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Propositions
accompanying the dissertation

Autonomous Smart Morphing Wing
Development, Realisation & Validation

by

Tigran Mkhoyan

1. One should never attempt to solve a control hardware problem with software, par-
ticularly for a morphing wing.

2. Vision-based control approach provides high accuracy and high sampling capability
required to cope with uncertainties of complex morphing mechanisms; therefore, it
should be adopted as the preferred method for sensor-drivenmulti-objective control
of actively morphing wings. (this dissertation)

3. The success of implementation for any sensor-driven advanced control objective
for an autonomous morphing wing relies on reducing model dependency, increas-
ing actuator bandwidth and facilitating hardware and software frameworks for data
synchronisation. (this dissertation)

4. A distributed control surface system, which is ideally smooth and morphing, is a
prerequisite for multi-objective control and aerodynamic performance optimisation.
(this dissertation)

5. Conventional aircraft-design inevitably poses control problems. Control-design solves
aircraft design and manufacturing uncertainties. The challenge for actively dis-
tributed morphing design is to solve all problems, simultaneously. (this dissertation)

6. The human species will truly advance when it has learned to fully embrace chaos
rather than control it.

7. The trivial solution to restoring the equilibrium of the planets’ ecosystem is remov-
ing the human from the equation. The challenge of the current century will be to
arrive at a non-trivial solution, one that does not involve self-elimination.

8. The preposition ”towards” is the scientific duct tape in academic writing.

9. Whatever can go wrong, certainly will go wrong during a wind tunnel experiment.

10. The overall rigorousness of implementation and analysis in complex software projects
is measured by the wear of the ctrl button.

These propositions are regarded as opposable and defendable, and have been approved as
such by the promotor dr. ir. R. De Breuker and promotor dr. ir. C.C. de Visser.



Stellingen
behorende bij het proefschrift

Autonomous Smart Morphing Wing
Development, Realisation & Validation

door

Tigran Mkhoyan

1. Er dient nooit te worden getracht een controle hardware probleem op te lossen met
software, in het bijzonder niet bij een morphing vleugel.

2. Een op visuele controle benadering geeft een hoge mate van nauwkeurigheid en
steekproefmogelijkhedenwelkeweerstand kunnen bieden aan de onzekerheden van
complexe morphing mechanismes; dit zou daarom moeten worden gekozen als de
voorkeursmethode voor door sensor gedreven, multi-objective controle van actief
morphing vleugels. (dit proefschrift)

3. Het succes van implementatie van elk door sensor-gedreven geavanceerde contro-
ledoel voor een autonoommorphing vleugel is afhankelijk van het verminderen van
model-afhankelijkheid, toename van actuatorbandbreedte en het gebruik van onder-
liggende hardware- en softwaremethoden voor datasynchronisatie. (dit proefschrift)

4. Een verdeeld stuurvlaksysteem, welk idealiter glad en morphing is, is een voor-
waarde voormulti-objective controle en aerodynamische prestatieoptimalisatie. (dit
proefschrift)

5. Conventionele vliegtuigontwerpmethoden leiden onvermijdelijk tot controlepro-
blemen. Controle-ontwerpmethoden bieden oplossingen voor onzekerheden in lucht-
vaartonwerpen en productie. Het is de uitdaging voor actieve, verdeelde,morphing
ontwerpen om deze problemen simultaan op te lossen. (dit proefschrift)

6. De mensheid zal pas werkelijk vooruitgeraken wanneer het heeft geleerd de chaos
volledig te omarmen in plaats van die te proberen te controleren.

7. De triviale oplossing om het evenwicht van ons ecosysteem te herstellen, is om de
mens te verwijderen. De uitdaging van de huidige eeuw zal zijn om een non-triviale
oplossing te vinden, welke niet leidt tot zelf-eliminatie.

8. Het voorzetsel “in de richting van” is het wetenschappelijke duct tape in academisch
schrijven.

9. Alles wat fout kan gaan, zal zeker fout gaan tijdens een windtunnel experiment.

10. De algehele ontberingen tijdens de implementatie en analyse van complexe softwa-
reprojecten kunnen worden gemeten aan de hand van de slijtage van de ctrl-toets.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotor dr. ir. R. De Breuker and promotor dr. ir. C.C. de Visser.
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Preface

Ex nihilo nihil fit. ”Nothing comes out of nothing” or ”out of nothing, nothing is produced”,
are the words that precede the body of this writing, as the reader will soon realise. This
phrase, believed to have its origin in the writings of Parmenides and later adopted by
Lucretius, leaves room for various interpretations. For one, it can be interpreted as the
effort we must exert through action for a desirable outcome to materialise. On a more
philosophical note, forgoing the weighty theoretical discussion, this phrase may invite a
debate on the universe’s existence, the creation of matter and the subtleties of the quantum
vacuum.

Returning to the subject of problem-solving, should we focus our efforts on the in-
tuitive solution rather than exploring a myriad of parallel directions to obtain a better
understanding of the problem and its implications? Perhaps it is both. First, we must
bend our thoughts and imaginations with great flexibility, then reflect and create.

So, shall we let our imagination¹ run wild for a moment and see if a new world of
possibilities might emerge?

With this in mind, let us embark on the subject of the dissertation, which the author
hopes the reader shall enjoy.

Tigran Mkhoyan
Lucerne, September 2022

Let us imagine ”An aircraft from the future with a bio-inspired wing, in hyperrealistic detail”.

¹The following pictures were created by translating the quoted text into an AI-generated picture.

ix





Summary

With the increasing desire of the aerospace industry to reduce emissions and fuel con-
sumption, morphing wings have gained much interest due to the ability to adapt the wing
shape in-flight for improved energy efficiency and aerodynamic performance. Active wing
morphing is a technology that can improve the aerodynamic performance continuously
through different flight phases. However, a multidisciplinary approach is needed consid-
ering the design, modelling, control and integration of multi-objective control and sensing
framework to develop a smart autonomous morphing wing system capable of adapting
its shape autonomously. The SmartX project was initiated for this purpose at the Delft
University of Technology, Faculty of Aerospace Engineering, Department of Aerospace
Structures andMaterials, aiming to investigate the energy-efficient wing concepts through
smart wings.

This dissertation presents the Development, Realisation & Validation of a smart mor-
phing wing, the SmartX-Alpha, capable of meeting various real-time objectives with dis-
tributed seamlessmorphingmodules. This is done through a holistic approach considering
all building blocks of a morphing system presented in four Parts of the dissertation cov-
ering sensing, modelling, control, design and manufacturing aspects.

Part I, tackles the sensing approach required to reconstruct the shape of the wing in
real-time. For this purpose, a vision-based sensing approach for morphing and very flex-
ible wings is proposed, suitable for real-time implementation in a multi-objective control
scheme in a non-invasive manner. A wind tunnel experiment was conducted with a very
flexible wing to validate this approach in three individual studies investigated in the Open
Jet Facility (OJF).

First, a non-invasive vision-based image tracking pipeline was developed using a ro-
bust machine learning approach to automatically detect and label visual markers from an
image stream and integrate state estimation routing in the control feedback loop. An em-
phasis was put on robustness and the ability of the algorithm to deal with image noise.
A novel approach was proposed using an inverse formulation of the Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN), the inverse DBSCAN−1, where the
clustering problem is reformulated into a noise filtering problem. Instead of rejecting the
noise, this approach explicitly detects the noise, making the clustering an implicit task. The
experimental dataset was processed using the DBSCAN−1 pipeline, and it was shown that
the actual clusters were successfully identified and isolated from the noise in the image.

Thereafter, full shape reconstruction, utilising the earlier sorting and detectionmethod-
ology, was studied. The primary purpose of the shape reconstruction method was to de-
velop a robust state reconstruction approach, whichwould take as input a point correspon-
dence pair detected from two image frames and reconstruct the tip deflection response in
3D induced by gust input on the wing. The proposed method consisted of a tracker pair
composed of a purely visual filter, a high-speed Kernelised Correlation Filter (KCF), paired
with an Extended Kalman Filter (EKF), allowing robust estimation of a system exhibiting

xi



xii Summary

oscillatory motion under the presence of marker failure and occlusions. The KCF-EKF
method was validated experimentally on a real-time image stream of a very flexible wing
subjected to gust excitation in the Open Jet Facility (OJF) wind tunnel. The method is
further improved with the expansion of the EKF to the Augmented Extended Kalman Fil-
ter (AEKF) form, where the uncertain system parameters are included in the Kalman Fil-
ter model, thereby estimating both the states and parameters online adaptively. The last
stage of the reconstruction step is the triangulation with the Direct Linear Transformation
(DLT) method and coordinate transformation needed to obtain the relative displacement
from the static displacement under a given free stream velocity.

The last study of this Part investigated how the introduction of artificial intelligence, in
particular deep learning from raw image data, could help simplify the processes involved
in the proposed smart visual sensing approach or even potentially replace it entirely. To
explore the deep learning-based concept of Smarter Visual Sensing, a Deep Convolutional
Neural Network (DCNN) is trained to perform a part of the sorting operation and de-
tect the orientation angle of extracted contour shape of the wing. Simultaneously, the
Geometrical Reflectional Symmetry Detector (GeConv) algorithm proposes an efficient
algorithm-based solution to the problem to compare the two methods. Both approaches
show excellent results in detecting symmetry and orientation. The Neural Network can
achieve an angle error of up to 0.05 degrees without needing a contour shape as an input.

Part II presents the design, development, realisation and experimental testing of a
novel distributed modular morphing concept, SmartX-Alpha. Furthermore, a learning-
based shape optimisation approach is investigated, aiming to investigate the benefits of
distributed morphing design combined with online shape optimisation.

The distributed morphing concept is integrated into a seamless, actively morphing
wing demonstrator called SmartX-Alpha. The proposed concept allowed variation of lift
distribution locally along the span and addressed the drawbacks of the initial Transla-
tion Induced Camber (TRIC) concept. An Fluid-Structure Interaction (FSI) optimisation
framework was developed to produce the optimised laminated design of the morphing
skin, taking into account the ply orientation, laminate thickness, laminate properties and
actuation loads. Fixed ±45 degree ply orientation and gradual ply thickness dropping
achieved the desired morphing flexibility and manufacturability. A gap fully covered by
silicone skin yielded the best design configuration for the inter-modular skin, allowing
sufficient flexibility and having the most negligible impact on the actuator load. The mor-
phing shapes are assessed, and mechanical imperfections, contributed mostly by backlash
hysteresis, are characterised in experimental validation with Digital Image Correlation
(DIC). This effect is later addressed by a compensating vision-based control approach in
the subsequent Part.

Next, a numerical study is performed to assess the aerodynamic performance gain that
could be achieved with the proposed seamless, distributed morphing design, utilising arti-
ficial intelligence as a black-box controller. For this purpose, a novel learning-based shape
optimisation method was proposed to optimise the shape online such that the steady-state
lift-to-drag ratio could be optimised for a given target lift coefficient using the lift and
drag measurement updates. An online-trained Artificial Neural Network (ANN) based on
Radial Basis Function Neural Network (RBF-NN) acted as an onboard lift and drag coef-
ficient value model for given actuator input angles, which could be adapted online. An
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evolutionary optimisation algorithm was responsible for finding the most optimal shape
and the angle of attack for the given lift coefficient targets. The simulation experiment
demonstrated that the surrogate model could estimate sufficiently across a large spec-
trum of inputs and outputs, facilitating the optimiser to produce optimal wing shapes
outperforming the jig shape in terms of aerodynamic efficiency. With the global nature
of the optimisation approach, the optimisation strategy allowed to find wing shape and
angle-of-attack combinations with lift-to-drag ratio increases of up to 14.6 % for a wide
range of target lift coefficients without requiring further exploration. The ability to update
the onboard Radial Basis Function Neural Network (RBF-NN) surrogate model using new
measurements demonstrated a relevant and beneficial aspect of the proposed approach to
actively morphing systems, namely, adaptability.

Part III presents the multi-objective control laws developed to simultaneously meet
the gust and manoeuvre load alleviation objective and the real-time shape optimisation
strategy to improve online aerodynamic performance. Furthermore, a vision-based con-
trol strategy is proposed to mitigate nonlinearities in the actuation system arising from
mechanical imperfections. A series of wind tunnel experiments are conducted in the OJF
to validate the methodologies on the SmartX-Alpha, ensuring the objectives are satisfied
autonomously, in-real time.

First, a sensor-driven, incremental control method is proposed for simultaneous gust
and manoeuvre load alleviation combining Incremental Non-linear Dynamic Inversion
(INDI) andQuadratic Programming (QP). Since the morphing system has a distributed ar-
ray of actuators, the INDI is combined with quadratic programming (INDI-QP) to achieve
a control allocation strategy, which considers the actuator position, rate and relative po-
sition constraints. To increase the smoothness of the control allocation, the INDI-QP is
augmentedwith the virtual shape functions (denoted as INDI-QP-V).The control approach
is paired with an integrated distributed control system architecture allowing efficient and
real-time processing of the distributed morphing wing system. The effectiveness of the
proposed INDI-QP-V is validated by wind-tunnel experiments in a complex experimental
setup running in real-time. In manoeuvre load alleviation tasks, INDI-QP-V increased the
total lift for pulling-upmanoeuvres without amplifying the wing root bendingmoment. In
the presence of successive “1-cos” gusts, INDI-QP-V mitigated the loads without requiring
any gust information. A key revelation of the proposedmethodwas the robustness against
aerodynamic uncertainties, gusts, actuator faults, and nonlinear backlash. The INDI-QP-
V could mitigate the effect of gust, while the 9th actuator had become inoperable due to
mechanical failure.

Following this, a complex experimental system is designedwhere all previous elements
of an active morphing wing are combined to investigate online performance optimisation.
Before forwarding this aim, the backlash hysteresis in the system is addressed using a
vision-based data-driven control approach. A vision-based control system was developed
to provide accurate knowledge of the morphing wings’ shape to the controller without
invasive changes to the morphing system. The controller utilises an Incremental Model-
based Nonlinear Dynamic Inversion (IM-NDI) control approach, allowing the system dy-
namics to be identified online using the stored input/output data. The experimental results
demonstrate that themorphingwing can track reference signals with different frequencies
by applying the IM-NDI despite external disturbances. Under Feed-Forward (FF) control,
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the morphing wing suffers from mechanical imperfections, reflected by the tracking re-
sponses’ lagging and magnitude shrinking phenomena. The performance of feed-forward
control also degrades in the presence of external disturbances. By contrast, experimental
results show that IM-NDI can effectively decrease the tracking errors by more than 62 %
despite disturbances.

Finally, the shape optimisation objective is addressed, demonstrating a novel learning-
based aerodynamic performance optimisation approach integrated into a complex real-
time experimental system. Various key components of the morphing wing concept are
validated in this final wind tunnel experiment in OJF. The proposed approach consists of
an evolutionary optimisation strategy, Covariance Matrix Adaptation Evolutionary Strat-
egy (CMA-ES) coupled with a low cost, RBF-NN onboard surrogate model for online op-
timisation of the steady-state lift-to-drag ratio of the morphing wing for a given target
lift coefficient. The onboard RBF-NN model is trained with experimental data collected
during wandering phases to capture the behaviour of the wing model and predict the
steady-state lift and drag coefficients. Compared to the unmorphed wing base shape, a
drag reduction of 7.8 % was achieved on the SmartX-Alpha demonstrator for a target lift
coefficient of 0.65. For a wide range of target lift coefficients, the predicted drag reduc-
tions vary between 6.5 % and 19.8 %, with higher drag reductions associated with lower
lift coefficients. Themethod demonstrated that online real-time performance optimisation
could be achieved globally with an adaptive onboard model. High-accuracy and fast sam-
pling sensors were critical for backlash compensation and shape optimisation, provided
by vision-based sensing.

The final Part, Part IV, is focused on the prospective outlook of over-actuated dis-
tributed smart morphing wing concepts, their maturing and adoption in new aircraft de-
signs.

Throughout the previous Parts, the active morphing wing demonstrator concept was
proposed in the previous sections, and its feasibility was investigated through incremental
improvements and successive wind tunnel tests. A key finding was that actuator band-
width, and the quality of the sensor noise attenuation were critical factors required to push
the envelope for multi-objective optimisation and mitigation of aeroelastic loads. The last
Part investigates the impact of faster actuation on load alleviation performance and the
ability to achieve faster aeroelastic objectives. For this purpose, a distributed over-actuated
aeroelastic wing demonstrator was developed, the SmartX-Neo, allowing faster actuation
with a much simpler flap mechanism and ensuring the same integrated sensing capability
as the SmartX-Alpha.

The effect of actuator design was studied through a series of gust simulations of closed-
loop control of a parametric aeroservoelastic model of the SmartX-Neo, for gusts with
various frequencies. Actuator dynamics were implemented in the system by scaling the
stiffness and damping of a second-order system. With the nominal LinearQuadratic Reg-
ulator (LQR) controller, reductions of peak gust load up to 78 % were achieved compared
to the open-loop case. It was observed that lower scaling corresponding to faster actuation
provides significant improvements of up to 11 % over the nominal actuator configuration,
yielding reductions of gust loads up to 84 %. Furthermore, it was observed that the effec-
tiveness of faster actuators improves for higher frequency gusts, confirming the potential
of SmartX-Neo to deal with faster control objectives more effectively.
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Met de toenemende wens van de lucht- en ruimtevaartindustrie om emissies en brandstof-
verbruik te verminderen, hebbenmorphing vleugels veel belangstelling gekregen vanwege
het vermogen om de vleugelvorm tijdens de vlucht aan te passen voor betere energie-
efficiëntie en aerodynamische prestaties. Active wing morphing is een technologie die de
aerodynamische prestaties tijdens verschillende vluchtfasen continu kan verbeteren. Er is
echter een multidisciplinaire aanpak nodig, rekening houdend met het ontwerp, de mo-
dellering, de controle en de integratie van een multi-objectief controle- en detectiekader
om een slim autonoom morphing vleugelsysteem te ontwikkelen dat in staat is zijn vorm
autonoom aan te passen. Hiervoor is het SmartX-project geïnitieerd aan de TU Delft, fa-
culteit Luchtvaart- en Ruimtevaarttechniek, afdeling Aerospace Structures and Materials,
met als doel de energiezuinige vleugelconcepten door middel van slimme vleugels te on-
derzoeken.

Dit proefschrift presenteert de ontwikkeling, realisatie & validatie van een slimmemorp-
hing vleugel, de SmartX-Alpha, die in staat is om verschillende real-time doelstellingen te
bereiken met gedistribueerde naadlozemorphing modules. Dit wordt gedaan door middel
van een holistische benadering waarbij alle bouwstenen van een morphing systeem wor-
den onderzocht, gepresenteerd in vier delen van het proefschrift, die detectie, modellering,
controle, ontwerp en fabricageaspecten behandelen.

Deel I behandelt de detectiebenadering die nodig is om de vorm van de vleugel in real-
time te reconstrueren. Voor dit doel wordt een op visie gebaseerde detectiebenadering
voor morphing en zeer flexibele vleugels voorgesteld, geschikt voor real-time implemen-
tatie in eenmulti-objectief controleschema op een niet-invasieve manier. Een windtunnel-
experiment werd uitgevoerd met een zeer flexibele vleugel om deze benadering te valide-
ren in drie afzonderlijke onderzoeken die in de Open Jet Facility (OJF) werden onderzocht.

Ten eerste werd een niet-invasieve, op visie gebaseerde pijplijn voor het volgen van
afbeeldingen ontwikkeld met behulp van een robuuste machine learning benadering om
automatisch visuele markeringen uit een beeldstroom te detecteren en te labelen en om
statusschattingsroutering te integreren in de controle-feedbacklus. De nadruk werd ge-
legd op robuustheid en het vermogen van het algoritme ommet beeldruis om te gaan. Een
nieuwe benadering met behulp van een inverse formulering van de Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN), de inverse DBSCAN−1, werd voor-
gesteld waarbij het clusteringsprobleem wordt geherformuleerd in een ruisfilterprobleem.
In plaats van de ruis verwerpen, detecteert deze benadering expliciet de ruis, waardoor het
clusteren een impliciete taak wordt. De experimentele dataset werd verwerkt met behulp
van de DBSCAN−1-pijplijn, en er werd aangetoond dat de daadwerkelijke clusters met
succes werden geïdentificeerd en geïsoleerd van de ruis in de afbeelding.

Dit wordt gevolgd door een volledige vormreconstructiemethode, waarbij gebruikwordt
gemaakt van de eerdere sorteer- en detectiemethode. Het primaire doel van de vormrecon-
structiemethode was om een robuuste toestandsreconstructiebenadering te ontwikkelen,

xv
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die als invoer een puntcorrespondentiepaar zou nemen dat werd gedetecteerd uit twee
beeldframes en de tipafbuigingsrespons in 3D zou reconstrueren, veroorzaakt door wind-
vlaaginvoer op de vleugel.

De voorgestelde methode bestond uit een trackerpaar bestaande uit een puur visueel
filter, een hogesnelheids Kernelised Correlation Filter (KCF), gecombineerd met een Ex-
tended Kalman Filter (EKF), wat een robuuste schatting mogelijk maakt van een systeem
dat oscillerende beweging vertoont onder de aanwezigheid van markerfalen en occlusies.
De KCF-EKF-methode werd experimenteel gevalideerd op een real-time beeldstroom van
een zeer flexibele vleugel onderworpen aan windvlaagexcitatie in de OJF windtunnel. De
methode is verder verbeterd met de uitbreiding van de EKF naar de Augmented Extended
Kalman Filter (AEKF) vorm, waarbij de onzekere systeemparameters zijn opgenomen in
het Kalman Filter-model, waardoor zowel de toestanden als parameters adaptief online
worden geschat. De laatste fase van de reconstructiestap is de triangulatie met de Direct
Linear Transformation (DLT) methode en coördinaattransformatie die nodig is om de re-
latieve verplaatsing van de statische verplaatsing onder een gegeven vrije stroomsnelheid
te verkrijgen.

De laatste studie van dit deel onderzocht hoe de introductie van kunstmatige intelli-
gentie, met name deep learning uit onbewerkte beeldgegevens, kan helpen de processen die
betrokken zijn bij de voorgestelde slimme visuele waarnemingsaanpak te vereenvoudigen
of deze mogelijk zelfs volledig te vervangen. Om het op deep learning gebaseerde concept
van Smarter Visual Sensing te verkennen, wordt een Deep Convolutional Neural Network
(DCNN) getraind om een deel van de sorteerbewerking uit te voeren en de oriëntatiehoek
van de geëxtraheerde contourvorm van de vleugel te detecteren. Tegelijkertijd stelt het
GeConv-algoritme (GeConv) een efficiënte, op algoritmen gebaseerde oplossing voor het
probleem voor om de twee methoden te vergelijken. Beide benaderingen laten uitstekende
resultaten zien bij het detecteren van symmetrie en oriëntatie. Het neurale netwerk kan
een hoekfout van maximaal 0.05 graden bereiken zonder dat een contourvorm als invoer
nodig is.

Deel II presenteert het ontwerp, de ontwikkeling, de realisatie en het experimenteel
testen van een nieuw gedistribueerd modulair morphing concept, SmartX-Alpha. Verder
wordt een op leren gebaseerde vormoptimalisatiebenadering onderzocht, met als doel de
voordelen van gedistribueerd morphing ontwerp in combinatie met online vormoptimali-
satie te onderzoeken.

