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ABSTRACT

In the literature, many methods are available for estimation of the variance of the noise in magnetic resonance
(MR) images. A commonly used method, based on the maximum of the background mode of the histogram, is
revisited and a new, robust, and easy to use method is presented based on maximum likelihood (ML) estimation.
Both methods are evaluated in terms of accuracy and precision using simulated MR data. It is shown that the
newly proposed method outperforms the commonly used method in terms of mean-squared error (MSE).
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1. INTRODUCTION

The noise variance in magnetic resonance (MR) images has always been an important parameter to account for
in the processing and analysis of MRI data. Algorithms for segmentation, clustering, restoration, noise reduction
etc, highly depend on the noise variance.1–4 Also, many applications that employ statistical analysis techniques
often base their conclusions on assumptions about the underlying noise characteristics. For example, the noise
variance is an important parameter in functional MRI analysis, where signal variations of the order of a few
percent need to be detected. Indeed, the primary obstacle in generating reliable activation maps with fMRI is
the extremely low signal-to-noise ratio of the acquired data. The detection of neural activity is most commonly
carried out in the form of a statistical hypothesis test, which often relies on assumptions of the underlying noise
distribution. Finally, knowledge of the noise variance is useful in the quality assessment of the MR imaging
system itself (e.g., to test the noise characteristics of the receiver coil, preamplifier, etc.).

In the past, many techniques have been proposed to estimate the image noise variance. These can be
subdivided into two classes:

single image Commonly, the noise variance is estimated from a single magnitude image, where it is determined
directly from a large, uniform signal region or from a non-signal (i.e., noise-only) region.5–8 Thereby,
the estimate is computed from the second moment of a Gauss probability density function (PDF) or from
the first moment of the Rayleigh PDF, respectively. A problem with this approach is the selection of
homogeneous regions that are sufficiently large to obtain a precise estimate of the noise variance. More-
over, background data points may suffer from systematic intensity variations due to streaking or ghosting
artifacts. Since often many background data points are available, the noise variance can be estimated from
the maximum of the image grey value histogram, which is more robust against the previous mentioned
artifacts. However, as will be shown in this paper, this method yields biased results.

multiple images To cover some disadvantages of single image methods, noise variance estimation methods
were developed based on two acquisitions of the same image. A standard procedure was developed by
Sano in which the noise variance was estimated by subtracting two acquisitions of the same object and
calculating the standard deviation of the resulting pixel values.9, 10 The multiple acquisition methods
have that advantage over the single image methods that they are relatively insensitive to structured noise
such as ghosting, ringing, and DC artifacts.11, 12 However, a strict requirement is the perfect geometrical
registration of the images and temporal stationarity of the imaging proces.
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In this paper, we will focus on noise variance estimation based on the background mode of the histogram
of a single MR image in which the pixel grey values are represented by integers. Thereby, it is assumed that a
large number of background data is available, or equivalently, that the histogram has a clear background mode,
which is often a valid assumption. In Section 2.1, the paper starts by reviewing the statistics of background MR
data. Next, in Section 2.2, we will describe a simple, robust, and commonly used procedure to estimated the
noise variance from the histogram’s background mode. In the same section, we will present a new noise variance
estimation method based on maximum likelihood estimation from a partial histogram. Along with this method,
a control procedure is provided that helps in determining whether or not the test will yield proper estimates of
the noise variance. Subsequently, in Section 3, simulation experiments to test the performance of the proposed
noise variance estimation procedure in terms of precision and accuracy are described and discussed. Finally, in
Section 4, conclusions are drawn.

2. METHODS

2.1. Noise properties of MR data

In MRI, the acquired complex data is known to be polluted by white noise which is characterized by a Gaussian
PDF. After inverse Fourier transformation, the real and imaginary data is still corrupted with Gaussian noise
because of the orthogonality of the Fourier transform. However, it is common practice to transform the complex
valued images into magnitude and phase images. Since computation of a magnitude (or phase) image is a non-
linear operation, the PDF of the data under concern changes. It is well known that the data in a magnitude
image is no longer Gaussian but Rician distributed5, 13:

p (m|A, σ) =
m

σ2
e−

m2+A2

2σ2 I0

(
Am

σ2

)
ε(m) , (1)

with I0 denoting the 0th order modified Bessel function of the first kind, A the noiseless signal level, σ2 the noise
variance, and m the MR magnitude variable. The unit step Heaviside function ε(·) is used to indicate that the
expression for the PDF of m is valid for non-negative values of m only.

