## TECHNISCHE HOGESCHOOL DELFT

### LUCHTVAART- EN RUIMTEVAARTTECHNIEK





# DELFT UNIVERSITY OF TECHNOLOGY DEPARTMENT OF AEROSPACE ENGINEERING

Memorandum M-368

## SOME FORMULAS FOR THE CRACK OPENING STRESS LEVEL

by

J. Schijve

Delft, The Netherlands April 1980

#### CONTENTS

- 1 Introduction
- 2 Evaluation of the crack growth data
- 3 Conclusions
- 4 References

#### ABSTRACT

Crack growth data for 2024-T3 sheet material were analysed with different formulas for  $\Delta K_{\mbox{eff}}$  as a function of the stress ratio R. The data covered R values from - 1.0 to 0.54. A good correlation was obtained for  $\Delta K_{\mbox{eff}}/\Delta K$  = 0.55 + 0.33 R + 0.12 R². The relation between log da/dn and log  $\Delta K_{\mbox{eff}}$  was non-linear for high crack rates (> 1  $\mu m/c$ ).

#### 1 INTRODUCTION

Fatigue crack growth data for 2024-T3 sheet material, tested under constant-amplitude loading, were recently published in an NLR-report by Van der Linden [1]. Six different R values, varying from - 1 to + 0.54 were adopted, see table 1. The results of these tests will be used here to check some equations for the crack opening stress level  $(S_{OD})$ .

#### 2 EVALUATION FO THE CRACK GROWTH DATA

In [1] the crack growth data are presented in graphical form only, i.e. crack growth curves (crack length a vs number of cycles) and crack growth rate data (da/dn vs  $\Delta K$ , with  $\Delta K = C \Delta S \sqrt{\pi a}$  and  $C = \sqrt{\sec \pi a/W}$ ). From the latter graphs the value of  $\Delta K$  at da/dn =  $10^{-5}$  m/c has been derived here (see table 1) for the six R values involved. For these  $\Delta K$  values the so-called  $\Delta K$  will be calculated according to different formulas. A formula can be useful only if the same  $\Delta K$  values are obtained for all R values.

Originally Elber [2] proposed for 2024-T3 material:

$$U = \frac{\Delta S_{eff}}{\Delta S} = \frac{\Delta K_{eff}}{\Delta K} = 0.5 + 0.4 \text{ R}$$
 (1)

where  $\Delta S_{eff} = S_{max} - S_{op}$ ,  $\Delta S = S_{max} - S_{min}$  and  $R = S_{min}/S_{max}$ . Elber checked this equation for R values from - 0.1 to + 0.7. In [3] the present author has shown that Eq. (1) could well account for the effect of R if R > 0. However, for negative R values Eq. (1) becomes unrealistic. Defining the ratio  $\gamma$ :

$$\gamma = \frac{S_{op}}{S_{max}} \tag{2}$$

the relation to U is easily obtained as:

$$\gamma = 1 - (1 - R) U$$
 (3)

For Elber's equation this gives:

$$\gamma = 0.5 + 0.1 R + 0.4 R^2$$
 (4)

As shown by Figure 1 this function is increasing for R + -1, which is unrealistic. Analytical work of Newman [4] has shown that  $\gamma$  should be a decreasing function for R + -1. For this reason a new equation was proposed in [3] based on trends as predicted by Newman:

$$U = 0.55 + 0.35 R + 0.1 R^2$$
 (5)

which leads to 
$$\gamma = 0.45 + 0.2 R + 0.25 R^2 + 0.1 R^3$$
 (6)

To obtain a more flexible form these equations can be replaced by:

$$U = 0.55 + (0.45 - \alpha) R + \alpha R^2$$
 (7)

and 
$$\gamma = 0.45 + (0.1 + \alpha) R + (0.45 - 2 \alpha) R^2 + \alpha R^3$$
 (8)

For  $\alpha$  = 0.10 the latter equations return into Eqs. (5) and (6). The  $\gamma$  (R) function in Eq. (8) has been plotted in Figure 1 for  $\alpha$  values varying from 0.10 to 0.15, which gives negligible differences for R > 0, but noticeable differences for R > - 1.