Het gedistribueerde morphing concept is geïntegreerd in een naadloze, actief morp-
hing wing-demonstrator genaamd SmartX-Alpha. Het voorgestelde concept maakte vari-
atie van de liftdistributie lokaal langs de overspanning mogelijk en loste de nadelen van
het oorspronkelijke Translation Induced Camber (TRIC) concept op. Een Fluid-Structure
Interaction (FSI) optimalisatieraamwerk werd ontwikkeld om het geoptimaliseerde gela-
mineerde ontwerp van de morphing skin te produceren, rekening houdend met de laa-
goriëntatie, laminaatdikte, laminaateigenschappen en activeringsbelastingen. Een vaste
laagoriëntatie van±45 graden en een geleidelijke daling van de laagdikte zorgden voor de
gewenstemorphing flexibiliteit en maakbaarheid. Een opening volledig bedekt door silico-
nenhuid leverde de beste ontwerpconfiguratie voor de intermodulaire huid op, waardoor
voldoende flexibiliteit mogelijk was en de meest verwaarloosbare impact op de actuator-
belasting. De morphing vormen worden beoordeeld en mechanische onvolkomenheden,
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voornamelijk veroorzaakt door spelinghysterese, worden gekarakteriseerd in experimen-
tele validatie met DIC. Dit effect wordt later aangepakt door een compenserende, op visie
gebaseerde regelaanpak in het volgende deel.

Vervolgens wordt een numerieke studie uitgevoerd om de aerodynamische prestatie-
winst te beoordelen die kan worden bereikt met het voorgestelde naadloze, gedistribu-
eerde morphing ontwerp, waarbij kunstmatige intelligentie wordt gebruikt als een black-
box controller. Voor dit doel werd een nieuwe, op leren gebaseerde vormoptimalisatieme-
thode voorgesteld om de vorm online te optimaliseren, zodat de steady-state lift-naar-
weerstandsverhouding kan worden geoptimaliseerd voor een bepaalde doelliftcoëffici-
ënt met behulp van de updates voor lift- en weerstandsmetingen. Een online getraind
kunstmatig neuraal netwerk (ANN) op basis van radiale basisfuncties neurale netwerk-
structuur (RBF-NN) fungeerde als een onboard lift- en weerstandscoëfficiëntwaardemodel
voor gegeven actuatorinvoerhoeken, die online konden worden aangepast. Een evolutio-
nair optimalisatie-algoritme was verantwoordelijk voor het vinden van de meest optimale
vorm en de aanvalshoek voor de gegeven liftcoëfficiëntdoelen. Het simulatie-experiment
toonde aan dat het surrogaatmodel voldoende kon schatten over een groot spectrum van
inputs en outputs, waardoor de optimizer optimale vleugelvormen kon produceren die be-
ter presteerden dan demalvorm in termen van aerodynamische efficiëntie. Met het globale
karakter van de optimalisatiebenadering, maakte de optimalisatiestrategie het mogelijk
om combinaties van vleugelvorm en aanvalshoek te vinden met verhogingen van de lift-
naar-sleepverhouding tot 14.6 % voor een breed scala aan doelliftcoëfficiënten zonder ver-
dere noodzaak verkenning. Demogelijkheid om het ingebouwde RBF-NN-surrogaatmodel
bij te werken met behulp van nieuwe metingen, toonde een relevant en gunstig aspect aan
van de voorgestelde benadering van actieve morphing systemen, namelijk adaptability.

Deel III presenteert de multi-objectieve controlewetten die zijn ontwikkeld om tege-
lijkertijd te voldoen aan de doelstelling voor het verlichten van windstoten en manoeu-
vres en de real-time vormoptimalisatiestrategie om de online aerodynamische prestaties
te verbeteren. Verder wordt een op visie gebaseerde regelstrategie voorgesteld om niet-
lineariteiten in het aandrijfsysteem als gevolg van mechanische onvolkomenheden te ver-
minderen. In het OJF wordt een reeks windtunnelexperimenten uitgevoerd om de me-
thodologieën op de SmartX-Alpha te valideren, zodat de doelstellingen autonoom en in
real-time worden bereikt.

Ten eerste wordt een sensorgestuurde, incrementele regelmethode voorgesteld voor
gelijktijdige verlichting van windstoten en manoeuvres door INDI en QP te combine-
ren. Aangezien het morphing systeem een gedistribueerde reeks actuatoren heeft, is de
INDI gecombineerd met kwadratische programmering (INDI-QP) om een besturingstoe-
wijzingsstrategie te bereiken, die rekening houdt met de actuatorpositie, snelheid en re-
latieve positiebeperkingen. Om de soepelheid van de besturingstoewijzing te vergroten,
is de INDI-QP uitgebreid met de virtuele vormfuncties (aangeduid als INDI-QP-V). De
besturingsbenadering is gekoppeld aan een geïntegreerde architectuur van het gedistri-
bueerde besturingssysteem, waardoor een efficiënte en real-time verwerking van het ge-
distribueerde morphing vleugelsysteem mogelijk is. De effectiviteit van de voorgestelde
INDI-QP-V wordt gevalideerd door windtunnelexperimenten in een complexe experimen-
tele opstelling die in real-time draait. Bij het verlichten van manoeuvrebelastingen ver-
hoogde INDI-QP-V de totale lift voor optrekmanoeuvres zonder het buigmoment van de
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vleugelwortel te vergroten. In aanwezigheid van opeenvolgende “1-cos” windstoten, heeft
INDI-QP-V de belastingen verminderd zonder dat er windvlaaginformatie nodig was. Een
belangrijke onthulling van de voorgestelde methode was de robuustheid tegen aerodyna-
mische onzekerheden, windstoten, actuatorfouten en niet-lineaire speling. De INDI-QP-V
kon het effect van windvlagen verminderen, terwijl de negende actuator onbruikbaar was
geworden door een mechanisch defect.

Hierna wordt een complex experimenteel systeem ontworpen waarin alle eerdere ele-
menten van een actieve morphing vleugel worden gecombineerd om online prestatie-
optimalisatie te onderzoeken. Alvorens dit doel door te realiseren, wordt de spelinghyste-
rese in het systeem aangepakt met behulp van een op visie gebaseerde, gegevensgestuurde
besturingsbenadering. Er is een op zicht gebaseerd besturingssysteem ontwikkeld om
nauwkeurige kennis van de vorm van de morphing vleugels aan de regelaar te verstrek-
ken zonder invasieve veranderingen aan het morphing-systeem. De regelaar maakt ge-
bruik van een incrementele, op modellen gebaseerde, niet-lineaire dynamische inversie
(IM-NDI) regelbenadering, waardoor de systeemdynamiek online kan worden geïdentifi-
ceerd met behulp van de opgeslagen invoer-/uitvoergegevens. De experimentele resulta-
ten tonen aan dat de morphing vleugel referentiesignalen met verschillende frequenties
kan volgen door de IM-NDI toe te passen ondanks externe storingen. Onder controle van
Feed-Forward (FF) heeft de morphing vleugel te lijden van mechanische onvolkomenhe-
den, weerspiegeld door de achterblijvende en magnitudekrimpende verschijnselen van de
trackingresponsen. De prestaties van de feed-forward regelaar nemen ook af in aanwe-
zigheid van externe verstoringen. Daarentegen laten experimentele resultaten zien dat
IM-NDI ondanks storingen de tracking errors met meer dan 62 % kan verminderen.

Ten slotte wordt het doel van vormoptimalisatie aangepakt, waarbij een nieuwe, op le-
ren gebaseerde, aerodynamische prestatie-optimalisatiebenaderingwordt gedemonstreerd,
geïntegreerd in een complex real-time experimenteel systeem. Verschillende belangrijke
componenten van het morphing vleugelconcept worden gevalideerd in dit laatste wind-
tunnelexperiment in OJF.

De voorgestelde aanpak bestaat uit een evolutionaire optimalisatiestrategie, Covari-
anceMatrix Adaptation Evolutionary Strategy (CMA-ES) gekoppeld aan een goedkoop RBF-
NN onboard surrogaatmodel voor online optimalisatie van de stationaire lift naar sleepver-
houding van de morphing vleugel voor een gegeven doelliftcoëfficiënt. Het ingebouwde
RBF-NN-model is getraind met experimentele gegevens die zijn verzameld tijdens zwer-
vende fasen om het gedrag van het vleugelmodel vast te leggen en de stationaire lift- en
luchtweerstandscoëfficiënten te voorspellen. Vergelekenmet de niet-vervormde vorm van
de vleugelbasis werd een weerstandsvermindering van 7.8 % bereikt op de SmartX-Alpha
demonstrateur voor een beoogde liftcoëfficiënt van 0.65. Voor een groot aantal beoogde
liftcoëfficiënten variëren de voorspelde weerstandsverminderingen tussen 6.5% en 19.8%,
met hogere weerstandsverminderingen geassocieerd met lagere liftcoëfficiënten. De me-
thode toonde aan dat online real-time prestatie-optimalisatie wereldwijd kan worden be-
reikt met een adaptief onboardmodel. Zeer nauwkeurige en snelle bemonsteringssensoren
waren van cruciaal belang voor spelingcompensatie en vormoptimalisatie, geleverd door
Visie-gebaseerde detectie.

Het laatste deel, Deel IV, is gericht op de toekomstige vooruitzichten van overmatig ge-
activeerde gedistribueerde slimme morphing vleugelconcepten, hun rijping en acceptatie
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in nieuwe vliegtuigontwerpen.
In de vorige delen werd het concept van de actieve morphing vleugel demonstrateur

voorgesteld in de vorige paragrafen, en de haalbaarheid ervan werd onderzocht door mid-
del van incrementele verbeteringen en opeenvolgende windtunneltests. Een belangrijke
bevinding was dat de bandbreedte van de actuator en de kwaliteit van de ruisonderdruk-
king van de sensor kritische factoren waren die nodig waren om de grenzen te verleg-
gen voor multi-objectieve optimalisatie en beperking van aero-elastische belastingen. Het
laatste deel onderzoekt de impact van een snellere activering op de prestaties van de belas-
tingvermindering en het vermogen om snellere aero-elastische doelstellingen te bereiken.
Voor dit doel werd een gedistribueerde over-geactiveerde aero-elastische vleugel demon-
strateur ontwikkeld, de SmartX-Neo, die een snellere activering mogelijk maakt met een
veel eenvoudiger klepmechanisme en dezelfde geïntegreerde detectiecapaciteit garandeert
als de SmartX-Alpha.

Het effect van het ontwerp van de actuator werd bestudeerd door middel van een reeks
windvlagensimulaties van closed-loop controle van een parametrisch aeroservo-elastisch
model van de SmartX-Neo, voor windstoten met verschillende frequenties. Actuatordyna-
mica werd in het systeem geïmplementeerd door de stijfheid en demping van een tweede-
ordesysteem te schalen. Met de nominale Linear Quadratic Regulator (LQR) regelaar wer-
den reducties van piekbelasting tot 78 % bereikt in vergelijking met het geval met open lus.
Er werd waargenomen dat een lagere schaal die overeenkomt met een snellere activering,
aanzienlijke verbeteringen oplevert tot 11 % ten opzichte van de nominale configuratie
van de actuator, wat leidt tot een reductie van windvlagen tot 84 %. Bovendien werd
waargenomen dat de effectiviteit van snellere actuatoren verbetert voor windstoten met
een hogere frequentie, wat het potentieel van SmartX-Neo bevestigt om effectiever om te
gaan met snellere regeldoelen.
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Introduction

Ex nihilo nihil fit.
Nothing comes out of nothing.

Lucretius, 60 BC, adapted from Parmenides
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2 1. Introduction

A advancements in aerospace engineering, paired with continuing desire to develop
more fuel-efficient aircraft, have led to increasingly flexible aircraft designs. Gener-

ally, flexibility is considered a side effect of the lighter aircraft design and needs to be ade-
quately accounted for to prevent undesired aerodynamics-structure couplings and ensure
the optimised aerodynamic shape. While the flexibility can be accounted for with either
passively tailored structural design or active control mechanisms, a fixed-wing shape -
generally optimised for the cruise condition - cannot be fully optimised throughout the
flight envelope due to conflicting requirements [1]. A more natural approach is to utilise
the flexibility and actively change the shape by in-flight morphing. This allows the wing to
continuously adapt to the most optimal shape when transitioning from one flight phase to
the other. Secondly, compared to the conventional discrete trailing-edge surfaces, smooth
morphing can execute flight control and load alleviation commands with reduced noise
and drag. Collectively, these two aspects can contribute to a more efficient flight routine
and a reduced structural weight, thereby improving flight sustainability.

Many research efforts have been devoted tomorphing, including piezoelectricity, shape
memory alloy materials, a compliant actuation mechanism, etc. [2]. Among all these re-
search aspects, actuation force reduction is one of the bottlenecks ofmorphing realisations.
Previtali et al. [3], reduced the actuation force by a compliant skin mechanism and a com-
bination of conventional and piezoelectric actuation. However, this approach results in
significant manufacturing challenges and complexities. Other concepts, such as the fish-
bone active camber (FishBAC) [4], and the mission adaptive digital composite aerostruc-
ture technologies (MADCAT) [5] demonstrate morphing with ultralight structures. How-
ever, most of the wing volume is consumed for morphing mechanisms, leaving little room
for other components. Overviewing the state-of-the-art, the critical shortcomings of ex-
isting morphing techniques include 1) restricted morphing motions; 2) manufacturability
and scalability complexities; 3) compromised internal wing volume; 4) inadmissibility for
distributed morphing control along the wing span.

This dissertation proposes a distributed seamless active morphing wing concept to
overcome these shortcomings. The morphing wing concept named the SmartX-Alpha is
realised through the development of all aspects of the smartmorphingwing, which encom-
pass smart sensing, control and integration of decentralised real-time control system ar-
chitecture. A second wing demonstrator is developed, the SmartX-Neo, implementing the
learnings from SmartX-Alpha, to accelerate the adoption and improvement of distributed
over-actuated wing concepts into new aircraft concepts. With this, the dissertation sets a
critical step forward towards a greener outlook for future aircraft concepts.

1.1. Active Morphing Building blocks
While the previous section presented the problem statement, the importance, and appli-
cations of a smart actively morphing system, it is now critical to take a step back and
understand the main components of such a system. Imagining an empty canvas, one can
think of several building blocks which can be used to construct an actively morphing sys-
tem. Firstly, a model or data is required to represent the system’s behaviour. Secondly,
the system must react intelligently through a control system. Much like in nature or any
system in real-life, its output cannot be interpreted directly. Hence a sensor system is
required to perceive the environment and dictate the behaviour of the morphing system.
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Figure 1.1: Building blocks of an active morphing wing system.

Finally, a suitable design and manufacturing approach must be chosen to realise the sys-
tem physically. This analogy is adopted to represent the building blocks of the actively
morphing system considered in this dissertation, illustrated in Fig. 1.1.

The connection of these blocks can be illustrated through a simplified control dia-
gram. As shown in Fig. 1.2, the intelligent controller actively controls the system. The
true system is observed utilising sensor measurements and reconstructed using prior data
or output of the model. The estimation is fed back to the controller, closing the loop.

Smart Sensing

Observed
modelFlexible AircraftIntelligent

Controller

Sensing & Estimation

(elastic states)

input

gust/turbulence

data frame
[n×m]

output

real-time
feedback

Figure 1.2: Simplified control diagram illustrating the interconnection of the morphing systems’ building blocks.

1.2. Research Goals and Objectives
It is evident that, in order to arrive at an optimal active morphing system, in terms of
design and performance, a smart and multidisciplinary approach is required that addresses
each building block in the early design phase and integrates a multi-objective and robust
optimisation framework considering all these components.
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1.2.1. This Dissertation
The problem must be viewed holistically for such a smart system to be realised and op-
timally impact future, greener aircraft concepts. The goal and focus of this study are,
therefore, to:

Research Goal

Develop the smart morphing framework for real-time in-flight performance op-
timisation, through multidisciplinary parallel integration of sensor-based control
laws and the smart distributed sensing and actuation systems.

Advancing the goal of the study requires the state-of-the-art to be extended in a multidis-
ciplinary manner by addressing the following central research question:

ResearchQuestion

How can multidisciplinary integration of sensor-based control laws, model-free sens-
ing methods, and actuation mechanisms be used for real-time, in-flight, multi-
objective optimisation framework of actively morphing wings?

1.2.2. ResearchQuestions Breakdown
Falling back to the building blocks presented in Figure 1.1, the modelling, control, and
integration of sensors and actuators aspects must be addressed accordingly to arrive at an
integrated smart active morphing wing concept and advance the state-of-the-art. There-
fore, the main research question is augmented with the sub-questions presented below.
These questions are answered throughout this dissertation in the scope of (i) real-time per-
formance optimisation, (ii) robustness and adaptability, which is the ability of the model
and the control laws to overcome (adapt to) the model uncertainties (model and sensor er-
rors), occurrences of system faults. The connection of the research questions is presented
in Figure 1.3.

A Model & Data: How can a fully coupled aeroelastic model of a wing be integrated into
a real-time onboard multi-objective framework without compromising accuracy, and
how can this model exhibit self-learning through the feedback of smart sensors?

B Control: Is it possible to reduce the model dependency of current control allocation
methods through the use of sensor-driven, distributed actuation methods?

C Sensing: Can the multidisciplinary use of smart sensors and actuator systems, inte-
grated with distributed, sensor-driven control designs, allow active shape control for
improved aerodynamic performance and load alleviation of morphing wing systems?

D Design and Manufacturing: How can the controller, model, and sensing methods
be integrated efficiently and holistically into a manufacturable morphing wing design
capable of utilising distributed smart sensing and actuation mechanism without com-
promising the control and aerodynamic performance?
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Figure 1.3: Rationale behind the research and the required topics to be investigated in the literature.

1.3. Dissertation Scope and Projects
The dissertation is conducted within the scope of the SmartX demonstrator project and
has the following goal: to develop and test a fully autonomous morphing wing,
capable of (i) optimal aerodynamic performance, (ii) desired flight dynamic behaviour,
(iii) minimal loads to achieve minimal structural weight and (iv) automated high lift. The
SmartX wing demonstrator must demonstrate autonomous morphing and performance
optimisation capability with a distributed array of trailing edge flaps¹ in a Wind Tunnel
(WT).

1.3.1. Project Structure
Considering the multidisciplinary nature of the project, the secondary aim of the SmartX
demonstrator is to facilitate collaboration between the Aeroelasticity group Aerospace
Structures and Computational Mechanics (ASCM), Non-Destructive Testing (NDT), Novel
Aerospace Materials (NovAM) and the Control and Simulation (C&S) groups and act as a
test-bed for integration of state-of-the-art developments of sensors, materials and actu-
ators within these groups. An overview of the project structure and the focus of this
dissertation within the project is illustrated in Fig. 1.4. The blocks SmartX-Neo/Alpha
represent the demonstrators that have been developed in this dissertation, independent
(SmartX-Neo) and in collaboration with others (SmartX-Alpha).

1.3.2. Control Objectives
Thegoals and the investigation outlined in this dissertationmanifested in twowing demon-
strators, the SmartX-Alpha and SmartX-Neo. The purpose of these demonstrators was to
tackle several real-time objectives: performance optimisation of multiple objectives such
as (i) drag optimisation, (ii) load alleviation, (iii) aeroservoelastic control and (iv) shape

¹Distributed system of control surfaces (input effectors) categorises the wing as an over-actuated wing, i.e. more
effectors are available than to be controlled variables (Degrees-of-Freedom (DOF))
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Figure 1.4: Overview of the Work Breakdown Structure of the SmartX project and the role of this dissertation.

control through multidisciplinary utilisation of smart sensing, control, actuation, and in-
tegration. The scope of the objectives covered by each wing demonstrator is presented in
Fig. 1.5. The difference between the two demonstrators is the capability to morph con-
tinuously and smoothly (SmartX-Alpha), versus a faster, simpler actuation mechanism,
allowing to address faster objectives (SmartX-Neo).

Drag minimisation

Load Alleviation

SmartX Objectives

Shape control

Aeroelastic
control

Smooth controlSmooth control

SmartX-Alpha SmartX-Neo

Fast control

Lift Distribution

Tip deflection and
twist

Figure 1.5: Comparison of the objectives of the SmartX-Alpha and SmartX-Neo.
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1.4. Research Contributions
The contributions of this dissertation encompass the complete holistic process of the de-
sign, realisation, validation and improvement of an innovative smart morphing wing con-
cept. The contributions are made in morphing design, analysis, sensing and control.

• Development of a novel vision-based sensing approach for morphing and flexi-
ble aeroelastic aircraft concepts, suitable for real-time implementation in a multi-
objective control scheme in a non-invasive manner, presented in Part I. A novel
unsupervised clustering method, presented in Chapter I.1, which is expanded with
the complete shape reconstruction method in Chapter I.2. Finally, the implementa-
tion of deep learning with raw pixel data utilised in the sensing process presented
in Chapter I.3, sets forth a new angle to vision-based sensing for flexible structures.

• Design, development, realisation and experimental testing of a distributed modular
morphing concept, SmartX-Alpha, presented in Part II, Chapter II.1. The concept
and system are realised in software and hardware through the development of a
novel decentralised distributed control system architecture, validated experimen-
tally through independent wind tunnel tests, presented in Chapters III.1, III.2 and
III.3. In Chapter II.2, a novel learning-based shape-optimisation approach is devel-
oped for this morphing concept, for optimising steady-state lift-to-drag ratio, and
evaluated numerically.

• Development, implementation and experimental validation of novel incremental
control allocation method, integrated into a novel control system architecture al-
lowing efficient and real-time processing of distributed morphing wing system pre-
sented in Part III. In Chapter III.1 simultaneous manoeuvre and load alleviation are
demonstrated with an incremental control approach, ensuring relative actuator con-
straints and smooth allocation of the morphing system.

• Improving the performance of the morphing concept by addressing the actuation
nonlinearities associated with the backlash hysteresis with a vision-based nonlin-
ear incremental control method, introduced in Chapter III.2. In Chapter III.3 the
shape optimisation objective is addressed, where the novel learning-based aerody-
namic performance optimisation approach is demonstrated in a complex experimen-
tal system connected to various critical components of the morphing wing concept.
The method demonstrated that online real-time performance optimisation can be
achieved globally with an adaptive onboard model.

• An important step is made in Part IV with the development and evaluation of a sec-
ond wing demonstrator, the SmartX-Neo, towards technology maturing and adop-
tion of over-actuated distributed smart morphing wing concepts in new aircraft de-
signs. The study, presented in Chapter IV.1, addresses how faster actuation and a
simple actuator mechanism can improve load alleviation and the final objective, the
aeroelastic control.
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1.5. Reader’s Manual
This dissertation consists of four Parts aiming to address (i) sensing, (ii) design, and (iii)
control and integration aspects of a smart morphing wing concept. The final Part is pre-
sented as a (iv) future outlook, to help accelerate the adoption of morphing and distributed
wing technology into new aircraft concepts by implementing the learnings from previous
Chapters. This Part also contains the conclusion. Each Chapter is written with the aim to
be published in a peer-reviewed scientific journal or has already been published and can
be read entirely independently. Therefore, the content for most Chapters is nearly identical
to the published papers.

