the plot,
it is evident that Apache PDFBox is much faster than Aspose.PDF. With regards
to the performance for the largest input size, the Aspose.PDF based approach is
approximately ∼ 10x slower than Apache PDFBox implementation. With Apache
PDFBox the time is roughly increasing constantly as number of pages increases
but with Aspose.PDF it is not increasing in a dramatic way. Hence for our data
processing pipeline, we will choose Apache PDFBox.

Figure 4.6: Execution time of Apache PDFBox and Aspose.PDF on different num-
ber of pages.

Wikipedia Parsing Service Example

For a sample analysis of textual data from a particular domain, we explore a cat-
egory of Marketing on wikipedia. Our wikipedia parsing service extracts textual
data from all underlying pages and sub-categories main page under this category.
In wikipedia, the hierarchy structure of categories are nested but we are only look-
ing at one level. The Table 4.2 shows the following results.

Table 4.2: Wikipedia Parsing Service Results.
Category Marketing
Execution Time 22.74 seconds
Total Pages 28
Subcategories 30
Data Size 1.3MB
Total Links 362

39

Natural Language Processing Service Analysis

Our natural language processing service has a pipeline of annotators which runs on
all sentences. The Figure 4.7 shows the plot of execution time among 9 annotators
(tokenize, ssplit, pos, lemma, depparse, ner, natlog, parse, sentiment) on sentences.
This service processes the textual data extracted from wikipedia of which details
are mentioned in table 4.2. As per the graph there is a linear relationship among
them, execution time increases as the number of sentences increase. Due to vari-
ation of sentence length, there is an edge case where time decreases for a certain
number of sentences and then again it’s increasing in a linear manner. There are
roughly 6700 sentences in this dataset for which it roughly takes approximately 72
minutes which shows that 90 sentences per minute. The time per sentence will be
affected by the length of sentences as it tokenizes the paragraph based on the full
stop.

Figure 4.7: Linear Relation of annotating number of sentences with respect to time.

Named entity recognition is the key feature offered by the natural language pro-
cessing domain. It helps us analyze the core aspects discussed in the documents.
In our dataset, we run NER annotator to find the key entities mentioned in the text.
With the default models Stanford coreNLP recognizes 21 entity types in this text.
The Figure 4.8 shows the count of each entity type in a bar chart. From the bar chart
NUMBER type is the most highest occurring whereas CRIMINAL CHARGE is
the lowest in the number. It is not the distinct count of entities in the text instead
the overall frequency of each entity.

In this textual data, we process approximately 6700 sentences. An interesting
characteristic is around 49% sentences have no any entity mentioned, whereas 51%
sentences consist of one or more entities. The Figure 4.9 illustrates the horizontal
plot of the bar chart of NER and without NER sentences. In order to reduce the
noise from data for further analysis we can ignore such sentences which consist of
zero entity.

40

Figure 4.8: Representation of different entity types and their count in the dataset.

Figure 4.9: Classification of sentences with NER and without NER.

One of the major challenges with coreNLP is that it loads all the models in the
memory while applying corresponding annotators on the input text. For very large
input text we need more memory or we use a few annotators. One way of hand-
ling this is running multiple instances of natural language processing service to
handle each annotator individually. This approach of parallelism will significantly
optimize the performance of the pipeline and reduce the risk of out of memory
exceptions.

Another solution to this is to process a large text with all annotators into small
batches. With this approach, we can run a single instance of natural language
processing service but it will take more time as compared to previous technique.

41

Sentiment Analysis

The overall semantics of the text is extracted by the sentiment analysis. It gives
the feedback of the text in terms of positive, negative and neutral. For positive
the value is 1, for negative the value is -1 and for neutral it’s 0. The Figure 4.10
shows that the text of wikipedia for selected category has more negative sentences
as compared to positive and neutral. With the help of sentiment analysis we can
better understand consumer opinion for clients in the market.

Figure 4.10: Distribution of sentences with all sentiments in the dataset

Example Knowledge Graph

The core information extracted from textual data using natural language processing
service is stored in the Neo4j database. By running Cypher queries in Neo4j we
can create dynamic graphs based on the need of the customers. The data and re-
lations in the Neo4j can be interlinked easily for better visualization and faster
traversing. When it comes to large datasets the relations are not easy to traverse
around different dimensions but graph databases made it quicker and easier. In
our sample dataset, we will show an example graph in Figure 4.11 which reflects
information about a wikipedia page and it can be associated with any document of
this category in the future. The graph in Figure 4.11 shows a total of 14 nodes with
13 edges defining relationship among them. The creation time of this graph is 758
milliseconds.

4.7 Summary

In this chapter, we have come up with an architecture of a data processing pipeline
for the construction of a knowledge graph. We develop microservice for each task

42

Figure 4.11: A sample knowledge graph representing category and some of its
linked links.

of a pipeline and evaluate their performance with a sample dataset from wikipedia.
Due to the confidentiality agreements of clients with the company, we cannot pro-
cess their data under this project. The core component of this pipeline is natural
language processing service which helps us in the extraction of key information
from raw textual data.

The first part of this chapter focuses on the architectural components of the
pipeline. We analyze different libraries and frameworks for the development of
this pipeline. The main part of this implementation is done in the Java program-
ming language. The main source of data stream for this pipeline is in the form of
PDF’s and PPT’s. For experimental purposes, we process the sample data set of
wikipedia from the category of Marketing.

In our evaluation, we find that Apache PDFBox is much faster than Aspose.PDF
whereas Aspose.PDF is also able to parse PPT’s but Apache PDFBox does not.
The Stanford coreNLP library is packaged with built in models for the recognition
of entities and sentiment analysis. We can also create our custom models and train
our classifier on our dataset, given that we have enough annotated samples of the
data. We determine the performance of the Stanford coreNLP library on wikipedia

43

articles belonging to one category. The results are shown in the figures in the
Section 4.6. Our pipeline uses two different data stores, Mongo database which
is responsible for storing intermediary results and the final result of meaningful
information extracted by natural language processing service is stored in the Neo4j
which constructs the knowledge graph.

However, the entire pipeline cannot be run in parallel for the same documents but
components are independently designed for easy maintainability and scalability.

44

Chapter 5

Analysis of Cloud Based Natural
Language Processing Services

In this chapter, we introduce three cloud based natural language processing ser-
vices from Amazon, Google and IBM. This chapter addresses our RQ2: How
to choose the most suitable cloud based natural language processing service
based on cost, performance analysis along with features and flexibility of in-
dividual service with other cloud providers? In Section 5.1, we briefly describe
the fundamentals of cloud computing and services. In the next three sections;
Section 5.2 discusses Amazon Comprehend, Section 5.3 presents Google Cloud
Natural Language API and Section 5.4 inspects IBM Watson Natural Language
Understanding. In each section of these services, we describe the high level intro-
duction, features, pricing models, perform experimental evaluation of all features
on a sample data set and present results of them. Subsequently in the Section 5.5,
we perform a detailed comparison analysis among features of these three services
and provide the metrics of choosing the most suitable based on the quality of out-
put, performance, flexibility of configurable parameters and cost. We prove our
choice of cloud based natural language processing service based on the experi-
mental analysis performed in each of Section 5.2, 5.3 and 5.4. Finally in Section
5.6, we provide a short summary of this chapter.

