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1 Introduction 

1.1. Data-driven innovation as ethical challenge   

For most of history, human endeavors by no means measured up against the forces 

of Nature. Man could construct ships to defy the billowy elements … but the sea 

itself remained indifferent1. This situation fundamentally changed. The avalanche of 

technical innovations now is a force that shapes the natural environment, society and 

our very self. Moreover, innovation has become an imperative in its own right. In 

the Schumpeterian view, innovation is “the economic activity of producing and 

using new knowledge and ideas about sources of value that results in the disruption 

and restructuring of the economic order” (Potts, 2018). This intertwinement of 

innovation and economic gains lead to a pursuit of innovation as a good in itself. A 

recent strategic note of the European Political Strategy Center indicatively advocates 

an Innovation Principle, which is “the positive obligation to facilitate innovation” 

(European Political Strategy Center, 2016).  

 This innovation dynamics is further intensified by the availability of vast amounts 

of data about the natural world. Data about human beings, ecosystems, social 

behaviors, nanomolecular structures, etc. provide a fertile ground for human ingenu-

ity. This effect is pronounced in the case of biological data. High-throughput data 

capturing technologies led to an explosive growth of the amount of biological data 

over the last few decades. DNA sequencing costs plummeted, allowing to chart 

whole personal genomes of large human populations, and the genetic diversity in 

plants, animals, and microbial populations in a wide range of biotopes. Large scale 

read-out of multiple aspects of biology gives rise to data on genomes (Stephens, et al., 

2015), gene expression behavior, proteins, metabolites, macroscopic traits, and other 

aspects of biology. Sensor and imaging technologies allow for dynamics monitoring 

of biological systems, as in wearables that monitor blood pressure or sugar levels, or 

in probes that measure soil moisture levels in crop fields. Satellite images provide 

data about entire ecosystems. Together, these bio-digitalization technologies result in 

large quantities of biodata that can reveal a lot about ourselves as human beings, and 

about the natural world that surrounds us.  

____________________________________________________________________ 
1  Jonas, Hans, Das Prinzip Verantwortung, Versuch einer Etik für die technologische Zivilisation, 

Frankfurt am Main, Insel Verlag, 1979, p 18-19	
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 This digitalization of biological systems unlocks a significant natural capital. It 

gives access to the billions of years of evolutionary testing and tinkering that is 

embedded in living creatures. And observing Nature always has sparked innovation. 

Wilbur Wright’s observation of bird flight for instance eventually led to the aviation 

industry. He noticed how pigeons control their flight by modifying the airflow over 

their wings, and mimicked it in the double-winged design of the first airplane. 

Another prominent example is scientific plant breeding, which started with the 

observations of Gregor Mendel on how pea plant characteristics were inherited by 

hybrid offspring. Hybrid crop plants later on enabled the green revolution, changing 

the face of agriculture and the planet. Biology-based innovation in general is now 

vastly empowered by the ability to read out biological systems. For example, biodi-

versity sequence data provides a rich source of inspiration for drug development. 

About half of the FDA-approved drugs that are on the market are derived directly or 

indirectly from natural products (Katz, 2011). Another example is human personal 

genomics data, which provides the foundation for personalized medicine. The 

Genomics England project for instance is sequencing 100.000 inhabitants that are 

related to cancer or rare diseases (Marx, 2015), and aim at further broadening this 

approach to 5 million U.K. citizens. By relating genomic data to electronic health 

records, this initiative is meant to provide the foundation for a personalized medicine 

and a flourishing innovation landscape. Synthetic Biology is an example par excel-

lence of bio-based innovation, being a bio-engineering field that pursues data-driven 

design of biological systems (Endy, 2005). It heavily builds on molecular biology and 

laboratory process automation, but also on algorithms and modeling techniques that 

can utilize large amounts of biological data in the design process (Freemont, 2019). 

Synthetic biology can lead new routes for drug development, increase the ability to 

rapidly respond to pandemics, lead to new materials that are stronger, lighter or 

more biodegradable, or new enzymes that can help in the generation of biofuels out 

of renewable feedstocks (Synthetic Biology Leadership Council, 2016). Innovations 

derived from synthetic biology are expected to contribute to the development of a 

new bioeconomy – “an economic model where knowledge-based utilization of 

biological resources and processes can be applied to the sustainable production and 

manufacturing of goods, and the provision of services across all economic sectors” 

(Freemont, 2019). The fostering of an innovation landscape around synthetic biology 

is explicitly targeted in for instance the U.S. (Si & Zhao, 2016), the U.K. (Synthetic 

Biology Leadership Council, 2016), France (Meyer, 2013), and Finland (Living 

Factories, 2017). Innovations in synthetic biology can potentially address pressing 
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questions related to global warming, preservation of ecosystems, sustainable agricul-

ture, and affordable health care.  

 When technical innovation is left up to the market dynamics, the creative 

destruction might lead to better products (Schumpeter, 1943), but can also lead to 

devastating ‘externalities’. Grand challenges such as global warming (Keeling, et al., 

1976), the deterioration of the natural environment and the massive loss of biodiver-

sity (Nobre, et al., 2016) (Johnson, et al., 2017) are anthropogenic. The sheer size of 

the accumulated impact of technological innovations and their application even 

warrants the definition of a new geological era: the Anthropocene (Lewis & Maslin, 

2015), testifying to their impact. Negative effects of technical innovations most often 

are distributed unequally, disproportionally affecting the natural environment and 

parties that had no say in the development of the technologies (Jasanoff, 2016).  

 This strongly calls for a moral accompaniment of technical innovation. Such 

accompaniment is needed, since technoscience itself has an inherent openness to all 

that is technically feasible (Hottois, 1988). The ‘technological imperative’ entails a 

value-free exploration of the vast space of possibilities. It states that “One should try 

everything that is possible, execute all possible experiments, all manipulations, one 

should actualise all possibilities, develop all powers, all potentials of existence: of the 

matter, the living, the thinking” (Hottois, 1988). This ‘impératif technicien’ is a 

‘impératif de la liberté’ according to Hottois. It is the radical freedom of technical 

tinkering that accepts no boundaries and can only be constrained by the physical 

resistance of reality itself. It is the attitude of genome-editing researcher Rebrikov 

when answering the question whether one should wait with clinical research on 

edited human embryos until the international frameworks are in place: “Are you 

serious? Where did you see the researcher willing to slow down?” (Cyranoski, 2019).  

 Since the technological imperative is a-ethical and a-human, it needs to be 

counterbalanced with an ethical imperative. One can define a ‘moral innovation 

imperative’ that demands to “bring[ing] about changes in the world so that we can 

fulfill more of our obligations towards the fellow human beings, the environment, life 

on the planet, and future generations.” (van den Hoven J. , 2014). According to this 

imperative, innovation provides us a means to better fulfill our moral obligations. A 

moral perspective on innovation was already implicit at the very start of the techno-

scientific endeavor. Bacon’s manifesto New Atlantis planted the potential of a 

morally guided innovation at the heart of technoscience (Bacon, 1626). In Salomon’s 

House - Bacon’s vision of research institute - technology development entailed an 

active pursuit for novel applications based on the insights derived from experiment 
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data, a pursuit which is oriented towards generating benefits for humankind. It was 

recently argued that responsibility and innovation are intrinsically related at multiple 

levels. Responsibility drives innovation by calling not to do whatever is technically 

possible or economically interesting, but to innovate for the better. And the products 

of innovations constitute means that help us to fulfill our moral obligations (Bergen, 

2017). Responsible Innovation (RI) was proposed as a way to align technological 

innovation with values held by society. By including social and ethical aspects in the 

innovation process, RI provides a concrete approach for moral accompaniment of 

technoscientific developments. Responsible Innovation has been defined as “a 

transparent, interactive process by which societal actors and innovators become 

mutually responsive to each other with a view to the (ethical) acceptability, sustain-

ability and societal desirability of the innovation process and its marketable products 

(in order to allow a proper embedding of scientific and technological advances in our 

society)” (Von Schomberg, 2011). A broader definition brings in the time perspective 

in the technological evolution: “taking care of the future through collective steward-

ship of science and innovation in the present” (Stilgoe, Owen, & Macnaghten, 2013). 

 In order to be able to innovate responsibly, one needs to be ‘response-able’: able 

to respond to technical possibilities that are opening up, and able to shape technolo-

gies in response to societal needs and values. This ability is often impaired by 

multiple factors. The technological innovation process is often the province of 

experts and is disconnected from the needs and fears that live in society. Economic 

dynamics often drive technical innovation, thriving on asymmetries in information 

and power (Jasanoff, 2016). Technological innovation trajectories are mainly steered 

by capital and industry. And the masses of people that are involved in the industrial 

production, the consumption and that undergo the effects of new technologies have 

little to no say in the innovation process (Jasanoff 2016). Risks assessments and 

alignment with the bigger societal needs are happening when the technological 

innovation already materialized. These activities are merely a post-factum check 

whether already developed technologies are safe and whether they adhere to societal 

norms, rather than raising the fundamental question whether a technology or 

application should be brought into existence in the first place. Moreover, technolo-

gies can become entrenched, thereby making it hard to establish alternative routes 

(Collingridge, 1980). Especially in fast-paced fields that are empowered by massive 

amounts of data, driven by a high-tech market logic, and interweaved with multiple 

sectors in society, this dynamics can asymptotically approach a technological deter-

minism – i.e. a situation in which there is little control over which future the 



Introduction 

5 

proliferating innovations will bring about. These questions especially hold true for 

bio-based innovations. Fields like biotechnology, health care and agriculture do 

experience an amazing ramp-up of innovations, often with a disruptive character. 

This speed, together with the societal importance of these sectors, calls for a respon-

sible guidance of these innovations. 

1.2. Biodata provides an entry point for responsible innovation    

The core research hypothesis in this dissertation is that digitalization of biological 

systems provides a pivotal point for a responsible guidance of innovation.  

 When following the “moral innovation imperative” (van den Hoven J. , 2014), 

digitalizing biological systems offers novel ways to better fulfill our moral obligations. 

It makes the natural world deeply accessible to our human conceptual toolset, and 

thus to our creative attempts to improve the state of affairs for the natural environ-

ment and for our fellow human beings. Broad and open availability of scientific data 

in general accelerates innovation (Burgelman, et al., 2019). Access to biodata and 

data analysis capabilities strengthens the ability to adhere to the technological 

imperative, as well as to the moral innovation imperative. Data access can enhance 

the ability to more efficiently explore the vast space of biotechnological possibilities, 

and eventually let this exploration be guided by societal values. It does so by allowing 

for in silico mining and in silico conceptual manipulations. These computational 

activities provide guidance on which of the many engineering options are to be 

tested in the biophysical reality. For example, computer-aided design is a key 

element in synthetic biology design cycles. In such cycles, microorganisms are 

engineered to produce certain compounds or proteins (Paddon & Keasling, 2014) 

(Synthetic Biology Leadership Council, 2016) (Freemont, 2019). This way of design-

ing bio-based products builds on the availability of biodiversity sequence data 

(amongst other data types) which provides a rich source for the identification of 

natural compounds (Lewin, et al., 2018) as well as for the identification of the 

enzymes and biochemical pathways that can produce them. 

 This increase in innovation capabilities does not automatically result though in a 

better fulfillment of our moral obligations. A responsible innovation requires the 

active alignment with values in the course of the innovation process. Moral accom-

paniment of biodata-driven innovation in this respect is special, since biodata-based 

innovation is not just about data. The data is tightly linked to the organisms from 

which they were extracted – it concerns data that are embedded in our bodies and in 
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our natural environment, data that become available for our human conceptual 

toolset, our aspirations and values, and our creativity. An ethical analysis therefore 

should not focus on the data aspects alone, but include the biological realities that 

underpin the biodata, to ensure that the analysis is not reduced to a mere data 

problem. Next to this, biodata is also tightly linked to our world of language, con-

cepts, values, and innovation activities. It reveals patterns that are embedded in 

biological systems and makes them accessible for our moral categorizations. Biodata 

thus reside at the interface between the biophysical reality and our world of language 

and meaning. In the ontology put forward by Hottois, there is a fundamental 

difference between this ‘naturalistic’ and ‘symbolic’ realm (Hottois, 1995). The 

naturalistic realm of biophysical processes is characterized as ‘operational’. This is 

the world of physical, chemical and biological processes that bring about or produce 

reality. Evolutionary processes provide the example par excellence, but according to 

Hottois, also technoscientific evolutions belong to this category. The symbolic realm 

on the other hand is the area of language and meaning, of culture and values. Here, 

thinking and deliberation attempt to get a conceptual grip on reality, as in scientific 

theories or in common language. In this view, a moral accompaniment of technosci-

entific innovations thus implies the interaction between two ontologically 

heterologous realms. This ontological framing helps in clarifying the unique position 

of biodata. Biodata are at the interface between the physicalist and the symbolic 

realm. They are extracted from biomolecules, and available for conceptual interpre-

tation. And they are instrumental in translating this conceptual work into concrete 

interventions in biophysical systems, as for instance in bio-engineering. This special 

ontological and epistemological position has important consequences for a biodata-

based responsible innovation.  

 Firstly, some of our very values that are at play during innovation are shaped at 

this interface. Patterns found in biodata can result in distinctions with significant 

moral loads. For instance, existing notions of health and disease become problematic 

when having fine grained data about a person’s genetic makeup and physiological 

status. Likewise, the notions of what is natural and what is artificial become prob-

lematic when assessing this at the level of biomolecular data. These moral effects of 

biodata need to be taken into account when attempting responsible innovation. It 

calls for an analysis of how values and moral categories are impacted by the avail-

ability of biodata.  

 Secondly, the availability of biodata fundamentally biological systems into 

resources for innovation activities. It thereby fundamentally changes our relation to 
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the biological systems from which these data were extracted. For instance, biodiver-

sity sequence data extraction can transform a biotope into a resource for the 

development of novel pharmaceutical compounds. Or personal genomics data can 

transform you into a resource for health care innovations. When pursuing responsi-

ble innovation, this calls for an analysis of how innovation can be organized in just 

and sustainable ways. Such ways of organizing innovation should foster a fair 

distribution of innovation opportunities and of the resulting benefits. They should 

also contribute to the flourishing and sustainability of the underpinning biological 

reality (the ecosystems or the populations). Question here is whether and how socio-

technical systems can be designed to support distributive justice with respect to 

innovation opportunities and benefits, and how the design of such environments can 

support innovations that are aligned with societally preferred values.  

 In summary, the digitalization of biological systems impacts how a responsible 

guidance of biodata-based innovations can be pursued. Firstly, biological data are a 

locus where values are shaped. And secondly, biological data are a locus for organiz-

ing responsible innovation, including a fair distribution of the opportunities and 

benefits. Both aspects are the topic of the analysis in this dissertation. 

1.3. Biological data as a locus where values are shaped   

Alignment of biodata-driven innovations with societally preferred values is not one-

way traffic. Biological data themselves often are a substrate for salient moral distinc-

tions. This is particularly pronounced when it concerns human beings as the data 

object, as explored in Chapter 2 in the case of personal genomics data, and in 

Chapter 3 by using the concept of biological digital twins.  

 As explored in Chapter 1, raw biodata themselves are not intelligible. The data 

are highly complex, have a stochastic character and contain errors and noise. Raw 

data needs processing and interpretation in order to result in distinctions that can be 

used in ordinary human language. These linguistic representations are influenced by 

various decisions: which thresholds to take, which control datasets to compare 

against, which algorithms to use. Interpretations moreover can suffer from apophe-

nia, the human tendency to see patterns where there actually are none. But the 

distinctions one makes do matter. Personal biological data are prone to be value 

laden, since they can reveal aspects of a person’s physical, emotional and mental 

predispositions. For example, if my genomic data indicates an increased risk to 

develop a mental disease, this knowledge might affect how others perceive me, how I 
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perceive myself, the opportunities I can pursue in society, the fee I need to pay for 

my health insurance, etc. In the process of analysis and interpretation, patterns in 

the biodata are converted into statements that are part of our world of language and 

meaning, and are therefore value laden. The fact that biodata is tightly related to the 

bodies of the individuals adds to the value-laden character of these statements. 

Personal biodata are related to the body, to family ties, to otherwise hidden traits. 

For instance, if careful comparison of my genomic data reveals that I have close 

family ties with a certain person, this probably will change my mental attitude 

towards that person. Biological data can also be value-laden outside of the realm of 

human biology. In plant breeding for example, Crispr-CAS genome editing and 

conventional random mutagenesis both result in nucleotide changes in the plant’s 

genome, raising the question what should be considered ‘natural’ and what ‘unnatu-

ral’. These discussions often revolve around the question whether such distinction 

can be meaningfully made at the information level.    

 Responsible innovation for these reasons also implies modesty in the epistemic 

claims that are made based on biodata. Epistemic modesty is proposed as a guiding 

ethical principle in dealing with the moral loads that can be assigned to biodata 

(Chapter 2). The principle implies the avoidance of making strong moral claims 

based on biodata about a subject, taking the position that there is always more to say 

about a being than can be deduced from derived data. The principle can be illus-

trated most saliently in the case of human data. A person will not regard herself as a 

mere collection of data. A person pursues moral autonomy (van den Hoven J. , 

2008), along the lines of Bernard William’s proposition that respect for persons 

implies attempts at moral identification. This is an important aspect of what it means 

to respect someone: we owe the other an attempt at identification (not clinical or 

forensic) as the person who she wants to be identified with. In other words, as 

someone who is engaging in self-identification, who is using her freedom to deter-

mine for herself how she sees herself. This implies that others appreciate her as 

someone who is engaging in self-identification – rather than as a collection of data. 

Respect for a person thus implies modesty about what one knows when one has 

access to a person’s biodata.  

 Responsible innovation for these reasons also implies the acknowledgement that 

availability of biodata can impact existing moral distinctions, and taking an explicit 

stance with respect to these moral distinctions that are impacted by the biodata. 

Digital Twins are proposed as a conceptual tool to make this aspect tangible. Digital 

Twins are an emerging practice in engineering, in which computer models are built 
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that closely reflect individual artifacts. This tight interaction between the digital 

representation and the artifact makes it possible to increase predictiveness, up to the 

level that predictive maintenance becomes possible. It is adapted by engineering 

companies to maintain their machine park via predictive maintenance, a practice in 

which the digital twin of a machine allows to predict which parts are about to break 

down and should be replaced. This engineering practice is emerging now also in 

human medicine. Digital twins of the hearts of individual patients were for instance 

constructed to study effects of surgical interventions in silico. The computer models 

are based on biodata from many patients, but parameterized to the heart of each 

particular patient, by factoring in Magnetic Resonance Imaging, Computed Tomo-

graphy scans and other measurements on that patient’s heart. The heart model is 

also linked with the patient’s heart via sensors, so that it continuously reflects its 

actual status and dynamics. In the context of this dissertation, biological digital twins 

are taken as a conceptual tool rather than as a claim about comprehensive represen-

tations of biological systems (the complexity of biological systems simply defies such 

claims). The digital twins engineering concept makes explicit what the consequences 

are of the tight relation between the biophysical reality (people, biotopes), extracted 

biodata, and our world of language and meaning. For example, how health, therapy, 

preventative care, and human enhancement are distinguished will be increasingly 

driven by the usage of human biological data, as well as by our ways to assign 

meaning to them (Chapter 3). High resolution data of individuals functions as a 

magnifying glass for the existing moral distinctions, and potentially triggers shifts in 

these moral distinctions. For instance, it can challenge where intensive medical 

follow-up (as is done with athletes) ends, and where human enhancement begins, or 

it can challenge when exactly interventions transgress existing moral boundaries. 

 Biodata-driven innovations thus happen at the locus where values need to be 

deliberated and determined, in confrontation with the patterns identified in Nature. 

The perspective taken in this dissertation builds on approaches in literature that 

focus on biodata as a mere data issue, but explicitly takes the tight relation with the 

biophysical reality that underpins it into account. Responsible innovation – the 

steering of innovations towards societally preferred directions – when involving 

biodata, takes place on this interface between the natural world and culture. Biodata 

provides the resource for serendipity and shows what is possible. Whether possibili-

ties are pursued or not is driven by the scientific interest to explore, the economic 

interest to open valuable markets, but also by what we value and deem worthwhile. 
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Any of these decision rationales requires taking a moral stance towards the patterns 

found in the biodata.  

1.4. Biological data as a locus for organizing responsible innovation   

Biological systems undergo a fundamental transformation when being digitalized: 

they are transformed into resources or goods. The biological system becomes a 

source of information goods that provide the basis for economically and/or societally 

valuable innovations. And the biological system itself also transforms into a good, a 

good that can be accessed and put to use for human wants and needs in very differ-

ent ways. One can for instance derive novel pharmaceuticals based on the 

biodiversity data from a biotope, instead of using it for agricultural purposes.  

 This transformation of biological systems into goods has consequences for 

responsible innovation approaches. It raises the question about fairness and sustain-

ability. How to obtain a fair distribution of the ability to participate in innovation, as 

well as a fair distribution of the benefits that result from innovations? And how to 

broaden the range of beneficiaries to also include the human populations or the 

ecosystems themselves, so that there is an inherent focus on the benefits for society or 

on the sustainability of the ecosystems? RI approaches often focus on governance to 

shape academic research and development activities, or on the question how indi-

vidual innovation processes should be shaped in order to occur responsibly. This 

perspective is broadened here, to allow for an assessment of how innovation envi-

ronments around biodata can be shaped (be it academic, corporate, or a blend of 

both) so that responsibility is an inherent property of them.  

 Commons are used as a model, since digitalized biological resources often have 

characteristics of a ‘common pool resource’: they are often managed and used by 

multiple parties, and are therefore prone to social dilemmas. Hess and Ostrom (Hess 

& Ostrom, 2006) argued in general that:  

New technologies can enable the capture of what are once free and open public goods. 
This has been the case with the development of most “global commons”, such as deep 
seas, the atmosphere, the electromagnetic spectrum, and space, for example. The ability 
to capture the previously uncapturable creates a fundamental change in the nature of 
the resource, with the resource being converted from a nonrivalrous nonexclusionary 
public good into a common-pool resource that needs to be managed, monitored, and 
protected, to ensure sustainability and preservation. 
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Common pool resources are susceptible to over-exploitation and under-support. 

One way of dealing with these social dilemmas is collective self-regulation. This 

happens in a “common”: communities and their institutions that govern the use of 

the common pool resource. In Chapter 4, twin commons are proposed as a frame-

work to organize responsible innovation in biodata-centered communities. Twin 

commons build on the natural resource commons framework developed by Ostrom 

et al (Ostrom, 1990), the knowledge commons (Strandburg, Frischmann, & 

Madison, 2017), and the innovation commons (Potts, 2018). Core to the twin 

common is the twin resource: the biological system and its digital representation. 

The innovation dynamic in a twin common is dependent on the in silico data, but 

also on the community of stakeholders and how they interact, on the biological 

system, on the technologies for interacting with the biological system, and on the 

innovation resources (including the tacit knowledge) that are available to the com-

munity.  

 Responsibility is foundational and motivational in the governance of common 

pool resources. It provides an antidote for the rational self-interest of individual 

stakeholders and thereby avoids a tragedy of the commons. Self-organization of 

collective ownership can counteract negative outcomes of social dilemmas, thereby 

allowing for a sustainable management of both the biological resource and the 

derived biodata. One of the rules for successful commons (Ostrom, 1990) consists of 

the monitoring and sanctioning of irresponsible behavior towards the commons or 

towards the community of stakeholders (Poteete, 2010). This dynamic is empirically 

illustrated in the “Ultimatum game” (Nowak, Page and Sigmund 2000). The Ultima-

tum Game is an economic experiment in which a player gets a sum of money and 

has to decide on how much of this sum to give to a second player. If the second 

player rejects the offer, none of the players receive money. If the offer is accepted, 

then the proposed amount of money is transferred to the second player. The empiri-

cal outcomes of the game vastly deviate from the ones predicted by this classical 

economic theory. If the proposed amount is rated to be unfair, the deal is very often 

rejected by the other party, even if this means losing out on a small amount of 

money. These types of experiments indicate that values like fairness, and related 

social rules like reciprocity and equality of opportunity, play a vast (an important) 

role in social interactions. Twin commons provide a framework to identify responsi-

bilities and values that are at play in digitalized biological systems. Such clarification 

of values is instrumental when fostering responsible innovation. Moreover, where 
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necessary and feasible, values then can be embedded in the socio-technical system 

that supports the twin common.  

 Biodata-based responsible innovation requires access to biodata. In this disserta-

tion it is argued that biodata are inherently positional (Chapter 5), which means that 

there is a tendency of information not to be free, but to be subject to ‘artifical 

scarcity’ (Zinnbauer 2018). In research settings, biodata have often been framed as 

global public goods (Chadwick & Wilson, 2004). In practice though, multiple hurdles 

can be identified that compartmentalize biodata. This compartmentalization is 

driven by, or leads to, positionality: an economic term that indicates that the value of 

a good depends on its exclusivity. The less parties have access to the data, the higher 

its value. Positionality of data comes in various flavors, depending on the ‘data 

frictions’ the data encounters (Bates, 2018). The constraints in data access can be 

temporal or spatial, because of ownership regimes, monopoly over the data, or 

because of the fact that it concerns a new scientific frontier. These vertical positional-

ity effects are complemented with horizontal positionality. The ability to derive 

meaning from a biological dataset often requires access to other data sources. The 

synthetic biology responses to the COVID-19 pandemic provide an example of how 

data positionality impacts the ability to innovate. Synthetic biologist firms and 

academics aim at a disruptive innovation of vaccine development, therapeutics 

development, and testing. A vast efficiency increase of the current innovation 

approaches is beneficial given the likelihood that pandemic situations can occur 

more regularly and have vast negative economic and societal impacts. It is crucial 

though to guarantee biosecurity and biosafety, and to meet societal values like 

privacy, a fair access to therapies and vaccines, and a fair distribution of the benefits. 