A full list of publications related and non-related to this dissertation is presented at the
beginning of this dissertation. To aid the reader in understanding various components and
their interaction addressed in this dissertation, a visual guide is presented in Figure 1.6.
The outline of the thesis is presented below.

The state-of-the-art review concerning the components above of the morphing wing
is presented in Chapter 2. Part I focuses on developing a novel vision-based sensing
approach for morphing and flexible aeroelastic aircraft wings, suitable for real-time im-
plementation in a multi-objective control scheme in a non-invasive manner. The three
Chapters presented in this Part are centred around the first wind tunnel test, WT I, con-
ducted with an aeroelastic wing and a non-invasive camera tracking system developed
for the study in the Open Jet Facility (OJF). In Chapter I.1, a novel unsupervised cluster-
ing method is presented using a machine learning approach. This is followed by a full
shape reconstruction method in Chapter I.2, utilising Augmented Extended Kalman Filter
(AEKF) for retaining the dynamic model of the wing subject to oscillations induced by
gust vanes. Chapter I.3 presents a new direction toward vision-based sensing by utilising
a Deep Convolutional Neural Network (DCNN) to extract information from raw-image
data instead of the traditional computer vision approach. A comparison is made between
traditional and Deep Learning (DL) based approaches, and recommendations are made on
replacing the complete reconstruction process by DL.

In Part II, the design, development, realisation and experimental testing of a distributed
modular morphing concept, SmartX-Alpha, is presented. In Chapter II.1 the morphing
wing concept, the analysis methods centred around an efficient Fluid-Structure Interaction
(FSI) framework, and the manufacturing methods facilitating the realisation of the morph-
ing wing hardware demonstrator are presented. The morphing shapes are assessed, and
mechanical imperfections, contributed mostly by backlash hysteresis, are characterised
in experimental validation with Digital Image Correlation (DIC). This effect is later ad-
dressed by a compensating vision-based control approach in Chapter III.2. The concept
and system are realised in software and hardware through the development of a novel de-
centralised distributed control system architecture, validated experimentally in indepen-
dent wind tunnel tests in presented Chapters III.1, III.2 and III.3. A novel learning-based
shape optimisation approach and a numerical evaluation of the distributedmorphingwing
concept are presented in Chapter II.2. This Chapter investigates the benefits of distributed
morphing design in the context of online shape optimisation. It proposes an evolutionary-
based optimisation strategy coupled with a Radial Basis Function (RBF) Neural Network
(NN) to optimise the steady-state lift-to-drag ratio for a given target lift coefficient.
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Following up on the previous Part, the focus of Part III is the control aspect of the mor-
phing system, tested experimentally in two independent wind tunnel experiments,WT II
andWT III. First, a sensor-driven, incremental controlmethod is proposed for simultaneous
gust and manoeuvre load alleviation based on Incremental Non-linear Dynamic Inversion
(INDI) and Quadratic Programming (QP), demonstrating enhanced robustness to model
uncertainties and backlash. The control approach is paired with an integrated distributed
control system architecture allowing efficient and real-time processing of distributed mor-
phing wing system in Chapter III.1. Using this control approach, simultaneous manoeuvre
and load alleviation are achieved while ensuring relative actuator constraints and smooth
allocation of the morphing system in the OJF wind tunnel equipped with a gust generator.
Following this, a complex experimental system is a setup where all previous elements of
an active morphing wing are combined to investigate online performance optimisation.
In Chapter III.2, the performance of the morphing concept is improved by addressing the
actuation nonlinearities associated with the backlash hysteresis effect. The vision-based
nonlinear incremental control method is utilised to mitigate the effect in the wind tun-
nel setup effectively. Finally, Chapter III.3 addresses the shape optimisation objective,
demonstrating a novel learning-based aerodynamic performance optimisation approach
integrated into a complex real-time experimental system. Various key components of the
morphing wing concept are validated in this final wind tunnel experiment in OJF. The
method demonstrated that online real-time performance optimisation can be achieved
globally with an adaptive onboard model.

The final Part, Part IV, is focused on the outlook of over-actuated distributed smart
morphing wing concepts, their maturing and adoption in new aircraft designs. The last
Chapter, Chapter IV.1, investigates the impact of faster actuation on the load alleviation
performance and the ability to achieve faster aeroelastic objectives. For this purpose, a
distributed over-actuated aeroelastic wing demonstrator was developed, the SmartX-Neo,
allowing faster actuation with a much simpler flap mechanism and ensuring the same
integrated sensing capability as the SmartX-Alpha.

Finally, the general conclusion and the recommendations are presented in Chapter IV.2,
addressing the results of each study conducted to forward the development of the smart
morphing wing technology.
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2
Recent Advancements in Active

Morphing

It is easy to explain how a rocket works
but explaining how a wing works

takes a rocket scientist.

Philippe Spalart, Boeing fellow

I n the past decades, substantial research has been carried out in the area of active morphing. This
chapter presents an overview of the literature on active morphing systems and gaps in the current

state-of-the-art. The subsequent sections follow the structure of the building blocks of the morphing
system presented in Fig. 1.1.
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Over the past decades, substantial research has been carried out in the area of active
morphing. This research encompasses not only the integrated morphing system as a

whole but also advancements made to the individual elements, as illustrated in Fig. 1.1, out
of which an active morphing system is composed—understanding the benefits and short-
comings of the current state-of-the-art active morphing systems and how the building
blocks are connected is essential to advance the research further. The following sections
present a literature review carried out in an attempt to gather insight into the state-of-
the-art and current gaps.

2.1.Morphing and Design
In recent years, the technological advancements in aerospace materials, manufacturing
technology, controller and hardware design allowed the development of increasingly
lighter and more complex concepts. As the demand for sustainability and fuel efficiency
continues to grow, the need for concepts which can increase flight performance becomes
more evident. A particular technology which can significantly improve flight perfor-
mance is active morphing. Initially inspired by avian biology, the effectiveness of such
concepts is demonstrated in nature with wing shape adaptation and optimal gliding per-
formance [1, 2].

As in nature, morphing wing concepts have evolved since the early years of aviation.
One of the well-documented examples was the active roll control of the Wright Flyer, the
first successful heavier-than-air powered aircraft. In this lightweight design, the lateral
stability was ensured by wing twist-warping [3]. In this case, the flexible fabric-wrapped
structure was well suited for morphing. However, as the flight speeds and loads increased
with the advancement of aircraft design, a stiffer wing was required to fulfil load require-
ments and overcome aeroelastic instabilities. As a result, the conventional rigid wing
design, generally optimised for the cruise, exhibits compromised performance in other
flight conditions. More importantly, due to continuous fuel burn and redistribution of
the weight, no optimal configuration can be found which is met through the entire cruise
phase. Activemorphing has the potential to reduce this performance gap and continuously
optimise the aircraft performance across the entire flight envelope adaptively. However,
a challenging aspect of active morphing is designing a feasible and effective morphing
mechanism such that the aircraft performance can be improved actively throughout the
flight envelope [4]. That is the subject of this dissertation.

In literature, various morphing concepts can be found. A comprehensive review of the
early morphing concepts of various approaches regarding the actuator material, the actu-
ation mechanism, and the skin types is presented by Barbarino et al. [5]. Examples vary
from conventional to compliant mechanisms and materials in the latter two categories.
Also, various materials are investigated for the actuators, ranging from conventional to
piezoelectric and shape memory alloys. In aircraft wings, morphing can be applied to the
leading edge, trailing edge, or both.

Kintscher et al. and Sodja et al. investigate a seamless morphing droop nose concept
for the leading edge, designed to match a given target shape with different materials used
for the morphing skin such as glass-fibre pre-preg and aluminium [6, 7]. The concept by
Sodja et al. utilises conventional actuation. Here, low actuation forces are achieved by
maintaining the skin length constant during morphing, such that strains in the skin are
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minimal. Several other concepts achieve low actuation force by utilising compliant skin
and actuation mechanisms [8–10]. While promising, the studies highlight the importance
of further research into manufacturing and up-scaling complex compliant designs since
the manufacturing process of these complex shapes is still challenging.

Further, examples of the compliant mechanism and actuation are investigated. Previ-
tali et al. used conventional actuators, and Molinari et al. used piezoelectric skin actua-
tion [9–12]. Some studies use bio-inspired design, such as the FishBAC concept, designed
to mimic the compliant skeletal frame of fish, developed at Swansea University [13–15].
Trailing edge mechanisms are also presented by FlexSys, which have been installed and
undergone flight tests on a modified Gulfstream III business jet [9, 16, 17].

Recent studies also investigated the use of ultralight, lattice-based structural mod-
ules assembled in a modular adaptive structure using Carbon Fibre-Reinforced Polymers
(CFRP) [18–20]. The advantage is that these materials can have the stiffness of a typical
elastomer at the mass-density typical to aero-gel. Cremer et al. [19] demonstrate improved
aerodynamic efficiency and roll control authority with spatially programmed elastic mor-
phing shape of a 4.27 mwingspan aircraft in the wind tunnel. Jennet et al. [18] present the
digital morphing wing concept constructed from discrete lattice elements. This concept
shows increased roll efficiency compared to a conventional wing by applying spanwise
twisting deformation. While promising, the lattice-based modules occupy most of the in-
ternal space due to their programmable flexibility and lightweight. Therefore, additional
consideration is needed to ensure the flexibility of the structure while reserving the room
for fuel, batteries, and other components to be installed in the wing. The lattice-based
concept, presented by Keidel et al. [20], suggests a potential structurally efficient approach
through optimisation of the orientation and distribution of the CFRP rods. However, this
concept needs additional consideration for larger wing structures and manufacturability
aspects.

Another study developed under NASA Advanced Air Transport Technology investi-
gated the multi-flap Variable Continuous Camber Trailing Edge Morphing (VCCTEF) con-
cept for the Generic Transport Model (GTM) [21]. This concept demonstrated effective-
ness in multi-objective control and gust load alleviation in [22, 23]. However, the real-life
experimental demonstrator with SMA rotary actuators revealed many challenges such as
weight effectiveness, speed and power requirements of the actuators, the complexity of
the multi-segment camber mechanism, and skin flexibility required [21].

In a recent EU FP7 CHANGE project study, a morphing concept called the Translation
Induced Camber (TRIC) is introduced to address some of these problems [24]. This concept
implements a relatively simple and effective morphing mechanism that uses a combina-
tion of cross-sectional warping and skin bending to induce camber and twist morphing
with a pair of conventional actuators. The advantage of this concept is its relative sim-
plicity and compactness of the actuation mechanism, which increases the fuel carrying
capability and volume needed for necessary auxiliary components in the wing. However,
the main disadvantage of the currently proposed TRIC concept is that the lift distribution
cannot be influenced locally with a single morphing surface controlled by a single pair of
actuators. As a result, this inhibits the use of the morphing mechanism for multi-objective
flight control and limits its use as a direct replacement of conventional control surfaces for
rigid body motion control (ailerons, rudders and elevators). Various control design studies
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highlight the necessity and effectiveness of multi-objective flight control, load alleviation,
and drag reduction performed by distributed multi-flap systems such as the VCCTEF in-
vestigated in [22, 23] and conventionally flapped over-actuated aircraft models [25].

Key observations of the literature study onmodelling and analysis aspects:

• Current morphing concepts suffer from the complexity of the actuation mecha-
nism, which hinders effective implementation and scalability.

• For smooth local control of the lift distribution, a distributed (morphing) system
is necessary.

2.2. Control
In the previous section, several real-time objectives of the active morphing system were
outlined for this dissertation, shown in Fig. 1.5. Manoeuvre Load Alleviation (MLA) and
Gust Load Alleviation (GLA) are two important objectives in this context. Conventional
MLA generally requires extensive tuning and relies on some pre-designed control logic to
trigger pre-selected wing control surfaces when the measured load exceeds a pre-defined
threshold. Another approach, by Pereira et al. [26] uses a linear Model Predictive Con-
troller (MPC) and a Linear Quadratic Regulator (LQR) to satisfy the load constraints at
various critical stations. In another study [27], the nonlinear flexible aircraft model is lin-
earised successively, and thenMPC controllers are designed at every linearisation point. A
LinearQuadratic Gaussian (LQG) control is designed for a SensorCraft vehicle GLA prob-
lem in [28]. Another experimental study in the Open Jet Facility (OJF) investigated the
potential of load reduction with smart rotors using H∞ loop shaping and Feed Forward
control [29]. Besides, a wind tunnel experiment for alleviating the gust loads of a flexible
wing with piezoelectric control is presented in [30]. The piezoelectric patches are actuated
by a Proportional-Integral-Derivative (PID) controller using wing-tip linear acceleration
measurements. In the study by Baldelli et al. [31], an aeroelastic morphing vehicle is con-
trolled using Linear Parameter-Varying (LPV) and pole placement techniques.

In recent years, several studies have been conducted within the scope VCCTEF [23].
This distributed control surface layout concept achieves multi-objective flight control and
manoeuvre load alleviation. The multi-objective control approach is suitable for problems
where several, and possibly conflicting, performance objectives are involved, such as min-
imising drag and loads or maximising manoeuvrability [23, 32]. Two cost functions are
used in the LQG control, one for rigid-body command tracking and another for elastic
mode suppression and the wing root bending moment minimisation [23]. Simulation re-
sults in [23] revealed that the pitch rate tracking performance is degraded when enabling
the MLA function, reducing the ability to achieve the target loads for command tracking.
This contrasts with the belief that physically, an aircraft possessing the ability to deploy
distributed control surfaces should be able to alleviate loads from manoeuvres and gusts
while maintaining the required loads for command tracking. In a follow-up study [33], the
LQG controller is combinedwith an adaptive GLA function, which estimates the gust com-
ponents on rigid-body and elastic dynamics using an adaptive gradient law. However, the
estimation is impaired due to the limited number of accelerometers, model uncertainties
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and high learning rates for the adaptation laws required to estimate the high-frequency
components of the disturbances.

An active morphing wing is a complex system that must adapt to constantly changing
flight conditions and disturbances and can also exhibit coupled and nonlinear interac-
tions between aerodynamics and structural dynamics. While conventional linear control
methods, paired with the gain-scheduling and identification methods, can demonstrate
adaptiveness, a tedious tuning process is required. Furthermore, with this approach, the
resulting stability and performance cannot be guaranteed between operational points [34].

Moreover, due to the complexity of the actuation mechanism and manufacturing im-
perfections, nonlinearities can arise in the actuation behaviour of the morphing surfaces,
which are also characterised in other aerospace systems as [35], friction [36], deadzone [37].
These nonlinearities can degrade the system performance and lead to undesirable phenom-
ena such as limit-cycle oscillations, divergence, and even flutter [37, 38]. In particular, in
the presence of coupled and nonlinear interactions between aerodynamics and structural
dynamics, this imperfection can magnify the uncertainties with a complex wing system.
Therefore, a sensor-driven nonlinear control approach is required, which is less model-
dependent, can cope with these uncertainties and can be paired with an online identifica-
tion routine to adapt to constantly changing flight conditions and disturbances.

Incremental Non-linear Dynamic Inversion (INDI) control law is a sensor-driven non-
linear control method which does not require gain scheduling and has also been used to al-
leviate loads effectively in [39]. Due to reliance on sensor data, this method can cope with
model uncertainties. It is less model dependent compared to other model-based nonlinear
control methods such as feedback linearisation [40] and backstepping [41], known for full
model knowledge assumption [42]. This incremental sensor-driven method has also been
extended to backstepping with Incremental Backstepping (IBKS)[43]. Experimental and
simulation results have demonstrated the robustness of INDI to model uncertainties [44],
gust disturbances [39], actuator faults [45], and structural damage [46]. There are several
other benefits to INDI, such as low computational load, suitability for real-time implemen-
tation, and uncertainty parameterisation process instead of adaptive control methods.

The study byWang et al. [39] demonstrated that a trade-off must be made for load alle-
viationwith INDIwhen the flexible aircraft has a conventional aileron configuration. Con-
sequently, the performance could be improved by utilising an over-actuated distributed
flap configuration intended for SmartX-Alpha; however, a control allocation strategy must
be implemented for such a system. In the literature, an Incremental Nonlinear Control Al-
location (INCA) method has been proposed for a tailless aircraft with Innovative Control
Effectors (ICE) [47]. While this approach provided effective control allocation for a highly
manoeuvrable nonlinear aircraft model, the relative position constraints were not consid-
ered. In order to enforce smoothness of the lift distribution and allocation for a distributed
morphing concept, relative position constraints and consequent smooth actuator alloca-
tion are critical.

Attempts to tackle computational efficiency of control allocation of large distributed
systems have also been addressed by parallel computing in [48], for distributed wavefront
reconstruction of large-scale adaptive optics system [48]. Aside from model or sensor-
driven approaches, black box methods are currently an active area of research. Deep Rein-
forcement Learning (RL) has gained significant traction as a black-box, easy-to-implement
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alternative in the control design of linear and nonlinear systems [49–51]. The promise of
this method is the ability of the agent (controller) to learn an optimal policy through ob-
servation of the inputs and outputs of the system in a purely online and adaptive manner,
without prior knowledge of the system. Studies are demonstrated for stabilisation of heave
dynamics of a flexible wing-fuselage model [52], and online control of flexible aircraft us-
ing Integral RL in [53]. The latter variation of RL was developed to compensate for drift
dynamics and facilitate the convergence to the optimal solution without explicit knowl-
edge of the internal dynamics of the system [54]. While promising, the challenge for this
method remains the lack of stability guarantee, the volatility towards the learning param-
eters, and the structure of the Neural Network (NN) used to capture the input-output data
structure.

It seems that to fully benefit from the potential of advanced sensor-driven control
methods, the control system architecture must mitigate the lag in the system and allow
efficient sampling and data communication. Secondly, the sensor dependency must be
mitigated to maximise the robustness against model uncertainties. This will be a key
challenge to overcome for an over-actuated and over-sensed system envisioned in this
dissertation.

Key observations of the literature study on control aspect:

• Computentionally efficient real-time control methods are desired, which can
utilise sensory data available onboard of smart morphing system.

• Control allocation approach must be developed, which considers relative actu-
ator constraints and ensures smooth allocation.

2.3. Sensing
As shown in the simplified control diagram in Fig. 1.2 the sensing aspect is tightly cou-
pled with the control method. In the previous section, it was already highlighted that less
model-dependent control methods are beneficial due to ease of implementation, efficiency
and their ability to adapt to model uncertainties. INDI is one such control method that
helps reduce model dependence; however, it relies more on sensory input to cope with
model uncertainties. For these types of methods, the quality of the sensor and the estima-
tion it provides are critical factors, as any sensor uncertainties would negatively impact
the effectiveness of the controller.

With the rise of more flexible and unconventional (over-actuated) aircraft designs
(such as VCCTEF and X-56A [55]) and sensor-dependent control methods, the need for
alternative robust sensing methods increases; these are twofold. One is the need to have
robustmodel-free sensors, such that the limitation of the perfect sensor assumption of incre-
mental methods is tackled. Second, many parameters must bemeasurable and are required
as state feedback for an aeroelastic system to properly account for multiple objectives such
as gust loads, control effectiveness, flutter etc. A crucial aspect for the majority of these
objectives is an accurate and efficient estimation of the wing shape and control surface
deflections. To address these needs, new sensing methodologies and sensor hardware
comprising conventional and non-conventional smart sensors must be considered.
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The study by Weisshaar et al. [4] highlights the ability to monitor and communicate
structural state information as one of the critical aspects of developing smart morphing
structures. Conventional sensors such as accelerometers, gyros, optical fibres and strain
gauges are widely used for shape estimation in flexible aircraft [33, 39, 56]. However, these
conventional sensors suffer from temperature and gyroscope/sensor drift and provide low
sampling rates (optical fibres). Furthermore, as indicated in [33], the estimation can be
impaired by the choice of the sensor layout, which, due to the requirement to embed the
sensors in the wing structure, makes this approach model-dependent and require high
precision placement.

Visual sensing is a solution that can reduce the complexity associated with hardware
installation and provide shape feedback in a non-invasive manner. This type of sensing
can replace an array of conventional and allow observing multiple nodes of the system’s
flexible states using an image sequence from a set of fuselage-mounted cameras. The use
of visual information for observing deformations has been successfully implemented on
wind tunnel models in early studies [57] and has also seen widespread application in robot
manipulation [58]. Various other vision-based applications for aerial systems have already
been investigated in recent studies. Applications range from for areal imagery [59–61], to
aerial navigation [62] and flight control tasks, such as aerial refuelling [63], landing [64]
and estimation of rigid body aircraft states, such as altitude [65]. In a flight-test experi-
ment conducted by the Netherlands Aerospace Centre (NLR), it was shown that a Digital
Image Correlation (DIC) system was capable of providing accurate measurement of the
displacements in the millimetre range [66]. However, a speckle pattern was required to
ensure accuratemeasurement. The development of robust marker-based trackingmethods
can help reduce reliance on special coating [67].

Light Detection and Ranging (LIDAR) is another sensing technology which could ben-
efit smart morphing wing technology by providing a feed-forward path to the controller
for the upstream disturbances and the flow field. The potential of this system was studied,
and a LIDAR based system, Molecular Optical Air Data System (MOADS), was proposed
in [68]. Off-line flight tests were also performed with NLR for one-dimensional measure-
ments of free-stream velocity [69], although limited flight tests with closed-loop control
are performed for a full-scale two-dimensional flow field reconstruction. While gaining
popularity in automotive applications, integrating this type of system in a small factor,
low-cost computation unit is still challenging.

In recent years, the capability of onboard computation and the image processing qual-
ity has immensely increased, while the hardware has become more compact [70, 71]. The
rise of low-profile, embedded, low-cost and high-performance Graphics Processing Unit
(GPU) computing modules such as JetsonTX2 and Xavier [72] allow not only to process a
collection of visual data but also enhance the computation by real-time hardware acceler-
ation and onboard Artificial Intelligence (AI).

However, integrating vision-based sensing and other sensors for efficient real-time
shape estimation for high degree-of-freedom systems such as distributedmorphing is chal-
lenging. In particular, improving the robustness and sampling frequency of vision-based
sensing is a crucial aspect that must be considered.
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Key observations of the literature study on sensing aspect:

• Vision-based sensing is a promising, non-invasive alternative for model-free
shape estimation.

• Improving the robustness and sampling frequency of visual-based sensing is a
key aspect that must be considered when implementing this method.

2.4.Modelling, Analysis and Identification
Traditionally, aeroelastic modelling is motivated by passive design methodology. The mo-
tivation behind such an aeroelastic model is the ability to tailor the wing design through
aeroelastic analysis while optimising for structural layout, material properties or, in the
case of composite material, the directional stiffness of the material [73].

2.4.1. Aeroelastic Modelling and Analysis Frameworks
The aim of the aeroelastic modelling perspective has been the development of a design and
optimisation framework, contributed by essential works of [73–76]. Recent works have
also been conducted on extending the design space to full aircraft model and flight dynam-
ics coupling [77]. In the work by Werter [76], the aeroelastic modelling approach had the
aim to improve the conceptual design of aircraftwings through optimisation. The 3Dwing
geometry is generally represented by a discretised 1D structural beam model to improve
the computational speed. The structural model can be extended for the static analysis with
geometric nonlinearities, as implemented by Breuker [75]. The dynamic aeroelastic model
is linearised around the static equilibrium [76] and coupled to the aerodynamic method
of choice in the work of Werter [76]. Generally, two-dimensional unsteady airfoil theory,
often referred to as trip theory, or aerodynamic panel methods are used, such as the Un-
steady Vortex Lattice Method (UVLM) [78], in order to obtain a continuous state space
representation of the system.

