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Summary

The aim of this thesis is to derive bicycle rider control models, based on exper
imental data, that mimic the rider in his balance control task at various forward
speeds. These rider control models can help to understand cyclists falls, improve
training techniques, assess the handling properties of new bicycle designs and cre
ate active balance control systems (e.g. steer assist). This thesis consists of 9
Chapters; Chapter 1 introduces relevant background theory and identifies the re
search gap.

Chapter 2 presents some effects of crosswind on the lateral dynamics of a bicycle
and on rider control. The Chapter gives an insight on how rider control modelling
can be used to assess crosswind related falls. Simulations indicated that crosswind
has a considerable effect on the stability and control of the bicycle. Increasing wind
speed can make an uncontrolled bicycle resonate for all forward speeds. The rider
control effort increases considerably and a constant steer torque is required to keep
the bicycle at a straight heading.

Chapter 3 investigates the dynamic response of the bicycle rider’s body during ver
tical, foreandaft and lateral perturbations in order to understand how riders are
using postural control to restrain excessive movements and prevent falling off the
seat. The analysis is presented by means of apparent mass (APMS) and seatto
sternum transmissibility (STST) functions in the frequency domain. Measured forces
at saddle, steer and pedals revealed that for each individual motion the rider applied
forces in all three directions. Heave and surge motion interacted with each other
and had similar responses. Sway showed totally different responses and weak inter
action with the other two motions. Resonant frequencies were considerably higher
in the vertical direction as compared to the longitudinal direction. Lateral measure
ments showed no resonance, and trunk postural control was evident in the APMS.
The results of this Chapter can be used to identify the parameters of biodynamic
lumped humanmachine models. Such models can support the development of
more comfortable and safe bicycle designs and suspension systems.

Chapter 4 presents the design and implementation of an instrumented steerby
wire bicycle (SBW) that was designed and built at TU Delft bicycle laboratory. The
SBW was used as a versatile experimental platform to capture the rider’s responses
with (haptics on) and without steering torque feedback (haptics off) during lateral
perturbation experiments. Simulations and testing of the steerbywire system in
dicated good tracking performance between 02.5 Hz and almost identical steer
stiffness with the CarvalloWhipple bicycle model in a frequency range of 03 Hz
and in a forward speed range of 010 m/s.

8
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The bicycle served its purpose successfully, the responses of the rider’s control
actions with lateral perturbations were captured by means of impulse response
functions (IRFs) in Chapter 5. Results failed to indicate any statistically significant
difference between the two steering configurations (haptics on/ off).

Chapter 6 presents and validates a parametric rider control model using data pre
sented in Chapter 5 and uses this model to further assess the effect of haptic
feedback in the balance task of bicycling. Bicycle and rider mechanics have been
modelled using the CarvalloWhipple bicycle model extended with rider inertia. A
balancing and heading controller was added, capturing visual, vestibular and pro
prioceptive sensory information using feedback of roll angle, roll angle rate, heading
angle, heading angle rate, steering angle and steering torque, taking into account
muscular activation dynamics. Nonparametric and parametric model responses
failed to indicate any statistically significant difference between the haptics on/off
configurations. However, further analysing the haptic off configuration it became
apparent that the rider still receives relevant torque feedback due to the inertia of
the handlebars. The reduced feedback was proven to be adequate for the rider to
control the bicycle without any major steering discrepancies. To further evaluate
the effect of torque feedback in simulations we disconnected the handlebar torque
feedback loop of the parametric rider model. In addition, we also disconnected the
handlebar position and velocity feedback. Results showed that handlebar torque
feedback is significantly important during the riding process. This knowledge might
be crucial for the development of new safety systems that could further optimize
bicycle handling and assist the rider’s steer control actions in critical situations pre
venting falls.

Chapter 7 outlines the design and hardware selection for a bicycle simulator. The
design requirements together with a detailed description of the hardware selection
and testing are presented. The simulator was designed to explore human control
behaviour in a safe environment. Preliminary tests showed that all subjects can bal
ance and manoeuvre the bicycle when a simplified bicycle model is used to generate
haptic feedback and project the dynamics in the virtual environment. Visual roll of
the horizon turned out to be an effective tool for creating the illusion of physical roll
but motion sickness was reported.

This thesis ends with the discussion and conclusion Chapters 8, 9 highlighting the
developed experimental facilities and main findings of the research. The Chapters
herein investigate the effects of external perturbations on bicycle stability and hu
man control using numerical modelling and experimental bicycles capable of mea
suring kinematics and rider applied forces. This interdisciplinary approach delves
into the foundations of human control modelling from both a biomechanical and
biomechatronics engineering perspective in an effort to improve cycling safety and
reduce falls.





1
Introduction

Problem statement
According to the European Road Safety Observatory [1] in 2016 about 2.000 cyclists
were killed in road accidents throughout the EU. Despite the overall reduction in
the road toll (down 40% from 2007), the proportion of cyclingrelated fatalities 1 in
creased, from 6% in 2007 to 8% in 2016, see Figure 1.1. These preventable deaths
have created a significant need to better understand the characteristics specifically
to this user group. The majority of the cycling accidents are ”single vehicle acci
dents”, meaning that there are no other road users involved [2]. The cyclists simply
fall off their bicycles due to loss of steering and balance control. To improve cycling
safety and prevent the actual falls a quantitative approach is necessary not only to
reveal the cause of these accidents but also to create models that mimic the rider
in his balance control task.

Research gap
Even though over 50 percent of the human population knows how to ride a bike,
yet the way humans control and balance a bicycle has not been fully understood or
quantified from a scientific point of view. The majority of studies available in the
literature focus on bicycle dynamics and do not incorporate a rider model [3–6]. A
detailed review on bicycle dynamics and rider control is given by A. L. Schwab et al.
[7]. Only two studies can be found in the literature that try to identify the effect of
rider motion [8] and rider control [9] on bicycle dynamics and only one that actually
investigates the effect of a passive rider model on the lateral dynamics of a bicycle
[10].

1Fatality refers to any road user who was killed outright or who died within 30 days as a result of the
accident.

1
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Figure 1.1: Number of cyclist fatalities and percentage of all road fatalities, EU, 20072016.

Thesis embedding
This thesis is part of the MOTORIST (Motorcycle Rider Integrated Safety) project
Nr.608092, www.motoristptw.eu. The objective of the research activities of
the MOTORIST project was to make the use of Powered Two Wheelers (PTWs)
safer. The project was divided into three work packages (WPs) with three separate
but related goals.

• WP1 aimed to improve the rider’s skills with training strategies that are derived
from indepth accident data and from a quantification of rider behaviour in
critical situations.

• WP2 aimed at developing advanced safety systems that improve the interac
tion between the rider and the PTW by modelling the rider.

• WP3 considered the cases where the crash is unavoidable and will develop
personal protective equipment to protect the riders, given the input conditions
from WP2 at the moment right before impact.

The work of this thesis covers the position of early stage researcher (ESR 2.2) and
relates to WP2 of the MOTORIST project.

Thesis aim
The aim of this thesis is to derive bicycle rider control models, based on experimental
data, that mimic the rider in his balance control task at various forward speeds.
These rider control models can help to understand cyclists falls, improve training
techniques, assess the handling properties of new bicycle designs and create active
balance control systems (e.g. steer assist).

www.motorist-ptw.eu
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Methods
To derive these bicycle rider control models three experimental setups have been
built. The first is to determine the passive rider contribution to the dynamic model
of a CarvalloWhipple type of bicycle model [5] to create a dynamic riderbicycle
system. A bicycle mockup is equipped with sensors measuring threedimensional
seat and trunk accelerations and rider’s force responses at the seat, handlebars
and footpegs. The bicycle mockup is driven by a hexapod motion platform that
generates random noise perturbations in all translational motions. The responses
of the rider’s body are captured by means of threedimensional force interactions
at the seat, handlebars and footpegs in terms of apparent mass, and rider’s trunk
motion onedimensional as function of seat motion as seattosternum transmissi
bility. The second is a fully instrumented steerbywire bicycle to collect measured
data for rider control identification under random lateral perturbations. The steer
bywire bicycle is equipped with multiple sensors measuring most bicycle states
required for identification, including steer torque, steer angle, roll angle and for
ward velocity. Two servomotors are used to control the fork and handlebars, and a
rear wheel hubmotor with cruise controller to ride the bicycle at constant speeds.
Rider responses are captured by linear impulse response functions and are used to
evaluate riderbicycle models in their ability to capture human behaviour. The third
is a fixed base bicycle simulator to execute rider control experiments in a safe man
ner. The bicycle simulator is equipped with a haptic steering device and sensors
capable of measuring the applied steer torque, angle and forward velocity. The
virtual environment is developed in the Unity® game engine and can be displayed
to the rider via standard monitors or virtual reality headset such as the Oculus Rift.
Preliminary rider tests using the bicycle simulator are conducted in order to eval
uate the ability of the subjects to balance and manoeuvre the bicycle in a virtual
environment.

Impact to society
The work presented in this thesis has revealed a number of interesting conclu
sions for both bicycle dynamics and rider control. The influence of crosswind on
the lateral dynamics of a bicycle indicated resonance at certain wind speeds and
loss of control. The dynamic response of the rider’s body subjected to translational
motions indicated resonantlike behaviour for the vertical and foreandaft motions
and complex human control during the sway motion. The steerbywire bicycle
outperformed and proved to be extremely useful as a platform to conduct rider
control identification experiments which revealed that steering feedback is impor
tant for balancing a bicycle. Future applications may be able to utilize the methods
and results of this thesis to help objectively design safer bicycles by the following
steps:
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• improve the rider’s skills with training strategies that are derived from a quan
tification of rider behaviour in critical situations.

• improve bicycle stability by artificially evaluating the handling, stability and
controllability of new bicycle designs under the influence of external distur
bances.

• evaluate the performance and comfort of given vibration isolators by incorpo
rating a passive rider model.

• improve bicycle stability by developing new safety systems such as steer as
sist.

Thesis structure
The thesis consists of 9 Chapters; Chapter 1 introduces relevant background the
ory in order to reveal the motivation of this study and research gap prior to this
thesis. Chapter 2 examines the effect of crosswind on the lateral dynamics and
control of the bicycle in a wide range of forward speeds and various crosswinds,
by means of computer model analysis and simulation. A threedegreesoffreedom
bicycle model is used together with an experimentally identified rider controller.
Chapter 3 investigates the dynamic response of the bicycle rider’s body during
translational perturbations, in an effort to improve twowheeler safety and com
fort. A bicycle mockup is equipped with sensors measuring threedimensional seat
and onedimensional trunk accelerations and rider’s force responses at the seat,
handlebars and footpegs. The bicycle mockup is driven by a hexapod motion plat
form that generates random noise perturbations. Chapter 4 describes the design
and implementation of a steerbywire bicycle. A linear multibody model for the
bicycle is used to design the system. The model is based on the threedegreeof
freedom CarvalloWhipple bicycle model. The model is extended by separating the
handlebar assembly from the fork assembly, which introduces an additional rota
tional degree of freedom. The performance of the steerbywire bicycle is evaluated
in both computer simulations as well as reallife tests. Chapter 5 presents the ef
fect of haptic feedback in the balance task of bicycling during lateral perturbation
tests. The steerbywire bicycle described in Chapter 4 is used as an experimental
platform to analyse the rider response with (haptics on) and without (haptics off)
steering feedback. The response of the rider’s control actions is represented in the
time domain by means of impulse response functions (IRFs). To further examine
the effect of proprioceptive feedback on the balance and control of a bicycle, three
parametric rider models with increase complexity are presented in Chapter 6. Two
metrics are used to assess the performance of the simulated and actual responses.
The covariance coefficient (CV) of the estimated controller parameters is used as
a measure of uncertainty, whereas the variance accounted (VAF) as a measure of
fitting between the responses. Chapter 7 outlines the design and hardware se
lection for a bicycle simulator. The design requirements together with a detailed
description of the hardware selection and testing are presented. The thesis ends
with the discussions and conclusions Chapter 8, 9 highlighting the main findings of
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2.1. Abstract
The bicycle, being unstable at low speed and marginally stable at high speed, is
sensitive to lateral perturbations. One of the major lateral perturbations is cross
wind, which can lead to accidents and fatalities. Here we investigate the effect
of crosswind on the lateral dynamics and control of the bicycle in a wide range of
forward speeds and various crosswinds, by means of computer model analysis and
simulation. A low dimensional bicycle model is used together with experimentally
identified rider control parameters. The crosswind forces are obtained from a re
cent experimental study. Analysis and simulation show that crosswind decreases
the stability of the bicycle and is clearly a safety issue.

Keywords
Bicycle, crosswind, dynamics, control, stability, handling.

2.2. Introduction
Aerodynamic drag in bicycling has been studied extensively, with the main goal to
reduce drag and improve performance, see f.i. [1]. Only very few studies have
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been done on the effect of crosswind in bicycling, one of the first being Godthelp
et al. [2]. Nathan Barry et al. [3] measured the effect of crosswinds and wheel
selection on the aerodynamic behavior of a cyclist. In competitive cycling the need
for speed with less physical effort has also lead researchers to study the aerody
namic drag interactions between cyclists in a team pursuit [4]. Belloli et al. [5]
investigated drafting effects between two cyclists by wind tunnel tests. Blocken et
al. [6, 7] investigated the upstream effect on the cyclist by a following car, and a
motorcycle using (CFD) simulations and wind tunnels tests. Kyle et al. [8] present a
review on the history of aerodynamics in cycling and physical factors that influence
performance.

Here we study the effect of crosswind on the lateral dynamics and control of the
bicycle by means analysis and simulation on a computational model. Crosswind is
a lateral perturbation on bicycling. The bicycle, being unstable at low speed and
marginally stable at high speed, is very sensitive to such a lateral perturbation, and
there is a clear safety issue here. Although the total number of accidents caused
by crosswind is small (5%), the effect is large since the majority of these accidents
lead to severe or fatal accidents [9].

This paper is organized as follows. After this introduction the methods for model
analysis and simulation are described. Next some results of various cases are pre
sented and discussed, and the paper ends with some conclusions.

2.3. Methods
To study the effect of crosswind on the dynamics and control of a bicycle three basic
ingredients are needed: a bicycle model, crosswind data, and a bicycle rider con
troller. For the bicycle model the recently benchmarked low dimensional Carvallo
Whipple bicycle model [10] is used. This is a minimal, threedegree of freedom,
model of a bicycle rider system that is still able to show realistic lateral dynamics.
The lateral forces generated by the crosswind are obtained from a recent experi
mental study by Fintelman et al. [11]. They measured the aerodynamic forces on
a fullscale bicycle with mannequin for a variety of crosswind angles ranging from
090 degrees in a wind tunnel. In order to study the effect of crosswind in the
unstable forward speed range of the bicycle, a realistic rider control model is added
to the bicycle model. The added controller is a linear steer torque controller with
full state feedback, where the feedback gains were obtained experimentally from
a system identification process on a real bicycle rider system riding on a treadmill
[12].

The effect of crosswind is studied by means of time series analysis on the models,
which are obtained by numerical integration of the equations of motion. Although
the lateral dynamics can be described by a set of linear differential equations [10],
the large change in heading angle of the bicycle at a spacefixed wind speed angle,
adds a nonlinear element to the analysis.
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2.3.1. Bicycle model
For the lateral bicycle dynamics the low dimensional CarvalloWhipple bicycle model
is used. This model, as shown in Figure 2.1, is fully described and benchmarked
by Meijaard et al. [10]. For small nominal motions of the upright position, the
longitudinal and lateral motions are decoupled. The forward dynamics can be de
scribed by one degree of freedom, the forward speed 𝜐. Here we assume constant
forward speed. The lateral dynamics can be described by twodegreesoffreedom:
the roll angle of the rear frame, denoted by 𝜙, and the steering angle between
the rear frame and the front frame, denoted by 𝛿. The linearized equations for the
lateral motion, if the bicycle is moving at a constant forward velocity 𝜐, have the
structure

M�̈� + 𝑣C1�̇� + [𝑔K0 + 𝑣2K2]q = T (2.1)

where q = [𝜙, 𝛿]𝑇 is the vector of generalized coordinates, the degreesoffreedom,
T = [𝑇𝜙 , 𝑇𝛿]𝑇 is the vector of generalised forces, M is the mass matrix, 𝜐C1 is the
nonsymmetric velocity sensitivity matrix that is linear in the velocity, and 𝑔K0 +
𝑣2K2 is the nonsymmetric stiffness matrix that consists of a symmetric part that
depends on the acceleration of gravity g and a part that is quadratic in the forward
velocity 𝜐. The generalized forces are 𝑇𝜙, an externally applied roll moment to
the rear frame and 𝑇𝛿, an applied actionreaction steer torque between the front
frame and the rear frame. Expressions for the entries of the matrices in terms of
geometric and mass parameters of the bicycle can be found in [10]. Here we use
the values as presented by Schwab et al. [12], since for this specific bicycle rider
configuration we are able to add, later on, experimentally determined rider control
parameters.

Although the twodegreesoffreedom fully describe the dynamics of the bicycle,
the kinematics of the bicycle, i.e., the position of the rear contact point P on the
plane and the heading of the bicycle, described by the yaw angle of the rear
frame 𝜓, are described by the following set of first order differential equations,
�̇� = (𝜐

2𝛿+𝑐�̇�
𝑤 ) cos 𝜖, ̇𝑥𝑝 = 𝜐 cos𝜓, and ̇𝑦𝑝 = 𝜐 sin𝜓, with the wheelbase 𝑤,

the front wheel trail 𝑐 and the head angle 𝜖, see Figure 2.1. Finally, the po
sition of the front wheel contact point Q, which can be used for animation of
the motion, can be calculated from the state variables and the kinematics as,
𝑥𝑄 = 𝑥𝑃 +𝑤𝑐𝑜𝑠𝜓 + 𝑐𝛿 cos 𝜖 sin𝜓, and 𝑦𝑄 = 𝑦𝑃 +𝑤 sin𝜓 + 𝑐𝛿 cos 𝜖 cos𝜓.

2.3.2. Crosswind
For the aerodynamic forces the experimentally obtained data from Fintelman et al.
[11] is used. They measured, in an open subsonic wind tunnel, the forces and mo
ments exerted by the wind on a fullscale bicycle with mannequin. Measurements
were done at a constant wind speed 𝑈∞ of 9.91 m/s and for a variety of angles
of attack 𝛽 from 0 to 90 degrees. They present their results in the form of force
and moment coefficients, 𝐶𝑥𝐴, such that the forces and moments can be calcu



2.3. Methods

2

9

(a) (b)

Figure 2.1: The low dimensional CarvalloWhipple bicycle model with coordinates and main dimensions;
(a) side view with rear frame roll angle 𝜙, rear frame yaw angle 𝜓, front frame to rear frame steer angle
𝛿, wheelbase w, front wheel trail c, and head angle 𝜖, (b) threedimensional position and orientation of
the bicycle model in the space fixed Oxyz coordinate system, with rear and front wheel contact points
P and Q, figures from [10, 13].

lated from 1
2𝜌𝐶𝑥𝐴𝜐𝛼

2, with the specific mass of the air ρ and the apparent total
wind speed 𝜐𝛼. For a stationary bicycle 𝜐𝛼 = 𝑈∞. For the lateral dynamics the side
force and roll and yaw moment coefficients are important. These three coefficients
determine the side force 𝐹𝑦 and its point of application (𝑥𝑠 , 𝑧𝑠) in the bicycle plane
(where the coordinate system of Figure 2.1 is used), as in

𝐹𝑦 = −12𝜌𝐶𝑥𝐴𝜐𝛼
2, 𝑥𝑠 =

𝐶𝑦𝐴
𝐶𝑠𝐴 +

𝑤
2 , 𝑧𝑠 = −

𝐶𝑟𝐴
𝐶𝑠𝐴 (2.2)

The side force 𝐹𝑦 can be transformed to the applied generalised torques 𝑇𝜙 and
𝑇𝛿, as used in the bicycle model, by means of the principle of virtual power. Or
in other words, the virtual power of the side force is 𝐹𝑦𝛿 ̇𝑦𝑠 should be equal to the
virtual power of the applied generalised torques 𝑇𝜙𝛿�̇� + 𝑇𝛿𝛿�̇� for arbitrary virtual
generalised angular velocities 𝛿�̇� and 𝛿�̇�. The virtual velocity of the point of ap
plication of the side force in the ydirection is 𝛿 ̇𝑦𝑠 = −𝑧𝑠𝛿�̇� + 𝑥𝑠𝛿�̇�, together with
the kinematic equation for the yaw rate, �̇�, expressed in steer rate and steer angle,
and keeping only virtual velocities, leads to 𝛿 ̇𝑦𝑠 = −𝑧𝑠𝛿�̇� + 𝑥𝑠(𝑐/𝑤) cos 𝜖𝛿�̇�. Then
the principle of virtual power results in the following expressions for the generalised
torques due to crosswind,

𝑇𝜙 = −𝐶𝑟𝐴
1
2𝜌𝜐𝛼

2, 𝑇𝛿 = −(𝐶𝑦𝐴 +
𝑤
2 𝐶𝑠𝐴)(𝑐/𝑤) cos 𝜖

1
2𝜌𝜐𝛼

2 (2.3)

Unfortunately, Fintelman et al. [11] did not measure the reaction steer torque which
kept the steering angle zero. For the crosswind it is assumed that absolute wind
speed, with respect to the inertial coordinate system Oxyz, is constant in size, 𝜐𝑤
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and direction, 𝛼, see Figure 2.2 (c). The apparent wind speed with respect to the
bicycle, 𝜐𝛼, is the vectorial sum of the absolute wind speed minus the forward speed
of the bicycle. With the bicycle forward speed 𝜐, and bicycle heading 𝜓, the size
and direction of the apparent wind speed with respect to the bicycle are,

𝜐𝛼 = √𝜐2 + 2𝜐𝜐𝑤 cos (𝛼 − 𝜓) + 𝜐𝑤2, 𝑡𝑎𝑛𝛽 = 𝜐𝑤 sin (𝛼 − 𝜓)
𝜐 + 𝜐𝑤 cos (𝛼 − 𝜓)

(2.4)

Finally, with these values the aerodynamics coefficients, CxA, can be interpolated
from Figures 3 and 6, as presented by Fintelman et al. [11], and the generalised
applied torques (Equation 2.3) due to the crosswind can be calculated.

(a) (b) (c)

Figure 2.2: Bicycle and rider system subjected to crosswind together with the definition of the various
aerodynamic force and moment coefficients and apparent wind speed, in (a) side view; and (b) top
view, with drag force coefficient CdA, lift force coefficient ClA, side force coefficient CsA, roll moment
coefficient CrA, pitch moment coefficient CpA, and yaw moment coefficient CyA; Figures (a) and (b)
from Fintelman et al. [11]; and (c) absolute wind speed 𝜐𝑤 at an angle 𝛼, forward speed of the bicycle
𝜐 at a heading 𝜓, and apparent wind speed 𝜐𝛼 at an apparent angle 𝛽 relative to the bicycle heading.

2.3.3. Time series
For the time series analysis the set of second order differential equations describing
the lateral dynamics (Equation 2.1) together with the differential equation for the
heading are numerically integrated with a RungeKutta fourth order scheme with
variable stepwise for local error control. For visualisation it can be useful to show
the path of the contact points on the ground. Then the differential equations of
the rear contact point can be added to system of differential equations. The path
of the front contact point can finally be constructed from the state variables and
kinematic equations, as presented in Section 2.3.1.

2.4. Rider control
At low to moderate forward speed the bicycle is usually unstable and any lateral
perturbation, like crosswind, will result in an unstable motion (fall to the ground).
In order to investigate what the effect of crosswind is on the bicycle rider system, a
rider controller is added to the system, stabilizing the system at low forward speed.
In previous work it has been shown that most of the rider control in bicycling is done
by steering only [14]. Therefore, a steer torque controller with full state feedback is
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considered, where the feedback gains were obtained experimentally from a system
identification process on a real bicycle rider system, riding on a treadmill [12]. This
controller has the form, 𝑇𝛿 = Kcx, with the linear feedback gains Kc, and the
state vector x = [�̇�, �̇�, 𝜙, 𝛿, 𝜓]. The feedback gains are scheduled for the specific
forward speeds at hand. The values used in the simulation are represented in Table
2.1.

2.5. Results and discussion
As a first example of the effect of crosswind on an uncontrolled bicycle two cases
are considered. The first case is riding at a constant forward speed of 𝜐 = 7.34 m/s
(where the uncontrolled unperturbed bicycle is stable) in a crosswind with absolute
wind speed 𝜐𝑤 = 2.0 m/s at a wind speed angle of 𝛼 = 30 degrees (Beaufort 2,
light breeze). The analysis is done by means of a time series analysis, where the
initial conditions on the bicycle are a zero roll and steer angle and zero roll and steer
rate.

The path of the rear wheel contact point is shown in Figure 2.3 (a) and shows that,
after a short transient manoeuvre, the uncontrolled bicycle turns into the wind (the
arrow indicates the wind direction). The transient behaviour of the roll and steer
angle are shown in Figure 2.3 (b), where initially (t < 1 s) the crosswind force
makes the bicycle steer to the left (𝛿 < 0) which makes the bicycle fall over to the
right (𝜙 > 0), this roll angle reverses the steering and makes the bicycle steer into
the wind. The roll and steer angles settle to zero after about 25 seconds. This is in
a light breeze and the maximum roll and steer angle are respectively 5.3 and 1.1
degree. In the second case all conditions remain the same, except for the wind
speed, which is increased to 𝜐𝑤 = 8.0 m/s. This corresponds to Beaufort 5, a fresh
breeze. Again, the uncontrolled bicycle turns into the wind but now the oscillatory
behaviour persists for a much longer time, as shown in Figure 2.4. The maximum
roll and steer angle are now much larger, respectively 30 and 7.5 degree. The mildly
damped oscillation demonstrates the effect of the wind force on the lateral stability
of the bicycle, and shows that an increasing wind speed reduces the stability of the
system.

As a last example, the effect of crosswind on a ridercontrolled bicycle will be shown,
by means of time series analysis. One case is considered, a low forward speed of
𝜐 = 4.25 m/s, where the uncontrolled bicycle is unstable. A rider control model, as
described in Section 2.4, is added to make the system stable. The control param
eters are according to Table 2.1. These rider control parameters where identified
in an experiment where the rider was riding a bicycle on a treadmill [14]. There
fore, the controller not only tries to stabilise the bicycle, but also tries to keep the
heading zero, otherwise one would run off the treadmill. The effect of crosswind
with wind speed 𝜐𝑤 = 10 m/s at a wind direction of 𝛼 = 30 degrees; is considered,
this is again Beaufort 5, a fresh breeze. After some initial transient response of
about 10 seconds, the ridercontrolled bicycle settles at a constant roll angle of 0.3
degrees at a zero steer angle, and a constant steer torque of 0.9 Nm, which is a
considerable effort.
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(a)

(b)

Figure 2.3: Time series of an uncontrolled bicycle running a constant forward speed of 7.34 m/s against
a crosswind of 2.0 m/s at 30 degrees (Beaufort 2, light breeze); (a) path of the rear wheel contact point
(arrow indicates the wind direction) (b) bicycle roll angle (blue) and steer angle (red) as a function of
time.
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(a)

(b)

Figure 2.4: Time series of an uncontrolled bicycle running a constant forward speed of 7.34 m/s against
a crosswind of 8.0 m/s at 30 degrees (Beaufort 5, fresh breeze); (a) path of the rear wheel contact point
(arrow indicates the wind direction) (b) bicycle roll angle (blue) and steer angle (red) as a function of
time.
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Table 2.1: Mass, damping and stiffness matrices of Equation 2.1 for the bicycle model from Figure 2.1,
together with some kinematic bicycle parameters; wheelbase 𝑤, front wheel trail 𝑐, head angle 𝜓, and
gravity acceleration 𝑔, and rider control feedback gains Kc for a forward speeds 𝜐; all in SI units, from
[14].