Data availability and capabilities to make use of the data though are heterogeneous, 

and ‘data frictions’ can be experienced. The level of data sharing significantly 

impacts the ability to respond to a pandemic situation, as was clear during previous 

viral outbreaks with pandemic potential. Organizing a responsible innovation 

therefore requires close attention to the aspect of data accessibility and data mining 

capabilities. Positionality for instance makes it difficult to steer innovations: informa-

tion asymmetries are at the core of positionality, and those hamper inclusiveness in 

the process, which is a common dimension of an RI approach (Burget, Bardone, & 

Pedaste, 2017) (Bogner & Torgersen, 2018).  
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1.5. Dissertation Outline   

The extraction of data from biological systems gives rise to an avalanche of innova-

tions. It thereby also gives rise to thorny ethical questions. Given this pivotal role, 

extraction of biodata from biological systems also provides venues for responsible 

innovation. A responsible biodata-driven innovation is likely to play an important 

role in meeting the ‘grand challenges’ that humanity and the planet are faced with, 

like a sustainable agriculture, citizen health, clean oceans, and global warming. 

Biological systems that have an in silico representation become subject to new ways of 

usage, control and steering, which opens new venues to better meet our moral 

obligations, as well as new risks that need to be mitigated. The massive extraction of 

biological data from human populations, ecosystems and biological populations 

therefore demands a rethinking of how to responsibly guide biodata-based techno-

logical innovation.  

 Central to this dissertation is the positioning of biodata at the interface between 

the natural realm, and the realm of human language and meaning. This positioning 

requires considering ethical questions around biological data not just as data ques-

tions – but in very close relation to the biological systems the biodata originated 

from. Digital twins and twin commons are used to analyze this intertwinement and 

to illustrate the ethical consequences and resulting opportunities for a biodata-based 

responsible innovation. 

 Chapter 2 zooms in on the relation between values and human personal genom-

ics data. Large scale population sequencing initiatives chart the full genomes of 

entire populations of citizens, with the aim to develop novel treatments and an 

improved (personalized) healthcare. This sharply raises the question about the status 

of personal genomics data. Do personal genomics data have a special status, and do 

they thereby deserve a special treatment? The analysis builds on how the data relates 

to the biophysical reality, and how the data relates to our common language inter-

pretations and moral assessments. The fact that the underlying biophysical reality 

escapes a full conceptual explanation, the symbolic effects that patterns in the data 

trigger, and our obligation to owe people the recognition of their capacity for moral 

identification, leads us to the concept of epistemic modesty in the field of genomics.  

 The focus of Chapter 3 is on Digital Twins - emerging data-driven engineering 

practices – as a conceptual tool to analyze how value-laden categories can become 

impacted by innovations in data-driven healthcare. Human personal biodata 

(genomics data, but also molecular phenotypic data, patient records, behavioral 

data, etc.) increasingly capture significant aspects of a person’s biophysical, emo-
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tional and mental constitution. As such, they are used in an engineering approach to 

medicine, which is asymptotically similar to the Digital Twins engineering practices 

that are applied in industrial predictive maintenance. This perspective sheds light on 

the operational character of human biodata: biodata-based innovations and prac-

tices have the potential to challenge deeply rooted moral distinctions. The distinction 

between healthy and diseased becomes challenged. Likewise, the distinction between 

therapy, preventative care and enhancement gets blurred when taking this biodata-

based engineering perspective. Using digital twins as a conceptual tool sheds light on 

these moral questions that are triggered by biodata-based innovations. 

 In Chapter 4, complementary strategies are investigated for a responsible 

biodata-driven innovation. Biological data as an information resource can have 

characteristics of a Common Pool Resource, when used and managed by multiple 

stakeholders. The concept of ‘Twin Commons’ is proposed: the institutional ar-

rangement of natural resources that have a tightly linked digital component which is 

shared and governed by a community, and that have research and innovation as 

important outlets. This concept helps in identifying values in the socio-economical 

and techno-scientific system that underpins the data-driven innovations. This can 

complement stakeholder involvement as a strategy in a responsible innovation 

approach. Responsible innovation based on natural resources is explored using the 

common pool resource framework and using the emerging field of biodiversity 

sequencing as an example. 

 Finally, Chapter 5 investigates the economic properties of biological data and the 

related biological systems as economic goods. Arguments are put forward why some 

biodata are positional goods. Biodata can be subject to manufactured scarcity or can 

be subject to other types of ‘data frictions’. The resulting positional effects contribute 

to the ability to organize responsible innovation. This point is illustrated with 

synthetic biology innovations in response to the COVID-19 pandemic. Differences 

or delays in data access impact the ability to innovate, as well as differences in the 

ability to put data to use. The roles of governance and of collective self-regulation in 

commons is highlighted as venues towards responsible innovation, and opportunities 

to mitigate negative positional effects are identified. 
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2 How to Do Things with Personal Big  

Biodata 

2.1. Chapter abstract 

Genetic privacy is increasingly hard to guarantee due to the growing volume of 

personal health care data stored in databases. Although attempts are made to make 

the data anonymous or un-linkable, it was shown that individuals are at risk of being 

identified and re-identified. Anonymous DNA data was demonstrated to be linkable 

to individuals on the basis of publicly available information on the Internet. Utiliza-

tion of linkable data can result in harm, inequities and discrimination since these 

data potentially reveal intimate personal, medical and family details. The increasing 

availability of genomic data – and more generally ‘personal big biodata’2 (which 

comprises a wide variety of medical and health care data covering both medical 

images and a panoply of biomarkers) – combined with the computational power and 

analytical tools of bioinformatics calls for a rethinking of privacy. In this paper we 

argue that in the age of personal big biodata, privacy implies first and foremost the 

responsible appraisal of the limits of what data allow us to know about individuals 

and we suggest furthermore that respect for human persons and their dignity implies 

an acknowledgement of the fact that there is always more to know about them than 

even the most comprehensive set of data may offer in terms of knowledge. We refer 

to the ideal of acknowledging the limits of our knowledge of persons as ‘epistemic 

modesty’. We offer the epistemic modesty account of what privacy entails in the age 

of advanced genomics as a partial explication of the fundamental principle of the 

International Declaration on Human Genetic Data adopted by UNESCO in 2003: 

“(…) to ensure the respect of human dignity”. (UNESCO, 2003) Personal big 

biodata carry the risk of epistemic immodesty. We argue that privacy is instrumental 

in ensuring a person’s ability for self-determination in view of personal big biodata 

and the acts of epistemic immodesty of others. In addition to ex ante approaches to 

data protection such as privacy enhancing technologies, we also draw attention to 
____________________________________________________________________ 

2  The term ‘Genomic data’ in this paper refers to whole genome sequence data or to genotyping 
data. ‘Genetics data’ refers to data on a set of markers in the genome. ‘Big biodata’ includes also 
other types of molecular data (e.g. transcriptomics, metabolomics, proteomics) and phenotype data 
(e.g. fMRI images) 	
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the potential of ex post approaches, e.g. tools and mechanisms supporting proper 

and modest interpretations of genomic data, as well as the detection of prohibited 

use of genomic data for certain ends.  

2.2. A Call for Rethinking Genomic Privacy   

Biomedical sciences currently witness a flood of data on research subjects. Tech-

niques like personal genome sequencing, RNAseq expression profiling, metabolic 

profiling and medical imaging provide large volumes of personal biological data. 

These data potentially contain sensitive information, especially when they are 

combined with other types of health care data and lifestyle data, often voluntarily 

collected now by individuals with the help of smart wearable devices. The ‘Baseline 

Study’ initiated by Google is indicative of the increased interest and ability to 

execute combined analyses on a multitude of biological and other datasets. Google is 

collecting genetic and molecular data from 175 participants and aims to scale this up 

to thousands. Smart algorithms will be applied to pinpoint how a healthy human 

being should look from a data point of view. This baseline will be used to identify 

biomarkers for disease states.   

 Currently, de-identification of electronic records is commonly used as a measure 

to protect the privacy of research participants and patients. This however does not 

provide an absolute guarantee of privacy. Privacy regulations like the HIPAA 

Privacy Rule therefore request measures that minimize the probability of informa-

tion disclosure, rather than demanding absolute guarantees of privacy since the latter 

cannot be guaranteed. According to the HIPAA privacy rule, a record is considered 

de-identified if either an expert assesses the remaining risk of de-identification to be 

‘very small’, or if a fixed set of identifiers is removed (HIPAA Privacy Rule, 2007). 

The probability that de-identified records can be re-identified though is bound to 

sharply increase, as personal biological data are becoming ubiquitous and more 

easily accessible (Malin, Loukides, Benitez, & Clayton, 2011). Especially genomic 

data prove to be prone to re-identification (El Emam, 2011). Small sets of genomic 

features can already function as a unique identifier for a person. Moreover, a 

growing number of people have personal genotype data and even whole genome 

data stored in databases. In a research setting, the Thousand Genomes Project 

Consortium (The 100.000 Genomes Project, 2012) reported on the sequencing of 

the whole genomes of 1092 individuals. The Personal Genomes Project aims at 

sequencing 100,000 individuals (Lunshof, et al., 2010). Public healthcare is also 



How to Do Things with Personal Big Biodata 

17 

shifting its interest from genetic profiling towards full genome sequencing. The Faroe 

Islands started the FarGen initiative, an endeavor to sequence all 50,000 citizens in 

about five years time (Kupferschmidt, 2011). The results will be stored in a database 

that is linked to the Genetic Biobank, which contains samples from island inhabi-

tants and medical and genealogical records. The UK Biobank is collecting samples 

and medical data from half a million Britons (Gottweis, et al., 2012), and the UK 

100,000 genomes initiative aims at sequencing that many patients and their close 

relatives. Next to the traditional realm of research and healthcare, commercial 

companies are building proprietary databases with consumer genetics data. Compa-

nies like 23andMe, Navigenics and DeCode genetics experimented with genotyping 

services directed towards consumers. As a result of these and related activities, 

genetic and genomic data are accumulating in a multitude of databases. 

 This new data situation can lead to an increased risk of re-identification. Gymrek 

et al. (Gymrek, McGuire, Golan, Halperin, & Erlich, 2013) traced the identity of 

participants in genomic studies, based on public data. Sweeney et al. (Sweeney, Abu, 

& Winn, 2013) used previously published methods to re-identify volunteers from the 

Personal Genome Project. The authors were able to identify about 40 percent of the 

individuals out of 579 anonymous records that contained postal code, birth date and 

gender. Algorithms that link de-identified family relations to named people have 

already been developed (Malin, 2006). Homer et al. (Homer, et al., 2008) demon-

strated that genotyping data provides a very strong identifier, by using it to 

determine whether the DNA of a person is present in a DNA mixture of up to 200 

individuals. 

 This evolution towards a ubiquitous production of personal biological data, and 

the related risk of re-identification demands a rethinking of genomic privacy and big 

biodata privacy. There is a longstanding intuition that storing and sharing genetic 

information deserves special caution. “Genetic privacy” is the term that is most often 

used to refer to a cluster of rights associated with this point of view (Roche & Annas, 

2001). Central is the right to protection from non-voluntary disclosure of genetic 

information (Lunshof, Chadwick, Vorhaus, & Church, 2008). This right has been 

embedded in legislation in many countries around the world. Measures to guarantee 

genetic privacy range from protective (Soini, 2012) to more liberal. The frameworks 

were developed for a setting where genetic information is mainly used for research 

purposes or clinical testing. This context changes now genetic data are frequently 

used beyond research. Moreover, the sheer amounts of data that are produced shift 

practices to whole genome analysis and other types of big biological data processing. 
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This radically new situation calls for a careful revision of the existing practices and 

technologies that are used to store, mine and communicate personal genomic data 

(Erlich & Narayanan, 2014) and big biological datasets in general (Sarwate, Plis, 

Turner, Arbabshirani, & Calhoun, 2014) (Choudhury, Fishman, McGowan, & 

Juengst, 2014). 

2.3. Rationales for the Special Status of Genomic Data   

The privacy concerns regarding genomic data have always been prominent in public 

debates. This prominence can be explained by the fact that they are accorded a very 

special status, an idea sometimes referred to as genetic exceptionalism. Genetic 

exceptionalism is the thesis that genomic data are different from other types of 

biological and medical data, and therefore require a special status and special 

protection. In this view, genomic data are seen as being extraordinarily informative. 

Green and Botkin observe for example that “Right or wrong, genetic information is 

believed to reveal who we ‘really’ are, so information from genetic testing is often 

seen as more consequential than that from other sources.” (Green & Botkin, 2003). 

Article 1 of the Universal Declaration on the Human Genome and Human Rights 

(United Nations, 1998) proclaims: “The human genome underlies the fundamental 

unity of all members of the human family, as well as the recognition of their inherent 

dignity and diversity. In a symbolic sense, it is the heritage of humanity.” A large 

body of literature focused on the question whether genomic data are indeed excep-

tional. The special biological roles of the DNA molecule often were put forward as a 

main argument. Such special roles are the immutable nature of the genome base 

sequence, the fact that it uniquely identifies an individual, the informational nature 

of DNA, and the fact that parts are shared among family members and ethnic 

communities (Green & Thomas, 1998) (Sarata, 2008) (Ilkilic, 2009). DNA is the 

central information carrier in biology and therefore potentially can reveal informa-

tion about future illness, genetic defects, or unknown facts about familial 

relationships. Genomic sequences not only reveal information about a particular 

individual, but also about her or his relatives and the ethnic group the person 

belongs to. Taken on their own these features do not uniquely distinguish genetic 

information from other types of medical data (Green & Botkin, 2003). One can 

argue that not one unique property in itself, but rather the combination of properties 

distinguishes genetic data from other types of medical data (Sarata 2008). It is 

implied in the general definition of a category that it is associated with a unique 
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combination of properties that sets it apart from other categories. The fact that DNA 

based data is characterized by a specific set of properties therefore does not provide 

a rationale for a special status of the data, it just implies that it is different form other 

categories of data. Moreover, deducing a special moral status from scientific facts 

about a molecule can be regarded as committing the naturalistic fallacy (Ilkilic, 

2009). Nevertheless, there is a persistent intuition that genetic data is special. Surveys 

show there is a belief that genetic information needs special consideration (Sarata, 

2008). This belief has been explained in different ways. One explanation is that the 

scientific discoveries in molecular biology gave rise to an aura of power when it 

comes to DNA. Such sociological explanations leave open the question whether 

there are more fundamental reasons for a special status of DNA based data that 

remain overlooked, and that warrant genetic and genomic privacy.  

 A different set of rationales can be provided to account for the status and salience 

of genomic data as revealing “who we really are”. These rationales are based on (i) 

the information content of genetic information (ii) the naturalistic connotation or 

‘naturalistic load’ genetic information carries, i.e. the fact that it is construed as a 

veridical and direct representation of what the world is really like and (iii) the unique 

identification of individuals that genetic information makes possible, which depends 

in turn on the immutability and the uniqueness of the information. The first two 

arguments – in varying degree – not only apply to genomic data but also to other 

types of big biodata. 

 (1) Genomic data and big biodata can contain sensitive information. Genomic 

sequences for instance are related to how a person physically develops, to what 

extent she or he is prone to develop certain diseases, reacts to certain medication, is 

likely to display certain physical characteristics like muscle strength or longevity, etc. 

Behavioral traits can also have a hereditary component, for example verbal and 

numerical intelligence, susceptibility to addiction and to certain mental diseases, and 

certain character traits. Many of these characteristics are morally salient, and the 

derived claims are not restricted to an individual but also to relatives and ethnic 

groups. It also needs to be noted that genomic data are bound to contain more 

information than current methods are able to extract from them. For example, 

about 80% of the variation in height in a human population can be attributed to 

heritability, but the loci currently known to relate to height are only able to explain 

about 10 percent (GIANT Consortium, 2010). Also intelligence has a hereditary 

component, but even with very large samples of individuals no common genetic 

variants related to intelligence can be identified (Le Hellard & Steen, 2014). This 
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problem of missing heritability makes it plausible that more information will be 

derived as insights are gained into how to interpret genomic data. For other types of 

big biodata, the sensitive nature of the information can even be more prominent. 

Brain scans provide more direct information about a person’s mental health and 

gene expression studies can provide information about disease states. Nevertheless, 

the sensitivity of the information that currently can be derived only partially explains 

the exceptional weight that is attributed to big biodata, since usage is currently 

limited. Translating personal genomic data into concrete medical advice for instance 

proves to be challenging (Ashley, et al., 2010). Health claims based on genetic data 

can be conflicting as they depend on the specific subset of genomic features that is 

probed, the specific genome wide association studies that are used in the interpreta-

tion, etc.  

 (2) Big biodata are derived from biological molecules or structures. These data 

are therefore perceived to reflect structures inherent in Nature itself. Big biodata are 

derived from molecules (DNA, mRNA, proteins, metabolites, etc.), i.e. from entities 

in a physicalist realm. These molecules take part in complex networks of biochemical 

interactions, which are the result of billions of years of evolutionary processes. 

Statements that are derived from big biodata therefore are perceived to carry a 

naturalistic load, which provides an additional rationale for attributing a special 

status to big biodata. On the other hand, big biodata are also part of the world of 

language and meaning. One can try to interpret the information that is embedded in 

these molecules and networks, and use this information to build theories, use it in 

discussions and assessments. Gilbert Hottois (Hottois, 1995) highlighted the funda-

mental difference between this ‘naturalistic’ and ‘symbolic’ realm in his analysis of 

technosciences. Hottois characterizes the naturalistic realm as ‘operational’: it 

concerns physical and chemical processes that bring about or produce reality. The 

symbolic realm is the area of language and meaning, of culture and values. One can 

try to represent the operational reality by making use of symbolic systems, as in 

scientific theories or in common language. But there is a limit to this. Both realms 

are fundamentally different and therefore have different dynamics. Following this 

distinction, we can state that big biodata have a unique position at the interface 

between the physicalist and the symbolic realm. This can be illustrated with genomic 

data. DNA is a molecule that is the result of evolutionary processes: it ‘works’ by 

bringing about organisms via its interactions with other molecules, but it is clearly 

not designed to be ‘read’. On the other hand, DNA has the character of a text, with 

modularity, structure, compositionality that can be read and interpreted. The 



How to Do Things with Personal Big Biodata 

21 

sequence of the bases in the molecule constitutes a quaternary code that can be 

represented in a computer. Notwithstanding the limited ability to interpret genomic 

data, it is clear that the DNA carries crucial information for the development and 

functioning of the person. It is an information carrier and thus also part of the 

symbolic realm. For these reasons, genomic data have been referred to as the 

‘genetic blueprint’, the ‘genetic code’, or the ‘genetic program’ of a person. Other 

big biodata types similarly reside at the interface between Nature and culture. fMRI 

measurements of electromagnetic activation patterns for instance reflect biological 

processes in the brain via imaging software that implements models, but can eventu-

ally be translated into claims about mental states. This particular position of big 

biodata – at the interface between the physical and the symbolic levels – affects the 

weight that is attributed to the derived symbolic statements.  

 The fact that this impact is assigned can be accounted for by looking at the way 

the relation between big biodata and natural kinds is conceived. In a realist interpre-

tation of the world, certain groupings of entities are not merely man-made 

distinctions but reflect the way reality itself is structured. When organizing a collec-

tion of stones, one can for instance group them by shape: round stones, square 

stones, heart shaped stones, or by the role they play in religious ceremonies, or by 

their color and patina (and other so-called secondary properties, etc.). The stones 

can also be grouped based on their inner atomic structure, crystal lattice structure, 

chemical composition, which is tightly linked to their geological formation: igneous 

stones, sedimentary stones, metamorphic stones. A realist will state that the latter 

classification is a better reflection of the way reality itself is structured (Wilkerson, 

1995). The hidden inner structure of the stones determines their membership of a 

natural kind. In chemistry, natural kinds seem to be unproblematic. Water for 

instance is defined by the chemical structure H2O. Realists hold that this is the case 

in every possible universe. Even if a person lacks the epistemic means to uncover the 

hidden structure, membership of the class ‘water’ will depend on whether a sample 

X and the reference ‘water’ sample have the same hidden structure. The underpin-

ning idea is that natural classes exist independent of human interests. This notion of 

hidden structures and natural classes is central to physicalist accounts of the universe. 

Natural kinds supposedly ‘carve Nature at its joints’. They underpin a categorization 

that is not arbitrary but reflects the way reality is structured (Wilkerson, 1995). For 

many centuries, biology delivered the archetypical examples and paradigm cases of 

natural kinds. Species were believed to be natural kinds, and the essence of an 

organism determined its membership of a species. Extrapolating this essentialist 
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worldview to the genomic era puts a heavy metaphysical weight on genomic data, 

since claims based on genomic data will acquire the authority of reflecting the 

‘hidden structure’ or the essence of a person, analogous to the chemical structure of 

a water sample that determines its membership of the natural kind ‘water’. Distinc-

tions that are based on genomic data are strong, since they have the appearance of 

not being the result of a cultural and social convention, nor being an accidental 

attribute or secondary property of a person. They are easily equated to epistemic 

claims about the ‘very essence’ of a person and easily give rise to essentialism about 

persons and their properties. 

 (3) In addition to the information content and the naturalist load, there is another 

factor that supports the claim that genomic data are special, to the extent that they 

may be called ‘exceptional and unlike any other information about a person’. The 

reason can be found in the unique identifying power of genomic data. Genomic data 

uniquely identify a person. They are given at birth, and epigenetic modifications and 

mutations aside they are probably one of the most constant characteristics of a 

person. This unbreakable link between a person and her or his genomic data adds to 

the reification of claims based on a person’s genome. An essentialist interpretation of 

personal genomic data reifies the symbolic claims that are derived from it (Barnes & 

Dupré, 2008). The strength of the identification between a person and his or her 

genomic data is carried over to value-laden claims that are made based on these 

data. 

2.4. Big Biological Data as a Substrate for Social Classification   

Because of this widely shared conception of the special status and salience of ge-

nomic data, genomics has also inserted itself into our thinking about the social 

classification and categorization of persons.  

 At this point a distinction should be made between the use of genomic data (i) in 

forensic practices as evidence for (re-) identifications of individuals, (ii) as a basis for 

classifications in clinical and clinical research practices and (iii) as basis for categori-

zations in social and institutional practices. The use of DNA in forensics has been 

widely accepted as a highly reliable technique of establishing or confirming the 

identity of both criminals and victims. Genetic material is in both cases a great help 

in finding out ‘who is who’. Statistics and Bayesian probability theory have been 

applied to increase the reliability of our reasoning with genetic evidence in criminal 
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justice procedures so as to prevent errors in inferences in these contexts. Genetic 

evidence is one of the strongest, unique identifiers of individuals in a forensic sense.   

 Secondly, the use of genomic data in clinical diagnosis, therapy and research is 

ubiquitous. Our knowledge of diseases and health problems has benefited tremen-

dously from our study and understanding of the human genome. But it also became 

obvious that the picture is far more complex than initially anticipated. The complex-

ity of the information embedded in DNA proved to go far beyond the approximately 

twenty thousand protein coding genes. Studies over big populations show that 

phenotypic traits are often associated with large sets of genomic features. The non-

protein coding part of the genome plays a significant role, as highlighted by the 

ENCODE project (ENCODE Project Consortium, 2012). In most cases a complex 

network of multiple genes, gene control elements, etc. contribute to the phenotype. 

The secrets of genetic imprinting, epigenetics, and proteomics are being unraveled 

and add to the complexities. For many diseases with a genetic component it is 

anything but clear that genetic material allows for easy and quick clinical diagnosis 

with high reliability. Reasoning from genomic data implies data reduction: out of the 

3.2 billion base pairs of the human genome, characterizing features and discrete 

categories need to be extracted. For instance, in the case of personal genomic 

information, the process starts with a biological sample taken from an individual. 

The DNA in the biological sample is extracted, prepared and run through a se-

quencing machine, which will generate a series of signals that correspond to the 

sequence of bases in the DNA fragments. The signals are recorded, stored in a 

computer system, and assembled via bioinformatics tools into a genomic sequence. 

The end result is a series of character strings on a computer hard drive. The features 

in this personal genomic sequence can then be analyzed in order to derive personal 

genomic information: statements about e.g. disease susceptibilities or character traits. 

This process of interpretation often relies on the output of statistical inferences like 

Genome Wide Association Studies (GWAS). At the highest level of abstraction, 

interpretation of a personal genome sequence results in symbolic statements. For 

example: “Person A belongs to the group of people that has a higher risk of develop-

ing disease D”. This statement divides the population in two groups: the group non-

D that has a low risk to develop the disease, and the group D that has a high risk. 

Given the complexity of biological systems and the underlying probabilistic nature of 

the inferred relations, this statement is a simplification of a complex molecular and 

biochemical reality. Interpretation of genomic data often renders probabilities, 

rather than deterministic certainties or memberships of clearly distinguishable 
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classes. A classic example is the presence of the ApoE4 allele that relates to an 

increased risk of developing Alzheimer’s disease. The information needs to be 

interpreted as probabilistic: one can be carrier of the allele and nevertheless grow old 

without developing the disease. The same mechanism holds true for other types of 

personal big biodata. Also, for e.g. metabolite data or brain images, features need to 

be extracted to put these data to use. Reduction of big biological datasets to symbolic 

statements allows for talking in a common language – closer to ordinary language – 

about what these complex datasets can mean for us. It is a necessary process if we 

want to use these data in everyday assessments, comparisons, or categorizations. We 

need to keep in mind though that such statements are always simplifications of an 

underlying complex biological reality. 