This state space representation can be used to evaluate the aeroelastic response of the
system to disturbance input. Strip theory has been widely used for the analysis of High-
Altitude Pseudo-Satellite (HAPS) [79, 80], applicable due to its computation efficiency and
the ability to cope with lightweight, flexible HAPS platforms such as High Altitude Long
Endurance (HALE), Zephyr [81, 82]. The state space system can be obtained through the
finite-state method or Leishman’s indicial method [83]. While actuator dynamics do not
include damping terms, an aeroservoelastic model is obtained in [84] by augmenting the
aeroelastic model with a lumped torsional spring representing the flap. Experimental vali-
dation of Stemme S15 aircraft conducted by Silvestre et al. [85] demonstrated that a suitable
model for flight control law design could be obtained using strip theory and the indicial
method.

Another widely used aerodynamic modelling method utilising the Aerodynamic Influ-
ence Coefficients (AIC)’s is Doublet Lattice Method (DLM) [86]. Its main advantage is the
ability to capture compressibility; however, the model’s accuracy can be impaired when
converting from frequency domain to time domain using Rational Function Approxima-
tion (RFA) [76]. Given that the UVLM is formulated in the time domain, its advantage
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is the ability to cope with flows around wings exhibiting large motion, as the transient
response and the free wake are computers directly [87].

When higher fidelity is required, Computational Fluid Dynamics (CFD) based methods
can be used for flutter [88] or gust response [89] analyses; however, the computational cost
would render this approach unsuitable for control design purposes. Therefore, the cost
must be reduced through model reduction techniques and a data-driven approach for ap-
proximating a CFD-based model. The main advantage of (U)VLM and strip theory models
is the ability to obtain a low-cost coupled model in the time domain. However, while the
UVLMmodel developed byWerter. [76] allows for the computation of the inviscid, incom-
pressible, irrotational, unsteady aerodynamic forces and moments, the dynamic model is
linearised around small perturbations around a steady-state reference configuration gov-
erned by a given aerodynamic shape and flow conditions. The model in this approach is
typically analysis-driven for a given load case. Therefore, the model needs to be linearised
and recomputed to cover multiple dynamic load cases and regions of the flight envelope.

It must be noted that to meet the real-time objectives, the smart morphing wing envi-
sioned in this dissertation must be able to cope with varying dynamic load cases through
its mission profile. Furthermore, linearisation obtained analysis framework presented
in [76, 77, 90] can still be computationally infeasible in real-time for a high degree-of-
freedom distributed control panel configuration such as the envisioned SmartX wing.

Another approach for obtaining a low-cost time-domain model is through model re-
duction techniques, where the purpose of the Reduced-Order Modelling (ROM) is to re-
duce the size of the model (i.e. number of states or modes) while retaining a sufficient level
of accuracy. Several ROM approaches exist, ranging from Modal Truncation (MT), where
the structural model is limited to a set of eigenvalues and corresponding eigenvectors [91],
Balanced Truncation (BT) where the system is reduced based on its observability and con-
trollability [92], Proper Orthogonal Decomposition (POD) or balanced POD obtained us-
ing singular value decomposition of the system at a given condition [93, 94]. In a recent
comparative, MT showed the lowest computational cost but was impaired in accuracy
compared to higher cost methods such as the BT [95]. Based on the efficient reduction
of the controllability and observability, BT has effectively reduced a sizeable aerodynamic
system composed of linearised Navier–Stokes equations [96]. While effective, this method
is only suitable for linear systems. To fully account for a nonlinear aeroelastic model and
retain the accuracy, potentially, the incremental variant of this method, suitable for non-
linear systems, was investigated in [97]. The reduced system can be further condensed
when only a specific frequency range is selected for the desired application. The study
by Gugercin et al. [98] addressed this aspect by proposing a frequency-weighted balanced
reduction approach with an absolute error bound and stability guarantee.

2.4.2. Data-Driven Models and System Identification
Another approach that aligns with model reduction is a data-driven representation, or a
surrogate model, of an aircraft model or a wing constructed from high-fidelity high-cost
analysis such as CFD. A recent study proposed a CFD-based data-driven approximation
of an aeroelastic aircraft model employing a Loewner-based data-driven optimal approx-
imation and Eigensystem Realisation Algorithm (ERA) [99]. The use of a suitable sur-
rogate model can also substantially improve optimisation performance in the context of
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the Multi-disciplinary Design Optimisation (MDO) framework, as suggested by Alba et
al. [100].

Experimental data gathered from the wind tunnel or in-flight experiments can also be
used to validate or represent the model in an entirely data-driven manner. The model or
the system can also be identified from data collected a priori or online from sensor mea-
surements. Many system identifications and consequent control methods utilising the
model rely on full-state feedback assumption. This is often not directly realisable but can
be facilitated using sensor fusion techniques and Kalman Filter (KF) model, such as the
case for LQG. One recent approach developed for data-driven identification is Dynamic
Mode Decomposition with Control (DMDc), which aims to extract a low-order model suit-
able for real-time control from high-dimensional, complex systems [101]. Recent stud-
ies have demonstrated the development of data-driven nonlinear aeroelastic models for
morphing wing control using an interpolation scheme to smoothly connected, linearised
DMDc [102].

In summary, the literature study highlighted that aeroservoelastic models could be ob-
tained through design-driven or data-driven models. For active control of an autonomous
smart morphing wing, a shift is required from design-driven models for passive tailoring
purposes to low-cost active models suitable for control purposes.

Key observations of the literature study on modelling and analysis aspect:

• A shift is required from analysis models for passive tailoring to active aeroser-
voelastic models for control purposes.

• Cost efficiency and accuracy are critical factors for establishing an aeroservoe-
lastic andmorphing wingmodel to be used both for control-driven purposes and
for analysing many load cases.

• A distinction is made between design-driven models and data-driven, exper-
imental models. The latter provides an alternative to unsteady aerodynamic
models and is suitable for experimental identification and real-time control.

2.5. Gaps, Choices and Needs for this Dissertation
Several relevant aspects of the smart morphing system were outlined in the previous sec-
tion. To advance the current state-of-the-art, the gaps in (i) morphing design, (ii) control,
(iii) sensing and (iv) modelling and analysis must be filled.

2.5.1. Current Gaps and Choices
The following paragraphs describe the gaps and choices established concerning this dis-
sertation’s design, control, sensing, and modelling aspects.

Morphing Design It is evident that a distributed morphing concept must be developed
to address the shortcomings of the previous morphing designs. Critical challenges of mor-
phing concepts are the complexity of the actuation mechanism, the manufacturability,
the scalability and the integration of design, control and sensing aspects. Therefore, to
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maximise the impact of this dissertation and accelerate the adoption of smart morphing
technology for future aircraft concepts, the effectiveness, manufacturability and scalabil-
ity must be proven by a simple yet effective actuation mechanism while integrating all
areas of the morphing system, as highlighted in Fig 1.1, through this dissertation.

Efficient Control Methods Smoothness and continuity of the distributed morphing
systemmust be facilitated using adequate material or structural design and control alloca-
tion methods to ensure relative actuator constraints. Sensor-driven control methods, such
as the INDI, are suitable because the morphing concept must facilitate various sensing
capabilities. Furthermore, the model dependency must be reduced such that the control
method is easy to implement and can deal with model uncertainties, which are expected
from a complex system. Finally, a computationally efficient real-time control method is
desired, utilising sensory data available onboard the smart morphing system to meet var-
ious objectives. Therefore, control allocation methods must also be efficient.

Control law
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Figure 2.1: Simplified schematics of the proposed distributed control allocation and sensor synchronisation.

Robust Sensing and Data Fusion The morphing concept must facilitate various sens-
ing capabilities to account for various real-time objectives. Shape sensing is the critical
aspect required for most objectives (e.g. load alleviation, shape control, aeroelastic con-
trol). Vision-based sensing is a suitable method due to its model independency, ease of
implementation and non-invasive nature. In the event that the configuration or the loca-
tion of the desired nodes of the system must be adapted, a camera-based setup has a clear
advantage in terms of flexibility and ease of implementation. Tracking and reconstruction
algorithms must be developed suitable for efficient onboard computation. The robustness
of the visual-tracking algorithms must be considered when implementing this approach.
A possible enhancement of this sensing approach is incorporating dynamics-informed fil-
ters, such as the KF, into the reconstruction and tracking approach. The sensing robustness
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can be further improved by implementing a sensor fusion strategy utilising multiple sen-
sory data. The data and control system architecture will play a principal role in facilitating
complex real-time sensing and control strategies. In Sec. 2.5.2 a potential approach is dis-
cussed. A simplified control schematic of the abovementioned components is presented in
Fig. 2.1. In this scheme, the INDI based online controller linearises the plant using sensor
feedback from novel sensors (optical, piezoelectric, fibre-optic).

Modelling, Analysis and Identification A key aspect in the design of the SmartX is
the capability to autonomously implement multi-objective functions using the available
sensor data onboard, which can be used in real-time in the wind tunnel or in-flight.

Implementing these multi-objective functions, either in-flight or in the wind tunnel,
not only depend on sensor strategy but also on a coherent system identification methodol-
ogy that alignswith control methods developed in parallel. Control methods that are adap-
tive in nature generally go hand in hand with well-chosen system identification strategies.
It is more so the case for uncertain systems and/or undergoing experimental testing. In the
context of experimental system identification, it serves, on the one hand, the purpose of
building and correcting mathematical models from imperfect sensor observations. This al-
lows identifying parameters needed for control law updates either in-flight or post-flight,
reducing the model uncertainties. But also provides surrogate models with reduced order
and sufficient fidelity for flight control law development and in-flight deployment. In this
context, two categories of system identification can be performed, parametric and non-
parametric. In the prior case, the identified model parameters represent the true physical
parameters of the model, e.g. Mδ (pitching moment control effectiveness) andMα (lon-
gitudinal stability derivative) [103]. In the latter category, the system’s parameters are
abstract and do not represent physical values. However, they can still relatively accu-
rately represent the system behaviour and match the eigenvalues of the true system.

2.5.2. Need: DistributedControl SystemandDataFramework
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Figure 2.2: Need towards distributed real-time framework and synchronisation.

A principal aspect of a smart morphing system, which must utilise an abundance of
sensors and actuators, is a control system architecture that can facilitate the integration
of various hardware components and synchronise shared data from various sources. A
conventional autonomous control system adopts strict data architecture, where the Flight
Data Acquisition Unit (FDAU) and the Automatic Flight Control System (AFCS) are typi-
cally separated. In this non-modular configuration, the AFCS is responsible for the acqui-
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Figure 2.3: Real-time data synchronisation for sensing and control.

sition and processing of the sensors, the FDAU for generating the control signals, and the
system is not scalable.

It is noteworthy to realise that for an over-actuated and over-sensed system to be real-
isable, a shift is required from the current conventional system to a modular and scalable
approach. Tomeet this goal, decentralised real-time data architecture is envisioned, which
would allow the distribution of the data processing effort across various processing nodes
and the scalability of the system through modular design. The architecture shall be de-
veloped with adaptability in mind to allow the fusing of data from different hardware
sources at different sampling rates, subject to the limitations of the sensing hardware and
in-flight control function requirements. The differences between conventional and envi-
sioned systems are illustrated in a simplified diagram shown in Fig. 2.3. In this approach,
the sensory information (e.g., the strain measured at a node) and output information (e.g.,
actuator positions) can be represented in synchronised real-time variables with a decen-
tralised communication bus topology. The principle of data synchronisation is illustrated
in Fig. 2.3 The data architecture acts as a synchronising layer between physical hardware
and the control software, updating parameters relevant to in-flight control functions. From
the hardware perspective, the AFCS acts as the master synchronisation node, providing
the timing and computation of the control laws. The Sensor Fusion Computer (SFC) is re-
sponsible for data fusion, onboard analysis and identification. Redundancy of the system
can be ensured by adding additional processing or sensory units.

The envisioned configuration is particularly suitable for adoptingAI capable, hardware-
accelerated embedded computational units with GPU and Central Processing Unit (CPU)
capability, such as the NVIDIA Jetson TX2 and the newer AGX Xavier. These low-profile
(light and low power consumption) modules allow implementing native optimised Com-
pute Unified Device Architecture (CUDA) libraries for solving AI or Machine Learning
(ML) tasks online in a small form-factor (100x87, 20-40 W) with high performance: 32
TOPS (32 trillion operations per second); 750 Gbps high-speed IO; 512 CUDA cores, 64
tensor cores [72].

In summary, the benefit of the envisioned system includes: (i) the control functions
have the flexibility to choose their inherent sampling rates; (ii) each sensor can be sampled
at the optimal sampling rate of the sensor with its dedicated hardware (Analog to Digital
Converter (ADC) converter etc.); (iii) controller tuning with Hardware-in-the-loop (HIL)
becomes very flexible; (iv) ease of integration and up-scaling of the system with additional
sensors; (v) allows robust sensor fusion algorithms implementation.
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Summarising the direction chosen in this dissertation is.
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Figure 2.4: Overview of identified gaps in the literature relevant to smart morphing wings.

2.6. Integration of the Concepts
A review of the current state-of-the-art relevant to the smart morphing wing has helped
identify gaps in design, modelling, sensing, control and integration domains. The relevant
gaps are summarised in Fig. 2.4. Based on these findings, the rationale behind the smart
morphing wing, developed during this dissertation, is conceptualised. The concept of in-
tegrating the discussed components is presented in Fig. 2.5. The smart morphing wing is
displayed with the continuously morphing trailing edge in the centre. Several key com-
ponents of the diagram are:

• Integrated actuators allow morphing of trailing edge surface defined by Sδ(y).

• Sensors are installed in the wing to allow real-time measurements of (i) shape of the
wing with fibre-optic sensors, (ii) boundary layer sensing with piezoelectric sen-
sors for in-flight cruise shape optimisation and automated high-lift generation (iii)
high-speed cameras installed at the root to provide shape feedback of the morphing
surfaces to the controller.

• A multi-objective optimal controller adaptively drives the actuator inputs, Scδ(y),
towards the desired shape Sδ(y) curve in order to optimise in real-time for several
objectives formulated in the objective function J .

• As the wing encounters gust and varying atmospheric conditions, the controller
continuously adapts the morphing surfaces to obtain the optimal lift distribution
for the given objectives, fA(t)− fB(t).
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Knowledge of the state of the boundary layer is important for shape control both for
in-flight cruise shape optimisation and automated high-lift generation. Knowing whether
the boundary layer is turbulent or laminar is important for cruise shape optimisation,
while knowing whether the boundary layer is attached or separated is important in the
case of automated high-lift. The flow sensing hardware must be integrated into the wing
skin since it must be able to operate in flight.
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Figure 2.5: Concept integration of the smart morphingwingwith synchronisedmulti-objective control allocation
and smart sensing.
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Figure 2.6: Timeline of the dissertation.

The timeline of this dissertation, presented in Fig. 2.6, is focused on the end goal, which
is the development and the assessment of the smart morphing wing demonstrator wind
tunnel studies. The goal is envisioned to be reached through several incremental studies
in morphing wing design, control, sensing, integration and testing.

The roadmap of this dissertation, presented in Fig. 2.7, uses the runway analogy. Here,
the development is commenced through (A) preliminary sizing and design studies, fol-
lowed by (B) numerical evaluation of the designs. The benefits of the smart morphing
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wing are investigated with incremental design improvements and assessment of (C) dis-
cretised, distributed control surface design and (D) trailing edgemorphing. The two design
approaches are assessed in terms of their ability to meet real-time objectives. Final rec-
ommendations are made on the feasibility of (E) full morphing smart wing concept and
suggestions for adopting this technology in future sustainable aircraft designs.

17 35

D E

A

B

C

c

D - Morphing TE

c

w

E - Full Morphing

tcf

b c

c

A - Sizing

B - Num. studies

δi

C - Discrete TE

Figure 2.7: Roadmap of the dissertation.
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I n this Chapter, an image tracking pipeline is developed using a robust machine learning approach,
aiming to (i) automatically label visual markers and (ii) investigate a non-invasive state estimation

approach for online control applications of flexible aircraft wings. This Chapter, along with Chapters I.2
and I.3, is part of the first wind-tunnel campaign aiming to investigate a smart vision-based sensing
approach for morphing and flexible wings [1].

This Chapter is based on the following journal paper:
T. Mkhoyan, C. C. de Visser, and R. De Breuker, “Adaptive Real-Time Clustering Method for Dynamic Visual
Tracking of Very Flexible Wings,” Journal of Aerospace Information Systems, vol. 18, pp. 58–79, jan 2021
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Advancements in aircraft controller design, paired with increasingly flexible aircraft
concepts, create the need to develop novel (smart) adaptive sensingmethods suitable for
aeroelastic state estimation. A potentially universal andnon-invasive approach is visual
tracking. However, many tracking methods require manual selection of initial marker
locations at the start of a tracking sequence. This study addresses the gap by investigat-
ing a robust machine learning approach for unsupervised automatic labelling of visual
markers. Themethodutilises fast Density-Based Spatial Clustering ofApplicationswith
Noise (DBSCAN) and adaptive image segmentation pipelinewithHSV colour filter to ex-
tract and label the marker centres under the presence of marker failure. A comparative
study assesses the DBSCAN clustering performance against an alternative clustering
method, the Disjoint-set data structure. The segmentation-clustering pipeline with DB-
SCAN is capable of running in real-time at 250 fps on a single camera image sequence
with a resolution of 1088×600 pixels. To increase robustness against noise, a novel for-
mulation — the inverse DBSCAN, DBSCAN−1 — is introduced. This approach is vali-
dated on an experimental dataset collected from camera observations of a flexible wing
undergoing gust excitations in a wind tunnel, demonstrating an excellent match with
the ground truth obtained with a laser vibrometer measurement system.

Nomenclature

A, B = Subsets of dataset D
P (x, y) = Density distribution of particles (2D)
B(x′, y′) = Kernel matrix
P(x, y) = Cloud of cluster centres
c̄p = Centroid of points P
Pθhull = Convex radial hull
c̄cp = Centroid of cluster centres
p, q = Scatter points
D = Dataset
pn, qn = Scatter noise particles
dist (p, q)euclid = Euclidean distance function
Ryy(τ) = Auto Correlation Function
f(I(x, y)) = Filtering (sequence) operation
Syy(ω) = Auto Power Spectral Density
fdilate(I(x, y)) = Dilate operation
V∞ = Wind tunnel flow velocity
ferode(I(x, y)) = Erode operation
w1, w2 = Class variance weights (Otsu)
fg = Gust vane frequency
Zϵ(pn) = The ϵ neighbourhood of noise points pn
fmorph(I(x, y)) = Morphological operations (combined)
z = Greyscale value
fnorm = Global normalisation operation
αg = Gust vane angle
Gf (x, y) = Filtered image
γ = Radius tolerance
I(x, y) = Input image
ϵ = Radius of neighbouring points
I(z) = Gaussian Noise probability density
θcp = Vector angles from centroid to marker
J(x, y) = Noise input image
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µ = Mean of I(z) distribution
MaxPts = DBSCAN−1 max points dense region
µdst = Mean of the cluster population
MinPts = DBSCAN min points dense region
µI = Mean of points in 2D image
mi = Cluster centre size
σ = Standard deviation of I(z) distribution
Nϵ(p) = The ϵ neighbourhood of points p
σdst = Standard deviation of cluster population
N(x, y, t) = Random seed initialised noise mask
σI = Standard deviation points in 2D image
ni = Cluster population size
σ2
w(τth) = Intra-class variance (Otsu)

ninoise = Noise particle population size
σ2
1 , σ

2
2 = Class variances (Otsu)

O(...) = Computational complexity
τth = Threshold parameter

I.1.1. Introduction

Smart Sensing

Visual modelFlexible AircraftIntelligent
Controller

Aeroelastic State
Estimation

(elastic states)

input

gust/turbulence

visual frame
[1088× 600]

output

real-time
feedback

Figure I.1.1: State estimation setup using visual tracking.

In the context of aeroservoelastic control, monitoring the entire wingspan can be crucialfor proper delegation of control actions. This objective may involve installing many
conventional accelerometers that are likely subject to noise and bias, must deal with cer-
tification requirements, or might face challenges associated with correct geometric place-
ment or limited mounting space. A smart sensing approach is desired for those examples
of wing structures that rely on novel types of sensors for providing feedback to an intel-
ligent controller.

A solution that can significantly reduce the complexity associated with hardware in-
stallation and provide the flexibility needed for employing novel state estimation tech-
niques is aeroelastic state estimation by visual methods. A schematic of aeroelastic state
estimation using vision — consisting of an intelligent controller, the aircraft model and the
visual model — is illustrated in Fig. I.1.1. This Chapter aims to contribute to the aeroelastic
state estimation block such that the control loop can be closed with the dotted line.

The use of visual information for observing deformations has been successfully im-
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plemented on wind tunnel models in early studies [2], and has also seen widespread ap-
plication in robot manipulation [3]. However, in recent years, the capability in terms of
onboard computation and camera quality has immensely increased, while the hardware
has become more compact [4, 5]. These developments open the door for numerous em-
bedded applications using a camera as a sensor for aircraft systems.

Various vision applications for areal systems have been investigated for areal imagery
in recent studies [6–8]. Vision-based information can also be used for aerial navigation [9]
and flight control tasks, such as aerial refuelling [10], landing [11] and estimation of rigid
body aircraft states, such as altitude [12]. However, within the scope of flexible and mor-
phing aircraft systems —as these systems are more prone to exhibiting higher responses
to aerodynamic loads—, the challenge lies in estimating the impact of the flexibility on the
dynamics of the system, which cannot always be accounted for in the early design stage.
The study by Weisshaar et al. [13], highlights the ability to monitor and communicate
structural state information as one of the key aspects of the development of smart mor-
phing structures. Vision-based feedback systems can play a crucial role in this task as one
camera system can observe multiple nodes of the system’s flexible states in a sequence
of images [14]. In particular, fuselage-mounted camera systems can provide significant
advantages for flexible aircraft systems, save costs associated with installation and certi-
fication, and have the potential of being non-invasive and universally applicable. Vision-
based information has been shown to be suitable for direct real-time feedback of flexible
states of an aircraft [15, 16].

Sequenced image data is also a rich source of information: data collected over an ex-
tended period unlocks the opportunity to approach the state estimation from a new per-
spective usingmachine learningmethods. One of the key challenges is the need for robust,
unsupervised and computationally efficient clustering methods. Several studies investi-
gated the performance of clustering methods by using improved [17, 18] and parallel DB-
SCAN methods [19]. However, a gap remains for a streamlined approach to unsupervised
clusteringwith robustness against noise. In particular, while many suitable trackingmeth-
ods exist for marker detection, correctly labelling the initial markers in the visual frame
is still not a trivial task [20].

