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METHODOLOGY

Use of literature mining for early 
identification of emerging contaminants 
in freshwater resources
Julia Hartmann1,2* , Susanne Wuijts1,3, Jan Peter van der Hoek2,4 and Ana Maria de Roda Husman1,5

Abstract 

Chemical and microbial contaminants in the aquatic environment pose a potential threat to humans and to ecosys-
tems. Humans may be exposed to contaminants in water resources when used for drinking water production, agricul-
ture, aquaculture or recreation. Climatological, social and demographic changes, as well as the increasing sensitivity 
of analytical techniques, may result in the augmented detection of contaminants. Recent research has shown that it 
takes about 15 years from the time of the first scientific study mentioning the presence of a contaminant in the envi-
ronment for the issue to peak in scientific attention and regulatory action. One possible factor influencing this lengthy 
period is that the first article becomes lost in the vast number of publications. In this study, we therefore developed a 
methodology using literature mining to identify the first scientific study which reports the presence of a contaminant 
in the aquatic environment. The developed semi-automated methodology enables health and environment agen-
cies to inform policy makers about contaminants in the aquatic environment that could be significant for public and 
environmental health in national, international and river basin settings. The methodology thereby assists the proactive 
governance of emerging contaminants in the aquatic environment. This was illustrated by a retrospective analysis of 
the period of emergence in the Netherlands of: (1) perfluorooctanoic acid in surface water, and (2) biological indus-
trial wastewater treatment systems as potential infection sources for Legionnaires´ disease.
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Background
Human activities result in the release of contaminants 
into the aquatic environment. Anthropogenic sources 
contaminating the aquatic environment include the 
effluents of municipal wastewater treatment plants 
(WWTPs), industrial wastewater discharges, as well 
as runoff from agricultural land and urban areas [1]. 
Moreover, demographic, social and climatological 
changes aggravate the impact of human activities on the 
aquatic environment. Examples of these changes are the 
increased volumes and changed composition of waste-
water caused by urbanisation and the decreasing dilu-
tion capacities of receiving water bodies due to droughts 

which results in higher concentrations of contaminants 
in water bodies [2, 3]. The increasing sensitivity of ana-
lytical techniques also enables the augmented detection 
of contaminants in the aquatic environment [3, 4].

Anthropogenic contamination may contain both 
chemical and microbial contaminants. For instance, the 
effluent of municipal WWTPs, despite advanced treat-
ment steps, may contain pharmaceutical and personal 
care products [5], antibiotic resistant bacteria [6] and 
antibiotic resistance genes [7]. Also, industrial wastewa-
ters, dependent on the type of industry, have been found 
to contain several chemical contaminants, such as dyes, 
solvents and catalysts [8]. Microbial contaminants have 
also been detected in industrial wastewater, for instance 
viruses that have been accidently released during vac-
cine production [9]. Chemical and microbial contami-
nants released into the aquatic environment can not only 
pose a threat to human health when water resources are 
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used for drinking water production or recreation, but can 
also impact aquatic organisms. In this study, we refer to 
emerging contaminants for which the threat posed to 
human health or the aquatic environment is still unclear.

In a recent study, we showed that the current risk gov-
ernance of contaminants in the aquatic environment can 
be improved by the more timely identification of contam-
inants which are of potential concern [10]. In that study, 
we analysed the current policy on the risk governance 
of emerging contaminants in the aquatic environment 
in the Netherlands, Germany, Switzerland and the state 
of Minnesota and found that timely identification ena-
bled, among other things, appropriate risk management 
strategies. Furthermore, Halden [11] investigated, in ret-
rospect, the association between the number of scien-
tific publications about certain chemical environmental 
contaminants, such as dichlorodiphenyltrichloroethane 
(DDT) and 1,4-dioxane, and the regulatory actions sub-
sequently taken. He found that it generally took about 
15 years from the first scientific publication about a con-
taminant to a peak in number of scientific publications. 
The peak in scientific attention was found, in many cases, 
to be associated with regulatory or mitigation actions. 
The period from the first scientific publication being 
released to the time at which it reaches the peak of scien-
tific attention is referred to as the ‘period of emergence of 
concern’ by Halden [11]. Shortening the period of emer-
gence of concern may accelerate the introduction of reg-
ulatory actions to control chemical contaminants in the 
environment and thus limit environmental effects.

Although Halden [11] looked specifically at the 
emergence of concern about chemical contaminants, 
similar trends can be found for emerging microbial con-
taminants. Specific pathogens have (in retrospect) been 
shown to be present in the environment and linked to 
human sources long before the disease that they cause 
had gained attention [12]. For the Aichi Virus this has 
been illustrated by Lodder et al. [13]. The Aicihi virus was 
reported in humans for the first time in 1989. However, 
Lodder et al. [13] analysed environmental water samples 
from the Netherlands from 1987 and found that the Aichi 
virus had been circulating in the Dutch population well 
before its initial detection in humans. The fact that the 
Aichi virus was identified in water samples showed that 
the virus was already present in humans in 1987; other-
wise it could not have been detected in the aquatic envi-
ronment. Furthermore, the properties that cause concern 
among scientists and regulators about contaminants in 
the aquatic environment, especially when used for the 
production of drinking water, are similar for chemical 
and microbial contaminants. These properties include 
pathogenicity or toxicity, persistence and mobility [14, 
15]. Therefore, decreasing the period of the emergence of 

concern about microbial contaminants is also important 
if timely mitigation actions are to be ensured.