 Thirdly, as far as the evidentiary role of genetic information in social classifica-

tions (e.g. entrepreneurial, leadership, impulse control, alcoholism) is concerned, the 

story is even less straightforward, and the following considerations need to be taken 

into account. As indicated, interpretation of big biological datasets implies a data 

reduction, in which complex characteristics are used to classify individuals in terms 

of membership of discrete social or clinical categories. Some of these categories 

represent naturalistic properties in a natural population, others however are social 

constructs which may be socially controversial and contested, categories such as 

“Attention Deficit Disorder”, “homosexuality”, “weak impulse control” and “alco-

holism”. In social, institutional and in non-scientific discourse the certainty and 

special evidentiary role that genomic data can play in forensic identification and in a 

clinical context, as discussed above, cannot be assumed to carry over to social 

classification practices. Simply because genomic data can help to identify a person 

uniquely with high degrees of certainty, or may help to underpin statistical inferences 

in clinical research, we cannot infer that symbolic interpretations and the corre-

sponding social labels attach with the same degree of certainty to a given individual. 

This process implies jumping beyond the evidence and endorsing claims that often 

cannot be justified. Nevertheless social categorization and classifications based on a 

person’s genomic data may give rise to entrenched perceptions or ‘frames’ of a 

person’s social identity and may eventually constrain an individual’s ability to choose 

how he or she presents and defines himself or herself in social contexts. The genetic 

basis of novelty-seeking behavior can be taken as an example. Some allelic variants 

of the dopamine receptor genes were associated with differences in dopamine 

binding and with phenotypes related to novelty-seeking behavior (Padmanabhan & 

Luna, 2014). A genetic test thus can be designed to label individuals as either 
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carrying this allele or not carrying this allele. The genetic evidence, though, will not 

warrant tagging the individuals with the labels ‘novelty-seeking’ or ‘not novelty-

seeking’. The presence of the allele does not say much about the novelty seeking 

tendencies of a particular individual. At best, it may indicate a statistically higher 

likelihood of displaying such behavior. Without caution the information on whether 

an individual carries the allele may easily get translated into a claim about how a 

person is really, namely being eager or not eager to engage in novel experiences. 

 We refer to this cognitive attitude towards genomic data as epistemic immodesty. 

Epistemic immodesty (van den Hoven J. , 2008) is defined as the making of knowl-

edge claims about persons that are not fully supported by the evidence available with 

potentially significant cost or negative moral consequences to the target person, 

while ignoring how the person involved would like to be identified. In epistemic 

immodest judgments one draws conclusions about who a person is, or one claims to 

be acquainted with one or more of his or her properties on the basis of limited or 

irrelevant evidence. Because of the reasons mentioned before, big biodata inherently 

carry the risk of giving rise to immodest claims on what one knows or can know 

about a given person. Classification of people based on biological characteristics 

transforms statistical claims into symbolic claims about who a person is. These claims 

are strengthened by the naturalistic load of the classifications and by the unique 

identifying power of genomic data. Moreover, genomic studies often concern 

morally salient characteristics, increasing the proneness to epistemic immodesty. As 

an example, a study on patients with bipolar disease revealed a genomic region that 

was indicative of an increased proneness to suicide attempts (Willour, et al., 2012). 

Epistemic immodest claims can arise when such probabilistic findings are put to use 

beyond the field of science. When for instance applied by a future employer or to 

customers in a consumer genetics setting, the focus is not on identifying generaliza-

tions out of the data of many research subjects. In this different pragmatic context, 

the focus shifts towards the labeling of particular individuals by putting the general-

ized data to use. It can be foreseen that the claim to know that person will give rise 

to moral judgments that may negatively affect the person. The immodesty is consti-

tuted by the fact that the judgment fails to take into account the subjective 

experience of individuals and the way they want to be identified. 
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2.5. Genomic Privacy and the Right to Self-Determination   

The question then is how to deal with personal big biodata and how to respect and 

protect them so as to prevent making data subjects vulnerable in the light of the 

availability of the data. Personal big biodata need to be protected to prevent harms, 

inequities and discriminatory practices of which patients and data subjects may 

become victims (for a taxonomy of moral reasons for data protection see van den 

Hoven (van den Hoven J. , 2008). It is obvious that individuals can be harmed, 

wronged, disadvantaged, targeted and exploited in numerous ways on the basis of 

the access that others have to their genetic information. A right to control access to 

your own big biodata, the requirement of informed consent is still the central point 

of all existing data protection legislation. There are four types of moral reason for 

this: 1. Prevention of (information-based) harm, 2. Equality of opportunity and fair 

treatment in markets for commodified personal data, 3. Informational justice and 

discrimination and 4. Moral autonomy (van den Hoven J. , 2008).  

 First of all, it is clear from the discussions above that personal big biodata 

potentially can be the cause of information-based harm. Information based harm is 

here defined as harm that could not have been (easily) inflicted if particular informa-

tion would not have been available. Secondly, another type of moral wronging may 

occur when big biodata are commercially exploited without proper benefits to the 

data subject, or without him or her even knowing about this. Thirdly, a form of 

moral wrongdoing occurs when the data are produced in a research or clinical 

context, but become available in a very different social sphere, such as the world of 

insurance or potential employers (market) or police or criminal courts (criminal 

justice). The use of information about a person at a time and place where it is 

deemed inappropriate or is irrelevant is a form of discrimination. The prevention of 

discrimination calls for controlling the boundaries of social spheres in which the big 

biodatasets are produced and used. Also the different practices (forensic, clinical 

research, social / institutional), their different associated standards of care in reason-

ing and methodology, the governance, and their norms for the fair allocation of 

access ought to be observed and separated.   

 Autonomy is the fourth moral reason to be concerned with the protection of 

personal big biodata. Some types of personal big biodata like genomic data and 

brain structures are largely immutable during a person’s lifetime. Such immutable 

data that is intimately linked to a person vastly increases the impact when releasing 

this data, since it can impair a person’s ability to determine how he or she presents 

himself or herself to others. The focus of privacy concerns in this case is to prevent 
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one specific form of wronging moral persons, namely the fact that they are made 

subject to social sorting, categorization and classification, on the basis of personal 

genomic data or personal big biodata in general. When people are classified in this 

way and given the perceived reality of genetic exceptionalism, there is a lack of 

plausible deniability of the evidence for these classifications on the part of an indi-

vidual (assuming he or she is not an expert in genetics). This interferes with the 

moral autonomy of persons, the moral right of persons to define themselves and 

shape their own identity, present themselves and have their chosen public persona 

recognized and respected by others. Controlling the way one presents oneself 

provides the necessary space for self-determination. To be recognized as a being who 

is able to conceal information is fundamental to being perceived as a ‘self-

representing being’, as argued by (Velleman, 2001). Norms of privacy dictate that 

certain things should be allowed to be concealed. If the ability for self-presentation is 

impaired, one is naked in the sense that one is exposed in a way that fundamentally 

impacts one’s standing as a social agent.  

 In the case of personal big biodata that are immutable, change in a person’s 

profile can only occur at the level of the interpretation of these data. It is thus 

important to instill mechanisms to control the process of the inscription of meaning 

to the data. This process though is largely outside the control of the person. A first 

reason for this lack of control lies in the fact that new interpretations emerge as 

technologies and insights evolve. This fact is for instance acknowledged in the 

informed consent form of the Personal Genome Project: “because the science in this 

area is evolving, and data will be collected on an on-going basis by the PGP, the risks 

involved due to your participation in this study, as well as the likelihood and severity 

of such risks, will change over time” (PGP Consent Form, 2014). Secondly, informa-

tion systems that are used to store personal data can constrain the freedom of a 

person to manage his or her own identity (Manders-Huits & van den Hoven, 2008) 

(Manders-Huits, 2010) irrespective of the type of personal data that are stored and 

processed. In the case of personal big biodata, these systems represent a person via a 

digital record, which can contain the person’s genomic sequence, medical record, 

etc. Digital representations reduce a person to his or her representation in the 

system, and allow for the creation of ‘types’ of people by clustering such representa-

tions. Together with the fact that data in these systems tend to persist, digital 

identities result in a reduced ability to reshape one’s identity. Central to this moral 

autonomy reason for data protection (van den Hoven J. , 2008) is Bernard William’s 

proposition that respect for persons implies attempts at moral identification, namely 
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the identification of a person as someone who is engaging in self-identification and 

who ought be identified as such. This is an important aspect of what it means to 

respect someone: we owe the other an attempt at identification (not clinical or 

forensic) as the person who he wants to be identified with. As Malcolm Forbes has 

already observed: “We’d all like to be taken for what we’d like to be.” The object of 

knowledge claims therefore becomes a more complex one, namely an objective 

physical human being who is characterized in terms of a panoply of biomarkers and 

a genome, but who has a subjective conception of him- or herself. Self-identification 

encompasses the ability and freedom to determine and reorient oneself. In databases 

this ability can be constrained when a person’s identity is reduced to a digital record. 

Defining one’s course of life can be hampered when the person has no ability to 

control this digital information.  

 Epistemic modesty is thus a moral source of restraint in the process of the 

inscription of meaning when this process of inscription of meaning is out of the 

control of the subject. In addition to the avoidance of information based harm and 

the prevention of inequity and discrimination, genomic privacy provides a person 

with the freedom to shape his or her own social and moral identity, and to relativize 

or completely undo previous and external determinations made by others and 

actively engage in self-presentation in a range of social contexts. The epistemic 

hubris or immodesty that is so easily produced by practices associated with collection 

and utilization of personal big biodata should be counteracted by instilling and 

institutionalizing forms of epistemic modesty about claims that we know ‘who 

someone really is’ if we know this person’s genomic blueprint.  

 Ensuring privacy as a property right in one’s own biological data, and creating 

markets for personal biological data may not work to ensure a fair processing of 

these data. Markets where people sell and buy personal biological data are highly 

problematic, as is the case in e.g. markets for organs. The items changing hands are 

unique and in a relevant sense belong to the individual, or can be seen to be co-

constitutive of the individual. And the transfer is irreversible, since once the data is 

out, it is practically impossible to get control over it again. The idea of a market also 

implies freedom, informed consent, and full information, which are all precisely 

what is at stake. Genetic data protection by means of data markets and transferable 

property rights therefore seems a bad idea. An alternative to a market is the “infor-

mation altruism” as highlighted by Lunshof et al. (Lunshof, Chadwick, Vorhaus, & 

Church, 2008). In this setting, the individual shares his or her genomic data in order 

to support scientific progress, aiming at generating benefits for many. Information 
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altruism is a peculiar form of altruism since the audience one provides the informa-

tion to is unknown and global, and so are the potential beneficiaries. By subscribing 

to the open consent form, the research subject allows the storage of his or her 

personal genomic data in publicly accessible databases without any guarantee of 

anonymity, privacy or confidentiality. Withdrawal from a study is possible at any 

time but the research subjects need to acknowledge that their data might not be 

completely removable. They also need to acknowledge that the information release 

might not be to their benefit and can even harm them. An information altruistic 

policy therefore can lead to the vulnerability of research subjects. 

 The tension between the personal and the societal interests is bound to be a 

central topic in big biodata privacy debates (Knoppens, 2009). The individual 

benefits from a strong protection of his or her big biodata. The community benefits 

from an improved healthcare that is the result of a better understanding of biological 

data. Inaccessibility of personal genomic data for the research community can 

hamper scientific progress and the related societal benefits. There is a need for 

solutions that ensure protection of the individual, while allowing researchers to mine 

the data. Whether technical solutions can dissolve this moral dilemma is being 

investigated (Ayday, De Cristofaro, Hubaux, & Tsudik, 2013). For instance, Baldi et 

al. (Baldi, Baronio, De Cristofaro, Gasti, & Tsudik, 2011) applied encryption tech-

nologies to full personal genome sequences. Such technologies allow for the in silico 

execution of genome tests, without disclosing the information outside of the intended 

audience. In this setting, a person can have personal genomic data available on an 

electronic carrier in an encrypted way. The person then can consent to let a service 

provider run an algorithm on his genomic data, without having to disclose the data 

to this service provider. Such encryption strategies can provide the basis for innova-

tions in healthcare and consumer genetics that ensure genetic privacy, while 

providing researchers the proper access to analyze the data. 

 In any setting, it will be crucial to create room for self-determination and for 

mitigating the effects of epistemic immodesty, by giving persons more means to 

control not only the access to their big biodata, but also by giving society the means 

to ensure proper interpretation and usage of these data. Such means imply pluri-

formity in available models, frameworks and rival theories, access to countervailing 

interpretations, checks and balances in actions based on interpretations of genomic 

data. Good governance of personal genomic data is a way to instill epistemic mod-

esty in users. Practices should also extend to training and support for genetic 

counselors, in systematic reviews of the interpretations offered by genetic services, 
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the required indication of probabilities in claims, creation of modes of contesting 

available categorizations, and the dissemination of scientific information in society. 
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3 Digital Twins in Therapy and  

Enhancement	
  

3.1. Chapter abstract 

Personalized medicine approaches use fine grained information on individual 

persons, to pinpoint deviations from the normal. ‘Digital Twins’ in engineering 

practices provide a conceptual framework to analyze these emerging data-driven 

health care practices, as well as their implications for therapy, preventative care and 

human enhancement.  

 Digital Twins stands for a specific engineering paradigm, where individual 

physical artefacts are paired with a digital model that dynamically reflects the status 

of that artefact. When applied to persons, Digital Twins are an emerging technology 

that builds in silico representations of an individual that dynamically reflect molecular 

status, physiological status and lifestyle over time.  

 We use Digital Twins as the hypothesis that one would be in the possession of 

very detailed bio-physical and lifestyle information of a person over time. This 

perspective redefines the concept of ‘normality’ or ‘health’, as a set of patterns that 

are regular for a particular individual, against the backdrop of patterns observed in 

the population. This perspective also induces a normative shift in how therapy and 

enhancement can be distinguished, as can be illustrated with the cases of the ‘asymp-

tomatic ill’ and life extension via anti-ageing medicine. This normative shift relates 

to how meaning is derived from measurement data. We use a promiscuous realist 

account to clarify how moral distinctions based on digital twins are the result of both 

cuts made at Nature’s joints, and the world of language and meaning that is grafted 

on these structures.  

 Ethical and societal implications of Digital Twins are explored. Digital Twins 

imply a data-driven approach to health care. This approach has the potential to 

deliver significant societal benefits, and can function as a social equalizer, by allow-

ing for effective equalizing enhancement interventions. It can as well though be a 

driver for inequality, given the fact that a digital twin might not be an accessible 

technology for everyone, and given the fact that patterns identified across a popula-

tion of digital twins can lead to segmentation and discrimination. This duality calls 
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for governance as this emerging technology matures, including measures that ensure 

transparency of data usage and derived benefits, and data privacy.	
  	
  

3.2. Personalized medicine – therapy as digitally supported 
engineering   

Engineering approaches are ubiquitous in modern medicine. In current health care 

practices, one engineers a vascular bypass to restore the blood flow in case of athero-

sclerosis, repairs a heart valve, or replaces and old lens in the eye of a patient 

suffering from cataract. These engineering practices are rooted in the explanatory 

power and practical successes of the mechanical philosophy that has gradually 

emerged since the Renaissance. For instance, the drainage of the Low Countries 

provided significant improvements in the understanding of pumps, valves and 

hydraulic systems. These evolutions resonated in the work of contemporaries that 

studied vascular anatomy and the working of the heart (Novell, 1990). The descrip-

tion of the heart as a pump with one-way valves eventually opened the route to 

engineering actions like heart valve replacement. The engineering perspective 

developed into an important paradigm in current health care and therapy. Many 

Technical Universities in the world now train and educate engineers in clinical 

technology curricula, and doctors routinely work with engineers with a range of 

different backgrounds.   

 This engineer’s point of view also forms the hidden premise in many debates 

about human enhancement. When it is possible to replace broken parts in the body, 

and to tweak, fine tune, and optimize them, it is in principle also possible to extend 

this body with new functionalities. Neural implants can for instance be used for 

visual prosthetics for blind people, but they also open the route towards capabilities 

going beyond normal human sight and give access to a range of normally inaccessi-

ble parts of the electromagnetic spectrum. Drugs like Ritalin can be used to help 

ADHD patients to focus, but can also be applied to boost mental performance in 

people that don’t suffer from ADHD. The engineer’s perspective becomes especially 

striking in the case of human germline editing with the aid of Crispr-CAS (Liang, et 

al., 2015). In therapeutic applications, one could consider the editing of the nucleo-

tides that give rise to severe Mendelian diseases, thereby preventing a lot of human 

suffering. With the same engineering approach, one can potentially bring in traits 

that go beyond current human capabilities. For example, one could consider engi-

neering human hemoglobin to be more like shark-hemoglobin, thereby allowing 

humans to store more oxygen in the blood. It will though be very difficult if not 
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unfeasible. The engineering approach to health in contemporary medicine is 

confronted with the sheer complexity of the human body and its operations. Here a 

purely mechanistic approach has revealed insufficient. It is for instance very difficult 

or impossible to precisely predict the efficacy of a drug and its side effects in a 

concrete patient. A large quantity of the massively prescribed blockbuster drugs 

therefore has suboptimal effects. Complex multifactorial diseases prove to be very 

hard to tackle via an engineering approach. Along these lines, human enhancement 

will require the engineering of complex and interconnected traits. This might well be 

impossible to achieve with current medical engineering approaches.   

 To get a better grip on this complexity, large initiatives are established to gener-

ate detailed molecular data of patients and healthy research subjects. Publicly funded 

initiatives like Genomics England (Marx, 2015) or the US precision medicine (PMI 

working group, 2015), and private initiatives like Longevity and the Mayo Clinic 

Centre for Individualized Medicine gather genomic information on large numbers of 

individuals. These initiatives ultimately aim at the development of digital models of 

certain aspects of patients, allowing for more targeted health care interventions. 

Instead of using an overall scheme of the average human body and its responses, 

personalized medicine starts from the premise that health care can vastly benefit 

from detailed molecular and lifestyle data of each individual patient. In the case of 

picking the right drug to treat a cancer, the efficacy of this approach already has 

been proven. Genotyping an individual’s tumor tissue provides clues on which drug 

will result in the biggest impact and the smallest side effects (Kummar, et al., 2015). 

Personalized medicine also carries the promise to lead to predictive medicine, where 

diseases can be predicted and thereby also preventatively treated.  

 At a fundamental level, the mentioned initiatives share the belief that refined 

mathematical models of patients, fueled by big biodata, will drive more precise and 

effective medical interventions. The availability of molecular readout technologies 

and of sufficient computational power increasingly makes it possible to build such 

models. The models can be complemented with continuously tracked health and 

lifestyle parameters, eventually resulting in a digital representation of certain aspects 

of an individual patient. The concept of a “virtual patient” or even a “virtual self” 

therefore was proposed as a venue for European healthcare: “realistic computer 

models that are built and validated upon experimental big data collected by the most 

advanced technologies from molecular to macroscopic scales” (Lehrach, Ionescu, & 

Benhabiles, 2016). This manifesto projects vast health improvements, reduction of 
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health care costs, and an increased personal freedom in dealing with our own 

biology. 

 Provided such ‘virtual selves’ indeed become available, they will take the engi-

neering practices in health care to a different level. In first instance, they can vastly 

increase the resolution at which one can define normality and disease. The personal-

ized high-resolution models of the “virtual self” will provide a detailed map that 

allows to better pinpoint disease states, i.e. deviations from the normal. This ‘normal’ 

or healthy state can be defined at a high resolution, using molecular, phenotypic and 

behavioral level of entire populations. Instead of basing medical interventions on the 

responses of the average person, digital models carry the promise to tailor healthcare 

to the anticipated responses of individual patients. Secondly and relatedly, personal-

ized high-resolution models also have the potential to redefine the concepts of 

therapy and enhancement. In the following sections, we argue that the conceptual 

and practical implications of this redefinition can be best captured with reference to 

the concept of Digital Twins, an emerging practice in engineering that has individu-

alized digital models a central instrument. 

3.3. Digital Twins as conceptual tool: relevance for the therapy and 
enhancement debate   

Much can be learned about therapy and enhancement, by putting the quest for 

accurate digital models of patients in the light of the emerging Digital Twins engi-

neering practices. The data and model driven healthcare trends namely bear a 

striking similarity with the usage of Digital Twins in engineering.   

 A Digital Twin consists of two systems: a physical system (e.g. one particular 

machine) and a computer model that closely reflects the architecture and the 

dynamics of this one particular system. Unlike traditional engineering models, 

Digital Twins reflect the particular and individual, the idiosyncratic. Traditional 

engineering models reflect the generic: they apply to multiple instances. A Computer 

Aided Design model for an airplane jet engine reflects the structure of all the jet 

engine instances that were built based on this model. Sensors that allow for continu-

ous monitoring of technical systems increasingly make it possible to individualize 

such digital models, in order to represent the status of one particular physical object. 

This type of model has been termed ‘Digital Twin’, since it closely reflects the inner 

state of the physical twin object. Digital Twin models are used in predictive mainte-

nance. In this case the dynamic behavior of a particular object is closely monitored, 

for instance a part of an engine. These data are then related to large amounts of 
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sensor data from similar objects. This allows to identify anomalies long before parts 

actually break down. Digital Twins are also applied in the engineering process, to 

simulate the outcome of technical interventions like fixes and upgrades. 

 The Digital Twin concept was applied by NASA in the development of aero-

space vehicles that last longer and endure more extreme conditions. A Digital Twin 

in this context was defined as “an integrated multi-physics, multi-scale, probabilistic 

simulation of an as-built vehicle or system that uses the best available physical 

models, sensor updates, fleet history, etc., to mirror the life of its corresponding flying 

twin. … By combining all of this information, the Digital Twin continuously fore-

casts the health of the vehicle or system, the remaining useful life and the probability 

of mission success. The Digital Twin can also predict system response to safety-

critical events and uncover previously unknown issues before they become critical by 

comparing predicted and actual responses.” (Glaessgen & Stargel, 2012). The 

concept emerges also as a key element in Industry 4.0 strategies. It was termed “a 

living model of the physical asset or system” that allows to “continuously adapt to 

changes in the environment or operations and deliver the best business outcome” 

(Infosys Insights, 2016), a “digital copy that is created and developed simultaneously 

with the real machine” (Siemens, 2015), “the bridge from the physical to the digital 

worlds, providing understanding of each unique asset over time” (GE, 2017). Digital 

Twins have been applied to optimize the operations of power plants, wind turbine 

parks, critical jet engine components, etc.  

 Digital Twins driven engineering in industry bears striking resemblances to the 

emerging data-driven personalized health care practices described above. These 

novel engineering approaches to health care also build on dynamic and high-

resolution digital models of genetic, biochemical, physiological and behavioural 

aspects of individual persons. Digital Twin based medicine is far from being an 

established fact yet. Various initiatives nevertheless pave the path by gathering 

detailed molecular data from individual patients (The 100.000 Genomes Project, 

2012), (Telenti, et al., 2016). Closer to the engineering of artefacts, attempts are 

currently already undertaken to develop Digital Twin models of the heart (Scoles, 

2016).   

 Next to being an emerging practice in health care, the concept of Digital Twins 

provides a very viable instrument for analysing concepts like health and disease, 

therapy and enhancement. It does so for multiple reasons. Firstly, the perspective 

taken in contemporary medicine is that of rational maintenance, optimization and 

even design of (very complex) bio-physical systems. Interventions in both engineering 
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and medicine can be considered as engineering actions. Probabilistic models of 

human individuals in personalized medicine aim at supporting the engineering of a 

healthy status. This includes an approach analogous to predictive maintenance in 

industry. Molecular biomarkers can provide an early identification of upcoming 

disease states, even before the disease is manifest. Interventions can then be done to 

restore the system to a healthy state. Further along the same lines, human enhance-

ment scenarios implicitly assume that humans are (eventually amongst other things) 

biophysical system of which the components and the functioning can potentially be 

understood in terms of mechanistic processes, and are therefore amenable to engi-

neering of current features, and the engineering of novel ones. Secondly, these 

activities in both fields are guided by big data and by mathematical models that 

represent one individual person or artefact. In both engineering and medicine there 

is a strong belief that interventions will be more precise and effective, when individu-

alized mathematical models are used that capture the actual status of one particular 

artefact or person over time. Models of artefacts are evidently much more compre-

hensive than models of an organ or of the metabolic status of a person. Artefacts 

have building plans and are much less complicated than human beings. Models in 

medicine are still very partial and coarse grained, but nevertheless already show 

effectiveness, as can be seen in the field of cancer treatment. By combining various 

types of omics-levels one can anticipate that a much higher level of predictivity can 

be achieved than when using only individual data types, like genomic data.  

3.4. Digital Twins and the concepts of the normal   

To the extent that physicians already tailor treatments to the medical history and 

actual status of their patients, one can say that medicine has always been personal-

ized (Brenner, 2012). A Digital Twin approach though would not only take the 

disease history of an individual patient into account, but also her healthy state, in 

great molecular and behavioural detail. Digital twin approaches in health care will 

heavily rely on a detailed picture of the healthy state of an individual, not merely on 

a record of disease states. ‘Normal’ in this context refers to the typical molecular, 

physiological and behavioural patterns observed in the individual, interpreted 

against the backdrop of the patterns observed in the entire population. Blood 

pressure readouts provides a simple illustration of this point. The sphygmomanome-

ter is available for more than hundred years, nevertheless there is not yet a clear 

understanding of what is a ‘normal’ blood pressure. One of the reasons is that this 
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cuff-based blood pressure determination method results in sparse measurements over 

a person’s lifetime. (Steinhubl, Muse, Barrett, & Topol, 2016). This makes it impos-

sible to assess the impact of day or night, age, caffeine consumption, stress 

conditions, and so on. The result is improper management of hypertension in many 

cases. Wearable devices nowadays can monitor an individual’s blood pressure 

continuously. A “virtual medical assistant” has been proposed that uses machine 

learning to mine these data streams and identify the blood pressure trends that are 

unique to that particular person. Such information can provide an individualized 

concept of what is a normal blood pressure, against the backdrop of trends observed 

in people with similar age, life style, etc. (Steinhubl, Muse, Barrett, & Topol, 2016). 