5.1 Introduction

The notion of cloud computing is offering a wide range of computing resources
to the consumers that can be easily accessed over the internet and the entire in-
frastructure is managed by the cloud service providers [18]. The advent of cloud
computing takes away the complexity of setting up the huge infrastructure of serv-
ers, etc from the users and enables customers to focus on building their core busi-
ness values for end users. The cloud technology helps us in the rapid development
of applications, scalable deployment, efficient management of resources and its
optimized pricing model of pay per use.

45

Today, not all but most of the organizations are using the power of cloud com-
puting to become more agile and faster in the delivery of their core business values
to the customers . There are many cloud providers but few big names lead a sig-
nificant market share are Amazon, Google, IBM and Microsoft. All of them offer
different services ranging from computational power to processing to storage and
much more. In the RQ1, we propose the architectural design and implementa-
tion of a data processing pipeline which has a core component of natural language
processing. There are many open source libraries available for natural language
processing but the cloud based solutions can decrease the engineering effort, main-
tenance of codebase with a little cost as per use [18].

For early projects, it is wiser to use such services than hiring a full fledged team
of experts, which is significantly expensive for the company. For us, cloud com-
puting is abstracting the complex problems into a simple easy to use service. In
the RQ2, we are analyzing cloud based natural language processing services from
different perspectives offered by three well known providers Amazon, Google and
IBM.

5.2 Amazon Comprehend

The natural language processing service from amazon is known as Amazon Com-
prehend was launched in 2017. This service is continuously trained on various
models with a bunch of annotated data sets from different domains which makes
text analysis efficient and easy for the end user [3]. Behind the scene, it is using
deep learning, a max net waste sequence to sequence models for training. Amazon
Comprehend claims the addition of new training data sets on a daily basis which
means that models get better with improved accuracy over the period of time [3].

It has the capability of language detection, recognizing the entities and those
are categorized like organization, person, brands, etc, key phrases which are noun
based keywords to really understand the content, sentiments and syntax analysis
in the text. Amazon Comprehend provides a well built-in feature of examining a
bunch of documents to classify them based on the frequency of similar keywords
within them. This type of topic modelling is beneficial to sort out a large corpus of
documents into topics that are relevant to each other. The job of topic modelling
requires a large number of documents and for suitable results at least 1000 docu-
ments are recommended. The number of topics is a configurable parameter and it
can detect a maximum of 100 topics in a collection [3].

Amazon Comprehend is a web based service that can be consumed directly by
calling API in one of the programming languages supported by this service. We can
also submit a job via a web based user interface known as Amazon Comprehend
console. The input data for the job is stored in the S3 bucket. Amazon S3 is
a simple storage service offered by Amazon Web Services and in our case we
are storing text files. Documents can be submitted for analysis in two formats
(one document per file and one document per line) but for large documents one

46

document per file is highly recommended. In this format, each file is treated as one
document. This is the most suitable option for our company as we have collection
of large corpus.

The built-in feature of Detect Entity in Amazon Comprehend classifies all en-
tities into 9 categories. The Table 5.1 summarizes the information of each type of
entity.

Table 5.1: Amazon Comprehend Default Entity Types.
COMMERCIAL ITEM It marks the branded products.

DATE It recognizes different variants of date, day, month,
year or time.

EVENT It can be any festival, party or election etc.

LOCATION It determines the country, province, city, street,
building etc.

ORGANIZATION It points out large organizations, government, reli-
gion, sports teams, institutions etc.

OTHER Entity which does not classified under any other
mentioned types.

PERSON It identifies the human names, group of people, char-
acters etc.

QUANTITY It filters out numeric values such as currency, num-
bers, percentages, bytes, etc.

TITLE It spots the tagline given to any piece of work such
as book, song, movie etc.

5.2.1 Amazon Comprehend Custom

Amazon Comprehend runs all operations on our text based on the default built
in models. In order to train a custom model specifically on a particular data set,
amazon comprehend custom provides this ability without even worrying about the
techniques of machine learning based natural language processing algorithms. It
uses automatic machine learning to build customized natural language processing
models on our dataset. For a limited amount of data, it uses a technique of transfer
learning for building a highly accurate model. In transfer learning, Amazon also
trains our custom model based on existing trained models of entity recognition with
large data sets of different dimensions. With this approach it improves the results
of the custom entity recognizer model in case of fewer training data.

Custom Entity Recognition

With custom entity recognition, we can recognize new types of entities which are
not supported by default models listed in the Table 5.1. The service requires a
data set for the training of the model containing a set of such entities, with a set
of annotated documents or a list of entities and their labels. The service itself will

47

decide the best algorithm and parameters for the training of the model and will
seek for the most desirable combination of these factors. There is a limitation of
12 custom entities at a time per model. After training, we can detect a maximum
of 12 custom entities on our test data.

Custom Classification

It also provides the feature of building and training of our own custom models for
the classification of documents. We can train our custom classifier model in two
ways (Multi-class or Multi-label mode). Multi-class models will assign a single
class whereas multi-label models can assign more than one class to each document.
In the training of a model, a minimum of 10 documents are required for each class
but for better results amazon recommends at least 50 or more documents for each
class. The total size of training data should not exceed 5GB. It uses between 10 and
20 percent of training data for the testing purpose on a newly trained custom clas-
sifier. Once training and testing of a model is completed, it returns some metrics
such as Accuracy, Precision, Recall, F1-score and Hamming loss.

Amazon Comprehend Medical

This service offers the analysis of health related data which is very unstructured
in the form of doctors notes, lab reports, test results and discharge summaries [4].
This service can analyze and examine documents only in English language. The
detected entities are also linked to the concepts in medical ontologies, including the
RxNorm and ICD-10-CM knowledge bases [2]. The entities are detected in the fol-
lowing five categories such as ANATOMY, MEDICAL CONDITION, MEDICA-
TION, PROTECTED HEALTH INFORMATION and TEST TREATMENT PRO-
CEDURE [4]. It also provides a dedicated feature of detecting protected health
information as Detect PHI associated with a confidence score. It covers personal
information of patients such as name, address, age, profession, email etc. With the
help of this service we can offer better insights of health data to our clients from
the industry of pharmacy and hospitals.

5.2.2 Pricing Analysis

Amazon Comprehend charges for the documents we analyze without any minimum
or upfront cost. It charges based on the amount of text we analyze with respective
features. The cost is measured in units of 100 characters with a minimum charge
per request is 3 units (300 characters). Initially, 5M characters (50K units) can
be processed for free. The topic modelling is charged based on the size of the
documents instead of units. The first 100MB are charged at a flat rate of $1 and
above every next MB it costs $0.004 per MB [3].

Below table 5.2 shows the cost of each feature based on different segment sizes
of units.