Currently, we believe that the first scientific article 
about the presence of a contaminant in the aquatic envi-
ronment is not picked up by regulators due to the large 
number of publications. It is not until more articles are 
published about the specific contaminant that the signal 
about the presence of the contaminant in the environ-
ment is picked up by regulators, as is shown by Halden 
[11]. We hypothesise that the period of emergence of 
concern about contaminants can be reduced by the sys-
tematic search of the universal scientific literature for 
articles reporting the first detection of a contaminant in 
the aquatic environment. As many articles about con-
taminants in the aquatic environment are published 
every day, the manual analysis of the scientific literature 
would be too complex, subjective and time consuming.

Text mining can be used to automate some parts of 
systematic literature reviews. The term refers to the auto-
mated extraction of (parts of ) articles that are relevant 
to the researcher, or to the data mining of articles, which 
enables associations to be found between parts of texts 
[16, 17]. Text mining has been shown useful in biomedi-
cal research for several applications, such as in the iden-
tification of eligible studies and the allocation of a list of 
genes to inform on their role in diseases [18]. Here, eligi-
ble studies refer to articles reporting on original research 
that is considered relevant to the scope of the systematic 
literature review. Others in the field of evidence-based 
software engineering for systematic literature reviews 
have used the term “primary studies” for this purpose 
[19]. Furthermore, Van de Brug et al. [20] have used text 
mining to devise an early warning mechanism to detect 
potential food related risks. Sjerps et  al. [21] have also 
used text mining to identify signals of potential emerg-
ing chemical risks to drinking water quality by combining 
search terms connected to chemical contaminants and 
the aquatic environment. However, this approach did not 
include microbial contaminants and was not specifically 
aimed at generating first reports on the presence of con-
taminants in the aquatic environment.

Over the past years, several software tools have been 
developed which integrate text mining in the systematic 
literature review process [22]. In this study, we assessed 
the applicability of two such tools, namely the StArt 
Tool and Adjutant. The StArt Tool automates the eligi-
ble study selection process by scoring articles based on 
the number of occurrences of the search terms in the 
title, abstract and keywords (open source and available 
at http://lapes .dc.ufsca r.br/tools /start _tool, automates) 
[22]. The rationale of the StArt tool is that the high-
est scoring articles are most relevant to the performed 
search and should thus be selected as eligible studies. 

http://lapes.dc.ufscar.br/tools/start_tool
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Adjutant, another software tool, can be used to query the 
 PubMed® database and perform unsupervised cluster-
ing on the retrieved collection of articles [23]. Adjutant is 
available from https ://githu b.com/amcri san/Adjut ant. In 
this study, we assessed the applicability of two software 
tools, namely the StArt Tool and Adjutant, to identify 
articles that report on the detection of a contaminant in 
the aquatic environment for the first time.

The objective of this study is to introduce a methodol-
ogy using literature mining to identify the first signal of 
the detection of a chemical or microbial contaminant in 
the aquatic environment. To keep the search as concise as 
possible, we focus in this study on freshwater resources. 
First, the development of the methodology is explained 
making use of the selected software tools (“Methodol-
ogy development” section). Then, the application of the 
developed methodology to recent scientific literature is 
shown (“Results of applying methodology to recent lit-
erature” section). Finally, a retrospective validation of the 
proposed methodology is discussed using the period of 
emergence of concern in the Netherlands of (1) perfluo-
rooctanoic acid (PFOA) in surface water and (2) biologi-
cal industrial wastewater treatment systems as potential 
infection sources of Legionnaires´ disease (“Retrospec-
tive validation of the developed methodology” section).

The developed methodology adds to evidence synthesis 
by combining signals of first detections of contaminants 
in the aquatic environment into manageable information. 
Health or environment agencies can use the methodol-
ogy to inform policy makers about signals of emerging 
contaminants in the aquatic environment that could be 
relevant for public or environmental health in a national, 
international or river basin setting. The methodology 
thereby assists the proactive governance of emerging 
contaminants in the aquatic environment and contrib-
utes to the objective and proactive use of scientific evi-
dence to inform policy makers.

Methodology development
A systematic literature review has three phases: plan-
ning, conducting and reporting. The planning phase 
includes identifying the need for a review and creat-
ing a review protocol. In the conducting phase, authors 
search for literature, identify and appraise eligible stud-
ies, and extract and synthesise data. In the final phase the 
results of the review are reported to relevant communi-
ties [19]. In this study, we have used R-based coding in 
the conducting phase to make the review process more 
efficient. A graphical representation of the development 
of the methodology is shown in Fig.  1 and is described 
in this section. The reporting phase is not automated by 
the developed methodology because, in this study, the 
reporting phase includes the elucidation of the relevance 

of the identified contaminants in a national, international 
or river basin setting.

In this study, the first signal of the detection of a chemi-
cal or microbial contaminant in the aquatic environment 
refers to a scientific article. In order to find this article, 
we use text mining of scientific articles, from now on 
referred to as literature mining. Here, literature mining 
is the automated textual analysis of the combination of 
‘title’ and ‘abstract’. This does not include the analysis of 
the data sets produced by the different articles [24]. The 
developed methodology is therefore applicable to all sci-
entific literature, also when the full-text of the article can-
not be accessed. The methodology is written in R-studio, 
available at https ://www.r-proje ct.org/ to make it freely 
accessible. All codes written in R referred to in the fol-
lowing methodology are added as supplementary mate-
rial in Additional file 1.