Similar approaches are relevant for molecular biomarkers. Identification of the risk 

to chronic heart failure can benefit from serial measurements of biomarkers over 

time, rather than from single values (Miller & Jaffe, 2016). This Digital Twin ap-

proach is in sharp contrast with current normal function accounts that define a 

normal or healthy state simply based on population statistics, with no reference to 

any individual’s conditions. Digital twin models are continuously fed with all types of 

information during the lifetime of a person. This will allow to determine what the 

statistically normal patterns are for that person for a manifold of parameters. These 

normal patterns for the individual might well lie out of range when compared to the 

ones observed in the population.  

 Next to the fact that the normal will be defined by the individual, the normal will 

also have a multi-dimensional and high-resolution character. Natural variation 

amongst individuals, that make it otherwise difficult to pinpoint what is exactly 

normal, can be mapped in a high dimensional space of all different sorts of data. 

Such approach will allow to obtain a much sharper statistical definition of the 

normal or healthy state of an individual, and likewise of disease states or disease 

susceptibilities. Confounding factors like age, lifestyle, genetic background can be 

factored in in these models. 

 Thirdly, Digital Twin models will allow for comparing normal patterns across 

individuals in great detail. The multidimensional space of properties across Digital 

Twins can be used to cluster similar individuals. Currently comparison with the 

normal range is mainly based on age and gender. One can expect that a high-

resolution picture will lead to a great heterogeneity of types of human beings, each of 

them characterized by their own normal patterns. This effect already becomes 

apparent at the genomic level. High resolution genomic sequence data of multiple 

individuals revealed that human genomic variation was larger than originally 
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anticipated (Telenti, et al., 2016). Variation in genomics regions that were previously 

perceived as junk seemed to have functional significance when having more data at 

hand. Similarly, it has been suggested that there might be a manifold of healthy 

states in human microbiomes, and therapy boils down to moving the composition of 

the microbiome towards one of these healthy attractors (Lloyd-Price, Abu-Ali, & 

Huttenhower, 2016). This transparency in the heterogeneity of what is normal raises 

the question on whether natural levels are optimal and are prone to engineering 

(Kahane & Savulescu, 2015).   

 High resolution models of what is normal or healthy constitutes the cornerstone 

of upcoming personalized medicine approaches. A detailed picture of the healthy 

assumedly allows for a better identification of potential or actual disease states that 

need to be remediated. For example, assessment of which particular chemical is 

optimal to treat a cancer in a specific patient requires classification of that cancer by 

its driver mutations. This implies a precise understanding of how a healthy genome 

looks like, and which deviations from this normal situation are harmful. The ap-

proaches though often base the concept of the normal on the population, not yet on 

the individual. Early initiatives like the Framingham Health Study used physical 

examinations and lifestyle interviews on a set of healthy individuals. These studies 

played an important role in understanding the impact of lifestyle on cardiovascular 

diseases (Framingham Heart Study, 2017). Population genomics studies sequence 

large amounts of citizens to infer genetic diseases, and by consequence build a 

picture of a healthy genome. Initiatives like the Metagenomics of the Human 

Intestinal Tract (MetaHIT), the Human Microbiome Project (HMP), and Chinese 

diabetes consorts reported on microbiomes of healthy individuals (Lloyd-Price, Abu-

Ali, & Huttenhower, 2016). With the availability of high throughput sequencing 

technologies and of wearable devices, multi-dimensional molecular pictures of 

normal patterns can be developed at the individual’s level. Examples in this direction 

are a project by a Google spin-off that will track ten thousand healthy Americans for 

their genome, microbiome, physiological parameters captured by a wearable device, 

life style and well-being.  

3.5. Digital Twins and the concept of enhancement   

Future availability of Digital Twins for persons also has consequences for the notion 

of enhancement. One common definition of enhancement is the improvement of 

general abilities, “beyond the species-typical level or statistically-normal range of 
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functioning of a human being (President's council on bioethics, 2003; Allhoff, Lin, & 

Steinberg, 2009) (Menuz, Hurlimann, & Godard, 2013). The distinction between 

therapy and enhancement was proposed as a means to identify actions that require 

special moral consideration, because they change the constitutive aim of our medical 

interventions, which is to cure. (Daniels, 2000; President's council on bioethics, 

2003).  

 At first sight, these definitions seemingly match the Digital Twin’s engineering 

perspective. Engineering actions always aim at modifying a system. These modifica-

tions can be classified as either maintenance or improvement. Maintenance actions 

using Digital Twins focus on establishing a baseline of normal functioning for an 

individual artefact, to predict more accurately which maintenance interventions are 

needed. In repairs the modifications address a problem, and aim at restoring a 

system to the normal functioning. Improvement actions like ‘souping up the engine 

of a motor’ bring an existing functionality beyond the normal, or introduce a novel 

functionality. 

 Such clear-cut distinction depends though on the reference taken. In the engi-

neering cases, it is ‘the normal’ as defined in the certification or classification (e.g. of 

a ship or the weight of a payload, stress, torque) which helps to define the boundary 

between systems maintenance and problem remediation versus improvement. In a 

similar way, the normal in the biological realm defines the boundaries between 

therapy and enhancement in “species typical normal functioning” accounts (Daniels, 

2000). This definition of normal functioning is often based on population statistics. 

When taking the individual’s normal patterns as reference in a Digital Twins ap-

proach, therapy entails the maintenance or restoration of this individualized normal 

state. It is well possible that an individual performs well in a certain trait when 

benchmarked against her individualized normal state, but underperforms vastly 

when compared to the rest of the population. In analogy with a wind turbine park, 

one can tune a poorly performing windmill towards the average mills in that park, 

instead of bringing it back to its twin’s definition of regular performance. Or even 

more, one could decide to take measures to get it to the best performing mills in the 

park. So, even given the high-resolution picture on normal performance that can be 

derived from Digital Twins, the distinction between maintenance and upgrade 

crucially depends on the reference or baseline that is chosen, so that this distinction 

contains an important normative element. Likewise, as it has often pointed out 

(Hofmann, 2017), the distinction between therapy and enhancement will not result 

only from a detailed observation of the state-of-affairs but also from their interplay 
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with the realm of language and meaning. ADHD for instance has only been catego-

rized as a diseased state in recent times (Lange, Reichl,, Lange, Tucha, & Tucha, 

2010). Nature does not come with clear categories, and is often is characterized by 

gradients rather than by crisp clear joints at which one conceptually can cut. As 

pointed out along these lines by Bostrom and others, the concept of “disease” may 

not refer to any natural kind and depends on the perspective taken (Bostrom, 2008). 

In a promiscuous realism perspective, the human interest together with the patterns 

found in Nature will determine where one will cut (Dupré, 1993). Along these lines, 

categories like therapy and enhancement do not solely reflect patterns found in the 

data of patients. They also reflect our normative interests and conventions. 

 However, this does not imply that the (normative) choice of the baseline will be 

completely arbitrary or that the states of affairs are totally irrelevant for it. Some 

important moral distinctions are in fact rooted in, or depend on the state-of-affairs 

(Burms & Vergauwen, 1991). Speciesism for example is a moral distinction that 

attributes a special moral status to humans over other species. This distinction 

cannot be derived though from criteria like self-consciousness or capacity for suffer-

ing. Our moral intuitions concerning mentally handicapped thus are based on the 

fact that they belong to the human species, rather than on the fact that they lack 

standard cognitive abilities. Another example is incest. If Oedipus would have had a 

genetic testing kit, he would have been horrified when sleeping with his mother and 

killing his father. But in the absence of this knowledge of his hereditary links to both 

people, he committed both transgressions. Equally, eating a dish that afterwards is 

revealed to contain meat can be an unpleasant surprise for a vegetarian, though she 

enjoyed the dish while eating it. These cases exemplify that some important moral 

distinctions are grafted on structures deeply embedded in Nature.  

 If this is the case, then it is reasonable to expect that in a hypothetical scenario in 

which high resolution data on genetics, metabolism, life style, etc. is available for 

persons, and their individualized high-resolution pictures are offered by Digital 

Twins, we may witness some relevant shifts in the normative baselines to assess what 

counts as health, disease, therapy and enhancement. Consider, as a first example of 

a novel classification that already is the result of accumulating personal data, the 

emerging class of ‘asymptomatic ill’. This class consists of healthy people with 

molecular patterns indicative of a high susceptibility to a disease, though they did not 

develop that disease yet (Plümecke, 2016). Now, assuming one takes some (medical) 

steps to prevent the disease to develop, one may wonder whether this intervention 

would qualify as therapy. Conceptually, it seems unwarranted to define therapy an 



Digital Twins in Therapy and Enhancement 

41 

intervention done on a healthy individual. In this respect, such preventive care 

interventions resemble more what from an engineering perspective would be called a 

maintenance intervention. However, this wouldn’t be simple maintenance, due to 

the specific goal for which it is done. This goal is to prevent one very specific and 

statistically uncommon malfunctioning or disease to occur via a targeted (medical) 

intervention, where the occurrence of this specific potential disease has been pre-

dicted based on high resolution picture of the individual subject. As it were, the 

subject is fine, but her digital twin is not OK. On the other hand, defining these 

interventions as forms of enhancement due to them being done on a (currently) 

healthy individual and/or due to them being based on information in a digital 

representation of the subject rather than on her actual conditions and/or being done 

via complex and costly interventions would not sound convincing either. After all, it 

is a disease that we are fighting. It may therefore well be that personalized medicine 

and Digital Twins will force us to stretch or revise our categories. For instance, by 

accepting the idea of something being a therapy, even if done on a healthy individ-

ual based on a critical condition of her Digital Twin, insofar as the intervention is 

done in order to address a potential illness of the individual which is highly probable 

to occur. In fact, it is to strike this balance that some already use the apparently 

paradoxical label of “preventive medicine”. Needless to say, this is not only a 

conceptual but also a moral issue. Depending on whether these interventions are 

considered as daily care, therapy, or enhancement, different conclusions may be 

drawn on the question as to what extent and under which conditions they should be 

provided and their costs covered by a public healthcare system. 

 A second example of a possible normative shift caused by digital twins would be 

life extension via anti-ageing medicine. There is a high interest to develop ways to 

prolong the human life span, as in Google’s spinoff Calico LLC or Venter’s Human 

Longevity Inc. The rationale that is often used to support this type of research is a 

therapeutic one. Preventing diseases by making people growing old in a healthy way 

is better than curing diseases only when they happen to arise. Lifestyle and genetics 

already result in considerable differences in life span among people, so one can 

expect that there are mechanisms that can be engineered in order to extend people’s 

life-span. Some people seem to have a constitution or habits that result in a long and 

healthy life. With the availability of Digital Twins, such naturally occurring people 

with an extremely long lifespan might end up in a dedicated medically salient 

category. If a combination of certain features in genetic makeup and lifestyle as 

displayed in someone’s digital twin would allow us to reasonably predict their life-
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span, this would lead to new medically relevant distinctions between healthy persons, 

even without the presence of enhancement technologies. One would be able to 

classify a set of people as prone to lead a long and healthy live, and sets of people 

with normal or with short life expectancies. This medically relevant distinction 

between persons, again, will be grafted on top of the (statistical) patterns that are 

found in the population of Digital Twins.3 Now, let’s imagine that, thanks to Digital 

Twins we come to discover with some precision which life-styles are typical of people 

in the class of long-livers, for instance a certain diet or a certain regime of physical 

activity. Let’s also assume that based on this knowledge one would gradually manage 

to move more people into this class. This could be done for instance via the adver-

tisement, possibly the nudge or any other set of psychological or economic incentives 

to live according to these healthier lifestyles. Again, the question arises as to whether 

a life extension achieved in this way would count as therapy or enhancement. On 

the one hand, one may not categorize this as human enhancement. The deviation 

from the norm can be for the individual, and still be in the normal life expectancy 

range of the human species as a whole. Moreover, if a group of people on another 

island starts to live whatever happens to be the life-extending lifestyle and thereby 

lives longer, this would hardly be considered enhancement. Living a healthy life is 

the paradigm of a health improvement that does not qualify as an enhancement (or 

therapy, for that matter). However, one may argue that there is a crucial difference 

between this scenario and the scenario that involves Digital Twins and an explicit 

policy of incentives. Here it can be said that a certain individual’s or group’s life 

extension has been achieved by design; because of the kind of knowledge provided 

by the data of the Digital Twins (high resolution, etc.), and because of the systematic, 

deliberate targeted policy that this knowledge has allowed for. In other words, 

whereas the means used to achieve life extension – food, physical activity – clearly 

fall into the field of natural remedies, the broader process of scientific acquisition of 

data and of (social) design of which they are part may turn the process into a form of 

engineering, and therefore, arguably, of human enhancement. In fact, if the same 

group of people would obtain the same life extension effect, but this time because 

they have the financial means to access some complex biotechnological interven-

tions, intuition would probably lead us to classify this as enhancement. The reason is 

not merely that such a radical intervention surpasses a normal range derived from 

the distribution over the entire population. The reason to categorize this as en-
____________________________________________________________________ 

3  Some ethical implications of such scenarios are discussed in the last section	
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hancement has to be, first of all, with the explicitly engineering nature of this inter-

vention.  

 Certainly, the fact that such life extension would be achieved via costly technolo-

gies, would also have a symbolical boundary surpassed. It would impact the way we 

think about humans and ageing in general. It is a vastly rooted principle in human 

societies that the wealthy and the poor face the same facts of life: they grow old and 

die. Access to health care, nutrition, housing, etc. evidently can contribute to a 

longer life. But biologically speaking mortality per se is indifferent from human 

action. This biological fact is rooted in culture and society since the dawn of man-

kind. Technological modification of this process would not only result in a biological 

quantum leap, but also in a quantum leap in meaning. The concept of what it is to 

be human may fundamentally change (Temkin, 2011). The premise that “all hu-

mans are mortal” then will not hold true for all men to an equal extend anymore. 

Some will be less mortal than others due to technical means, eventually because of 

their financial means. In this case, the transgression that determines whether a 

modification is an enhancement therefore is also a transgression in the domain of 

meaning, that is grafted on a technological modification of biology. This fact holds 

true whether or not it concerns radical transformations, although radical transforma-

tions probably carry a higher likelihood to affect existing symbolical distinctions 

more harshly. This last point takes us to the ethical dimension of Digital Twins. 

3.6. Digital Twins and the ethics of human enhancement   

So far, we have used human Digital Twins - the assumption that one is in the 

possession of a data magnifying glass, that gives a detailed account of the molecular, 

phenotypic and life-style history of persons - as a conceptual tool to understand an 

existing trend in medicine, and to start a reflection on the potential conceptual 

implication of this trend on our understanding of the categories of health, disease, 

and enhancement. In this last section, we use Digital Twins to explore some possible 

ethical and societal implications of this trend.    

 A popular line of argumentation in favor of the prima facie moral acceptability of 

human enhancements starts from the observation that humans already use en-

hancement techniques, albeit low-tech ones. Athletes for instance improve their 

performance via physical exercise, a special diet, and a regular lifestyle. With the 

introduction of wearable health monitoring devices this type of improvements 

becomes supported by real time data from the individual athlete. The improvement 
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obtained by training and dietary schemes might be the same as the improvements 

obtainable via pharmaceutical means, both based on these early-stage Digital Twins. 

The aims and the factual outputs are similar, maybe even at the molecular level, 

which might lead to the welfarist position that therapy and enhancement are equally 

acceptable means to increase welfare (Giubilini & Sanyal). As outlined above though, 

the acceptability of the approach is not merely rooted in the data, but in the distinc-

tions made at the level of meaning. Human enhancement achieved via technological 

means or programs based on Digital Twins may be seen as specifically problematic 

because of this. By using pharmaceutical means, an athlete will transgress a certain 

symbolical boundary that is institutionalized in her sport for a long time. It is exactly 

the transgression of this symbolic boundary that makes the athletes act problematic, 

not merely the result in performance. Let’s assume that a society rethinks a mara-

thon, now entailing the usage of pharmaceutical means to boost runner 

performance. One might consider the resulting contest as morally acceptable if no 

transgression at the level of meaning would be involved. But the participants of this 

activity would engage in something that is different from what we now call a mara-

thon. The constitutive rules are changed. We could also think about introducing a 

rule in chess (and leave other rules unchanged), that allowed a night to jump twice in 

one turn. Since many human activities are defined by their point and meaning and 

embedding in a practice that is governed by formal or informal rules, they would 

engage in a very different type of activity (Whitehouse, Juengst, Mehlman, & 

Murray, 1997) (Santoni de Sio, Robichaud, & Vincent, 2014). This is a general point 

that goes beyond the sport example. 

 Egalitarian concerns constitute one of the main bioconservative arguments to 

caution enhancement. The fear is that human enhancement technologies might lead 

to different classes of people, and therefore have a disruptive effect on our democ-

ratic institutions (Fukuyama, 2002). Along these lines, human enhancement 

technologies can be thought of as increasing the already existing diversity among 

human beings. People already differ in strength, health, intelligence or longevity. 

When such differences would be available as quantified properties in a person’s 

digital representation and available to the entire community for consulting, that 

evidently in itself carries the danger of discrimination and of the constitution of novel 

classes. This may create a crucial complication for the realisation of the ideal of 

human enhancement as a social equaliser. Consider, for example, cognitive en-

hancement. Enhancers, unlike natural talent and capacities, would be at least in 

principle be available to everybody in the same way. One therefore can argue that 
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enhancers are potential social equalizers, counterbalancing the individual differences 

that are randomly assigned by the natural and social lottery (Savulescu, Foddy, & 

Clayton, 2004). However, it turned out that individual differences matter also for the 

functioning of enhancers (Husain & Mehta, 2011). This doesn’t necessarily mean 

that cognitive enhancers may not work for certain category of people (though it may 

well be the case). But it certainly means that a big quantity of individual data is 

needed to fine-tune the treatment or the enhancement. Digital Twins have therefore 

great potential to make enhancements more precise and effective, if the assumptions 

behind personal medicine prove to be correct. This holds true not only for cognitive 

enhancement, but for all sorts of therapy and enhancement. This necessity of 

acquiring a massive amount of data about the individuals may introduce new issues 

of equality that may counterbalance the desired equalising effect.  

 It hints at the fact that not the enhancements themselves, but rather the sheer 

availability of a vast amount of data like those of Digital Twins coupled with the 

human tendency to attribute meaning to patterns in data may make give more 

concerns for equality.  

 This immediately brings up the importance of privacy as an instrument to 

mitigate these effects. Privacy concerns that were raised in the context of genomics 

will be even more relevant in the case of Digital Twins, since the combination of 

multiple layers of biological and behavioral data will be much more telling about a 

person than genomics data alone. Given also the engineering analogy that is closely 

related to Digital Twins, privacy will be instrumental in avoiding that persons will be 

on a same par as designed objects, vis a vis their twins. In other words, privacy will 

avoid blunt comparison of human digital twins and therefore the grafting of sym-

bolical distinctions on top of these data. However, this may create a trade-off or even 

dilemma between equality of capabilities versus equality of privacy. In order to grant 

everyone access to medical treatments, distributing pills or medical devices may not 

be enough. In this ‘virtual patient’ scenario is a prerequisite to collect everybody’s 

data and to create a Digital Twin for everybody. Personalized medicine will argua-

bly increase the cost at the individual level, when compared to off the shelf pills. 

Next to that, there will be differences in people’s capacity to protect their data, due 

to differences in information about the risks, and differences in their contractual 

position in the “negotiation” about the use of their data. This is a concern, for the 

standard reasons about (medical) data protection (van den Hoven M. , 2008). But it 

also raises a new, specific, issue. Bioconservative fear of a class of biologically privi-

leged persons might realize without any technological intervention; the mere 
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existence and knowledge of one’s Digital Twin may create discrimination of the real 

people of which the twins are a digital representation. Self-fulfilling prophecy 

mechanisms similar to the ones active in the financial sector can come into play: the 

mere fact that other people or institutions think that you are going to be sick or weak 

or short-lived may make you sick, weak or short-lived. Much in the same way in 

which the mere fact that you are thought to be insolvent may eventually leave you 

broke. This marks an important difference between the use of Digital Twin in 

engineering and in medicine. The social and symbolic dimension in the human 

realm create a new layer of complication and potential ethical issues. A Digital Twin 

for a human maybe not only a powerful tool to improve one’s physical condition. It 

may also be a second self who can – metaphorically speaking – rise up against its 

biological counterpart; or, more prosaically and realistically, being the source of 

serious moral damage for the real person. In this way, it may be the case that the 

only way to achieve equality of capabilities would be by creating data which may in 

turn be used to penalize some groups or to create new forms of discrimination. 

Governance mechanisms for safeguarding the rights of persons that have digital 

doubles therefore will be crucial. Such governance mechanisms can draw from how 

for instance biobanks or medical databases are designed, regulated, inspected, etc. 

The governance structures should for instance ensure transparency on how the 

digital doubles are used, protection of the data, and a fair distribution of the benefits 

derived from people’s personal biological information.   

 The engineering approach that is inherent to Digital Twins also sheds a new light 

on current health care values, and opens the route to a whole new range of values. 

In current health care, where in most cases only a low resolution picture of the 

patient is available, regular health care values that apply are autonomy, beneficence, 

non-malfeasance and justice (Timmermans, Zhao, & van den Hoven, 2011). All 

these values will face different concretizations in case Digital Twins become avail-

able. Distributive justice for instance will be challenged due to the high resolution 

with which one can suddenly identify differences in constitution and capabilities 

among people. It will sharply raise the question on which conditions are to be 

treated in order to compensate for bad luck in the natural lottery. The value of 

autonomy will have to be implemented in view of a strong dependency of a digital 

model, and patients will have to develop a proper relation towards their personal 

Digital Twin. 

 With the availability of detailed molecular data of novel engineering methods to 

impact biological systems (e.g. engineering germlines or somatic cells via Crispr-
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CAS), a whole range of values need to be decided upon. Examples are the efficiency 

of the engineering actions, the effectiveness of the design, the competitiveness of the 

design versus other designs. The question is then which enhancements to favour, and 

how to make the engineering decisions. Engineering in general requires decisions on 

which values to include in the design or the optimization of a system, and which 

values to maximize (van den Hoven, Lokhorst, & Van de Poel, 2012). Value-

Sensitive Design approaches in engineering make explicit which values are implied 

in the technical development of an artefact, and try to overcome moral dilemmas by 

design. Given the analogies with engineering, this approach can also provide rele-

vant insights in the field of personalized medicine and Personal Digital Twins. The 

trade-off between equality of access to (personalised) medicine and risks of data-

based discrimination is one example of a challenge that Value-Sensitive Design may 

face in this domain.  

 Next to this, the results of medical engineering actions are intrinsically positional, 

as they are in the economic context of engineering artefacts. Individuals can aim at 

enhancements with personal flourishing as underpinning motif (e.g. ability to even 

more enjoy their swimming experience), but more likely will be driven by competi-

tive motifs (outperform others that score less on the swimming property). Digital 

Twins may also lead to an impoverishment, by focusing on certain traits and neglect-

ing others.  

 Rationality has limits, and this point is often pivotal in bioconservative perspec-

tives on human enhancement (Giubilini & Sagar, 2015). Reason proves to be an 

instrument with very limited capabilities when it boils down to predicting the future. 

Predicting the consequences of radical enhancements is therefore merely impossible. 

It even proved to be difficult to assess the demographic effect of simple and un-

invasive technologies like the prenatal determination of a child’s sex (Fukuyama, 

2002). The Brussels’ philosopher Hottois stressed the point that our complex bio-

physical world brings about the future, and that these dynamics can only be cap-

tured to an extremely limited extend via reason and via our systems of language and 

meaning (Hottois, 1996). In this perspective, one cannot fully anticipate the future 

impact of current human enhancements, whether they are disruptive or gradual. 

This lack of long-term predictability not necessarily implies that enhancement 

actions should be banned. One can accompany the process of making bio-physical 

modifications with deliberation about meaning, value, risks, etc. Since Digital Twins 

are in between the bio-physical world and this world of language and meaning, they 

constitute an important technical platform for enabling such techno-scientific 
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accompaniment. The data in Personal Digital Twins reflect the operational charac-

ter of reality. These data are read-outs of the metabolic composition of the blood at a 

given point in time, the genomic code, the history of blood pressure and of physical 

movements of the body, and so on. As such, these data are an intermediate stage 

between the operational realm of the biophysical reality, and the realm of symbols, 

language and meaning. Availability of these data provides us with a substrate to graft 

symbolical distinctions and meaning on structures that are present in the bio-

physical world. Digital Twins, be it as conceptual tool or as emerging technology, 

can therefore be a tool for moral accompaniment of technological evolutions. They 

can be one element, among many others, in an effort to realise a Responsible 

Innovation in this domain. They can aid both in understanding and in shaping the 

continuous interactions between engineering actions in the bio-physical world, and 

the world of values and meaning.  