48

Table 5.2: Amazon Comprehend Cost Per Feature.

Feature Up to 10M
Units

From 10M-
50M Units

Above 50M
Units

Entity Recognition, Sentiment
Analysis, Key Phrase Extrac-
tion, Language Detection

$0.0001 $0.00005 $0.000025

Syntax Analysis $0.00005 $0.000025 $0.0000125

For the custom training of a model it charges $3 per hour and $0.5 per month
for the model management. In case of asynchronous classification and entity re-
cognition it charges $0.0005 per unit (a unit consists of 100 characters) while for
synchronous classification and entity recognition it charges $0.0005 per IU (infer-
ence unit) per second. One inference unit gives the throughput of 100 characters
per second.

The comprehend medical API request is charged per unit which is composed of
100 characters. The Detect entity feature costs $0.01 per unit and Detect PHI costs
$0.0014 per unit. For the first three months we can process 2.5M characters (25K
units) free of cost.

5.2.3 Performance Analysis

For the performance analysis, We will evaluate each feature of this service on a
sample data set of category Marketing from wikipedia, which consists of around
60 documents. For each feature, we will analyze the results and execution time. We
create and run analysis jobs via Amazon Comprehend console, which will read in-
put data set from S3 bucket and output is also stored in the S3 bucket. The response
is returned in the JSON (JavaScript Object Notation) format with different attrib-
utes for each feature. The integration of AWS SDK (Software Development Kit)
in the Java programming language requires authentication using an IAM (Identity
Access Management) user and in our case, we are using an AWS Educate account
which does not provide enough rights to create this user.

Entity Recognition

There are a total of 8559 entities detected in the entire text of around 6700 sen-
tences. The response consists of the following attributes. Each entity has a begin
and end offset mentioned along with the type and text of the entity itself. For
each entity, it also returns a score which shows the level of confidence that this
service has correctly detected the entity type. We can define a threshold to filter
out the entities with low scores to reduce the risk of false detections. Based on
our assumption the entities of threshold score below 0.5 will be discarded or those
entities might need human review. The assignment of each entity to a category is
visualized in the below bar chart.

49

Figure 5.1: Representation of different entity types and their count in the dataset.

KeyPhrase Detection

This is a very useful feature for the deep understanding of documents based on
a combination of popular words also known as multi-word expressions. It auto-
matically recognizes keyphrases without taking the input size of the phrase. In
the response, it mentions the begin and end offset of each phrase along with the
score which defines the level of confidence that it finds the phrase correctly. We
assume that the key phrases of threshold score below 0.5 will be removed. It also
returns several single word phrases, which are not considered in our analysis. This
job takes a total execution time of 10.1 minutes. In the bar chart below, we list
keyphrases of the first 10 files.

Figure 5.2: Representation of total vs unique keyphrases in each document.

50

Topic Modelling

With topic modelling, the number of topics is defined as the input parameter and
we set this to a value of 5. In response, it returns two files, topic-terms.csv and
doc-topics.csv. The topic-terms.csv consists of a list of topics and by default each
topic has 10 most likely terms associated with a weight. In the below Table 5.3, we
include the result of each topic’s top weighted term.

Table 5.3: Amazon Comprehend Topic Classification based on Weight.
Topic Term Weight
000 Product 0.123
001 Market 0.204
002 Study 0.002
003 Company 0.471
004 Tag 0.344

In the second file doc-topics.csv, each document is assigned a topic with a pro-
portional number which shows the relevancy of that topic. We find that a single
document can be labelled with multiple topics with different proportion values.
We start the experiment with 5 topics and increased the number of topics by 5 at
a time up to 50 and calculated the execution time for each run that is shown in the
graph below. On average, it takes the same execution time for any number of topics
but the slight difference is due to the provisioning of the resources in the cloud.

Figure 5.3: A time series representation of incremental number of topic classifica-
tion.

Sentiment Analysis

In sentiment analysis, the limit of a single file must not exceed 5120 bytes. For
this feature, the optimal choice is document per line instead of document per file.

51

In response, it returns all sentimental scores which are positive, negative, neutral
and mixed. The optimal choice is choosing the highest value among them and that
is also labelled with a tag of sentiment explicitly in the response. In the document
per line format, it is able to detect 5992 sentences. On average, the entire data set
is classified as neutral as shown in the below bar chart 5.4.

Figure 5.4: A sentimental analysis of 5992 sentences into four categories.

Primary Language

It helps in the detection of the most nominated language in the document. It
provides the detection of 67 different languages. In our sample data set, it cor-
rectly identifies the nominated language which is English. The response of this
feature consists of language label and score which reflects the confidence level of
it’s detection. In case of fewer terms from other languages, it also returns the label
of those languages along with the score. In our case, it detects around 50 languages
but the score is quite small such as the English comes up with 0.98 whereas others
are in magnitude of 0.003 etc.

Syntax Analysis

It is used for the syntactic parsing of the sentences and returns the corresponding
part of speech tag for each word. We can filter out results based on needed tags
such as only nouns, adjectives and verbs. This information can be very helpful for
the construction of a knowledge graph and helps us to gain a richer understanding
of relationships between words in the document. For each tag, it also returns the
begin and end offset and confidence score which shows the level of correctness.
Based on the need of application, we can define a threshold to filter out the tags
with low score. It can detect 17 types of parts of speech. We cannot perform this
analysis via Amazon Comprehend console.

52

5.3 Google Cloud Natural Language API

Google offers Cloud Natural Language API service under the family of AI ma-
chine learning products. Using this service, we can extract meaningful information
such as people, events, places and sentiments of the textual data [9]. The nat-
ural language API uses the same underlying technology which is used by Google
Assistant to understand the language. It provides the features of entity detection,
sentiments of detected entities, sentiment analysis, syntax analysis and classific-
ation of categories. All of these features can be accessed via an API call and it
automatically detects the language if it’s not mentioned in the request. We can also
perform multiple operations in one API call using the method annotateText [9].

Google also provides a cloud based shell editor to run the code for requesting
these APIs in our desired supported programming language. We can also run ana-
lysis over text via gcloud command in the terminal. The text can be passed as a
parameter in the request or for a large number of documents a Google cloud stor-
age URI will be passed in a gcsContentUri field [9].

In sentiment analysis, the API returns score as well as magnitude. The value of
score ranges from -1 to 1 covering the gross emotions of the text whereas value
of magnitude ranges from 0.0 to +inf indicating the cumulative emotion of each
expression. The value of magnitude is directly proportional to the length of the
text. It does not mention the particular emotion such as “angry” or “sad” but only
negative or positive. In entity analysis, all entities are returned in the highest to
lowest order of their salience scores which shows their importance in the whole
text.

With default models, Google Cloud Natural Language API returns 13 types of
entities which are described in the table below.