In this Chapter, two machine learning methods were implemented for unsupervised
clustering of marker labels, meaning that they do not require the number of clusters and
initial guesses as input. The sequence of images is filtered with two image segmentation
approaches to obtain a mask for clustering operations. A comparison was made between
the two machine learning methods, DBSCAN [21] and Disjoint-set data structure [22],
and a segmentation-clustering pipeline was developed based on Hue-Saturation-Value
(HSV) [23] and adaptive thresholding with Otsu’s method [24].

A novel approach to DBSCAN— the inverse DBSCAN (DBSCAN−1) — was introduced
and implemented in the study. In this approach, the clustering problem is reformulated
into a noise filtering problem, and an additional parameter,MaxPts, is introduced into
the formulation. The crux of DBSCAN−1 lies in isolating the group of desired clusters and
classifying them as noise, i.e. points surrounded by too many other points (filtered by max
MaxPts condition). Subsequently, the desired clusters of points are rejected as noise,
while the true noise is identified explicitly and removed from the dataset in a follow-up
step.
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For the purpose of investigating the robustness of the method, the input images were
subjected to Gaussian noise, and both the nominal DBSCAN as well as DBSCAN−1 were
assessed in performance with less noise filtering. An image tracking pipeline was devel-
oped to test this clustering method on an image sequence. It was observed that the pro-
posed method is capable of real-time tracking and achieving speeds of 250+ fps (frames-
per-second), measured on an image sequence of a single camera with a resolution of
1088×600 pixels in a laboratory environment on a standard Dell Optiplex 7400 and a 2.3
GHz Intel Core i5 16G MacBook. Hence, the method is suitable for online control appli-
cations.

The approach was tested on an image sequence of a flexible wing equipped with LED
(light-emitting diode) markers, undergoing oscillatory motion under gust excitation in the
Open Jet Facility (OJF) wind tunnel of the Delft University of Technology. Furthermore,
the effect of the frequency content was studied to investigate a potential implementation
in the pipeline for adjusting the segmentation and clustering parameters. A schematic of
the experimental setup is shown in Fig. I.1.2; in this experiment, the same gust generator
was used as the one developed for OJF in a previous study [25].

Markers

Lost marker

Disturbance Wing oscillations

tracker pairCam 1 Cam 2

View 2
View 1

Figure I.1.2: Experimental setup with the wing facing the wind tunnel, equipped with visual markers.

This Chapter is structured as follows. Themethodology is presented in Sec. I.1.2, where
Sec. I.1.2.2 deals with the segmentation and filtering approach. Two clustering methods,
DBSCAN and Disjoint-set data structure, are discussed in Sec. I.1.2.3, with a detailed de-
scription of the novel formulation of the DBSCAN, DBSCAN−1, in Sec. I.1.2.4. The ex-
perimental setup and the data acquisition process are explained in Sec. I.1.3, with Sec-
tions I.1.3.1 to I.1.3.3 covering the setup, hardware and experimental conditions. Fur-
thermore, Sec. I.1.3.4 expands on how the validation dataset was created by the automatic
labelling tool specifically designed for this study, while Sec. I.1.3.5 covers the performance
test developed for a comparative assessment of the two earlier presented clustering meth-
ods. The results of the clustering methods and the full tracking pipeline deployed on the
experimental data are discussed in Sec. I.1.4. Finally, the conclusions and recommenda-
tions are presented in Sec. I.1.5.
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I.1.2.Methodology
The method proposed in this Chapter describes a computer vision and machine learning
approach composed of a robust segmentation-clustering pipeline capable of automatically
detecting and extracting marker locations and dealing with temporary marker loss. An
image filtering pipeline (segmentation) is implemented consisting of HSV filter and the
Otsu’s automatic thresholding method [24]. Two machine learning routines are then eval-
uated: (clustering) DBSCAN [21] and Disjoint-set data structure [22]. The segmentation
pipeline is used to extract the point data of the markers, and the clustering is used to label
the cluster centroids correctly. The approach was tested on an image sequence of a flexible
wing undergoing motion, equipped with active LED markers.

I.1.2.1. Overview of the Complete Tracking Pipeline
A high-level overview of the complete tracking pipeline developed for this study is shown
in Fig. I.1.3.

Chapter I.1
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img

Segment DBSCAN(−1)

Disjoint
Sorting

3D
∆Yy

KCF-
EKF

Chapter I.2

Figure I.1.3: High-level overview of the full tracking pipeline.

The segmentation block refers to the segmentation and HSV filtering processes, addressed
in Sec. I.1.2.2. The red block is the clustering algorithm (DBSCAN/DBSCAN−1/Disjoint)
implemented in this study as detailed in Sections I.1.2.3 and I.1.2.4. The green blocks
represent an independent tracking filter and Kalman Filter duos (KCF-EKF) that run par-
allel to keep track of the markers through a sequence of images. The output is the marker
displacement in (x, y) pixel coordinates of the frame. The cyan block is an additional
sorting step needed for consistent tracking of the markers, explained in Sec. I.1.2.5. The
algorithms presented in this study are mainly concerned with the dotted part, as shown in
the schematics in Fig. I.1.3 and aim to highlight the methodology needed to arrive at the
inverse DBSCAN (DBSCAN−1) algorithm, the main contribution of this study.

I.1.2.2. Segmentation
Segmentation approaches are generally focused on finding a filter or a sequence of filters
f(I(x, y)) in order to shape an input image I(x, y) to the desired output Gf (x, y) by
altering the pixel intensity values:

Gf (x, y) = f(I(x, y)) fI(x, y) Gf (x, y)

For a sequence of images, the process is a function of the number of frames and, thus,
implicitly, time [26]. When the desired image segments contain colour information, a
commonly applied technique is colour filtering in the HSV space. The main benefit of
processing in this colour space is that the image intensity and colour can be distinctly
separated. The method is also widely used in video sequence processing and image ex-
traction [23, 27].
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HSV Filter
To separate the background from the markers, an HSV filtering pipeline composed of mul-
tiple filters is used. First, the image is segmented based on the colour temperature of dis-
tinct LEDmarkers, based on distinct values of hue, saturation and value. The filter is tuned
to find the near-optimal HSV values to minimise the noise in the image. In Fig. I.1.4, the
result is shown of such an operation. From left to right, the figures show how the original

Figure I.1.4: Single HSV filtering operation: original (left), HSV (centre), Black-and-White (binary) (BW) thresh-
old (right) image.

image is filtered based on its HSV values, obtaining a binary Black-and-White (binary)
(BW) colour-filtered image. Then, default thresholding is applied to remove the scattered
noise from the light diffusion from LEDs and the remaining background. The result is
a BW image, a binary mask with distinct LEDs. Hereafter, the contours of the shapes
contained in the binary mask are extracted, and the clustering can be applied to identify
individual markers. The contours extraction filter is based on the Topological Structural
Analysis algorithm of binary images and shapes [28], where a border following technique
is applied with topological analysis of the contours of a border shape.

In Fig. I.1.4, the HSV operation is shown when the images are tracked in low light-
ing conditions. When lighting conditions change, HSV filtering operation may produce
a noisy mask, meaning that aside from a distinct mask with LEDs, additional scattered
background pixels are present in the HSV (middle) image. Since this image is close to
bimodal by nature, it was investigated how the bimodal Otsu’s thresholding can improve
the segmentation with an additional HSV filtering step based on the image histogram. In
Fig. I.1.5, a simplified schematic is shown of the HSV segmentation and clustering pipeline.

Input
img

HSV-BW
img

Erode
Dilate

BW img
Threshold

Extract
Contours

Cluster

Figure I.1.5: Schematic of HSV filtering and thresholding resulting in BW image needed for the subsequent
clustering process.
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Morphological Operations
The HSV filter alone may produce a noisy speckle masked image. A typical way to deal
with this is using morphological image transformations [29]. Morphological operations
are, in general, useful not only for the removal of global noise (e.g. Gaussian noise) but
also for isolating and joining separate individual elements. A commonly used cascaded
operation is erode, followed by dilate, where the former erodes away pixels and pixel groups
captured by a certain kernel size, and the latter dilates and enlarges bright pixel groups.
Both of these image transformations perform, in essence, a convolution operation of image
I(x, y)with kernelB(x′, y′). Erode operator performs a localmin operationwith a kernel
of the desired size (e.g. 3 × 3), anchored at the centre. As the kernel slides over the
image, the pixel value under the anchor point is replaced by themin value of the region
covered by the kernel B(x′, y′). Dilate operator works according to the same principle
but performs a localmax operation. The operations can be summarised as follows:

ferode(I(x, y)) = min
(x′,y′)∈Bker

(I(x+ x′, y + y′)) (I.1.1)

fdilate(I(x, y)) = max
(x′,y′)∈Bker

(I(x+ x′, y + y′)) (I.1.2)

and combined operation:

fmorph(I(x, y)) = fdilate(ferode(I(x, y))) (I.1.3)

For an appropriate kernel size, this will remove away noisy speckles surrounding and
scattered around thresholded shapes. In this study, the kernel size was set to 2× 2 pixels.
The relevance and effect of morphological operations will be further discussed in Sec. I.1.4.

Thresholding
The thresholding strategy in image processing is essential for obtaining a good mask for
DBSCAN clustering. Variations of light and motion activity of the object make the task
of obtaining good thresholding for live images challenging [30]. A robust approach has to
anticipate the variations in the pixel intensities to produce the best possible mask. Several
methods are possible; this study investigated three approaches: global unit normalisation,
baseline normalisation, and adaptive global thresholding using Otsu’s method [24].

Global NormalisationThresholding The global normalisation can be applied by con-
verting the 3-channel RGB input image to greyscale. Subsequently, the image can be scaled
with the maximum value of the greyscale, depending on how the greyscale is represented
(0,1) or (0,255). Then, a single threshold can be applied to obtain a binary mask G(x, y).
For an input image I(x, y), this process can be represented as:

G(x, y) = fnorm(I(x, y)) (I.1.4)

G(x, y) =

{
1, I(x, y)norm ≥ τth

0, I(x, y)norm < τth
(I.1.5)

where the I(x, y)norm can be computed using a simple scaling, or mean µI and standard
deviation σI of the image:

I(x, y)norm =
I(x, y)− µI

σI
(I.1.6)
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The downside of this approach is that it does not consider the variations in pixel in-
tensities throughout the image sequence that may have been influenced by changing light
conditions and/or movement of the object being tracked. The threshold parameter τth is,
in this case, obtained and tailored for a single static image. The quality of the thresholding
then depends on the carefully chosen threshold parameter and predictability of the light
variations. When applied correctly to a continuous image sequence, in this particular ap-
plication, an arbitrary thresholding routine should be able to segment the foreground as a
moving object (high intensity) and detect the background as static (low intensity).

Baseline Thresholding In this approach, the baseline pixel intensities are taken into
account of the kth image. The first image is a good basis for obtaining a suitable threshold
parameter such that variations are taken into account from these baseline values. This
process can be represented in a way similar to Eq. I.1.5, but now the normalisation of the
kth sequential image (in range i = 1, 2, . . . N ) is done according to:

I(x, y)normi=k
=
I(x, y)i=k − µIi=k

σIi=k

1

I(x, y)i=0
(I.1.7)

The downside of this approach is that the sensitivity to the threshold parameter in-
creases and the intensities lie closer together. However, an offset is maintained concerning
the baseline in each image sequence.

Adaptive Otsu Thresholding Otsu’s automatic global thresholding method tries cat-
egorising an image into two classes, background and foreground pixels [24, 31, 32]. The
method is well suited for images with a bimodal grey pixel intensity histogram; in this
case, the histogram will show two distinct peaks and sharp separation between them,
where one peak is assumed to correspond to the bins of the background and the other to
the foreground. The threshold value is chosen such that the inter-class variance is min-
imised, which would suggest placing the threshold value in the middle of the peaks. The
minimisation procedure for finding a threshold value of τth can be represented as:

σ2
w(τth) = w1(τth)σ

2
1(τth) + w2(τth)σ

2
2(τth) (I.1.8)

where the parameters w1, w2 and σ2
1 , σ

2
2 correspond to the probability and the variance

of the two classes and can be computed from the histograms [24].
The limitation of this method is the bimodality assumption, which may not hold for

each image and its greyscale image pair [33]. The histogram may not show clear distinc-
tions when the object is considerably smaller than the surrounding background. Addi-
tionally, noise may affect the histogram representation. Variations of Otsu’s algorithm
exist, which are capable of dealing with noisy images [31]; however, in this regard, HSV
filtering is responsible for filtering out most of the image noise, making the thresholding
less complicated.

I.1.2.3. Clustering Approach
Amachine learning approach is used to tackle the problem of correctly detecting and clus-
tering the markers. This study implements and compares two machine learning methods
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for clustering, DBSCAN [21] and the Disjoint-set data structure [22]. These algorithms
were particularly suitable due to their unsupervised nature, namely (i) minimum needed
domain knowledge, (ii) ability to find clusters of varying size and (iii) ability to deal with
noise (in the case of DBSCAN). DBSCAN differs from the Disjoint-set data structure by
its ability to deal with noise in the dataset and achieves the goal at a significantly lower
computational cost (O(n log(n))). The two unsupervised clustering algorithms are imple-
mented in the marker recognition pipeline and evaluated for speed and robustness perfor-
mance.

In this study, it was crucial to apply a robust unsupervised clustering method such
that an arbitrary number of markers could be accounted for automatically. The robustness
assessment was implemented in the experimental conditions, where, due to failure of the
LEDs (going on and of), the number of markers (and thus cluster centres) varied over
time ánd across experimental runs from a nominal (complete) marker set. Within a single
experimental run, the failure was mainly periodic and manifested itself due to high gust
loads and wing oscillations. The clustering assessment of an incomplete and complete set
of markers is illustrated in Fig. I.1.6. Here, the red dots are contours of point groups found
in the clustering mask, and the blue dots are their respective centroids. The image on the
right shows the result of clustering.

(a) Complete set of markers. (b) Successful clustering of an incomplete
set of markers.

(c) Comparison DBSCAN scan (purple),
and the Disjoint-set data structure (yel-
low).

Figure I.1.6: The necessity of unsupervised clustering: incomplete (right, middle) versus full (left) set of markers.

DBSCAN

Figure I.1.7: Illustration of the DBSCAN clustering method.

The main principle of DBSCAN is to identify and separate high-density regions from
low-density regions. At any given point, p, density is measured within a circular radius ϵ.
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A dense region of radius ϵ from point p is a region that contains at least aMinPts number
of points;MinPts and ϵ are the main parameters of the algorithm. Given a database D,
the ϵ neighbourhood, Nϵ, of point p w.r.t. point q has the following form [21]:

Nϵ (p) = {q ∈ D|dist (p, q) ≤ ϵ} (I.1.9)

This definition alone, when used naively, will fail to distinguish core points (points inside
the cluster), border points (points at the border of a cluster), and noise (a point not belong-
ing to any cluster). The reason is that the ϵ neighbourhood of border points generally has
much fewer points than the ϵ neighbourhood of a core point.

The problem arises when theMinPts parameter is set to a low value to include the
border points, which can also cause noise to be included in the cluster. To overcome this,
DBSCAN introduces the concept of density reachability. A point is said to be Directly
Density Reachable when the following two conditions hold:

p ∈ Nϵ (q) (I.1.10)

|Nϵ (p) | ≥MinPts (core point condition) (I.1.11)

These conditions, thus, set a requirement for every point p in a cluster to be in the ϵ
neighbourhood of another point q in this cluster. Additionally, the ϵ neighbourhood of
q, Nϵ (q), must have a minimum of MinPts, classifying it as a core point. The method
further introduces connectivity conditions for connecting Nϵ of points and defines noise
as a point not belonging to any cluster in datasetD under the given conditions (Density-
Reachability and connectivity) [21]. The basis of the clustering approach and the defi-
nitions are illustrated in Fig. I.1.7. As shown, point p can be reachable from point q by
Density-Reachability or connectivity.

Disjoint-Set Data Structure

Figure I.1.8: Venn diagram and illustration of Disjoint-set clustering method.

Disjoint-set data structure operates by organising a set of elements into a distinct num-
ber of disjoint sets, also referred to as equivalence classes [22]. For a given data set D,
obtained as a result of filtering and contour operations, equivalence classes are defined
that are non-overlapping. SubsetsA andB are considered a disjoint-set when the overlap
U between them belongs to an empty set ∅:

A ∩B = ∅ (I.1.12)
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The algorithm assigns all points of the dataset to an equivalence class hence no inherent
mechanism is built-in to cope with noise, and a noise particle may belong to a dedicated
subset C . Consequently, and as will become more evident in the following sections, a
good filtering approach is needed with this method to remove the noise.

To make the method comparable to DBSCAN, the threshold for the disjoint-sets can be
defined with a distance metric, radius γ, similar to ϵ. A set of points,{p, q, . . .} belongs to a
disjoint-set A, when they are packed within radius tolerance γ, resulting in the following
conditions:

A = {p, q, . . .} (I.1.13)

dist (p, q)euclid ≤ γ (I.1.14)

Here, the latter condition is defined as the euclidean norm of points p and q:

dist (p, q)euclid =

√
(p(x, y)− q(x, y))

2 (I.1.15)

The presented definitions are illustrated in Fig. I.1.8. In Fig. I.1.6c a comparison is
shown of the clustering operations for DBSCAN scan (purple) and Disjoint-set data struc-
ture (yellow).

I.1.2.4. Inverse DBSCAN: DBSCAN−1 — a Novel Clustering
Approach for Sparse Datasets

While DBSCAN allows explicit definition for noise in the data (points not meeting the core
points condition), the success in rejecting the noise is closely tied to the correct selection of
parameters and the quality of the thresholded input image. The clustering becomes harder
when high-density noise is introduced into the data. Noise can have various sources,
e.g. interference in hardware signal, poor illumination or, simply, poor pre-filtering and
thresholding of the input image. There are also conditions where pre-filtering, such as
the morphological operations, is not possible or has adverse effects (further elaboration
follows in Sec. I.1.4). In particular, for sparse datasets, under such conditions, DBSCAN is
known to fail to identify the desired clusters [34]. This shortcoming arises from the fact
that for a high density of scattered noise, noise particles are more likely to meet the core
point criteria for a given DBSCAN parameter set.

To remedy this problem, a novel formulation of DBSCAN is proposed, the inverse
DBSCAN, denoted by DBSCAN−1. In this new model, a different perspective on the clus-
tering problem is needed: instead of trying to reject the noise, it is proposed to actively
look for noise. Hence, DBSCAN−1 tries to detect noise explicitly, and clustering becomes
an implicit task. The proposed approach would be to utilise this formulation of DBSCAN
as a noise removal filter, then apply nominal DBSCAN again on the clean image domain.
To enable this approach, a redefinition of DBSCAN is needed. For a given databaseD, the
ϵ neighbourhood of noise particles pn and qn is defined as:

Zϵ (pn) = {qn ∈ D | dist (pn, qn) ≤ ϵ} (I.1.16)

DBSCAN, in its original form, was intended for obtaining clusters for large datasets and
relatively low noise; hence no limitation is set on the maximum number of clusters. In the
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definition of DBSCAN−1, an additional parameter, denoted by MaxPts, is introduced,
which sets a cap on the allowable number of points in the ϵ neighbourhood of noise pn,
denoted by Zϵ. The noise particle is directly reachable from another cluster of noise par-
ticle(s) when the following holds:

pn ∈ Zϵ (qn) (I.1.17)

MaxPts ≥ |Zϵ (pn) | ≥MinPts (core noise particle condition) (I.1.18)

Three conditions must be placed on the DBSCAN−1: (i)MinPts must be set to 1 to cap-
ture individual noise particles; (ii) ϵ must be at least the standard deviation of the noise
density, σn (σxn and σyn ) in the spatial domain in terms of (x, y) coordinates for zero
mean distribution; and (iii)MaxPts must count less points than ϵ neighbourhood of de-
sired cluster points, Nϵ (q), a condition that is directly related to the standard deviation,
σcluster (σxcluster

and σycluster
) of (x, y) coordinates of a dense cluster and can be chosen

based on a priori analysis of the input dataset. These conditions dictate that point noise
particle pn does not belong to the ϵ neighbourhood of true clusters Nϵ, but to Zϵ:

{
pn ∈ Zϵ

pn ̸∈ Nϵ

and


MinPts = 1

MaxPts <
√

(σxcluster
+ σycluster

)

ϵ ≥
√

(σxn
+ σyn

)

density reachability parameter constraints

A necessary condition for this is that if a probability distribution of points is defined on
the 2D image plane in datasetD as P (x, y) =

∫∫
D
, the density distribution of the desired

particles, P (x, y)cluster , is higher than the density distribution of the noise, Pn(x, y);
otherwise, the true clusters will dissolve in the noise:

P (x, y)n < P (x, y)cluster (I.1.19)

If the above condition is not met, the clustering will fail for the given condition of dataset
D. What this clustering model will do, in essence, is detect the group of desired clusters as
points surrounded by too many other points (filtered by the maxMaxPts conditions) and
reject them as noise. The actual noise particles will meet the core noise particle condition
of DBSCAN−1 as they lack a distinctive concentrated distribution.

A visual representation of this process and the relevance of the DBSCAN−1 — in par-
ticular in the absence of morphological operations — can be found in Sec. I.1.4.

I.1.2.5. Radial Sorting
Obtaining the cluster centre locations in the frame after the clustering routine provides
only a static map of the markers without a spatial orientation concerning the underlying
geometry. A radial sorting algorithm is proposed in the processing routine to obtain a
geometrical representation behind the detected clusters. This algorithm represents the
cyan block in Fig. I.1.3. The algorithm is initiated by finding the centroid c̄cp of the cluster
centres (a cloud of points)P(x, y), then obtaining a radially sorted distribution, a so-called
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Figure I.1.9: Radial sorting algorithm process. The cluster centres are green dots; the convex radial hull is the
red outline.

convex radial hull, Pθhull, of n indices, such that the outline of the hull has a continuous
connectivity.

First, the algorithm takes as input an arbitrarily indexed cloud of cluster centres, de-
noted P(x, y) ∈ R2×n. The centroid of P, c̄cp(x, y) is calculated to obtain the vector
pointing towards the centroid. If the input is a continuous shape, the centroid is sampled
at the contours of the area; otherwise, for a collection of n points:

c̄cp =
1

n

n∑
i=1

pi and, (I.1.20)

dcp = P− c̄cp (I.1.21)

Next, the angle defined by the direction of each vector is calculated, and the resulting
vector of angles is radially sorted around c̄cp in the given orientation to obtain the convex
radial hull Pθhull:

θcp = arctan2 (dcp) , where for each point, (I.1.22)

arctan2 (p)i = arctan2
(
py
px

)
i

(I.1.23)

Where, px and py indicate the pixel locations in x and y, respectively. Then, the sorted
index of angles is obtained from sort(θcp), and the convex radial hull is obtained from
sampling by this sorted index:

Pθhull = sort (P, sort (θcp)) (I.1.24)

This is required to outline points in a continuously connected area. The process of radial
hull sorting is shown in Fig. I.1.9.