3.7. Chapter conclusions 

The Digital Twins concept provides a solid thought instrument to analyse concep-

tual and ethical aspects of human enhancement. It does so by putting enhancement 

against the backdrop of individualized high-resolution data of people’s molecular 

constitution, physiology, lifestyle and dietary habits. Next to that, Digital Twins are 

an emerging field in medicine, that has the potential to become the playfield where 

therapy and enhancement are explored. Comparison between Digital Twins in 

entire populations allows to get a much sharper idea on health versus disease, and by 

consequence sharpen the debate on therapy versus enhancement. Digital Twins also 

have the potential to be a rich source for identifying novel and effective engineering 

routes, both for therapy and enhancement. The engineering paradigm inherent to a 

Digital Twins based health care will raise novel ethical, legal and social issues for 

therapy and enhancement. Digital Twins for instance can challenge equality, even 

without the application of enhancement technologies. The differences between 

persons can be sharply defined and made extremely transparent based on the 

differences in their compiled information, leading potentially to segmentation and 

discrimination. Personal Digital Twins are an asymptotically data-intense scenario 

that clarifies the importance of governance concerning the production and use of 

personal biological and lifestyle data.     
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4 When Nature Goes Digital:  

Routes for Responsible Innovation	
  

4.1. Chapter abstract 

Digitalization of biological populations and ecosystems changes our relation towards 

them. In silico representations of biological systems make them available as resources 

that allow for novel ways of deriving economic value. These extracted data and 

models also open novel routes for responsible innovation based on biological systems 

and derived biological data. Responsible innovation based on natural resources is 

explored using the common pool resource framework and using the emerging field 

of biodiversity sequencing as an example. Biological systems that have a vast digital 

representation which is shared by a community have aspects from both a natural 

resource commons and from a knowledge commons, but differ in their structure and 

dynamics. We therefore propose the concept of “Twin Commons”: the institutional 

arrangement of natural resources that have a tightly linked digital component which 

is shared and governed by a community, and that have research and innovation as 

important outlets.   

4.2. Chapter introduction 

Digitalization opens up biological populations and ecosystems for human usage in 

novel ways. As indicated by Hess and Ostrom, the mere fact that digital technologies 

allow capturing aspects of biological systems that were previously uncapturable, 

“creates a fundamental change in the nature of the resource, with the resource being 

converted from a nonrivalrous, nonexclusionary public good into a common-pool 

resource that needs to be managed, monitored, and protected, to ensure sustainabil-

ity and preservation” (Hess & Ostrom, 2007).  

 Commons are the institutions that govern the creation and use of common pool 

resources – resources that are shared by multiple stakeholders and subject to social 

dilemmas (Ostrom, 1990). In this paper, we ask what type of commons can result 

from the digitalization of biological systems, and how these commons can contribute 

to responsible innovation based on (common pool) digitalized natural resources. The 

concept of common pool resources originated from the study of natural resources 

that are managed by a group of stakeholders and that are prone to social dilemmas 
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(Ostrom, 1999). Fishing grounds and forests are archetypical substrates of such 

‘natural resource commons’. The members of a community extract, for instance, fish 

or logs from the common pool resource, which can lead to depletion of the resource 

if not managed. Institutes around biophysical resources that have a digital correlate 

have been characterized as research commons (Dedeurwaerdere, Melindi-Ghidi, & 

Broggiato, 2016), or as knowledge commons (Strandburg, Frischmann, & Madison, 

2017). The first perspective targets biological data and related samples in a mainly 

academic research environment. The knowledge commons perspective focuses on 

biological data as the resource that is prone to social dilemmas. 

 As an alternative analysis, we propose to introduce the concept of Twin Com-

mons: commons in which the natural resources consist of a (bio)physical reality and 

of a digital extract that represents aspects of this reality. At the conceptual level, this 

concept helps to gain more clarity about the nature and the dynamics of digitalized 

natural resources and their related communities, and their difference from already 

existing categories of commons (i.e. natural resource commons, knowledge com-

mons, digital commons) (Section 2). Twin commons build on the concept of 

‘innovation commons’. As such they can shed light on innovation in natural resource 

digitalization initiatives (Section 3). A twin commons framework is proposed to cover 

the main aspects in public natural resource digitalization initiatives (Section 4). 

Venues for responsible innovation in twin commons are explored in Section 5. In 

section 6, we discuss twin commons in the context of the biodiversity sequencing 

field, more specifically in the context of the setup of the recently initiated Earth 

Biogenome Project (Lewin, et al., 2018)4. 

4.3. Digitalized Natural Resources as Common Pool Resources   

Natural resources, biological populations and ecosystems increasingly have a digital 

correlate. Molecular readout technologies now allow for characterizing the genomes 

of large populations, be it of humans, cattle, crops, wild plant species, up to microbes 

and fungi. Aerial imaging techniques allow for building high resolution and dynamic 

____________________________________________________________________ 
4  This project was launched in November 2018 and aims at sequencing all eukaryotic biodiversity 

within a decade. This endeavour requires a massive sample collection and sequencing initiative, 
encompassing multiple institutions and research communities from across the globe. The data will 
be made available as a global resource for research and innovation. The project therefore will need 
to develop institutions to deal with commons dilemmas. 	
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pictures of fishing grounds, geological structures, and land usage. The results are 

large quantities of geospatial, genetic, biochemical and phenotypic data, residing in a 

plethora of data repositories. Access to these data not only allows studying these 

biological systems in innovative ways, it can fundamentally change the nature of 

these systems, since they become available as ‘resources’ that can be mined (in silico, 

and as a consequence also in vivo) and utilized for human purposes. In biological 

systems that are already used as resources, digitalization can trigger a fundamental 

repurposing. Digitalization thereby generates substantial risks. It facilitates biopiracy, 

a situation in which information on natural compounds is used to file patents or 

develop products, without consent or a proper compensation of the communities 

that have the traditional knowledge about the related species, nor a contribution to 

the biotope’s sustainability. Digitalization also paves the way for potentially disrup-

tive technologies, such as for instance the application of gene drive technologies for 

engineering ecosystems. Digitalization of biological systems also creates substantial 

opportunities. Biodiversity conservation can for instance benefit from a deeper 

knowledge of biological diversity at the genetic level. Economic and societal oppor-

tunities lie in innovations that can be derived from the bio-data.  

 Shared natural resources, whether digitalized or not, are subject to problems like 

congestion, free riding, conflict, overuse, pollution and degradation, commodifica-

tion or enclosure, and non-sustainability (Hess & Ostrom, 2007). Classical economic 

theory predicts a ‘tragedy of the commons’ (Hardin 1968) as the bleak outcome of 

these social dilemmas. In this scenario, stakeholders collectively overuse and eventu-

ally deplete the resource in their rational pursuit to maximize individual interests. In 

practice however, local communities seem to be able to circumvent this grim predic-

tion without having to revert to privatization of the resource. They do so by 

installing rules that organize the interactions among the stakeholders, and between 

the stakeholders and the resource. Ostrom termed these shared resources “Common 

Pool Resources” – and defined them as “natural or man-made resource system that 

are sufficiently large to make it costly (but not impossible) to exclude potential 

beneficiaries from obtaining benefits from its use” (Ostrom, 1990). Natural resources 

have been framed as common pool resources when a multitude of stakeholders is 

involved in their management and usage. The term ‘commons’ originally refers to 

the common grounds in medieval Europe, where villagers were allowed to harvest 

fruits, wood, and graze their herds. Commons imply social dilemmas: conflicts 

between individual’s rational behavior and the group’s optimal outcomes (Poteete, 

2010). Ostrom and colleagues studied a variety of natural resource commons. Eight 
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institutional design principles were derived that are associated with long-during 

commons: clearly defined boundaries, rules that are tuned to local circumstances, 

participation in the rule setting and modification, monitoring of the appropriators 

and graduated sanctions in case of violations, conflict-resolution mechanisms, 

recognition of the right to self-organize by external institutions, and the organization 

of key activities in the commons as multiple layers of nested enterprises (Ostrom, 

1990).  

 Digitalization can substantially affect the dynamics of natural resources and the 

related commons by creating a second digital common pool resource that is inter-

linked with the natural resource. The common pool resource concept was also 

applied to this “new shared territory of global distributed information” (Hess & 

Ostrom, 2007). The main entry point was that knowledge is increasingly co-

produced, co-managed and co-used by a multitude of stakeholders. Especially with 

the advent of the Internet it became obvious that a digital equivalent of the known 

biophysical commons was in the making. Digitally stored information for instance 

provides the commonly shared knowledge grounds for scientists and technologists. 

These “Knowledge Commons” or “Cultural Commons” revolve around common 

pool resources consisting of pieces of information, rather than of matter (Madison, 

Frischmann, & Strandburg, 2010). They were defined as “the institutionalized 

community governance of the sharing and, in many cases, creation of information, 

science, knowledge, data, and other types of intellectual and cultural resources” 

(Strandburg, Frischmann, & Madison, 2017). Knowledge commons have some 

distinct features that set them apart from natural commons. Firstly, they are inher-

ently global, since asymptotically information and knowledge are not constrained by 

the boundaries of a specific local community. Secondly, they concern non-

subtractable resources. In contrast to for instance a fishing ground, a knowledge 

common pool resource cannot be depleted since knowledge does not decrease when 

being consumed. Nevertheless knowledge commons require a joint effort by the 

community of stakeholders in order to ensure production and availability of data and 

knowledge, to manage access rules, foster correct usage, etc. This non-subtractability 

makes knowledge also non-rivalrous, though the production of knowledge may 

depend on rivalrous input like time and money, and lead to rivalrous output like 

money or fame (Strandburg, Frischmann, & Madison, 2017). In contrast to natural 

resource commons, knowledge commons need to be created before they can be 

shared (Strandburg, Frischmann, & Madison, 2017).  
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 The knowledge commons concept was also applied to biological systems that 

obtained a digital representation: genetic data (Pálsson and Prainsack 2011), micro-

biology data (Uhlir, 2011) and to various types of medical data (Strandburg, 

Frischmann, & Madison, 2017). This is not surprising since biomedical and biologi-

cal sciences have become data intensive disciplines. Powerful digitization techniques 

such as next generation sequencing and medical imaging allow for massive readout 

of data from biological systems. These technologies result in large amounts of 

biological data, residing in repositories and made accessible via Internet technolo-

gies. Framing these systems as knowledge common pool resources provides an 

alternative to schemes where the data or the knowledge is considered as either public 

or proprietary. This perspective also implies an institutional component, rather than 

exclusively focusing on the individual actor, invention, or piece of information. 

Reframing the analysis in this broader context provides a more comprehensive view 

when analyzing processes like innovation and decision making in these complex 

environments. Knowledge commons have been broadly defined in this context, to 

cover not only knowledge but also the sustainable management of information and 

data (Strandburg, Frischmann, & Madison, 2017).  

 Importantly, digitalized natural resources must be analyzed neither as pure 

natural resources nor as pure digital resources. Rather, the commons revolving 

around these resources constitute hybrids made of a knowledge commons and a 

natural resource commons, having distinct dynamics and requiring a specific type of 

analysis. For instance, the production or read-out of biological data directly and 

intimately relates both to the biological samples as well as to the populations or 

ecosystems they originated from. Biological systems have been characterized as data 

repositories of sorts, in which massive amounts of genomic and molecular data are 

‘stored’ and available for ‘readout’. The human genome for instance has been 

termed in this context a natural resource, and medical genetics an extractive industry 

that extracts information and uses this to develop health care products (Evans, 2014) 

(Strandburg, Frischmann, & Madison, 2017). Analyzing these systems as mere 

knowledge commons would incorrectly imply that only the knowledge aspects are to 

be considered and are of value. Such framing runs the risk of reducing digitized 

biological systems to their knowledge components, thereby undervaluing and 

obscuring the underpinning populations or ecosystems.  
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4.4. Natural Resources as Substrate for Innovation   

Digitalization of natural resources aims at knowledge generation and at deriving 

innovations with market value and/or societal value. Often large-scale data generat-

ing endeavors aim at deeper scientific understanding of the targeted biological 

systems. Digitalized natural resources therefore have been characterized as the 

subject of research commons. The research community dealing with the exchange of 

information and samples on microbial strains has been for instance described as a 

microbial commons (Dedeurwaerdere, Melindi-Ghidi, & Broggiato, 2016). Next to 

research, many large-scale initiatives also explicitly seek to foster a flourishing 

innovation landscape around the generated scientific data. For example, the ge-

nomic data gathered in the Genomics England initiative is intended to be used to 

develop predictive medicine practices (Marx, 2015). The creation of a silicon-valley 

like cluster around Amazonian biodiversity has been proposed as a route to a new 

biodiversity based economy (Nobre, et al., 2016). Such initiatives therefore aim at 

the fostering of high levels of data-driven innovation. Data-driven research differs 

from settings where the data are generated in order to investigate dedicated research 

hypotheses. This type of research focuses on exploratory rather than theory-driven 

experimentation (Pietsch, 2015).  

 Innovation commons were recently proposed as a special case of knowledge 

commons (Potts, 2018). Innovation commons were defined as institutions ‘to facili-

tate cooperation and supply governance among a group of technology enthusiasts in 

order to create, under high uncertainty, a pooled resource from which the individual 

members of the community might seek to discover and develop entrepreneurial 

opportunities for innovation’ (Potts, 2018). The focus thus is on the peer production 

of information in order to derive business opportunities. Innovation commons bring 

the data, tacit knowledge, technologies and stakeholders together, thereby providing 

the conditions to spot entrepreneurial opportunities. In the innovation commons 

outlined by Potts, the commoners gather around the question how to transform an 

idea into an innovation. The preconditions for such innovation commons thus are a 

new idea, invention or technology; distributed information and tacit knowledge that 

are related to the idea; and uncertainty about whether that idea provides a concrete 

entrepreneurial opportunity – i.e. the knowledge problem that is inherent to this 

early innovation stage (Potts, 2018). Examples of innovation commons are open 

source software initiatives and hacker spaces that focus on novel technologies like 

blockchain and synthetic biology. Innovation commons are efficient in minimizing 

the transaction costs of discovering entrepreneurial opportunities present in the 
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community and its resources (tacit knowledge of its members, data, technologies). 

They thereby solve a collective action problem: given the uncertainty that invest-

ments in this early phase effectively will yield viable innovations, the innovation 

commons thrive on the rules and control mechanisms that are set by the community 

itself. More formal organizations are claimed to be less efficient in managing the 

transactions in this early stage of innovation.  

 Communities around digitalized natural resources meet the preconditions for an 

innovation commons. They concern expert knowledge about the generated data: 

how the data are structured, what already is known about the data, what potentially 

can be derived from the data. This tacit knowledge is distributed across various 

experts and proto-entrepreneurs, that form a community around the given topic and 

datasets. Digitalized natural resources, however, provide a different flavor of innova-

tion commons. Innovation communities centered around biological data are often 

long-standing and imply professional roles, as for instance in microbial research 

commons (Dedeurwaerdere, Melindi-Ghidi, & Broggiato, 2016) or the genome 

commons (Contreras, 2014). This in contrast to the hacker spaces that provided the 

archetype for Potts’ innovation commons. Hackers spaces are short lived and 

populated with technology enthusiasts. In contrast, the Human Genome project for 

example ran for over a decade, steadily releasing new data in the genome commons. 

The commons related to digitalized natural resources are not purely pre-

entrepreneurial, pre-firm nor pre-market. Data are generated over years and thereby 

give rise to a continuous valorization stream. The shared resources in innovation 

commons are the technologies and the knowledge that are required to derive 

innovations from them: knowledge about the market, about how to set up a success-

ful enterprise around an innovation, about regulatory boundaries, etc. The shared 

resources in digitalized natural resource commons also encompass the natural 

resource and the data resources that are derived from it. The microbial research 

commons for instance consist not only of shared microbial sequence data, but also of 

microbial collections (Dedeurwaerdere, Melindi-Ghidi, & Broggiato, 2016). There 

are therefore clear differences with the innovation commons model as described by 

Potts. The question thus is how to describe the commons that result from the 

digitalization of biological systems in a way that accurately captures their innovation 

dynamics. In the next section we attempt to do this by building on the previously 

described commons concepts.	
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4.5. A hybrid concept: Twin Commons 

Digitalization of biological systems concerns three interconnected resources. At the 

basis is the digitalized biological system, which becomes available as a natural 

resource. The derived biological data constitutes a knowledge resource. The con-

glomerate of entrepreneurial ideas, technologies and related knowledge about 

technical possibilities, and tacit knowledge about the data in general can function as 

an innovation resource from which opportunities can be identified. Each of these 

resources are prone to collective action problems since they are shared among 

multiple stakeholders. Neither markets nor state interventions alone are able to solve 

these issues of free riding, excessive resource usage, etc. For that reason, one can see 

that many natural resource digitalization initiatives in practice have the characteris-

tics of commons (Strandburg, Frischmann, & Madison, 2017) (Dedeurwaerdere, 

Melindi-Ghidi, & Broggiato, 2016). As indicated in previous section, digitalized 

natural resource commons have characteristics of natural resource commons, 

knowledge commons, research commons and innovation commons. A commons 

concept that contains elements from all aforementioned types is thus required.  

 We propose ‘Twin Commons’ as a framework to denote the institutional ar-

rangement of natural resources that have a tightly linked digital component which is 

shared and governed by a community, and that have research and innovation as 

important outlets. Twin commons comprise a twin resource (a natural resource and 

its digital representation, linked via technologies) that is managed by a group of 

stakeholders as a common resource (see Fig. 1). These elements provide an environ-

ment where innovation can take place. Twin commons consist of the following five 

components:  

 (1) (Bio)physical system: the natural resource, the particular ecosystem, or the 

population of biological individuals that are in scope as resource to be managed by 

the group of stakeholders.  

 (2) Digital and knowledge counterpart: the digital representation of the 

(bio)physical system. This can be the collection of genomic sequences derived from 

samples and related inferences about their relations to phenotypes, models of 

biological mechanisms and pathways, theories about potential applications, etc. This 

digital model represents certain molecular and phenotypic aspects of the biophysical 

system.  

 (3) Bridging technologies: technologies that provide a bridge between the 

(bio)physical system and its digital representation. This comprises the set of already 

available technologies that allow for deriving data from the bio-physical system (e.g. 
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genome sequencing technologies, sensor data, computational methods to analyse the 

data), and the set of technologies that allow to change the bio-physical system based 

on the digital representations (e.g. genomic editing technologies like CRISPR-Cas).  

 (4) Social system: the system that manages the natural, digital, and innovation 

resources as a commons. Along the lines of the Institutional Analysis and Develop-

ment framework (Ostrom, 2005), one can further distinguish the rules, the action 

arena and the attributes of the community. Concerning the attributes of the com-

munity, its boundaries are defined by topic, rather than by physical location as is the 

case for natural resource commons. Often the data are produced, managed and used 

by a variety of stakeholders. Submission, management and usage of the data are 

subject to some of the social dilemmas that are characteristic of a commons. Re-

searchers that contribute data to the resource want to avoid the free-rider problem, 

and ensure that they obtain what they see as the proper benefits from their efforts. 

Successful commons often develop rules to efficiently identify and sanction free-

riders (Poteete, 2010). Rules, be them formal or informal, have an impact on the 

interactions between the actors. Data submission and access rules for instance vary 

across data repositories and demarcate the boundaries of the commons.  

 (5) Innovation common resources. Twin commons provide the raw material and 

the social structures that help enable innovation: the pool of shared or tacit knowl-

edge about technologies, data, and related innovation opportunities, together with 

the access to the natural and digital resources.  
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Fig.1. Components of a Twin Commons. The components in the Institutional 

Analysis and Development framework (Ostrom, 2005) are presented in an aggre-

gated way under ‘Social system’, and put in relation to the resource component in 

the commons (the biophysical system; its digital representation; and the technologies 

that mediate the relation between both). Innovation resources comprise all the 

components in the twin commons. 

  

 The innovation aspect of twin commons has characteristics of the innovation 

commons as described by Potts (Potts, 2018). Twin commons bring together a 

heterogeneous community of funders, researchers and entrepreneurs that together 

construct innovation opportunities (including both technical and business opportuni-

ties). Twin commons do this specifically by bringing the stakeholders together 

around a scientific data gathering initiative. Access to a natural resource and to 

digitalization technologies is a prerequisite for constructing the pool of shared 

biological data. This interplay between the biophysical, the informational, and the 

societal aspects of natural resources is key to understanding the innovation dynamics 

in twin commons. Given the fact that biological systems evolved over billions of 

years, biological datasets can only shed light on a very tiny fraction of the complex 

biological reality. The primary source of innovation opportunities is in the biological 

system. Focusing solely on the knowledge component therefore would miss out on 

the importance and the inherent value of the biological system in the innovation 

process. Twin commons tend to be long standing. Construction of the shared pool of 
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biological data and knowledge takes time and resources. Twin commons therefore 

are not entirely pre-market. Tech transfer departments and public-private partner-

ships are often involved. The commoners can include amateur enthusiasts that look 

for business opportunities, but often consist of professional scientists, business 

developers, program managers, etc.  

 In short, twin commons in biology comprise digital information (for instance 

sequences and their annotation); the related biological populations, ecosystems, and 

the derived biological material; and a community that uses these resources in the 

identification of innovation opportunities and that applies self-governance to sustain-

ably manage the commons pool resources. Examples are ubiquitous in biological 

sciences, though the focus is often put on the knowledge commons aspect. Human 

genomic data was for instance framed as a resource for knowledge commons (Evans, 

2017). The tight link between human populations, derived genomic data, and 

innovation potential calls though for a setting where all elements are taken into 

account, in order to avoid usage of genomic data without a contribution to those 

populations (Hardy, Séguin, Ramesar, Singer, & Daar, 2008). A similar situation can 

be observed with respect to biodiversity data, where a social production model for 

both the sharable goods and the derived information was suggested. In the studied 

case, the microbial data commons hinge on the materials commons, though the 

impact of regulators on sharing behavior substantially differs in both domains, with a 

higher reluctance to share data than materials (Dedeurwaerdere, Melindi-Ghidi, & 

Broggiato, 2016).  

4.6. Responsible Innovation in the Twin Commons   

Innovation constitutes an intrinsic part of many large-scale biological data generat-

ing efforts. The vast impact these innovations can have on society and on the natural 

world sharply raises the question of responsibility. What are the venues for responsi-

ble innovation in a twin commons? Responsibility is a rich concept that goes beyond 

the attribution of blame for undesired events, and also encompasses a virtue ethics 

component. Interpreted as such, responsibility is a character trait of members in an 

innovators community (van de Poel & Fahlquist, 2012). Moreover, it has been 

argued that responsibility is not something that needs to be added to innovation, but 

provides both the very foundation and motivation for innovation (Bergen, 2017). 

These foundational and motivational relationships between responsibility and 

innovation are, on the one hand, already visible as inherent aspects of twin com-
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mons. Responsibility plays an instrumental role in the management of every com-

mon pool resource. It provides a necessary complement to rational self-interest of 

individual stakeholders and thereby is instrumental in avoiding a tragedy of the 

commons. Experimental research showed that participants in social dilemma games 

are willing to give up part of their monetary benefits, in order to get the capability to 

punish players that misbehave. In successful commons, irresponsible behavior 

towards the commons or towards the community of stakeholders is carefully moni-

tored and sanctioned (Poteete, 2010). In the case of twin commons, collective 

responsibility may take the form of implicit or explicit rules on for instance data 

release policies, data quality, extraction of intellectual property. Collective responsi-

bility may also play an important role in constructing the innovation commons. 

These projects often aim at contributing to solutions for wicked problems, providing 

an overall focus on for instance sustainability and biodiversity conservation, or the 

feeding a growing world population.  

 On the other hand, tragedies of the commons nevertheless occur. Bergen thus 

points to a third relationship between responsibility and innovation in which “the 

outcomes of innovation form the structures through which we can actually work 

towards justice” (Bergen 2017: 362). The question is how one can better ensure 

societal value by the deliberate inclusion of values in the innovation process, so that 

technologies evolve in a direction that is beneficial for society as a whole, and 

negative outcomes are avoided. Responsible innovation has been proposed as a 

conceptual framework to enable this. In a broad sense, it is defined as “taking care of 

the future through collective stewardship of science and innovation in the present.” 

(Stilgoe, Owen, & Macnaghten, 2013). The emphasis of collective stewardship can 

also be found in the definition of von Schomberg (von Schomberg 2013). Other 

definitions focus on the translation of value considerations into functional require-

ments in the innovation process. Moral evaluation of the consequences of the 

possible actions during innovation should lead to requirements that are included the 

innovation process (van den Hoven, et al., 2013). In short, the rules, interaction 

mechanisms, and values that characterize a twin commons, can provide the context 

for innovation to occur in a responsible way.  

 Theories of action in commons (Poteete, 2010) can provide a framework to spell 

out the notion of collective stewardship in responsible innovation. The Institutional 

Analysis and Development developed by Ostrom and others (Ostrom, 2005) allows 

analyzing stakeholders and their relations in a commons and has already been linked 

to responsible innovation (Kuzma, et al., 2017). Design principles for a sustainable 
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management of common pool resources also apply to commons where innovation 

assets (biological samples, data, knowledge, etc.) are a shared resource. Innovation 

commons for instance require mechanisms to avoid that free riders file intellectual 

property based on shared resources. Collective stewardship in a responsible innova-

tion approach often encompasses the involvement of a broader set of stakeholders in 

the innovation process. In industrial settings, information constitutes a competitive 

advantage, and stakeholders strongly differ in the power they can exert (Blok & 

Lemmens, 2015) (Bergen, 2017). In a twin commons, all stakeholders participate in 

one way or another in the governing of the shared resources. Stakeholder involve-

ment in a commons is therefore not something that is injected in an already existing 

innovation process, but an intrinsic and structural part of the innovation process. 

 Alongside technical innovations, twin commons also allow for framing social 

innovations. Social innovations have not been a primary focus in the responsible 

innovation literature (Lubberink, Blok, Van Ophem, & Omta, 2017) (Blok & 

Lemmens, 2015) (Bergen, 2017). Common pool resources, with the focus on solving 

social dilemmas, provide an established framework to structurally include social 

innovations in the sustainable management of a natural resource. The interaction 

with digitalized biological systems challenges the status quo and calls not only for 

technical but also for social innovations. The national implementations of the 

Nagoya Protocol for instance can be regarded partially as social innovations. 