Table 5.4: Google Cloud Natural Language API Default Entity Types.
PERSON LOCATION ORGANIZATION
EVENT WORK OF ART CONSUMER GOOD
PHONE NUMBER ADDRESS DATE
NUMBER PRICE OTHER/UNKNOWN

One of the very useful features is categorization of large corpus. It analyzes
the document and returns the relevant category based on the text in the document.
Google Cloud Natural Language API provides a list of categories from more gen-
eral to specific context, which is shown below in the Table 5.5. There are 10 cat-
egories with each having a large number of subcategories for specific interpretation
of the text in the document. These all categories will help us to better understand
the domain of the random corpus. This feature is only available for English lan-
guage version of documents.

53

Table 5.5: Google Cloud Natural Language API default list of Categories.
Category Name Total Sub Categories
Arts & Entertainment 61
Autos & Vehicles 21
Beauty & Fitness 19
Books & Literature 6
Business & Industrial 53
Computers & Electronics 35
Finance 18
Food & Drink 21
Games 29
Health 50

Google Cloud Natural Language API supports very few natural languages for its
features. The below Table 5.6 provides the list of languages based on each feature.

Table 5.6: Google Cloud Natural Language API languages support for each
Feature.

Language Entity Ana-
lysis

Sentimental
Analysis

Syntactic
Analysis

Entity Senti-
ment Analysis

Chinese X X X 7

English X X X X
French X X X 7

German X X X 7

Italian X X X 7

Japanese X X X X
Korean X X X 7

Portuguese X X X 7

Russian X 7 X 7

Spanish X X X X
Arabic 7 X 7 7

Dutch 7 X 7 7

Indonesian 7 X 7 7

Polish 7 X 7 7

Thai 7 X 7 7

Turkish 7 X 7 7

Vietnamese 7 X 7 7

Google AutoML Natural Language

For the analysis of domain specific entities and categories in the text, we can build
and train our custom models using AutoML natural language service. The train-
ing of a model can take up to 3 hours. Google provides an interactive console
to annotate our data, build the model and evaluate the model with measurements

54

of precision and recall [6]. It also provides the feature of building and training a
custom model for sentiment analysis. The dataset requires a manual annotation of
sentiment numbers for the sentences. We can also train the model for analyzing a
document category based on the content in the document.

5.3.1 Pricing Analysis

With Google cloud natural language API we pay for the feature we use without
any extra cost. The API charges in terms of units (1000 characters). Initially,
5M characters (5K units) will be analyzed for free for all features except content
classification. The categorization of content is a text intensive task hence it can
categorize 30M characters (30K units) of text for free. By default natural language
API supports a threshold of 20M units of processing per month but in case of
requiring more than this limit Google offers to create custom solutions based on
the need. Below table summarizes the price of each feature per 1000 units in a
month [9].

Table 5.7: Google Cloud Natural Language API Cost per Feature.
Feature 5K-1M Units 1M-5M Units 5M-20M Units
Entity Ana-
lysis

$1 $0.5 $0.25

Sentiment
Analysis

$1 $0.5 $0.25

Syntax Ana-
lysis

$5 $0.25 $0.125

Entity
Sentiment
Analysis

$2 $1 $0.5

For the classification of content it has three different segment sizes of units as
follows.

Content Classification 30K-250K
Units, $2

250K-5M
Units, $0.5

5M+ Units,
$0.1

5.3.2 Performance Analysis

For the performance analysis, We will evaluate each feature of this service on a
sample data set of category Marketing from wikipedia, which consists of around
60 documents. For each feature, we will analyze the results and execution time.
We are integrating the Google Cloud Natural Language API in Java program-
ming language as the Google cloud shell is not supporting natural language API
operations on large corpus. The gradle dependency is used to provide all un-
derlying classes and interfaces. In addition to this, we set an environment vari-
able Google APPLICATION CREDENTIALS which points to the location of the

55

private key file of the Google project and served the purpose of authentication.
Our Java based implementation reads input from local directory and writes output
in the similar directory. The response is returned in the JSON (JavaScript Object
Notation) with different attributes for each feature.

Analyzing Entities

There are a total of 46845 entities detected in the entire text of around 6700 sen-
tences. The response consists of the following attributes. Each entity has a name,
entity type and also specify the type of noun which can be a common noun, proper
noun or unknown. It returns all the entities in the order of salience score, which
describes significance of the entity to the document. It only includes begin offset
not end offset in case we specify the encoding type. Besides this it also provides
the metadata information about entity knowledge repository which is not useful for
our company. Based on the response, the default model does not recognize entities
with a high score as all entities are ranked less than 0.5. Based on our assumption
the entities of threshold salience score below 0.5 will be discarded or those entities
might need human review. This job takes a total execution time of 2.1 minutes.

Figure 5.5: Representation of different entity types and their count in the dataset.

Analyzing Sentiments

In sentiment analysis, it determines the sentiment of each sentence as well as of
the whole document. The language is determined by the API if not specified in
the request. For each document, it returns a document level score between -1 to
1 which shows the overall sentiment and a magnitude which reflects the strength
of that emotion ranges from 0 to +inf. An array of sentences is also returned with
each sentence having a value of text, begin offset, score and magnitude. It is able to
detect 7176 sentences in 3.47 minutes. In the below pie charts, the left one shows

56

the percentage of document level sentiments where many of them are classified
as a neutral. On the right hand side it shows the sentence level sentiments where
roughly all sentiments occurred in equal number.

Figure 5.6: Representation of sentimental distribution among documents and sen-
tences into three categories.

Analyzing Entity Sentiment

This feature returns the sentiment of each entity detected in the document. It re-
turns the similar response as of entity analysis and a list of entity mentions with
value of score and magnitude for that occurrence of an entity. It also returns the
overall sentiment of each entity in the entire document. Entity based sentiments
can be a good mechanism to filter out the entities of threshold below or above
some sentimental score. It helps us in understanding about the attitude of entities
mentioned in the document. There are a total of 42371 entities detected and the
below graph shows the overall sentimental distribution of all entities. Most of the
entities are classified as neutral whereas on average an equal fraction of entities are
positive and negative.

Figure 5.7: Representation of sentimental analysis of entities into three categories.

57

Classifying Content

It assigns one or multiple categories with a confidence score to a document based
on the diversity of the content. There is no such maximum number limit of a cat-
egory assigned to a document. For very small documents of few lines, it throws an
error. For our data set, there are a total 74 categories returned in response. From
74, 41 corresponds to Business and Industrial, 8 relates to People and society and
remaining are around different categories. From this classification of documents,
we can only pick the categories of our relevance based on the threshold of confid-
ence score returned with each category. For our sample data set, we analyze that 25
categories have confidence scores of above or equal to 0.9 and for suitable results
we can ignore the categories below 0.7.

Analyzing Syntax

It inspects the internal structure of the document. It breaks up the input text into
sentences and words and provides linguistic information about them using part of
speech tagging. In response, it returns a list of tokens which have begin offset,
lemma, part of speech tag, tense, voice and many other attributes. It does not
provide any score which can help us in filtering the incorrect tags. It annotates
all the tokens in our documents in 2.43 minutes. For many tokens the tense is
unknown as it is only applicable for the verbs. Based on the need and requirement
of the application, we can filter specific types of parts of speech to evaluate the
document in a context.