The planning phase
The review protocol was designed so that scientific arti-
cles that report on the first identification of chemical 
or microbial contaminants in the aquatic environment 
could be found. The search was conducted in Elsevier’s 
 Scopus®, the largest abstract and citation database of 
peer-reviewed literature worldwide [25]. In order to find 
articles reporting on the first identification of contami-
nants in the aquatic environment, relevant search terms 
and inclusion and exclusion criteria were defined.

Search query
The search terms used in the review are shown in Fig. 2. 
The search query itself was a combination of four con-
cepts, namely contaminant, detection, new, and aquatic 
environment. In order to keep the search query as spe-
cific as possible, it was decided to focus on freshwater 
resources. Each concept included several synonyms and 
was searched for in the title, abstract and keywords. The 
search query was set up using expert opinion and a list 
of fourteen a priori selected articles (see Table  1). The 
fourteen articles report the identification of chemical or 
microbial contaminants in the aquatic environment for 
the first time and could thus be used to test the effec-
tiveness of the proposed methodology. The articles were 
found using a simple search in Google  Scholar® using the 
search terms “first” and “detect* OR identif*”. Further-
more, articles which the authors came across in previous 
research and that reported on the first identification of 
chemical or microbial contaminants in the aquatic envi-
ronment were also included in Table 1.

Experts from different backgrounds, such as chem-
istry, microbiology, and hydrology, also provided input 
and feedback on a list of search terms using an iterative 
approach, thus ensuring that a comprehensive list of 

https://github.com/amcrisan/Adjutant
https://www.r-project.org/
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Fig. 1 A graphical representation of the steps taken to develop the proposed methodology. Here, </> is the symbol for code written in R
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search terms was obtained. In order to keep the search 
query as concise as possible, it was decided that a number 
of specific kinds of contaminants would not be included 
in concept 1 (e.g. pharmaceuticals, pesticides or E. coli). 
However, we did add the term ‘nanoparticle’ as nanopar-
ticles are not always referred to as compounds or con-
taminants and records referring to nanoparticles would 
otherwise be missed by the presented methodology.

Inclusion and exclusion criteria
In the query in Scopus we limited the search to scientific 
articles, reviews and articles in press written in English. 
Although we were looking for original research, reviews 
were also included as authors of original research might 
not have been aware that they had identified a con-
taminant for the first time, but a reviewer might have 
picked up on it. Furthermore, the search query excluded 
records from the following subject areas: economics, 

econometrics and finance, business, management and 
accounting, dentistry, and psychology. Finally, to develop 
the methodology, only articles published between 2006 
and 2012 were included, as the set of articles retrieved 
with the search query had to contain the a priori selected 
articles (see Table 1, publication year 2006–2012).

Some inclusion and exclusion criteria could not be 
included in the search query, but were used to manu-
ally select eligible studies in the conducting phase. 
Although interesting, studies about new analytical 
techniques, new bio indicators, new toxicity results for 
known contaminants, new detections in the marine 
environment and in soil, and new removal techniques 
for known contaminants, were outside the scope of this 
study and not considered eligible studies. Studies about 
new detections in aquatic biota and aquatic plants were 
included as these are direct signals of aquatic contami-
nation. However, first detections in terrestrial plants 

Fig. 2 Search terms used to search  Scopus® for articles reporting on the first identification of chemical or microbial contaminants in the aquatic 
environment. Search terms were searched for in title, keywords and abstracts. Additional information: _ = search term was used with, and without, 
the use of a space, * = any combination of characters, → = AND
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were not included as eligible studies. Articles about 
drinking water or wastewater treatment techniques 
were excluded as the aim of the developed methodol-
ogy was to identify first detections of contaminants in 
the aquatic environment and not to identify new treat-
ment techniques used to treat contaminated water. 
However, articles reporting the first identification of 
contaminants created during treatment, e.g. newly 
identified disinfection by-products, were included.

An overview of the search query and the inclusion and 
exclusion criteria used is shown in Additional file 2.

The conducting phase
The search query (shown in Additional file  2) was used 
to search  Scopus®; this generated 27,516 articles. As 
 Scopus® does not have the functionality to export 
more than 2000 records, including all bibliographic 
information, R-based coding was used to add abstract 

Table 1 List of  14 a  priori selected articles that  report on  the  identification of  specific contaminants in  the  aquatic 
environment for the first time

The 5th column, named ‘Cluster’, is the result of the data driven cluster analysis using Adjutant, which is explained in “Eligible study selection approaches” section. 
The 6th and 7th column, named ‘Sorted on position’ and ‘Total search terms’ show the ranking of the a priori selected articles based on presence of search terms, this 
approach is also explained in “The conducting phase” section. N/A not applicable (Conley et al. [27] was not found with the search query used)

References Publication year First detection of Detection in Cluster Sorted 
on position

Total 
search 
terms

Sultan and Gabryelski [28] 2006 Several contaminants, 
most intriguing Glycolic 
acid