Mechanisms for a fair sharing of benefits needed to be fundamentally rethought – in 

light of both the natural resources that could be distributed globally, potentially 

providing significant income from innovation, and the global community that could 

share information via digital routes. 

 Twin commons also provide a conceptual instrument to pinpoint more precisely 

which areas of responsibility to consider in relation to the innovation process. One 

has responsibilities towards the biological systems in scope, for instance the responsi-

bility to not negatively impact the sustainable management of the resource. Another 

example is the responsibility to respect the inherent value of the resource during the 

innovation process. One also has responsibilities towards the derived data and 

knowledge, for instance the responsibility to contribute to sustainable management 

of the data resource, the responsibility to guarantee privacy in case of personal data, 

or the responsibility to contribute information to the data resource. Responsibilities 

regarding the mediating technologies can include innovating in fields that contribute 

to the sustainability of the natural resource, for instance improved management of a 

biotope via smart applications based on sensor data. Responsibilities towards the 
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community of stakeholders include a fair distribution of the value derived from 

innovation, especially when commercial initiatives are derived from publicly funded 

initiatives.  

 Last but not least, the different components of a twin commons provide an 

instrument to make explicit what values are at stake in the commons and its innova-

tion processes. Innovations related to twin commons often concern emerging 

technologies, disruptive innovation, dual use technologies and/or control dilemmas 

(Collingridge, 1980), (Owen, et al., 2013), all of which can lead to value contestation 

or neglect. Mapping values at stake in twin commons is an important step toward 

achieving responsible innovation. Values influence which innovations are pursued 

when applying data-derived insights. They constitute the moral context in which 

innovations occur including innovations related to digitalized natural resources. For 

example, a synthetic biology route was used to produce the antimalarial agent 

artemisinin using a novel route with the aim to make antimalarial treatment more 

available for patients in developing countries (Paddon & Keasling, 2014). Similar 

technologies are also used for the production of enzymes for washing powder, or for 

the conversion of crop residues into biofuel, aiming at economic benefits but also on 

a decreased impact on the environment. In some cases, the impact on global natural 

commons is potentially very high, as in the case of gene drives technologies. Such 

cases show that values – whether embedded in governance measures or in research 

ethics – and public deliberation are pivotal (Oye, et al., 2014). The components of a 

twin commons constitute areas where values impact the innovation process. As such, 

they can facilitate responsible innovation in cases of epistemic insufficiency where it 

is difficult to anticipate the impact of innovations (Blok & Lemmens, 2015). For 

example, embedding of values like the preservation of biodiversity (Lewin, et al., 

2018) or more instrumentally data ethics values like correctness and openness of data 

(Floridi & Taddeo, 2016) provides the context in which innovation occurs.  

4.7. Biodiversity Sequencing initiatives – venues for responsible 
innovation   

In this section we apply the twin commons concept and illustrate its relation to 

responsible innovation by considering the emerging field of biodiversity sequencing, 

as exemplified by the recently initiated Earth Biogenome Project. The Earth Bioge-

nome Project aims at the sequencing a vast representation of eukaryotes, comprising 

all known plants and animals (Lewin, et al., 2018). The project is analogous to the 

Earth Microbiome Project (The Earth Microbiome Project Consortium, 2017), 
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another large-scale biodiversity sequencing project that charts microbial communi-

ties in habitats spread across the globe. Biodiversity constitutes an important source 

of innovation opportunities (Lewin, et al., 2018) (Nobre, et al., 2016). Efforts to map 

genetic diversity in all different kingdoms of life, including human genetic diversity, 

aim at this innovative potential, including the development of novel drugs, molecular 

biology tools, bioprocesses, and improved agricultural production. Sequencing of 

varieties of important crops like rice and corn for instance provides a rich resource 

for breeding (Varshney, Terauchi, & McCouch, 2014). Twin commons can shed 

light on challenges and opportunities in biodiversity sequencing based responsible 

innovation. The tension between local ecosystems and biological sample collections 

versus globally distributed digital sequence information testifies to the importance of 

the relation between material commons and data commons. Resources (samples, 

sequence data) in these projects often constitute shared resources that are subject to 

collective action problems. Next to this, they provide the material for (bio)data-

driven innovations that can vastly impact the natural world and society.  

 Biodiversity sequencing project resources are twin resource systems. The Earth Biogenome 

Project concerns a natural resource (plant, animal and fungal species from various 

environments across the globe) and a digital resource (the metadata that describe the 

sample and measured parameters, the genomic sequence reads, and derived data). 

The digital resource is linked to the organisms in their ecosystems with technologies 

(sampling technologies, DNA sequencing technologies, genome editing technologies). 

Genomic data are not fully analogous to the data found in digital commons (Pálsson 

& Prainsack, 2011). Genomics data are embedded in biochemical molecules in 

biological beings, and partly available as representations of nucleotide sequences in 

data repositories. Sample acquisition provides the bridge between biotopes and 

digital sequence information. Organization of sample acquisition at a global scale 

builds upon multiple twin commons in case of the Earth Biogenome Project, by 

relying on a conglomerate of dedicated initiatives that organize their own sample 

collection. The Darwin Tree of Life project for example collaborates with multiple 

organizations, like botanical gardens and academic institutions, to gather samples 

from the British islands. Nesting of smaller locally funded commons (for instance the 

Darwin Tree of Life project, focusing on specific biotopes) into larger commons (the 

Earth Biogenome Project in this case) provides opportunities for a distributed 

funding of this large initiative, by breaking it down to individually funded local 

initiatives. 
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 Samples tie data to a certain physical location or specific biological entity: the 

biotope or the organism from which the data were derived from. This provides a 

tension with the nature of electronic data, which can be easily distributed globally. 

Taking locality into account however is necessary to ensure fair access to the data 

and related benefits, for instance the benefits derived from innovations. Access and 

benefit sharing is the focus of the Nagoya protocol, which is a global protocol that is 

implemented on the national level. The protocol’s objective is to foster a fair distri-

bution of the benefits derived from biodiversity genetic resources and from 

traditional knowledge about these genetic resources. This entails the regulation of 

the access to genetic resources, access to technologies, benefit sharing obligations, 

and compliance with local regulation (Convention on Biological Diversity, 2010). 

Brazil implemented its own framework to regulate access to genetic heritage and 

associated traditional knowledge for purposes of scientific research, bioprospecting, 

and technological development. A national system of genetic resource management 

and associated traditional knowledge (SisGen) was put in place to facilitate compli-

ance with the legislation, by supporting the registration of access, shipment or 

exploitation of genetic material and associated traditional knowledge. The federal 

government is the recipient of the benefit sharing via the National Fund for Benefit 

Sharing. The money in this fund is intended for a multitude of purposes, amongst 

which the sustainable management and conservation via support for indigenous 

people and traditional farmers. How exactly this fund will contribute to biotope 

preservation (for instance by preventing deforestation in the Amazon basin), how-

ever, needs to be seen.  

 Considering these as twin resource systems provides a way to bring this in the 

scope of management. The Amazon Bank of Codes and the Amazon Third Way 

Initiative (Nobre, et al., 2016) aim to tightly connect the Amazon biotope to its 

derived data and to the innovation community in order to support the sustainable 

management of these resources. Blockchain technologies will be used to track usage 

of genetic data derived from the Amazon biotopes, together with the generated IP 

assets, and record the provenance, rights and obligations related to the usage of these 

twin resources (Lewin, et al., 2018).  

 The twin resources in public biodiversity sequencing projects are in practice managed as 

commons. Managing the construction and usage of a biodiversity sequencing project 

implies heterogeneous stakeholders and a proneness to social dilemmas. Biodiversity 

sequencing initiatives have sometimes been framed as commons. For instance, the 

communities around microbial databases and microbial biodiversity have been 
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studied as commons (Dedeurwaerdere, Melindi-Ghidi, & Broggiato, 2016) (Hess & 

Ostrom, 2007), moreover commons were proposed as a strategy to design this 

research field (Uhlir, 2011). In the medical field, the knowledge commons framework 

was applied to human genomics data, population biobanks, cancer biology, neuro-

science data, and data on rare diseases (Strandburg, Frischmann, & Madison, 2017). 

The Earth Biogenome Project (Lewin, et al., 2018) shows that multiple stakeholders 

are involved in the rule setting and management of both the natural resource and its 

derived genomic data. Its governance structure will include representatives from 

government, private industry, civil society, international organizations, private 

foundations, and participating research communities and organizations.  

 The stakeholders in a twin commons engage in a complex web of interactions to 

manage the resource and distribute the benefits. Framing biodiversity sequencing 

projects as a twin commons emphasizes the (technology-mediated) connection 

between the biological resources (be it botanical gardens, natural history museums, 

microbial collections, or real biotopes like the Amazon rain forest) and the derived 

data and knowledge. Natural resource commons tend to be local and have rather 

clearly defined community boundaries, while knowledge commons tend to be global. 

Biodiversity sequencing programs have characteristics of both. In case of the Earth 

Biogenome Project (Lewin, et al., 2018) a global community of academics and 

companies will have access to the information. But local communities in for instance 

the Amazon basin should also profit from the revenue streams that these global 

parties generate, and from local development of scientific know-how. 

 Framing biodiversity sequencing initiatives as twin commons also embeds the 

notion that interactions between the actors in the commons, and between these 

actors and the natural resource, are mediated by technologies. For instance, in the 

Amazon Bank of Codes project, blockchain technologies are proposed as a technol-

ogy to track the relations between the biological origins and their derived data, and 

to the track the interactions of stakeholders with these data. Such technologies would 

allow registering both the rights and the duties of stakeholders in a distributed 

setting, providing an instrument in the practical implementation of the Nagoya 

protocol. Values embedded in blockchain technologies (the fact that one cannot 

tamper with the information, and that the information can be globally accessible) 

thus support the fair sharing of benefits derived from innovations with the communi-

ties from which the data were derived. Properly designed technology can support 

common formation by supporting design principles in Ostrom’s commons frame-

work, for instance by lowering the cost of implementing and managing clearly 
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defined community boundaries, monitoring of the community members, and 

collective choice arrangements that allow most participants to contribute to decisions 

(Williams & Hall, 2015). 

 Digitalization allows for quantification and transparency and can thereby directly 

support better management (although it could also lead to more intensive exploita-

tion) of a natural resource. In non-digitalized natural resources it is often hard to 

know exactly how much is extracted from the commons. With the aid of sensors, 

databases and dashboards one can much better quantify resource usage and make 

this transparent to the entire community of stakeholders. Next to this, the addition of 

social software components can provide a binding factor for an otherwise anony-

mous and global community. Norms and values can be embedded in the structure of 

such social software environments. Tools can for instance be embedded for monitor-

ing and punishing free-riders, for the appraisal of contributors, for a fair distribution 

of benefits, and for an open forum for deliberation about rules and standards. The 

types of commons that result from sequencing initiatives vastly differ. This opens up 

multiple venues for responsible innovation through attention to funding regimes, the 

definition of the boundaries of the commons, and the ways participants and other 

stakeholders are involved in the commons.  

 Biodiversity sequencing projects target innovation. Biodiversity sequencing projects are 

typically structured as research communities with valorization and technology 

transfer outlets. Biodiversity sequence data constitutes a rich source for innovative 

applications in a broad range of human endeavors: health care, production of fine 

chemicals and biofuels, bioremediation, agriculture, biomaterials, etc. About half of 

the FDA-approved drugs that are on the market are derived directly or indirectly 

from natural products (Katz, 2011). Most of the genetic engineering tools that are 

available to biotechnology are derived from Nature. Enzymes like reverse tran-

scriptases and restriction enzymes have given rise to entire industries in health care, 

agriculture and white biotechnology. Human biodiversity at the genetic and the 

metagenomic level is also a rich substrate for developing innovative diagnostic and 

therapeutic tools. Population genomics initiatives are mapping biodiversity in entire 

human populations, in order to develop novel health care approaches. 

 And yet, the rapid loss in biodiversity constitutes one of the so-called ‘wicked 

problems’ of this century. The rate of extinction of species is estimated to increase 

about five times in the near future as compared to the recent past (Johnson, et al., 

2017). One of the main causes is overexploitation by natural resource-intensive 

industries (Johnson, et al., 2017). Significant loss of natural habitats and related 
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biodiversity will lead to a definitive loss in natural capital, and eventually to ecosys-

tem instability. Such loss in natural capital would vastly reduce the ability to meet 

the grand challenges related to the growing world population.  

 Some claim that developing new economic models that are based on biodiversity 

could provide a major opportunity to make biodiversity conservation compatible 

with economic growth (Rodríguez & Sotomayor, 2019) (Nobre, et al., 2016). Such 

models would rely heavily on biodiversity-based innovation. This strategy is pursued 

for instance in the “Third Way”, proposing to “aggressively research, develop, and 

scale a new high-tech innovation approach that sees the Amazon as a global public 

good of biological assets and biomimetic designs that can enable the creation of 

innovative high-value products, services, and platforms for current and for entirely 

new markets by applying a combination of advanced digital, material, and biological 

technology breakthroughs to their privileged biological and biomimetic assets.” 

(Nobre, et al., 2016). The construction of a biodiversity database at the DNA 

sequence level in this case is an explicit strategy to value the related natural resources 

in a fundamentally different way, and to transform the old resource-intensive 

industries and agricultural practices into a new bio-based economy that preserves the 

Amazon’s ecosystem. Commons can facilitate the enablement of such new economic 

models, by providing alternatives to the classical dichotomy between state control 

and the market, by clustering the resources that are needed for innovation (biological 

materials, data, knowledge, ideas), and by providing a context to frame not only 

technical innovation but also social innovation (via the development of institutions 

that allow for collective self-governance).  

 Analysing biodiversity sequencing projects as twin commons offers routes towards responsible 

innovation. Responsibility during the innovation process has very different flavors 

across the different biodiversity sequencing related activities. Responsible ways of 

dealing with innovation in the Earth Biogenome Project focus on fair and broad 

access to the data, and fair sharing of the benefits derived from innovations. In the 

synthetic biology community, a strong emphasis is put on openness in the data and 

the approaches, on a copy-with-pride mentality rather than patenting strategies 

(Torrance, 2017), and on safety - since this potentially concerns dual-use technolo-

gies (Wang & Zhang, 2019).  

 Inclusion of stakeholders in the innovation process is one of the conceptual 

dimensions of responsible innovation (Burget, Bardone, & Pedaste, 2017). In biodi-

versity sequencing projects it can be challenging to install stakeholder involvement in 

the early innovation steps to clarify the norms and values at stake and to align them 
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with what is societally preferable. Innovation is inherently characterized by informa-

tion asymmetries and power imbalances, since innovation is pursued to create a 

competitive advantage and generate intellectual property (Blok & Lemmens, 2015). 

Stakeholder involvement during early innovation steps (especially when related to 

corporate environments) can benefit from the collective self-regulation characteristic 

to commons. Responsible behaviour can be fostered by deliberate inclusion of values 

in the structure and workings of the commons. This can be done via the values that 

underpin the creation of the common resources, for example the values of sustain-

ability and of biodiversity conservation in the case of biodiversity sequencing 

initiatives.  

 Values are also inherent to the rules that apply when valuable innovations are 

derived from the data. Since heterogeneous stakeholders together construct an 

environment for the identification of opportunities, stakeholder involvement is at 

play in setting the rules and in the values that are pursued in the innovation com-

mons, rather than in each individual innovation step. The so-called pharmaceutical 

commons testify to these dynamics (Lezaun & Montgomery, 2015). Deliberation of 

the values at stake in the commons (via the commoner’s community), and inclusion 

of values in the rules that govern the common, provide two clear venues for respon-

sible innovation in public biodiversity sequencing initiatives. Next to this, Value 

Sensitive Design (van den Hoven J. , 2013) provides a way to embed values in the 

technologies used in the twin commons. Value sensitive design comprises the 

deliberate inclusion of values in artefacts (van den Hoven J. , 2013). One can target 

the inclusion of values in the artefacts that are the output of the innovation process, 

as for instance in the development of washing powder enzymes that work at lower 

temperatures and thereby contribute to sustainability. Another route is to consider 

the values that are embedded in the technologies that mediate the relation among 

the natural resource, its data representation, and the community of stakeholders. 

Values can for instance determine the access to the resources and the boundaries of 

the community. Blockchain technologies can ensure traceability and validity of the 

contracts and interactions.  

 The twin commons framework can be used to map out the community of 

stakeholders involved in commons-based innovation. When analyzing genomic data 

repositories as genome commons, the different stakeholders have been described in 

terms of funders, data generators, data intermediaries, data subjects, the public, data 

users and scientific leaders (Contreras, 2014). The latter two groups are formally 

tasked with the scientific aspects of the innovation, but it is clear that all stakeholder 
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groups contribute to the innovation dynamics. Stakeholder heterogeneity poses a 

challenge in managing common pool resources (Poteete, 2010) given the asymmetry 

in investments and benefits.  

 The twin commons framework can also be instrumental in the clarification of the 

values to be pursued during responsible innovation. Framing biodiversity sequencing 

projects simply as knowledge commons carries the risk that social dilemmas amongst 

the actors are considered to be merely about the information, not also about the 

ecosystems that underpin the information. Such framing also misses out on the fact 

that innovation happens not only in the conceptual space, but requires the interac-

tion with the biological system. A twin commons implies that both the natural and 

the informational components are valued as intricate parts of the resource system. It 

avoids the virtualization and thereby depreciation of the biological system when 

dealing with it. 

4.8. Chapter conclusions 

Biological systems are being increasingly digitalized by wireless sensors, imaging 

technologies, molecular readouts, and other means. This digitalization makes these 

biological systems available in unprecedented ways. While the digital resource 

provides fertile ground for research insights and innovations, digitalized natural 

resources pose specific opportunities and challenges. The main question explored 

here is how to provide the right environment for research and innovations—one that 

develops innovations in a societally beneficial ways while mitigating risks.  

 In this paper we propose twin commons as framework and related it to venues 

for responsible innovation. We define twin commons as digitalized biological systems 

that constitute a common resource managed by a group of stakeholders, have a 

proneness to social dilemmas, and have research and innovation as their main focus. 

The twin commons framework builds on natural resource commons (Ostrom, 1990) 

and on knowledge commons (Hess & Ostrom, 2007). Twin commons display 

characteristics of both types of commons, since they concern a twin resource: a 

digital resource that is derived from a natural resource. For instance, ecosystems are 

geographically local, but the derived data have (tangentially) the character of a 

global resource. The biological system is a given, while the digital resource is pro-

duced. Bringing both together in one framework makes this tension explicit. The 

twin commons framework also builds on the innovation commons (Potts, 2018). 

Twin commons are formed in order to provide a fruitful environment for research 
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and for marketable innovations. Many of the large biodiversity sequencing initiatives 

for instance aim at the generation of knowledge, but also on the fostering of a 

biotech-economy. Twin commoners, however, tend to be professionals who gather 

in long term initiatives, in contrast to innovation commons (modelled on hacker-

space communities) which tend to be short lived and composed of enthusiasts pre-

market (Potts, 2018). More empirical research is needed to analyze the variety of 

public natural resource digitalization projects, for their stakeholder composition, 

community structure, spatial and time component, and innovation dynamics. As an 

outlook, cross learning over the diverse biodiversity sequencing projects can be 

highly valuable. Along the lines of common pool resource analysis executed on 

natural resource commons by Ostrom and others, one can expect to derive charac-

teristics of successful and responsibly innovative commons. 

 The twin commons framework can be instrumental when pursuing the responsi-

ble digitalization of natural resources. One aim of responsible innovation is to align 

innovations with the values that are preferred by stakeholders. Twin commons 

provide multiple venues to assist in reaching that goal. They provide an instrument 

to map the stakeholders and the interactions and rules that are set amongst them. 

They also provide a structure to map the values that are implicitly or explicitly 

present in the innovation environment. Finally, they provide a tool to engineer the 

innovation environment, for instance by embedding values, or by making delibera-

tion about values a design component of the community. This helps in guiding 

innovation in environments where early-stage stakeholder involvement is difficult to 

foster, for instance in industrial settings where information asymmetries can be key 

to competitiveness. A responsible innovation approach in digitalized natural re-

source commons can combine risk analysis and the alignment of innovations with 

transparently deliberated values. Further research in concrete natural resource 

digitalization projects will be needed to derive practical formulas for responsible 

innovation in these systems.  

 Interactions among stakeholders in twin commons are digitally supported, given 

the often global character of these communities. This provides interesting venues for 

a Value Sensitive Design approach, in which values are embedded in the systems 

that support electronic interaction among stakeholders and between stakeholders 

and the data. Tracking of the usage and of the derived benefits can for instance be 

done using blockchain technologies, as was proposed for the Amazon Bank of 

Codes. Here also, further conceptual and empirical research is needed to identify 
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principles for organizing fair and sustainable commons that provide innovations that 

are aligned with societally preferred directions and that mitigate the related risks. 
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5 Responsible Innovation in Synthetic  

Biology in response to COVID-19:  

The role of  data positionality	
  

5.1. Chapter abstract 

Synthetic biology, as an engineering approach to biological systems, has the poten-

tial to disruptively innovate the development of vaccines, therapeutics, and 

diagnostics. Data accessibility and differences in data-usage capabilities are impor-

tant factors in shaping this innovation landscape. In this paper, the data that 

underpin synthetic biology responses to the COVID-19 pandemic are analyzed as 

positional information goods—goods whose value depends on exclusivity. The 

positionality of biological data impacts the ability to guide innovations toward 

societally preferred goals. From both an ethical and economic point of view, posi-

tionality can lead to suboptimal as well as beneficial situations. When aiming for 

responsible innovation (i.e. embedding societal deliberation in the innovation 

process), it is important to consider hurdles and facilitators in data access and use. 

Central governance and knowledge commons provide routes to mitigate the nega-

tive effects of data positionality. 

5.2. Introduction 

Synthetic biology is a bio-engineering field that pursues the data-driven design of 

biological systems (Freemont, 2019). It combines molecular biology and lab automa-

tion with in silico design techniques that are fueled by biological data. In silico design 

refers to the computer-aided design of biological molecules and biological processes, 

for example, the modeling of proteins or the modeling of pathways that allow for the 

biochemical synthesis of compounds. Synthetic biology was highlighted in a report 

from the European Parliament as one of the emerging technologies that can fight the 

COVID-19 pandemic (Kritikos, 2020). The National Institute of Health in the USA 

also identified synthetic biology as one way to speed up vaccine development 

(Begley, 2020). Its potential to revolutionize the development and production of 

vaccines, therapeutics, and diagnostics underpins this hope. The techniques devel-

oped in the synthetic biology community open up radical new possibilities and allow 
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for a more rapid exploration of such possibilities than with established processes. 

Synthetic biology labs and firms actively started applying their technologies to 

contribute solutions for the COVID-19 pandemic. Although probably not part of 

the first wave of drugs and vaccines, such innovations can shape future responses to 

this and all future pandemics. For example, DNA- and mRNA-based vaccine 

technologies can ease the development and production of vaccines. These vaccines 

consist of synthetic nucleotide strands that trigger the formation of proteins via the 

individual’s own cells, thereby inducing an immune response. The availability of 

viral sequence data can thus be rapidly translated into vaccine candidates. This 

allowed ventures such as Moderna and Inovio to move into clinical development in 

just a few months following the public release of the genetic code of the virus (Thanh 

Le, et al., 2020). Synthetic biology techniques are also used to construct antigen-

carrying nanoparticles. Such nanoparticles have been shown to effectively trigger 

immune responses in mice and nonhuman primates (Marcandalli, Fiala, Ols, & al., 

2019). Nanoparticles can potentially reduce the need for adjuvants and facilitate 

scalable production. They also show high stability at room temperature, which 

would ease their distribution in low-income countries (Shin, et al., 2020). This 

evolution testifies to the disruptive potential of data-driven “plug and play” platforms 

that aim at the modular design of vaccines against new viruses (CEPI, 2020). Syn-

thetic biology techniques have also been applied in drug discovery and development. 

For example, cell-free systems were used to design biosynthetic pathways for the 

antiviral agent valinomycin (Zhuang, et al., 2020). Cell-free systems are free from the 

complexity and constraints that come with intact cells, containing only the biological 

components that support the process of interest. Such systems therefore have the 

potential to further widen the range of engineering possibilities. Synthetic biology 

techniques have also been applied to develop diagnostic tests for SARS-CoV-2 

(Broughton, et al., 2020). 

 The previous examples are indicative of the potential of synthetic biology 

techniques to disruptively transform how society can respond to viral outbreaks. 

Given the devastating impact of the COVID-19 pandemic on people, societies, and 

economies, rapid responses based on innovations in vaccine development, therapeu-

tics, and diagnostics can be very beneficial. Innovations, however, need to be aligned 

with societal values to realize this potential. Besides biosafety and biosecurity, 

innovations need to align with values, such as privacy, access to good healthcare, 

and a fair distribution of derived benefits. Guiding innovation toward such societally 

preferred goals is highly relevant in view of the deluge of innovations in synthetic 
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biology and the strong moral load of data-driven innovations in healthcare 

(Bruynseels, Santoni de Sio, & van den Hoven, 2018). Responsible research and 

innovation (RRI) was proposed as a way to align technological innovation with 

values preferred by society. RRI has been explored in both synthetic biology 

(Macnaghten, Owen, & Jackson, 2016) and healthcare settings (Silva, Lehoux, 

Miller, & Denis, 2018) (Douglas & Stemerding, 2013). By including social and 

ethical aspects in the innovation process, RRI provides a concrete approach for a 

moral accompaniment of technoscientific developments. RRI has been defined as “a 

transparent, interactive process by which societal actors and innovators become 

mutually responsive to each other with a view to the (ethical) acceptability, sustain-

ability and societal desirability of the innovation process and its marketable products 

(in order to allow a proper embedding of scientific and technological advances in our 

society)” (Von Schomberg, 2011) or as “taking care of the future through collective 

stewardship of science and innovation in the present” (Stilgoe, Owen, & 

Macnaghten, 2013). How, then, can the collective stewardship of innovations be 

organized in the case of synthetic biology?  