5.4 IBM - Watson Natural Language Understanding

IBM Natural Language Understanding service helps us extract relevant insights
from unstructured text at a large scale. It has capability of parsing content from
raw HTML (Hypertext Markup Language), public URL and text. On passing a
public URL, the service by default cleans random text, advertisements, etc before
parsing the content for the better results [28].

It provides the features of detecting entities, categories of document, concepts
discussed in the content, emotions of the content which can be sad, happy, etc,
recognition of keywords, sentiment analysis, relation between entities, extract-
ing metadata of the document and semantic roles which is parsing sentences into
subject-action-object form. All of these features have different parameters which
can be set in our request and that makes this service flexible and easy to use. We
can access all these features via IBM cloud shell or integrating the Natural Lan-
guage Understanding toolkit in any one of supported programming languages. It
automatically detects the language if not specified in the request parameters [28].

Watson is a super computer from IBM which is capable of processing natural
languages and it is trained on out of box machine learning and deep learning models
for text extraction and mining to provide better results with high accuracy for given

58

input. On a free plan, IBM stores customers requested data for the training of
models but for premium plans it cannot due to the confidentiality of the data. Using
IBM watson knowledge studio, we can create our custom models for the purpose
of custom entities detection, sentimental analysis and relation extraction [28].

The features of this API are not available for all supported human languages
hence in the below table 5.8 we list down the feature, its supported language and
configurable parameters.

Table 5.7: IBM Watson Natural Language Understanding Service Cost per
Feature.

Feature Languages Parameters

Concepts
English, French, German,
Italian, Japanese, Korean,
Portuguese, Spanish

Limit
Constraints: value ≤ 50

Emotion English

Default: true
Set this to false if docu-
ment level emotion is not
required.

Entities

English, French, German,
Italian, Japanese, Korean,
Portuguese, Russian,
Spanish, Swedish

Limit
Constraint: value ≤ 250
sentiment, emotion, men-
tions, model Id.

Keywords

English, French, German,
Italian, Japanese, Korean,
Portuguese, Russian,
Spanish, Swedish

Limit
Constraint: value ≤ 250
sentiment, emotion.

Relations
Arabic, English, German,
Japanese, Korean, Span-
ish

Custom Model Id to over-
ride the default model

SemanticRoles
English, German, Japan-
ese, Korean, Spanish

Limit, keywords, entities

Sentiment

Arabic, English, French,
German, Italian, Japan-
ese, Korean, Portuguese,
Russian, Spanish

Default: true
Set this to false if doc-
ument level sentiment is
not required.

Categories

Arabic, English, French,
German, Italian, Japan-
ese, Korean, Portuguese,
Spanish

Limit
Constraints: value ≤ 10

59

5.4.1 Pricing Analysis

IBM charges for the text we process without any underlying cost. The API charges
in terms of natural language units, NLU (10,000 characters). In the Lite plan, 30K
NLU items are processed for free. This plan includes one custom model which
can be built through watson knowledge studio. Each NLU consists of the textual
characters and number of features applied. In the standard plan, we can process as
much NLU as we need in a month. It charges per NLU with the following segment
ranges. For the first 250K units it charges $0.003 per NLU item, above this from
250K+ - 5M it charges $0.001 per NLU item and beyond this it charges $0.0002
per NLU. The cost of custom model building via watson knowledge studio is $800
per month. We can upgrade this plan to premium Tier1, which only provides a few
extra features such as logging of transactions, high availability and service level
agreements on uptime. The training data of models will be stored in an isolated
environment on a single machine. The extra cost of this plan is not listed and can
only be discussed with them by contact [28].

5.4.2 Performance Analysis

We will evaluate performance of features of this service on our sample data set of
60 documents belonging to the category of Marketing from wikipedia. For each
feature, we will analyze the output and execution time. We are integrating this
service into the Java programming language using gradle dependency of version
8.5.0. The cloud instance of natural language understanding provides key informa-
tion for the connectivity such as API key, URL of the service and date of version of
its release. We make a request to this service using analyze() method, which takes
analyzeOptions as a parameter. This parameter consists of all the feature objects
and format of content (text, public URL or HTML), which is text in our case. For
applying more than one analysis on the data we can declare multiple features into a
single features object. The API returns response in JSON object for each requested
feature. Our Java based implementation reads input from local directory and writes
output in the similar directory.

Identify Concepts

It returns the high level concept of the document irrespective of frequency of terms.
In our case, it truly recognizes the concept as Marketing with a confidence score
of 0.9 whereas other terms related to this domain are also returned with a score
above 0.5. The number of concepts is a configurable parameter and we set it to 3
in our experiment and it only takes 23 seconds to determine it. We test it for the
increased number of concepts but on average the execution time remains the same
as it considers more familiar words from that domain with lower confidence score.
Hence in ideal cases, top 5 concepts are good for the understanding of the corpus.

60

Identify Entities

There are a total of 1514 unique entities detected in the entire text of all documents
with following categories, 588 person, 349 Company, 130 organization, 214 loc-
ation, 11 facility, 179 quantity and others. With each entity it mentions the count
of that entity occurrence in the document. The response consists of the following
properties. It returns a relevance score which specifies its importance in the doc-
ument and the confidence score which shows the level of correct detection. The
total entities are very few in number but the confidence score of 50% entities is
0.9, which shows high accuracy. Almost all of the entities have a confidence score
of greater than 0.5. It takes a total execution time of 1.48 minutes.

Identify Keywords

For each document, it returns the unique number of keywords with a count of
occurrences for each keyword and a relevance score. In one document, we can
determine keywords a maximum number of 250 as per the documentation but any
number above this also returns a valid response. It also returns the sentiment and
emotions of the keywords but as per the business needs this information can assist
us to understand the document in a better way. It takes a total execution time of
0.78 minutes.

Identify Relations

It only identifies the sentences in which two entities are related to each other. In
response, it specifies the score, begin and end offset, type of relation among entities
and in our case it determines the 2282 number of sentences in which entities are
related. We can define a threshold of score 0.5 to omit the relations of entities lower
than this value. Furthermore, this information is useful in the extraction of entities
which are related with each other. It takes a total execution time of 4.23 minutes.

Identify SemanticRoles

It provides the analysis of the sentence into subject-action-object analysis, which
is very useful information for the construction of a knowledge graph. The service
automatically ignores the sentences which are not applicable in this format. In our
case, it detects a total 2298 sentences in the whole corpus. It takes a total execution
time of 1.18 minutes.

Identify Sentiments

This feature provides sentiment of the entire text in a document instead of a sen-
tence. In response, it returns a label and score for the document. In our case, 52
documents are classified with positive labels with a score range of (0.6 - 0.8) and

61

the remaining 7 are negative but there is no neutral sentiment for any document. It
takes a total execution time of 0.31 minutes.