M0 = [
133.31668525 2.43885691
2.43885691 0.22419262] , C1 = [

0 44.65783277
−0.31500940 1.46189246 ] ,

K0 = [
−116.73261635 −2.48042260
−2.48042260 −0.77434358] , K2 = [

0 104.85805076
0 2.29688720 ] ,

Kc = [28.22, −3.19, 41.51, −2.9979, 47.8354] , 𝜐 = 4.25𝑚/𝑠

𝑤 = 1.0759𝑚, 𝑐 = 0.0718𝑚, 𝜖 = 20.1𝑑𝑒𝑔, 𝑔 = 9.81𝑚/𝑠2

2.6. Conclusions
Crosswind in bicycling has a considerable effect on the stability and control of the
bicycle. Our model simulations show that the tendency of an uncontrolled bicycle
under the influence of crosswind is to steer into the wind. In addition, crosswind
can decrease the stable forward speed range of an uncontrolled bicycle, and with
increasing wind speed can even make an initially stable uncontrolled bicycle, un
stable for all forward speeds 1. Crosswind in a controlled bicycle increases the rider
control effort considerably, due to a constant steer torque that has to be applied
in order to keep the bicycle at a straight heading. These preliminary results clearly
show that crosswind is a serious safety issue in bicycling.
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3.1. Abstract
The objective of this study was to identify the dynamic response of the bicycle
rider’s body during translational perturbations, in an effort to improve twowheeler
safety and comfort. A bicycle mockup was equipped with sensors measuring three
dimensional seat and trunk accelerations and rider’s force responses at the seat,
handlebars, and footpegs. The bicycle mockup was driven by a hexapod mo
tion platform that generated random noise perturbations in the range of 0–10 Hz.
Twentyfour healthy male adults participated in this study. Responses are repre
sented as frequency response functions capturing threedimensional force interac
tions of the rider’s body at the seat, handlebars and footpegs in terms of appar
ent mass, and rider’s trunk motion (onedimensional) as function of seat motion
as seattosternum transmissibility. Results showed that the vertical and longitu
dinal apparent mass for most of the bicycle interfaces followed the resonance of
the seattosternum transmissibility. A twice as high magnitude was observed at
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the resonance, although a more heavily damped system was apparent in the seat
tosternum transmissibility. Resonant frequencies were considerably higher in the
vertical direction compared to the longitudinal direction. Different dynamics were
observed for the lateral measurements, where all magnitudes decreased after the
base frequency, and no resonance was observed.

Keywords
Bicycle dynamics, rider identification, wholebody vibration, apparent mass, trans
missibility.

3.2. Introduction
In cycling the rider’s mass is much larger than the vehicle mass. Hence, the rider
can contribute considerably to the dynamic behaviour of the bicycle, not only by
means of voluntary control actions, but also by means of the passive response of
his/her body to bicycle oscillations. The rider’s body consists of inertial and visco
elastic properties that interact with the bicycle and affect the dynamic response
of the combined system. The stabilization of dangerous oscillatory twowheeler
modes such as weave [1] and wobble [2] can be influenced by the rider’s biome
chanical properties. Therefore, a biomechanical model with humanlike properties
needs to be included to study the dynamic behaviour of the combined bicyclerider
system.

In the automotive field the biodynamic response characteristics of seated subjects
exposed to whole body vibration (WBV) have been extensively reported in terms
of apparent mass (APMS). Fairley and Griffin [3] measured the APMS of seated hu
mans with and without backrest in the foreaft and lateral directions. Mansfield and
Lundström [4] measured the APMS of seated humans exposed to nonorthogonal
horizontal vibrations. Rakheja et al. [5] and Toward and Griffin [6] measured the
APMS of seated humans under automotive postures handsinlap (e.g. passengers)
and handsonsteering wheel (e.g. drivers) in the vertical direction. Toward and
Griffin [7] measured the vertical APMS of seated humans for four different back
rest conditions. Wang et al. [8] and Kim et al. [9] reported the vertical APMS for
different sitting postures and seat designs. Gao et al. [10] conducted similar exper
iments as Toward and Griffin [7]. A simple twomasslumped model was adopted to
describe the vertical vibration characteristics of the seated human body. The APMS
predicted by the established model agreed very well with those obtained from ex
periments. In general, body mass dependent models are successful in predicting
the apparent mass and transmissibility responses of a seated human body [11].
The driving point mechanical impedance, seattohead transmissibility and appar
ent mass are the principal characteristics used to describe the biodynamic response
of a seated human body under WBV in the automotive sector. The apparent mass
is popular, as it is straightforward in physics and can be measured conveniently.
A review on the fundamentals of biomechanical modelling of the human body in
transport systems is presented by Wieckowski [12].

In the field of twowheelers no study was found reporting the APMS of seated rider’s
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exposed to translational perturbations. Most related studies in the open literature
focus on the rotational motions and measure different biodynamic characteristics.
Katayama et al. [13] measured the center of mass and moment of inertia for nor
mal and forwardleaned riding positions and proposed two different biomechanical
models to describe the motions of rider’s body without his control actions. One of
these models has two degreesoffreedom (DOF) concerning leaning motion of the
trunk and lateral movement of the lower trunk, the other model describes the yaw
motions of upper and lower body segments. These models, however, have not yet
been validated. Cossalter et al. [14] generated steer torque perturbations using
a motorcycle simulator to identify the viscoelastic properties of the rider’s arms
(i.e. steering impedance) and trunk. A two DOF model was adopted for this pur
pose, but the coefficient of variation (ratio of the standard deviation to the mean)
of the identified arm properties was quite large. The variations were possibly due
to differences in the physique and riding experience of the participants. Doria and
Tognazzo [15] generated yaw perturbations using a motorcycle mockup and de
veloped two biomechanical models to simulate the response of the rider to yaw
and steer oscillations. Predictions of the one DOF model were successful below 4
Hz, whereas the two DOF model captured the whole frequency bandwidth of 010
Hz. The identified values of stiffness and damping of waist and arms were in good
agreement between the two models. Doria et al. [16] and Doria and Tognazzo [17]
used a motorcycle mockup and a bicycle mockup to generate roll perturbations
and measured the rider’s trunk lean stiffness and steering impedance. Biomechan
ical models with up to five DOF have been used in the first study, whereas in the
second study a similar approach to the one of Schwab et al. [18] was followed
to model and analyse effects of the passive response of the rider’s body on the
stability of a bicycle. Similar results with Doria and Tognazzo [15] were observed
for the one, two and three DOF models. The five DOF model which included a de
tailed description of the arms stiffness and damping properties was able to simulate
accurately both the lean and torque FRFs responses.

The aim of this study is to identify the dynamic response of the rider’s body at all
interfaces and in all three translational directions. The response of the rider’s body
is represented in the frequency domain by means of frequency response functions
(FRFs). More specific, the interaction of the rider’s body in the seat, handlebars
and footpegs is expressed in terms of APMS and as seattosternum transmissibility
(STST) functions. The paper is organized as follows: First, the experimental setup,
the perturbation signal design and experimental procedure are presented. Next, the
results, including STST and APMS, are presented. The article ends with a discussion
and conclusion section highlighting the main findings.

3.3. Methods
3.3.1. Description of experimental setup
To identify the rider’s body response to whole body vibration a dedicated modular
experimental setup was developed, consisting of a custom made bicycle mockup
placed on an industrial highend hexapod, see Figure 3.1 (a). The experimental
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setup is able to perturb and monitor the rider’s body in a wide frequency range (0
12 Hz), while keeping the rider in an upright riding posture similar to that of a city
bike. The mechanical structure of the bicycle mockup consists of standard bicycle
parts and steel tubes held together with aluminum clamps. The steering assembly
is fixed and the footpegs are placed symmetrically in order to obtain comparable
results between the two sides. The geometry of the bicycle mockup is based on the
dutch city bike Batavus Browser (56 cm). The fundamental geometrical dimensions
of the constructed frame, together with a seated rider are presented in Figure 3.1
(b): (D) declares the seat post inclination which is 72 deg, (E) is the head angle
which is 12 deg, (TT) is the top tube length which is 68 cm, (RTH), (STH) are the
reach and stack to handlebars dimensions which are 44 cm and 75 cm, respectively.
The average seated rider had an upper trunk inclination (A) of approximately 20
deg, a knee (B), and ankle angle (C) of about 90 and 75 deg, respectively. The later
applies to the body build of the 95% of the male European population [19].

(a) (b)

Figure 3.1: Bicycle mockup without and with seated rider, (a) location of sensors and amplifiers, (b)
basic frame dimensions, antropometric rider measurements and safety harness.

The bicycle mockup is equipped with an inertial measurement unit (IMU) and a to
tal of 13 fullbridge strain gauge sensors in halfbridge configuration to measure the
motion and the forces at the interfaces. Six halfbridges are located at each han
dlebar, four at each footpeg and six at the seatpost. A side view of the locations
of the halfbridges is shown in Figure 3.2. With the strain gauge configuration,
the rider’s force responses in all interfaces and directions can be measured (ex
cept for the footpegs forces in lateral Yaxis, where no relevant force responses
are expected). Laboratory tests were performed to determine the optimal location
of the strain gauges on the handlebars, minimizing the potential geometrical and
crosstalk effects. For instance, the strain gauges that measure the vertical and
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longitudinal applied handlebar loads (i.e. Z, Xaxis) were placed immediately after
the tapered clamping area. On the other hand, the strain gauges that measure
the lateral applied handlebar loads (i.e. Yaxis) were placed near the grips to avoid
any geometrical artifact due to the handlebar curvature, see Figure 3.2 (a). The
footpeg and saddle strain gauges were placed as close as possible to the mount
ing area of the bicycle frame, see Figure 3.2 (b) and (c). Crosstalk, the influence
of forces from the nonmeasuring direction, was subtracted from the strain gauge
measurements.

Figure 3.2: Locations of the strain gauges at all bicycle interfaces, (a) left handlebar, (b) left footpeg,
and (c) seatpost.

A data acquisition system from National Instruments (LabVIEW) and MTW Awinda
(Xsens software) sampled the strain gauges and IMU signals at 100 Hz. The bicycle
mockup was mounted on the top of a hexapod from E2M Technologies. The hexa
pod provides a sufficient response up to around 10 Hz; for higher frequencies there
was observable latency in the system. The perturbation signals were designed in
Matlab and were implemented in the platform using the eMove eM6670 electric
motion system of the hexapod.

3.3.2. Perturbation signal selection and design
In the automotive field, random noise oscillations with different bandwidths and
magnitudes are typically applied to identify the APMS of seated humans. Fairley
and Griffin [3] used random noise perturbations in which the frequency bandwidth
was limited between 0.2520 Hz, the acceleration spectral density was flat ± 5%
and the maximum magnitude was set 1 ms−2 rms. Toward and Griffin [6, 7] and
Gao et al. [10] used random noise perturbations with a duration of 60 seconds and
a maximum acceleration magnitude of 1 ms−2 and 2 ms−2 rms, respectively. The
frequency bandwidth was limited using 8pole Butterworth filters between 0.1340
Hz, 0.12525 Hz and 120 Hz, respectively.

In the field of twowheelers frequency sweep perturbations are commonly used
to excite the seated rider. Cossalter et al. [14] used steer sinesweep excitations
with a duration of 200 seconds, a mean amplitude of 2 deg and a frequency range
0.512 Hz. Doria et al. [15] used yaw sinesweep excitations with a duration of
115 seconds, a mean amplitude of 2 deg and frequency range 0.5–10 Hz. Doria



3.3. Methods

3

21

et al. [16, 17] used roll sinesweep oscillations initial amplitude was set to 1.5
deg, duration and frequency range remained the same as previous study. To avoid
nonlinear rider behaviour, the amplitude was decreased at higher frequencies by
dividing with the square root of the instantaneous angular frequency.

In general, an optimal perturbation signal requires prior knowledge of the system
and its corresponding noise characteristics [20]. Since the dynamics of the pas
sive bicyclerider system are unknown, filtered whitenoise was selected to excite
the rider’s body. A 5pole Butterworth filter with a cutoff frequency of 9 Hz was
used to filter the whitenoise signal. With the filter the signal is concentrated in the
frequency bandwidth 09 Hz and thereby improving the SNR. The maximum pertur
bation amplitudes and rms for the translational signals were selected based on nat
uralistic cycling data collected from Ouden and Schwab [21], see Table 3.1.

Table 3.1: Amplitudes of perturbation signals in the three directions including mean (𝜇) and root mean
square (𝑟𝑚𝑠) values.

Heave Z (m/s2) Surge X (m/s2) Sway Y (m/s2)
Van den Ouden 1.0 1.5 1.0
max. amplitudes 1.0 0.75 0.75

mean 4.25e05 2.62e04 6.11e04
rms 0.33 0.25 0.25

For safety and comfort, the acceleration of all perturbation signals was limited to 1
ms−2 rms. The selected frequency bandwidth includes the oscillation frequencies of
dangerous oscillatory modes such as weave (04 Hz) and wobble (09 Hz) observed
by Meijaard et al. [1] and Plöchl et al. [2]. The final coloured noise PVA signals were
designed to have a duration of 60 seconds. The filtered white noise signals had a
duration of 60 seconds, see Figure 3.3 as an example of the heave acceleration
signal 𝑝(𝑡).

3.3.3. Procedure
Twentyfour healthy men (mean age = 26 ± 3 years, weight = 81.7 ± 7.4 kg,
height = 181 ± 7 cm) volunteered in this study. To assure safety a full body safety
harness was used as a fall arrest system during the experiments 1. All participants
gave informed consent according to the guidelines of the human research ethics
committee of the Delft University of Technology. Women were not included due to
their different body build. Participants self reported that they did not experience
any kind of pain or injury in the year before the experiments. The mean weight of
the participants was selected to be close to the European population [22], whereas
the height is close to the mean height of young European men [23].

1The participants were commanded to sit on the bicycle mockup as they normally do when riding their
bicycles and look at the horizon in front of them. During the experiments it was evident that the par
ticipants tried to constrain their torso movement by consciously increasing their stiffness and damping
properties of their arms, legs and torso. Preliminary trials indicated volunteer transient movements
below 1 Hz. For this reason fadein and fadeout periods were applied as explained later in this section.
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Figure 3.3: Profile of heave acceleration signal 𝑝(𝑡), (a) signal in the time domain (red lines indicate
𝜇3𝜎 and 𝜇+3𝜎), (b) acceleration spectral density and (c) amplitude distribution.

Each experimental trial had a duration of 69 seconds consisting of a 4.5 seconds
fadein period, 60 seconds perturbation signal 𝑝(𝑡), and a 4.5 seconds fadeout
period. The fadein and fadeout periods were included to minimize transient be
haviour and to prevent abrupt platform motions. Two repetitions of the same trial
were performed for every motion 2. Repeatability was good between the two tri
als for all acceleration and force measurements (standard error of the mean (SEM)
was kept to ± 8 %). The results from both trials were averaged and shown in the
frequency domain analysis.

3.4. Data recording and processing
3.4.1. Subjective measures
The participants completed a subjective assessment immediately after finishing the
experiment. A NASA ”RawTLX” questionnaire was used to evaluate the perceived
workload, effectiveness and other aspects of performance [24]. The NASATLX
includes six subscales with scores ranging from 0100%, from which the experi
mental workload is assessed.

3.4.2. Static and dynamic force measurements
For each motion the static forces and dynamic forces in the time domain are used as
a measure to indicate dominant force directions at the three interfaces. The static
force is a measure of the gravitational forces that the rider’s body mass exerts at
all bicycle interfaces and is calculated as the average of the mean force over the
participants. The dynamic force is a measure of behaviour during the experimental

2A relaxation period of approximately two minutes was given to all participants between the trials.
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trials and is computed as the rms of the force signal, see Table 3.2.

3.4.3. Transfer functions
The block diagram of the motion platform combined with the passive rider is pre
sented in Figure 3.4, where 𝑝(𝑡) is the input perturbation signal to the motion
platform 𝐸(𝑡), 𝑢(𝑡) is the input to the passive rider 𝐻(𝑡), 𝑛(𝑡) is additional noise
and 𝑦(𝑡) is the rider output response. Note that the rider cannot influence the
motion of the platform, as would be possible with a normal bike.

Figure 3.4: Block diagram of motion platform combined with passive rider system.

The dynamics of the rider are described based on the inputoutput relationship of
the measured signals in the frequency domain. The STST and APMS are defined
as ratios and calculated as transfer functions using the crossspectral density (CSD)
method defined by Mansfield et al. [25] and Griffin [26]:

𝑇𝐹𝐶𝑆𝐷(𝑓) =
𝐶𝑆𝐷𝑖𝑛𝑝𝑢𝑡−𝑜𝑢𝑡𝑝𝑢𝑡(𝑓)

𝑃𝑆𝐷𝑖𝑛𝑝𝑢𝑡(𝑓)
(3.1)

The linear correlation between the input and output is expressed in terms of the
coherence, see Equation 3.2. Coherence ranges from 0 to 1, where one reflects a
perfect, noisefree linear relation.

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑓)2 =
|𝐶𝑆𝐷𝑖𝑛𝑝𝑢𝑡−𝑜𝑢𝑡𝑝𝑢𝑡(𝑓)|2

𝑃𝑆𝐷𝑖𝑛𝑝𝑢𝑡(𝑓) × 𝑃𝑆𝐷𝑜𝑢𝑡𝑝𝑢𝑡(𝑓)
(3.2)

The transfer functions of the STST and APMS of the rider’s body are estimated using
Welch’ method in which the spectral densities are averaged over 10 segments [27].
The dynamic responses of the left and right handlebar and footpeg side appeared
symmetrical, therefore the results of the left and right side are merged as the
mean resultant forces and APMSs. The mean magnitude and SD is calculated over
all subjects, however for the phase a different approach is used. The mean phase
is calculated by taking the angle of the average complex number, whereas the SD
by estimating the circular standard deviation. The SD is displayed as a shaded
area around the mean line. The coherence significance level (CSL) 3 is shown as a
dashed line in the coherence plots. A Hanning window with 50% segment overlap

3The CSL indicates the threshold above which the coherence is significantly different from zero and is
calculated as; 𝐶𝑆𝐿 = 1 − (1 − 𝑎𝑙𝑝ℎ𝑎)1/(𝐿𝑠𝑒𝑔 − 1) in which 𝛼 is the significance level and 𝐿𝑠𝑒𝑔 is the
number of independent segments. A probability of making a Type I error is set for our hypothesis test.
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is used to prevent frequency leakage and the 5 independent segments results in
a CSL of 0.53 with probability p < 0.05 [28]. The SD demonstrates the variability
in the behaviour between the participants, whereas CSL underlines the confidence
interval of the spectral estimator.

3.4.4. Seattosternum transmissibility (STST)
Measurement of the transmission of vibration between the bicycle mockup and
rider’s upper body is expressed in terms of transmissibility. Transmissibility T(f) is
defined as the ratio of the acceleration at a point on the body to the acceleration
at the base of the mockup:

𝑇(𝑓) =
𝑎𝑏𝑜𝑑𝑦(𝑓)
𝑎𝑏𝑎𝑠𝑒(𝑓)

(3.3)

To measure the transmissibility an additional IMU was mounted on the rider’s ster
num, see Figure 3.5 for the exact locations of the two IMUs. The IMU of the rider’s
sternum was placed between two elastic stretch bands to avoid local displacements
due to skin movements. Because that the accelerations of the bicycle base and seat
are identical, the term STST is used herein to express the acceleration transmis
sibility measurements between the seat base and rider’s sternum. For all motions
the acceleration measurements were transformed to the inertial reference frame,
all sign conventions follow the righthanded Cartesian coordinate system, see Fig
ure 3.5. In other words, all accelerations are positive in the forward (Xaxis), left
(Yaxis) and upward direction (Zaxis), respectively.

Figure 3.5: Locations of the IMUs with righthanded Cartesian coordinate system, (a) back view of
motion platform and (b) front view of rider’s sternum.
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3.4.5. Apparent mass (APMS)
The measurement of the transmission of forces between the rider’s body and the
bicycle interfaces is expressed in terms of apparent mass 4. Apparent mass 𝑀(𝑓)
is defined as the ratio of the applied force at the interfaces to the acceleration at
the base of the mockup at a frequency (𝑓), see Equation 3.4.

𝑀(𝑓) = 𝐹(𝑓)
𝑎(𝑓) , (3.4)

For all motions the APMS measurements follow the sign conventions of the right
handed Cartesian coordinate system, see Figure 3.1 (a). This implies that all forces
exerted from the bicycle to the rider are positive in the forward (Xaxis), left (Yaxis)
and upward direction (Zaxis), respectively.

3.5. Results
3.5.1. NASATLX
Results of the NASATLX are summarized in Figure 3.6. Two clusters can be iden
tified when correlating the performance and effort scale. The first cluster (16 sub
jects) indicates high performance (> 50%) with low effort (< 40%). The second
cluster (8 subjects) indicates high workload with poor performance. The scores of
the second group are indicated with black markers in Figure 3.6 and also explain
the outliers in mental demand and frustration. There were no differences between
the groups in the STST and APMS (see supplementary material, STST_individual
figure). The results of the subjective workload scores show the highest score for
performance (83% median), and the lowest score for frustration (8% median).
Mental, physical, temporal and effort demand score between 1325% median re
flecting the passive nature of the experiments 5.

3.5.2. Static and dynamic force distribution
Table 3.2 presents the static and dynamic force distribution at all bicycle interfaces
and directions. The large ratio between the static and dynamic forces indicates that
the magnitude of the (static) gravitational forces is much larger than the magnitude
of the forces resulting from the dynamic perturbations. Due to bicycle geometry and
rider posture, symmetry is expected in the dynamic force distribution at the ZX, ZY
plane for all motions. To indicate symmetry the dynamic force distribution matrix
was decomposed into a symmetric and an asymmetric part (see supplementary
material, Table 3). The symmetric part was calculated by taking the mean of the
dynamic force crossterms (ZX, ZY, XY) for every motion, whereas, the asymmetric
part by subtracting the latter from the dynamic force part.
4Apparent mass is derived as ratio of force and acceleration with a frequency dependent gain and
phase. Hence the apparent mass captures body inertial properties as well as stiffness, damping and
neuromuscular feedback.
5The idea here was to have a subjective assessment of the mental, physical, temporal and effort demand
in order to evaluate passive or active control behaviour. A better approach could have been to use
electromyography (EMG) to evaluate maximal voluntary contraction (MVC) as a percentage.
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Figure 3.6: Boxplots of the NASA Task Load Index (TLX) scores for 24 participants.

For heave and surge the interactions at the seat (SP) indicated higher correlation in
the ZXplane compared to the ZYplane, symmetric coefficients were 7.5 and 3.5,
respectively. Correlation was also higher in the ZYplane compared to the XYplane
for the surge and sway motion, coefficients were 3.5 and 2.5 for the former and
latter plane. Footpegs (FP) showed perfect symmetry, and handlebars (HB) had a
symmetric correlation coefficient of 1.5 for all planes and bicycle motions.

For heave, dynamic forces are mainly observed at the seat (SPZ) followed by the
footpegs (FPZ) and the handlebars (HBZ). The forces in the longitudinal direction
of the seat (SPX) are mainly due to the bicycle geometry, while the forces in the
lateral direction of seat (SPY) are probably due to asymmetry of the human body.
The lateral forces in the left (HBLY) and right handlebar (HBRY) might be a result
of lateral handlebar deformation induced by the vertical and longitudinal applied
forces.

For surge, dynamic forces are generated in the longitudinal (SP𝑋) and vertical (SP𝑍)
direction of the seat, followed by the handlebars (HB𝑋) and (HB𝑍). Footpegs show
similar forces at the longitudinal (FP𝑋) and vertical (FP𝑍) directions. Forces in the
vertical direction are presumably a result of rider posture and anterior/posterior
trunk movements.

For sway, dynamic forces are present in the lateral seat direction (SP𝑌) followed by
(SP𝑍) and (SP𝑋). At the footpegs and handlebars forces are more dominant at the
vertical direction. It is evident that the rider coactivates his leg and arm muscles
(i.e. vertical foot and handlebar forces) to reduce sidetoside swing of his trunk
effectively.
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Table 3.2: Static (S) and dynamic forces (D) at the seat (SP), footpegs (FP) and handlebars (HB) for
heave, surge and sway motion.

Heave (Z) Surge (X) Sway (Y)
Interface S (N) D (N) S (N) D (N) S (N) D (N)
SP𝑍 579 24 571 11 569 6
SP𝑋 66 4 63 12 66 4
SP𝑌 22 1 28 1 30 11
FPL𝑍 89 4 90 1 90 2
FPL𝑋 17 1 16 1 16 1
FPR𝑍 87 4 89 1 86 2
FPR𝑋 17 1 16 1 16 1
HBL𝑍 40 2 41 2 41 2
HBL𝑋 14 1 15 3 15 2
HBL𝑌 42 1 51 1 41 1
HBR𝑍 39 2 38 2 38 2
HBR𝑋 16 1 16 3 16 2
HBR𝑌 33 1 34 1 28 1

3.5.3. STST
The STST for all motions are presented in Figure 3.7. For the heave motion, co
herence is significant (𝑝 < 0.05) for all frequencies. The magnitude of the STST
increases after 1.5 Hz and reaches a resonant peak at 5 Hz. The phase of the trunk
leads from 0.174.8 Hz and lags for all other frequencies.

For the surge motion, coherence is significant (𝑝 < 0.05) between 0.3311.5 Hz.
The magnitude of the STST increases after 0.8 Hz and reaches a resonant peak at
2 Hz. The phase of the trunk flips above 0.33 Hz and continues to lead up to 2 Hz,
next the phase lags up to 8 Hz. For both motions the rider’s trunk accelerations
exceed seat accelerations by a factor of 2.

For the sway motion, coherence is significant (𝑝 < 0.05) between 0.338 Hz. At 0.33
Hz the acceleration of the trunk is approximately three times higher (magnitude =
2.8) than the seat. Between 18 Hz the acceleration of the trunk is lower (magnitude
< 1) than the seat. The phase lag suggests that participants try to restrain the
sway of the upper trunk. Participants used postural control to restrain excessive
movements and prevent falling off the seat.

3.5.4. APMS
The APMS for the heave motion (Z) are presented in Figure 3.8. All crossaxes are
included in the Figure, nevertheless the analysis is mainly focused on the vertical
direction (Zaxis), since this is the axis were the most dominant rider forces are
present. Coherence is significant (𝑝 < 0.05) above 0.2 Hz for all APMS, thus this
frequency is used as a base to interpret the magnitude and phase responses for this
motion. At this base frequency of 0.2 Hz the magnitude is 52.08 kg* at the seat,
7.13 kg* at each footpeg and 5.23 kg* at each handlebar. The sum of all magnitudes
at the base frequency is 76.8 kg, which is approximately the mean rider’s weight.
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Figure 3.7: Seattosternum transmissibility (STST) for heave (Z, Vertical), surge (X, longitudinal) and
sway (Y, lateral) motions as a function of the applied frequency (f), (a) gain, (b) phase and (c) coherence,
shade = SD over participants, coherence is significant above the dashed line.

The vertical and longitudinal APMSs are also close to the static loads, see Table
3.2. The magnitudes at the seat and handlebars show a resonant peak at 5 Hz,
which matches the resonance of the STST, whereas that of the footpegs is 6.3
Hz. All magnitudes above the primary resonance tend to decrease with increasing
frequencies. The phase of the seat and footpegs leads between 0.54.6 Hz, albeit
up to 2 Hz the lead is small and the phase response indicates a mass system. Above
4.6 Hz, the phase of the seat and footpegs lags with a slope of 13.7 deg/Hz. The
phase of the handlebars is almost flat up to 4 Hz, onwards the phase lags and flips
at 8 Hz (i.e. lag to lead). The magnitude and phase show similar trends for almost
all directions and interfaces, except for the handlebars in the longitudinal direction
(Xaxis) where the phase leads for all frequencies. The large phase lead of the
handlebars indicates that the rider exerts forces opposed to the anterior/posterior
trunk movements (i.e. provoked due to the vertical motion) to keep his trunk stable
in space.