Algorithms such as Jarvis march [35] also use a form of radial sorting to wrap a cloud
of points in a convex hull. The main difference with the Jarvis march is that the radial
sorting algorithm is intended for obtaining a continuous geometry by sorting all cluster
centres through a continuously connected outline. With a convex hull, some cluster cen-
tres may fall inside the convex hull region and hence be excluded from the outline. The
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other difference is that Jarvis march is done at a complexity ofO(nh) (n points and h hull
corners), while in the proposed approach, the sorting can be done in one pass at O(n)
complexity.

I.1.2.6. Reconstruction
The reconstruction is the final step that relates the displacements of corresponding mark-
ers in two frames and reconstructs the 3D displacement. The reconstruction process can
be inferred from the schematic of the camera setup shown in Fig. I.2.5 shown in Chap-
ter I.2. Further details regarding the 3D reconstruction can be found in a previous study
by Mkhoyan et al. [16], and [36].

I.1.3. Experimental Setup and Data Collection
The experimental data was collected from camera observations of a flexible wing undergo-
ing gust excitations equipped with active LED markers. This experiment was performed
within the scope of a larger study on smart sensing methods for controlling flexible air-
craft.

I.1.3.1. Apparatus
The experiment was conducted in the Open Jet Facility (OJF) at the Delft University of
Technology [37]. TheOJF, as shown in Fig. I.1.10, is a closed-circuit low-speedwind tunnel,
driven by a 500 KW electric engine, with an octagonal test section of 285× 285 cm2. The
maximum flow velocity in the wind tunnel is 35 m/s; however, the theoretical performance
limit is around 30 m/s.

A gust generator composed of two servo-controlled foam wings was installed in the
test section to facilitate various dynamic motion conditions during the test. This partic-
ular gust generator allows gust vane deflections of |αg| ≤ 15◦, or 10◦, depending on the
actuation frequency (5-7 Hz or 10-15 Hz), and can produce a harmonic signal, as well as
sweep signals of varying frequencies.

A Polytec PSV-500 laser vibrometer system [38] with a resolution (RMS) of 200 µm/s
was used to measure the dynamic response of the wing to the aerodynamic loads intro-
duced by the gust onsets. The PSV system was configured to measure 8 (active) markers,
as shown in Fig. I.1.12a from a total of 16 LEDmarkers placed on the wing. The numbering
of the marker ID’s in the image tracking algorithm is indicated with square braces and the
laser tracking system in square braces. Since the laser allowed for the measurement of
only a single point for each run, each run would be repeated eight times to reconstruct
the displacement field of the wing. The system was configured for a sampling rate of 400
Hz.

As shown in Fig. I.1.10 and, schematically, in Fig. I.1.2, a pair of cameras were used
to observe the motion of the wing. These cameras are referred to as leading-edge camera
(Cam 1) and trailing-edge camera (Cam 2), respectively.

I.1.3.2. Wing Model and Motion Conditions
The wing used in the experiment, referred to as the Allegra wing, is a forward-swept ta-
pered wing built of glass fibre reinforced plastic. The design of the wing allows for large tip
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Figure I.1.10: The Open Jet Facility (OJF), showing the gust generator mounted in front of the test section.

displacements, up to 20% for 10◦ of Angle of Attack (AoA) and 50 m/s flow velocity [39].
The wing was clamped on one side on a sturdy table under a fixed angle of attack of 4◦.
Detailed information about the wing can be found in Appendix I.A1.1.

The wing was equipped with 16 LED markers. Each LED marker consisted of 3 sub-
LED units, providing three distinct bright light sources per marker. In the experiment, a
1-cos gust signal and a frequency sweep signal were used.

The data collected for three experimental conditions or runs denoted R1, R2 and R3, as
listed in Table I.1.2. The experimental variables are the flow velocity in the wind tunnel,
Vinf, the gust vane frequency, fg , and gust vane angle αg .

Table I.1.2: Flow and motion conditions for runs R1, R2 (discrete gusts) and R3 (sweep).

Run ID Frequency [Hz] Vane angle [◦] Flow velocity [m/s] N images [-] N gusts [-]
R1 5 10 30 469 3
R2 5 5 30 469 3
R3 0.1 - 10 5 30 574 -

For all runs, the images were first recorded in dark conditions (night visibility), mean-
ing the lighting conditions were low for good visibility of the LEDs. Additionally, bright
images (daylight visibility) were collected to study the effect of HSV filtering in high vis-
ibility conditions.

The gust generator parameters were selected such that the disturbance produced a
high dynamic response from the wing to ensure sufficient pixel activity in the image. The
gust vane frequency of 5 Hz was close to the wing’s natural frequency at the given mass
configuration. Runs R1 and R2 each contained three consecutive gust inputs; run R3 did
not have a discrete gust but a sweep signal. The purpose of the R2 run was to act as a
control against the results of R1, while R3 was designed to showmarker loss (LEDs on/of)
under high dynamic activity.
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I.1.3.3. Dataset Collection
Measured Wing Response
The time history signals in Fig. I.1.11 correspond to themeasurements taken at the location
of marker ID 1; the labelling of the marker IDs for the vibrometer measurement system
can be found in Fig. I.1.12a. Figure I.1.11a shows the wing’s response to a single gust
input; Fig. I.1.11b shows the response to a sweep signal. The blue curves correspond to
the measurements taken by the laser vibrometer sampled at 400 Hz; the red curves are
splinemodels of this response sampled at the capture intervals by the leading edge camera.
The spline model is required to obtain synchronised measurement points between the
laser vibrometer data and the image sequences for comparison. The camera images were
collected at approximately 40 Hz, with the Nyquist frequency well above the expected
resonance frequency of the wing of ≈ 5 Hz.
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Figure I.1.11: Laser vibrometer measurement (blue line), of the tip displacement of marker ID 1, sampled at
capture intervals of Cam 1 at≈ 40 Hz (red line); runs with discrete gust (left) and sweep signal (right).

Hardware Setup
An overview of the data acquisition hardware is shown in Fig. I.1.12. The dataset was
recorded with two GigE acA1300-75gc Ethernet Basler cameras with 1300 CMOS 1.3
megapixel (1280×1024 pixels) sensor [40]. The cameras were equipped with Computar
12 mm F1.4 2/3” P IRIS lenses [41] and were positioned in a stereo setup to observe the
markers from two viewpoints. The resulting image was cropped to 1088×600 pixels and
streamed in 3 channel RGB format synchronously via real-time PTP triggering protocol
over the Ethernet. A Power over Ethernet (PoE) smart switch GS110TP from NETGEAR
provided both the power, 3.5 W (per camera unit), as well as the GigE capability to stream
the images up to 140 Frames Per Second (FPS).

An embedded computing system delivered the processing power and image capture
during the experiment from NVIDIA, the Jetson TX2, equipped with NVIDIA Pascal ar-
chitecture with 256 NVIDIA CUDA cores and 1.3 TFLOPS (FP16), Dual-core Denver 2
64-bit CPU and quad-core ARM A57 complex [42]. The Jetson TX2 is designed for embed-
ded applications using Artificial Intelligence (AI) and Computer Vision (CV) and operates
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(a) The actively measured markers. (b) Data acquisition and live tracking hardware setup.

Figure I.1.12: The experimental setup, showing the active markers measured by the Polytec measurement system
(in green) and the Jetson TX2 hardware setup.

on Ubuntu 16.04 LTS allowing flexibility in code deployment. The application developed
for this study was programmed in C++ and deployed on the device. For the development
the algorithms Basler C++ Pylon API [40] and the OpenCV open-source computer vision
library [43] were implemented. To perform image segmentation, capturing and compres-
sion, GPU hardware acceleration [44] was used with Jetson TX2 dedicated GStreamer
pipelines [45].

Code development, algorithm testing and assessment were done using CPU processing
with a standard Dell Optiplex 7400, a 2.3 GHz Intel Core i5 16G MacBook and the Jetson
TX2. The image and tracking data were extracted and plotted using the OpenCV-Matlab
parsing interface tmkhoyan/cvyamlParser [46]. The code, dataset and tools developed are
available under the repository tmkhoyan/adaptiveClusteringTracker [47].

I.1.3.4. Validation Dataset

Figure I.1.13: The labelling process with the automatic labelling tool.
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An automatic labelling tool was developed and implemented to create a reference
dataset of the image sequence R1 from Table I.1.2 in order to perform a comparative
assessment of the two clustering methods DBSCAN and Disjoint-set data structure. The
tool allows automatic tracking and labelling of the pixel-wise (x, y) location of the mark-
ers through a sequence of dynamic images, given an initial hand-labelled marker-set in the
first image. The capability to track a sequence of images classifies it as a tracking routine.
However, each consequent frame is visually checked before the labelled data is saved to
ensure the reference dataset’s validity.

The processing strategy of the tool can be summarised in the following way:

• Manually select initial marker locations of the first image in the sequence. The
marker locations are defined as a (x, y) pixel location of the centre LED of each
3-LED marker cluster.

• A sub-matrix is defined as a bounding square box enclosing the 3-LED cluster at the
(x, y) location of the centre LED, with a width of 40 pixels.

• The sub-matrices corresponding to the number of markers (14 in total for the R1
image sequence) serves as an input to the automatic detection of the markers in the
next image frame.

• A detector is implemented to process each sub-matrix, defined at the location of the
sub-matrix from the previous image with an uncertainty factor of 1.2 in width and
height (i.e. the bounding square is factor 1.2 larger than the initial sub-matrix).

• Each automatic detection is visually approved before moving to the next frame and
saving the data.

The uncertainty margin (1.2 factor in width and height) is implemented such that the new,
shifted marker location can be found with respect to the previous image, and enough
margin is kept to account for the motion. This process is depicted in Fig. I.1.13.

The tool enables the implementation of a custom detector for the detection of the cir-
cular shaped LED-markers. In the current study, a contour filter, often referred to as a
blob detector, was used based on the Topological Structural Analysis algorithm of binary
images and shapes [28]. Prior to the detection, the sub-matrix thresholding is applied us-
ing Otsu’s adaptive thresholding method, such that a binary mask of the marker outline is
obtained. This tool was developed in C++ programming language using the OpenCV open-
source computer vision library [43], and made available under the BSD-3 licence [48].

I.1.3.5. Clustering Performance Test
A performance test was designed to compare DBSCAN to the Disjoint-set data structure.
In this test, a grid, I(x, y)grid of 10000× 10000 pixels was used, and clusters of particles
were generated randomly to perform the clustering. For each run, the grid was initialised
with a varying number of cluster centres,mi (e.g. 10, 50, 100), with a uniform distribution.
The grid size is used as the minimum and maximum bounds of this distribution, with a 0.9
shrink factor to keep 10% free at the borders. The cluster centre distribution is defined as
follows:

Pcentre ∈ I(x, y)grid, and

{
xmin = 0.1 · wimg, xmax = 0.9 · wimg

ymin = 0.1 · himg, ymax = 0.9 · himg

(I.1.25)
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Around these mi cluster centres, a fixed number of ni = 50 scatter points was sampled
with a normal distribution with the following properties in both x and y locations:

Pcluster ∈ I(x, y)grid, and

{
µcluster = µclusterx = µclustery = 0

σcluster = σclusterx = σclustery = himg/100
(I.1.26)

Here, the sampled normal distribution, Pcluster , is the offset from a cluster centre (x, y)
pixel coordinate; µcluster and σcluster are the mean and standard deviation of the distri-
bution. The resulting scatter model is a cloud of points, with the majority falling inside a
radius of σcluster (defined as a factor of image width, himg) from the cluster centre). Fig-
ure I.1.14 shows a randomly sampled dataset withmi = 10 number of cluster centres and
cluster size of ni = 50. In order to assess the clustering methods on their ability to cope
with noise, for each run, uniformly distributed noise was generated on top of the existing
points. These scattered noise points, ninoise, were proportional to the number of cluster
centres with a factor 5 (i.e. ninoise = mi × 5).

The performance test was used to generate the performance dataset; the code was
developed in C++ programming language using the OpenCV open-source computer vision
library [43] and made available under the MIT licence [49].

Figure I.1.14: Randomly sampled scatter data for 10 cluster centres and a cluster size of 50.

I.1.3.6. Noise Model
A common noise model was used to evaluate the clustering methods’ real-life perfor-
mance. The input images were injected with an image-independent Gaussian noise, and
the robustness of the colour filtering, thresholding and clustering pipeline was investi-
gated against possible sensor noise, transmission and hardware-related issues and poor
illumination. Subsequently, the tracking quality of the pipeline was assessed on image
sequences from R1 and R3, whereas R2 was used as a reference. The probability density
function of the Gaussian noise model is as follows:

I(z) =
1

σ
√
2π
e

(z−µ)2

2σ2 (I.1.27)
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In this model, z represents the greyscale value. The parameters used for the noise model
are a mean of µ = 0 and a standard deviation of σ = 0.5. The grey values produced from
the probability distribution are scaled to RGB range 0-255 and injected in the 3-channels of
the input image I(x, y), producing a new additive noise input image J(x, y). The random
seed is initialised with the CPU clock (time t) for each image input, I(x, y)k , resulting in
a dynamic noisy image input sequence, I(x, y)noisek , at each k

th frame:

I(x, y)noisek = I(x, y)k +N(x, y, t) (I.1.28)

Here, N(x, y, t) is the random seed initialised noise mask.

I.1.4. Results and Discussion
The experimental data were processed with two clustering pipelines implementing DB-
SCAN and Disjoint-set data structure clustering methods. Here, a distinction must be
made between the randomly generated performance dataset generated with the perfor-
mance test discussed in Sec. I.1.3.5 and the experimental dataset, as provided in Table I.1.2.

The performance test was done to extract the isolated clusters of points from scattered
data. Here, the novel implementation of DBSCAN was used, with the additionalMaxPts
parameter set to 100,MinPts to 20 and ϵ to 180 pix. The ϵ parameter was chosen to have
a value approximately twice as significant as the standard deviation of the cluster popula-
tion, σcluster , to capture the majority of the randomly generated cluster points scattered
around the cluster centres. For the Disjoint-set data structure, the distance parameter γ
was chosen to be equal to ϵ.

Furthermore, the tracking result with the full clustering pipeline on the runs R1 and R3
were performed on a sequence of≈ 469 images from Cam 1 (Leading-edge). R2 was used
as the control for R1 and showed a similar result. R3 was mainly used to assess the ability
of the tracking pipeline to deal with marker loss. In the nominal runs, ϵ = 20 pix and
the reachability parameterMinPts = 2 were used. This set of parameters provided the
best cluster detection considering preceding segmentation filters. Here, as in the previous
case, the distance parameter γ for the Disjoint-set data structure was chosen equal to ϵ of
the DBSCAN.

Speeds of 250+ fps were measured for the DBSCAN implementation on an image se-
quence of a single camera with a resolution of 1088 × 600 pixels using a standard Dell
Optiplex 7400, a 2.3 GHz Intel Core i5 16G MacBook and the Jetson TX2. The outcomes
of both methods were compared to the reference data collected by the automatic labelling
tool developed explicitly for this purpose, as addressed in Sec. I.1.3.4.

I.1.4.1. Performance Test of DBSCAN and Disjoint-Set Data
Structure Clustering Methods

The performance test was executed with cluster centre sizesmi = 5, 10, 50, 100, 200, 500
and cluster population sizes of ni = 50, 50, 50, 50, 50, 50. For cluster centre sizes mi <
100, the uniform distribution of the cluster centres was balanced to ensure a minimum
distance from each cluster centre. This was done in order to prevent cluster populations
from merging. For larger cluster centre sizes (≥ 200) merging was allowed.
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The results of the clustering are shown, from left to right, for cluster centre sizes
mi = 10, 100, 200 in Fig. I.1.15. The purple and yellow radii and their respective cen-
tres represent the detected clusters and correspond to the ϵ and γ of the DBSCAN and
Disjoint-set data structure, respectively. For all runs, the advantage of DBSCAN with re-
gard to noise is evident. Even in the presence of relatively low noise (ninoise

= 50 for
mi = 10), the Disjoint-set data structure fails and, aside from real clusters, also classifies
these noise particles as clusters. DBSCAN, on the other hand, can make this distinction
and extract the correct number of isolated clusters. As the population density increases,
the initial scatter distribution is not balanced, and certain clusters merge; therefore, the
number of detected clusters does not have to correspond to the number of initial clusters.
For the remaining two runs, DBSCAN is consistent in performing the task and is able to
separate and correctly identify the isolated clusters.

Figure I.1.15: Results of the performance for (left to right)mi = 10, 100, 200 and ni = 50, 50, 50.

The advantage of the novel DBSCAN formulation and theMaxPtswas also evaluated
for this particular task. With the addition of the MaxPts, DBSCAN is able to ignore
widely scattered clusters and focuses more on isolated islands of clusters.

I.1.4.2. ValidationofDBSCANandDisjoint-setDataStructure
Clustering Pipeline

Two clustering methods were compared and validated against the validation dataset cre-
ated with the automatic labelling tool. The clustering methods were implemented in the
entire tracking pipeline, and the image sequence from the experimental dataset R1 was
processed. The images were sampled at the sampling intervals (red line), as shown in
Fig. I.1.11. Here the laser vibrometer measurement (in blue), showing the wing’s motion,
is later compared to the output of the validated tracking pipeline. Sequence R2 showed a
similar response to R1 and is therefore not included in the following validation plots.

Spatial Marker Scatter Validation
Figure I.1.16 shows an overview of the clustering results. Here, the marker location (de-
fined as the centroid of the 3-LED contour) in the first image is indicated with yellow,
purple and blue circles corresponding to DBSCAN, Disjoint-set data structure and valida-
tion data, respectively. The scattered points reflect the marker positions detected in the
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complete sequence of R1, where the colour is kept consistent for the data. The motion of
the wing, more specifically the tip deflection, reflects in the spread of the scatter points
observed. As expected, the spread is the highest for the markers closer to the tip.

Figure I.1.16: Spread of tracked markers for run R1 with DBSCAN and Disjoint-set data structure.

In the two boxes in Fig. I.1.17, a zoom is shown for maker 9 with the lowest error and
markers 2 and 7with the highest errors concerning the validation data. In these figures, the
marker location of the initial image at rest is indicated by a purple cross and a yellow plus
sign for DBSCAN and Disjoint-set data structure, respectively, to distinguish the results
of the two methods. The diamond and the triangle shapes indicate the mean. Fig. I.1.17a
shows a relatively low error, and the spread is closely packed. In Figures I.1.17b and
I.1.17c , both methods show a larger spread in (x, y) with respect to the validation data.
However, the Disjoint-set data structure has a higher spread, mainly in the x-direction.
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(a) Zoom of marker ID 9 (low error).
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(b) Zoom of marker 2 (high error)
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(c) Zoom of marker ID 7 (high error).

Figure I.1.17: Zoom spread markers IDs 2 and 7 of run R1 with DBSCAN and Disjoint-set data structure.

To quantify the error, a squared distance error metric is used close to the Root Mean
Square Error (RMSE) formulation. The error is defined as the squared average of the Eu-
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clidean distance throughout the sequence i to n:

RMSE =

√√√√ n∑
i=1

dist (p, p̂)euclidi
(I.1.29)

where the Euclidean normof the reference point, p(x, y), and its estimate, p̂(x, y), through-
out the sequence i to n yields:

dist (p, p̂)euclidi
=

√√√√ n∑
i=1

(p(x, y)i − p̂(x, y)i)
2 (I.1.30)

From the boxplot in Fig. I.1.18, a better insight can be gained in the average error of the
Euclidean distance norm in x and y (Eq. I.1.29). Here, the colour codes are consistent with
the clustering methods; furthermore, the diamonds indicate the mean of the data, and the
red crosses the outliers. The outliers are defined as the points that are factor 1.5 larger
than the bounds of the interquartile range (i.e. data between 25th and 75th percentiles). It
is observed that the average error through the complete R1 sequence lies below 1 pixel for
most of the markers with DBSCAN. Disjoint-set data structure shows a relatively higher
spread and a larger mean error. This is observed in particular for markers 1, 2 and 7. For
the latter marker, DBSCAN also shows significantly larger errors of up to 4.5 pixels; how-
ever, in markers 1 and 2, the Disjoint-set data structure has a factor 2 and 3 larger errors,
respectively. These observations are consistent with the results shown in Fig. I.1.17. The
large errors can be attributed to the fact that the contours of the 3-LED marker cluster
merge due to the wing’s motion, and a slight change in the LED-reflection results in 2 dis-
tinct contour shapes. Therefore, the centroid of these 3-LED markers falls approximately
3-4 pixels away from the true centroid. This is visible in the close-up box in Fig. I.1.16.

Figure I.1.18: Euclidean norm tracking error for run R1 with DBSCAN and Disjoint-set data structure.
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Sequence Tracking Validation
By observing the tracking of markers 2 and 7 across the R1 sequence, one can confirm
the larger errors of the Disjoint-set data structure. Figure I.1.19 shows the time traces of
the displacement of the markers 2 and 7 in x and y directions, respectively, concerning
the steady-state position (initial image). In R1, exactly three gusts were introduced, which
can be observed by the three peaks followed by decaying sinusoidal responses. Alongside
the displacement, error bars are shown, defined according to Eq. I.1.29. Again, the colour
codes are kept consistent, and the Disjoint-set data structure shows a larger error band (up
to 3 pixels) compared to DBSCAN and the reference data. In particular, the x-direction
exhibits a higher sensitivity to errors, as observed in the presented scatter plots. DBSCAN
shows better agreement with the validation data.
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(a) Displacement in x of R1 sequence marker ID 2.
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(b) Displacement in y of R1 sequence marker ID 2.
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(c) Displacement in x of R1 sequence marker ID 7.
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(d) Displacement in y of R1 sequence marker ID 7.

Figure I.1.19: Validation and comparison of DBSCAN and Disjoint-set data structure results for run R1, markers
IDs 7 and 2.
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I.1.4.3. Experimental Data Analysis with DBSCAN and
Disjoint-Set Data Structure Clustering

Theexperimental data collected from the image sequenceswere processedwith both track-
ing pipelines and compared to the laser vibrometer measured wing response, shown in
Fig. I.1.11a. The tracking pipeline, depicted in Fig. I.1.24, was found to be capable of trac-
ing the wing’s motion by correctly clustering the markers. This was confirmed by the DB-
SCAN tracking result regarding pixel (x, y) locations in the images, shown in Fig. I.1.20.
The plots show the time traces for the detected markers, and three occurrences of decaying
sinusoidal responses can be observed from the output. The image y-displacement in pixels
is arbitrarily scaled to show a comparative response to wing geometry. Exactly 3 gusts
were introduced to the wing that produced a measurement during the image sequence, as
shown in Fig. I.1.11 for a single gust.
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Figure I.1.20: Time series of marker y-displacement with DBSCAN across 469 image sequences of run R1.

Time-Domain Analysis
To further quantify the measured wing response and the tracked wing motion from the
image sequence, comparisonsweremade in terms of displacements and frequency content.
Fig. I.1.20 shows the comparison of the sampled wing displacement response extracted
from the laser vibrometer (blue), the Disjoint-set data structure tracking pipeline (yellow)
and the DBSCAN tracking pipeline (purple). In this figure, markers with high motion
amplitude and relatively high (marker ID 7), as well as low (marker ID 8) validation errors,
are compared. The response, shown here for both tracking pipelines, is the displacement
in the y-direction, where the highest amplitudes were observed.

