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Abstract. The application of vibration-based Structural Health Monitoring (SHM) for damage 
detection is characterised by three fundamental aspects: the features extracted as representative 
of the structural condition that can be directly linked to some form of damage, the metrics 
selected as novelty or damage index, and the statistical model or classifier built to identify 
underlying patterns indicative of changes in the structure’s state. Focusing on the first step to 
improve the performance of vibration-based SHM strategies, the extracted features should be 
robust to noise, sensitive to the presence of a specific type of damage. Further, damage should 
induce patterns that are distinguishable from environmental and operational variabilities and 
other forms of damage such as ageing phenomena. In this paper, the problem is framed as an 
outlier detection problem and the the use of different modal parameters as Damage Sensitive 
Features (DSFs) is investigated, evaluating them based on the detection performance of an 
unsupervised One-Class Support Vector Machine (OCSVM) classifier. In particular, an artificial 
dataset is generated from the calibrated numerical model of a three-storey steel frame structure 
in different damage scenarios. The methodology is validated against available experimental data. 
For the case investigated the natural frequencies were sensitive to damage and robust to noise.  

1. Introduction 
Ensuring the safety and reliability of engineering structures and effectively managing their maintenance 
are critical factors that have made Structural Health Monitoring (SHM) techniques indispensable. SHM 
provides a framework that is based on the continuous tracking of structural response, aiming at 
evaluating damage (i.e. detecting, localizing, quantifying its extent, and predicting the remaining useful 
life of the structure) [1]. Within this hierarchy, detection is, thus, the first task to address, vibration-
based SHM techniques have now an established role in this framework due to their non-invasive nature 
and ability to provide insights on the global behaviour in almost real-time [2]. To this end, Damage-
Sensitive Features (DSFs) are extracted from the measured vibration signals and compared against a 
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healthy reference state in a Statistical Pattern Recognition (SPR) framework [3]. If an a-priori 
knowledge of the damaged behaviour is missing, this process is referred to as outlier detection, which 
can be addressed through unsupervised Machine-Learning (ML) inference [5].  

The effectiveness of these approaches depends largely on: (i) the selection of appropriate DSFs [4], 
(ii) the use of appropriate metrics as damage indices, and (iii) the choice of algorithm architecture to 
identify patterns indicating the presence of damage [5]. This paper is mainly concerned with the first 
aspect, thus, the sensitivity of different modal parameters to damage is compared, presenting the 
preliminary results of a vibration-based damage identification methodology, based on an unsupervised 
classification strategy that requires a limited number of parameters for model setup: the One-Class 
Support Vector Machine (OCSVM). A case study of a three-storey steel frame structure is used as 
reference to evaluate the sensitivity of the chosen DSFs to localized damage, and their robustness to 
noise and environmental variabilities. Both experimental data and numerical simulations are used in this 
investigation to test the detection performance of the outlier detection algorithm investigated. 

2. Methodology 
A case-study is developed to validate and test a damage identification strategy and each feature 
sensitivity to damage. This is a scaled three-storey steel frame tested in  an outdoor environment at the 
University of Florence. The frame was subjected to Ambient Vibration Testing (AVTs), in the 
undamaged state (UD) and under eleven scenarios of increasing damage (D#) (see Section 3). Natural 
frequencies and mode shapes were assessed in all these scenarios with the Automatic Operational Modal 
Analysis (A-OMA) procedure described in [6] using a Stochastic Subspace Identification (SSI) 
technique. To test the damage identification strategy, a large artificial dataset was generated through a 
numerical model developed in DIANA FEA [7], which was calibrated to the undamaged condition. This 
model has a twofold purpose, as it allows the simulation of selected experimental damage scenarios as 
well as the effect of environmental and operational variations (EOVs) on the modal properties. The 
artificial dataset was generated, by operating sequential eigenvalue analyses, under changing 
environmental conditions with reference to the linear relationship between the steel Young’s Modulus 
and temperature variation available in [8]. 

Frequencies and mode shapes were chosen at this stage as the DSFs for comparison, and reference 
undamaged features were defined. The root-mean-square error in terms of frequency (RMSE) and the 
Modal Assurance Criterion value (MAC) and the Coordinate Assurance Criterion (COMAC) value were 
selected as damage indices. Outlier detection was operated by training an unsupervised One-Class 
Support Vector Machine (OCSVM) [9] algorithm on the numerical dataset, and by testing it on both 
numerical and experimental A flowchart of the adopted methodology is shown in Figure 1 and the main 
steps are discussed in the following sections.  

3. The benchmark structure 
The analysed structure is a three-storey steel frame with fully welded H-columns and I-beams (Figure 
2a) and additional flanges in the connections. The slabs are made of six concrete blocks supported by 
two UPN embedded profiles, welded on the beams of the frame. The ground level consists of a ribbed 
steel sheet, welded to the perimeter beams with a 5 cm overhang.  