The APMS measurements for the surge motion (X) are presented in Figure 3.9.
For surge, most of the dynamic forces are generated in the longitudinal direction
(Xaxis). Coherence is significant (𝑝 < 0.05) above 0.33 Hz for all APMS measure
ments, thus this frequency is used as a base to interpret the magnitude and phase
responses for this motion. At this reference frequency of 0.33 Hz the magnitude is
51.2 kg* at the seat, 3.16 kg* at the footpegs and 24.71 kg* at the handlebars.
The magnitudes of all interfaces show a resonant peak at 2 Hz, which is the same
as the resonance of the STST. At the footpegs and handlebars a second resonant
peak occurs at 5 and 7 Hz, correspondingly. The sum of all measured magnitudes
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Figure 3.8: Apparent mass (APMS) for the heave (Z, vertical) motions as a function of the applied
frequency (f) at the seat, footpegs and handlebars (a) gain, (b) phase and (c) coherence, shade = SD
over participants.
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at the base frequency exceeds the mean rider’s weight, presumably due to phase
differences in forces at seat, footpegs and handlebars. The phase response up to
2 Hz indicates a mass system, but this does not apply for all the other frequencies.
Onwards, the phase of the seat and handlebars lags up to 7.3 Hz and 10 Hz, re
spectively. The phase of the footpegs and handlebars flips at 2.8 Hz and at 5.5 Hz,
respectively. The phase flips are probably caused due modulation in the control
behaviour of the knee and arms. The magnitude and phases show similar trends
for almost all directions and interfaces, exception are the footpegs and handlebars
in the vertical direction (Zaxis) where the phase leads significantly. Similar to the
heave motion the large phase lead of the footpegs and handlebars implies that the
rider applies forces oppose to the anterior/posterior pelvis and trunk movements to
keep his body stable in space.

The APMS for the sway (Y) motion are presented in Figure 3.10. For sway, most
of the dominant dynamics are noticed at the seat (Yaxis), footpegs (Zaxis) and
handlebars (X, Zaxis). Coherence is significant above 0.5 Hz (𝑝 < 0.05) for most
of the frequencies. At the base frequency of 0.5 Hz the magnitude at the seat is
205.3 kg, whereas the magnitude of the footpegs and handlebars in the (X, Zaxis)
is 8.86 kg, 30.49 kg, 34.86 kg, 30.52 kg, respectively. All magnitudes decrease as
the frequency increases, and no resonance is observed for sway motion. The phase
of the seat, footpegs and handlebars leads for all frequencies. The vertical and lon
gitudinal directions of the footpegs and handlebar show good coherence, obviously
the rider uses his feet and hands to stabilize his pelvis and trunk in space.

3.6. Discussion
Here, we measured the dynamics (STST and APMS) of a bicycle rider. To the best
of our knowledge, such work has not been presented before. The APMS and STST
can be used to create a biomechanical rider model. The addition of a human like
model to the Carvallo–Whipple bicycle model [1] is essential to explore unstable
oscillatory bicycle modes and improve bicycle safety and comfort. Bicycle comfort
could be improved, for example, by designing vibration isolators for the saddle and
handlebars, whereas, safety by designing steering stabilizers. The selection of the
stiffness and damping properties of these isolators can be obtained by analysing the
eigenvalues and eigenmodes of the combined bicyclerider system. Comfort, safety
and performance can now be easily evaluated by running multiple simulations for
different bicycle types (e.g. city, racing etc.). The methodology described herein
is focused on the translational motions, the dynamic responses of the rider for the
rotational motions might differ, even with motions that are considered similar (e.g.
sway and roll).

All motions resulted in consistent transmissibility and apparent mass responses over
the participants with a relatively high coherence. Therefore the system identifica
tion techniques were justified indicating FRF estimates of high quality. Heave and
surge motion interacted with each other and showed similar dynamics (i.e. a result
of subject leaning forward). Similar forces were observed in the ZXplane of the
seat (SP), footpegs and ZX, ZY plane of the handlebars (HB), see Table 3.2. The
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Figure 3.9: Apparent mass (APMS) for the surge (X, longitudinal) motions as a function of the applied
frequency (f) at the seat, footpegs and handlebars (a) gain, (b) phase and (c) coherence, shade = SD
over participants.
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Figure 3.10: Apparent mass (APMS) for the sway (Y, lateral) motions as a function of the applied fre
quency (f) at the seat, footpegs and handlebars (a) gain, (b) phase, and (c) coherence, shade = SD
over participants.
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vertical STST and APMS of the seat and handlebars showed a resonance at 5 Hz,
in agreement with the resonance reported by Toward and Griffin [6, 7] and Mans
field and Griffin [29]. The longitudinal STST and APMS had a resonance at 2 Hz,
which is close to the resonance of 2.5 Hz and 2.62 Hz found for male seated sub
jects without backrest by Fairley and Griffin [3] and Mansfield and Lundström [4],
respectively. The small resonant frequency variations could be attributed to differ
ent body masses and postures. For instance, higher body mass can lead to higher
magnitudes and lower resonance [5, 6]. Holding a steering wheel could lead to
lower resonance in respect with handsinlap posture as suggested by Wang et al.
[8], Rakheja et al. [5] and Toward and Griffin [6]. Sway was independent from the
other two motions, the lateral STST and APMS showed similar trends: no resonance
was observed and postural control was evident in both measurements.

For heave and surge the rider’s body acted as a rigid mass up to 2 Hz. For sway
the rider’s body behaved like a horizontal mass springdamper system (pelvis) with
a torsional spring inverted pendulum (trunk) on top (see supplementary material,
Schematic 1) for all frequencies. The high magnitude APMS (> 200kg) for sway
motion were perhaps a result of the angular 𝜃 trunk dynamics. The upper body
center of gravity lies above the saddle requiring roll moments generated by lateral
forces at saddle, footpegs and steer. To validate this explanation we first estimated
the mass of the pelvis (𝑀𝑝 = 15 kg) and trunk (𝑀𝑡𝑟 = 45 kg) as percentages of
the mean rider’s weight [30]. Next, we used the measured accelerations and the
aforementioned masses to calculate the expected forces. At the base frequency
the acceleration of the trunk was about three times higher and opposed to the
direction of the saddle (see Yaxis magnitude, Figure 3.7). Therefore, a force 𝐹𝑡𝑟
with a magnitude of about 1350 N was induced at the pelvis and applied at the
saddle as a reaction to the trunk postural control. The applied saddle force 𝐹𝑝
was possibly amplified by a factor of two due to the to the intristic and reflexive
responses of the rider’s feet and arms (stiffness 𝐾𝑝 and damping 𝐶𝑝 properties of
the moving base). This justifies the high lateral APMS observed at the seat and
in the vertical direction of the footpegs and handlebars (see Y for seat, Zaxis for
footpegs and handlebars, Figure 3.10).

As proposed by Van Drunen et al. [31] kinematic FRFs could also be interpreted
as trunkinspace (perfectly stationary orientation in space: magnitude of 0 and
phase of ± 180 deg) and trunkonseat (perfectly moving in line with the seat:
magnitude of 1 and phase of 0 deg). For heave up to 2 Hz and for surge up 1
Hz the STST magnitude is 1 and the phase is almost 0 indicating a trunkonseat
moving behaviour, see Figure 3.7 (Z, vertical) and (X, longitudinal). For sway above
1 Hz the STST magnitude < 1 and the phase lags up to 8 Hz indicating that the
rider tries to keep his trunkinspace, see Figure 3.7 (Y, lateral). The sway APMS
magnitude drops further above 1 Hz, see Figure 3.10 (Y, lateral). This can be
explained by the limited STST, whereby the torso does not fully follow the saddle
motion, reducing the required forces. The low frequency sway behaviour is more
complex and may be studied further using models of postural control, capturing how
rider’s use propioceptive, vestibular and visual feedback to generate the required
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roll moments to stabilize the upper body.

3.7. Conclusion
For all translational motions the bicycle rider applied forces in all threedimensional
directions. Heave and surge motion interacted with each other, sway showed weak
interaction with heave and surge. The vertical and longitudinal APMS for almost all
bicycle interfaces followed the resonance of the STST measurements. All showed
a twice as high magnitude at resonance, albeit a more heavily damped system
was apparent in the STST measurements. Resonant frequencies were considerably
higher in the vertical direction as compared to the longitudinal direction. Lateral
measurements showed no resonance, and trunk postural control was evident in
the APMS measurements. For most frequencies and perturbation directions the
response of the rider’s body was not close to a rigid mass, hence a parametric
model is required to understand better the passive dynamic contribution of the
rider to the bicyclerider system.
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Appendix
Notation

𝑎(𝑓) acceleration at the bicycle base.
𝑎𝑏𝑜𝑑𝑦(𝑓), 𝑎𝑏𝑎𝑠𝑒(𝑓) acceleration of upper body and bicycle base.
𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑓)2 coherence.
𝐶𝑆𝐷(𝑓) crossspectral density.
𝐸(𝑡) motion platform.
𝐹(𝑓) applied forces at the bicycle interfaces.
𝐹𝑡𝑟 , 𝐹𝑝 force induced at the rider’s trunk and pelvis.
𝐻(𝑡) passive rider.
𝐾𝑝, 𝐶𝑝 stiffness and damping properties of the moving

base.
𝑀(𝑓) apparent mass.
𝑀𝑝, 𝑀𝑡𝑟 mass of the rider pelvis and trunk.
𝑛(𝑡) input noise.
𝑝(𝑡) perturbation signal.
𝑃𝑆𝐷(𝑓) powerspectral density.
𝑇(𝑓) transmissibility.
𝑇𝐹𝐶𝑆𝐷(𝑓) transfer function of crossspectral density.
𝑢(𝑡) input signal.
𝑦(𝑡) rider output response.

All the data used in this manuscript can be obtained by requesting from
the corresponding author. The supplementary data and material related
to this article are available online at https://doi.org/10.4121/uuid:
826b3dbe886d40f79f6731f801cdc2f9 (Dialynas et al., 2019).

https://doi.org/10.4121/uuid:826b3dbe-886d-40f7-9f67-31f801cdc2f9
https://doi.org/10.4121/uuid:826b3dbe-886d-40f7-9f67-31f801cdc2f9
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Design and implementation

of a steerbywire bicycle

Corresponding article: G. Dialynas, R. Happee, A. L. Schwab, Design and imple
mentation of a steerbywire bicycle, In Proceedings of the 7th Annual International
Cycling Safety Conference, (2018).

4.1. Abstract
Since the 1800s, the design of bicycles involves a mechanical linkage between the
handlebar and the fork assembly. Herein, we propose an innovation, where the
traditional mechanical connection between the handlebar and fork is decoupled
and replaced with sensors, servomotors and a microcontroller allowing artificial
manipulation of the bicycle and steering dynamics. The purpose of our steerbywire
bicycle 1 is to investigate the influence of handlebar torque feedback on rider control
in order to understand rider control on a bicycle. In addition, steerbywire bicycles
have the potential to be used as stabilityenhancing support systems which can
improve cycling safety. We demonstrate the design and performance of the steer
bywire bicycle in computer simulations as well as reallife tests. Preliminary rider
tests showed a perceived neartoidentical behaviour of the steerbywire system
to a mechanical connection at steering frequencies below 3 Hz.

Keywords
Bicycle, steerbywire, stability, control, rider control.

1In this Chapter we present the second steerbywire bicycle prototype designed and built at TU Delft
bicycle laboratory. The methodology adopted for the development of the first steerbywire prototype
by Nick Appelman et al. [1] is also followed herein.
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4.2. Introduction
Already some time ago, electronic enhancements regarding vehicle behaviour has
made its way into the aviation and automotive industry by the term ”bywire” tech
nology. This covers technology like flybywire, drivebywire, brakebywire and
steerbywire. Electronic sensors and actuators are used to replace traditional me
chanical systems, and software running on a controller is used to operate the actu
ators in a way that it is not possible with traditional mechanical systems. The use of
steerbywire technology can also offer great opportunities to enhance the vehicle
dynamics of singletrack vehicles like motorcycles, scooters and bicycles. Single
track vehicles can be laterally unstable, especially at low forward speeds and they
require a relative high amount of rider control [2, 3].

In the open literature there is currently no research available which experimentally
evaluates a steerbywire system on singletrack vehicles. Only a few theoretical
publications proposing enhancements in motorcycle handling [4, 5] are available.
Marumo and Nagai [4] introduce a steerbywire system on a motorcycle which
removes the counter steer behaviour to initiate a turn, where it remains ques
tionable if this is beneficial. On the other hand, the possibility of a lane keeping
assistance system on motorcycles by Katagiri et al. [5] can greatly improve safety.
This is also demonstrated by Seiniger et al. [6] by actively assisting the motorcycle
rider’s steer input to hold its driving path during extensive incorner braking ma
noeuvres. Schwab et al. [7] were the first who actually investigated in practice
the impact of active steertorque control on the lateral stability of a bicycle. Their
results showed a considerably lower rider steer effort and increased stability at low
forward speeds.

Alternatively, steerbywire technology can also serve as a versatile experimental
platform for identifying rider control in bicycling. Still, the question remains how
the rider stabilizes the lateral motions of the bicycle when driven at low (unstable)
forward speeds and how the rider follows a desired path. The control input prob
ably comprises of haptic, vestibular and visual cues; however the impact of these
sensory cues on rider control is still unknown. With a steerbywire system we can
investigate the importance of haptic feedback on steering behaviour for a given
set of control tasks. For instance, the task of bicycle stabilization with and without
handlebar feedback can be investigated, which is not possible with a mechanical
steered bicycle. The evaluation of handlebar torque feedback on rider control might
lead to the development of new design criteria for safer bicycles.

The work presented here, is focused on the modelling and experimental validation
of a steerbywire system on a bicycle. Such a system is used as a research tool
to investigate rider control. After this brief introduction, the model for the system
design is described and simulation results are shown. Next, the experimental setup
is described and preliminary test results are shown. The chapter ends with the
conclusion section highlighting the findings of this research.
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4.3. System design and simulation
A linear multibody model for the bicycle was used to design the system. The model
is based on the threedegreeoffreedom CarvalloWhipple bicycle model [2]. This
model is extended by separating the handlebar assembly from the fork assembly,
which introduces an additional rotational degree of freedom.

Figure 4.1: Steerbywire bicycle model together with the lateral degreesoffreedom, rear frame roll
angle 𝜙, fork angle 𝛿, and handlebar steering angle 𝜃, and some geometry variables. This model,
based on the CarvalloWhipple bicycle model [2], shows the addition of a separate handlebar body H
and the possibility to have unequal steer 𝛿 and handlebar 𝜃 and torques 𝑇𝛿 and 𝑇𝜃.

The lateral degreesoffreedom of this extended model are shown in Figure 4.1:
the rear frame roll angle 𝜙 the fork angle 𝛿, and the handlebar steering angle 𝜃.
Since we are only interested in the lateral dynamics, the forward speed 𝜐, which is
a degreeoffreedom of the CarvalloWhipple model [2], is treated as a parameter.
Combining the lateral degreesoffreedom in a generalized coordinate vector q =
[𝜃, 𝜙, 𝛿]𝑇, the linearized equations of motion for the extended bicycle model can be
expressed by,

Mq̈+ Cq̇+Kq = f (4.1)

with the mass matrixM, damping matrix C, and stiffness matrix K given by,

M = [𝐈𝜽 0
0 M] ,C = [

0 0
0 𝜐C1] ,K = [

0 0
0 𝑔K0+ 𝜐2K2] , (4.2)

and the right hand side forcing term f = [𝑇𝜃 , 𝑇𝜙 , 𝑇𝛿]𝑇, which contains the handle
bar torque 𝑇𝜃, the external rear frame roll torque 𝑇𝜙 (usually zero), and the fork
torque 𝑇𝛿. The matrices M,C1,K0 and K2, are the twobytwo matrices from the
linearized equations of motion of the original CarvalloWhipple model [2], 𝐼𝜃 is the
mass moment of inertia of the handlebar assembly, 𝜐 is forward speed and 𝑔 is
the gravitational acceleration. There is a small coupling between handlebar steer
ing angle and the other degreesoffreedom, but given the already small value for
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the mass and inertia of the handlebar assembly 𝐻, the offdiagonal terms in the
Matrices 4.2 are neglected here.

As a reference case, it will be desirable to simulate a direct connection between the
handlebar and the fork. To minimize the difference between the handlebar angle
𝜃 and the fork angle 𝛿, tracking control has been implemented. In this way, the
steerbywire system should behave like an ordinary, mechanically steered bicycle,
when the rider applies a steer torque at the handlebar. Two proportionaldifferential
PDcontrollers are implemented in order to provide an actionreaction torque 𝑇𝑃𝐷𝐻
to the handlebar and 𝑇𝑃𝐷𝐹 to the fork assembly. Angular velocity �̇� and �̇� are
estimated by taking the time derivative of angular position 𝜃 and 𝛿 respectively,
for a fixed time interval of 1 ms. The double PDconfiguration can also be used
to manipulate the steer feedback torque independent of the tracking performance.
The double PDcontroller is of the following form,

𝑇𝑃𝐷𝐻 = 𝐾𝑃𝐻(𝜃 − 𝛿) + 𝐾𝐷𝐻(�̇� − �̇�), (4.3)

𝑇𝑃𝐷𝐻 = 𝐾𝑃𝐻(𝜃 − 𝛿) + 𝐾𝐷𝐻(�̇� − �̇�) (4.4)

with proportional gains 𝐾𝑃𝐻, 𝐾𝑃𝐹 and differential gains 𝐾𝐷𝐻, 𝐾𝐷𝐹 respectively. The
torque 𝑇𝑃𝐷𝐻 is applied at the upper motor, and the torque 𝑇𝑃𝐷𝐹 at the lower mo
tor (thus ignoring motor dynamics). The forcing term in Equation 4.1 then be
comes,

f = [
𝑇𝜃
𝑇𝜙
𝑇𝛿
] = [

𝑇ℎ − 𝑇𝑃𝐷𝐻
0
𝑇𝑃𝐷𝐹

] , (4.5)

with the rider applied steer torque 𝑇ℎ at the handlebar, and zero applied roll angle
torque. Ideally the two controller torques could be identical, however we have
the freedom to choose the gains 𝐾𝑃𝐻 and 𝐾𝑃𝐹 and 𝐾𝐷𝐻 and 𝐾𝐷𝐹 differently. From
the outside a rider perceives only the in series combined stiffness and damping.
The double PDcontroller configuration combined with steerbywire bicycle plant
model can be visualized in a block diagram as shown in Figure 4.2. For the PD
controllers, the proportional and differential gains in Equation 4.3, 4.4 are chosen
such that a critically damped system response is obtained to ensure a fast and
accurate response without overshoot.

As an example, we use the parameters of the benchmark bicycle [2], with a handle
bar inertia of 𝐼0 = 0.001 kgm2, proportional gain 𝐾𝑝 = 90 Nm/rad, and differential
gain 𝐾𝑑 = 0.6 Nms/rad. As a first measure of performance the tracking transfer
function of the steerbywire system, defined as 𝐻𝑆𝐵𝑊𝑒(𝑠) = 𝛿(𝑠)/𝜃(𝑠) is ana
lyzed. The tracking transfer function magnitude shows the angular error between
the handlebar and the fork whereas the phase describes the latency in the system
response.

In Figure 4.3 the tracking transfer function magnitude (a) and phase (b) are pre
sented as a function of input frequency and forward speed. In general the gain
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Figure 4.2: Block diagram of the steerbywire bicycle model, which includes a double PDconfiguration,
with rider applied steering torque 𝑇ℎ, handlebar steering feedback torque 𝑇𝜃, handlebar steering angle
𝜃, fork applied torque 𝑇𝛿, ground reaction 𝑇𝑒 and fork angle 𝛿.

is close to one and phase is close to zero indicating a behaviour approximating a
mechanical connection. At a steering frequency of 3.1 Hz and a bicycle speed be
low the weave speed (𝜐𝑤 = 4.29 m/s), a substantial increase in tracking magnitude
occurs (as shown by the resonancelike upward peak at 0 m/s). A slight tracking
magnitude decrease occurs above 7 m/s at an input steering frequency range of
0.20.8 Hz. The increase in the tracking magnitude near the resonancelike peak
makes the bicycle hard to control, but this occurs only at very low speeds combined
with steering input above 2.5 Hz.

Phase lead is noticed for an input steering frequency of 01.2 Hz and an input speed
above 7 m/s. On the other hand, the phase lag fluctuates between 020 deg below
7 m/s up to 2.5 Hz. Above 2.5 Hz the phase lag decreases for all speed ranges
with a slope of approximate 86 deg/Hz until it reaches a plateau of about 150
deg above 4 Hz. The phase lag decrease above 2.5 Hz indicates a large latency
in the system response. The fork can no longer follow the handlebar commanded
steer angle within a given time threshold. The increased time delay above certain
frequencies might increase the steer effort and lead to loss of control in case the
phase lag becomes too large.

The resonancelike peak in the tracking magnitude at 3.1 Hz and the increase in
phase lag above 2.5 Hz is due to the finite stiffness of the tracking controller,
whereas the slight tracking magnitude decrease and phase lead at forward speeds
above 7 m/s is due to the velocitydependent properties of the stiffness matrix K2.
In summary, the simulated controller shows good tracking performance in a fre
quency range of 02.5 Hz and in a speed range of 010 m/s; above this frequency
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range, the tracking magnitude and phase lag significantly increase, especially at
low forward speeds.
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Figure 4.3: Magnitude and phase response of tracking transfer function of steerbywire system
𝐻𝑆𝐵𝑊𝑒(𝑠), as a function of forward speed υ and frequency.

As a second measure of performance we compared the steer stiffness transfer func
tions of the benchmark bicycle and the steerbywire bicycle. The steer stiffness
transfer function for the benchmark bicycle model is defined as 𝐻𝐵𝐵(𝑠) = 𝑇𝛿(𝑠)/𝛿(𝑠)
and for the steerbywire bicycle are defined as 𝐻𝑆𝐵𝑊(𝑠) = 𝑇𝜃(𝑠)/𝜃(𝑠) and as
𝐻𝑆𝐵𝑊𝑆(𝑠) = 𝑇𝜃(𝑠)/𝛿(𝑠). The steerbywire transfer function 𝐻𝑆𝐵𝑊(𝑠) describes
the steer stiffness perceived by the rider at the handlebars, whereas 𝐻𝑆𝐵𝑊𝑆(𝑠) de
scribes the in series stiffness and damping of the handlebar and fork assembly as a
combined system. The steer stiffness transfer functions of the benchmark bicycle
𝐻𝐵𝐵(𝑠) and steerbywire system 𝐻𝑆𝐵𝑊𝑆(𝑠) are influenced in the same way and for
this reason they are not discussed.

In Figure 4.4 the steer stiffness magnitude of the benchmark bicycle model (a) and
the steer stiffness magnitude of the steerbywire bicycle (b) are presented as a
function of input frequency and forward speed. At higher frequencies the steer
stiffness is primarily defined by the mass and inertia properties of the bicycle. A
significant drop in the steer stiffness magnitude relation occurs in both models at
the weave speed (𝜐𝑤 = 4.29 m/s) and the corresponding weave frequency (0.55 Hz)
of the bicycle shown by the downward peak approaching a zero stiffness. The steer
stiffness of the steerbywire bicycle at higher frequencies is primarily defined by
the stiffness and damping properties of the PDcontroller, whereas the resonance
like upward peak at low forward speeds is caused by the PDcontroller coefficients
and the mass and inertia properties defined in the system matrix.

The steer stiffness comparison shows an almost identical handlebar stiffness be
haviour in a frequency range of 03 Hz and in a forward speed range of 010 m/s.
Above 3 Hz the steer stiffness of the steerbywire bicycle shows a plateau whereas
the steer stiffness of the benchmark bicycle continues to increase until it reaches a
maximum of about 920 Nm/rad at 10 Hz. In other words, the steerbywire bicycle
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handlebars are more compliant compared to the benchmark bicycle, a larger steer
angle is obtained for the same steer torque input. The difference in the handlebar
steer stiffness might also indicate higher rider steer effort but does not influence
bicycle stability.

10
-1

10
0

10

10
1

m
a
g
n
it
u
d
e
 [
N

m
/r

a
d
] 10

2

10
1

Steer Stiffness T /  - Benchmark bicycle model

10
3

forward speed [m/s]

5

frequency [Hz]

10
0

0 10
-1

(a)

10
-1

10
0

10

10
1

m
a
g
n
it
u
d
e
 [
N

m
/r

a
d
] 10

2

10
1

Steer Stiffness T /  - Steer-by-wire-bicycle

10
3

forward speed [m/s]

5

frequency [Hz]

10
0

0 10
-1

(b)

Figure 4.4: Magnitude of the steer stiffness transfer function, as perceived by the rider, as a function of
forward speed υ and frequency, (a) on the benchmark bicycle 𝐻𝐵𝐵(𝑠), and (b) the steerbywire bicycle
𝐻𝑆𝐵𝑊(𝑠).

4.4. Hardware description
A custom made bicycle frame with two headtube assemblies was designed and
built, see Figure 4.5. The basic geometry configuration of the custom frame was
selected based on the dimensions of a Dutch city bicycle (Batavus Browser 54 cm).
To adapt the frame geometry for an increased stack height (due to the extended
headtube assembly) rattleCAD software was used. RattleCAD software provides a
fully parametric bicycle model and was used in this case to evaluate the impact of
an increase stack height on the rest of the frame geometry. A frame stack height
of 713 mm and a frame reach of 358 mm were selected for this particular bicycle
frame.

Two identical Maxon EC45 brushless DC motors coupled with two Maxon GP42C
planetary gearhead (36:1 reduction ratio) are used to actuate the fork and handle
bar assembly. Belt drive (1:1 reduction ratio) transmissions are used to transmit
torque from the motor to the fork and handlebar respectively. The existing drive
configuration allows a maximum continuous torque of 7.5 Nm and a maximum in
stantaneous torque of about 11.3 Nm. The total backlash of the system is about
0.8° (mainly due to the planetary gearhead configuration). To provide the handle
bar and fork tracking controllers with the required states two identical RMB20SC
13 bit absolute angular encoders are used. The simulation of the control loops,
state estimation and data logging are implemented in a Teensy 3.6 microcontroller
that runs an update loop at a rate of 1 kHz. The constant update loop rate is
achieved by the implementation of a real time operational system (RTOS) called
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Figure 4.5: Steerbywire bicycle prototype with handlebar and fork actuators, sensors, digital controller
and custom made battery pack.

Teensy threads.

Additional sensors are implemented on the bicycle to acquire knowledge of the rest
of the bicycle states. More specific, an inertial measurement (IMU) unit MPU9250 is
located inside the electronic control box at the back of the bicycle rack, see Figure
4.5. The IMU is used to monitor 6D translational and rotational accelerations. Two
gearwheel rotary encoders with a resolution of 192 counts /revolution combined
with GTS35 reading heads are used to measure pedal cadence and forward velocity
at the rear wheel. A rear hub magic pie 5 motor driven by a throttle controller is
used to cruise at high speeds without pedalling if needed. A deadband mechanism
with ± 5 deg play is designed as a safety to enable steering upon system failure.
The locations of the sensors (excluding the IMU), actuators and safety mechanism
are shown in Figure 4.6.

4.5. Tracking controller performance
The proposed PDcontroller gains of 𝐾𝑝 = 90 Nm/rad and of 𝐾𝑑 = 0.6 Nm/rad of the
benchmark bicycle simulation would in practice result in unrealistic high actuator
torques. On the other hand, unmodeled actuator and controller dynamics of the
fork and handlebar assembly can also cause unstable oscillatory modes. For these
reasons, the double PDcontroller gains were selected experimentally to maximize
the tracking performance without forcing the handlebar or fork assembly in an
unstable mode. The effective stiffness and damping in the steer torque path and
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Figure 4.6: Steerbywire bicycle component layout, showing the physical placement of the actuators
and sensors, with (a) headtube assembly with motor sensors and safety pin, (b) pedal speed sensor,
and (c) rear wheel with forward speed sensor and hub motor.

in the handlebar torque path are 𝐾𝑃𝐻 = 0.9 Nm/rad, 𝐾𝐷𝐻 = 0.012 Nm/rad and 𝐾𝑃𝐹
= 2 Nm/rad, 𝐾𝐷𝐹 = 0.025 Nm/rad respectively.

To test the tracking performance, fifteen participants were asked to perform a set
of slalom maneuvers in a controlled environment in the stable and unstable bicycle
speed region. All participants could easily control the steerbywire bicycle without
any training. The frequency steering range during the 90 second task for all par
ticipants swept between 0 and 2 Hz. The tracking response of the controller in the
time domain for one of the participants is shown in Figure 4.7. As can be seen, a
maximum tracking error of approximately 0.05 rad can be noticed for large steering
amplitudes ± 0.4 rad and a tracking error of about 0.02 rad for smaller steering am
plitudes ± 0.25 rad. The mean tracking error during the 90 second stability tasks
is 0.002 rad.