Identify Categories

It returns upto five level taxonomy of categories. The number of categories is a
configurable parameter and we set it to 3. For each category, it returns a label
of category, score which shows the degree of correctness and explanation which
is null for all retrieved categories. More than 50% of the result shows the right
category which is Marketing with a score of 0.9. Remaining results were similar
keywords from this domain with lesser value of score but none of category has
score less than 0.5. It takes a total execution time of 0.37 minutes. With 10 numbers
of categories it adds further terms of this domain with less score but takes the same
execution time.

5.5 Comparison of Cloud based Natural Language
Processing Services

The most prominent cloud based natural language processing service providers are
Amazon, Google and IBM. The use case for our company is the parsing of large
textual documents in order to understand the human behaviour about the products
and services of our clients. We will compare features, performance, cost and qual-
ity of results from each service with different perspectives and will draw the out-
come based on our needs. Our analysis is based on the default models of these
services. In the below Table 5.8, we briefly summarize our findings and analysis
for these services.

Table 5.8: Advantages and Disadvantages of these Services.
Advantages Disadvantages

IBM provides more features.
Amazon and Google offer almost same
features but less than IBM.

IBM and Amazon costs the same.
Google is expensive than IBM and
Amazon.

Amazon offers language detection fea-
ture explicitly.

IBM and Google detects language by
default with any mentioned feature but
not explicitly.

IBM is more robust, fast and flexible.
Amazon and Google are slower than
IBM and not configurable.

Google and IBM has defined categories
for corpus classification.

Amazon classifies corpus based on fre-
quency of words.

Amazon offers extra service for parsing
features of health related data.

IBM and Google does not have this fea-
ture yet.

62

In the below Matrix 5.1, we present the ranking of all services in a visualiza-
tion manner based on our analysis in terms of symbols. The high number of star
presents high quality for given column and vice versa. Following the matrix below,
we describe comparison of these services in a detail manner.

Matrix 5.1: Metrics analysis of all services based on the following parameters.
Features Cost Performance Result Flexibility

IBM ***** $ ***** ***** ***
Amazon *** $ ** *** **
Google *** $$$ *** ** **

Natural language processing services take text as an input but that text can be in
multiple file formats such as txt, pdf, html, ppt, web pages, etc. Amazon, Google
both support only raw text whereas IBM supports text as well as html and web
pages. Hence considering availability of multiple options of file formats, we will
choose IBM.

For entity detection, Google API recognizes 6 times more entities than Amazon
but all have very low confidence scores and both of them find repeated entities
separately whereas IBM only returns unique entities along with count of each in-
dividual entity. In total, IBM returns 4 times less entities than Amazon but all have
confidence scores greater than 0.5 which shows high accuracy of default models.
Google returns all entities in the descending order of a salience score whereas
Amazon and IBM does not. In Amazon and IBM, retrieving entities of top score
will add an extra overhead of sorting the list, which has a time complexity of nlogn.
In our case, we assume that the threshold score of the entity below 0.5 will be dis-
carded, hence Google API results will be of no use. With respect to time, IBM has
the fastest response time among all. With the metric of time and quality, we found
that entity detection results from IBM are very useful as compared to Amazon and
Google.

Google provides an explicit feature of analyzing sentiments of entities but sim-
ilar functionality can be achieved in IBM by setting a parameter of sentiment to
true in the identify entities request. IBM also provides the way of determining the
emotions of the entities in the same way but Google does not have this capability
yet. Amazon neither provides sentiment of entities nor emotions.

For keyphrases detection, Google API does not provide this feature. Amazon
returns keyphrases in a very large number but it also considers a high magnitude
of single words as phrases which are not of interest in case of multi-word expres-
sions. IBM gives us the flexibility of the configuration of the number of keywords
to determine in the document whereas Amazon does not. The confidence score of
keywords from IBM is greater than from Amazon and it also takes less amount of
execution time. With IBM we can discover the emotions and sentiments of key-
phrases but not with Amazon. Based on the choice of parameters, time and quality

63

of results we will choose IBM for the purpose of this analysis.

For Sentiment analysis, Amazon returns sentiments of individual sentences rather
than of the whole document. On the contrary IBM returns sentiments of the whole
document instead of sentences. Google only returns sentiments at both levels.
Amazon does not support text with size greater than 5120 bytes and there is no
such limit in Google and IBM. The document level sentiments from Google and
IBM looks opposite, as Google recognized many documents as neutral whereas
IBM marks them positive. In terms of speed, IBM is 10 times faster than Google.
Amazon and Google give output of sentimental score for each sentiment (positive,
negative, neutral and mixed) whereas IBM only gives one label associated with
corresponding score. The intent of text is not known hence we cannot make any
decision based on sentimental results instead based on time IBM stands out.

For detecting the language of the document, Google and IBM do not provide
any explicit feature for detecting it but with each request it automatically detects
the language of the document. On the other hand, Amazon provides a feature of
language detection separately with support of 67 languages. It can also recognize
multiple languages in one document. Hence, Amazon is the optimal choice as it
performs better in language detection as compared to Google and IBM.

For the classification of documents into categories or topics, Google and IBM
have predefined general to specific categories whereas Amazon does not. Amazon
and IBM take an input the number of topics to be assigned to each document and
in output each category is associated with a confidence score. Amazon and Google
discover the relevant categories for our corpus with a low relevance score as com-
pared to IBM, which determines the exact same category with a very high confid-
ence score of 0.9. IBM also provides a similar feature of analyzing the concept
of the document based on the content instead of frequency of words and it will be
beneficial to discover the concept and category from the same service. The result
of IBM is better than Amazon and Google in terms of quality and based on another
similar dedicated feature of concept hence we will select IBM for this feature.

Apart from these common features in all services, IBM provides capability of
detecting sentences which follows the structure of subject-action-object which is
known as semanticRoles. It also offers the ability to find the sentences where two
entities are related to each other. Such pieces of information are very useful for
building the knowledge graphs and assist to relate multiple documents with each
other. Each feature of IBM provides the configuration of parameters which can be
defined based on the need of the application while Amazon and Google does not
have this flexibility. We can set such parameters to false when not needed and in
this way we can save our extra computational time.

The primary criteria of the selection of natural language processing service is

64

the quality of output and performance and secondary will be cost. In our case,
we find IBM the most useful service based on the performance, quality of output,
features and flexibility of configuring the parameters. From the perspective of cost,
all services charge based on the number of characters without any upfront costs.
For 1M characters, Amazon and IBM charges $0.33 and Google does $1 which
shows that Google is three times more expensive than Amazon. Amazon and IBM
charge almost the same for the text processing but IBM provided better results.
Hence this is another reason for choosing IBM.

5.6 Summary

In this project, we inspect and analyze three cloud based natural language pro-
cessing services from the most renowned cloud providers which are Amazon, Google
and IBM. The performance analysis of individual service is evaluated based on a
common data set of wikipedia articles from the category of Marketing. Each of
this service offers essentially similar common features but with different request
and response parameters.

The first three parts of this chapter briefly described the features of each service
along with performance analysis on the sample data set and its pricing. From the
perspective of easy to understand, Amazon has very detailed documentation, IBM
has access to all information in one place and Google has a poor structure of the
content. We found that Amazon has dedicated service for the processing of health
data which Google and IBM do not have yet.