The laser vibrometermeasured response (inmeters) and the visually trackedmotion (in
pixels y direction) were normalised to allow effective comparison. The tracked responses
in Fig. I.1.21 show good agreement with the laser measurements. Both tracking methods
can capture the inherent damping of the wing with the correct amplitude decay and match
the motion phase. The tracking results for marker ID 8 are slightly better compared to
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marker ID 7, in agreement with the higher validation error measured for ID 7, as shown
in Fig. I.1.18. However, as the error was mainly observed in the x-direction, differences
in y are insignificant. DBSCAN shows better overall tracking performance. Furthermore,
by observing the low amplitude oscillations after the initial gust onset, it can be seen that
image tracking has a limit in terms of accuracy and resolution. In Fig. I.1.21a, it is observed
that the tracking reduces in accuracy after the 4th peak (at 1 second) at roughly 10% of the
maximum normalised amplitude, and the motion is overestimated by the tracking (from 2
seconds) by roughly 3% in the worst case. Considering that the maximum tip deflection is
≈ 33 mm (Fig. I.1.11a), the maximum motion tracking resolution is in the order of ≈ 0.1
mm. An obvious way to increase this resolution would be to use higher resolution cameras
(>1.3 MP). However, this could directly increase the computational cost of the pipeline and
reduce the maximum processing frame rate, with a subsequent penalty for the bandwidth
of the image tracking.
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(b) Comparison normalised response marker ID 7.

Figure I.1.21: Comparison normalised response of the tip deflection for run R1 (laser versus image tracking).

Frequency-Domain Analysis
Alternatively, a frequency domain analysis was performed, where the measurements were
compared in terms of the measured output’s power spectral densities (PSD). The main
objective of this analysis was to understand whether the image tracking methods could
correctly identify the frequency content of the measured signal compared to the reference
measurement provided by the laser vibrometer. In this context, the power spectrum of the
same response signal measured by three different methods provided sufficient grounds
for the comparative assessment. This eliminated the need for a more elaborate frequency
response analysis whereby the cross power spectrum of the output to input signals is
computed as well in order to extract the system’s frequency response function.

The auto-PSD of the output signal, Syy , was calculated according to the following
definition:

Syy(ω) =

∫ ∞

−∞
Ryy(τ)e

−jωτdτ (I.1.31)

where the integral in the expression is the Fourier transform of the auto-correlation func-
tion Ryy of the output signal (marker displacement).
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(a) Auto-PSD of the response signal of marker ID 7.
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(b) Auto-PSD of the response signal of marker ID 8.

Figure I.1.22: Comparison of the frequency spectrum of the tip deflection response for run R1 (laser versus image
tracking).

Figure I.1.22 shows the frequency content of the image sequence corresponding to the
responses of marker IDs 8 and 7. As can be observed from Fig. I.1.22a), the image tracking
methods are able to estimate the first resonant frequency of the wing, as for both markers,
the peaks of the spectral densities align at 5.316 Hz. Furthermore, it is observed that,
despite higher errors in the tracked response of ID 7, the resonance region is captured
well in both tracking methods.

Here, the Disjoint-set data structure method estimates a slightly higher value for the
power spectrum in the resonance region, which may better match the distribution ob-
tained from the laser measurement. This can be explained by observing the response in
Figs. I.1.21a and I.1.21b, showing that the oscillations tracked by the Disjoint-set data
structure tend to estimate a higher power distribution around the resonance region com-
pared to DBSCAN (i.e. higher sensitivity gain towards motion). For some markers, partic-
ularly those that exhibit lower motion activity (markers closer to the root), this can lead to
overestimation of the response and — combined with a higher error — a shifted resonance
peak. This is visible in Fig. I.1.23 for marker ID 3. Here, the Disjoint-set data structure
overestimates the oscillations of the y-displacement (Fig. I.1.23a) and the resulting reso-
nance peak is shifted from 5.316 to 4.810 Hz (Fig. I.1.23b). Although the RMSE of marker
ID 3 is lower than ID 7 (Fig. I.1.18), the high RMSE of marker ID 7 is largely contributed by
the x-displacement, hence for marker ID 3, a higher error in the y-displacement is proba-
ble. DBSCAN also has a slightly higher error for marker ID 3 but estimates the peak more
accurately at 5.570 Hz.

Overall, the results are shown in Figures I.1.21 and I.1.22 suggest that the motion of an
oscillating wing can be captured and analysed with relatively low-resolution cameras (1.3
megapixels). However, it is preferred to use markers exhibiting high motion amplitude
(closer to the tip).
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Figure I.1.23: Comparison of the response and the frequency spectrum of the marker ID 3, run R1 (laser versus
image tracking).

Clustering Image Sequence
The clustering results of sequence R3, containing the marker loss due to LED failure, are
shown in the lower row of Fig. I.1.24. Here, the dotted outline shows the initial contour at
the baseline deflected shape before the gust hits the wing. The tracking pipeline schematic
is shown below the figure. Despite the marker loss, DBSCAN is able to correctly deduce
the number and the location of the markers without supervision in terms of the expected
number of clusters.

Figure I.1.24: Tracking sequence on input images from run R1 (upper row) and R3 (lower row).
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I.1.4.4. Performance of DBSCAN−1 and the Limitation of
DBSCAN Clustering

Assessment of DBSCAN Parameters
Figure I.1.25 shows the sensitivity of the tracking results to theMaxPts parameter. When
the parameter is set to 3, dictating that the Direct Density Reachability of the core points
needs to contain a neighbourhood of at least three core points, markers 1 and 10 fail to
meet these criteria and are no longer considered to be core points. The shapes (dataset
D) in the extracted binary mask on which the clustering operation is done are influenced
by the motion of the wing and the result of morphological filters (erode, dilate) performed
after HSV filtering. As a result, at a given time instance, the 3-LED sub-units can be clotted
together in one or two dots instead of three, never meeting the core point condition. In
Fig. I.1.25, it is clearly illustrated that the cluster is found again once the units become
more distinct; this is the case when theMaxPts parameter is chosen to be 2, as shown in
Fig. I.1.24.

Figure I.1.25: Sensitivity of DBSCAN parameters. Snapshot of two frames from sequence R1, the frames are
≈ 0.025 seconds apart. The parameters are: ϵ = 20, MinPts = 3.

Evaluation of Robustness Against Noise
The runs R1 and R3 were injected with Gaussian noise (mean of µ = 0 and a standard
deviation of σ = 0.5), and the tracking performance was evaluated. In Fig. I.1.26, a se-
quence is shown for tracking of frames 0, 50 and 100. The schematic of the corresponding
tracking pipeline is provided at the bottom of the figure. The colour codes correspond
to the operation steps performed in the pipeline throughout the sequence. From top to
bottom, the rows represent input with noise image (grey), HSV filtering (green), threshold
image (blue) and clustering result (red). The dotted outline shows the initial contour at
the baseline deflected shape before the gust hits the wing.

As can be seen, the HSV filter combined with the morphological operations (erode
and dilate) can cope well with the Gaussian noise. The morphological operations together
with the HSV filter are, in fact, acting as a complex de-noising filter that produces a clean
output which is in turn passed through as an input to DBSCAN. DBSCAN is then able to
produce a robust result on the thresholded binary image, despite the high level of noise
injected into the input image. For run R3, similar results were obtained, as presented in
Sec. I.A1.2, Fig. I.A1.1.
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Figure I.1.26: Tracking sequence on input images (0,50,100) from run R1 with injected Gaussian noise (µ = 0
and σ = 0.5).

Sensitivity of HSV Filtering and Morphological Operations
The benefit of the complex de-noising filter (HSV-morphological) with regard to noise
and better clustering of input data was evident. There is, however, a condition where a
combination of these filters can have an adverse effect. This is, in particular, the case in the
presence of varying lighting conditions, such as the case for images with a light source,
i.e. bright images, as per the definition in Sec. I.1.3.2.

In Fig. I.1.27, the effect of HSV filtering strategies is shown for images with a light
source recorded by the trailing edge camera. The columns of images, from left to right,
correspond to: (i) HSV filtering with morphological operations and no additional noise
in the input (default case); (ii) same, but without morphological operations; (iii) same as
condition (i), but with added noise in the input. The pipeline is shown on the right of
Fig. I.1.27 corresponding to the rows’ processing steps. As was observed in case (i), the
default complex filter had a highly adverse effect and the marker contours required for
clustering were largely erased. This happens as the HSV filter produces high density scat-
tered noise particles in the output image (the colour content in the lighter image is higher),
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and the subsequent morphological erode filter, due to the local min-max operation, ends
up removing the relevant data from the output image alongside the noise. This becomes
clear when compared to case (ii), where no morphological operations were applied: the
contours of the markers are retained, albeit with much higher noise content compared
to the nominal R1 dataset (dark images). This results in the false detection of markers
(centre area of the wing) in the clustering step. When additional noise is added (without
morphological operations) in case (iii), the result is similar but noisier, as expected. This
analysis indicates that morphological operations are not always possible or beneficial and
highlights the relevance and need for a novel clustering approach with DBSCAN−1.

Figure I.1.27: Sensitivity of HSV filtering and morphological operations to varying lighting conditions.

DBSCAN−1 in the Presence of Noise without Morphological Operations
This analysis investigated the robustness of DBSCANwithout additional de-noising filters.
The same experiment was run to see howwell DBSCANwould fare when exposed to more
noise and fewer filtering steps, particularlywhenmorphological operationswere removed.
These operations proved highly capable of filtering out the remnants of Gaussian noise
after HSV operation, marked as the blue filtering block in Fig. I.1.26. It was, therefore,
interesting to examine the effect of removing the morphological filter block.

The nominal DBSCAN result using the same parameters (ϵ = 20 pix, MinPts = 2)
is shown in Fig. I.1.28. The schematic of the clustering pipeline at the bottom shows that
the most critical change is in disabling the morphological operations (erode and dilate,
in transparent grey). As a result, the thresholded binary image contains noisy speckles
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detected as core points in DBSCAN. In the third image (red colour code), the clustering
fails to detect the markers properly. Instead, a large number of clusters is detected. This
is clearly illustrated in the rightmost image, where each point is identified with a numeric
label belonging to the cluster-ID, where magenta labels represent valid clusters and grey
(-1) labels — outliers or noise. This can be partially remedied by further tuning of the
DBSCAN parameters. However, the additional noise in the threshold image will continue
to produce problems for correctly detecting the remainder of the markers.

Figure I.1.28: Tracking sequence on input images (0,50,100) from run R1 with injected Gaussian noise (µ = 0
and σ = 0.5) and disabled morphological operations (transparent block).

A better approach would be to use DBSCAN clustering differently. In the Sec. I.1.2.4, a
methodology was proposed to approach the DBSCAN clustering from a novel viewpoint.
DBSCAN is known for its ability to discard points that are not part of a cluster as noise. In-
stead of looking for cluster centres, it was proposed to use DBSCAN in an inverse fashion
to detect noise (non-core points). In this approach,MinPts is set to 1, allowing to max-
imise the number of points forming a cluster and, instead, to capture the desired clusters
by tuning the ϵ andMaxPts parameters.

The result of this analysis, with ϵ = 20,MinPts = 1 andMaxPts = 8, is shown in
Fig. I.1.29. The input to DBSCAN is the same as in the sequence of Fig. I.1.28, except, as
schematised at the bottom of the figure, the inverse DBSCAN filter (cyan block) is applied
instead. As a result, the desired clusters (markers) are identified as noise (obtaining a
grey -1 label), and the rest of the points are identified as valid clusters. At the same time,
the nominal DBSCAN (Fig. I.1.28) was unable to deal with this without the additional
de-noising filter. Thus, DBSCAN−1 has an advantage over the nominal DBSCAN in this
particular scenario.

In essence, the DBSCAN−1 approach actively looks for noise, discarding the actual
clusters. Subsequently, the clusters can be retrieved by an additional step where the nom-
inal DBSCAN is applied again. To this end, a new parameter,MaxPts, was introduced,
putting a cap on the number of reachable core points within a cluster. Since noise will
be randomly and densely clustered together, the probability is high (for most noise mod-
els) that noise particles will be surrounded by a dense number of other noise particles
within an arbitrary ϵ neighbourhood. It is important to note that this condition holds for
MinPts = 1, such that the number of points forming a cluster is maximised.



I.1

72 I.1. Adaptive Real-Time Clustering for Visual Tracking

Figure I.1.29: Tracking sequence on input images (0,50,100) from run R1 with injected Gaussian noise (µ = 0
and σ = 0.5), and DBSCAN−1.

I.1.4.5. Effect of ImageThresholding
Variations of light and motion activity of the object make the task of obtaining a good
thresholding challenging. This study investigated several thresholding approaches, namely,
global normalisation, baseline normalisation and adaptive global thresholding usingOtsu’s
method. The analysis is shown in Fig. I.1.30. Here, the input images from run R1 were con-
verted to greyscale and the thresholding strategy was applied as described in Sec. I.1.2.2.
The corresponding pixel intensity map obtained after thresholding is shown in the view
of the 3D (left column) and top (right column). The regions indicated with dark peaks
correspond to high occurrence pixel regions passing the threshold and thus high pixel
activity. The scatter points in red correspond to the marker centres’ travel across the im-
age sequence and high wing motion activity. The collected range of input images was
arbitrarily chosen at intervals as a continuous vector:

Nn =
[
1 4 11 90 95 160 168 274 326 330 424 469

]
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Global NormalisationThresholding
The results of global normalisation are shown in Fig. I.1.30a. Here, the full image sequence
was converted to greyscale and normalised in the 0 − 255 range. Then, a threshold of
τth = 9 · 10−5 was applied. Subsequently, the pixel intensities across time were summed
over the input vector Nn:

N∑
n=0

G(x, y)n =

N∑
n=0

fnorm(I(x, y)n) (I.1.32)

A 3D view of the accumulated pixel intensity sum is shown in Fig. I.1.30a. It can be ob-
served that the so-called footprint of the markers, indicated by the red line, corresponds to
high pixel activity in the spatial domain across the input sequence. This footprint corre-
sponds to the full sequence from Fig. I.1.20a projected to the spatial domain of the image.
The pixel activity is indicated by high-intensity values retained after thresholding (dark
peaks). For a continuous input sequence, correct thresholding should characterise the
moving foreground as high intensity and filter out the static background. This appears
to be the case here; nonetheless, a disbalance in the height of the peaks was observed.
The high peaks are observed at the location of the bottom markers (below ID’s 14-5 in
Fig. I.1.12a), indicating that high-intensity values were captured repeatedly at these loca-
tions. Observing the top view plot in Fig. I.1.30b, it can be deduced that the highest motion
amplitudes belong to the wingtip, meaning that the outline around the bottom markers
should have been more cleanly filtered by the threshold due to the low motion activity.

BaselineThresholding
The results of the baseline thresholding are shown in Figs. I.1.30c and I.1.30d. The main
observation of baseline thresholding is that the balance between the peak heights is re-
tained, and the static areas around the bottom markers are correctly filtered. However,
since the differences in pixel intensities are now shifted closer together, the background is
noisier and distinct static patterns are picked up due to a higher sensitivity to the threshold
parameter, which is undesirable. This can be partially remedied by adjusting the threshold
parameter.

Adaptive Otsu’s Thresholding
The results of Otsu’s thresholding are shown in Figs. I.1.30e and I.1.30f, where a clear def-
inition of a (moving) foreground can be observed. The high pixel intensities are correctly
assigned to the marker centres alone, and the background is entirely absent. Figure I.1.30d
shows an obvious agreement between the marker footprint and pixel intensity. Also, the
height of the peaks is more balanced, meaning that the static areas are efficiently removed.
The results indicated that Otsu’s method is the cleanest approach for thresholding for this
given dataset.

I.1.4.6. Adaptive Thresholding with Time-Spatial Frequency
Data

The methodology explained previously along with the results on the assessment of image
thresholding (Figs. I.1.30a, I.1.30c and I.1.30e), as well as the time traces (Fig. I.1.20a), are
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(a) 3D view global normalisation thresholding. (b) Top view global normalisation thresholding.

(c) 3D view view baseline thresholding. (d) Top view baseline thresholding.

(e) 3D view Otsu thresholding. (f) Top view Otsu thresholding.

Figure I.1.30: 3D (right column) and top (left column) view of the accumulated pixel intensity values after thresh-
olding across the 469 frame sequences of R1.

indicative of an interconnection between segmentation and clustering. However, the gap
is in connecting these processes in time. That is, to find a relationship between segmen-
tation and clustering parameters to adaptively obtain an optimal marker label detection
through time for a sequence of images.
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To this end, amethod implementing the SlidingDiscrete Fourier Transform (SDFT) [50]
is suggested. This approach is illustrated in Fig. I.1.31. Here an image sequence is shown
with markers indicated in red (not in true scale). A point P1 corresponding to a marker
label with coordinates xi and yi, represents a displacement signal in x, y pixel values in
time domain. Consequently, its movement corresponds to a footprint in the spatial do-
main. The grey threshold value is adjusted to capture P1 as it moves in the footprint. As
more data reflecting the motion of P1 is collected gradually in the SDFT time window,
the peak amplitude becomes more prominent at a distinct resonance frequency value ωn.
This continuously updated knowledge of the wing dynamics projected on the spatial im-
age domain in terms of high pixel activity regions can consequently be used to adjust the
parameters of the marker detection pipeline.

The nature of the SDFT allows the method to be used in real-time at a low cost. Imple-
menting this approach would effectively enable the use of the pipeline as a robust tracking
algorithm. In a follow-up study, the role and the benefit of the SDFT are to be further in-
vestigated.

Figure I.1.31: Simplified spatial and time representation of the SDFT and thresholding adaptation for a sequence
of images.

I.1.5. Conclusions and Recommendations
In this study, an image tracking pipeline was developed using a robust machine learning
approach, with the aim to (i) automatically label visual markers and (ii) investigate a non-
invasive state estimation approach for online control applications of flexible aircraftwings.

The pipeline consisted of an image segmentation, where a mask for clustering opera-
tions was obtained with an HSV colour filter and a threshold filter using morphological
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operations (erode and dilate). Subsequently, the mask was clustered using unsupervised
clustering with DBSCAN [21]. DBSCAN was compared to another unsupervised clus-
tering method, the Disjoint-set data structure [22] by processing (i) performance data ob-
tained from a performance test with randomly generated cluster data and (ii) experimental
data obtained from the measurements of the wing response undergoing oscillatory motion
under gust excitations in the OJF (Open Jet Facility) wind tunnel at the Delft University of
Technology.

The DBSCAN pipeline was found to be more reliable and robust in terms of accuracy
and resilience against the nose in the input image, which was confirmed both with the
performance data and the experimental data. Next to showing an overall better tracking
capability compared to the Disjoint-set data structure, an error of≈ 1 pixel was observed
for most of the markers clustered with DBSCAN concerning the validation dataset.

An essential shortcoming of the de-noising HSV-morphological segmentation filter
was highlighted with regard to sensitivity to noise and variations in image illumination.
More specifically, that (i) the clustering performance degraded without morphological op-
erations, and (ii) the mask for the clustering operations could be erased by morphological
operations under certain lighting conditions (high illumination). This suggested that mor-
phological operations are not always possible or beneficial and highlighted the relevance
and the need for a novel clustering approach.

To tackle this problem, a novel formulation of DBSCAN was proposed, namely, the in-
verse DBSCAN (denoted DBSCAN−1), where the clustering problem is reformulated into
a noise filtering problem. Instead of rejecting, this approach explicitly detects the noise,
making the clustering an implicit task. The experimental dataset was processed using the
DBSCAN−1 pipeline, and it was shown that the actual clusters were successfully identified
and isolated from the noise in the image. After isolating the clusters, DBSCAN−1 must be
followed by an additional nominal DBSCAN clustering to extract the exact location of the
markers. The final nominal DBSCAN can be done at a significantly lower computational
cost due to the removed noise. Further studies are required to assess the performance gain
of DBSCAN−1 compared to additional filtering steps in various lighting conditions.

In conclusion, the time- and frequency-domain analyses of the experimental data sug-
gested that the motion of an oscillating wing can be adequately captured with relatively
low-resolution cameras (1.3 megapixels) in the proposed tracking pipeline. It was sug-
gested that the SDFT could also extract the frequency content of the image sequence, and
the image thresholding step was continuously adapted to produce a better tracking result.
The accuracy and motion resolution could be further improved by increasing the cam-
era’s resolution and utilising markers less sensitive to lighting conditions, such as active
Infrared (IR) markers. However, a thorough trade-off is essential, as this would gener-
ally increase the computational cost of the tracking pipeline and reduce the maximum
processing frame rate, subsequently reducing the tracking bandwidth.
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I n this Chapter, a method is proposed for robust visual tracking and reconstruction of flexible wing
motion for controller feedback. The method consists of a tracker pair composed of a purely visual

filter, a high-speed Kernelised Correlation Filter (KCF), paired with an Augmented Extended Kalman
Filter (AEKF), allowing to adaptively estimate the states and parameters of the system exhibiting oscil-
latory motion. The method consisting of KCF-EKF, without Kalman Filter augmentation, was validated
experimentally on a real-time image stream of a very flexible wing subjected to gust excitation in the
OJF (Open Jet Facility) at the Delft University of Technology [1].

This Chapter is based on the following peer-reviewed conference paper:
T. Mkhoyan, C. C. de Visser, and R. De Breuker, “Adaptive State Estimation and Real-time Tracking of Aeroelastic
Wings With Augmented Kalman Filter and Kernelized Correlation Filter,” in AIAA Scitech 2021 Forum, p. 0666,
2021
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ThisChapter investigates a non-invasive vision-based approach formotion and shape
reconstruction of a flexible wing for implementation in a control-feedback loop for
gust and manoeuvre load alleviation objectives. To achieve this, an approach is pro-
posed consisting of a visual tracking method, with fuselage-mounted cameras observ-
ing the wing’s motion in real-time. High-speed visual tracking with correlation filters
such as KCF (Kernelised Correlation Filter) facilitates efficiently and robustly correla-
tion between two samples with Kernelised linear regression. A purely visual tracking
filter, however, does not contain information regarding the system’s dynamics subject
to tracking and may fail under marker loss and occlusion. To increase the robustness
of the tracking, an EKF (Extended Kalman Filter) is added to the tracking filter, acting
as a KCF-EKF tracking couple. The Kalman Filter is further augmented into augmented
Kalman Filter form to allow joint online estimation of the model states and parame-
ters. This proposed tracking approach is used to adaptively reconstruct in real-time the
motion of a very flexible wing subject to gust excitation in the OJF (Open Jet Facility)
wind tunnel at the Delft University of Technology. Themethod shows a good agreement
with the time and frequency domain analysis of the reference data measured by a laser
vibrometer and demonstrates the effectiveness of the KCF-AEKF couple under marker
loss and model uncertainties for a model-free control approach.

I.2.1. Introduction

The tendency towards increasingly flexible aircraft opens the possibility for better struc-
tural and aerodynamic efficiency. However, with increasing flexibility and lighter

weight, the susceptibility to higher dynamic loads is increased. Aeroservoelastic control
design is one of the fields where the flexibility of the structure and its interaction with
aerodynamic loads is closely coupled and challenging. In such controller designs, moni-
toring the entire wingspan can be crucial for adequately delegating control actions. This
may involve installing many conventional accelerometers that are likely subject to noise
and bias, suffer from lack of space, must deal with certification requirements and face
challenges associated with correct geometric placement. An intelligent sensing approach
is desired for those examples of wing structures that rely on novel types of sensors to
provide feedback to an intelligent controller.