The frequency response of the tracking controller can be approximated by the em
pirical tracking transfer function, the ratio of the Discrete Fourier Transform (DFT)
between the fork angle 𝛿 and handlebar angle 𝜃. The empirical steerbywire track
ing transfer function is defined as 𝐻𝐸𝑆𝐵𝑊𝑒(𝑠) = 𝛿(𝑠)/𝜃(𝑠). A SavitzkyGolay filter
(2nd order, 113 frame length) is used to smooth the magnitude and phase data.
The tracking magnitude and phase for a frequency range between 02 Hz is shown
in Figure 4.8. As can be seen, the tracking amplitude ratio fluctuates between
0.951.1 for the entire frequency range, whereas the phase lag increases for higher
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Figure 4.7: Commanded handlebar steering angle and actual fork angle, tracking error and mean tracking
error, while a human subject performs a slalom.

frequencies and reaches a maximum of 24 deg at 2 Hz 2. In general the gain
is close to one and the phase lag fluctuates between 1020 deg indicating a be
haviour approximating a mechanical connection. Future studies are recommended
using feedforward control algorithms to improve system performance at higher fre
quencies.

4.6. Conclusions
A steerbywire bicycle with a double PDcontroller configuration has been designed
and built. Simulations showed good tracking performance in a frequency range
of 02.5 Hz and almost identical steer stiffness with the CarvalloWhipple model
[2] in a frequency range of 03 Hz and in a forward speed range of 010 m/s.
Preliminary testing also showed a perceived nearto identical behavior of the steer
bywire system to a mechanical connection. More specifically, a mean tracking
error in the steer angle of 0.02 rad and a mean phase lag of approximately 15.6
deg is noticed during the stability experiments. In future research the steerbywire
bicycle will serve as a versatile experimental platform for identifying human rider
control in bicycling [8], and development of support systems enhancing balance
and handling.
2Due to the fact that steering frequencies might exceed the aforementioned bandwidth at certain con
ditions further analysis of the tracking response is recommended. An idea could be to inject colored
noise with a frequency bandwidth of 05 Hz but the latter might be tricky especially if realriding tests
are conducted.
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5.1. Abstract
The objective of this research is to study the effect of haptic steering feedback
on the balancing task of a bicycle during lateral perturbation tests, in an effort to
improve twowheeler safety. The steerbywire bicycle designed and built at TU
Delft bicycle laboratory is used as an experimental platform to analyze the rider
response with and without steering feedback. The response of the rider’s control
actions is represented in the time domain by means of impulse response functions
(IRFs). More specifically, three metrics are defined in order to assess both steering
and balancing performance. Results failed to indicate any statistically significant
difference between experimental conditions. Although it should be mentioned that
parametric rider control identification of the sensory systems might be prerequisite
to indicate any possible changes.

5.2. Introduction
Since the birth of the safety bicycle in the 1890s, dynamics and selfstability have
been subjects of numerous discussions and bodies of research. These issues can
nowadays be considered to be partly resolved [1] for a wide range of applications.
Still, the question remains on how the rider stabilizes the lateral motions of the
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bicycle when it’s driven at low (unstable) forward speeds or how the rider follows a
desired path; e.g. the required control inputs and the rider learning process. These
probably comprise of haptic, vestibular and visual cues; here we will focus on the
haptic cues and the task of stabilization.

Haptic systems in vehicle control are usually connected with two types of realities.
One current application of kinesthetic devices is focused on enabling the driver to
feel feedback from the vehicle state when steerbywire systems come into play.
Steerbywire vehicles often need a resistance torque to prevent excessive rotation
of the steering wheel. This feedback torque is often defined by a simple relation,
e.g. a function of wheel angle, wheel torque, or vehicle state, and aims to assist the
driver in achieving the desired trajectory in real performance [2]. Similarly, haptics
can also be used as a tool to improve first stages of task learning through fading
guidance towards a goal [3]. On the other hand, computer simulations can be
helpful in evaluating different strategies for steering control [4], as a previous stage
to its implementation, and in development of control systems aimed to improve
riding safety [5].

In this work we use the experimental steerbywire bicycle [6] which has been
developed in the TU Delft bicycle laboratory to study the effect of haptic feedback
in the balancing task of bicycling. This is achieved by analyzing the rider response
with and without steering feedback during lateral pertubation tests. The response
of the rider’s control actions is represented in time domain by means of impulse
response functions (IRFs). More specific, the applied steer angle and the estimated
roll angle is used as a measure of control effort and performance respectively.

The paper is organized as follows: After this brief introduction the experimental
setup and experimental procedure are presented. Next, the methods followed
by the results are described. The article ends with the discussion and conclusion
section providing further insights in an attempt to explain the findings of this re
search.

5.3. Methods
5.3.1. Description of experimental setup
At TU Delft an instrumented steerbywire bicycle which is fully equipped with a
number of sensors to measure the state and rider input has been designed and
built, see Figure 5.1. For this study measurements from the inertial measurement
unit (IMU) sensor (MPU9250) and the steering angle encoder (RMB20SC) are
used. In addition, a perturbator mechanism is present, which is used to excite the
system. These perturbations are applied by laterally pulling a rope with a force
transducer in series, which is attached on the seat post. All sensors output are
logged with a sampling frequency (𝐹𝑠) equal to 1000 Hz. The measurement bicycle
is electrically driven and has a cruise control system, so the rider does not need
to exert pedaling power and thus eliminates the need for lower limb movement.
Steering angle (𝛿) is directly measured from the absolute encoder of the upper
front assembly, while the roll angle (𝜙) is estimated from the IMU data using the
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approach described by Sanjurjo et al. [7].

Figure 5.1: Steerbywire bicycle prototype with handlebar and fork actuators, sensors, pulling rope
mechanism, digital controller and custom made battery pack.

5.3.2. Description of steerbywire controller
To minimize the difference between the handlebar angle 𝜃 and the fork angle 𝛿,
tracking control has been implemented. In this way, the steerbywire system
should behave like an ordinary, mechanically steered bicycle, when the rider applies
a steer torque at the handlebar. Two proportionaldifferential PDcontrollers are im
plemented in order to provide an actionreaction torque 𝑇𝑃𝐷𝐻 to the handlebar and
𝑇𝑃𝐷𝐹 to the fork assembly. Angular velocity �̇� and �̇� are estimated by taking the
time derivative of angular position 𝜃 and 𝛿 respectively, for a fixed time interval of
1 ms. The double PDconfiguration can also be used to manipulate the steer feed
back torque independent of the tracking performance. The double PDcontroller is
of the following form:

𝑇𝑃𝐷𝐹 = 𝐾𝑃𝐹(𝜃 − 𝛿) + 𝐾𝐷𝐹(�̇� − �̇�), (5.1)

𝑇𝑃𝐷𝐻 = 𝐾𝑃𝐻(𝜃 − 𝛿) + 𝐾𝐷𝐻(�̇� − �̇�) (5.2)

with proportional gains 𝐾𝑃𝐻, 𝐾𝑃𝐹 and differential gains 𝐾𝐷𝐻, 𝐾𝐷𝐹 respectively. The
torque 𝑇𝑃𝐷𝐻 is applied at the upper servomotor, and the torque 𝑇𝑃𝐷𝐹 at the lower
servomotor. By setting 𝑇𝑃𝐷𝐻 to zero a steering configuration is created where the
rider feels no reaction torque from the steering assembly (feedback off), without
majorly affecting tracking error performance. The current controller configuration
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performs with high level of accuracy up to 3 Hz, the tracking error is kept below 3
degrees. However, in certain conditions nonlinear effects of the servomotors and
tires might create a delay in the control loop effecting the tracking error and realism
of the haptic steering feel.

5.3.3. Experimental procedure
Twenty healthy subjects volunteered in this study. To assure safety all subjects were
requested to wear protective equipment in the shape of a standardsapproved bike
helmet, knee and elbow pads. All participants gave informed consent according
to the guidelines of the human research ethics committee of Delft University of
Technology. All subjects were healthy and reported that they did not experience
any kind of pain or injury in the year before the experiments. The mean weight of
all subjects was selected to be close to the European population [8].

Each experiment trial consisted of four different speeds (i.e. 2.6, 3.7, 4.5, 5.6
m/s). Two individual trials were performed in total for every speed. In the first trial
steering feedback was enabled, whereas in the second trial steering feedback was
disabled. Every trial had a duration of approximately 60 seconds. All experiments
were performed across Heertjeslaan cycling path of TU Delft, the subjects were
requested to ride the steerbywire bicycle in all aforementioned speeds while being
laterally perturbed. An additional bicycle was used from the experiment coordinator
to cycle next to the instrumented steerbywire bicycle and perturb the subject, see
Figure 5.2. A setup which allowed both push and pulls was initially tested but the
pushes were subject to inconsistencies. After inspecting the data of the pilot runs,
it was observed that unilateral disturbances did not affect the predictability of the
perturbation, as the response of the rider was similar. For this reason the unilateral
approach was chosen. Nevertheless, to avoid any feedforward control behaviour
(e.g. seeing the coordinator preparing to pull the rope) all subjects were asked to
keep their focus on the road ahead.

5.3.4. System identification
In order to remove the effects of unwanted disturbances and noise, the measured
steering angle and estimated roll angle signals were filtered through a finite impulse
response (FIR) model. The impulse response function is defined as the function ℎ(𝜏)
which when convoluted with external input 𝑤(𝑡) results in the output 𝑦(𝑡). The
output data either represents 𝑦(𝑡) = 𝜙(𝑡) corresponding to ℎ𝜙(𝜏) or 𝑦(𝑡) = 𝛿(𝑡)
corresponding to ℎ𝛿(𝜏). In discrete time the convolution can be approximated by
the following equation:

𝑦(𝑡) =
𝑇−1

∑
𝜏=0

ℎ(𝜏)𝑤(𝑡 − 𝜏)Δ𝜏 + 𝑣(𝑡) (5.3)

where 𝑇 is the time length of the impulse function, which is equal to 3.08 seconds
as the oscillations die out after that point and 𝑣(𝑡) the remnant which is caused by
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Figure 5.2: Experimental trial performed across Heertjeslaan cycling path of TU Delft; Experiment coor
dinator cycling next to steerbywire bicycle while pulling laterally the subject with a rope.

unwanted disturbances. Equation 5.3 is rewritten in matrix form as follows:

𝑦 = 𝑊ℎ + 𝑣 (5.4)

where W is the matrix containing time shifted versions of the the input signal.

𝑊 =
⎡
⎢
⎢
⎢
⎣

𝑤(0) 0 0 … 0
𝑤(1) 𝑤(0) 0 … 0
𝑤(2) 𝑤(1) 𝑤(0) … 0
⋮ ⋮ ⋮ ⋱ 0

𝑤(𝑁 − 1) 𝑤(𝑁 − 2) 𝑤(𝑁 − 3) … 𝑤(𝑁 − 𝑇)

⎤
⎥
⎥
⎥
⎦

(5.5)

Since Equation 6.18 is linear in the parameters (the coefficients of h) there exists
a unique solution that can be found through the least squares method.

ℎ̂ = (𝑊𝑇𝑊)−1𝑊𝑇𝑦 (5.6)

Having an estimate of the IRF, the input signal is convoluted with (ℎ̂) in order to
produce an estimate of the output (�̂�) without the noise. The estimated responses
are further smoothed using a eightorder Butterworth filter with cutoff frequency of
10 Hz.

5.3.5. Comparison metrics
In order to correctly assess if there is a statistically significant difference between
the two conditions, three metrics are defined. The first one is the Power Spectral



5

56 5.4. Results

Centroid (PSC) of measured angle (𝛿) defined as

(𝑃𝑆𝐶𝑥 , 𝑃𝑆𝐶𝑦) = (
∑𝑁𝑛=1 𝑓(𝑛)𝑆𝛿(𝑛)
∑𝑁𝑛=1 𝑆𝛿(𝑛)

,
∑𝑁𝑛=1 𝑆𝛿(𝑛)2

∑𝑁𝑛=1 𝑆𝛿(𝑛)
) (5.7)

where 𝑁 is the number of samples lower than 5 Hz and 𝑆𝛿(𝑓) the power spectral
density of the signal. This metric gives an indication of the frequency which most
of the power in the signal is centered around. Higher value of 𝑃𝑆𝐶𝑥 will indicate
more oscillatory behaviour for the steering response and can be used as a metric
of control effort.

The variance accounted for (VAF) is used to assess the quality of the fit of the
FIR model output. The runs which scored lower than 60% were removed from
further analysis as it was deemed that the model did not sufficiently capture the
characteristics of the raw signal. The VAF between ℎ̂𝑜𝑓𝑓𝜙 and ℎ̂𝑜𝑛𝜙 is also used as a
metric of similarity for the roll angle response. In that case VAF is defined as:

VAF𝜙 = (1 −
var (ℎ̂𝑜𝑓𝑓𝜙 − ℎ̂𝑜𝑛𝜙 )

var (ℎ̂𝑜𝑓𝑓𝜙 )
) ⋅ 100% (5.8)

Finally as a third test, the relative delay between the steering angle IRFs of the
two conditions is estimated by finding the lag value of maximum crosscorrelation
between the signals.

5.4. Results
A dependant paired sample ttest was conducted to compare if there was significant
difference (95% confidence interval) in steering effort between conditions for all
speed levels, see Figure 5.3.

For forward speed 2.6 m/s there was no significant difference in the scores for
feedback on (M = 0.8, SD = 0.1) and feedback off (M = 0.77, SD = 0.12) conditions;
t(19) = 1.18, p = 0.2539. For forward speed 3.7 m/s there was no significant
difference in the scores for feedback on (M = 0.91, SD = 0.13) and feedback off
(M = 0.92, SD = 0.2) conditions; t(19) = –0.28, p = 0.7825. For forward speed 4.5
m/s there was no significant difference in the scores for feedback on (M = 0.97,
SD = 0.14) and feedback off (M = 1.01, SD = 0.2) conditions; t(19) = –1.58, p =
0.13. For forward speed 5.6 m/s there was no significant difference in the scores
for feedback on (M = 1.06, SD = 0.16) and feedback off (M = 1.1, SD = 0.21)
conditions; t(19) = –1.27, p = 0.21.

The impulse response function of the mean rider for steer angle (𝛿) and roll angle
(𝜙) is shown in Figure 5.4. The variance accounted for between roll angle impulse
responses (see Equation 5.8) is averaged over all participants and displayed for all
speed levels in Figure 5.5 (a). Similar roll angle response between feedback on and
off indicated by higher VAF𝜙 values suggests matching task performance.
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Figure 5.3: The x and y coordinate of the PSC used to determine the frequency where most of the power
is concentrated.

Figure 5.4: The impulse response function of the mean rider for steer angle (𝛿) and roll angle (𝜙). The
shaded area represents the values within one standard deviation of the mean.
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In addition to the variance roll test an onesample ttest was conducted to examine
if there is any delay in the steering response between feedback on and off, see
Figure 5.5 (b). For 2.6 m/s there was no significant deviation in the delay (M = –3,
SD = 25.89) from zero mean; t(19) = –0.52, p = 0.6103. However, for 3.7 m/s
the delay (M = –20.65, SD = 25.93) was statistically significant; t(19) = –3.56, p
= 0.0021. Also for 4.5 m/s the mean of the delay (M = –23.5, SD = 20.88) was
also significantly different than zero; t(19) = –5.03, p = 0.0001. Lastly, for 5.6 m/s
there was again significant difference in the delay (M = –19.15, SD = 18.19) from
zero; t(19) = – 4.71, p = 0.0002.
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Figure 5.5: a) Box plot of variance accounted for between roll angle impulse response functions for all
speed levels. b) Box plot of the relative delay in the estimated steering angle response between the two
experimental conditions. Negative value means that the feedback on signal is delayed compared to the
feedback off.
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5.5. Discussion and conclusions
From the aforementioned results it is suggested that the effects of haptic feedback
are minimal to nonexistent for the roll stabilization task. Neither performance (see
Figure 5.5 (a)) or steering effort was affected by the removal of haptic steering
feedback. Balance performance among conditions was comparatively consistent
(see Figure 5.5 (a)). However, in the unstable speed region the variance and the
number of outliers were higher. For steering effort the null hypothesis that the
PSC𝑥 metric came from independent random samples with equal means and equal
variances failed to be rejected for all speed levels. This does not undoubtedly
prove that the samples came from the same population, howbeit it gives a strong
indication towards that fact. On the other hand, for the feedback on the steering
response was delayed (≈ 18 ms see Figure 5.5 (b)) in comparison to the feedback
off. This might be due to the fact that the handlebars are more inert due to the
additional steering feedback.

The lateral pull disturbances can be translated into a lean torque in the direction of
forward speed and a steer torque in the direction of the steering axis. This means
that any dynamic effects that influences these torques must be examined. The per
formance of the steerbywire controller was examined by numerical simulation and
subjective measurements. All subjects reported that they felt like riding a mechan
ically steered bicycle, no adaptation period was required before the experiments.
During the experiments very little motion of the upper body was evident and steer
control was expected to be the main mechanism for bicycle balance [9]. Thus, we
assume that the intristic and reflexives responses of the upperbody do not affect
the validity of these results.

Physiologically there are two ways in which proprioception works in order to give
the rider information regarding the state of the front assembly. First are the muscle
spindles which by detecting changes in velocity and position of the shoulder joint
give the rider an estimation of the steering angle and steering rate of the handle
bars. Second are the Golgi tendon organs which work as force feedback sensors.
The sensory information provided by the latter sensor is what this experiment tried
to invalidate. In the feedback on case, information from the ground reaction torque
of the front tire is transferred through the handlebars to the sensory receptors of
the rider arms and is used for further state estimation. In the feedback off case the
steering feedback information is lost.

Despite the change in the dynamics of the upper handlebar the response of the
rider is almost identical. Thereupon, we assume that the internal controller of
the rider is either adaptive or is driven by some combination of torque or position
control. In the case of torque control this would mean complete readaptation of
feedback gains which would have resulted in some kind of adaptation period for the
participants when they swapped steering configurations. Although, no adaptation
period was needed for any of the participants. Alternatively, in the case of position
control steer angle increments are feedthrough an inverse model of the steering
assembly to produce the necessary forcing element. In this case, switching between
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configurations, would mean readaptation of the internal model of the handlebar
assembly. This is much more plausible as it mainly concerns tuning of the internal
perception of handlebar inertia which can happen instantaneously. To reveal if the
later assumption is true an additional study that models the rider as position and
torque controller will be conducted. The identified parameters of the former and
later controller might lead into further insights regarding the conclusions of this
study.

All the data used in this manuscript can be obtained by requesting from the
corresponding author. The supplementary data related to this article are avail
able online at https://doi.org/10.5281/zenodo.3484032 (Dialynas et al.,
2019).

References
[1] J. D. G. Kooijman, J. P. Meijaard, J. M. Papadopoulos, A. Ruina, and A. L.

Schwab, A bicycle can be selfstable without gyroscopic or caster effects, Sci
ence 332, 339 (2011).

[2] R. Hayama, S. Kawahara, S. Nakano, and H. Kumamoto, Resistance torque
control for steerbywire system to improve human–machine interface, Vehicle
System Dynamics 48, 1065 (2010).

[3] L. M. Crespo and D. J. Reinkensmeyer, Haptic guidance can enhance motor
learning of a steering task, Journal of Motor Behavior 40, 545 (2008).

[4] Y. Marumo and M. Nagai, Steering control of motorcycles using steerbywire
system, Vehicle System Dynamics 45, 445 (2007).

[5] Y. Marumo and N. Katagiri, Control effects of steerbywire system for motorcy
cles on lanekeeping performance, Vehicle System Dynamics 49, 1283 (2011).

[6] G. Dialynas, R. Happee, and A. L. Schwab, Design and implementation of a
steerbywire bicycle, in Proceedings of the 7th Annual International Cycling
Safety Conference (2018).

[7] E. Sanjurjo, M. A. Naya, J. Cuadrado, and A. L. Schwab, Roll angle estimator
based on angular rate measurements for bicycles, Vehicle System Dynamics
57, 1705 (2019).

[8] S. C. Walpole, D. PrietoMerino, P. Edwards, J. Cleland, G. Stevens, and
I. Roberts, The weight of nations: an estimation of adult human biomass, BMC
Public Health 12, 439 (2012).

[9] J. K. Moore, J. Kooijman, A. L. Schwab, and M. Hubbard, Rider motion iden
tification during normal bicycling by means of principal component analysis,
Multibody System Dynamics 25, 225 (2011).

https://doi.org/10.5281/zenodo.3484032
https://www.researchgate.net/publication/328808185
https://www.researchgate.net/publication/328808185


6
Rider control identification in
cycling taking into account
steer torque feedback and

sensorial delays

Corresponding article: G. Dialynas, C. Christoforidis, R. Happee, A. L. Schwab,
Rider control identification in cycling taking into account steer torque feedback and
sensorial delays, Submitted, (2020).

6.1. Abstract
An instrumented steerby wire bicycle designed and built at the TU Delft bicycle lab
oratory was used to investigate rider responses with and without steering torque
feedback. Steering responses and bicycle motions were measured perturbing bal
ance with impulsive forces at the seat post while following a straight lane at unsta
ble (2.6 & 3.7 ms−1) and stable speeds (4.5 & 5.6 ms−1) controlling speed using
an electric drive. Responses could well be captured by linear impulse response
functions which were consistent across participants. The impulse response func
tions were used to evaluate riderbicycle models in their ability to capture human
behaviour. The mechanics of the bicyclerider system were modelled using the
CarvalloWhipple bicycle model extended with rider inertia. A balancing and head
ing controller was added, capturing visual, vestibular and proprioceptive sensory
information using feedback of roll angle, roll angle rate, heading angle, heading
angle rate, steering angle and steering torque, taking into account muscular ac
tivation dynamics bicycle model extended with rider inertia. Results showed that
the rider model followed the necessary stability condition of steer into the fall and
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was capable of stabilizing the bicycle. Sensory delays had a negative effect on the
model fit, which was resolved with an internal model and prediction algorithm. A
model without steer angle and steer velocity feedback could not well capture the
human response at the highest speeds and the absence of torque feedback had
similar effects for all speeds, supporting the relevance of steer angle and torque
feedback in bicycle control. To our knowledge this is the first publication addressing
the role of steer torque feedback and sensorial delays by means of a neuromuscular
control model.

Keywords
Bicycle dynamics, manual control, system identification, rider model.

6.2. Introduction
The balance and control of a bicycle in motion is a skill that we acquire since our
early childhood. Even though the majority of the population knows how to ride a
bike, yet the way humans control and balance a bicycle has not been fully under
stood or quantified from a scientific point of view [1]. From the first appearance of
the modern bicycle in the late 1880s until now, dynamic models of uncontrolled bi
cycles have provided fundamental insights into bicycle stability in relation to speed
and geometry [2, 3]. However, additional knowledge into human control is required
not only to design safer bicycles but also to assess new safety systems (e.g. steer
assist functionalities). In depthanalyses of the rider sensory dynamics including
delays and thresholds are necessary to probe the dynamics of riderbicycle balance
control.

Research in the field of cybernetics started in the 1950s to advance aircraft tech
nology and understand pilot control. McRuer and Krendel [4] were amongst the
first to model the human operator as a servo system element with time delay.
The so called ”McRuer cross over model” was later extended to the ”McRuer pre
cision model” which accounted for low frequency neuromuscular lags [5]. Results
showed that the humans compensate the system to create an openloop firstorder
integrator near the systems crossover frequency. Among the first researchers who
focused on the manual control of bicycles were Van Lunteren et al. [6]. They used
a stationary bicycle simulator and system identification techniques to identify the
parameters of a proportional–integral–derivative (PID) rider controller with delay
at a constant forward speed of 4.2 ms−1. However, their bicycle simulator had no
visual display and the obtained controller has not been experimentally validated.
Massing and Roland [7, 8] developed a bicycle stability and path following torque
controller. The controller consisted of an inner and outer loop responsible for roll
stabilization and lateral tracking. Stabilization was achieved with a PID controller
with delay, whereas tracking employed a simple proportional controller. Results
showed adequate performance but the model was not yet validated. Weir [9] de
veloped a crossover model for Sharp’s [10] motorcycle model. He tried to identify
the transfer functions for different control input–output relations. From his analysis
it was concluded that a simple linear steer torque controller that takes into account
the lean angle is sufficient for balancing a motorcycle in motion. Eaton [11] later
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conducted experiments to validate the theoretical motorcycle model of Sharp et
al. [10] with the rider model of Weir [9]. Despite the fact that he excluded the
lean torque and used only the lean angle stabilization loop as a control input to
the rider model below the stable speed region, results were promising. Low uncer
tainty was present in the estimated control parameters, and steer torque responses
were fitted well. Jason Moore [12] in his PhD thesis focused on identifying rider
control during simple bicycle maneuvers. He constructed an instrumented bicycle
capable of measuring accurately the applied steer torque and conducted a series of
lateral perturbation experiments on a treadmill and on a pavilion floor. The large
amount of data collected during the experimental tests were used to identify both
the plant and control model of the underlying system. Some of the methods and
modelling approaches that he utilized in his thesis were also adopted herein. Hess
et al. [13] introduced task independent handling quality metrics for bicycle control.
Using these metrics, they developed a rider model with five gains, two secondorder
filters, and a preview time. Soudbakhsh et al. [14] mounted a stationary bicycle
on top of a motion platform and applied lateral sweep perturbations to capture the
rider’s responses. Their conclusion was that it is impossible to stabilize the station
ary bicycle only with upper body movements. With additional steering control the
riders can balance the bicycle under three delays in the neurological system. Chu
et al. [15] measured the steering and roll angle of a bicycle and used a model
predictive controller as a rider model to control the bicycle by applying steering and
leaning torques. Wang et al. [16] conducted experiments in order to analyse the
stability and control of a riderbicycle system and developed a human control model
for the body lean torque. Schwab et al. [17] modelled the bicycle rider using lateral
force perturbation experiments to explore the potential feedback of sensory cues
during the bicycle balancing task. A rider control model which is inherently lim
ited by neuromuscular lags was developed. Even though, the rider control model
seemed to mimic human control in a natural way, there were limitations in this
study. The experiments were conducted on a narrow treadmill and as reported this
may have created bias in the control behaviour. A single effective time delay was
initially incorporated in the model to attribute sensory delays but was ultimately re
moved for successful numerical identification. To enhance the findings and results
of Schwab et al. [17] study, we conduct lateral force perturbation experiments
in a wide cycling path using the instrumented steerbywire bicycle developed by
Dialynas et al. [18]. Next, we reconfigure the parameters of the CarvalloWhipple
bicycle model [2] to the physical properties of the experimental bicycle and design
a new rider control model.

This study has three main objective; the first is to design a rider control model
which takes into account steer torque feedback and sensorial delays. To achieve
this we include an internal control model (ICM), as frequently employed in human
motor control studies to compensate delays [19–22]. The second is to examine the
ability of humans to adapt to altered steering dynamics even when feedback is in
termittent and delayed. The third is to evaluate the effect of handlebar torque and
position feedback during the balancing task. We validate three models of increasing
complexity using experimental data collected by Dialynas et al. [23]. Two metrics
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are used to assess the performance of each model and to analyse the impact of
torque feedback on rider control. The covariance coefficient (CV) of the estimated
controller parameters is used as a measure of uncertainty, whereas the variance
accounted for (VAF) as a measure of discrepancy between the simulated and ac
tual responses. The paper is organized as follows: First, the experimental setup
and experimental procedure are presented. Next, the methods and results, are
presented. The article ends with a discussion and conclusion section highlighting
the main findings of this research. A preliminary analysis of this research data was
published as an MSc thesis [24]. All data presented herein have been reanalysed
and results were further extended.