The structure was instrumented with twelve uniaxial piezoelectric accelerometers (10 V/g sensitivity, 
0.1-1500 Hz range) positioned at all levels at two opposite corners, in both directions, as shown in Figure 
2b-e. Damage was progressively imposed on the structure by cutting the flanges of the columns in four 
sections (S1 to S4), for a total of eleven damage scenarios (Figure 2c,d). A summary of the structure 
characteristics and damage scenarios is provided in Table 1.  
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Figure 1. Workflow of the proposed methodology. The dotted line represents the unsupervised 

outlier detection phase. In italics, the specific choices operated in the present work. 
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Figure 2. (a) Benchmark structure, (b) piezoelectric accelerometers, (c) imposed cut to the flange, 
(d) damage scenarios, (e) instrumented locations for dynamic identification with tags and orientation with 

respect to the refence systems (sensors in green; damaged sections in red; dimensions in meters). 

Table 1. Material properties and % ranges of decrease of damaged section properties (area and inertia). 
Material properties  Section Damage scenario ∆Area [%] ∆Jxx [%] ∆Jyy [%] 

Esteel 206 [GPa]  S1 #DS1 - #DS6 9-66 12-77 23-99 
δsteel 30 [GPa]  S2 #DS7 33.5 40 50 

Econcrete 7850 [kg/m2]  S2-S3 #DS8 - #DS9 32-64 37-75 50-99 
δslab 22 [kN]  S3-S4 #DS10 - #DS11 32-64 37-75 50-99 
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4. Experimental results 
The AVTs were conducted in seven non-consecutive days. Each acquisition was 30 minutes long, with 
a sampling rate of 600 Hz. The signals were filtered between 0.3 and 30 Hz and resampled at 60 Hz, 
and the RMS was calculated for each instrument in each test to understand the vibration intensity. A-
OMA was operated excluding a few signals identified as sources of noise in the frequency band from 0 
to 16 Hz, leading to sharper spectral densities.  
Acceleration signals from all acquisitions were processed to obtain the natural frequencies and mode 
shapes of the structure across all damage scenarios. Seven natural frequencies were identified (see 
Figure 3) across all damage scenarios with a high level of certainty, namely the first three bending modes 
in x-direction, the first two bending in y-direction and two torsional modes. Their evolution in time is 
shown in Figure 3, together with specification of the occurrence of each damage scenario. The results 
of the twelve sensors installed were not sufficient for the representation of the torsional mode shapes. 
Therefore, the following analysis is limited to 5 bending mode shapes.  

From an initial analysis of the experimental data, the bending mode shapes in the x-direction showed 
to be affected by damage more than the ones in the y-direction, consistently with the higher percentage 
decrease of inertia Jyy in the following scenarios (see Table 1). This is evident when normalised 
frequency values are compared for the distinct damage scenarios (see Figure 3). 

 
Figure 3. Experimental frequencies for all acquisitions, with specification of the occurrence of each 

damaged scenarios imposed on the structure. 

5. Numerical modelling and calibration 
A numerical model was developed in DIANA FEA based on the linear material properties in Table 1 
and calibrated on the experimental results for the UD state. Flat shell elements (CQ40F) were chosen to 
model the steel profile, to allow for the simulation of the localized damage imposed in the experimental 
tests. The final model was obtained by applying a rotational spring in the x-direction at the base, 
providing calibration errors lower than 1% for the 1st and 2nd frequencies. Subsequently, damage 
scenarios D6 and D11 were simulated in the numerical model. These scenarios were selected as both 
providing significant damage to the sections, but with very different extent at the global level. The 
torsional modes were not selected as DSFs, given the higher calibration error and the lack of complete 
representation of the experimental mode shapes for comparison with the undamaged state. The results 
of the calibration are shown both in Figure 4 and Table 2. 
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Figure 4. Results of the numerical model calibrations. Comparison of bending mode shapes for 
experimental (in red) and numerical (in blue) data. 
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Table 2. Calibration results in terms of frequencies, calibration error ɛ and frequencies variations both 
numerical and experimental, highlighted in green calibration errors below 3.5%. 