For low signal-to-noise ratio (SNR), where SNR is defined as A/σ, the modified Bessel function is given by:

Iν(z) ∼
(z

2

)ν

Γ(ν + 1) for z → 0 . (2)

Hence, it is easy to show that, when the SNR is zero, the Rician PDF leads to a Rayleigh PDF:

p (m|σ) =
m

σ2
e−

m2

2σ2 ε(m) for SNR → 0 . (3)

The Rayleigh PDF characterizes the random intensity distribution of non-signal background areas.

2.2. Noise estimation

In many MR applications, a large number of background data (where the true MR signal is assumed to be zero)
is available to estimate the noise variance. Commonly, a region of interest (ROI) is selected from the background
data from which σ2 is estimated using (3).5 However, such a procedure is not recommended because the ROI
has to be manually selected and is highly sensitive to errors such as ghosting artifacts. Moreover, since only a
ROI is exploited for estimation, the precision of the estimated parameter is relatively low. Instead, the image
noise variance can be more robustly estimated from the image histogram. Indeed, since generally a large number
of background data points are available, a histogram often shows a mode that is clearly distinguishable (see for
example Fig. 1).
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2.2.1. Maximum of the background mode of the histogram

From the Rayleigh PDF, given in (3), the noise variance can be estimated by searching for the value of m for
which the Rayleigh PDF attains a maximum:

∂p

∂m
= 0 ⇔ 1 − m2

σ2
= 0 (4)

From this, it is clear that an estimate of the noise standard deviation is simply given by:

σ̂ = mmax (5)

In practice, mmax can be found by searching for the magnitude value at which the background mode in the
histogram attains a maximum. Since the background mode is always located at the left of the histogram, finding
this maximum is trivial.

2.2.2. ML estimation from the background mode of the histogram

Alternatively, σ can be estimated by ML estimation using a partial histogram (i.e., the left side of the histogram).
If {li} with i = 0, ...,K denotes the set of boundaries of histogram bins, and ni represents the number of
observations (counts) within the bin [li−1, li], then the joint PDF of the corresponding data is given by14:

p({ni}|σ, {li}) =
NK !∏K
i=1 ni!

K∏
i=1

pni
i (σ) (6)

with NK =
∑K

i=1 ni the total number of observations within the partial histogram and
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it is easy to show that
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If the set of observations {ni} is fixed and σ is regarded as a variable, the joint PDF given in (6) is called a
likelihood function. The ML estimate is then found by maximizing this likelihood function L with respect to σ:

σ̂ML,K = arg max
σ

L(σ|{ni}, {li}) (10)

Equivalently, the optimal value of σ is found by finding the minimum of − ln L, i.e.:

σ̂ML,K = arg min
σ

[
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Eq. (11) is the ML estimate of the noise standard deviation from K bins.
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2.2.3. Bin selection procedure

ML estimation of σ by fitting a (discrete) Rayleigh PDF to the partial histogram implies that we have to select
the number of bins we will take into account during estimation. This number, denoted as K, is found by
testing the null hypothesis that the bins less than lK are Rayleigh distributed using a chi-square test. Since the
background mode is located on the left side of the histogram, only the first K bins are used to estimated σ. In
order to determine how many bins should be taken into account (i.e., how large K is), for each value of K a χ2

value λK is computed. Thereby, λK is computed from the expected number of bin counts fi (obtained from the
theoretical Rayleigh distribution and the estimated noise variance) and the actually observed number of counts
ni for each bin:

λK =
K∑

i=1

(fi − ni)2

f2
i

(12)

where
fi = pi(σ̂)NK (13)

denotes the expected number of counts (σ̂ ≡ σ̂ML,K).