 Access to data is pivotal when pursuing synthetic biology innovations and is 

therefore important when pursuing RRI. As a bio-engineering practice, synthetic 

biology requires a close intertwinement of in silico discovery and modeling and 

automated lab experiments (Freemont, 2019). Without access to genomic sequence 

data, high-quality sequence annotations, metabolic models, and so on, it is not 

possible to achieve much. Capabilities are also required to enable the data to be put 

to use: computational power, cutting-edge algorithms, and access to know-how 

(Sachsenmeier, 2016). For COVID-19, excellent public resources are available. Full 

viral genome sequence data were published in the Global Initiative on Sharing All 

Influenza Data (GISAID, 2020) and in Genbank’s SARS-CoV-2 data hub (GenBank 

SARS-CoV-2, 2020) starting in early January 2020 (Holmes, 2020) (NHC, 2020). 

Researchers swiftly used this information, for instance, to synthesize substitutes of the 

actual viral genome, thereby speeding up global research. Currently, hundreds of 

variants are available from locations across the globe. The COVID-19 Genomics 

UK Consortium (COG-UK) aims at sequencing SARS-CoV-2 viruses from up to 

230 000 UK COVID-19 patients, with an underpinning commitment to open 

science and FAIR data principles (COVID-19 Genomics UK (COG-UK) 

consortium, 2020).  

 Access to data can be a prerequisite for innovation. On the other hand, data 

frictions can hamper this ability to innovate. Data frictions (Edwards, 2010) (Bates, 
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2018) are defined as “socio-material factors that coalesce to slow down and restrict 

data generation, movement and use.” Data frictions have a “politics”; they influence 

what is known by whom and therefore how future knowledge and social relations are 

shaped (Bates, 2018). They are an important factor in shaping innovation because 

they impact which parties are involved. Data frictions relate to the kinds of data and 

the repositories they reside in, data standards, data-transfer mechanisms and poli-

cies, or the lack thereof. They comprise technical and societal hurdles that impair 

data access, as well as being catalysts that foster data access. During the outbreak of 

avian influenza A virus (H5N1), a stop placed on data sharing led to significant 

controversy. Indonesia stopped sharing clinical specimens to international laborato-

ries participating in the World Health Organization Global Influenza Surveillance 

Network (Sedyaningsih, Isfandari, Soendoro, & Supari, 2008). The rationale behind 

this was that sharing materials enables international companies to develop vaccines, 

but that the Indonesian population would not benefit from these developments. The 

demand for access to drugs and vaccines, for agreements on intellectual property 

rights, and for capabilities built up via technology transfer and scientific collabora-

tions resulted in an international agreement on a “pandemic influenza preparedness 

framework.” Along the same lines, the MERS coronavirus was isolated in Saudi 

Arabia, but intellectual property rights on products based on the MERS genomic 

sequence were owned by a Dutch institute. This situation led to a significant dispute 

and questions about data sharing (Butler, 2013). Data sharing was also hampered 

during the Ebola 2013–2015 outbreak due to a variety of hurdles (GRCIDP, 2018). 

In some cases, viral genomic sequence data were swiftly uploaded via the public 

platform GenBank, but no standard method existed to disseminate the data. Most of 

the samples provided for genetic sequencing never resulted in publicly released data 

(Yozwiak, Schaffner, & Sabeti, 2015). International initiatives recognized the need 

for improved data sharing, resulting in initiatives such as the establishment of 

GISAID, a platform for sharing influenza virus sequences and related epidemiologi-

cal data (Bogner, Capua, Lipman, & Cox, 2006). These cases testify to the fact that it 

is crucial to organize access to data in such a way that innovation toward societally 

preferred goals is stimulated while risks are mitigated.  

 The data-driven innovation response to the COVID-19 pandemic exemplifies 

this point. Data positionality is put forward as a useful lens through which to analyze 

innovation dynamics in relation to data. Data positionality refers to situations where 

the value of data depends on the extent that others do not have access to that data. 

Positional goods’ theory was developed to describe a category of certain marketable 
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goods whose value depends on externalities; namely, on how they compare with 

things owned by others (Hirsch, 1977) (Frank, The Demand for Unobservable and 

Other Nonpositional Goods, 1985) (Pagano, 1999) (Vatiero, 2009) (Zinnbauer, 

2018). Positionality implies exclusivity: Scarcity needs to be guaranteed and parties 

need to be able to benefit from the resulting exclusivity. The question that arises is 

how data positionality can impact the capability to steer innovation in synthetic 

biology in societally preferred directions. Positionality is related to the concept of 

data frictions (Edwards, 2010) (Bates, 2018). Hurdles in accessing biological data 

determine whether and how data-driven innovation can be steered. Data access thus 

needs to be considered when aiming at responsible innovation. In this paper, the role 

of data in COVID-19-related innovations in synthetic biology is used to illustrate 

data positionality and its repercussions for responsible innovation. 

5.3. Synthetic biology data as a positional good 

The rush for innovations in the wake of the COVID-19 pandemic is driven by both 

the pursuit of societal benefits and economic rationales. The current pursuit of 

drastically shortening vaccine development timelines (Thanh Le, et al., 2020) testifies 

to this. COVID-19 vaccine development is embedded in a significant economic 

reality, where high investments are required to bring a vaccine to the market 

(Gouglas, et al., 2018). CEPI is an organization that invests in vaccine development 

programs; part of its funding goes to synthetic biology companies (CEPI, 2020). 

 Given this context, it is insightful to analyze the biological data used in synthetic 

biology in terms of information goods that have a market value. “Information 

goods” refers to commodities whose market value is determined by their information 

content and not by their material properties. Engineering approaches in synthetic 

biology can depend on a variety of information goods (genomic sequences, sequence 

annotations, enzyme properties, metabolic models, etc.), often from a variety of 

species. These goods also depend on lab protocols, algorithms, scientific knowledge, 

and technical know-how. The information goods that fuel innovations in synthetic 

biology are therefore very heterogeneous. In terms of the response to COVID-19, 

viral genomic sequence data and annotations, human genomic sequence data, and 

clinical and epidemiological data are all crucial inputs for innovations in prevention, 

diagnosis, and therapy. 

 What type of goods are information goods? Economic theory has various ways of 

classifying goods. Commonly, goods are categorized along two axes: according to 
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their excludability and rivalry. Goods are excludable if parties can be denied access 

to them. Goods are subtractable (or rivalrous) if consumption by one party reduces 

the possible consumption by another party. Biological data are non-subtractable 

goods since consumption of the data by one party will not make the data unavailable 

to other parties. However, their production requires subtractable goods, such as 

time, money, and biological systems (e.g. ecosystems or populations). And the 

biological data themselves can result in subtractable goods (Strandburg, Frischmann, 

& Madison, 2017), such as new medical treatments or washing powder enzymes. 

Biological information goods have often been categorized as public goods, which are 

non-excludable and non-subtractable. The rationale for this categorization is that 

they are a form of scientific knowledge, which is the archetypical example of a global 

public good. Scientific theories, such as Einstein’s relativity theory, are available to 

all, and usage of the theories does not diminish their value for others. This typecast-

ing as a global public good can be used as a strategy to instill ethically preferred 

dynamics by stimulating the sharing of data across national and international 

boundaries (Chadwick & Wilson, 2004). Moreover, in principle, well-oiled online 

markets that allow for efficient price-setting should result in information goods that 

cost virtually nothing. Digital artifacts can be copied at high speed and low cost as 

soon as the first artifact is made (Quah, 2002). The synthetic biology community has 

tended to promote an ethos of open innovation (Torrance, 2017), which is, at first 

sight, in conflict with the positional character of synthetic biology data. Along those 

lines, open-source software development is often used as inspiration when shaping 

the field (Urquiza-Garcia, Zielinski, & Millar, 2019). The open-source software 

movement proved to be a very viable complement to proprietary software schemes, 

and it vastly stimulated innovation (Boyle, 2008). Translated to the field of synthetic 

biology, this finds its analogy in schemes that allow for building freely on the geneti-

cally encoded functions shared by the community, such as through the BioBricks 

Public AgreementTM (BioBricks Public Agreement(TM), 2020). Similarly, the open-

science movement provides a model where scientific findings and related datasets are 

made publicly available without the hurdle of subscription costs (Levin, Leonelli, 

Weckowska, Castle, & Dupré, 2016) (Burgelman, et al., 2019). The synthetic biology 

community’s response to the corona pandemic showed that publicly available 

information can vastly speed up innovation. 

 In practice, the categories of biological information goods are much more 

colorful. Rather than being a public good, many datasets are not publicly available 

but reside in proprietary databases, experience delays or incompleteness in data 
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release, or are only accessible given the right membership. Intellectual property 

regimes further complicate the picture by providing temporal monopolies over the 

concrete applications of patented knowledge. The ambiguity of synthetic biology in 

this respect is indicative. Synthetic biology is often defined as an engineering disci-

pline, next to it being a scientific discipline. This hints at the fact that synthetic 

biology does not only result in scientific theories that are asymptotically available to 

all. In many cases, the outputs concern designs and engineered systems that provide 

a competitive advantage in a market, and thus are inherently related to information 

asymmetries. In economic terms, these observations are indicative of a market failure 

that leads to a tendency for some information to become exclusive rather than being 

free and open (Zinnbauer, 2018). The value of some information goods depends on 

whether others do not own them; thus, on their exclusivity. Having priority access to 

biological data puts one in the position to mine the data first and produce derived 

goods, such as scientific papers, new pharmaceuticals, medical treatments, etc. Such 

information goods are more valuable if others do not have equal access to them or 

are less capable of putting these data to use. Digital information goods therefore do 

not, by definition, result in open data or in a market-clearing price that is close to 

zero. They can experience scarcities that are either artificially constructed or are the 

result of socio-technical constraints in data movement.  

5.4. Drives behind positional effects in biological information goods 

Positionality has recently been described as an overlooked property of information 

goods in general, which can explain certain failures in the data market (Zinnbauer, 

2018). Instead of everyone enjoying a world of free and open data, many data-

holders benefit from constructing an artificial scarcity in information so that a much 

higher premium can be gained. And there are buyers who are willing to pay these 

high premiums as long as the scarcity remains guaranteed, and they can benefit from 

exclusivity. This holds true for premium political, business, and legal information, 

and also for certain forms of scientific information (Zinnbauer, 2018). Many biologi-

cal data and much derived knowledge reside in databases with tightly controlled 

access—often proprietary—and they are sometimes subject to intellectual property 

rights or expensive subscriptions. Thus, the introduction of a “manufactured scar-

city” (Zinnbauer, 2018) counteracts the fact that the data themselves are, in 

principle, infinitely sharable. In economic terms, such effects are called “positional.” 

Positional goods (Hirsch 1976) have a value that is determined in relative terms by 
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their externalities. Their value does not merely depend on the quantity of the goods, 

but on their exclusivity—on the extent to which others have no access to them.  

 The positionality of information goods comes in various forms. At an abstract 

level, one can distinguish between horizontal and vertical positionality, depending 

on the types of externalities that impact the value of the information good. Vertical 

positionality refers to goods whose value is inversely related to the degree to which 

others have access to them. Horizontal positionality refers to goods whose value 

depends on the accessibility of other goods (van den Hoven, Helbing, & Domingo-

Ferrer, FuturICT - The road towards ethical ICT, 2013). Different forms of posi-

tionality can be distinguished in the case of information goods (Zinnbauer, 2018). 

These can either be the result of strategies to create artificial scarcities to obtain a 

positional advantage or the result of practical constraints that hamper the fluent 

distribution of information goods. Multiple forces that shape data frictions can be 

distinguished (Bates, 2018): (1) data-sharing infrastructures, (2) socio-cultural factors, 

and (3) regulatory factors. Such frictions are claimed to have a “politics” because 

they shape the interactions between parties involved in data handling and exchanges 

(Bates, 2018). Data-sharing infrastructures can introduce friction because of the 

complexity of the data representations needed to capture biological data, the lack of 

generally accepted data standards and ontologies, the anonymization and encryption 

methods required to guarantee genomic privacy, a variety of technical constraints 

such as bandwidth or computational power when dealing with big amounts of 

sequence data, and so on. A lack of data standards and data interoperability, for 

instance, was put forward as a challenge to open science in the Organisation for 

Economic Co-operation and Development’s (OECD’s) policy response to COVID-

19 (OECD, 2020). Data friction can also arise because of a lack of time or skills to 

cleanse, prepare, and submit the data, or a lack of time for scientists to document 

their experiments and annotate the data. Socio-cultural factors can legitimize data 

frictions, for instance, by guaranteeing the data privacy of research subjects or 

patients or avoiding a misinterpretation of the data. Socio-cultural data frictions also 

arise in highly competitive environments where data are retained in an explicit 

attempt to retain a competitive advantage or are shielded from scrutinization by 

other researchers (Bates, 2018). Synthetic biology, in this regard, combines an open-

source ethos and an intertwinement with commercialization activities. Often, the 

core members of the synthetic biology community are systematically in close proxim-

ity to commercial activities (Raimbault, Cointet, & Joly, 2016). A culture of data 

sharing is deeply interwoven with this scientific field, while, on the other hand, 
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information asymmetries are implied by the competitive publication and innovation 

landscape. 

 Data positionality provides a lens through which to interpret the effects of data 

frictions in both highly competitive and highly collaborative research and develop-

ment triggered by the COVID-19 pandemic. Various forms of data positionality can 

be distinguished. Temporal positionality refers to data goods in which the time 

component drives the differences in data accessibility. For instance, being able to run 

a speed-trading algorithm on servers next to the stock market can provide a few 

milliseconds of earlier access that an algorithm needs to outperform competitors. An 

analogous situation holds true for biological data. For instance, access to the SARS-

CoV-2 genomic sequence and to epidemiological information proved to be crucial in 

effective policy and technological responses to the pandemic, for instance, in terms of 

the ability to rapidly develop diagnostic tests (Peeri, et al., 2020). Hence data-release 

policies are important in shaping open environments where optimal use is made of 

research data. Building on the experiences from previous viral outbreaks, data-

sharing platforms such as GISAID (GISAID, 2020) and data-sharing guidelines 

(RDA COVID-19 Working Group, 2020) were put in place. Geographical position-

ality refers to the competitive advantage that results from proximity to the location 

where the data are generated. It is easier to derive value from a dataset if one has 

direct insight into how the data were generated and processed, and if one has 

personal connections with the researchers who were involved in the process and one 

can tap into their tacit knowledge. The tight link between the data and the human 

population from which they were derived also ties data to a specific region. 

Biobanks, for instance, constitute a key resource in the fight against pandemics 

(Vaught, 2020) and these repositories have physical locations. Population genomics 

and electronic health records are often bound to local populations and national 

initiatives. National borders (as a proxy for national regulations and political assess-

ments) can result in data frictions and the related positional effects. For instance, for 

human genomic material and derived information, genomic sovereignty was pro-

posed to ensure “a nation’s ability to capture the value of its investments in the field 

of genomic medicine” (Hardy, Séguin, Ramesar, Singer, & Daar, 2008). Getting 

access to data can require personal connections to scientists in heavily affected 

regions, for instance, when pursuing association studies (Olena, 2020). Association 

studies—relating the genetic profile of individuals to their disease outcome—will be 

a key tool in answering the question of why SARS-CoV-2 hits patients with varying 

severity. Data-sharing initiatives, such as the COVID-19 Host Genetics Initiative, 
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can help in reducing geographical positional effects in this case (The COVID-19 

Host Genetics Initiative, 2020). It is important to note that technical abilities and 

know-how are as crucial as the datasets that fuel the innovation process—and these 

assets can be equally positional. These innovation capabilities are geographically 

unequally distributed. For instance, investments in synthetic biology ventures in 

general in the second quarter of 2019 amounted to 1.2 billion USD, only 12% of 

which occurred outside of the USA (SynBioBeta, 2019). 

 Owning positionality refers to situations in which ownership of the information 

good results in positionality. Next to keeping data in databases with restricted access, 

layered access and delays in data release are inherent to the biomedical field. This 

creates sub-domains that span a range from closed and proprietary, to knowledge 

commons that are managed by a community, up to databases that are geared 

toward open access. The transparency of proprietary data services (and of the quality 

of data in general) came under close scrutiny in the context of COVID-19 research, 

with the retraction of two high-profile papers (Piller & Travis, 2020). One of the 

publications impacted trials with the drug hydroxychloroquine and the other led to 

increased demand for the drug ivermectin. In the case of monopolized positionality, 

single parties own the key data assets in a certain market. Such a situation also 

relates to new frontier positionality, referring to situations where parties gain a 

competitive advantage by entering into novel data fields. Synthetic biology is a field 

par excellence where dedicated technologies are developed and related information 

is gathered around cutting-edge fields of research. For instance, the extremely rapid 

development of mRNA- and DNA-based vaccine candidates for SARS-CoV-2 

hinged on disruptive technologies that had already been explored in the context of 

other diseases.  

 Horizontal positionality occurs when the value of an information good depends 

on access to other information goods (van den Hoven, Helbing, & Domingo-Ferrer, 

FuturICT - The road towards ethical ICT, 2013). This is very often the case for 

biological data since the combined analysis of multiple biological datasets is often 

needed in order to derive value from them. Mining a population’s genomes in 

combination with medical records can provide powerful insights into disease trajec-

tories and tailored treatments for specific sectors of the population (Boeck Jensen, et 

al., 2014). For instance, the UK Biobank is going to add COVID-19 health-related 

data to its records, providing an integrated dataset for researchers to study the 

relationship between a person’s genetic makeup and disease susceptibility (UK 

Biobank, 2020). Heterogeneous datasets often end up in separate, specialized data 
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repositories with their own specific data-release schemes, access policies, and techni-

cal accessibility, which results in frictions when connecting the data. Big-tech 

positionality (Zinnbauer, 2018) refers to the positional advantage that big companies 

and institutes can have when integrating data because of their access to significant 

amounts of proprietary data and to their data-analysis capabilities.  

5.5. Organizing responsible innovation in view of data positionality 

To organize responsible innovation, one needs to be “response-able”—to be able to 

respond to the novel opportunities and risks that emerge. Previous viral outbreaks 

with pandemic potential proved that the level of data sharing significantly impacts 

this ability to respond. Responsiveness was highlighted as one of the dimensions of 

RRI (Stilgoe, Owen, & Macnaghten, 2013). It requires the ability to swiftly steer an 

innovation process if deemed appropriate. The COVID-19 pandemic demanded a 

quick innovation response to deliver therapeutics, vaccines, and diagnostics. This 

speed of response must go hand in hand with mechanisms to ensure ethical correct-

ness and societal desirability. Aspects such as patient safety and data privacy, as well 

as dialogues around the desirability of novel therapeutic and preventative technolo-

gies, need to be interwoven with the entire innovation process. On the positive side, 

data positionality can foster competition in a Schumpeterian scheme, and thereby it 

can become instrumental in pursuing innovations that match societal preferences. 

However, leaving everything up to a market dynamic can also result in unequal data 

distribution and an unequal capability in terms of innovating and steering innova-

tions. The COVID-19 pandemic led to a strong international push to mitigate 

temporal and geographical data positionality by strengthening rapid data-release 

and data-sharing mechanisms across national and institutional boundaries. For 

instance, the initial sharing of viral sequences via existing data-sharing mechanisms, 

such as GISAID (GISAID, 2020) and GenBank (GenBank SARS-CoV-2, 2020), 

provided the necessary information for academic labs and companies to synthesize 

parts of the viral hereditary material, thereby vastly speeding up innovation proc-

esses globally. Synthetic biology approaches to COVID-19 aim at dramatically 

shortening the development of vaccines, therapeutics, and diagnostics. The hope is 

that the sheer diversity of innovations (Thanh Le, et al., 2020) will provide room for 

responsiveness in terms of shaping the overall solution space. 

 Public debates on new technologies also often revolve around anticipation, 

reflexivity, and inclusion. Next to responsiveness, these perspectives together reflect 
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societal concern and interest in technological innovation and can be used as dimen-

sions in a responsible innovation approach (Owen, Macnaghten, & Stilgoe, 

Responsible research andinnovation: From science in societyto science for society, 

with society, 2012) (Stilgoe, Owen, & Macnaghten, 2013). Along these lines, the 

anticipate, reflect, engage, act (AREA) framework from the 2014 Rome Declaration 

(Italian Presidency of the Council of the European , 2014) was recently proposed as a 

step toward RRI in COVID-19-related data research (Leslie, 2020) (Braun, Blok, 

Loeber, & Wunderle, 2020). These dimensions have been considered in the context 

of synthetic biology (Macnaghten, Owen, & Jackson, 2016) and healthcare (Silva, 

Lehoux, Miller, & Denis, 2018). Next to the aforementioned dimensions, value 

domains specific to RRI in healthcare were proposed. These include, for instance, 

health equity, the level of care, frugality (if more can be achieved with fewer means), 

and the values that are embedded in the business model of the innovators (Silva, 

Lehoux, Miller, & Denis, 2018). Anticipation is about considering possible outcomes 

of new technologies. Reflexivity means taking a step back and considering the 

innovation activities from a broader perspective. Data positionality should be 

included in assessments about anticipation and reflexivity, given the potential 

contribution to unintended consequences, and the effect on the desirability of the 

possible futures that the innovations will contribute to. Synthetic biology solutions, 

such as universal vaccines, for instance, have a “plug and play” character, and their 

effectiveness is thus tied to data availability. Geographical and temporal positionality 

will therefore be at play when such solutions will require tailoring to new variants of 

viruses. Owning positionality and big-tech positionality will relate to the question of 

how the landscape of providers and beneficiaries should be organized. Inclusion is a 

central theme in RRI approaches (Burget, Bardone, & Pedaste, 2017) (Bogner & 

Torgersen, 2018). Many stakeholders do not often have a say in the development of 

new technologies, although they need to bear the consequences later on. Healthcare 

innovations, for instance, have an impact on many of us; nevertheless, these innova-

tions often take place in the confined labs of academic and corporate research 

institutes. For this reason, broad stakeholder involvement in the early innovation 

steps is often targeted in responsible innovation approaches (Owen, Bessant, & 

Heintz, 2013). This is in contrast to risk-assessment methods where the technical 

experts are the main driving forces and where assessments of the novel technologies 

are mainly done when approaching the market. The various types of data positional-

ity can negatively impact this ability to include stakeholders. Competitive advantage 

is central to the very notion of positionality. Positionality therefore implies a topology 
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in which the innovation step is shielded from external parties. Traditional models of 

drug innovation took place in the well-shielded environment of pharmaceutical 

companies, building on public data, but also deriving competitive advantage from 

proprietary data. These models are increasingly opened up in public–private part-

nerships that allow for deeper involvement of the public and the many stakeholders 

(biobanks, researchers, public healthcare funders, etc.), and in open innovation 

models. Such openness in the early innovation step implies a reduction in data 

friction.  

 The high sense of urgency related to the COVID-19 pandemic highlighted the 

importance of data access, data quality, and capabilities to put data to use. The high 

speed at which data-driven innovation occurs stresses existing processes. Central 

governance provides one route to shape data-driven innovation by modulating the 

effects of data positionality. Governance instills reciprocity among stakeholders via 

rules that constrain the options each individual rational party can select. Rules and 

regulations partially constrain the freedom of the individual players; nevertheless, 

they can be to their overall benefit by avoiding resource-wasting situations (Frank, 

2012). Data-privacy rules, for instance, constrain the space of innovations, thereby 

avoiding innovations that do not adhere to the imposed privacy values. Data-release 

policies, such as the open-science movement (Levin, Leonelli, Weckowska, Castle, & 

Dupré, 2016) (Burgelman, et al., 2019), can result in a broadening of the innovation 

space. Intellectual property arrangements provide an institutionalized way to create 

positional assets. Patenting of naturally occurring genetic sequences is no longer 

allowed by the United States Patent and Trademark Office, but it is still allowed in 

Europe (Cole, 2015). Whether patenting genomic sequences has a positive or 

negative impact on healthcare innovation remains under debate (Liddicoat, et al., 

2019). Central governance may also be needed to contain data positionality to the 

sphere of research and innovation. For instance, the race for prime access to per-

sonal biological data should not negatively impact a person’s level of healthcare, 

career opportunities, or family. Avoiding “informational injustice” (Manders-Huits 

& van den Hoven, 2008) requires rules and regulations that install data frictions at 

the boundaries of societal spheres. 

 In light of the ongoing pandemic, innovators were confronted with both aggres-

sive timelines and high technological uncertainty. This situation triggered a vast 

increase in collaborations across highly diverse parties, leading to “a culture of 

collaboration across government, industry and academia” (Ledford, 2020). This 

situation hints at future routes for responsible innovation. Fostering self-regulation 
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and self-governance in innovation communities can be a venue for guiding innova-

tion toward societally preferred goals. Research and innovation communities 

centered around synthetic biology can provide an entry point. A growing body of 

literature analyzes biological data as a common-pool resource—more precisely, as 

information goods in a knowledge common (Strandburg, Frischmann, & Madison, 

2017). This common’s perspective is helpful in clarifying the complex rules and the 

self-regulating properties of biological data-driven research and innovation commu-

nities. It also provides a framework to develop communities that mitigate negative 

positional effects and foster positive effects. The exclusion of certain stakeholders in 

an information common has been brought forward as an important element in the 

shaping of power asymmetries (Prainsack, 2019). In pharmaceutical commons, 

positionality can be a driving force for gathering stakeholders around an innovation 

topic. Intellectual property and privately owned assets, when not used to fence off 

competitors, can function as a magnet to attract parties into collaboration (Lezaun & 

Montgomery, 2015). For an individual party, it constitutes a “ticket of admission” to 

pharmaceutical product-development partnerships. Carefully managing access to 

data can also be a strategy in mitigating cybersecurity risks related to pathogen 

databases (Vinatzer, et al., 2019) and confining the data to an innovation community 

adhering to strong research ethics. In these settings, certain types of positionality can 

be transformed into a creative source rather than a wasteful situation.  