6.3. Methods
6.3.1. Description of experimental setup
At TU Delft we designed and built a steerbywire bicycle [18] equipped with mul
tiple sensors measuring most bicycle states and rider control inputs required for
identification (see Figure 6.1). A pulling rope mechanism with a force transducer
in series was used to manually apply lateral impulsive forces at the seat post (see
Figure 6.3). The bicycle is equipped with rear wheel hub motor and a cruise control
system, so the subjects did not need to pedal during the experiments to maintain
a constant speed. Measurements of the inertial measurement unit (IMU), steering
angle encoder, torque sensor and rope force transducer were logged with a sam
pling frequency 𝐹𝑠 of 1000 Hz. Steering angle 𝛿 was directly measured from the
absolute encoder of the upper front assembly, while the roll angle 𝜙 was estimated
from the measured roll rate �̇� according to the methodology described by Sanjurjo
et al. [25].

6.3.2. Description of steerbywire controller
To minimize the difference between the handlebar 𝛿 and fork angle 𝜃 of the steer
bywire system, two proportionalderivative (PD) controllers are implemented. This
way an actionreaction torque is applied at the handlebar 𝑇𝑃𝐷𝐻 and fork 𝑇𝑃𝐷𝐹 and a
similar behaviour to an ordinary mechanically steered bicycle is achieved [18]. The
double PDcontrollers are formed as,

𝑇𝑃𝐷𝐻 = 𝐾𝑃𝐻(𝛿 − 𝜃) + 𝐾𝐷𝐻(�̇� − �̇�) (6.1)

𝑇𝑃𝐷𝐹 = 𝐾𝑃𝐹(𝛿 − 𝜃) + 𝐾𝐷𝐹(�̇� − �̇�), (6.2)

where 𝐾𝑃𝐻 = 0.9, 𝐾𝑃𝐹 = 2 Nm/rad are the proportional and 𝐾𝐷𝐻 = 0.012, 𝐾𝐷𝐹 =
0.025 Nms/rad are the derivative gains of the handlebar and fork assembly. �̇�, �̇�
are the handlebar and fork rates, which are estimated by taking the time derivative
of the directly measured angles, for a fixed time interval of 1 ms.

The steerbywire system enables flexible adjustment of steering actions and haptic
feedback (steering torque). In this paper the controller was programmed to approx
imate: 1) normal steering motion with normal steering torque (haptics on) and 2)
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Figure 6.1: Steerbywire bicycle prototype with handlebar and fork actuators, sensors, pulling rope
mechanism, digital controller and custom made battery pack.

normal steering motion with minimal steering torque (𝐾𝑃𝐻 and 𝐾𝐷𝐻 = 0), isolating
the rider from torques resulting from tyre to road interaction (haptics off).

6.3.3. Procedure
Eighteen males and two females (age = 26 ± 2 years) volunteered in this study. To
assure safety, all participants were requested to wear protective equipment, which
includes a standardsapproved bike helmet, knee and elbow pads. All subjects gave
informed consent according to the guidelines of the human research ethics commit
tee of Delft University of Technology. They reported that they did not experience
any kind of pain or injury in the year before the experiments. The mean weight of
the participants (82.1 ± 6.4 kg) was selected to be close to the European popula
tion [26], whereas the height (181 ± 7 cm) was close to the mean height of young
European men [27].

Each experimental trial consisted of four different speeds (i.e., 2.6, 3.7, 4.5, 5.6
ms−1) covering both the stable and the unstable forward speed range. Two indi
vidual trials were performed in random order for every speed. In one trial steering
feedback was enabled (haptics on), whereas in the other trial steering feedback was
disabled (haptics off). Every trial had a duration of approximately 60 seconds, with
on average a total of 12 lateral perturbations. An example of the data measured
for one subject at the lowest speed are presented in Figure 6.2.
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Figure 6.2: Example measurements of the lateral disturbance force 𝑤, rider applied steer torque 𝑇𝛿,
steer angle 𝛿, roll angle 𝜙 and heading 𝜓 at a forward velocity of 2.81 ms−1 (first 40 seconds).

All experiments were performed at a straight cycling path at the Heertjeslaan on
the TU Delft campus during the summer of 2019. The subjects were requested
to ride the steerbywire bicycle in all aforementioned speeds while being laterally
perturbed with impulsive forces at the seat post. An additional bicycle was used by
the experiment coordinator to cycle next to the instrumented steerbywire bicycle
and perturb the subject (see Figure 6.3). A setup which allowed both push and
pulls was initially tested but the pushes were subject to inconsistencies. After in
specting the data of the pilot runs, it was observed that unilateral disturbances did
not affect the predictability of the perturbation, as the responses of the subjects
were similar. For this reason, the unilateral approach was chosen. To avoid any
feedforward control behaviour (e.g. seeing the coordinator preparing to pull the
rope) all subjects were asked to focus on the road ahead.

6.4. System model
The system consists of a bicycle and rider model. For the bicycle we selected
the CarvalloWhipple model [2], whereas for the rider model we examine three
different linear feedback control approaches with increasing complexity and sensory
delays.
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Figure 6.3: Experimental trial performed at TU Delft; The experiment coordinator (left) cycling next to
the steerbywire bicycle (right) applies an impulsive lateral force with a rope.

6.4.1. Bicycle model
The CarvalloWhipple bicycle model [2] consists of four rigid bodies: a rear frame
B which includes the rider as a rigid mass with no hands on the handlebars, a front
frame H which consists of the handlebar and fork assembly and a front wheel F (see
Figure 6.4). The bodies are connected together with in total three resolute joints,
one for each wheel and one for the connection of the rear and front frame. The
contact between the wheels and the surface is modelled by holonomic constraints
in the normal direction and by nonholonomic constraints in the longitudinal and
lateral directions with zero longitudinal and lateral slip. The resulting bicycle model
has three velocity degreesoffreedom, the forward speed 𝑣, the rear frame roll rate
�̇� and the steering rate �̇�.
According to Meijaard et al. [2] for small perturbations the lateral bicycle motions
can be described by two coupled second order differential equations:

M�̈� + 𝑣C1�̇� + [𝑔K0 + 𝑣2K2]q = f (6.3)

where the timevarying variables are the roll and steer angle 𝜙, 𝛿 and roll and steer
torque 𝑇𝜙, 𝑇𝛿 represented by two vectors q, f, respectively. The coefficients in this
equation are: a constant symmetric mass matrix, M, a dampinglike matrix, 𝑣C1,
which is linear in the forward speed 𝑣, and a stiffness matrix which is the sum of a
constant symmetric part due to gravity, 𝑔K0, and a part, 𝑣2K2, which is quadratic
in the forward speed. The forces on the righthand side, f, are the generalized
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Figure 6.4: The bicycle model consists of four rigid bodies: a rear frame B which includes the rider as a
rigid mass with no hands on the handlebars, a front frame H which consists of the handlebar and fork
assembly and a front wheel F. The bodies are connected together with in total three resolute joints, one
for each wheel and one for the connection of the rear and front frame. The center of mass locations
are expressed relative to the 𝑥 and 𝑧 coordinates shown (with origin at P and y pointing towards the
reader). Other parameters are the body masses and inertias, the steer axis tilt 𝜆, wheelbase 𝑤 and trail
𝑐.

forces.

To capture the full bicycle motion several additional states were defined. For the
forward motion, the angular rates of the front and rear wheels were determined as,
�̇�𝑅 = −𝑣/𝑟𝑅, �̇�𝐹 = −𝑣/𝑟𝐹, where 𝜃𝑅 and 𝜃𝐹 are the rear and front wheel angles and
𝑟𝑅 and 𝑟𝐹 are the wheel radius, respectively. For the lateral dynamics the heading
(yaw) angle 𝜓 and lateral displacement of the rear 𝑦𝑃 and front wheel 𝑦𝑄 contact
point are calculated:

�̇� = 𝑣𝛿 + 𝑐�̇�
𝑤 cos 𝜆 (6.4)

̇𝑦𝑃 = 𝑣𝜓 (6.5)

𝑦𝑄 = 𝑦𝑃 +𝑤𝜓 − 𝑐𝛿 cos 𝜆𝑠 (6.6)

with wheelbase 𝑤, trail 𝑐 and steer axis tilt 𝜆𝑠. During our balance experiments, the
contribution of the visual heading cues on the bicycle trajectory could not be ne
glected, for this reason the state vector of Equation 6.3 is extended to include head
ing by adding the yaw rate Equation 6.4 to the set of equations of motion.
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The entries in the constant coefficient matricesM, C1, K0 and K2 can be calculated
from a nonminimal set of 25 bicycle parameters as described by Meijaard et al. [2].
A procedure simular to Moore et al. [28] was used to measure the parameters of
the steerbywire bicycle of Figure 6.1. The measured parameters are presented
in Table 6.8 of the Appendix I. To model the dynamics of the steerbywire in the
haptics off configuration we decouple the roll and steer dynamics. The handlebars
then act as a steer angle command, with only force feedback form the inertia of the
handlebars. The entries in the constant coefficient matrices of Equation 6.3 then
become:

M = [ 𝑀11 𝑀12
0 𝐼𝐻𝑥𝑧

] , C1 = [
𝐶111 𝐶112
0 0 ]

K0 = [
𝐾011 𝐾012
0 0 ] , K2 = [

0 𝐾212
0 0 ]

(6.7)

where 𝐼𝐻𝑥𝑧 in this case is the mass moment of inertia of only the handlebar assembly.
Table 6.9 shows the selected coefficients of the haptics on/off configurations.

To determine the stability of the straightahead steady motion, exponential motions
of the form 𝑞 = 𝑞0𝑒𝑥𝑝(𝜆𝑡) are assumed. Then in combination with Equation 6.3
the characteristic polynomial equation can be formed,

det (M𝜆2 + 𝑣C1𝜆 + 𝑔K0 + 𝑣2K2) = 0 (6.8)

and the eigenvalues 𝜆 can be calculated for the haptics on/off configurations (see
Figure 6.5). For the haptics on there are in total four eigenmodes. Two are im
portant for stability and are usually referred as the weave and capsize modes. The
weave is an oscillatory mode as can be seen by the existence of imaginary parts and
represents a motion in which the bicycle sways about its heading. The oscillatory
motions exponentially fades when forward speed is larger than 4.39 ms−1. The
capsize mode on the other hand has an eigenvector dominated by lean and leads
to a gradual roll drift to infinity when the eigenvalue crosses the zero line around
6.67 ms−1. The third eigenmode is the overall stable castering mode. This mode
has a large negative real eigenvalue with an eigenvector dominated by steering.
The eigenvalues corresponding to the kinematic differential equations are all zero
and correspond to changes in the rotation angles of the wheels, a constant yaw an
gle and a linearly increasing lateral displacement. For the haptics off configuration
the handlebar dynamics are decoupled from the fork, the response of the steering
assembly is no longer speed dependant and for this reason the bicycle is unstable
in all speeds.

6.4.2. State space representation
For control purposes Equation 6.3 is expressed in state space form:
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Figure 6.5: Root locus plot of the instrumented steerbywire bicycle (see Figure 6.1). Solid blue and
red lines indicate the real and imaginary part of the eigenvalues 𝜆 for the haptics on configuration, while
dashed blue line the eigenvalues 𝜆 for the haptics off configuration. For the haptics on the stable region
corresponds to speeds 4.39 ⪅ 𝑣 ⪅ 6.67ms−1, whereas for the haptics off the bicycle is always unstable.

ẋb = Abxb + Bbf+Hdw (6.9)

yb = Cbx+Dbf (6.10)

with state vector xb = [�̇�, �̇�, 𝜙, 𝛿, 𝜓]𝑇, generalized forces f = [𝑇𝜙 , 𝑇𝛿]𝑇, lateral force
input vector w = [𝑤] and output vector yb equal to the full state. We assume no
applied generalised roll torque, 𝑇𝜙 = 0. The systemmatrix Ab, input gain matrix Bb,
Hd lateral disturbance matrix, observer matrix Cb and direct feedthrough matrix
Db are defined as:

Ab = [
−M−1𝑣C1 −M−1(𝑔K0 + 𝑣2K2)

I2×2 0
0 𝑐⋅𝑐𝑜𝑠𝜆

𝑤 0 𝑣⋅𝑐𝑜𝑠𝜆
𝑤

] ,

Bb = [
M−1

0 ] ,

Cb = I5×5,D = 0, (6.11)

Hd = [
M−1[𝑙𝑔𝑐𝑠]

0
] ,
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In theHd matrix the coefficients 𝑙𝑔 and 𝑐𝑠 transform the lateral perturbation force 𝑤
to the generalized torques 𝑇𝜙 and 𝑇𝛿, and were derived by a virtual work approach.
The coefficient 𝑙𝑔 can be identified as the moment arm and is equal to 0.84 m.
For the haptics on configuration, the coefficient 𝑐𝑠 was 0.01 m, whereas for the
haptics off, this coefficient was set to 0, since the roll and steer dynamics are then
decoupled.

6.4.3. Rider control model
The rider model architecture consists of four main blocks in series (i.e. the delay,
the predictor, the linear gain controller and the neuromuscular dynamics ) that
represent the human control process sensing, reasoning and actuation. To obtain a
complete sensory input to the rider model the bicycle states were further extended
with the steer torque 𝑇𝛿, which comes as an output of the neuromuscular dynamics
of the rider arms. The output states attributed to the proprioceptive, visual and
vestibular system were delayed taking into account perception and neural delays
presented in Table 6.1. For the steering angle, steering angle rate (muscle spindles)
and steer torque (golgi tendon organs) the selected delays were based on previous
studies conducted by Van der Helm et al. [29] and De Vlugt et al. [30]. For the roll
angle and heading (yaw) angle (visual) the delays were selected in agreement with
Kawakami et al. [31], whereas for the roll rate (vestibular) the delay was selected
according to Barnett et al. [32].

Table 6.1: Sensory motor delays.

Bicycle states Delay (ms)
𝛿 25
�̇� 25
𝑇𝛿 25
𝜙 200
𝜓 200
�̇� 50

A prediction algorithm which includes an internal model of the bicycle and neu
romuscular dynamics was used to simulate how the central nervous deals with
sensory delays and estimates the current state integrating applied control inputs.
The predicted states were fed through the gain block which includes six free param
eters (one for each bicycle state), estimated as described in the Section Parameter
estimation. The produced neural output was filtered through the neuromuscular
dynamics block which gives as an output the rider steer torque 𝑇𝛿. The high level
overview of the obtained riderbicycle system can be seen in Figure 6.6.

6.4.4. Neuromuscular dynamics
To simulate the limitations of the rider’s arm responses a second order system
was used as a neuromuscular model similar to the approach adopted by Jason
Moore in his PhD thesis [12]. The model used activation dynamics estimated for
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Figure 6.6: High level overview of the riderbicycle model.

the shoulder joint from previous studies [33, 34]. The state space representation
of the neuromuscular model is expressed as,

ẋnm = Anmxnm + Bnm𝑎 (6.12)
ynm = Cnmxnm (6.13)

Anm =[ 0 1
−𝜔𝑐2 −2𝜁𝜔𝑐]

Bnm =[ 0𝜔𝑐2]

Cnm = [1 0]

where xnm = [𝑇𝛿 �̇�𝛿]
𝑇
is the state and ynm is the output of the neuromuscular

system with cutoff frequency 𝜔𝑐 = 2.17⋅2𝜋 rad s−1, damping coefficient 𝜁 = √1/2
and neural input 𝑎. The model acts as a critically damped secondorder filter with
a cutoff frequency equal to 𝜔𝑐.

6.4.5. Combined plant model
The bicycle dynamics state space representation was combined with the neuromus
cular dynamics. A similar methodology and notation as the one adopted by Jason
Moore in his thesis [12] are also followed herein in order to produce the extended
plant dynamics:
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ẋ = Ax + B𝑎 + [ Hd
02×1

]𝑤 (6.14)

y = Cx (6.15)

A =[ Ab Bb𝑖,2Cnm
00×5 Anm

] , 𝑖 = 1,… , 5

B =[05×1Bnm
]

C =[I6×6 06×1
01×6 0 ]

where state vector x = [�̇�, �̇�, 𝜙, 𝛿, 𝜓, 𝑇𝛿 , �̇�𝛿]𝑇, y the output vector consisting of the
sensory inflow feedback and neural signal 𝑎 being the control input.

6.4.6. Sensory delay reafferent optimal predictor
(SDROP)

To compensate the effect of sensory delays and achieve an adequate rider control
performance, we explored the use of internal predictive models. Several authors
have proposed that the cerebellum functions as a predictor of body motion. Miall
et al. [35] suggested that the cerebellum may hold at least two separate Smith
Predictors. The Smith predictor is a basic prediction scheme in control theory [36].
The Smith predictor compensates for time delays using a forward model of the con
trolled dynamics and an internal model of the sensory delays. The forward model
utilizes an efferent signal being the applied neural control input a. The comparison
between prediction and measurement simulates the human’s ability to distinguish
between reafference and exafference. Unfortunately, the Smith predictor does not
work for unstable open loop systems [36] such as the CarvalloWhipple bicycle
model [2]. As a consequence, further adjustments were made to the Smith predic
tor. The forward model was replaced by a discrete optimal predictor (DOP) which
was further adapted to work with different time delays (Table 6.1). A comparison
between the conventional DOP and adapted SDROP is presented in Figure 6.11 (a),
(b) of Appendix I. The SDROP used additional delays to synchronize the input states
and an internal model to forward the bicycle states in time. The predicted state es
timates and current bicycle states were compared and subtracted from each other.
The resulting error was added to the former estimates (reafferent correction) for
optimization. The SDROP required full state feedback, but in our extended bicycle
model only 6 out of 7 states are sensed. The missing ̇𝑇𝛿 was estimated by the
predictor. To detect disturbance effects, which are not captured by the efference
copy, we utilized the same correction principle as the one used in the Smith pre
dictor [36]. The low level overview of the rider controller and bicycle plant can be
seen in Figure 6.7.
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Figure 6.7: Low level overview of the riderbicycle system. Matrices 𝐴∗, 𝐵∗, 𝐻∗𝑑 are the discretized
matrices of the extended plant dynamics, 𝑑𝑖 is the amount of delay in times steps per sensory channel
and 𝑑𝑚𝑎𝑥 the maximum value of those. Matrices 𝐴∗𝑚, 𝐵∗𝑚 express the dynamics of the internal model of
the process. �̂�𝑝, �̂�𝑐 symbolize the undelayed and delayed estimates of the output states, respectively.
𝑒 is the error between the predicted and delayed states (Smith correction) and 𝐾 is a pure gain block
containing all six gains. 𝑎 represents the neural signal send to the rider arm muscles.

6.5. System identification
The rider control system identification used a combination of black box and gray
box models to identify the numerical values of the control gains employed by the
rider. Starting with the basic measurements, the identification was performed in six
steps:

1. Data preparation: There were two datasets available for our analysis (hap
tics on and haptics off). An in depth comparison of these conditions is pre
sented by Dialynas et al. [23]. A dependent paired sample ttest was con
ducted to compare if there was significant difference (95% confidence inter
val) in steering effort between conditions for all speed levels. The steering
angle power spectrum was analogous and almost identical impulse response
functions (IRFs) were reported. Hence only the haptics on dataset was se
lected for modelling. This dataset was split into two data clusters. The cluster
with the first 10 subjects was used for ”identification” of the controller gains,
and the cluster with the last 10 subjects for ”validation” of the model output.

2. Black box identification: To produce the filtered impulse response (IRF),
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finite impulse response (FIR) models were fitted to the four output states 𝑦
in response to the lateral force 𝑤 for each run.

3. Filtering: The IRFs ℎ𝛿(𝑡), ℎ𝜙(𝑡), ℎ𝜓(𝑡), ℎ𝑇𝛿(𝑡) were filtered using a zero
phase low pass filter with a cutoff frequency of 10 Hz.

4. Median response: The individual responses of the ”identification” and ”val
idation” datasets were averaged in order to produce two mean IRFs. Each
individual subject response was compared with the mean. The subject with
the best fit (highest VAF) for all runs was selected as the median rider for
both datasets. We could also have used the two mean raw measurements to
identify the median rider for the two aforementioned datasets but this was
avoided due to the fact there was too much unwanted information in the ex
periments which was not directly attributed to the impulse perturbation. All
results described herein were based on the median rider response IRFs, since
intersubject variability was low at ± 8%.

5. Black box filtering: The IRFs of the median subject was convolved with
the measured disturbances of each run to produce the nonparametric output
states �̃�𝛿(𝑡), �̃�𝜙(𝑡), �̃�𝜓(𝑡), �̃�𝑇𝛿(𝑡).

6. Gray box identification: A gray box model with a maximum of six free
parameters (one gain for each bicycle state feedback loop plus one for the
steer torque) was fitted to the the non parametric outputs �̃�𝛿 , �̃�𝜓 given the
measured external input 𝑤.

These individual steps are explained in detail in the following sections.

6.5.1. Black box model
To remove the effects of unwanted disturbances and noise, the measured steering
angle 𝛿, roll angle 𝜙, heading 𝜓 and steer torque 𝑇𝛿 signals were approximated
by a FIR model. The impulse response function ℎ(𝑡) was convolved with external
input 𝑤(𝑡) to produce the filtered output response �̃�(𝑡). The output data represent
the input to output relationship corresponding to either ℎ𝛿(𝑡), ℎ𝜙(𝑡), ℎ𝜓(𝑡), ℎ𝑇𝛿(𝑡).
In finite discrete time; 𝑡 = 1, 2, 3...., 𝑁 the measured output 𝑦(𝑡) is given by,

𝑦(𝑡) = �̃�(𝑡) + 𝑣(𝑡) (6.16)

�̃�(𝑡) =
𝑚

∑
𝑘=1

ℎ(𝑘)𝑤(𝑡 − 𝑘) (6.17)

where 𝑚 is the sample length of the impulse response function and 𝑣(𝑡) is the
remnant caused by the unwanted disturbances. Experimenting with different finite
impulse lengths, the oscillations were found to die out after 𝑚 = 798 samples,
which corresponds to a finite response length of 3.08 seconds. In state space form
Equations 6.16, 6.17 are expressed as,
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𝑦 = 𝑊ℎ + 𝑣 (6.18)

where W is the matrix containing time shifted versions of the the input signal.

𝑊 =
⎡
⎢
⎢
⎢
⎣

𝑤(0) 0 0 … 0
𝑤(1) 𝑤(0) 0 … 0
𝑤(2) 𝑤(1) 𝑤(0) … 0
⋮ ⋮ ⋮ ⋱ 0

𝑤(𝑁 − 1) 𝑤(𝑁 − 2) 𝑤(𝑁 − 3) … 𝑤(𝑁 − 𝑁)

⎤
⎥
⎥
⎥
⎦

(6.19)

Since Equation 6.18 is linear in the coefficients a unique solution can be found by
the least squares method.

ℎ = (𝑊𝑇𝑊)−1𝑊𝑇𝑦 (6.20)

The estimated IRFs were further filtered using a eightorder Butterworth filter with
cutoff frequency of 10 Hz. All input signals were convolved with ℎ in order to
remove noise and produce an estimate of the output signals �̃�. An example of
obtained responses of the mean and median rider for the lowest measured forward
velocity is presented in Figure 6.8.

Figure 6.8: IRFs for the roll angle 𝜙, steering angle 𝛿, heading angle 𝜓 and steer torque 𝑇𝛿 for a forward
velocity of 𝑣 = 2.8ms−1, shade = SD of mean over participants (haptics on).
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6.5.2. Gray box model
The rider control model includes six unknown linear feedback control gains. In state
space the gain block of Figure 6.6 can be expressed as a vector of the following
form, K = [𝐾�̇� , 𝐾�̇� , 𝐾𝜙 , 𝐾𝛿 , 𝐾𝜓, 𝐾𝑇𝛿]𝑇. As feedback is defined as negative the
control input is given by:

𝑎 = −Kŷc (6.21)

where ŷc is the output of the predictor (see figure 6.7).

6.5.3. Parameter estimation
The gains of the rider control model were estimated by fitting the model outputs
into the convolved filtered IRFs. This was achieved minimizing the following cost
function:

𝑉𝑁(K) =
1
𝑁

𝑁

∑
𝑡=1

[0.8
(�̂�𝛿(𝑡,K) − �̃�𝛿(𝑡))

2

(𝑦𝛿)
2

+0.16
(�̂�𝜓(𝑡,K) − �̃�𝜓(𝑡))

2

(𝑦𝜓)
2 + 0.04(�̂�

𝑇𝛿(𝑡,K))2

(𝑦𝑇𝛿)
2 ]

(6.22)

where K is a vector containing all free feedback control gains and �̂�𝛿, �̂�𝜓 and �̃�𝛿, �̃�𝜓
are the simulated and nonparametric outputs, respectively. The constant scaling
factors 𝑦𝛿, 𝑦𝜓 and 𝑦𝑇𝛿 are the absolute allowable magnitude limits, which are equal
to 0.4 rad for the two angles and 10 Nm for the steering torque.

The first two terms of the cost function are trying to match the steering and heading
responses of the parametric model with those of the nonparametric model. The
third term minimizes the magnitude of input torque in order to optimize fitting, while
minimizing the control effort. If this term was omitted it led to oscillatory responses
in the steering angle and unrealistic input torques, due to the double differentiation
to get from position to torque. Roll responses were not fitted due to systematic
deviations between the predicted and actual responses (read Discussion Section
for further explanation). All weights of the cost function were chosen heuristically,
the weight ratio of the heading and steer error was selected as 1:5, since this
gave the best possible fitting. For optimization a genetic algorithm (fitness limit =
0.03, crossover fraction = 0.85, and population size = 10 times bigger the size of
the parameter length) was used to initialize the process for the gradient descend
algorithm to estimate the global minimum of the gains.

Most estimated gains of the gray box model were negative, producing torques op
posed to the state direction. Due to the fact that the rider was expected to act
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like a restoring steering stabilizer with finite stiffness and damping properties, all
gains associated to the arm muscle spindles (𝐾𝛿, 𝐾�̇�) were constrained to be only
positive. At the same time, the heading and roll gains (𝐾𝜓, 𝐾𝜙) were constrained be
tween 250 and 250 kgm2 s−1, because if they were left unconstrained they drive
the whole gain vector to unrealistic values without any noticeable improvement on
fitting performance.

6.5.4. Performance metrics
As metric of model validity the variance accounted for between the parametric and
nonparametric output was calculated as,

VAFd(K) = 1 −
𝑁

∑
𝑡=1

(�̃�𝑑(𝑡) − �̂�𝑑(𝑡,K))
2 /

𝑁

∑
𝑡=1

(�̃�𝑑(𝑡)2) (6.23)

with 𝑑 being any of the roll 𝜙, steer 𝛿 and heading 𝜓 outputs. To quantify the
uncertainty of each parameter the covariance matrix was first estimated as,

cov𝑖𝑗(K̂) = 𝑉𝑁(K̂)𝐻𝑖𝑗(K̂)−1 (6.24)

where the hessian matrix H was calculated by the gradient descend algorithm
as,

H(K̂) = 𝐻𝑖𝑗(K̂) =
𝜕2𝑉𝑁
𝜕𝐾𝑖𝜕𝐾𝑗

(6.25)

where K̂ in both Equations 6.24, 6.25 stands for the closest estimate to the true
parameter vectorK∗, that produces the true global minimum. To obtain comparable
results between the estimated parameters the diagonal elements of the covariance
matrix cov𝑖𝑗(K̂) were normalized with the respective parameter estimate. The
normalized coefficient of variation for each parameter was calculated as,

𝐶𝑉𝑖 = √
𝜎2�̂�𝑖
�̂�2𝑖

(6.26)

where 𝜎2�̂�𝑖 stands for the diagonal elements in this equation.

6.6. Results
Three rider models with increasing complexity are presented and discussed in this
section. 1) A zero delay model which does not incorporate a predictor; the bicycles
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states are direct inputs to the Pure Gain block (see Figure 6.6), 2) a model with
sensory delays (see Table 6.1) in the sensory paths but without predictor, and 3)
a model with delays and predictor. The performance characteristics of all mod
els are assessed for three different configurations. In the first configuration the
rider has the torque feedback loop connected (haptics on) and the plant dynam
ics approximate a normal bicycle. In the second configuration the internal torque
feedback loop of the rider is disconnected (hence there are 5 instead of 6 feed
back parameters) and the plant dynamics approximate a bicycle without steering
torque feedback (𝑇𝛿 = 0). This will show in how far a human control model with
out steering torque feedback can explain normal human behaviour. In the third
configuration the steering dynamics change to that of steerbywire (haptics off).
This means that the plant approximates a bicycle with decoupled rollsteer dynam
ics, hence the rider receives only steering torque feedback due to the inertia of
the handlebars and not due to the front wheel dynamics. This will show in how
far a human control model with reduced steering torque feedback information can
explain normal human behaviour.