Drinking water Not-clustered 11 17

Terasaki et al. [29] 2008 Five aryl hydrocarbons, 
including a novel chlo-
rinated aryl ether

Surface water (port where 
industrial effluent from 
paper mill is discharged)

Not-clustered 241 12

Conley et al. [30] 2008 Lovastatin Surface water Not-clustered 1491 9

Radjenović et al. [31] 2008 Biodegradation product 
of β-blocker atenolol

Wastewater samples Not-clustered 41 15

Conley et al. [27] 2008 Norfluoxetine Surface water N/A N/A N/A

Xiao et al. [32] 2008 Gatifloxacin River, influent and effluent 
of sewage treatment 
plant

Not-clustered 2799 8

Söderström et al. [33] 2009 Oseltamivir Surface water Pharmaceut-concentr 1672 9

Hamza et al. [34] 2009 Human bocavirus Surface water (river) Infect-diseas 3047 8

Ferrer and Thurman [35] 2010 Lamotrigine and glucu-
ronide

Wastewater and drinking 
water samples

Sampl-detect 3 19

Farré et al. [36] 2010 C60 and C70 fullerenes 
and N-Methylfulleropyr-
rolidine C60

Effluent wastewater treat-
ment plant

Inf-chemic-concentr 162 13

Zhao et al. [37] 2010 Three new disinfection 
by-products (DBPs): 
2,6-dichloro-3-methyl-
1,4-benzoquinone, 
2,3,6-trichloro-
1,4-benzoquinone, and 
2,6-dibromo-1,4-benzo-
quinone

Drinking water Chlorin-disinfect 997 10

Kleywegt et al. [38] 2011 Roxithromycin and enro-
floxacin

Drinking water resource Pharmaceut-concentr 327 12

Pereira Rde et al. [39] 2011 Identification of new 
ozonation disinfec-
tion by-products of 
17β-estradiol

Groundwater Ozon-effect 14,570 5

Su et al. [40] 2012 Three gene cassette 
arrays, aac(6′)-Ib-cr-
aar-3-dfrA27-aadA16, 
aacA4-catB3-dfrA1 and 
aadA2-lnuF

Surface water Resist-antibiot 3904 8
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information to each record using the Rscopus package 
(see Fig. 1) [26]. In order to retrieve abstract information 
from  Scopus® by using R, an Application Programming 
Interface (API) key is needed which can be requested 
from Elsevier, using this link https ://dev.elsev ier.com/. 
The full script for this step of the methodology can be 
found in Additional file 1.

After the code was run, the list of 27,516 articles con-
tained abstract information. It was found that only 13 
of the 14 a priori selected articles were included in this 
dataset. Conley et  al. [27] was not found by the search 
query shown in Additional file 2. This is due to the fact 
that the first detection of the contaminant was not men-
tioned in the title or abstract. We continued developing 
the methodology with the other thirteen articles shown 
in Table 1.

The following step in a review process would be 
to manually select eligible studies based on title and 
abstracts. However, the high number of records makes 
the manual selection of eligible studies unrealistic, so R 
was used to automate the eligible study selection process.

Eligible study selection approaches
Available software tools were used to automate the eligi-
ble study selection process in this research, namely the 
StArt tool [22] and Adjutant [23] (see also Fig. 1). As the 
StArt tool was not R-based we implemented the ration-
ale used in the StArt tool in R. Adjutant could be directly 
used in R. We also assessed whether available text mining 
functionalities within R could be used. An explanation of 
the three approaches follows below (see also Fig. 1). Each 
approach has been computed into a separate R-based 
code which can be found in Additional file 1.

1. Data driven cluster analysis using Adjutant: Adjutant 
was originally developed to cluster articles retrieved 
from the Pubmed database [23]. With minor adjust-
ments to the package, Adjutant turned out to be 
useful for  Scopus® data as well. Furthermore, the 
package uses ‘stopwords’, which are words that are 
considered to be so widely used in the collection of 
articles that they are irrelevant to the content cluster-
ing analysis. We added additional stopwords to the 
package based on our search query, namely: water, 
study, studies, studied, species, region, and stable. 
These words were chosen because they are widely 
present in the set of articles exported from Scopus.

2. Number of search terms as a proxy for relevance: 
the rationale of the StArt tool (as discussed in “Back-
ground” section) was used as a guide for working out 
how to automatically identify eligible studies using R 
[19, 28]. The developers of the StArt tool advise using 

different values for occurrences in different parts of 
the text, especially lower values for occurrences in 
keywords. Occurrences of search terms in keywords 
should be rated lower because keywords are often 
not exported from search databases into the StArt 
tool. Also, as authors are obliged to choose a limited 
number of keywords, they might not be able to catch 
the research subject in this limited number [19]. 
We did not have any information on the keywords, 
as these were not in the dataset we exported from 
 Scopus®. Therefore, we examined whether specific 
terms from the search query were more frequent in 
the a priori selected articles than others. In that way, 
we were able to add more weight to those relevant 
terms when scoring articles. This was done using the 
tm and quanteda packages in R [29, 30].