5.6. Chapter conclusions 

The pace of synthetic biology innovations in response to the COVID-19 pandemic is 

unprecedented. This dynamic is driven by significant progress in synthetic biology as 

well as by improvements in data sharing. The potential societal impact of synthetic 

biology innovations calls for ways in which to foster beneficial outcomes that reso-

nate with societal values while avoiding potential negative effects. Responsible 

innovation has been proposed as a framework to achieve this goal. When applied to 

synthetic biology innovations related to the COVID-19 vaccine, therapeutic, and 

diagnostic developments, it is clear that the role of data is pivotal. In this paper, 

biological data used in synthetic biology are analyzed as positional information 

goods. Positionality refers to the observation that the value of some pieces of infor-

mation is related to their exclusivity. Various flavors of positionality can be identified 

relating to different types of data-access hurdles. Data positionality is Janus-faced—it 

can hamper responsible innovation but can also be a stimulating force. Measures to 
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shape the data topology in terms of positionality are therefore an important instru-

ment in steering synthetic biology innovations toward societally preferred goals. 

Central governance and self-governance in commons-like settings provide venues to 

mitigate the negative effects of data positionality. 
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6 Outlook for further research	
  

Innovations that are inspired by biology hit the market at an increased rate, in 

medicine, synthetic biology, industrial biotechnology, agriculture, and many other 

societal sectors. Biological data increasingly fuel these innovations, by providing the 

inspiration for designs of molecules, materials, production mechanisms, and so on. 

These high levels of innovativeness will be needed to meet the grand challenges of 

today’s world.  

 The avalanche of innovations though also sharply raises fundamental questions 

about the Baconian project. Bacon’s utopian vision brought a lot of benefits, but also 

proved to be disastrous in its exploitation of ecosystems. The key question is whether 

the utopian vision can be re-thought in a direction that re-establishes a healthy and 

sustainable connection with our natural environment and with ourselves, while 

retaining the original inspiration that innovations can improve life. When embarking 

on such a rethinking, it will be crucial to construct ways to align innovations with 

societal needs and values. This is not a trivial task. Innovations shape our world, for 

the better and the worse. But steering the innovation tsunami into beneficial direc-

tions is a tantalizing endeavor, for many reasons. To name a few: innovation is often 

strongly driven by a Schumpeterian dynamic, oriented toward profitability in the 

market. The innovation process is often shielded away from society, because of the 

competitive advantage it can provide. Innovation happens in very heterogeneous 

contexts, including settings as diverse as hacker spaces, academic groups and corpo-

rate labs. Moreover, the future is radically opaque for our conceptual instruments. 

And especially when it also concerns disruptive innovations, predictions on which 

innovations do contribute to a desired future are by definition difficult to make. 

 The question of how to structurally include ethical and societal perspectives in 

the innovation process in order to bring about the desired futures is therefore highly 

relevant, but equally hard to answer. The research field of Responsible Innovation 

started to take up this challenge. Different to previous frameworks, RI’s ambitions 

are to bring in the ethical and societal aspects in the entire innovation process. A 

main driver for the development of RI was the observation that significant techno-

logical innovations sometimes are rejected by society when entering the market. By 

including broader segments of society in the innovation process, the hope was to 

develop a shared responsibility for the innovation, thereby ensuring societal accep-

tance. Next to this focus on societal acceptance of innovations, the main focus of the 
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RI and Responsible Research and Innovation (RRI) has been the governance of 

publicly funded research, mainly in the context of the European Union’s framework 

programs.  

 The scope of RI and RRI therefore is currently rather limited, especially in view 

of the world’s challenges. This calls for a broadening of both the ambitions and the 

concepts in RI. One major transition is to shift the focus from matching individual 

innovations with societal values, toward matching entire bioeconomy segments with 

societal values. Grand challenges require concerted action, spanning entire domains 

of technological innovations. The ability to act therefore needs to go beyond the 

assessment of individual technological innovations. For instance, when considering 

responsible innovation in agriculture, is has been argued that priority should be 

given to a well-informed debate about which type of agriculture our society wants to 

foster, rather than to debates about individual technologies (Bogner and Torgersen 

2018). A similar argument can be mode for health care (Lehoux, Silva, Sabio, & 

Roncarolo, 2018) and for synthetic biology (Macnaghten, Owen, & Jackson, 2016). 

In order to meet today’s challenges, it is necessary to shape the bigger pictures, and 

to foster innovations that support them. An example in this direction is provided in a 

recent report of the European Union. In this foresight report, an inventory of 

hundred radical innovations was made. These radical innovations were linked to 

Global Value Networks, defined as “networks of actors connected by relationships 

that create value” (Warnke, et al., 2019). Global Value Networks are driven by a 

global value promise – a promise to meet a global demand (for instance good health 

care) or a collective need. The authors of the report expect that value creation in the 

future will be shaped by global value promises, in particular by the UN Sustainable 

Development Goals.  

 Bio-based innovation plays an increasingly important role in meeting such global 

value promises. Especially the connection of information technologies (in particular 

AI) with health and environmental technologies was seen as a fruitful area for 

speeding up positive technological transformation, while controlling negative side 

effects (Warnke, et al., 2019). The development of bio-based economies is seen as a 

route towards an innovation landscape that allows for economic progress and 

societal benefits, while avoiding negative effects on the environment and replacing 

current resource-exhausting practices. For example, synthetic biology is anticipated 

to contribute to the development of a sustainable bio-based economy (Bueso & 

Tangney, 2017) (Loeffler, et al., 2018) (French, 2019), defined as “an economic 

model where knowledge-based utilization of biological resources and processes can 
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be applied to the sustainable production and manufacturing of goods, and the 

provision of services across all economic sectors” (Freemont, 2019). These bio-based 

economies heavily rely on bio-inspired design, and therefore on biodata and the 

related reality of biological populations and ecosystems. 

 Research will be required to determine how biodata-based innovation can be 

made transformative for entire economies, and how such transformations can be 

fostered and steered according to certain values. The tight intertwinement of biodata 

with the innovation process and with values makes biodata a key element to include 

in such analysis. This dissertation started to explore this space, and showed the 

potential of biodata as an entry point for bio-based responsible innovation. The 

Genomics England project (Marx, 2015) and the Amazon Bank of Codes (Nobre, et 

al., 2016) provide example of such a direction in the field of health care and of bio-

economy, respectively. Both initiatives, in very different ways, foster the development 

of a responsible community of innovators centered around a body of biodata. These 

biodata in both cases are linked to a concrete biological reality: a human population 

in the case of Genomics England, and the ecosystem of the Amazon basin in the case 

of the Amazon Bank of Codes. Further conceptual and empirical research is needed 

to identify principles for organizing R&D environments that foster responsible 

innovation. As highlighted by Ostrom, communities that are successful in managing 

a certain resource tend to share certain characteristics (Ostrom, 1990). Along these 

lines, research communities that manage a biodata-resource also have characteristics 

of knowledge commons (Pálsson and Prainsack 2011) (Uhlir, 2011) (Strandburg, 

Frischmann, & Madison, 2017). Exploration of successful innovation commons can 

be a fruitful way to identify principles for designing settings for responsible innova-

tion. Such an analysis can vastly benefit from encompassing research settings beyond 

academic research, and include corporate research and development and public-

private partnerships. Inclusion of these is important given the sheer impact of their 

innovations on the market, and thereby on society.  

 Some of these elements that are important in fostering biodata-based responsible 

innovations were explored in this dissertation. In order to transform them into 

design principles for RI-fostering commons, further research is required. For exam-

ple, information asymmetries were highlighted as being impactful when pursuing 

responsible innovations. Information asymmetries are inherent to innovation, but 

when unfettered they give rise to an innovation dynamics that cannot be steered by 

society. Such asymptotic technological determinism can be counteracted by explic-

itly installing and removing information asymmetries with the focus on the fostering 
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of responsible innovations. Along these lines, research is needed on how flows of 

biological materials, flows of biodata, and flows of derived value interrelate and can 

be managed in such a way that they foster a fair and sustainable innovation envi-

ronment, and innovations that are aligned with societal values. Another design 

principle for bio-based responsible innovation might revolve around ways to include 

societal values in the innovation process. One might consider embedding societally 

deliberated values in the socio-technical environments in which the innovations take 

place, for instance in the form of innovation commons. Such strategies would avoid 

applying responsible innovation as if it were a regular innovation process that 

includes more stakeholders. Instead of deliberating about values that need to be 

taken into account in a particular innovation, the focus would shift to providing an 

environment with optimal conditions for fostering responsible innovations. This also 

implies that RI includes social innovations.  

 The way biodata are put to use in innovations also transforms the way we think 

about - and the way we treat - our natural environment, our fellow human beings 

and ourselves. Further philosophical research is needed on the tight interplay 

between natural processes and culture that is at play in bio-inspired technologies. 

The tension between these heterologous domains (operational processes versus 

symbolic representation) is made explicit in biodata and computational models, since 

they constitute interfaces between our world of language, meaning and aspirations, 

and the world of natural evolution. Application of biodata, computational models, 

and asymptotically also digital twins, requires taking a position on how we relate to 

our natural environment. A re-thinking of Bacon’s utopian vision therefore can 

benefit from including a focus on biodata and computational models. Philosophical 

research is required to analyze how biodata-based innovations impact how human 

beings relate to the natural world. When considered solely as instruments towards 

and increased efficiency, they further underpin a purely anthropocentric Baconian 

vision in which human engineering actions rationally mold the natural world 

towards human needs. Such vision can lead to a far reaching instrumentalization of 

the natural world. Biodata-based innovations though also open perspectives on an 

inclusiveness that goes beyond the purely anthropocentric, opening up a ‘more-than-

human world’. Biological data have the potential to make heard what otherwise 

remains hidden. They thereby provide venues to broaden the group of stakeholders 

that is involved in a responsible innovation process, and also include what is of 

interests to the natural world. After all, shaping the world via innovations is a joint 

enterprise. 
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Summary 

Innovations in biotechnology increasingly shape our societies and our planet. The 

stream of innovations that could be witnessed in the past few decades opens up new 

ways to do agriculture, to provide healthcare and to produce compounds and 

materials, amongst many other things. Many of these innovations rely on biological 

data. The ability to extract a plethora of biodata vastly increased over the past few 

decades. These biodata provide deeper insights into the workings of biological 

systems, thus constituting a fertile ground for bio-inspired innovations. For example, 

population genomics data provides the basis for a personalized health care. Biodiver-

sity data derived from ecosystems provides the basis for the identification of novel 

drugs, high value chemicals and materials. Biodata is increasingly crucial when 

aiming for a flourishing bio-economy and biomedicine. 

 Biodata-based innovations thereby raise very substantial ethical questions. 

Pronounced cases like human genome editing, or the engineering of entire species 

via gene drive technologies, make clear that innovations need to go hand in hand 

with societal deliberation and an ethical accompaniment of technology development. 

The question though is how such responsible innovation can be organized. Extrac-

tion of biodata is done at a speed that surpasses Moore’s law. And the resulting 

biodata-based innovations are fast-paced. It is therefore highly needed to consider 

how a responsible guidance of innovation in biotechnology can be accomplished, in 

view of the biodata-avalanche. This question provides the entry point for this 

dissertation. Central to this analysis is the special ontological and epistemological 

position of biodata. Biodata resides at the interface between the biophysical world 

and the realm of human language and meaning. This makes biodata a central locus 

when pursuing a value-driven accompaniment of innovation in the field of biotech-

nology. 

 In Chapter 2, the effect of this special position of biodata is analyzed in the case 

of personal genomic data. The increasing availability of genomic data – and more 

generally ‘personal big biodata’ (which comprises a wide variety of medical and 

health care data covering both medical images and a panoply of biomarkers) – 

combined with the computational power and analytical tools of bioinformatics calls 

for a rethinking of how to use these data responsibly. In particular, arguments are 

brought forward on why genomic privacy contributes to an ethical usage of genomic 

data. These arguments underpin genomic exceptionalism, the thesis that personal 
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genomic data have a special status compared to other types of medical data. Per-

sonal genomics data are intimately related to the biophysical reality of a person, and 

on the other hand provide a substrate for cultural interpretations and actions. This 

implies the responsible appraisal of the limits of what data allow us to know about 

individuals, and the acknowledgement that respect for human persons and their 

dignity requires taking the epistemic position that there is always more to know 

about them than even the most comprehensive set of data may offer in terms of 

knowledge. The ideal of acknowledging the limits of our knowledge of persons is 

referred to as ‘epistemic modesty’. Privacy is instrumental in ensuring a person’s 

ability for self-determination in view the acts of epistemic immodesty of others. In 

addition to ex ante approaches to data protection such as privacy enhancing tech-

nologies, attention is also drawn to the potential of ex post approaches, e.g. tools and 

mechanisms supporting proper and modest interpretations of genomic data, as well 

as the detection of prohibited use of genomic data for certain ends. 

 Chapter 3 provides an analysis of the impacts of personalized models of human 

biology on core notions in health care, like therapy, preventative care and human 

enhancement. Emerging data-driven health care practices increasingly build on 

large and sometimes continuous data streams derived from individual persons. 

Digital twins stand for an engineering paradigm in which individual physical arte-

facts are paired with a digital model that dynamically reflects the status of that 

artefact. When applied to persons, digital twins are used as the hypothesis that one 

would be in the possession of in silico representations that dynamically reflect aspects 

of an individual’s molecular status, physiological status and life style over time. This 

perspective redefines the concept of ‘normality’ or ‘health’, as a set of patterns that 

are regular for a particular individual, against the backdrop of patterns observed in 

the population. This perspective can induce a normative shift in how therapy, 

preventative care and enhancement are distinguished. This normative shift relates to 

how meaning is derived from measurement data. A promiscuous realist account is 

used to clarify how moral distinctions based on digital twins are the result of both 

cuts made at Nature’s joints, and the world of language and meaning that is grafted 

on these structures.  

 Chapter 4 focuses on responsible innovation in the case of biodiversity sequenc-

ing data. Large scale sequencing initiatives increasingly give access to biodiversity at 

the molecular level, providing a rich source for innovations. Biological data as an 

information resource can have characteristics of a Common Pool Resource, when 

used and managed by multiple stakeholders. Communities that are centered around 
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such digitalized ecosystems or biological populations have aspects of both natural 

resource commons and knowledge commons, but differ in their structure and 

dynamics. The concept of “Twin Commons” is proposed: the institutional arrange-

ment of biological resources that have a tightly linked digital component which is 

shared and governed by a community, and that have research and innovation as 

important outlets. Twin commons can help in the identification and the inclusion of 

values in the socio-economical and techno-scientific systems that underpin the data-

driven innovations. This can complement stakeholder involvement as a strategy in a 

responsible innovation approach. 

 Chapter 5 analyses which are the effects of hurdles in biodata accessibility on the 

ability to organize responsible innovation. Data accessibility and differences in data-

usage capabilities can be important factors in shaping the innovation landscape. 

Data frictions can turn biodata into positional information goods — goods whose 

value depends on exclusivity – be it because of manufactured scarcity or of other 

types of data friction. From both an ethical and economic point of view, positionality 

can lead to suboptimal as well as beneficial situations. When aiming for responsible 

innovation (i.e. embedding societal deliberation in the innovation process), it is 

important to consider hurdles and facilitators in data access and use. These effects 

are made tangible in the case of synthetic biology innovations in response to the 

COVID-19 pandemic. Differences or delays in data access impact the ability to 

innovate, as well as differences in the ability to put data to use. The roles of govern-

ance and of collective self-regulation in commons is highlighted as venues towards 

responsible innovation, and opportunities to mitigate negative positional effects are 

identified.
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Samenvatting 

Biotechnologische innovaties hebben een groeiende impact op onze samenleving en 

op de planeet. Deze stroom aan innovaties opent nieuwe wegen voor belangrijke 

sectoren zoals landbouw, gezondheidszorg, en de productie van chemicalieën en 

materialen. In de voorbije decennia zijn technologieën ontwikkeld die grote hoe-

veelheden biologische data produceren. De data geven ons meer inzicht in 

biologische systemen. Dit vormt een rijke voedingsbodem voor bio-geïnspireerde 

innovaties. Gepersonaliseerde gezondheidszorg baseert zich bijvoorbeeld op geneti-

sche data van grote bevolkingsgroepen. Biodiversiteits-data van ecosystemen zijn een 

bron voor het ontwikkelen van nieuwe geneesmiddelen, complexe chemicaliën en 

materialen. Biologische gegevens worden steeds belangrijker bij het uitwerken van 

een bloeiende bio-economie en geneeskunde. 

 Innovatie op basis van biologische gegevens roept belangrijke ethische vragen op. 

Uitgesproken voorbeelden - zoals ingrepen in het menselijk genoom, of aanpassin-

gen in een diersoort via gene drive-technologieën - maken duidelijk dat innovaties 

hand in hand moeten gaan met maatschappelijk overleg en ethische begeleiding. De 

vraag is hoe zo’n verantwoorde innovatie kan worden georganiseerd. Biologische 

gegevens worden gegenereerd tegen een snelheid die de wet van Moore overtreft, en 

ook de innovaties die hieruit resulteren evolueren snel. Nadenken over verantwoorde 

begeleiding van op data gebaseerde innovatie in de biotechnologie is daarom 

bijzonder belangrijk. Dit vormt het startpunt voor dit proefschrift. Centraal in de 

analyse staat de bijzondere ontologische en epistemologische positie van biodata. 

Biologische gegevens bevinden zich op het raakvlak tussen de biofysische wereld en 

het rijk van de betekenissen die we eraan toekennen. Biodata is dus een belangrijk 

element bij het organiseren van verantwoorde innovatie in de biotechnologie. 

 In hoofdstuk 2 worden de effecten van deze bijzondere positie van biodata 

geanalyseerd. De toenemende beschikbaarheid van persoonlijk genomische data 

maakt het nodig om te bekijken wat verantwoord gebruik van deze gegevens in-

houdt. Dit wordt vooral belangrijk wanneer ‘persoonlijke big biodata’ gecombineerd 

worden met de rekenkracht en analytische instrumenten van de bioinformatica. 

‘Persoonlijke big biodata’ omvatten een breed scala aan medische en gezondheids-

gegevens, met zowel medische beelden als een scala aan biomarkers. Om een ethisch 

gebruik te garanderen is genomische privacy belangrijk. De reden ligt in genomisch 
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exceptionisme: de speciale status van persoonlijke genetische gegevens. Persoonlijke 

genetische gegevens zijn nauw verbonden met de fysieke persoon, én ze zijn een 

substraat voor culturele interpretaties en acties. Er is dus een verantwoorde beoorde-

ling nodig van wat de data ons al dan niet over een individu kunnen vertellen. 

Respect voor de waardigheid van een persoon vereist het epistemische standpunt dat 

er altijd meer over die persoon te weten valt dan dat zelfs de meest uitgebreide 

dataset vertelt. Deze ‘epistemische bescheidenheid’ bestaat uit het erkennen van de 

grenzen van onze kennis. Privacy is hierbij essentieel, omdat dit het vermogen tot 

zelfbeschikking waarborgt, met het oog op de epistemische onbescheidenheid van 

anderen. Naast ex ante-benaderingen van gegevensbescherming, zoals privacybe-

vorderende technologieën, wordt ook de aandacht gevestigd op het potentieel van 

ex-postbenaderingen, bv. hulpmiddelen en mechanismen die bescheiden interpreta-

ties van genomische gegevens ondersteunen, evenals de detectie van het misbruik 

van genomische gegevens. 

 Hoofdstuk 3 bevat een analyse van de impact van gepersonaliseerde computer-

modellen (Digital Twins) op kernbegrippen in de gezondheidszorg, zoals therapie, 

preventieve zorg en menselijke verbetering. Nieuwe praktijken in de geneeskunde 

gebruiken in toenemende mate data over individuele personen. Digital twins staan 

voor een paradigma in de ingenieurstechnieken waarin een digitaal model heel 

precies de status van een individueel artefact weergeeft. Digital Twins in de genees-

kunde staan voor de hypothetische situatie waarbij men computermodellen heeft van 

aspecten van de moleculaire status, fysiologische status en levensstijl van individuele 

personen. Wat dan ‘normaal’ of ‘gezond’ is wordt dan geherdefiniëerd als een reeks 

patronen die kenmerkend zijn voor een bepaald individu, tegen de achtergrond van 

patronen die in de populatie worden waargenomen. Dit kan een normatieve ver-

schuiving teweegbrengen in de concepten van therapie, preventieve zorg en 

menselijk verbetering. Deze normatieve verschuiving heeft betrekking op hoe 

betekenis wordt ontleend aan data. Het concept ‘promiscu realisme’ wordt gebruikt 

om te verduidelijken hoe een moreel onderscheid kan ontstaan ten gevolge van 

Digital Twins. Ze vormen een manier om menselijke populaties op een bepaalde 

manier in categorieën op te delen, en deze van betekenis te voorzien. 

 Hoofdstuk 4 richt zich op de vraag hoe verantwoord te innoveren op basis van 

biodiversiteits-data. Grootschalige wetenschappelijke initiatieven geven een beeld 

van biodiversiteit op moleculair niveau. Dit vormt een rijke bron voor innovaties. 

Biodiversiteits-data hebben de kenmerken van een gemeenschappelijk goed, wan-

neer ze gebruikt en beheerd worden door meerdere belanghebbenden. 
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Maatschappelijke instituten die zich vormen rond dergelijke gedigitaliseerde ecosys-

temen of biologische populaties hebben aspecten van commons. Ze verschillen 

echter in hun structuur en dynamiek van commons die natuurlijke hulpbronnen 

beheren, en van kennis-commons. “Twin commons” wordt daarom voorgesteld als 

raamwerk. Twin commons zijn instituten die gemeenschappelijke gedigitaliseerde 

biologische hulpbronnen beheren, en die een focus hebben op onderzoek en innova-

tie. Twin commons kunnen helpen bij het identificeren van waarden, en het 

opnemen van waarden in de sociaaleconomische en technisch-wetenschappelijke 

context waarin de innovaties plaatsvinden. Dit kan – naast het betrekken van een 

brede groep van belanghebbenden - een belangrijk element vormen in een verant-

woorde innovatieaanpak. 

 Hoofdstuk 5 analyseert hoe de graad van toegankelijkheid van biodata een effect 

heeft op het vermogen tot verantwoorde innovatie. De mate van toegankelijkheid 

van gegevens en de mogelijkheden om deze te analyseren, vormen in belangrijke 

mate het innovatielandschap. Fricties in de beweging van data kunnen deze data 

veranderen in positionele informatiegoederen. De waarde van positionele informa-

tiegoederen hangt af van hun exclusiviteit – en die kan veroorzaakt worden door 

kunstmatig gecreëerde schaarste of door andere soorten data-wrijving. Zowel vanuit 

ethisch als economisch oogpunt kan positionaliteit leiden tot suboptimale, en soms 

ook tot gunstige situaties. Bij het streven naar verantwoorde innovatie (d.w.z. het 

verankeren van maatschappelijke afweging in het innovatieproces), is het dus 

belangrijk om rekening te houden met hindernissen en facilitatoren bij datatoegang 

en -gebruik. Innovaties op het gebied van synthetische biologie als reactie op de 

COVID-19-pandemie worden als voorbeeld gebruikt. Verschillen in data-

toegankelijkheid en in analyse capaciteit hebben invloed op het vermogen om te 

innoveren. De rol van centraal bestuur en van collectieve zelfregulering in commons 

wordt geëvalueerd als manieren om verantwoorde innovatie vorm te geven. Er 

worden ook mogelijkheden aangegeven om eventuele negatieve positionele effecten 

te verzachten.   
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Simon Stevin (1548-1620) 

‘Wonder en is gheen Wonder’ 

This series in the philosophy and ethics of technology is named after the Dutch / 

Flemish natural philosopher, scientist and engineer Simon Stevin. He was an 

extraordinary versatile person. He published, among other things, on arithmetic, 

accounting, geometry, mechanics, hydrostatics, astronomy, theory of measurement, 

civil engineering, the theory of music, and civil citizenship. He wrote the very first 

treatise on logic in Dutch, which he considered to be a superior language for scien-

tific purposes. The relation between theory and practice is a main topic in his work. 

In addition to his theoretical publications, he held a large number of patents, and 

was actively involved as an engineer in the building of windmills, harbours, and 

fortifications for the Dutch prince Maurits. He is famous for having constructed 

large sailing carriages. 

 

Little is known about his personal life. He was probably born in 1548 in Bruges 

(Flanders) and went to Leiden in 1581, where he took up his studies at the uni- 

versity two years later. His work was published between 1581 and 1617. He was an 

early defender of the Copernican worldview, which did not make him popular in 

religious circles. He died in 1620, but the exact date and the place of his burial are 

unknown. Philosophically he was a pragmatic rationalist for whom every phenome-

non, however mysterious, ultimately had a scientific explanation. Hence his dictum 

‘Wonder is no Wonder’, which he used on the cover of several of his own books. 

 