6.6.1. Zero delay (ZD)
The results of the zero delay model for all configurations and speed levels are
presented in Table 6.2 (see Figure 6.9 for a comparison among all models and
configurations for the lowest and highest measured speeds). A VAF of over 90%
was observed for both the steer angle and heading, while for the roll angle the
VAF is between 7790% depending on speed and configuration. The CV indicates
moderate dispersion for most gains and speed levels, except for the w/o 𝑇𝛿 con
figuration where the uncertainty of 𝐾𝛿 is much higher than the rest of the gains.
For all speed levels VAF𝛿 drops the most in the w/o 𝑇𝛿 configuration. The steering
angle and torque signals become substantially more oscillatory, although roll stabi
lization does not seem to be affected. In the haptics off case, VAF𝛿 drops less than
3% and the degradation in the steering angle, torque and roll signals is small. All
model predictions lag behind compared to the nonparametric responses. For the
roll angle the predicted magnitude is two to three times smaller than the measured
output.

6.6.2. With sensory delay (SD)
The results of the sensory delay model for all configurations and speed levels are
presented in Table 6.3. Despite the fact that additional delays (Table 6.1) are intro
duced into the sensory paths, torque feedback information seems to be sufficient
for prediction of the future states. However the model fit degraded by the introduc
tion of sensory delays. The model with normal steering torque feedback provided
a reasonable fit but VAF𝛿 dropped, in particular for higher speeds (from 97.5%
to 78% at 5.7 ms−1). The CV indicates moderate dispersion for most gains and
speed levels, except for the steer angle gain 𝐾𝛿, where a higher dispersion was
observed for the highest speeds. In contrast to the previous model a larger drop
in the VAFs of all signals was observed between the first two configurations (with
and w/o 𝑇𝛿 feedback), and an equally significant drop between the last two. Aside
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Table 6.2: Results of the zero delay model for the median rider for all configurations and speed levels.
Haptic on/off differentiates based on the dynamics of the bicycle model, while ”with or w/o 𝑇𝛿 feedback”
differentiates based on the structure of the rider control model. The values of the gains are presented
together with their corresponding uncertainty level (CV). The VAF between the parametric and non
parametric signal outputs is also presented in percentage% to assess fitting performance. The derivative
gains 𝐾�̇�, 𝐾�̇� are measured in kgm2 s−1, the proportional gains 𝐾𝜙, 𝐾𝛿, 𝐾𝜓 are measured in kgm2 s−2

and the torque feedback gain 𝐾𝑇𝛿 is dimensionless.

Bicycle Model Haptic On Haptic Off
Rider Model with 𝑇𝛿 feedback w/o 𝑇𝛿 feedback with 𝑇𝛿 feedback

Speed Value CV (10−4) Value CV (10−4) Value CV (10−4)
𝐾�̇� 77.17 114.86 22.46 29.77 115.36 213.52

2.8 ms−1 𝐾�̇� 2.26 73.57 2.58 18.93 8.76 187.30
𝐾𝜙 164.88 132.25 24.50 73.14 248.24 217.05
𝐾𝛿 32.75 150.14 3.76 140.96 29.67 215.07
𝐾𝜓 63.22 133.29 9.85 53.71 93.44 223.02
𝐾𝑇𝛿 3.51 176.20   7.53 223.83
VAF𝜙 77.80 82.79 78.37
VAF𝛿 98.34 79.19 98.20
VAF𝜓 93.46 93.51 93.74

𝐾�̇� 109.94 146.98 21.30 35.99 78.28 61.00
3.6 ms−1 𝐾�̇� 8.22 139.00 3.30 24.78 9.09 51.11

𝐾𝜙 248.47 147.39 34.64 71.54 229.14 84.40
𝐾𝛿 50.78 147.72 6.48 130.57 53.16 92.96
𝐾𝜓 132.13 152.08 17.74 61.92 103.75 74.49
𝐾𝑇𝛿 4.52 167.24   6.89 64.17
VAF𝜙 79.92 85.93 80.89
VAF𝛿 98.83 86.40 97.08
VAF𝜓 95.33 97.95 95.15

𝐾�̇� 92.50 117.34 27.29 46.40 102.63 40.87
4.7 ms−1 𝐾�̇� 4.81 183.05 4.25 41.56 11.24 28.38

𝐾𝜙 183.03 135.64 38.17 76.43 249.74 74.10
𝐾𝛿 22.57 237.51 2.65 591.87 63.36 88.33
𝐾𝜓 165.42 126.89 33.78 63.74 188.67 58.81
𝐾𝑇𝛿 3.42 174.23   8.98 13.88
VAF𝜙 77.03 83.06 78.60
VAF𝛿 97.57 80.27 95.57
VAF𝜓 91.41 97.03 92.48

𝐾�̇� 83.90 117.61 31.12 43.99 76.30 47.12
5.7 ms−1 𝐾�̇� 5.83 142.87 5.58 40.62 10.91 30.23

𝐾𝜙 166.08 127.89 43.64 67.14 208.33 83.09
𝐾𝛿 14.85 98.10 1.14 1836.39 79.44 75.47
𝐾𝜓 186.77 128.56 49.82 52.31 176.96 69.82
𝐾𝑇𝛿 3.24 185.07   8.45 29.67
VAF𝜙 79.17 84.03 80.30
VAF𝛿 97.51 84.09 94.71
VAF𝜓 90.97 96.41 91.56
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from that an additional delay in the predicted signals was evident (see Figure 6.9).
The magnitude of the roll angle remains two to three times smaller than the actual
nonparametric output.

6.6.3. Sensory delay reafferent optimal predictor
(SDROP)

The results of the SDROPmodel for all configurations and speed levels are presented
in Table 6.4. Despite the fact that significant delays are introduced into the sensory
paths (Table 6.1) the internal model of the predictor compensates for all system
latencies and achieves a good level of performance for all three configurations. A
VAF of over 90% was observed for both the steer angle and heading, while for the
roll angle VAF is between 8086% depending on speed and configuration. The CV
indicates a stable level of dispersion for most gains and speed levels. Only for the
haptics on configurations a higher dispersion was observed for the steer rate 𝐾�̇�
and steer angle gains 𝐾𝛿. A drop in VAF𝛿 and an oscillatory behavior similar to the
ZD model was observed in the w/o 𝑇𝛿 and haptics off configuration. Also for this
model the predicted roll angle magnitude remains two to three times smaller than
the actual nonparametric output.

6.6.4. Testing and validation
The SDROP predictions capabilities are also tested without the Smith correction
control loop, in this case the performance of only the adapted DOP is tested (see
Figure 6.11 of Appendix I). To remove any potential effects related to the gains of
the previous simulations the gain estimates of the ZD model are adopted for both
SDROP and DOP simulations. A comparison between the true roll rate and predicted
roll rate of the DOP and SDROP model without any internal model discrepancies is
presented in Figure 6.10 (a). The state estimate of the SDROP model is closest to
the true state, which is expected since the Smith loop corrects the error between
the state estimates by comparing its predicted states with the direct outputs of the
bicycle model. However, the main advantage of the Smith correction loop is the
ability to correct for internal model imperfections, which come along with changes
in the bicycle plant dynamics. To examine this ability the forward model of the
SDROP is replaced with that of the haptics off configuration. This is based on the
assumption that the rider has a reduced perception of bicycle dynamics when riding
the steerbywire bicycle in the haptics off configuration. A comparison between
the true roll rate and predicted roll rate of the DOP and SDROP with internal model
imperfections is presented in Figure 6.10 (b). The SDROP manages to handle all
model imperfections and achieve high level of performance, while the DOP predic
tions are oscillatory and lag behind compared to the true state estimates.

All results presented up to now, included feedback of steering angle and steering
angle rate. To assess the importance of these loops, we also simulated the SDROP
model omitting either or both feedback loops. Results in Table 6.7 demonstrated a
poor fit for the highest speeds, in particular when removing both feedback loops.
More specifically, VAF𝛿, VAF𝜙 dropped from approximately 90 to 60% and 80 to
26%, respectively. VAF𝜓 dropped from 94 to 20%.
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Table 6.3: Results of the with sensory delay model for the median rider for all configurations and speed
levels. Haptic on/off differentiates based on the dynamics of the bicycle model, while ”with or w/o 𝑇𝛿
feedback” differentiates based on the structure of the rider control model. The values of the gains are
presented together with their corresponding uncertainty level (CV). The variance accounted for (VAF)
between the parametric and nonparametric signal outputs is also presented in percentage % to assess
fitting performance. The derivative gains 𝐾�̇�, 𝐾�̇� are measured in kgm2 s−1, the proportional gains 𝐾𝜙,
𝐾𝛿, 𝐾𝜓 are measured in kgm2 s−2 and the torque feedback gain 𝐾𝑇𝛿 is dimensionless.

Bicycle Model Haptic On Haptic Off
Rider Model with 𝑇𝛿 feedback w/o 𝑇𝛿 feedback with 𝑇𝛿 feedback

Speed Value CV (10−4) Value CV (10−4) Value CV (10−4)
𝐾�̇� 68.53 38.72 14.93 37.52 28.19 35.15

2.8 ms−1 𝐾�̇� 2.09 110.32 2.30 32.17 2.65 13.18
𝐾𝜙 146.29 72.07 16.98 92.51 79.20 78.41
𝐾𝛿 22.18 95.38 4.62 103.75 10.51 93.36
𝐾𝜓 40.34 56.18 3.78 116.84 14.53 67.08
𝐾𝑇𝛿 3.52 64.80   2.59 29.48
VAF𝜙 81.15 69.61 80.01
VAF𝛿 93.43 23.34 66.84
VAF𝜓 93.78 69.67 83.30

𝐾�̇� 51.02 56.62 15.40 55.90 21.25 51.31
3.6 ms−1 𝐾�̇� 2.50 170.45 2.81 50.20 2.79 17.72

𝐾𝜙 120.51 85.28 22.82 102.83 76.41 90.89
𝐾𝛿 16.58 153.27 3.94 243.76 17.14 84.92
𝐾𝜓 43.06 79.41 7.37 147.32 13.30 103.52
𝐾𝑇𝛿 3.42 62.79   3.09 21.20
VAF𝜙 82.85 79.48 73.14
VAF𝛿 91.63 53.29 52.83
VAF𝜓 95.10 84.88 71.58

𝐾�̇� 51.78 64.60 19.26 349.70 14.88 55.92
4.7 ms−1 𝐾�̇� 2.75 160.68 4.42 438.96 3.04 20.62

𝐾𝜙 136.22 105.15 27.02 111.78 48.91 115.90
𝐾𝛿 3.21 1156.00 0.01 492609.67 16.01 99.26
𝐾𝜓 64.43 87.60 14.29 412.99 10.82 119.48
𝐾𝑇𝛿 3.70 63.91   2.61 30.62
VAF𝜙 77.86 71.14 63.73
VAF𝛿 81.63 36.19 15.61
VAF𝜓 90.32 80.57 55.71

𝐾�̇� 38.58 136.91 19.65 110.85 10.10 62.29
5.7 ms−1 𝐾�̇� 1.13 2085.75 5.42 128.32 3.08 21.38

𝐾𝜙 120.59 120.57 33.34 117.63 30.95 133.76
𝐾𝛿 0.00 3969013.40 0.01 280859.33 18.46 79.69
𝐾𝜓 60.65 95.03 19.20 183.00 8.17 131.56
𝐾𝑇𝛿 4.27 191.50   2.58 26.58
VAF𝜙 73.65 70.08 49.58
VAF𝛿 77.99 40.64 
VAF𝜓 84.32 79.50 39.90



6.6. Results

6

83

Table 6.4: Results for the SDROP model for the median rider for all configurations and speed levels.
Haptic on/off differentiates based on the dynamics of the bicycle model, while ”with or w/o 𝑇𝛿 feedback”
differentiates based on the structure of the rider control model. The values of the gains are presented
together with their corresponding uncertainty level (CV). The variance accounted for (VAF) between
the parametric and nonparametric signal outputs is also presented in percentage % to assess fitting
performance. The derivative gains 𝐾�̇�, 𝐾�̇� are measured in kgm2 s−1, the proportional gains 𝐾𝜙, 𝐾𝛿,
𝐾𝜓 are measured in kgm2 s−2 and the torque feedback gain 𝐾𝑇𝛿 is dimensionless.

Bicycle Model Haptics On Haptics Off
Rider Model with 𝑇𝛿 feedback w/o 𝑇𝛿 feedback with 𝑇𝛿 feedback

Speed Value CV (10−4) Value CV (10−4) Value CV (10−4)
𝐾�̇� 111.62 152.10 22.44 28.45 123.53 27.90

2.8 ms−1 𝐾�̇� 1.80 234.11 2.62 14.59 8.62 35.62
𝐾𝜙 248.74 151.15 24.17 84.44 239.60 18.65
𝐾𝛿 45.60 150.24 4.05 147.97 22.82 90.52
𝐾𝜓 94.18 156.50 9.03 65.63 91.07 14.16
𝐾𝑇𝛿 4.66 170.99   7.93 27.78
VAF𝜙 78.80 82.33 80.67
VAF𝛿 98.21 68.99 97.59
VAF𝜓 94.04 90.77 94.95

𝐾�̇� 94.83 125.80 22.08 33.58 97.15 115.92
3.6 ms−1 𝐾�̇� 3.33 404.51 3.34 17.01 9.68 75.60

𝐾𝜙 249.80 64.02 37.61 80.02 249.84 214.29
𝐾𝛿 58.12 63.15 7.44 140.22 50.23 247.35
𝐾𝜓 125.36 97.89 17.72 66.95 119.20 160.68
𝐾𝑇𝛿 4.24 91.84   7.57 95.88
VAF𝜙 81.66 86.50 83.35
VAF𝛿 97.33 79.27 96.15
VAF𝜓 96.13 96.97 96.80

𝐾�̇� 120.38 145.55 27.59 56.00 164.59 112.31
4.7 ms−1 𝐾�̇� 0.24 4252.46 4.15 59.72 22.39 106.46

𝐾𝜙 249.40 133.42 37.98 90.28 249.82 107.93
𝐾𝛿 29.49 210.73 2.67 665.03 14.70 649.60
𝐾𝜓 222.31 143.06 31.24 81.57 209.12 111.47
𝐾𝑇𝛿 5.75 141.98   13.87 78.12
VAF𝜙 79.21 81.88 80.97
VAF𝛿 97.07 70.43 90.44
VAF𝜓 92.97 95.43 95.93

𝐾�̇� 83.24 24.27 27.53 46.08 146.38 35.81
5.7 ms−1 𝐾�̇� 0.65 1394.64 4.31 43.06 28.45 31.76

𝐾𝜙 169.81 13.03 44.71 92.82 246.85 116.80
𝐾𝛿 8.29 278.33 4.13 493.77 29.42 401.88
𝐾𝜓 185.36 6.72 43.34 72.02 211.40 56.88
𝐾𝑇𝛿 4.49 72.85   15.81 10.28
VAF𝜙 82.35 85.06 80.57
VAF𝛿 96.12 75.40 87.27
VAF𝜓 93.83 97.03 93.59
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Figure 6.9: Steering angle 𝛿, roll angle 𝜙 and steering torque 𝑇𝛿 compared among the three rider
models for all torque feedback configurations, for the lowest speed (top) and highest speed (bottom).
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Figure 6.10: Comparison of true roll rate with simulated response of the DOP and SDROP predictors,
(a) without internal model imperfections, (b) with internal model imperfections.

As a final step the simulated outputs of the SDROP model, which derive from the
modelling dataset, are compared with the nonparametric responses of the valida
tion dataset. The resulting VAFs are summarized in Table 6.5. Even though the
perturbations in the validation set occurred at slightly lower speeds than the mod
elling dataset, most estimated VAFs are inline with those presented in the afore
mentioned tables. The median rider responses obtained from the two datasets lead
to similar simulated responses and VAFs. To that end, all results described herein
are justified indicating high quality of the identified rider models.

6.7. Discussion
We investigated rider control in steering and balancing using three control models
varying presence of sensory delays (ZD vs SD) and prediction (SDROP), and varying
presence of haptic steering torque feedback. In addition, for the SDROP model we
assessed the importance of steering angle 𝛿 and steering rate �̇� by omitting either
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Table 6.5: Validation results of the SDROP model with 𝑇𝛿 feedback, VAFs between the simulation output
and the nonparametric response of the median rider of the validation dataset for all forward speed
levels.

𝑣 (ms−1) VAF𝜙 VAF𝛿 VAF𝜓
2.5 69.86 90.39 91.73
3.7 72.40 80.02 96.18
4.4 70.51 95.32 87.78
5.6 73.76 85.28 91.18

or both feedback loops. Comprehensive analysis of the three control models indi
cated almost identical responses between the ZD and SDROP models. Differences
between ZD and SDROP can be explained as follows. The predictor can accurately
estimate effects of steering actions (efference copy) but only detects the effect
of the external perturbation after the sensory delay. This explains the small time
delay between 2080 ms observed in the predictions of the SDROP model. The
SD model responses were more strongly delayed compared to the actual measure
ments, with a delay between 20120 ms, due to the sensory delays and missing
prediction capabilities.

All models showed the best performance for the haptics on with 𝑇𝛿 feedback con
figuration, with a VAF mostly over 90% for all speeds. For the ZD model the VAF
predictions were closed with the predictions of the five state Jason Moore human
controller [12] with no time delays or feedforward prediction. Although, in Jason’s
model steer torque was not included as feedback and predictions were evaluated
against the lightly processed almostraw data (250+ trials, hours of data) high VAFs
predictions were obtained for both the treadmill and gymnasium data. For the SD
model torque feedback was proven potent enough to compensate the added sen
sory delays but VAFs dropped in particular for higher speeds. For the haptics on
w/o 𝑇𝛿 feedback configuration a drop of at least 15% in the VAFs of all models
was observed between the first two configurations (with and w/o 𝑇𝛿 feedback),
with a higher dispersion in the steer angle signals. Torque feedback improves fit
ting performance for all models and for this reason it is considered important for
rider control. Different performance between the SD model and other two models
is observed for the haptics off configuration. For the ZD and SDROP model VAF𝛿
drops approximately 8% similar to the previous experiments conducted by Dialynas
et al. [23]. Although for the SD model, a VAF𝛿 drop of 70% and a much higher
degradation in the fitting performance was observed compared to the other two
models.

For the SDROP model omitting both steering angle 𝛿 and steering rate �̇� had a neg
ative effect in the fitting performance especially for the highest speeds. A large drop
of about 70% was evident in the VAF𝜓 and a drop of about 50% VAF𝜙. A drop
of about 20% was also evident at the VAF𝛿. The higher degradation of the head
ing and roll VAFs indicates that handlebar position and velocity feedback (muscle
spindles) enhances bicycle heading and roll perception at higher speeds.
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For all models the predicted magnitudes of the roll angle remained two to three
times smaller than the actual measured output (see Figure 6.9). Hence, VAF𝜙
never reaches values higher than 85%. During the experiments the upper body re
mained unconstrained and acted as a double inverted pendulum with some torsional
spring and damping properties. Additionally, simulations showed that rider compli
ance can influence the magnitude of the roll angle. A much higher roll angle of the
bicycle is expected when the rider is more compliant (see Figure 6.12 of Appendix
I for justification). Consequently, the degree to which the rider can extrapolate
information from their vestibular system to make deductions on the state of the
bicycle is debatable, since the vestibular system measures roll rate and accelera
tion of the head and not of the bicycle. Here it may be argued that proprioceptive
(spindle) information can be used to relate head referenced perception (vestibular
and visual) to bicycle motion. However, since this remains consistent among con
ditions the effectiveness of the torque feedback loop will remain analogous across
conditions.

The gains for the rider controller roll 𝐾𝜙, 𝐾�̇� and heading 𝐾𝜓 are consistently nega
tive for all models, configurations and speeds. This in full agreement with the basic
bicycle balance mechanism: to steer into the undesired fall [3]. The balance of a
bicycle is a so called nonminimal phase system. The heading gain 𝐾𝜓 exhibits a
consistent trend, its magnitude increases with speed. This means that at higher
speeds the rider focus is shifted towards heading control.

6.8. Conclusion
In an effort to iterate over existing rider control models, the SDROP model has
been created that successfully accounts for sensory delays by the use of an internal
forward model. The performance of the SD model has proven that implementa
tion of sensory delays without feedforward compensation does not produce results
that match the experimental data. A prediction strategy has been developed that
manages to circumvent the inability of the conventional Smith predictor to work
on inherently unstable open loop systems. The rider model is able to control the
bicycle at all speeds and follows the necessary stability condition of steer into the
fall. All simulated responses match the nonparametric outputs obtained from both
datasets with high level of performance, even when internal model inaccuracies are
introduced.

With this rider model the importance of accurate determination of the various state
variables via our sensors has been examined. The analysis showed that a highly
realistic rider model must include steer angle, steer velocity and torque feedback
to obtain adequate performance at all speed levels. Although, if the torque feed
back loop is severed and not disconnected as in the haptics off configuration, state
information might be deduced by the remaining inertial properties of the handle
bar. This possibly explains why no differences were observed herein and also in the
previous experiments conducted by Dialynas et al. [23]. Even though a steerby
wire system decouples the rollsteer dynamics (haptics off) the remaining inertial
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torque and position feedback of the handlebar is proven to be adequate for the
rider to control and balance a bicycle. The absence of haptic feedback substantially
changes the system dynamics where with haptics off the bicycle is always unstable
(see Figure 6.5) but apparently riders can effectively stabilise and control the sys
tem. Future work can be directed towards a deeper understanding of the haptic
feedback mechanism at the handlebars by varying the dynamic steer stiffness of
the handlebars and applying handlebar steer torque perturbations.

Appendix I
Abbreviations

PID proportional–integral–derivative.
ICM internal control model.
IMU inertial measurement unit.
IRF impulse response function.
FIR finite impulse response.
CV covariance coefficient.
VAF variance accounted for.
DOP discrete optimal predictor.
ZD zero delay.
SD sensory delay.
SDROP sensory delay reafferent optimal predictor.

Mathematical notations

𝐹𝑠 sampling frequency.
𝛿 steering angle.
𝜙 roll angle.
�̇� roll rate.
𝜃 fork angle.
�̇� fork rate.
�̇� steer rate.
𝑇𝑃𝐷𝐻 , 𝑇𝑃𝐷𝐹 handlebar and fork applied torques of PD con

troller.
𝐾𝑃𝐻 , 𝐾𝑃𝐹 proportional handlebar and fork gains.
𝐾𝐷𝐻 , 𝐾𝐷𝐹 derivative gains of the handlebar and fork.
𝑣 forward speed.
𝑇𝜙, 𝑇𝛿 roll and steer rider torques.
𝜃𝑅 , 𝜃𝐹 rotation angle of the rear and front wheel.
̇𝜃𝑅 , ̇𝜃𝐹 rotational angular rates of the rear and front

wheel.
𝑦𝑃 , 𝑦𝑄 rear and front wheel contact points.
𝜓 heading (yaw) angle.
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𝑙𝑔 force moment arm coefficient measured from the
ground.

𝑐𝑠 denotes the force relationship between roll and
steer angle.

𝑦𝛿(𝑡), 𝑦𝜙(𝑡), 𝑦𝜓(𝑡), 𝑦𝑇𝛿(𝑡) nonparametric output states of steer, roll, head
ing angle and steer torque.

�̂�𝛿, �̂�𝜓 simulated disturbance output states.
𝑦𝛿𝑘, 𝑦

𝜓
𝑘 , 𝑦

𝑇𝛿
𝑘 absolute magnitude limits of steer, heading angle

and steer torque.
𝜏 time length of the impulse response function.
ℎ𝛿(𝜏), ℎ𝜙(𝜏), ℎ𝜓(𝜏), ℎ𝑇𝛿(𝜏) impulse response functions of steer, roll, heading

angle and steer torque.
𝑤(𝑡) external input force.
𝐾�̇� , 𝐾�̇� , 𝐾𝜙 , 𝐾𝛿 , 𝐾𝜓, 𝐾𝑇𝛿 steer, roll, heading angle and steer torque gains.

(a)

(b)

Figure 6.11: The discrete optimal predictor (DOP) control scheme, (a) conventional predictor with tapped
delay line used to forward bicycle states in time for a predetermined delay 𝑧, where 𝑎𝑛 represents
the previous control input known as an ”efference copy”, 𝑦𝑑𝑛 , 𝑦𝑝𝑛 are the delayed and approximated
state estimates, respectively. Matrices 𝐴∗𝑚 and 𝐵∗𝑚 are the best available discrete approximation of the
system dynamics. (b) sensory delay reafferent optimal predictor (SDROP) with tapped delay 𝑧, where
𝑢0 represents the previous control input ”efference copy”, 𝑥1 , 𝑥2 are the delayed input state estimates.
Since 𝑥1 delay is smaller in magnitude than 𝑥2 an additional delay is added for synchronization of
the states. The delayed state enters the tapped delay line until the point when the forward simulation
produces an estimate of 𝑥1 that is concurrent with its measurement the reafferent correction is performed
and the process continues normally as for the conventional predictor.
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Table 6.7: Effect of removing steering angle feedback for the SDROP model for the median rider for all
speed levels for the haptics on configuration. Performance of the rider control model w/o 𝛿 feedback,
w/o �̇� feedback and w/o 𝛿 and �̇� feedback. The values of the gains are presented together with their
corresponding uncertainty level (CV). The variance accounted for (VAF) between the parametric and
nonparametric signal outputs is also presented in percentage % to assess fitting performance. The
derivative gains 𝐾�̇�, 𝐾�̇� are measured in kgm2 s−1, the proportional gains 𝐾𝜙, 𝐾𝛿, 𝐾𝜓 are measured
in kgm2 s−2 and the torque feedback gain 𝐾𝑇𝛿 is dimensionless.

Bicycle model Haptics On
Rider model w/o 𝛿 feedback w/o �̇� feedback w/o 𝛿 and �̇� feedback

Speed Value CV ⋅104) Value CV ⋅104 Value CV ⋅104

𝐾�̇� 244.79 77.74 94.37 66.88 250 55.30
2.8 ms−1 𝐾�̇� 9.33 64.92    

𝐾𝜙 241.28 88.57 249.85 53.30 250 102.55
𝐾𝛿   53.69 42.89  
𝐾𝜓 146.99 83.82 88.83 60.95 178.15 71.22
𝐾𝑇𝛿 6.38 85.61 4.82 66.41 5.99 65.72
VAF𝜙 73.61 79.36 62.83
VAF𝛿 94.20 97.40 67.83
VAF𝜓 89.11 94.28 78.30

𝐾�̇� 200.47 152.56 76.35 128.90 199.56 54.67
3.6 ms−1 𝐾�̇� 7.21 138.89    

𝐾𝜙 249.87 164.90 249.84 105.40 230.98 87.22
𝐾𝛿   67.47 92.39  
𝐾𝜓 235.82 162.06 115.48 124.48 249.99 51.77
𝐾𝑇𝛿 5.98 168.61 4.51 126.15 8.58 76.13
VAF𝜙 77.20 80.90 73.61
VAF𝛿 96.27 97.13 90.01
VAF𝜓 89.13 95.33 84.17

𝐾�̇� 120.38 96.66 119.44 141.14 249.73 362.90
4.7 ms−1 𝐾�̇� 0.24 82.25    

𝐾𝜙 249.40 114.37 249.98 129.63 37.80 700.44
𝐾𝛿 29.49  30.59 108.31  
𝐾𝜓 222.31 111.07 221.80 141.62 23.44 616.86
𝐾𝑇𝛿 5.75 116.12 5.80 134.27 33.38 360.41
VAF𝜙 80.19 79.21 27.33
VAF𝛿 96.08 97.07 61.85
VAF𝜓 94.34 92.96 21.19

𝐾�̇� 142.58 74.83 108.88 133.46 215.38 200.02
5.7 ms−1 𝐾�̇� 3.96 375.50    

𝐾𝜙 249.85 101.89 227.62 122.66 77.80 314.07
𝐾𝛿   8.17 520.30  
𝐾𝜓 239.04 89.12 248.72 133.19 42.70 440.01
𝐾𝑇𝛿 5.06 102.05 6.08 129.43 40.79 14.25
VAF𝜙 80.27 81.13 26.99
VAF𝛿 91.90 96.99 58.24
VAF𝜓 93.35 92.74 19.51
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Table 6.8: Parameters of the steerbywire measurement bicycle from Figure 6.1 for the bicycle model
of Figure 6.4.