3. Pattern matching: the abstracts of the fourteen a 
priori selected articles (see Table 1) were assessed so 
that we could find a common pattern which would 
indicate the relevance of these articles to the pre-
sent study. First, the abstract and titles were split into 
sentences and then the pattern, shown in Additional 
file 1, was used to select relevant articles using string 
pattern matching. In Additional file 1, it is shown that 
the pattern checks out for a combination of different 
word stems (e.g. ‘new’ and ‘detect’) in one sentence. 
However, these do not need to occur next to each 
other, hence the addition of 0–70 characters between 
the word stems. This is different from the search 
query used in  Scopus®, as  Scopus® is unable to search 
for specific combinations of words or word stems in 
one sentence. Also, by using the pattern matching in 
R, the matching sentence can be retrieved from the 
specific abstract which makes analysis less time con-
suming.

The applicability of the three approaches to automate 
the eligible study selection process was analysed using 
the fourteen a priori selected articles. However, one 
of these fourteen articles was not found in any of the 
approaches [27]. The first approach, namely data driven 
cluster analysis using Adjutant (Script 2), resulted in 48 
clusters. However, 12,959 records (53%) were not clus-
tered. Figure 3 shows the clusters that have been con-
structed and Table 1 shows the clusters in which the a 
priori selected records were sorted by Adjutant. Five of 
the a priori selected records were not clustered. Also, 
the eight records that were clustered, were divided over 
six different clusters. Therefore, there was no clear indi-
cation as to which of the clusters contained relevant 
information on the first detection of contaminants in 
the aquatic environment. Thus, data driven cluster 
analysis using Adjutant was not considered a feasible 

https://dev.elsevier.com/
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Fig. 3 Result of the data driven cluster analysis using the Adjutant package (Script 2). The names of the clusters are the two most commonly used 
word stems in the specific cluster
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approach for the automation of the eligible study selec-
tion process in this research.

The second approach to automate the eligible study 
selection process that was assessed was based on the clas-
sification approach used in the StArt tool [19, 28]. Figure 4 
shows the most used search terms in 13 of the a priori 
selected articles (Conley et al. [27] was not found by the 
search query used). There is no clear indication which of 
the concepts (see “Search query”) is most distinguishably 
present in these relevant articles. Therefore, the records 
were sorted based on the presence of all the search terms 
using the quanteda package, with no additional weights 
added to any concepts or search terms. Table 1 shows that 

not all a priori selected articles are ranked high. Therefore, 
the ranking of articles that was based on the frequency of 
search terms was found not to be applicable to automate 
the eligible selection process in this study.

The third approach assessed to automate the eligible 
selection process was pattern matching. The dataset con-
tained 4299 records that matched the pattern based on 
the a priori selected articles. This is 15.6 percent of the 
original number of records exported from  Scopus®. All 
but one, namely Conley et al. [27], of the a priori selected 
articles were included in the 4299 records.

Because the pattern matching approach was the 
only approach that clustered the a priori selected arti-
cles together, we found pattern matching to be the best 
approach to automate the eligible study selection in this 
research. Using this approach the eligible study selection 
process is not yet fully automated as the list of matched 
records still needs to be manually checked. However, the 
number of records that is likely to include most eligible 
articles and thus should be prioritised for manual check-
ing was decreased by almost 85 percent. Therefore, pat-
tern matching was chosen as the approach to automate 
(part) of the screening process.

Sensitivity and specificity analysis
A sensitivity and specificity analysis of the developed 
pattern was performed using the fraction true or false 
negatives and true or false positives. Here, false posi-
tives are articles that did not report the first detection 
of a contaminant in the aquatic environment but were 

extracted as eligible studies using the pattern defined in 
Additional file 1. False negatives are articles which did 
not match the pattern although these articles reported 
on the first detection of a contaminant in the aquatic 
environment. Often in computational linguistics, the 
focus is on the proportion of true and false positives 
recalled by the methodology, since no information is 
available on the documents that were not retrieved by 
the methodology [31]. However, here we have infor-
mation on the articles that were eliminated using the 
pattern defined in Additional file 1. Therefore, we used 
the definitions of sensitivity and specificity as shown in 
Eqs. 1 and 2 following the Receiver Operating Charac-
teristics (ROC) analysis [32].

Results of applying methodology to recent 
literature
In this section, the results of applying the developed 
methodology, as explained in (“Methodology devel-
opment” section, to recent literature, namely articles 
published between 2016 and 27th of August 2018, are 
presented. Running the search query shown in Addi-
tional file 2, adjusted to the new time period, resulted in 
22,570 articles being found in  Scopus®. A list contain-
ing these records was exported from  Scopus® and the 
code to add abstract information (see “The conducting 
phase” section) was used. Pattern matching was run to 
identify eligible studies, which resulted in 3650 records 
(16.0 percent of the original dataset) containing 3983 
sentences that matched the pattern. These records were 
exported to an excel file that contained the articles’ Elec-
tronic Identifier (EID), authors, title, publication year, 
journal, volume, page information, citations, Digital 
Object Identifier (DOI), link to the article in  Scopus®, 
abstract and the sentence that matched the pattern.

Then, eligible studies were again selected by apply-
ing additional criteria to the remaining dataset of 3650 
articles. The inclusion and exclusion criteria defined in 
“Inclusion and exclusion criteria” section were used. 
After manual analysis, 359 articles were selected as eligi-
ble studies, as shown in Additional file  3. The contami-
nants detected for the first time in these studies were 
categorised manually as chemical or microbial.