The statistical distribution of the random variable λK can be analyzed as follows. In theory, the number
of counts ni are multinomially distributed, and the marginal distribution of the number of counts in each bin
is a binomial distribution with parameters NK and pi. This means that the expected value of ni is pi(σ̂)NK

and its variance is pi(σ̂)(1 − pi(σ̂))NK . However, since in general, NK is large (and pi is small), the binomial
distribution may be approximated by a normal distribution, with expectation value pi(σ̂)NK and variance is
pi(σ̂)NK . Therefore, λK is approximately χ2

K−2 distributed (i.e., is chi-squared distributed with K − 2 degrees
of freedom). For each λK , a probability value pK = p(χ2

K−2 > λK) is computed. The best fit is expected to
have the highest probability.

At first sight, it seems sensible to select that value of K that gives the highest probability value (p-value) pK .
This approach has been tested by means of simulations. Simulation results revealed that the ML noise variance
estimation could be made more robust by refining the bin selection procedure by three (heuristic) rules:

1. During simulation experiments, it has been observed that the bin selection procedure often favored a
number of bins that was very small. Indeed, for such a small number of bins, the fit of the Rayleigh PDF
to those bins may result in a high p-value. However, in that case, the estimated value for σ was often
clearly too large (judging from the counts in bins that were not used for the estimation and the expected
number of counts in those bins).

Therefore, a second χ2 value is computed, but now on m bins that were not used for the estimation of σ
and of which the predicted counts were larger than the observed counts. The reasoning behind this is that
the Rayleigh PDF composed from σ̂ML,K should never exceed the actual number of counts in the histogram
bins (apart from statistical fluctuations) since histogram contributions from the underlying, noiseless signal
can only increase the number of counts in the bins.

Under the hypothesis that the data are perfectly Rayleigh distributed and the normal approximation for
the number of counts within each bin holds, this second λ2,K value is χ2 distributed with m degrees of
freedom:

λ2,K =
∑
i>K

[max(0, pi(σ̂)NK − ni)]2

pi(σ̂)NK
(14)

From λ2,K , a second probability p2,K(χ2
m > λ2,K) is computed. The resulting probabilities are multiplied

and the number of bins with the maximum probability is selected as providing the best estimate of σ.

2. During specific simulation experiments it has been observed that, occasionally, an estimate of σ was selected
that was clearly too small. This occurred when K was very small. This class of errors is removed by
comparing the estimated σ with the maximum of the histogram. As will be shown in the results section,
the maximum can be found in a robust way, but it has a high variance. When σ̂ML,K is less than 70%
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of the position of the maximum of the histogram, a penalty factor is introduced, so the elements with an
occasionally good fit on the first bins are filtered out:

p4,K =
1
2

+
1
2
erf

(
10

σ̂ML,K

σ̂max
− 5

)
(15)

3. Finally, When σ estimates are large compared to the last bin used, the estimate is unreliable, even when
the estimated value matches the distribution accurately. To make sure that a sufficient number of bins is
selected for a reliable estimate, a penalty is introduced when the estimated σ is large compared to the last
bin:

p3,K =
1
2
− 1

2
erf

(
10

σ̂

lK
− 9

)
(16)

The resulting probabilities are multiplied and the number of bins with the maximum probability is selected as
providing the best estimate of σ.

3. EXPERIMENTS AND DISCUSSION

Simulation experiments were set up to test the performance of both methods discussed in section 2.2 in terms of
precision (i.e., variance), accuracy (i.e., bias), and root mean-squared-error (RMSE). The first estimator is the
one that takes the maximum of the histogram as estimate for σ, as explained in subsection 2.2.1. The second
estimator is the ML estimator as outlined in subsection 2.2.2.

3.1. Simulated noise-only images

First, the performance of the estimators was compared using simulated Rayleigh data. Thereby, the parameter
σ was fixed to 30. In all simulations, the histogram was composed from the integer values of the simulated
real-valued data where the width of each bin was fixed to 1.