Modes 
UD D6 D11 

fexp fnum ɛ MAC fexp fnum ɛ MAC DD6,exp DD6,num fexp fnum ɛ MAC DD11,exp DD11,num 

1 3.098 3.083 0.5% 0.996 3.077 3.077 0.0% 0.992 -0.70% -0.21% 2.942 2.880 2.1% 0.990 -5.04% -6.58% 
2 3.760 3.742 0.5% 0.994 3.748 3.741 0.2% 0.793 -0.33% -0.02% 3.712 3.695 0.5% 0.825 -1.28% -1.26% 
3 6.271 6.001 4.3% 0.997 6.263 5.990 4.4% 0.860 -0.13% -0.18% 6.111 5.816 4.8% 0.982 -2.56% -3.08% 
4 10.019 10.330 3.1% 0.979 9.821 10.108 2.9% 0.965 -1.97% -2.15% 9.516 9.227 3.0% 0.963 -5.02% -10.68% 
5 13.733 13.815 0.6% 0.987 13.686 13.729 0.3% 0.820 -0.34% -0.62% 13.532 13.435 0.7% 0.794 -1.46% -2.75% 
6 16.094 17.633 9.6% 0.957 15.751 17.034 8.1% 0.940 -2.13% -3.40% 15.031 15.388 2.4% 0.957 -6.60% -12.73% 
7 21.585 21.111 2.2% 0.974 21.407 20.875 2.5% 0.936 -0.83% -1.12% 21.025 20.708 1.5% 0.861 -2.59% -1.91% 

6. Simulated monitoring under varying temperature conditions 
The model in the three analysed scenarios (UD, D6 and D11) was used to generate synthetic data with 
the objective of generating a larger volume of data with respect to the experimental acquisition, and 
build a training and testing dataset for the OCSVM classifier. Sequential eigenvalue analysis was 
operated, assuming hourly acquisitions over the course of three years, one year for each scenario. The 
value of the Esteel was changed at each simulated acquisition as per (1), in which E0 is the value of E at 
20°C (see Table 1), T* the temperature and e1, e2, e3, and e4 a set of constants obtained experimentally 
in [8]. 

 

𝐸𝐸(𝑇𝑇) = 𝐸𝐸0exp �−
1
2
�
𝑇𝑇∗

𝑒𝑒3
�
𝑒𝑒1
−

1
2
�
𝑇𝑇∗

𝑒𝑒4
�
𝑒𝑒2
� (1) 

 
Temperature data was obtained for three consecutive years from a metereological station in the vicinity 
of the real specimen [10]. The data obtained showed both the presence of seasonality and visible damage 
effects, as shown in Figure 5. From each eigenvalue analysis, both frequencies and mode shapes were 
extracted. Finally, to simulate the natural variability of real-world data, a random Gaussian noise with 
zero mean and 0.01 standard deviation was added to the features time series. 
 

 
Figure 5. Artificial frequencies before (left) and after (right) the addition of noise, over the three years 
of simulated monitoring (the bending modes in the x-direction are in blue, in the y-direction in green). 

f [
H

z]
 

f [
H

z]
 

f [
H

z]
 

f [
H

z]
 

f [
H

z]
 

f [
H

z]
 

f [
H

z]
 

f [
H

z]
 

f [
H

z]
 

f [
H

z]
 



XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 182043

IOP Publishing
doi:10.1088/1742-6596/2647/18/182043

8

 
 
 
 
 
 

 
 

7. Outlier detection 
Once the simulated monitoring was available, damage indices were calculated from the selected DSFs. 
The temperature, the frequency RMSE, the MAC and the COMAC values calculated with respect to the 
first simulated acquisition, were combined in different feature matrices to operate the comparison (see 
Table 3). All data was normalized with 0 mean and unit standard deviation before training. The purpose 
of the outlier detection was to conduct a simple binary classification: undamaged (UD) and damaged 
(without distinction between scenariosD6 and D11). A first set of OCSVM models were fitted to  9 
months of undamaged numerical samples and tested on the remaining numerical data. These classifiers 
were trained setting the minimum possible value of contamination, without adjusting the default 
hyperparameters in this first instance, apart from the value of ν (the fraction of training data that is 
allowed to be classified as outliers), which was set according to the chosen contamination. The choice 
of contamination rate of the training set was done under the assumption that a training set without 
damage data is the condition closer to a real-world application.  

Table 3. Different feature matrices defined for the comparison. 

Classifiers DSFs N. of DSFs 
1 T, RMSEf, MAC, COMAC 23 
2 RMSEf 5 
3 T, RMSEf, 6 
4 RMSEf, MAC 10 
5 T, RMSEf, MAC 11 
6 MAC 5 
7 COMAC 12 
8 MAC, COMAC 17 
9 RMSEf, MAC, COMAC 22 

The performance of each model was evaluated by compiling a confusion matrix, which includes the 
four outputs of binary classification: True Positives (TP), False Positives (FP), True Negatives (TN) and 
False Negatives (FN). In Table 4 the following performance metrics are reported: the recall (TP rate), 
the probability of false alarms (FP rate), the specificity (TN rate), the type II error rate (FN rate) and 
the f1 score metric, the latter accounting for the unbalanced class distribution [11]. The results of this 
first classification for all nine classifiers are shown in Table 4.  