Of the 359 articles, 173 were on chemical contaminants 
and 186 on microbial contaminants. The next step would 

(1)sensitivity =
fraction of true positives

fraction of true positives + fraction of false negatives

(2)specificity =
fraction of true negatives

fraction of true negatives + fraction of false positives
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be to identify the relevance of the contaminants identi-
fied for the first time as potential threats to public and 
environmental health in national, international or river 
basin settings. The elucidation process is not automated 
by the developed methodology and therefore not within 
the scope of this study. However, we are planning to fur-
ther develop the elucidation process in detail in future 
research.

Results of the sensitivity and specificity analysis
In order to find the fraction of false and true negatives, 
we analysed a random selection of 1750 articles from the 
23,217 articles (published between 2006 and 2012) that 
did not match the pattern. We found that 32 of the 1750 
articles did report on the first detection of a contaminant 
in the aquatic environment, resulting in a fraction of true 
and false negatives of 0.982 and 0.018, respectively. The 
results of the analysis are shown in Additional file 4. Out 
of the 3650 articles extracted as eligible studies, 359 arti-
cles were true positives resulting in a fraction of true and 
false positives of 0.098 and 0.902, respectively. Therefore, 
using Eqs. 1 and 2, a sensitivity of 84.5% and a specificity 
of 52.1% were found.

Retrospective validation of the developed 
methodology
Could the developed methodology have contributed 
to the earlier identification of any of today´s emerging 
contaminants in the aquatic environment? To answer 
this question, we further analysed two examples of con-
taminants, one chemical and one microbial, which have 
caused great concern over the past years. We ran the 
methodology as defined above and assessed whether 
the use of the proposed text mining methodology would 
have decreased the period of emergence of concern in 
the Netherlands. The chemical contaminant used as an 
example was perfluorooctanoic acid (PFOA), which is 
an anthropogenic chemical belonging to the group of 
per- and polyfluoroalkyl substances (PFASs) [33]. The 
microbial contaminant example was the family of the 
Legionella bacteria.

Perfluorooctanoic acid (PFOA)
Since the 1940s, PFOA has been used in many industrial 
applications, for instance in the production of  Teflon®. In 
1978, it was first established that PFOA induces immu-
notoxicity and other adverse effects in monkeys. How-
ever, Grandjean and Clapp [34] showed that this, and 
other early toxicity information, was not published or 
was overlooked. Regulatory actions were, therefore, only 
initiated after the analysis of blood serum samples taken 
in 2000 revealed that PFOS and PFOA were detectable in 

all Americans [35]. In 2010, the major PFOA producing 
company in the United States of America stated that it 
had decreased its PFOA emissions by 95 percent [34].

In the Netherlands, Dupont had been using PFOA 
since 1970 to produce Teflon and had replaced it volun-
tarily in 2012 by a different perfluorinated compound. In 
2015, groundwater which had been used for the produc-
tion of drinking water was investigated for possible con-
taminants and found to be polluted by PFOA as the result 
of industrial wastewater discharges and subsequent infil-
tration into groundwater in the period of 1970–2012 [36, 
37]. This investigation caused great public concern [10].

The case of PFOA shows a long period of emergence of 
concern in the Netherlands, from the first articles report-
ing on the presence of PFOA in the environment in the 
early 2000s and the replacement of PFOA by another per-
fluorinated compound in 2012. Lau et  al. [38] reviewed 
the literature on monitoring and toxicological findings 
about perfluoroalkyl acids in 2007. Based on this review, 
it can be concluded that Hansen et al. [39] quantitatively 
reported the presence of PFOA in the aquatic environ-
ment for the first time in 2002. However, we found that 
Moody et al. [40] had published research somewhat ear-
lier in 2001, reporting the presence of PFOA in surface 
water samples. Another early paper on the presence of 
perfluorooctane surfactants in surface water, was the 
study by Boulanger et  al. [41] who reported concentra-
tions of PFOA in Great Lakes water.

The proposed methodology including the pattern 
shown in Additional file 1 was run for articles published 
between 2001 and 2007. The methodology did not pick 
up the articles by both Hansen et  al. [39] (published in 
2002) and Moody et al. [40] (published in 2001), because 
they did not specifically refer in either the title or the 
abstract to this being the first report of PFOA in the 
aquatic environment. However, the study by Giesy and 
Kannan [42] (published in 2001) on the presence of PFCs 
in (aquatic) wildlife was picked up by the proposed meth-
odology. However, these authors focused primarily on 
providing evidence of the global distribution of perfluo-
rooctane sulphonic acid (PFOS) in biota not so much a 
first reporting. Also, the article by Boulanger et  al. [41] 
published 3 years later in 2004 was picked up. Thus, using 
the proposed text mining methodology, attention could 
have been drawn to the potential presence of PFOA in 
the aquatic environment in the Netherlands some 8 years 
earlier (in 2004 instead of 2012) and proactive risk gov-
ernance at a national level would have been possible.

Legionella
Legionella bacteria are ubiquitously present in the envi-
ronment. Inhaling pathogenic Legionella bacteria can 



Page 12 of 15Hartmann et al. Environ Evid            (2019) 8:33 

cause Legionnaires´ disease (LD) resulting in severe 
pneumonia. In 2017, the highest number of patients 
suffering from LD ever notified in the Netherlands was 
reported, namely a total of 561 cases [43], and only a 
minority of these were associated with exposure abroad. 
LD is often associated with manmade water systems, for 
instance, whirlpools, cooling towers and water distribu-
tion systems. However, the infection source remains 
unknown for most of the cases that are not part of an 
outbreak of Legionnaires´ disease and that have been 
infected in the Netherlands [43].