Parameter Symbol Value
Wheel base w 1.03 𝑚
Trail c 0.0665 𝑚
Steer axis tilt 𝜆 𝜋\10
Gravity 𝑔 9.81 𝑚/𝑠2
Speed 𝑣 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝑚/𝑠

Rear wheel R
Radius 𝑟𝑅 0.3429 𝑚
Mass 𝑚𝑅 8.5 𝑘𝑔
Inertia (𝐼𝑅𝑥𝑥 , 𝐼𝑅𝑦𝑦) (0.095625, 0.19125) kgm2

Rear Body and frame assembly B
Center of mass (𝑥B, 𝑧B) (0.4, −0.6)
Mass 𝑚𝐵 95 𝑘𝑔

Inertia [
𝐼Bxx 0 𝐼B𝑥𝑧
0 𝐼B𝑦𝑦 0
𝐼B𝑥𝑧 0 𝐼B𝑧𝑧

] [
9.2 0 2.4
0 11 0
2.4 0 2.8

]kgm2

Front Handlebar and fork assembly H
Center of mass (𝑥H, 𝑧H) (0.9, −0.66)
Mass 𝑚𝐻 1.5 𝑘𝑔

Inertia [
𝐼H𝑥𝑥 0 𝐼H𝑥𝑧
0 𝐼Hyy 0
𝐼Hxz 0 𝐼H𝑧𝑧

] [
0.05892 0 −0.00756
0 0.06 0

−0.00756 0 0.00708
]kgm2

Front wheel F
Radius 𝑟𝐹 0.6858 𝑚
Mass 𝑚𝐹 1.84 𝑘𝑔
Inertia (𝐼Fxx, 𝐼F𝑦𝑦) (0.096, 0.195)kg m2

Battery rack B
Center of mass (𝑥b, 𝑧b) (0.4, −0.55)
Mass 𝑚𝐻 4 𝑘𝑔

Inertia [
𝐼H𝑥𝑥 0 𝐼H𝑥𝑧
0 𝐼Hyy 0
𝐼Hxz 0 𝐼H𝑧𝑧

] [
0.02 0 −0.02
0 0.04 0

−0.02 0 0.02
]kgm2
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Figure 6.12: Double pendulum (a) with bicycle, rider mass equal 𝑚1 = 20, 𝑚2 = 80 kg and rod
lengths equal 𝑙1 = 0.8 m, 𝑙2 = 0.2 m, 𝑎 = 0.8, 𝑏 = 1, respectively. (b) Simulated roll angle 𝜙1
responses for two different stiffness and damping conditions 𝑘1 = 3000, 𝑘2 = 12000 kgm2 s−2 and
𝑏1 = 50, 𝑏2 = 10 kgm2 s−1.

Table 6.9: Mass, damping and stiffness matrices for the bicycle model from Figure 6.4 according to the
parameters from Table 6.8. Haptics on refers to the dynamics of a normal bicycle, whereas haptics off
to that of a steerbywire bicycle.

Haptics on

M0 = [
129.56096931 1.90339264
1.90339264 0.15330056 ] , C1 = [

0 37.68635697
−0.540721349 1.00301681 ]

K0 = [
−104.1937454 −1.7093813
−1.70938130 −0.49976496 ] , K2 = [

0 97.75850654
0 1.72463528812 ]

Haptics off

M0 = [
129.56096931 1.90339264

0 0.096 ] , C1 = [
0 37.68635697
0 0 ]

K0 = [
−104.19374540 −1.7093813

0 0 ] , K2 = [
0 97.758506542
0 0 ]

All the data used in this manuscript can be obtained by requesting from the
corresponding author. The supplementary data related to this article are avail
able online at https://doi.org/10.5281/zenodo.3484032 (Dialynas et al.,
2019).

https://doi.org/10.5281/zenodo.3484032
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Design and hardware
selection for a bicycle

simulator

Corresponding article: G. Dialynas, R. Happee, and A. L. Schwab: Design and
hardware selection for a bicycle simulator, Mech. Sci., 10, 110, https://doi.
org/10.5194/ms1012019, 2019.

7.1. Abstract
With the resurgence in bicycle ridership in the last decade and the continuous in
crease of electric bicycles in the streets a better understanding of bicycle rider
behaviour is imperative to improve bicycle safety. Unfortunately, these studies are
dangerous for the rider, given that the bicycle is a laterally unstable vehicle and
most of the time in need for rider balance control. Moreover, the bicycle rider is
very vulnerable and not easily protected against impact injuries. A bicycle simu
lator, on which the rider can balance and manoeuvre a bicycle within a simulated
environment and interact with other simulated road users, would solve most of
these issues. In this paper, we present a description of a recently build bicycle
simulator at TU Delft, were mechanical and mechatronics aspects are discussed in
detail.

7.2. Introduction
A number of recent studies have used recorded data of riders during naturalistic
driving [1, 2]. However, behavioral studies for other vehicles often use simulators
as they afford more reproducible experiments over a range of riders in a safe en
vironment [3]. There have been a number of groups that have developed bicycle
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simulators for a variety of research goals. Schwab and Requero [4] designed and
built a haptic steering interface for the control input of a bicycle simulator, a po
tentiometer was used to estimate the angular position of the handlebar and not an
angular encoder, whereas the output feedback torque magnitude of the selected
motor was insufficient for this application. He et al. and Yin and Yin [5, 6] describe
the design of a simulator mounted on a Stewart platform with steering and pedaling
subsystems, which was used to study riderbicycle models, but use steer angular
position measurements to estimate angular accelerations and consequently the in
put torques via the product of angular accelerations and shaft inertia. However,
the estimation of input torques from inertia and angular acceleration data contains
dynamic errors [7]. Caro and Bernardi, Herpers et al., Plumert et al. [8–10] fo
cus on rider behavior at a cognitive level and do not incorporate a realistic vehicle
model.

At TU Delft we have designed and built a fixedbase bicycle simulator with haptic
feedback at the handlebars, which can be used for various applications, for example
studying rider behavior in various infrastructures, studying rider interaction in traffic
and performing rider training. The bicycle simulator includes a haptic steering de
vice which generates feedback driven by an underlying bicycle computer model, an
incremental encoder to measure handlebar angle and a torque sensor to measure
handlebar applied torque. In this paper we present a step by step guide to build
such a bicycle simulator. First, the design requirements of the simulator interfaces
are examined. Then, the design of the mechanical structure is described. After
wards, the hardware components selection and calibration procedure is analyzed.
The article ends with a discussion and conclusion section presenting other factors
that make such a design valid for rider behaviour studies.

7.3. Design requirements of bicycle simulator inter
faces

The aim of this section is to examine all the necessary requirements needed to
build a realistic bicycle simulator. This is achieved by understanding the role of
each sensory system on rider control. The primary sensory systems used during
the riding process are, the vestibular sensory system, the visual sensory system
and the proprioceptive sensory system [11]. Secondary sensory systems such as
the tactile and the auditory sensory system also contribute to the perception of
information during the riding process. For example, Mclane and Wierwille found
that additional auditory information and tactile vibratory information improved the
humans’ estimation of speed [12]. In the first paragraph, of this section we describe
the relation between the sensory systems and bicycle states. The second paragraph
describes, the necessary requirements needed to be fulfilled in order to activate
these sensory systems and build the simulator interfaces.

We presume that the bicycle rider system is a closed loop control system, balancing
the mostly unstable bicycle and manoeuvring in the environment using feedback
from the vestibular sensory system, the visual sensory system and the propriocep
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tive sensory system [11]. The rider uses bicycle roll angle 𝜙 as part of the feedback
control loops for the vestibular/visual sensory systems and handlebar steer angle
𝛿 as part of the feedback control loop for the proprioceptive sensory system. The
rider processes each state individually in order to apply a steer torque 𝑇𝛿 to con
trol the bicycle. A block diagram of the bicyclerider system illustrating the relation
between the primary sensory systems and bicycle states [𝜙, 𝛿] the rider uses to
control the bicycle by applying a steer torque 𝑇𝛿 is presented in Figure 7.1.

Figure 7.1: Block diagram of the bicyclerider system illustrating the relation between the primary sensory
systems and bicycle states [𝜙, 𝛿] the rider uses to control the bicycle by applying a steer torque 𝑇𝛿.

Due to the aforementioned it is necessary to design and build user interfaces able
to activate at least the primary sensory systems of the rider. To activate the visual
sensory system a virtual environment is built using Unity® software. Projection of
the virtual environment is achieved with a PC screen or with a headmounted virtual
reality display. To stimulate the proprioceptive sensory system a haptic steering de
vice is designed and built. The steering device is able to generate torque feedback
based on the equations of motion of a threedegreeoffreedom bicycle model, the
socalled CarvalloWhipple model [13]. The absence of a hexapod in the current
implementation of the bike simulator does not allow the user to experience physical
roll and thus, the vestibular sensory system remains inactive. Although, in natu
ralistic bicycle riding the rider uses both the vestibular and visual sensory systems
to estimate roll angle. We think that visual roll of the horizon in the virtual envi
ronment might be an effective tool to compensate the vestibular loss. However, it
should be noticed that the absence of vestibular input might have a negative effect
on rider behavior in certain tasks, such as braking and lateral trajectory control. For
this reason, the usage of such a simulator to study these tasks may be inappropri
ate [14]. The implementation of the equations of motions of the CarvalloWhipple
bicycle model used to drive the haptic steering device and Unity® environment will
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be detailed in future publications.

7.4. Description of the mechanical structure
Several structural design considerations should be taken into account in case of
building a bicycle simulator. Structural strength and required geometry are some
of the most important aspects of the building process. The bicycle frame must be
able to support the load of the rider during all operational conditions while having
adjustable dimensions. Adjustable reach and stack dimensions are considered im
portant mainly because it is suspected that body posture also influences the amount
of applied torque. As stated in previous bicycle experiments conducted by Too [15]
the interaction of muscle length with muscle lever moment arm length is one of the
factors which will dictate the amount of force or torque that can be produced by the
rider during cycling. It should be noted that this statement does not describe the
relationship between muscle length, muscle activity, and torque of the brachialis
muscles however, it shows the influence of body posture to applied torque. On the
other hand, the bicycle frame must be able to support all the functional subsys
tems used in bicycles. For instance, the rear wheel and derailleur, the seatpost and
seat, the bottom bracket and pedal subsystem etc. In addition to the above, the
simulator must be able to simulate the steering forces acting at the bicycle during
the riding process. In the first section of this chapter we describe the design and
building process of the main structure of the bicycle frame, next we present the
design of the haptic steering device and overload protection mechanism.

The mechanical portion of the simulator consists of three main structural parts. A
bicycle roller training base (600x400 mm), a square tube (40x40x1000 mm) used
as a steering column, and a rear half of a stepthrough bicycle frame (54 cm), see
Figure 7.2. To mount all the structural parts together the following modification are
made. The front roller of the base is removed and a rectangular tube (40x20x500
mm) is welded as a replacement. In addition, six metal foot pegs (40x20x500 mm)
two at the front, middle and rear are also mounted. The foot pegs are mainly
used to increase the vertical distance of the base in respect to ground and also to
distribute the load equally to specific areas of the frame. At the steering column
a (25x500 mm) tube is welded at a 25∘ angle and at a 40 mm distance from the
end of the square tube. At the bicycle frame the headtube is removed two custom
made clamps (AL7075) are mounted to the upper and lower tubes respectively. The
upper and lower clamps are connected with two metal straps one per each side.
The combination of the upper frame clamp design together with the (25x500 mm)
welded tube of the steering column create the first prismatic joint of the assembly.
As it can be seen in Figure 7.3 point (1) this prismatic joint is used to mount the
steering column to the bicycle frame. Steer and saddle height can be adjusted over a
large range, and the steering assembly can be moved horizontally to accommodate
a large range of body sizes and bike geometries.

To mount the steering column and bicycle frame to the roller base a combination
of different types of adjustable blocks are used (blocks are provided from RK Rose
Krieger). A hinge clamp block and a tshape block (Gwv 40). First, the hinge clamp



7

100 7.4. Description of the mechanical structure

Figure 7.2: TU Delft fixed base bicycle simulator.

block is mounted to the column and tilted to create a bicycle headtube angle of 72°,
since this is a common angle also adopted in the CarvalloWhipple bicycle model
[13]. Afterwards, the hinge block is mounted to the tshape block which is next
mounted to the racks of the base with two addition square tubes (40x40x380 mm)
and two custom made cshape clamps. Because the upper joint of the column is
prismatic a second prismatic joint is also constructed at the base level. To construct
the second joint an additional tshape block is mounted to the base oppose to the
first one. A square tube (40x40 mm) is mounted to the first clamp and sliding freely
through the square hole of the second one as can be seen at Figure 7.3 point (2).
These two prismatic joints together with the c shape clamps are used to adjust the
reach dimensions of the bicycle frame. The mounting of the bicycle frame from the
front end is now completed. To mount the bicycle frame from the rear end to the
base two mechanical arms and a trapezoidal shape structure are combined. The
mechanical arms are constructed from Lshape stripes and are used to mount the
bike from the rear wheel axis to the base. The trapezoidal structure is constructed
from aluminium tubes and a combination of hinge clamps (Gp 25, Kvr 25, W 25).
This structure is used to mount the bicycle frame from the seatpost to the base as
can be seen in Figure 7.3 point (3).
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Figure 7.3: Connection of the bicycle frame to the roller base using prismatic joints (1), (2) and me
chanical arms (3).

7.4.1. Description of haptic steering device
To allow the rider to interact with a virtual environment and receive realistic handle
bar torque feedback from the simulation model a haptic steering device is required.
The device must be able to generate realistic torque feedback in order to enhance
rider control and prevent excessive rotation of the handlebars. The importance of
haptic steering feedback on rider control is stated in previous bicycle experiments
conducted by Lee et al. [16]. In this subsection we describe the components used
to build such a device.

The haptic steering device consists of two subassemblies. The steering shaft as
sembly and the column mount assembly. The steering shaft assembly includes
the components used to build the steering shaft, whereas the steering column as
sembly includes the components used to mount the steering shaft to the column.
The steering shaft assembly consists mainly of eight components (not including the
handlebar assembly and adaptors). Five of these components are mechanical and
three of them are electromechanical. More specific, an overload protection mecha
nism is used for safety, a steer range limiter is used to restrict the rotational range
to ± 35∘, a shaft is used to intersect with the actuators of the limit switches (limit
switches are shown in Figure 7.5) and turn of the electric motor when the maxi
mum rotational range is reached. Two pillow block bearings are used to mount the
telescopic shaft to the column. An electric motor is used to generate steering feed
back, an incremental encoder is used to measure the steering angle and a torque
sensor is used to measure the applied handlebar torque. The steer shaft assembly
is mounted to the column with 3 additional custom made clamps, the electric motor
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clamp and two bearing clamps. An extra clamp is used to mount the reading head
of the encoder. Material used for the shaft components is AL7075 excluding the
telescopic shaft which is made from Steel 304. In Figure 7.4 the steering shaft and
column assembly is presented.

Figure 7.4: Steering column and shaft assembly exported from Solidworks 2016.

7.4.2. Description of overload protection mechanism
Different methods can be used to protect a rotating shaft from torsional stress.
On a software level torque and rotational range limits can be set in the parameter
programming of the motor drive. However, in case of a sensor malfunction the
software might be unable to recognize the torsional overload condition. For this
reason, a mechanical solution is recommended as a second measure of protection.
There are typically two mechanical mechanisms used to protect a rotation shaft, a
torque limiter and a shear pin. From the above two mechanisms the usage of a
torque limiter is not recommended for this application mainly because there is no
clear indication of the operational speed the rated torques are measured at, as first
noticed by Jason Moore [17]. Most of the available torque limiters list the rated
torques but with no indication of the operating speed the torques are measured at.
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It turns out they are with respect to an 1800 rpm operating speed. The absence
of this vital information together with the low steer rates make the selection of a
limiter inappropriate, since it might lead to further adjustments and modifications to
make the limiter operate properly. For this reason, a custom shear pin mechanism
is designed and mounted inline with the steering shaft. The shear pin mechanism
functions are to protect the steering shaft and the user by mechanically disengaging
the feedback motor from the handlebars when the maximum torsional strength is
reached. For the geometric design of the shafthub mechanism and selection of the
proper pin size the following equations are used. For the shafthub combination the
desired geometric relationship between the two diameters is 𝐷1 = 1.5𝐷, where 𝐷1
is the hub, and 𝐷 the shaft diameter, respectively. The diameter of the shear pin
𝑑, is calculated based on the shear strength 𝜏, of the material, the service factor 𝜅,
the maximum breaking torque 𝑇, and the hub diameter 𝐷, as seen in Equation 7.1
conforming to the requirements of ISO 873040 standards.

𝜏 = 𝜅 4𝑇
𝜋𝑑2𝐷 (7.1)

The shear strength of the selected pin is also tested in practice. The pin shears
between 2526 Nm which is 30% lower from the steering shaft overload condition.
The selected shear limit is considered adequate according to the aforementioned
ISO standards.

7.5. Sensor and motor selection
There are three sensors and one actuator motor in the existing bicycle simulator.
Two of the three sensors are located at the steering assembly. More specifically,
an angular encoder, a torque sensor and an electric motor are mounted inline with
the steering shaft, see Figure 7.5, whereas a gearwheel encoder is mounted at the
rear roller of the powertrain assembly as seen at Figure 7.6.

To select the proper motor and sensors a number of technical specifications need
to be determined in advance. For the encoders, the type and resolution, for the
torque sensor, the range and resolution, and for the electric motor the maximum and
continuous torque. In this section we describe the procedure followed to determine
these requirements. In the first two paragraphs, the encoders and torque sensor
requirements are determined, whereas in the last paragraph the electric motor
requirements.

Two types of encoders are found in literature, incremental and absolute. Incremen
tal rotary encoders output the pulse corresponding to the rotation angle only while
rotating, and the counting measurement method that adds up the pulse from the
measurement beginning point. On the other hand, absolute rotary encoders output
the signal of position corresponding to the rotation angle by coded elements. The
incremental encoder does not output an absolute position and for this reason typi
cally the internal structure is simpler and the cost lower. For both the steer angle
and wheel speed measurements incremental encoders are selected. The resolution
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Figure 7.5: Steering shaft assembly.

of the steer encoder in counts per turn (cpt), is determined based on the smallest
steer angle increment Δ𝛿, as seen at equation below [18]:

𝑁 = 360𝑜
4Δ𝛿 (7.2)

A steer encoder with 152,000 (cpt), and an additional index channel for accurate
homing was selected (RLM2HDA001). For the wheel speed encoder the resolution is
selected based on the resolution range of encoders used for similar systems, such
as the antilock braking systems of motorcycles. A gearwheel encoder with 192
(cpt), is selected (reading head is from rls type is GTS35, gearwheel from KTM).
The gearwheel and reading head are mounted directly to the rear roller and base
respectively as seen at Figure 7.6.

For the selection of the torque sensor the steer torque profile must be determined,
not only for normal bicycle riding but also during perturbation tests. Measuring
the steer torque profile can be achieved with modern torque sensors although the
problem of crosstalk disturbance must be taken into account. Crosstalk occurs due
to the large forces and moments applied to the fork and handlebars by the ground
and the rider during bicycling. These forces and moments corrupt the relatively
small torque measurements as they can be hundreds of times larger in magnitude.
Few published studies attempt to estimate or directly measure steer torque. De
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Figure 7.6: Gearwheel sensor mounted at base roller.

Lorenzo and Hull [19] instrumented a bicycle which could measure pedal, handle
bar, and hub forces to characterize the inplane structural loads during downhill
mountain biking. The handlebar forces acting forward and parallel to the ground
were used to estimate the steering torque. A maximum torque of about 7 Nm
is shown in this study although crosstalk disturbance was not taken into account.
Jackson and Dragovan [20] attempted to estimate the torques acting on the front
frame based on orientation, rate and acceleration data taken while riding a bicy
cle with nohands. They estimated a steer torque under ± 2.5 Nm. Cheng et al.
[21] attached a torque wrench to a bicycle and made left and right turns at speeds
from 013 m/s. The torques were found to be under 5 Nm except for the 13 m/s
trial which read about 20 Nm. However, the torque wrench calibration range (084
Nm) was too large for the obtained torque measurements reducing the accuracy
of his results. Iunchi and Murakami [22] attached a steer motor and controller
to the handlebars and tried to estimate steer torque from the motor current and
handlebar moment of inertia. They are one of the few studies that takes into ac
count some of the inertial effects of the handlebar. Cain and Perkins [23] designed
and fitted a custom torque sensor in the bicycle steer tube. They tried to remove
crosstalk effects by applying an axial load on the sensor but they did not account for
the dynamic inertial affects of the components above and below the sensor. Their
measured steer torques during cornering were under ± 2.4 Nm. From the above
mention studies, none succeed to measure the actual applied rider torque since very
few accounted crosstalk disturbance and even fewer the dynamic inertial effects of
the components above or below the sensor. Jason Moore [17] was the first who
developed an experimental bicycle that can accurately extract rider applied torque.
In his design a torque sensor (Futek 150, TFF350, ± 15 Nm) is mounted inline
with the handlebar and fork using a double universal joint isolating the handlebar
and fork loads during bicycling. The instrumented bicycle he developed was used
to measure steer torque responses during lateral force perturbation experiments
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[11]. A rider torque range between 010 Nm, is realized in these experiments. For
that reason, a torque sensor with a range of ± 25 Nm, and a resolution of 4 µNm,
is selected (Kistler 9349A).

For the selection of the haptic steer feedback motor the CarvalloWhipple bicycle
model developed by Meijaard et al. [13] is used to predict the maximum torque
required within the stable and unstable speed. To obtain an estimation of the
feedback motor torque a steer torque impulse of 5 Nm is given as an input to
the model. The selected input torque is based on previous bicycle experiments
conducted from [17] and is considered the maximum steering torque measured for
controlling a bicycle in normal manoeuvres. To calculate the output feedback torque
the steer angular acceleration �̈�, and the moment of inertia 𝐼, of the steer axis of
the bicycle simulator is used, see Equation 7.3. The steer angular acceleration �̈�, is
given as an output of the CarvalloWhipple bicycle model, whereas the steer shaft
moment of inertia 𝐼, of the bicycle simulator is measured experimentally.

𝑇 = 𝐼�̈�(𝑡) (7.3)

As shown in Figure 7.7 a maximum torque of almost 5,4 Nm is noticed at the un
stable speed region, whereas at the stable speed region a torque of maximum 0,02
Nm is found. Combining a reduction gearhead with an electric motor to reduce
its physical size and increase torque output is not optimal for the existing design.
Backlash of the gearhead can distort torque sensor measurements and for this rea
son is excluded from the existing steering design. For this reason, an electric motor
of 1410 W and drive combination able to deliver a stall torque of approximately 4
Nm, and a max.torque 11.5 Nm are selected for the steering actuation (Kollmorgen
AKM42G and AKDP00606).

7.6. Calibration and testing of hardware compo
nents

To ensure that the selected components fulfill their specifications every component
is tested and calibrated. It is important that all of the sensors and actuator behave
in a consistent and predictable manner. For example, motor performance before
and after tuning is compared not only with its own feedback but also with the
torque sensor output. This way performance mismatch is analyzed in an early
development stage and is avoided by either recalibrating specific sensors or by
retuning the motor drive control parameters.

To calibrate the torque sensor a table wrench, a digital torque wrench, an amplifier
(Kistler 5030A2) and an oscilloscope are used. The torque sensor is mounted from
one end to a table wrench and from the other end to a digital torque wrench. Next,
the torque sensor is connected to an amplifier and an oscilloscope. For different
torque magnitudes and amplification ranges the voltage output is measured. Am
plification range 1 can measure torque magnitudes up to ± 25 Nm, whereas range
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Figure 7.7: Estimated haptic steer feedback torque based on angular acceleration output �̈�, of the
benchmark bicycle model for a steer torque input of 5 Nm.

2 only up to ± 2.5 Nm. Expected rider torque is assumed within 010 Nm range and
thus amplifier range 1 is selected as a configuration for the bicycle simulator.

An analog signal is used to supply a reference command torque to the haptic feed
back motor. There are three command modes that the motor drive can be set with
the analog mode, position control, velocity control and torque control. Position and
velocity control are typically used when precise tasks are required, for instance a
welding task. On the other hand, torque control is used when compliant control
is needed. Compliant here means that the rider is able to rotate the shaft at any
angle required while receiving torque feedback from the motor. Since compliance
is required the operation mode is set to analog torque mode.

The analog torque control loop of the motor drive unit can be seen at Figure 7.8,
where (Vr) is the reference voltage, (ir) is the current reference, (ic) is the output
current of the motor controller and (if) the feedback current of the electric motor. To
convert the input reference voltage (Vr) to an input current reference (ir) a scaling
constant must be set in Amp V1. This scaling constant is set based on the peak
current of the drive and the maximum voltage range of the controller. For a peak
motor current of 18Amps and a maximum input voltage of 12 V the constant is set
to 1.5 Amps V1.

After the current scaling constant is set, the torque constant is determined by mea
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Figure 7.8: Block diagram of motor and motor drive configuration.

suring the motor response for a given input command. For an input voltage com
mand of 1,06 (Vr), which corresponds to a current of 1.6 (ir) a torque of 1.75 Nm
is produced as an output from the motor, see Figure 7.9. A linear torque/current
relationship of 1.09 Nm Amp1 is set in the software for controlling the motor in
torque mode. A maximum motor torque output of 10.92 Nm can be reached for
this specific motordrive configuration.

Figure 7.9: Ampere/torque analogy.

Once the motor is connected to the steering shaft the system is tested for given
control tasks. A sinusoidal input signal with a frequency of 2 Hz and an amplitude
of 1,6 Amp equivalent to 1.75 Nm is given as an input to capture the response of
the system. The performance of the motor is tested before and after tuning. The
methodology used to estimate the shaft inertia and tune the motor drive is described
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at next subsection. As it can be seen at Figure 7.10 the torque commanded to the
motor matches to the output feedback torque when the motor is tuned. On the
other hand, overshooting and phase shift occurs when the motor is not properly
tuned.

Figure 7.10: Motor performance before and after tuning.

7.6.1. Estimation of steering shaft moment of inertia
The damping and inertia properties of the steering shaft must be estimated in case
the torque that the rider applies is estimated from acceleration data and also in
case position and velocity modes are used to control the motor and auto tuning
can not be used for safety reasons. To estimate the moment of inertia different
methods can be used. A first approach could be to extract the moment of inertia
from the CAD model. A second approach could be to use system identification. A
third approach could be to add two springs and calculate the moment of inertia
from the oscillation period and the equation of motion of the system. The first
method can not be used for the existing CAD model. In the CAD model of the
steering shaft there are parts exported from suppliers which are represented as
solid entities and are not modeled correctly. The assembly parts of these entities
could not be separated and the moment of inertia of these components can not be
calculated separately. For instance, the motor shaft moment of inertia can not be
measured as a separate body of the motor. On the other hand, system identification
can be used to estimate the moment of inertia of the steering shaft, however a
more straightforward approach is the spring method. For the above reasons, the
last approach is used to estimate the moment of inertia of the steering shaft. To
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oscillate the steering shaft two extension springs with a rate of k = 317 N/m and
a length of 0.05 m are added perpendicular to the handlebars as shown in Figure
7.11.

Figure 7.11: Experimental setup to measure moment of inertia.