In Fig. 2, the performance of the σ estimators as a function of K is shown in terms of precision, accuracy,
and RMSE. Each point of the curves was generated by averaging 1500 estimations.

precision Fig. 2(a) shows the standard deviation of both estimators as a function of the number of bins used in
this process (K). We recall that the true value for σ was 30 and that the bin width equals 1. Hence, from
the figure it is clear that the standard deviation of the maximum estimator increases until the number of
bins is 30 after which it remains constant with increasing number of bins used during estimation. On the
other hand, the standard deviation of the ML estimator decreases fast with the number of bins. However,
one can also note that if the number of bins is small (generally smaller than the true sigma), the standard
deviation of the ML estimator increases drastically. Although it depends slightly on the number of voxels
of which the histogram is composed, the minimum number of bins necessary for a valid estimation (in
terms of precision) is about the true σ.

accuracy Fig. 2(a) shows the expectation values of both estimators as a function of K. As can be observed
from the figure, both estimators perform more or less the same in terms of accuracy is K is sufficiently
large. If K is less than the true σ, both estimators show a significant bias (though for the ML estimator
the bias is significant in a smaller interval than the maximum estimator).

RMSE Finally, the RMSE is shown in Fig. 3(c). From the figure, it is clear that in terms of the RMSE, the ML
estimator performs generally better than the maximum estimator. However, also in this case, it is clear
that the number of bins taken into account for both estimators should not be significantly smaller than
the true σ.
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3.2. MR image with noise
Next, a simulated noise free MRI image was obtained from15 with the following simulation parameters: normal
brain, T1, 3mm, 0% noise, 20% intensity non-uniformity, TR = 18 ms, TE = 10 ms using a FLASH imaging
sequence (flip angle = 30◦). This simulated noise-free magnitude MR image was corrupted with Rician distributed
noise with σ = 30. The resulting real-valued image was rounded to integer values and the noise variance was
estimated with the estimators described above. The results are presented in Fig. 3.

precision By visual inspection of Fig. 3(a) it is clear that the standard deviation of both estimators as a function
of the number of bins is similar to the noise-only images. Hence, also in this case, the ML estimator seems
to outperform the maximum estimator with respect to precision, at least if the number of bins is sufficiently
large.

accuracy Fig. 2(a) shows the expectation values of both estimators as a function of K. In contrast to the
noise-only case, the bias of the ML estimator now increases with increasing K. This is because when
K increases, the chance that the histogram bins also contains significant contributions from the noiseless
underlying signal becomes more and more likely. Obviously, as can be seen from the figure, the maximum
estimator is not sensitive to this phenomenon (at least as long as the background histogram mode is much
more pronounced than the signal mode). Whether or not significant signal contributions are present in the
background mode can be tested as was outlined in subsection 2.2.3.

RMSE The RMSE as a function of K is shown in Fig. 3(c).

Finally, the RMSE as a function of σ was computed for both estimators. The results are shown in Fig. 4.
Each point was generated by averaging 250 estimations. From the figure, it is clear that in terms of the RMSE
the proposed ML estimator has an overall better performance than the maximum estimator.

4. CONCLUSIONS

In this paper, a comparison of two noise variance estimation methods that employ the image histogram was given.
Simulation experiments showed that the Maximum Likelihood (ML) estimator outperformes the estimator that
uses the maximum of the histogram. However, selecting how many bins are used for the ML estimator is
essential when low intensity signal contributions, for example caused by ghosting, are present in the MRI image.
A selection procedure has been devised that automatically selects the number of bins to be used for estimation.
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Figure 1. Histogram of a 2D MR image of the mouse brain: (a-b) T2-, (c-d) proton density, (e-f) T1-weighted image
with corresponding histogram.
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Figure 2. Performance comparison of the Maximum and the ML estimator of σ in terms of precision (a), accuracy (b),
and RMSE (c) simulated noise only data.
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Figure 3. Performance comparison of the Maximum and the ML estimator of σ in terms of precision (a), accuracy (b),
and RMSE (c) for simulated MR data.
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Figure 4. Performance comparison of the Maximum and the ML estimator of σ in terms of the RMSE as a function of
σ for simulated MR data. For each point, 250 simulations were used.
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