In the comparison Section 5.5, we compared all features of services with each
other. Based on the results we find that IBM performs better than Amazon and
Google. In terms of cost, IBM and Amazon are three times cheaper than Google.
IBM offers many extra features highlighted in Section 5.4.2 which can be very
useful and supportive for the understanding of text. IBM is also comparatively
faster than Google and Amazon. In a nutshell, we prefer IBM Natural Language
Understanding service for the textual processing. With the help of cloud based
natural language processing service, our company will not only save a significant
cost, time and effort of the engineering team but the complexity of maintenance is
also reduced with better and quick results.

65

66

Chapter 6

Conclusions and Future Work

The growing amount of textual data from different sources imposes new challenges
for its processing in an appropriate amount of time. Data processing pipelines are
designed for the purpose of its handling in an efficient way. The process of extract-
ing meaningful insights from unstructured data will help companies to understand
their potential market and customer needs. We have a very large amount of data
from different clients in the form of PDF and PPT documents. In this ongoing
research and development project, we are analyzing different libraries and tech-
nologies to develop a data processing pipeline for the construction of knowledge
graphs. Knowledge graphs are widely used as a means of discovering information
quickly and easily.

The processing of PDF and PPT documents has various challenges of parsing
the textual data due to its complex structure. This format of document is filled
with floating text instead of specific tags and sections. In order to extract insights
from this raw text, we need to process natural languages which is achieved with
the help of natural language processing techniques. We design our approach to this
data processing pipeline in the first research question. In modern software devel-
opment, there are many cloud based services available to overcome the challenges
of in house development and maintenance. Natural language processing is the core
component in our pipeline and designing the core models of machine learning re-
quires extra effort from engineering perspective. As a part of the second research
question we analyzed the cloud based natural language processing services, which
can help us to analyze our text in an easy and optimal way.

In this chapter, we precisely summarize our work and present remarks about
research questions which are explained in a very detail in Chapter 4 and Chapter
5. We also highlight the possible future work which can be accomplished on this
existing work.

67

6.1 Conclusion

The section of conclusion highlights our essential findings and results gathered
from the implementation and experimental analysis of our research questions.

RQ1: How to design and implement a data processing pipeline for generating
knowledge graphs?

We proposed a design, architecture and implementation of a data processing
pipeline for the construction of knowledge graphs. Our pipeline consists of three
stages and two data stores, Mongo database and Neo4j. The pipeline begins with
the extraction and parsing of documents of type PDF and PPT. In our research,
we design our custom implementation by integrating two different libraries for the
parsing of documents. One is Apache PDFBox which is free and open source and
second one is Aspose.PDF which is a commercial library and supports the parsing
of both formats of document, PDF and PPT. The following extracted text in the
form of sentences and paragraphs from this stage is stored in the Mongo database.

With the help of experiments we evaluated the performance of parsers and found
that Apache PDFBox is approximately 10 times faster than Aspose.PDF for large
data sets. The second stage of this pipeline applies natural language processing
techniques on this raw text and we observed that it is a major component of this
pipeline. Our implementation of this component is using Stanford CoreNLP library
which provides basic building blocks for the analysis of entity recognition, relation
extraction, semantic analysis and part of speech tagging with the help of default
models. For the processing of very large files, we proposed two different solutions
for the problem of out of memory exception. Either we can perform different an-
notators in one service by chunking large amounts of text into several batches or
each annotator can run as a different instance of service in a parallel fashion. In our
implementation, we are running all annotators in one service in a single go. The
results of this service are mapped into a graph data model and stored in the Neo4j
graph database.

The graph data model is composed of nodes and relationships with attributes
defining their characteristics. The knowledge graph service is the last stage of this
pipeline. This service is generating insights and discovers different patterns in the
form of graph structured data stored in Neo4j and answers user queries in the form
of interactive graphs. The Neo4j database is integrated in a spring boot application
using different drivers and package managers. The flow of data is shown in a ar-
chitecture diagram of Figure 4.4. As a part of this research question, we evaluate
our design using a sample data set of category Marketing from wikipedia. Our
proposed architectural design and implementation of the data processing pipeline
integrates already existing components in such a way which has not been done pre-
viously to support the construction of knowledge graph from unstructured text. We

68

found that, this representation of information will enable customers to understand
the relation in the data and improve their quality based on data driven businesses.

RQ2: How to choose the most suitable cloud based natural language processing
service based on cost, performance analysis along with features and flexibility of
individual service with other cloud providers?

In our data processing pipeline, we found that natural language processing plays
a key role in discovering the information around the raw text. It is observed that
with the evolution of technology, cloud computing provides alternate solutions to
improve the process of development and we are only charged as per use without
any hidden cost. As a part of this project, we did our research and experiment
on three cloud based natural language processing services from well known cloud
providers which are Amazon, Google and IBM. We deeply analyzed each service
from different perspectives such as features, cost, quality of output, performance
and ease of use. We evaluated all services based on a sample data set of category
Marketing from wikipedia.

The above mentioned three services are tested based on the default models. In
consideration of features, we found that Amazon and Google offer almost similar
features with small variants in it. Besides that, we also observed that IBM provides
some extra features beyond Amazon and Google, which gives some extra bits of
information out of text. We learned that results of Google Cloud Natural Language
API are not desirable as compared to Amazon and IBM. On the other hand, we
noticed that Google charges three times more than Amazon and IBM. Amazon and
IBM charge almost the same cost for features but from experimental evaluation we
found that IBM produced better results. The classification of large corpus into rel-
evant categories is a very powerful feature available in these three services but we
discovered that only Google and IBM have predefined categories whereas Amazon
ranks the document based on the frequency and relevancy of words then sorts the
topics based on a weight.

We also found that each service has different response parameters for similar
features. From the perspective of setting custom values in request parameters, IBM
is very flexible in the configuration of input parameters whereas there are no such
input parameters in Amazon and Google. The custom parameters for any request
enable us to retrieve only what we need except extra information. Moreover, we
noticed that IBM produced useful results and comparatively faster than Amazon
and Google. With the use of cloud based natural language processing services we
can reduce the development time and complexity of engineering efforts with a little
cost, as per our use.

69

6.2 Future Work

In this project, we design our own data processing pipeline for the construction
of knowledge graphs using unstructured data. In addition to this, we also perform
experimental evaluation of cloud based natural language processing services. How-
ever, due to the limited amount of time for this thesis, we have some suggestions to
extend this work further in future. Our suggestions for future work are summarized
as follows.

• To enrich more data sources into this pipeline, we can integrate speech-to-
text services for further analysis of data. Furthermore, the pipeline is re-
quired to test more data sets from multiple categories as we evaluate our
implementation based on one category.

• In cloud based natural language processing services, only text files are sup-
ported. The support for other formats of documents is required mainly, PDF
and PPT. Apart from this, to achieve better results for Amazon and Google
the optional configuration of input parameters is also needed.