In [5] De Koning has suggested the following relations for 7075-T6:

For 
$$R > 0$$
:  $\gamma = 0.45 + 0.2 R - 0.15 R^2 + 0.9 R^3 - 0.4 R^4$  (9a)

For 
$$R \le 0$$
:  $\gamma = 0.45 + 0.2 R$  (9b)

These functions have also been plotted in Figure 1. For positive R values Eq. (9a) gives somewhat lower  $\gamma$  values than Eq. (8), while for negative R values the  $\gamma$  values with Eq. (9b) (linear relation) are much similar to those obtained with Eq. (8) for  $\alpha = 0.14$ .

Values of  $\Delta K_{\rm eff}$  have been calculated for the empirical  $\Delta K$  values (for da/dn = 10 m/c) employing Elber's equation (1), the present equation (8) for  $\alpha$  = 0.10 to 0.15 and De Koning's equations (9a) and (9b). The results are presented in table 1. If a  $\gamma(R)$  equation correctly represents the R-effect, the calculated  $\Delta K_{\rm eff}$  values should be similar. The results

of all equations show some variability as indicated by the variation coefficient, which is the ratio between the standard deviation of  $\Delta K_{\rm eff}$  and its mean value. The lowest scatter is obtained with Eq. (8) and  $\alpha=0.12$ . If the data for R=-1 are omitted the lowest scatter is obtained for  $\alpha=0.10$ , i.e. for equation (6). In Reference [3] this equation was found to agree with crack growth data covering an R range from - 0.50 to + 0.73. For this reason Van der Linden's crack rate data have been plotted as a function of  $\Delta K_{\rm eff}$  calculated with both  $\alpha=0.10$  and  $\alpha=0.12$ . The results are presented in Figures 3 and 4, while the original data from [1] plotted as a function of  $\Delta K_{\rm eff}$  is capable to correlate the crack growth data of different R values. A good correlation is observed in Figure 4 ( $\alpha=0.12$ ). The same applies to Figure 3 ( $\alpha=0.10$ ) with the exception of the data for R=-1. Apparently  $\alpha=0.12$  better fits all data.

The data in Figure 4 are in the da/dn range of 0.1 to 100  $\mu$ m/c, thus covering fairly high crack growth rates. In this range a non linear behaviour between log da/dn and log  $\Delta K_{\rm eff}$  was also observed in [3] for da/dn > 1  $\mu$ m/c. Similar to equations adopted in [3] the present crack growth data can be described by (da/dn in  $\mu$ m/c):

 $\begin{array}{l} \Delta \rm K_{eff} < 12~MPa\sqrt{m} \rightarrow \log~da/dn = -3.606 + 3.341~\log~\Delta \rm K_{eff} \\ \Delta \rm K_{eff} > 12~MPa\sqrt{m} \rightarrow \log~da/dn = 0.599 - 4.451~\log~\Delta \rm K_{eff} + 3.610~(\log~\Delta \rm K_{eff})^2 \\ \\ \text{The slope factor 3.341 was borrowed from [3]}. \end{array}$ 

#### 3 CONCLUSIONS

- 1. For 2024-T3 sheet material a second order polynomial for U (R) (where U =  $\Delta K_{\rm eff}/\Delta K$ ) allowed a good correlation between crack growth data for both positive and negative R values (as low as R = -1).
- 2. For high crack rates (> 1  $\mu m/c$ ) the log da/dn log  $\Delta K_{\mbox{eff}}$  relation deviated significantly from a linear function (Paris equation).

#### 4 REFERENCES

- [1] H.H. van der Linden NLR test results as a data base to be used in a check of crack propagation prediction models.