In 2016 and 2017, two successive clusters of a total 
of 14 cases of LD were reported in Boxtel, a town in 
the south of the Netherlands [44]. At first, no common 
source could be identified based on interviews and sam-
pling. However, after continuously investigating possible 
sources, an industrial biological WWTP was identified 
as the infection source for both clusters. The growing 
trend in LD cases in another city in the south of the 
Netherlands was also traced back to an industrial bio-
logical WWTP. These findings illustrated the importance 
of industrial biological WWTPs as potentially relevant 
sources for LD infections [43].

In 2018, Loenenbach et  al. [44] reported identify-
ing industrial biological WWTPs as potential relevant 
sources of Legionnaires´ disease infections for the first 
time in the Netherlands. However, cases of Legionnaires´ 
disease with biological WWTPs as infection source had 
already been reported in other countries before the two 
successive clusters in the Netherlands in 2016 and 2017 
were found. Indeed, van Heijnsbergen et al. [45] also men-
tioned these cases in their review of potential sources of 
Legionella which was published in 2015. To the best of 
our knowledge, Allestam et al. [46] identified the biologi-
cal treatment of industrial wastewater as a possible source 
for Legionella infection for the first time in 2006.

The proposed methodology including the pattern 
shown in Additional file 1 was run for articles published 
between 2006 and 2015. The methodology did not pick 
up the research by Allestam et  al. [46] (published in 
2006), because it was not published as a scientific article, 
but as a book chapter. However, a Finnish report on two 
cases of Legionnaires´ disease associated with biological 
WWTPs published in 2010 [47] was identified. Thus, if 
the proposed text mining methodology had been used in 
the Netherlands, the potential significance of biological 
WWTPs in Legionnaires´ disease infection could have 
been identified in 2010 instead of 2015. In that case, the 
period of concern would have been decreased by 5 years 
and proactive risk governance would have been pos-
sible, for example, by running a monitoring campaign 
to identify relevant industrial biological WWTPs in the 
Netherlands.

Discussion
To the best of our knowledge, this is the first attempt 
to develop a methodology to search the scientific litera-
ture for articles reporting the first detection of chemical 
and microbial contaminants in the aquatic environment. 
Sjerps et  al. [21] used text mining in 2015 to identify 
potential emerging risks, comparing the manual and 
automated analysis of scientific literature. The authors 
concluded that the manual analysis was not structured, 
poorly reproducible and labour-intensive. The automated 
search using the text mining tool was fast and reproduc-
ible but generated too many hits and an unmanageable 
number of contaminants. Therefore, Sjerps et  al. [21] 
suggested using automated text analysis to identify eligi-
ble studies and then performing a manual analysis of the 
eligible studies. Using the pattern matching approach in 
this study is one way of implementing this as a reproduc-
ible methodology.

In this research project, we showed the results of apply-
ing the developed methodology to literature published in 
the last 2.5 years (2016 until August 2018). This resulted 
in 3650 records which were manually analysed using the 
additional predefined inclusion and exclusion criteria. 
Although the developed methodology minimised the 
manual workload as only sentences matching the pat-
tern were analysed and not the whole abstract, this is 
still a time consuming step in the analysis. Therefore, in 
order to keep the number of records manageable, we sug-
gest running the methodology twice a year. Based on the 
number of relevant articles published between 2016 and 
August 2018 (2016 = 157, 2017 = 137 and until August 
2018 = 74), this would result in about 70 to 80 articles per 
run.

The effectiveness of the methodology was tested using 
a priori selected articles. One of the a priori selected 
articles, namely Conley et al. [27], was not found by the 
developed methodology. This is because the first detec-
tion of norfluoxetine was not mentioned in the abstract 
or title, but only in the full text. Therefore, by using the 
developed methodology only those articles are identified, 
in which the authors consider the first detection of a con-
taminant in the aquatic environment an important aspect 
of their research and include this in the title or abstract. 
Open Access publishing would remove this limitation as 
the full text could then be retrieved from  Scopus® instead 
of the abstract (see code shown in Additional file 1). The 
added-value of text mining full text articles instead of 
abstracts has been illustrated before by Westergaard et al. 
[48]. However, a recent estimation of Open Access pub-
lishing showed that only 28 percent of scientific articles 
are published Open Access [49]. Thus, the limitation of 
mining only title and abstracts is not expected to be elim-
inated any time soon.
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The specificity analysis resulted in a low specificity 
(52.1%). This is due to the high fraction of false positives. 
The calculation of the low specificity is once again evidence 
for the need of the additional manual analysis of the identi-
fied articles, as is shown in Fig. 1. Also, words are used in 
many different ways in a sentence, such as the words ‘new’ 
and ‘first’, which leads the pattern to extract false positives. 
For example, ‘new’ could be part of a region´s or city´s 
name, such as ‘New Zealand’ in the abstract published by 
Neary and Baillie [50]. The word ‘first’ is also used in many 
articles as a numerical transition word, for example in the 
abstract by Sharma and Malaviya [51]. Most false positives 
are unavoidable and can easily be excluded in the manual 
selection phase of eligible studies.