• For ensuring high availability of the services on heavy load, this pipeline is
required to be deployed in the form of a cluster of running multiple instances
of each service. On top of this, any orchestration tool can help to achieve
this task, such as Kubernetes. The automation of pipeline stages can be
automated using any pipeline automation tools such as Airflow.

70

Bibliography

[1] 3 ways to build an etl process with examples — panoply.
https://panoply.io/data-warehouse-guide/
3-ways-to-build-an-etl-process/. (Accessed on 08/14/2020).

[2] About - company - aspose.com. https://company.aspose.com/. (Accessed
on 08/14/2020).

[3] Amazon comprehend - natural language processing (nlp) and machine learning (ml).
https://aws.amazon.com/comprehend/. (Accessed on 08/14/2020).

[4] Amazon comprehend medical. https://aws.amazon.com/comprehend/
medical/. (Accessed on 08/14/2020).

[5] Apache pdfbox — a java pdf library. https://pdfbox.apache.org/. (Ac-
cessed on 08/14/2020).

[6] Automl natural language documentation. https://cloud.google.com/
natural-language/automl/docs. (Accessed on 08/14/2020).

[7] A beginner’s guide to the data science pipeline — by randy lao —
towards data science. https://towardsdatascience.com/
a-beginners-guide-to-the-data-science-pipeline-a4904b2d8ad3.
(Accessed on 08/14/2020).

[8] Category:marketing - wikipedia. https://en.wikipedia.org/wiki/
Category%3AMarketing. (Accessed on 08/14/2020).

[9] Cloud natural language — google cloud. https://cloud.google.com/
natural-language. (Accessed on 08/14/2020).

[10] Data pipeline architecture. https://www.snaplogic.com/glossary/
data-pipeline-architecture. (Accessed on 08/13/2020).

[11] Difference between structured, semi-structured and unstructured
data - geeksforgeeks. https://www.geeksforgeeks.org/
difference-between-structured-semi-structured-and-unstructured-data/.
(Accessed on 08/14/2020).

[12] Etl database - a guide to etl/elt for data engineers and data analysts. https://
www.stitchdata.com/etldatabase/. (Accessed on 08/14/2020).

[13] Etl (extract, transform, and load) process. https://www.guru99.com/
etl-extract-load-process.html. (Accessed on 08/14/2020).

[14] Getting started: the 3 stages of data infrastructure — by nate
kupp — medium. https://medium.com/@natekupp/
getting-started-the-3-stages-of-data-infrastructure-556dac82e825.
(Accessed on 08/14/2020).

[15] Github - dstlry/dstlr: scalable knowledge graph construction from unstructured text.
https://github.com/dstlry/dstlr. (Accessed on 08/13/2020).

[16] Github - neo4j/neo4j-ogm: Java object-graph mapping library for neo4j. https:
//github.com/neo4j/neo4j-ogm. (Accessed on 08/14/2020).

71

[17] Homepage — yahoo answers. https://answers.yahoo.com/. (Accessed on
08/14/2020).

[18] Introduction to cloud computing. - dev. https://dev.to/daviddennis02/
introduction-to-cloud-computing-5cg. (Accessed on 08/14/2020).

[19] Introduction to mongodb — mongodb manual. https://docs.mongodb.
com/manual/introduction/. (Accessed on 08/14/2020).

[20] An introduction to natural language processing (nlp) — by odsc -
open data science — medium. https://medium.com/@ODSC/
an-introduction-to-natural-language-processing-nlp-8e476d9f5f59.
(Accessed on 08/13/2020).

[21] Neo4j graph platform – the leader in graph databases. https://neo4j.com/.
(Accessed on 08/14/2020).

[22] Overview - corenlp. https://stanfordnlp.github.io/CoreNLP/. (Ac-
cessed on 08/14/2020).

[23] Pipeline (computing) - wikipedia. https://en.wikipedia.org/wiki/
Pipeline_(computing). (Accessed on 08/13/2020).

[24] Quora - quora, where you can exchange knowledge and understand the world better.
https://de.quora.com/. (Accessed on 08/13/2020).

[25] A simple introduction to natural language processing — by
dr. michael j. garbade — becoming human: Artificial in-
telligence magazine. https://becominghuman.ai/
a-simple-introduction-to-natural-language-processing-ea66a1747b32.
(Accessed on 08/13/2020).

[26] Spring into neo4j with spring data 5, spring boot 2, and neo4j! — by jennifer
reif — neo4j developer blog — medium. https://medium.com/neo4j/
spring-into-neo4j-with-spring-data-5-spring-boot-2-and-neo4j-3962fb1ea067.
(Accessed on 08/14/2020).

[27] Stack overflow - where developers learn, share, & build careers. https://
stackoverflow.com/. (Accessed on 08/13/2020).

[28] Watson natural language understanding - overview — ibm. https://www.ibm.
com/cloud/watson-natural-language-understanding. (Accessed
on 08/14/2020).

[29] What is a graph database? - neo4j graph database platform. https://neo4j.
com/developer/graph-database/. (Accessed on 08/13/2020).

[30] When to use (and not to use) mongodb - dzone database. https://dzone.com/
articles/why-mongodb. (Accessed on 08/14/2020).

[31] Wikimedia foundation. https://wikimediafoundation.org/. (Accessed
on 08/14/2020).

[32] Wikipedia. https://www.wikipedia.org/. (Accessed on 08/14/2020).
[33] Wikipedia-api · pypi. https://pypi.org/project/Wikipedia-API/.

(Accessed on 08/14/2020).
[34] Wtf is a knowledge graph? — hacker noon. https://hackernoon.com/

wtf-is-a-knowledge-graph-a16603a1a25f. (Accessed on 08/13/2020).
[35] Oumayma Chergui, Ahlame Begdouri, and Dominique Groux-Leclet. A knowledge-

based approach for keywords modeling into a semantic graph. International Journal
of Information Science and Technology, 2(1):12–24, 2018.

[36] Ryan Clancy, Ihab F Ilyas, and Jimmy Lin. Scalable knowledge graph construction
from text collections. In Proceedings of the Second Workshop on Fact Extraction
and VERification (FEVER), pages 39–46, 2019.

[37] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. SE-
MANTiCS (Posters, Demos, SuCCESS), 48:1–4, 2016.

72

[38] Trey Grainger, Khalifeh AlJadda, Mohammed Korayem, and Andries Smith. The
semantic knowledge graph: A compact, auto-generated model for real-time traversal
and ranking of any relationship within a domain. In 2016 IEEE International Con-
ference on Data Science and Advanced Analytics (DSAA), pages 420–429. IEEE,
2016.

[39] Natthawut Kertkeidkachorn and Ryutaro Ichise. T2kg: An end-to-end system for
creating knowledge graph from unstructured text. In Workshops at the Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[40] Kundan Kumar and Siddhant Manocha. Constructing knowledge graph from un-
structured text. Self, 3:4, 2015.

[41] Bhavana Dalvi Mishra, Niket Tandon, and Peter Clark. Domain-targeted, high preci-
sion knowledge extraction. Transactions of the Association for Computational Lin-
guistics, 5:233–246, 2017.

73