  A Garteur activity. NLR TR 79121, Nov. 1979.
- [2] W. Elber The significance of crack closure. ASTM STP 486, 1971, pp. 230-242.
- [3] J. Schijve The stress ratio effect on fatigue crack growth in 2024-T3 Alclad and the relation to crack closure. Delft Un. of Tech., Dept. of Aerospace Eng., Memorandum M-336, Aug. 1979.
- [4] J.C. Newman, Jr. A finite-element analysis of fatigue crack closure.

  Mechanics of crack growth, ASTM STP 590, 1976,
  p. 281.
- [5] A.U. de Koning A simple crack closure model for prediction of fatigue crack growth rates under variable amplitude loading. NLR MP 80006, Jan. 1980.

able 1 Empirical  $\Delta$ K values [1] and calculated  $\Delta$ K eff

|                                                               | Empirical data |          |       |          |         |        |                                                     |                   |
|---------------------------------------------------------------|----------------|----------|-------|----------|---------|--------|-----------------------------------------------------|-------------------|
| est No.                                                       | 1              | ] 3      | 4     | !<br>: 5 | 6       | 7      |                                                     |                   |
| (MPa)                                                         | 1 30           | 130      | 225   | 130      | 130     | 130    |                                                     |                   |
| in (MPa)                                                      | <b>7</b> 0     | 12.5     | -25   | -23.5    | -50     | -130   |                                                     |                   |
|                                                               | 0.54           | 0.10     | -0.11 | -0.18    | -0.38   | -1     | ·                                                   | ·                 |
| at $da/dn = 10^{-5}$                                          | 26.5           | 33.5     | 37.5  | 43       | 49      | 60     | Coefficien                                          | t of variation    |
| ıPa√m) m/c                                                    |                | <u> </u> |       | !        | ļ<br>:  | !<br>! | $\sigma_{\Delta K_{eff}} / \overline{\Delta K_{e}}$ | <del></del>       |
| Calculated $\Delta K_{\epsilon,f} = U \Delta K (MPa\sqrt{m})$ |                |          |       |          |         |        | all tests                                           | Excluding R = - 1 |
| . of Elber (1)                                                | 18.97          | 18.09    | 17.10 | (18.40)  | (17.05) | (6.00) | 5.2 %(a)                                            |                   |
| (8), $\alpha = 0.10$                                          | 20.36          | 19.63    | 19.23 | 21.08    | 21.14   | 18.00  | 6.1 %                                               | 4.2 %             |
| $\alpha = 0.11$                                               | 20.29          | 19.60    | 19.27 | 21.17    | 21.40   | 19.20  | 4.8 %                                               | 4.6 %             |
| $\alpha = 0.12$                                               | 20.22          | 19.57    | 19.32 | 21.26    | 21.65   | 20.40  | 4.5 %                                               | 5.0 %             |
| $\alpha = 0.13$                                               | 20.16          | 19.54    | 19.36 | 21.35    | 21.91   | 21.60  | 5.4 %                                               | 5.5 %             |
| $\alpha = 0.14$                                               | 20.09          | 19.51    | 19.41 | 21.45    | 22.17   | 22.80  | 6.9 %                                               | 6.0 %             |
| $\alpha = 0.15$                                               | 20.03          | 19.48    | 19.46 | 21.54    | 22.43   | 24.00  | 8.6 %                                               | 6.5 %             |
| . of De Koning<br>a and b)                                    | 21.78          | 19.75    | 19.32 | 21.35    | 22.23   | 22.50  | 6.1 %                                               | 6.1 %             |

a) based on first 3  $\Delta K_{\text{eff}}$  values only.



Figure 1 The crack opening stress level according to different formulas



Figure 2 Crack growth data for 2024-T3 from Ref. [1]



Figure 3 Crack growth data for 2024-T3 [1]  $\Delta K_{\mbox{eff}} \mbox{ calculated with Eq. (7) and } \alpha = 0.10$ 



Figure 4 Crack growth data for 2024-T3 [1]  $\Delta K_{\mbox{eff}} \mbox{ calculated with Eq. (7) and } \alpha = 0.12$ 