The springs are pretensioned proportionally and set to idle around 0∘. The springs
are excited and the oscillation period is measured through the steering encoder.
The oscillatory motion of the shaft can be seen in Figure 7.12. The equation of
motion of the steering shaft after attaching the springs is:

𝐼�̈�(𝑡) + 𝑏�̇�(𝑡) + 2𝑘𝑎2𝛿(𝑡) = 0 (7.4)

The steering shaft equation of motion consists of the inertia 𝐼, viscous friction 𝑏,
and spring stiffness 𝑘, and moment arm 𝑎. 𝛿 denotes the desired angle of the
system, �̇� and �̈� the desired angular velocity and acceleration respectively. Friction
caused between bearings and electric motor components is neglected, thus 𝑏 is
considered zero. Thus the mass moment of inertia equals:

𝐼 = 2𝑘𝑎2
𝜔2 (7.5)

The mass moments of inertia of the steering shaft assembly using the spring method
and autotuner of the motor drive are 𝐼=0,0828 kgm2 and 𝐼=0,0912 kgm2 respec
tively. The comparison of the two methods is used to validate the spring method.
The inertia difference between the two methods might be due to the fact that vis
cous friction 𝑏, is neglected in the spring method, whereas this is not the case when
autotuning is used.
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Figure 7.12: Oscillation of steering shaft using spring method.

7.7. Conclusions
The objective of this study was to realize all the necessary steps needed to de
sign and build a realistic bicycle simulator. The simulator prototype is the result
of multiple design choices and constraints. Constraints, primarily timewise, have
resulted in a system wherein a mountain bike is placed on top of rollers and later
fitted with a haptic steering device. There is still space for improvement regarding
the mechanical structure and haptic steering device. For example, the prismatic
joints of the mechanical structure can be equipped with linear bearings to allow
frictionless motion when adjusting the stack and reach dimensions. The steering
shaft assembly can be machined as a single part and from a light material in order
to reduce both inertia weight and misalignment.

All the data used in this manuscript can be obtained by requesting from the
corresponding author. The supplementary data related to this article are avail
able online at https://doi.org/10.5281/zenodo.2525685 (Dialynas et al.,
2018).

https://doi.org/10.5281/zenodo.2525685
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8
Discussion

The aim of this thesis is to derive bicycle rider control models, based on experimen
tal data, that mimic the rider in his balance control task at various forward speeds.
These rider control models can help to understand cyclists falls, improve training
techniques, artificially assess the handling properties of new bicycle designs and
create active balance control systems (e.g. steer assist). To experimental quantify
and model the rider control behaviour we have designed and built three state
oftheart bicycle mockups. The first mockup we developed is an instrumented
bicycle which we used to identify the apparent mass and seattosternum trans
missibility transfer functions. The transfer functions obtained herein are necessary
to derive the parameters of biomechanical models which can later be used to op
timize the design of suspensions and steering stabilizers that can enhance safety.
On the other hand, the rider control models identified herein together with the
steerbywire bicycle and simulator can guide towards the development of design
of active balance control systems. Across the thesis chapters information related to
the design and construction of the instrumented bicycles and system identification
techniques are presented.

8.1. Facilities
Over the course of four years three experimental bicycles were designed and built
at the TU Delft bicycle laboratory in order to conduct this research. In this sec
tion we describe the challenges that we faced during the design and build of these
experimental bicycles, the merits of the setups, and discuss further technical im
provements and usage.

8.1.1. Instrumented bicycle mockup
To identify the rider’s body response to whole body vibration a dedicated modular
experimental setup was developed, consisting of a custom made bicycle mockup
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placed on an industrial highend hexapod, see Figure 8.1. The mechanical struc
ture of the bicycle mockup consists of standard bicycle parts and steel tubes held
together with aluminium clamps. The steering assembly is fixed and the footpegs
are placed symmetrically in order to obtain comparable results between the two
sides. The handlebar can not rotate around its axis at the moment. For future
experiments it is recommended to modify the steering assembly and install rotating
ball bearings and an electric motor inline with the steering shaft. With this upgrade
perturbations around the handlebars can be accomplished and the intristic and re
flexive responses of the rider arms around this axis could be identified as well. The
design of the steering assembly can also be improved and become reconfigurable.
For instance, the tubes that connect the steering shaft to the seatpost and front
base may be removed. Linear sliding bearings can be integrated in the headtube
and base clamps of the steering assembly to allow the handlebars to move in the
longitudinal and vertical direction. This way a consistent rider posture would be
possible, even when subjects with different bodybuild are participating in the ex
periments. Although, this was unnecessary for our experiments, all participants
had similar bodybuild and obtained a consistent posture during the perturbation
trial.

The bicycle mockup is equipped with an inertial measurement unit (IMU) and a
total of 13 fullbridge strain gauge sensors. The strain gauges are able to mea
sure all threedimensional forces (except for the footpegs forces in lateral Yaxis,
where no relevant force responses are expected). An additional IMU was added to
the rider torso in order to monitor its response during the perturbations. A data
acquisition system from National Instruments (LabVIEW) and MTW Awinda (Xsens
software) sampled the strain gauges and IMU signals at 100 Hz. All data derived
during the experiments gave estimates of high quality and static mass measure
ments had a low standard deviation. There were mainly two issues related to the
sensing and data logging during the experiments. Regarding the force measuring it
turned out that the handlebars are more compliant in the vertical and longitudinal
directions compared to the lateral. To determine crosstalk interference high lateral
applied force were required compared to the other two directions. It turned out to
be tricky to hold the handlebar in a vertical position while applying increasing loads
at the lateral direction. To solve this problem and also reduce any geometry arti
facts we could replace the handlebars with a straight steel tube, albeit, in that case
the handlebar geometry would not have been realistic. Synchronizing and logging
problems were also evident for both the force and acceleration signals. Apparently,
two different software were used for the former and latter signals. To solve the syn
chronization issues a sinusoidal signal was implemented in the begging and end of
the measurement sequences. The signal served as a time stamp and synchroniza
tion was accomplished by crosscorrelation between the two signals. Data logging
at the sampling rate was accomplished by switching from Windows to Macintosh
and cancelling out all running tasks related to other threads. For future research
it is recommended to purchase two new IMUs and plug them directly to the Lab
view data acquisition system, this will be sufficient to avoid the aforementioned
issues.
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Figure 8.1: Instrumented bicycle mockup mounted on the hexapod.

8.1.2. Steerbywire bicycle
To investigate how humans control a bicycle and investigate the effect of handlebar
torque feedback on rider control a steerbywire bicycle was designed and built, see
Figure 8.2. The steerbywire (SBW) bicycle is instrumented with multiple sensors
that are able to measure most bicycle states. Two servomotors were selected to
control the fork and handlebar and a rear wheel hubmotor with a throttle, a cruise
controller was used to ride the bicycle without pedalling. The mechanical design
of the bicycle frame was based on the Batavus Browser (56 cm) dutch city bike.
Two design concepts were developed. The first design was similar to the first
steerbywire prototype developed by Nick Appelman et al. [1] at TU Delft bicycle
laboratory. A normal bicycle frame was used as a baseline for the steerbywire
system. To solve the belt drive slip of the previous prototype a reduction gearhead
and a tensioner was included in the later design. Unfortunately, the rigidity of the
handlebar structure was proven to be insufficient compared to a normal bicycle
frame. For this reason, it was decided to proceed with a second design which
included a custom made bicycle frame with an upper and lower headtube assembly
(see grabcad repository for all designs [2]).

To keep the handlebar height close to a normal mechanically steered bicycle every
sensor was selected to have a minimum size and weight. A custom made torque
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sensor was used to measure the applied handlebar torque and two absolute en
coders were selected to measure the handlebar and fork position, respectively. For
a compact design the actuator magnets of the encoders were integrated into the
handlebar and fork shaft. The encoders performed with high level accuracy but
aligning the fork encoder during mounting was challenging. The reading board of
the fork encoder was mounted in an aluminium plate which was clamped at the bicy
cle frame from only one side. Due to limited space and extensive movement of the
aluminum plate it was difficult to align the center of the magnet to that of the read
ing board. The later was accomplished by reading and comparing the handlebar
and fork angles and readjusting the position of the plate accordingly. For a straight
forward mounting of the fork encoder a similar aluminium plate with the one used
for mounting the handlebar encoder is recommended. Another issue that we faced
was related to the safety of our experimental subjects. A safety mechanism was
required to be in place to mechanically engage the handlebar and fork in case of
system failure. Initially, the idea of an electromagnetic clutch was explored. Albeit,
the installation of a clutch was proven impractical due to misalignment of the ser
vomotors. Thus, the implementation of a deadband mechanism was explored. Two
mechanical deadband mechanism were built and tested. The first mechanism used
a mechanical pin and Vshape block to engage the handlebar and fork motors upon
system failure. The mechanism was proven to be successful and all subjects were
able to control the bicycle and make a complete stop without problems. However,
the idea was aborted due to extensive wear of the belt drive. A second mechanism
that connects the fork directly to the handlebars was examined. The mechanism
consists of a steel tube mounted to the fork and a threaded rod with two metal
spindels attached to the handlebars. The steel tube of the fork is connected to the
threaded rod of the handlebar through a rectangular hole. Two spindel screws are
used to adjust the deadband range and engage the handlebar and fork upon system
failure (e.g., folding of the motors). The mechanism turned out to be successful
for all speeds. All participants managed to control the bicycle and completed the
experimental trials with safety. A group of five bachelor students designed and
built a lateral balance perturbation device using compressed air for their thesis [3].
The device consisted of four main parts; a scuba diving tank, a solenoid valve, an
electronic control module, and a bluetooth antenna for switching on/off the valve.
The device was tested and was able to generate the force required for our exper
iments. Though, it turned out that the amount of noise by the expansion of air
was distracting for the participants. For this reason a pulling rope mechanism with
a force transducer in series was used to manually apply lateral impulsive forces at
the seat post. The hardware and software of the steerbywire turned out to be
successful the control loop frequency was configure at 1 kHz the same as the sam
pling frequency of the sensors and actuator signals. In total sixteen signals were
successfully logged while controlling the servomotors without causing the buffer to
overflow. All data derived gave estimates of high quality.

The steerbywire bicycle can also serve as an experimental platform to assess
rider assist functions. The lateral stability of the bicycle could be improved with
the ease of compiling new software in the controller without changing the physical
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geometry of the bicycle. The handling qualities of the bicycle could be adjusted
to everyone’s needs with focus on the elderly and people with a physical handicap
having trouble riding a conventional bicycle [4]. Schwab et al. [5] were the first
who actually investigated in practice the impact of active steertorque control on
the lateral stability of a bicycle. Their results showed a considerably lower rider
steer effort and increased stability at low forward speeds.

The steerbywire bicycle may also be used for identification of the rider’s control
behavior. Impulsive torques in the handlebars could be applied in order identify the
intristic and reflexive responses of the rider arms. The effect of countersteering
during cornering could also be assessed. As recommended by Marumo and Nagai
[6] removal of countersteering might be beneficial for controlling a twowheeler,
but of course this idea could be now tested in practice. Haptic guidance for lane
keeping might also be tested, as suggested by Katagiri et al. [7] this can greatly
improve safety. Different steering configurations such as reverse steering could
be accomplished in order to explore the ability of the brain to adopt into the new
steering configurations.

Figure 8.2: Steerbywire bicycle prototype with handlebar and fork actuators, sensors, pulling rope
mechanism, digital controller and custom made battery pack.

8.1.3. Bicycle simulator
To evaluate further the role of the primary sensory systems and explore further
rider control behaviour in a safe environment a static bicycle simulator with a hap
tic steering device was designed and built. The mechanical portion of the simulator
consists of three main structural parts. A bicycle roller training base, a square tube



8.1. Facilities

8

119

used as a steering column, and a rear half of a stepthrough bicycle frame, see
Figure 8.3. To mount all the structural parts together several modifications were
made and a combination of different types of adjustable blocks were used. The
adjustable blocks were proven quite useful and gave us the flexibility to fixate all
structural parts together without any major challenges. Only one problem was ev
ident during testing of the simulator. Vibration of the powertrain was causing the
screws of the hinge block that supports and titles the steering column to become
loose. This resulted in misalignment between the two prismatic joints and as a con
sequence it was difficult to move the steering column horizontally to accommodate
a large range of body sizes and bike geometries. To solve this issue we used loctile
glue but as an upgrade a solid hinge clamp is recommended. Linear sliding bear
ings could also be added in both prismatic joints to reduce friction if necessary. The
assembly of the haptic steering device turned out to be successful but there were
two issues during testing. The first issue was related to the overload protection
mechanism. The shearpin was breaking at lower torques than expected. This was
caused due to a mismatch between the indicated in the manual and actual shear
strength of the selected nylon screws. Initially we thought to replace the overload
mechanism with a torque limiter. However, as first observed by Jason Moore [8]
industrial torque limiters are not functional at low rotating rates. Therefore, we fol
lowed the initial plan and continued testing in order to determine the proper screw
size. The second issue was associated to the strength of the angular metal stripes
that are used to mount the limit switches to the steering column. There were found
insufficient to absorb the impact loads of the mechanical range limiter shaft with
out deforming. To absorb the impact loads and protect the mounts of the limit
switches an elastic rubber was wrapped around the range limiter shaft. For future
usage it might be useful to use a braking clutch in case the load is cycled more
rapidly than the mechanical limiters can tolerate alone. A group of three bachelor
students working under the supervision of Oliver Lee designed and built a pedal
resisting unit for their thesis [9]. The idea was to install a chain drive unit and an
electric motor at the rear rollers. During testing it was observed that the plastic
roller strength was insufficient to support the applied resistive torques. Due to de
formation of the sprocket mounts the chain was misaligned. Noise and extensive
wear of the sprockets lead to exclude the powertrain unit from the final design. For
future usage it is recommended to replace the driven plastic roller with a one made
from carbon fiber to improve strength and avoid deformation due to the induced
powertrain loads. The simulator is at the moment placed on a fixed base. This does
not allow any rotational and translations movements. In the future, the simulator
could be placed on a hexapod platform or similar. This way, virtual bicycle dynam
ics that are currently projected in a screen or head mounted display could be also
perceived in the physical world.

8.1.4. Summary
Three new setups have been developed, and two have already been used to inves
tigate rider behaviour. For all three setups directions for further improvement are
given. All three setups were useful in the research and show potential for future
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Figure 8.3: TU Delft fixed base bicycle simulator.

usage. The bike simulator is work in progress requiring major further efforts in both
hardware and software.

8.2. Findings
The aim of this section is to summarize all scientific findings of this thesis and to
recommend possible ideas to extend further the obtained results.

8.2.1. Some effects of crosswind on the lateral dynamics
of a bicycle

In Chapter 2 we explored the effects of crosswind on bicycle dynamics and rider
control. The uncontrolled bicycle was driven in the stable speed region and was
subjected in a light & fresh wind breeze with an angle of attack of 30 degrees. The
rider controlled bicycle was driven in the unstable speed region and was subjected
in a fresh wind breeze with the same as the aforementioned angle of attack. Results
showed that the uncontrolled bicycle is capable of stabilizing itself by turning into the
wind after some short transient manoeuvre. Similar results were observed for the
rider controlled bicycle. However, in the later case longer transient manoeuvres and
a considerable steer torque effort were required to stabilize the bicycle. Additional
simulations with different rider models and wind conditions might be performed in
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order to extend further these preleminary results. For example, a rider model which
has its gains identified during naturalistic bicycle riding and input disturbances like
a gust of wind or turbulence could be also explored. For the former wind condition
this could be simulated by a finite impulse response input, whereas, for the later
by spatially correlated wind time histories. The exact magnitudes and frequencies
of these disturbances should be selected in respect to the linearity limits of the
selected bicycle model [10].

8.2.2. The dynamic response of the bicycle rider’s body to
vertical, foreandaft and lateral perturbations

In Chapter 3 we presented the dynamic response of the bicycle rider’s body sub
jected to translational motions by means of apparent mass (APMS) and seatto
sternum transmisibillity (STST) functions. Heave and surge motion interacted with
each other and showed similar dynamics (i.e. a result of subject leaning forward).
The vertical STST and APMS of the seat and handlebars showed a resonance at 5 Hz.
The longitudinal STST and APMS had a resonance at 2 Hz. Small resonant frequency
variations were evident, howbeit this could be attributed to different body masses
and postures. Sway was independent from the other two motions, the lateral STST
and APMS showed similar trends: no resonance was observed and postural control
was evident in both measurements. For heave and surge the rider’s body acted as
a rigid mass up to 2 Hz. For sway the rider’s body behaved like a horizontal mass
springdamper system (pelvis) with a torsional spring inverted pendulum (trunk)
on top for all frequencies. The high magnitude APMS for sway motion were per
haps a result of the angular trunk dynamics. For sway the rider’s body dynamics
were totally different from the other two motions. The rider’s body was not close
to a rigid mass even for the lowest frequencies. Hence, a parametric model is
significantly important in order to understand better the passive dynamic contribu
tion of the rider to the bicyclerider system especially during lateral disturbances.
Additionally, we explored the dynamic response of the rider’s body subjected to
rotational motions by means of APMS and STST functions [11]. The APMS was cal
culated as the ratio between measured forces and angular acceleration. The STST
was considered as the ratio between the angular velocities of the torso and bicycle
mockup. For the pitch and yaw motions, relative high gains with low coherence
were observed at low frequencies. Above 1 Hz, interfaces with high coherence were
characterised by a main resonance peak at 1.8 Hz and 2.3 Hz for the former and
later motion, respectively. A similar resonance frequency was found in the APMS
and STST responses for the yaw motion. For the sway and roll motions, responses
were almost identical. Postural control was evident during these motions. Obvi
ously the rider uses his feet and hands to stabilize his pelvis and trunk in space.
All findings discussed above are based on an average over twentyfour subjects.
For future research a more straight forward approach to understand the rider’s re
sponses during rotational motions could be to estimate the mechanical impedance
(i.e., the ratio between the applied torques and angular velocity).
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8.2.3. Rider control identification in bicycling using late
ral force perturbation tests

In Chapter 5, 6 we described several lateral force perturbation experiments dur
ing bicycling. The aim of the experiments was to model the steering and balance
behaviour of bicycle riders and investigate the effect of handlebar torque feedback
on rider control. The steerbywire bicycle designed and built at TU Delft bicycle
laboratory was used as an experimental platform to capture the rider responses
for two different steering configurations. In the first configuration the rider has
the torque feedback loop connected (haptics on) and the plant dynamics approxi
mate a normal bicycle. In the second configuration the steering dynamics change
to that of steerbywire (haptics off). This means that the plant approximates a
bicycle with decoupled rollsteer dynamics, hence the rider receives only steering
torque feedback due to the inertia of the handlebars and not due to the front wheel
dynamics.

In Chapter 5 we present the response of the rider’s control actions in the time
domain by means of impulse response functions (IRFs). To assess if there is any
statistical significant difference between the two configurations we defined three
performance metrics and calculated the delay between the two steering responses.
There were no significant differences between the two steering configurations. Nei
ther performance or steering effort was affected, but steering responses were faster
for the latter configuration. Even though a steerbywire system decouples the roll
steer dynamics (haptics off) the torque feedback information is severed but not
totally cancelled. State information can be deduced from the position of the han
dlebars and remaining inertial steering feedback. To neutralize the effect of inertial
feedback we could have applied negative stiffness by using the handlebar motor.
However, due to constrains related to the PD tracking controllers of the steerby
wire system this would have been difficult in practice (see github repository for
software [12]).

To examine further the rider’s responses for the two aforementioned configurations
in Chapter 6 we present three rider control model with increased complexity. In
addition, we explored a third configuration where the internal torque feedback loop
of the rider is disconnected and the plant dynamics approximate a bicycle without
steering torque feedback (𝑇𝛿 = 0). All models showed best performance for the
hapticson configuration and a high degradation in the fitting for the without steer
ing torque feedback (𝑇𝛿 = 0), which proves that steering feedback is important for
balancing and controlling a bicycle. For the later control model, which takes into
account steer torque, position feedback and sensorial delays, we also omitted both
the steering angle 𝛿 and steering rate �̇�. A negative effect in the fitting perfor
mance was observed especially for the highest speeds. The high degradation of
the heading and roll indicates that handlebar position and velocity feedback (mus
cle spindles) enhances bicycle heading and roll perception at higher speeds. For
all models the predicted magnitudes of the roll angle remained two to three times
smaller than the actual measured output. During the experiments the upper body
remained unconstrained and acted as a double inverted pendulum with some tor
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sional spring and damping properties. Additionally, simulations showed that rider
compliance can influence the magnitude of the roll angle. A much higher roll angle
of the bicycle is expected when the rider is more compliant. For the above rea
sons it is necessary to identify the spring and damping properties of the rider body
and extend the CarvalloWhipple bicycle model [10] in order to obtain better fitting
in the roll responses. All findings discussed above are based on an average over
twenty subjects.

Future work can be directed towards a deeper understanding of the haptic feed
back mechanism at the handlebars by varying the dynamic steer stiffness of the
handlebars and applying handlebar steer torque perturbations. Preliminary steer
torque perturbation experiments showed high intersubject variability especially for
the lowest speeds [13]. This might be due to the fact that some participants did not
adapt to the system completely which caused them to exhibit significant variance
in their responses. On the other hand, this could also be an effect of unmod
elled dynamics, such as upper body movement and extensive movements of the
arms. In the future it might be necessary to understand how the rider modulates
the intrinsic steering and damping stiffness in relation to speed. Also interesting
would be to study the interaction between the intrinsic and reflexive components of
the rider arms in order to understand better the biomechanics behind steer torque
control.

8.2.4. Bicycle simulator
In Chapter 7 we describe the design and hardware selection of a fixed base bicycle
simulator that was used to conduct rider control experiments in virtual environment.
Preliminary tests using the bicycle simulator showed that all subjects can manoeuvre
the bicycle when a carlike stable bicycle model is used to generate haptic feedback
and project the dynamics in the virtual environment. Visual roll and pitch of the
horizon turned out to be an effective tool for creating the illusion of physical roll
and pitch. The majority of the participants showed a tendency to excessively lean
over the bicycle frame and due to the vision and vestibular sensory conflict they
reported symptoms of motion sickness during and after the experiments.

8.3. Integration and outlook
From the above Section 8.2 it became apparent that data collected during different
experiments and obtained models could be combined together to extend further the
findings of this research. Regarding the rider control model that was used to study
the effect of crosswind on bicycle dynamics the following modifications may be
utilized. The data collected during the naturalistic bicycle experiments of Chapter 5
can be employed instead of the previous treadmill data. This is recommended due to
the fact that the narrow path of the treadmill might have introduced statistical bias.
The estimation of the controller gains especially to the one attributed to the bicycle
heading might have affected the crosswind simulations. To a certain degree a more
realistic rider control behaviour during crosswind could have been achieved using
the latter data. Another possibility can be to replace the initially selected controller
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by a more sophisticated rider model. However, it does not change the narrative
of the end results. For instance, the rider control model of Chapter 6 which takes
into account steer torque feedback and sensorial delays might have been applied
instead. Furthermore, the plant dynamics of the CarvalloWhipple bicycle model
[10] could have been extended to that of a steerbywire bicycle. The ability of
the rider to control a bicycle when subjected to crosswind for different steering
configurations would have been possible. The mismatch between the predicted
and actual measured magnitudes of the roll angle observed for all rider control
models in Chapter 6 may have been addressed as follows. The CarvalloWhipple
bicycle model [10] could have been extended by adding a passive rider model like
in a previous study [14]. A horizontal mass spring damper system with a torsional
spring inverted pendulum on top would have been a sufficient solution to simulate
upper body lean and trunk dynamics. The properties of the added model could
have been identified from the rider’s body responses during the sway motion that
were presented in Chapter 3.
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9
Conclusions

All three experimental bicycles designed and built in TU Delft bicycle laboratory
served successfully the aims of this research. Their capabilities in measuring, col
lecting data and generating disturbances exceed our initial expectations. More spe
cific, the instrumented bicycle mockup was proven successful in measuring the ap
parent mass (APMS) and seattosternum transmisibillity (STST) of the rider’s body
in all translational motions with high level of accuracy and without any malfunctions
during the experiments. The steerbywire bicycle capabilities were proven more
than sufficient for our experiments. The tracking error between the fork and the
handlebars was minimum. The servomotors of the steering assembly were proven
adequate in generating steer torque perturbations in a large range of magnitudes.
Preliminary tests using the bicycle simulator showed that all subjects can manoeu
vre the bicycle in the virtual environment when a carlike stable bicycle model was
used.

Computer simulations showed that crosswind in bicycling has a considerable effect
on the stability and control of the bicycle. Increasing crosswind speed can make
an uncontrolled bicycle unstable for all forward speeds. The rider control effort
increases considerably as crosswind speed increases, a constant steer torque is
required to keep the bicycle at a straight heading.

The response of the rider’s body subjected to vertical, foreandaft and lateral per
turbations revealed that rider applied forces in all threedimensional directions.
Heave and surge motion interacted with each other and similar responses and were
observed. Sway showed weak interaction with heave and surge and the responses
were totally different from the other two motions. The vertical and longitudinal
APMS for almost all bicycle interfaces followed the resonance of the STST measure
ments. All showed a twice as high magnitude at resonance, albeit a more heavily
damped system was apparent in the STST measurements. Resonant frequencies
were considerably higher in the vertical direction as compared to the longitudinal
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direction. Lateral measurements showed no resonance, and trunk postural control
was evident in the APMS measurements. For most frequencies and perturbation
directions the response of the rider’s body was not close to a rigid mass, hence a
parametric model is required to understand better the passive dynamic contribution
of the rider to the bicyclerider system.

In an effort to iterate over existing rider control models, the SDROP model has
been created that successfully accounts for sensory delays by the use of an internal
predictive model. The performance of the SD model has proven that implementa
tion of sensory delays without feedforward compensation does not produce results
that match the experimental data. A prediction strategy has been developed that
manages to circumvent the inability of the conventional Smith predictor to work
on inherently unstable open loop systems. The rider model follows the neces
sary stability condition of steer into the fall and mimics human control in a natural
way. All simulated responses match the nonparametric outputs obtained from both
datasets with high level of performance, even when internal model inaccuracies are
introduced.

With this rider model the importance of accurate determination of the various state
variables via our sensors has been examined. The analysis showed that a highly
realistic rider model must include steer angle, steer velocity and torque feedback to
obtain adequate performance at all speed levels. Although, if the torque feedback
loop is severed and not disconnected as in the haptics off configuration, state in
formation might be deduced by the remaining inertial properties of the handlebar.
Even though a steerbywire system decouples the rollsteer dynamics (haptics off)
the remaining inertial torque and position feedback of the handlebar is proven to be
adequate for the rider to control and balance a bicycle. The absence of haptic feed
back substantially changes the system dynamics where with haptics off the bicycle
is always unstable but apparently riders can effectively stabilise and control the
system. Future work can be directed towards a deeper understanding of the haptic
feedback mechanism at the handlebars by varying the dynamic steer stiffness of
the handlebars and applying handlebar steer torque perturbations.
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Propositions belonging to the
PhD thesis

These propositions are regarded as lending themselves to opposition and as de
fendable, and have been approved as such by the promotor Dr. R. Happee and
copromotor Dr. A. L. Schwab.

1. Existing steering stabilizers that are used primarily in motorcycles might have
a negative impact if they are used on bicycles during the challenging moments
of a gusty crosswind due to the higher resistance of the bicycle steering.

This proposition pertains to this dissertation Chapter 2.

2. Biodynamic lumped humanmachine models with parameters derived based
on experimental measurements (e.g. during mountain biking) can lead to the
design of optimal suspensions for competitive racing.

This proposition pertains to this dissertation Chapter 3.

3. Steerbywire technology can improve safety by modifying the actions taken
by the rider, making the twowheeler both easier and more comfortable to
control.

4. A low cost electric motor an IMU and a wheel speed sensor is all that is needed
to improve the lateral stability of twowheelers at low speeds.

5. A steerassist system is not the only way to keep seniors upright.

Propositions 3, 4, 5 pertain to this dissertation Chapter 4.

6. Steering feedback is important for balancing and manoeuvring a bicycle.

This proposition pertains to this dissertation Chapter 5, Chapter 6.

7. A virtual reality bicycle simulator might be used as a balance and motor func
tion rehabilitation system with further objective measurements of balance
ability of the patients.

This proposition pertains to this dissertation Chapter 7.

8. Handling qualities of existing bicycles can be improved by machine learning
algorithms such as artificial neural networks.
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9. Selfbalancing motorcycles from BMW, Yamaha and Honda are designed and
built for marketing reasons, commercial usage of such motorcycles is not
foreseeable in the near future.

10. Life for some people is like riding a bicycle with no assist, and for others like
riding a bicycle with steerassist.
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