However, some of the false positives could be automati-
cally eliminated by removing sentences in which “New” 
refers to a country and “first” is used in the beginning of 
a sentence and following by a comma. These rules were 
translated into additional lines of code (see Additional 
file  1) which could be run after the pattern matching 
code. We were able to automatically eliminate 161 sen-
tences by using this additional line of code on the sen-
tences shown in Additional file 3.

The fraction of false negatives found was very low, 
namely 0.0183. However, all false negatives reported on the 
first detection of a microbial contaminant indicating that 
the pattern is more tailored to studies reporting on chemi-
cal contaminants than to studies reporting on microorgan-
isms in the aquatic environment. This can be due to the 
fact that the a priori selected articles comprised only two 
articles reporting on the first detection of microbial con-
taminants in the aquatic environment [52, 53]. Therefore, 
we suggest an addition to the pattern shown in Additional 
file 1, namely a combination of the words ‘novel’, ‘new’ or 
‘undescribed’ and ‘species’, ‘first outbreak’ and ‘first descrip-
tion’. The extended pattern is also available in Additional 
file 1 and eliminates 29 out of the 32 false negatives.

The methodology was made as straightforward as 
possible and coded in R to make it widely applicable. 
However, as the methodology is R-based, some prior 
knowledge of programming is needed to be able to run 
it. Therefore, we suggest researchers use the methodol-
ogy to inform policy makers. For example, researchers 
working in close collaboration with national or interna-
tional government agencies, such as employees of health 
agencies. Another option is to build a user interface as 
has been done previously for complicated computational 
analysis tools such as QMRAspot [54, 55]. These tools 
include data, assumptions and calculations which make 
them more user-friendly for non-mathematicians. How-
ever, it should be noted that, in order to interpret the 
results of these tools, discipline related knowledge is still 
required.

A retrospective validation of the methodology was 
performed by evaluating the period of emergence of 
concern for two example contaminants in the Nether-
lands, one microbial and one chemical contaminant. 
Although we are aware of the fact that the period of 
emergence of concern related to these contaminants 
might be very different in other countries and that early 
identification of contaminants is no guarantee for regu-
latory actions, the retrospective validation illustrated 
that the methodology can be useful for the more timely 
identification of emerging contaminants.

Although the methodology has been developed spe-
cifically to extract articles from  Scopus®, any database 
of peer-reviewed literature could be used with the pro-
posed search query. In that case, the developed code 
could be used as is after the abstract and title informa-
tion has been imported into R-studio. However, to our 
knowledge, no R-package exists for retrieving abstract 
information from databases of peer-reviewed literature 
except for  Scopus®.

Furthermore, the search query and pattern can be easily 
adjusted as the codes are added as supplementary mate-
rial and the additional inclusion and exclusion criteria are 
explicitly described in Additional file 2. For instance, the 
search query and additional inclusion and exclusion cri-
teria can be adjusted to make the methodology applicable 
to the search for articles identifying contaminants for the 
first time in soil or air. Identifying early signals of con-
taminants in soil might also be interesting when it comes 
to the quality of freshwater resources due to potential 
leaching. Also, by replacing all search terms in concept 1 
of the search query (see Fig. 2) by a specific contaminant 
group, such as “pharmaceuticals” or “personal care prod-
ucts”, the methodology could be used to identify a spe-
cific type of new chemicals. Finally, one might consider 
including studies on new toxicity results for known con-
taminants, and compare these to the results of national 
monitoring studies. In these cases, the pattern could be 
used as it is as long as the search terms are adapted.

When textual data were imported into the R environ-
ment, some characters were not properly encrypted and 
were thus replaced by random signs. Examples of char-
acters that the R environment was unfamiliar with, even 
after an encryption comment was run, were Greek let-
ters and characters in subscript or superscript. This phe-
nomenon has caused some contaminants in the abstracts 
shown in Additional file  3 to be named incorrectly. 
However, as the  Scopus® link to the original research is 
included in Additional file  3, the name of the contami-
nant can always be checked.

Finally, the developed methodology can be used to 
identify signals in any national, international or river 
basin setting since the search query and inclusion and 
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exclusion criteria are not country or area specific. How-
ever, it is recognised that the elucidation of the relevance 
of the signals in the national, international or river basin 
setting is a crucial part of the proactive governance of 
emerging contaminants in the aquatic environment. Only 
when the identified signals are analysed effectively, is 
proactive governance possible.

Conclusions
In this study, we hypothesised that the period of emer-
gence of concern of contaminants could be reduced 
by performing a systematic search for articles which 
reported the first detection of a contaminant in the 
aquatic environment. For this purpose, we developed 
a methodology using literature mining. The technical 
aspects of the developed methodology were described 
as well as its implementation for the screening of recent 
scientific literature. The hypothesis was tested by retro-
spectively analysing the period of the emergence of con-
cern related to two contaminants in the Netherlands. 
The retrospective analysis showed that the methodology 
is able to extract early signals of a contaminant in the 
aquatic environment. However, the further elucidation 
of the relevance of the identified signals, here referred to 
as the reporting phase, is crucial in order to decrease the 
period of emergence of future contaminants. We there-
fore conclude that the developed methodology is a first 
step towards the proactive systematic identification of 
emerging contaminants in the aquatic environment.
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