The performance evaluation results showed how the classifiers 6 to 8, which only used MAC and 
COMAC values as features, did not yield an adequate classification output. Meanwhile, all others 
appeared to be equivalent, with classifiers 1 and 9 showing the highest recall. Classifier 9 was selected 
to be tested on an additional testing dataset, composed of twelve experimental acquisitions, one for each 
damage scenario, but no outliers were identified. This tolerant behaviour of the classifier may be due to 
the overfitting to training data and in general to the unbalanced distribution of classes in the training set, 
missing damaged samples. Therefore, all the models were re-run with a contamination of 10% of the 
training dataset (sourced from the D6 scenario), yielding results more heterogeneous than before. 
Classifier 2 showed the best classification performance both in the training (finding 85% of the outliers 
in the training) and in the testing datasets. The predictions for the contaminated training dataset are 
plotted in Figure 6, showing correct results not only in terms of overall percentage but also in terms of 
specificity. Classifier 2 with 10% contamination was then tested again on the experimental dataset, 
predicting outliers for the last 5 damage scenarios involving multiple damaged sections, from D7 to D11 
(see Figure 7). 
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Figure 6. Classification results for classifier 2 with contamination of 10% on the training dataset. 

 
Figure 7. Classification results for classifier 2 with contamination of 10% on the experimental dataset. 

Table 4. Performance metrics for all OCSVM models, with both minimum and 10% contamination. In 
red are highlighted the worst performing models and in green the two top classifiers. 

Contamination 0.1%  Contamination 10% 

C
la

ss
ifi

er
 

Testing  Training  Testing 

TP rate FP rate F1 
score  

TP rate FP rate  TP rate FP rate F1  
score TN rate FP rate TN rate FP rate  TN rate FP rate 

           

1 99.99% 0.00% 1,00  23,86% 8,15%  73,59% 7,67% 0,84 100 % 0.01%  91,84% 76,14%  92,33% 26,41% 
           

2 99.77% 0.00% 1,00  71,58% 1,80%  94,81% 1,74% 0,97 100 % 0.23%  98,20% 28,42%  98,26% 5,19% 
           

3 99.79% 0.00% 1,00  59,13% 3,46%  93,39% 5,80% 0,96 100 % 0.21%  96,54% 40,87%  94,20% 6,61% 
           

4 99.76% 0.00% 1,00  54,11% 4,12%  89,29% 4,02% 0,94 100 % 0.24%  95,88% 45,89%  95,98% 10,71% 
           

5 99.78% 0.00% 1,00  46,46% 5,14%  88,67% 6,21% 0,94 100 % 0.22%  94,86% 53,54%  93,79% 11,33% 
           

6 0.15% 0.23% 0,00  9,25% 10,11%  10,29% 8,81% 0,19 99.77 % 99.91%  89,89% 90,75%  91,19% 89,71% 
           

7 0.09% 0.14% 0,00  9,70% 10,05%  9,75% 8,95% 0,18 99.86 % 99.77%  89,95% 90,30%  91,05% 90,25% 
           

8 0.11% 0.23% 0,00  9,70% 10,05%  10,09% 9,77% 0,18 99.77 % 99.89%  89,95% 90,30%  90,23% 89,91% 
           

9 99.99% 0.00% 1,00  24,09% 8,13%  73,29% 7,53% 0,84 100 % 0.01%  91,87% 75,91%  92,47% 26,71% 
 

Undamaged D6 
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8. Conclusions 
This paper has investigated the development of a case study to assess the robustness of certain DSFs 

to other phenomena such as temperature variability and noise. To this end, a  classifier was trained on 
numerical data, and then tested on experimental data, allowing a 10% contamination of the training 
dataset with numerical outliers. The performance evaluation indicated that, under the provided 
assumptions and methodology limitations, the natural frequencies were sensitive to damage, regardless 
of their use in combination with other features. The lower levels of damage were not detected from the 
experimental dataset, but the classifier trained on the frequency RMSE could detect the most severe 
damage scenarios once its training was contaminated with a 10% of synthetic outliers. 

There are several limitations that need to be considered. The simulation of EOVs was limited to the 
inversely proportional relationship between temperature and material stiffness, neglecting other 
phenomena that could potentially affect the vibration dataset and undermine the soundness of the 
numerical dataset. Despite the limitations, this research contributes to a deeper understanding of the use 
of vibration data for damage detection, and opens the way to advance the proposed methodology further.  

Further study will focus on the effectiveness of the classifiers without contamination, by removing 
the effect of applied EOVs, as well as by varying the threshold defined by the OCSVM. 
Hyperparameters setting will be explored to improve the methodology. Additionally, other feature space 
options will be analysed to provide further insights into their distinct sensitivity to damage, for example 
by analysing the x and y-direction separately. Finally, extending the scope of this research, the developed 
numerical model will be used to explore the effects on the vibration-based DSFs of damage due to ageing 
and of other environmental and operating variabilities. 
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