Smart Sensing

Visual modelFlexible AircraftIntelligent
Controller

Aeroelastic State
Estimation

(elastic states)

input

gust/turbulence

visual frame
[1088× 600]

output

real-time
feedback

Figure I.2.1: State estimation setup with visual tracking in a controller scheme.

A solution that can significantly reduce the complexity associated with hardware in-
stallation, and provide the flexibility needed for employing novel state estimation meth-
ods, is aeroelastic state estimation by visual methods. An illustration of aeroelastic state
estimation using visual data is shown in Fig. I.2.1.
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The use of visual information for observing deformations has been successfully im-
plemented on wind tunnel models in early studies [2] and has also seen wide application
in robot manipulation [3]. However, in recent years, the capability of on-board compu-
tation and the camera quality has immensely increased, while the hardware has become
more compact [4, 5]. This opens the door for numerous embedded applications using a
camera as a sensor. In particular, fuselage-mounted camera systems can provide signif-
icant advantages for flexible aircraft systems, save costs associated with installation and
certification, and have the potential of being non-invasive and universally applicable. This
type of smart sensing system is also essential for over-actuated, and over-sensedmorphing
designs such as the SmartX [6]. Furthermore, image data is a rich source of information;
collected over a period of time, it unlocks the opportunity to approach the state estimation
from a new perspective using machine learning methods.

While many suitable tracking methods exist for marker detection, purely visual track-
ing methods have no knowledge of the underlying dynamics of the system. The disadvan-
tage is that a visual filter alone may fail in the presence of occlusions in the image, show
sensitivity to lighting conditions and produce high errors under large deformations of the
structure. To correctly estimate the motion of the structure, an adaptive approach is re-
quired that is aware of the system exhibiting dynamic behaviour and attempts to estimate
system parameters.

To account for this shortcoming, this Chapter describes a tracking method consisting
of a purely visual filter, a high-speed Kernelised Correlation Filter (KCF), with an Aug-
mented Extended Kalman Filter (AEKF). The combined tracking KCF-AEKF filter adap-
tive estimates online both the state and the system’s parameters subject to disturbance,
exhibiting oscillatory motion. Adding the AEKF and parameter estimation reduces the
model’s dependency, making this approach very suitable for closed-loop control of un-
certain systems and very flexible systems exhibiting nonlinear responses. The method is
validated experimentally on a real-time image stream of a very flexible wing subjected to
gust excitation in the OJF (Open Jet Facility) at the Delft University of Technology.

Themain contributions of this Chapter are threefold. First, it formulates a visual track-
ing approach coupled with a high-speed Kernelised Correlation Filter and Extended and
Augmented Kalman Filters to increase the robustness of the tracking filter. Second, gust
parameter sensitivity and wing response analysis are conducted in the context of wing
shape and motion reconstruction, such that the tracking performance can be improved.
Finally, it presents the development and realisation of a non-invasive smart sensing ap-
proach for shape and motion reconstruction of flexible and morphing wings, using an
efficient algorithm, processing and embedded hardware implementation.

This Chapter is structured as follows. First, the methodology is presented in Sec. I.2.2.
More specifically, the visual-based Kernelised Correlation Filter is presented in Sec. I.2.2.1.
Next, Sec. I.2.2.2 investigates how Extended and Augmented Kalman Filters can be cou-
pled to the visual filter for state and parameter estimation. Section I.2.2.3 describes the
complete image tracking pipeline used for wing shape and motion reconstruction. This is
followed by Sec. I.2.3 describing the apparatus, the wing model and the experimental sys-
tem constructed for tracking visible LED markers. Motion conditions and experimental
procedure are discussed in Sec. I.2.3.3. Sec. I.2.4 discusses the main results conducted in
the OJF wind tunnel. Finally, Sec. I.2.5 closes off with conclusions and recommendations.
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I.2.2.Methodology
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Figure I.2.2: Illustration of the wing tracking and reconstruction approach using KCF-(A)EKF.

The method comprises a visual tracking method combined with adaptive state esti-
mation. The visual tracking uses state-of-the-art high-speed KCF (Kernelised Correlation
Filter). The tracker is augmented with AEKF (Augmented Extended Kalman Filter), al-
lowing online estimation of augmented time-varying mass, stiffness, and damping states.
Furthermore, the visual system provides the state and state derivative feedback signals in
real-time.

I.2.2.1. KCF: Visual Filtering
KCF belongs to a family of correlation filters that aims to find the correlation between
two samples. When applied to a tracking problem, the correlation filter observes the cor-
relation of the original target object defined in a patch moving through future sample
images. Regular correlation filters do not allow updating of the initial target object. KCF,
in contrast, updates the model of the object online using a Kernelised linear regression,
thereby retaining robustness against object mutation (change of appearance through sam-
ples). Another property of the KCF is the utilisation of the properties of circulant matrices
and kernel functions, reducing the computation to an order O(log(n)) versus O(n3) for
typical correlation filters. This allows the KCF tracker to reach high speeds and reduce the
memory storage for the computation. Below is a summary of the KCF methodology [7].

Summary of the KCF Methodology
The aim of the tracking problem is to learn to predict the mutation, presence or absence of
the target object in the future frames. The learning method in KCF is based on the linear
ridge regression [7]:

min
w

n∑
i=1

(f(xi)− yi)
2 + λ||w||2 (I.2.1)
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Where xi are the samples, yi are the regression targets, w is a vector of weights, λ is
the regularisation parameter to prevent overfitting, and the objective is to find a function
f((z)) that minimises the squared error. The latter function typically adapts the following
model:

f(z) = (w)Tz (I.2.2)

The minimisation can be formulated in the closed-form, which can be represented as a
convex function with a unique solution as:

w = (XTX + λI)−1XTy (I.2.3)

Here the matrixX contains the vector of sample images xi per row, y contains the regres-
sion targets yi as elements, and I is the identity matrix. The above formulation involves
solving a large system of linear equations, which can work for a problem for real-time
tracking. To elevate this, KCF uses circulant matrices composed of shifted samples of x
of the object of interest and efficiently computes all possible cyclic shifts in the Fourier
domain. To transition into the Fourier domain, the termXT is replaced by the Hermitian
transpose XH = (X∗)T and X∗ represents the complex conjugate of X . The pattern
by which the circulant matrices are generated is deterministic and fully determined by
the generating vector x. A powerful property of the circulant matrices arising from their
inherent structure is that they become diagonal in the Fourier domain. Denoting the Dis-
crete Fourier Transform (DFT) as x̂ = F(x), and matrix F as the constant DFT matrix not
depending on input vector, the resulting matrixX in the Fourier domain becomes [8]:

X = Fdiag(x̂)FH (I.2.4)

This formulation allows the computational convenience of element-wise operation as the
matrices are diagonal. Making further use of the symmetric properties of the circulant
matrices and defining a dot-wise product operator also, the term XHX , and u can be
represented in compact form as:

XHX = Fdiag(x̂∗ ⊙ x̂)FH (I.2.5)

Here the dot product between the brackets represents the autocorrelation of input x in
the Fourier domain. Typically autocorrelation of a time signal represents the shifted time
lags with itself, applied to image data; this represents the spatial ’lag’. Combining all of
the above, the minimisation problem can be formulated as:

ŵ =
â∗ ⊙ ẑ

â∗ ⊙ â+ λ
(I.2.6)

A final step in the methodology of the KCF is the introduction of kernel functions in the
linear ridge regression by applying the so-called ’kernel trick’. In many applications, data
is much easier to separate in higher-dimensional space. The kernel trick efficiently eval-
uates the dot product in a higher dimensional space without the need for costly transfor-
mations of the input vectors. Following the methodology described in [7], the Kernelised
formulation for coefficient updates gives:

α̂ =
ŷ

ˆkxx + λ
(I.2.7)
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Here the hat terms similarly represent the vectors in the Fourier domain, kxx represents
the first row in the kernel matrix defined as K = C(kxx) and α̂ represents the vector of
the coefficients αi in this higher dimensional space, similar to the formulation of weights
in eq. I.2.3:

α = (K + λI)−1y (I.2.8)

To allow detection of the target object, the regression function f(z) needs to be evaluated
at several image locations or candidate patches. The candidate patches can be constructed
by adopting the cyclic shift model, allowing the definition of the kernel matrix as Kz =
C(kkz). Here, x is the base sample, z is the base patch, and kxz is the kernel correlation
of the two vectors or the relative shift of two vectors. Evaluating the regression function
using circular shifts is effectively a spatial filtering operation. This operation can be most
efficiently performed in the Fourier domain. The regression function is then represented
as a linear combination of kernel values kxz and learned coefficients α:

f̂(z) = k̂xz ⊙ α̂ (I.2.9)

Various kernel functions are possible. To relax the computational effort KCF proposes
an Radial Basis Function (RBF) Gaussian kernel function k(x, x′) = exp(− 1

σ2||x−x′||2 )

arriving to the following kernel correlation form and O(nlogn) computational time:

kxx′
= exp(− 1

σ2||x||2 + ||x′||2 − 2F−1(x̂∗ ⊙ x̂′)
(I.2.10)

For each future frame, the coefficients learned in the previous frame can be updated by
linear integration with new parameters. This allows building a memory into the model
that is controllable by the regularisation parameter λ ∈ [0, 1]:

α̂(t) = λα̂+ (1− λ)α̂(t− 1) (I.2.11)

I.2.2.2. EKF and AEKF: State and Parameter Estimation
A purely visual filter does not consider the dynamics of the object subject to tracking
and therefore does not show robustness against occlusions and fast-moving objects. This
section investigates how Extended and Augmented Kalman Filters can be coupled to the
visual filter for state and parameter estimation.

Simplified Dynamic Model
The simplest model of a Kalman Filter, which can be used in unison with visual tracking,
has linear motion dynamics. Since the wing typically exhibits oscillatory motion under
aerodynamic input loads, the performance and the robustness of the visual tracking can
be improved by extending the simplified dynamics of a moving linear particle to a typi-
cal spring-mass damper system. This robustness is essential when the LEDs fail for more
extended periods (longer than half a period of one typical oscillation), and momentarily,
no observation is available of the visual markers. The clamped wing will oscillate around
its equilibrium under external excitation, structurally representing a clamped beammodel
beam. If the intervals of led loss are small, the moving particle is robust enough to inter-
polate the motion. However, it will not be able to capture the oscillations dynamics. This
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oscillatory dynamics can be captured by a simple linear 1-DOF second order mass damper
system, where we look at displacement y(t) of a point mass. The general differential equa-
tion is given as:

ÿ(t) = − c

m
ẏ(t)− k

m
y(t) (I.2.12)

In the state space form, we have the following:

d

dt

[
yk
ẏk

]
=

[
0 1

−k/m −c/m

] [
yk
ẏk

]
(I.2.13)

It must be noted that in this form, we consider the homogeneous form for two reasons:
(i) gust (external) input cannot be measured directly, and (ii) the aim is to maintain the
Kalman Filter as model-free as possible. The gust input can be modelled as initial displace-
ment in this Kalman Filter form.

Discrete KF Formulation
To deal with time intervals of image capture, h = ∆t, a discrete Kalman Filter form must
be formulated. Using a typical Euler integration given in this form of the state x:

d(x(t)

dt
= ẋ(t) = f ′(x(t)) =

x(t+ h)− x(t)

h
(I.2.14)

Rewriting gives the definition of the next time step:

x(t+ h) = x(t) + f ′(x(t))h (I.2.15)

Now in discrete form using k = t+ h:

xk = xk−1 + ẋk−1h (I.2.16)

The Kalman Filter contains the states x̄k =
[
yk ẏk

]T
. Each state of the Kalman Filter

can be rewritten in a discrete recursive form. The states of the Kalman Filter are:

yk = yk−1 + ẋk−1h (I.2.17)

ẏk = ẏk−1 + ÿk−1h (I.2.18)

Using the expression for the acceleration, the velocity can be rewritten into:

ẏk = −k/m · yk−1 − (1− c/m · h) · ẏk−1 (I.2.19)

Now the following system state matrix is obtained:

x̄k =

[
yk
ẏk

]
=

[
1 h

−k/m −(1− c/m · h)

]
(I.2.20)

Where the output is:
z̄k =

[
1 0

]
x̄k (I.2.21)
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While changing the model to this oscillator gives more robustness against LED marker
loss, it introduces other complications:

• The model has now become slightly more complex, and model parameters m, c, k
need to be estimated.

• Additionally, we can no longer work with arbitrary time steps, and the actual time
step between the image frames is required. This time step difference must set the
discrete sampling, dt of the Kalman Filter at each iteration of the tracker algorithm.

• Furthermore, transformation is now required to go from x, y frame coordinates to
the frame of reference for the modelled oscillator system.

However, the points mentioned above implicitly imply that the more complex model ap-
proach may no longer be model free. To overcome this, the proposed approach is to
make the model nonlinear (time-varying in c, k andm parameters) and use AEKF to esti-
mate these model parameters. The way this can be achieved, is to augment the previous
state vector xksys

with unknownmodel states pkmodel
. For full time-varying spring-mass-

damper system this will become, x̄k =
[
x̄ksys

p̄kmodel

]
=
[
yk ẏk Kk ck mk

]T
.

AEKF Formulation
To rewrite the model into an augmented form and perform parameter estimation, the
system parameters can be made a function of time. The differential equation can take the
following form:

ÿ(t) = − c(t)

m(t)
ẏ(t)− k(t)

m(t)
y(t) (I.2.22)

One commonly used assumption for the augmented model is to assume that the derivative
of model parameters is zero: ṗk =

[
0 0 0

]T
. Now the following nonlinear system

matrix is obtained:

x̄k =


yk
ẏk
Kk

ck
mk

 =


yk−1 + ẋk−1h

−Kk−1/mk−1 · yk−1 − (1− ck−1/mk−1h) · ẏk−1

Kk−1 + 0 · h
ck−1 + 0 · h
mk−1 + 0 · h

 (I.2.23)

In order to solve the AEKF model at each time step, the Jacobian of the system matrix w.r.t
time-dependent states must be constructed by linearising the model at each time step:

J(x̄k) =


1 h 0 0 0
J21 J22 J23 J24 J25
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (I.2.24)

with:

J21 = −Kk−1 ·m−1
k−1 · h, J22 = 1− ck−1 ·m−1

k−1 · h, J23 = m−1
k−1 · yk−1 · h,

J24 = −m−1
k−1 · ẏk−1 · h, J25 = m−2

k−1 · ck−1 · ẏk−1 · h−m−2
k−1 ·Kk−1 · yk−1
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The output of interest remains the measured displacement; however, the system pa-
rameters are now estimated at each time step as output.

I.2.2.3. ImageProcessing andMotionReconstruction Pipeline
This section describes the complete processing and reconstruction steps required for real-
time tracking of the wing shape and motion.

Clustering

Input
img

HSV-BW
img

Erode
Dilate

BW img
Threshold

Extract
Contours

Cluster

Figure I.2.3: Schematic of HSV filtering, such that a BW image is obtained for subsequent clustering.

To track visual markers, a processing pipeline is required. The initial step is to detect
and cluster the markers correctly. For this purpose, a machine learning approach is de-
veloped. The method utilises DBSCAN and inverse formulation of DBSCAN proposed in
the earlier study [9]. DBSCAN was found to be particularly suitable for the task due to its
unsupervised nature, namely (i) minimum needed domain knowledge, (ii) ability to find
clusters of varying size and (iii) ability to deal with noise. The image filtering pipeline
for the clustering process is shown in Fig. I.2.3. An unsupervised clustering method was
essential due to the periodic failure of the led markers installed on the wing. This is elab-
orated in Chapter I.1 and illustration in Fig. I.1.6.

Radial Sorting
A radial sorting algorithm is proposed in the processing routine after clustering opera-
tions to obtain a geometrical representation behind the detected clusters. The algorithm is
initiated by finding the centroid c̄cp of the cluster centres (a cloud of points)P(x, y), then
obtaining a radially sorted distribution, a so-called convex radial hull,Pθhull, of n indices,
such that the outline of the hull has continuous connectivity. The algorithm is discussed
in detail in Chapter I.1, Sec. I.1.2.5

Reconstruction
A high-level overview of the entire tracking pipeline is shown in Fig. I.2.4.

Chapter I.1 Chapter I.2
Input
img

Segment DBSCAN(−1)

Disjoint
Sorting

3D
∆Yy

KCF-
EKF

Figure I.2.4: High-level overview of the full 3D tracking and reconstruction pipeline.

Thered block is the clustering algorithm (DBSCAN/DBSCAN−1/Disjoint) implemented
in this study. The green blocks represent an independent tracking filter and Kalman Fil-
ter duos (KCF-AEKF) that run in parallel to keep track of markers through a sequence
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of images. The output is the displacement of the marker in x, y pixel coordinates of the
frame. The reconstruction is the final step that relates the displacements of corresponding
markers in two frames and reconstructs the 3D displacement. The reconstruction process
can be inferred from the schematic of the camera setup shown in Fig. I.2.5. Further details
regarding the 3D reconstruction can be found in a previous study by Mkhoyan et al. [10],
and [11].

Figure I.2.5: Schematic of the stereo camera setup and the coordinate systems for 3D reconstruction.

I.2.3. Experimental Setup
To collect the experimental data and, subsequently, test and assess the proposed methods,
a flexible wing was equipped with an array of visible (active) LED markers and subjected
to gust excitation. The study is the continuation of a previous study [9] on smart sensing
methods for the control of flexible aircraft.

I.2.3.1. Apparatus
The experiment was conducted in the Open Jet Facility (OJF) located at the Aerospace
Engineering faculty of the Delft University of Technology [12]. The OJF is a closed-circuit
low-speed wind tunnel with an octagonal test section of 285x285 cm2. The wind-tunnel
facility shown in Fig. I.2.6 was equipped with a gust generator [13] composed of two gust
vanes actuated in parallel. The gust vanes allowed generating discrete (1-cosine), harmonic
and sweep signals, resulting in wing gusts on top of nominal wind tunnel free stream
velocity. The gust vanes were operated at maximum of 5-7 Hz for gust vane angle of
αg <= ±15◦, and 10-15 Hz for vane angles αg <= ±10◦. The freestream velocity in
the wind tunnel was maintained by a 500 KW electric engine. The maximum flow velocity
available in thewind tunnel is 35m/s; however, the theoretical performance limit is around
30 m/s.
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Gust Generator
LED Markers
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Gust

Laser

CAM1 CAM1 Measured dy

dy

Figure I.2.6: The Open Jet Facility (OJF) [12] with the gust generator mounted in front of the test section. Wing
flexing with LED strips installed on the right.

To measure the deflections resulting from the gust excitation, a Polytech PSV-500 laser
vibrometer system was used with a resolution (RMS) of 200 µm/s [14]. In total 8 markers
were measured by the system as shown in Fig. I.1.12a in Sec. I.1.3.3.

I.2.3.2. Wing Model
The wing used in the experiment was a forward-swept tapered wing, built of glass fibre
reinforced epoxy material, referred to as the Allegra wing. The design of the wing allows
for large tip displacements, up to 20% for 10◦ of AoA and 50 m/s flow velocity [15]. The
wingwas clamped on one side on a sturdy table under a fixed angle of attack of 4◦. Detailed
information about the wing can be found in [16].

The wing was equipped with 16 LED markers. Each LED marker consisted of 3 sub-
LED units, providing three distinct bright light sources per marker. The experiment used
a 1-cosine gust signal and a frequency sweep signal.

I.2.3.3. Experimental Conditions
For all the experimental condition cases, the experimental setup was kept constant. The
wind tunnel test consisted of two experimental conditions, (i) static and (ii) dynamic, two
camera conditions (perfect, dark) and two wing configurations (no mass, mass). The latter
twowing configurations were introduced to investigate the effect of wingmass matrix and
wing inertia change on tracking performance and the parameter estimation of the mass
parameters in the AEKF oscillator model.

The purpose of the camera conditions was to assess the robustness of visual tracking
in the presence of external visual disturbances. The camera conditions were designed to
simulate realistic lighting conditions such that the feasibility of the method in-flight could
be evaluated. For all three conditions, the illuminance of the room was to be measured to
establish a baseline sensitivity for light intensity and tracking performance.

An overview of independent and dependent variables for the wing configuration and
camera is given in table I.2.1.



I.2

92 I.2. State Estimation and Real-Time Tracking

Table I.2.1: Parameters of the wing and camera setup in the wind tunnel experiment.

IV’s (controlled) DV’s (measured)
parameter unit parameter unit

Camera
Iled (led intensity) [W] Iroom (illuminance room) [lux]
Ntrackers - H (camera frame) [pix]

Wing

α AoA [deg] δYx (displacement-x) [m]
vo (flow velocity) [m/s] ∆Yy (displacement-y) [m]
(wing tip mass) [kg] error displacement [m]
fg (gust frequency.) [Hz]
dg (gust vane angle.) [deg]

Camera Conditions
Two visibility conditions were used, C1 dark conditions (night visibility, low background
light corresponding) and C2 bright condition (daylight visibility, high background light-
ing). The visibility was selected to study the effect of tracking and sensitivity of HSV
filtering.

Motion Conditions
The motion conditions are composed of two cases, static and dynamic. In both cases,
each condition was repeated for different camera configurations. The dynamic motion
conditions were selected to produce a high dynamic response from the wing and thus
more pixel activity in the image. The gust vane frequency of 5 Hz was close to the wing’s
natural frequency at the given mass configuration.

The objective of the static case was to assess the ability to (i) extract absolute displace-
ments and (ii) monitor any steady-state error (bias) developed during the measurement
runs in tracking the position of the markers.

In the dynamic case, the aim was to assess the (i) robustness of the tracking and (ii)
monitor the measurement bias (drift) developed over time. The robustness indicator is the
ability of the tracker to maintain the tracked marker for high-frequency oscillations. The
aim was to cover the aerodynamic behaviour of the wing for typical free stream velocities
and angles of attack. The test matrix of the experimental motion conditions is given in
table I.2.2.

Table I.2.2: Test matrix of the experimental motion conditions.

Condition signal V0 [m/s] AoA [deg] Gust f. [Hz] Gust v.a. [deg] Camera c.

static [5,10,20,25,30] [2] - - [C1,C2]

dynamic (gust) [10,30] [2] [1,2,3,4,5,5.6] [5,6,7,8,9,10] [C1,C2]

dynamic (sweep) [10,30] [2] ∞ [5,10] [C1,C2]
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I.2.3.4. Visual Tracking Setup
Anoverview of the hardware used for dataset collection is shown in Fig. I.1.12 in Sec. I.1.3.3.
The dataset was recorded with two GigE acA1300-75gc Basler ethernet cameras with 1300
CMOS 1.3 megapixel (280×1024 pixels) sensor [17]. The cameras were equipped with
Computar 12 mm F1.4 2/3” P IRIS lenses [18] and were positioned in a stereo setup to
observe the markers from two viewpoints. The resulting image was cropped to 1088×600
pixels and streamed in 3 channel RGB format synchronously via real-time PTP triggering
protocol over the ethernet. A PoE smart switch GS110TP from NETGEAR provided both
the power, 3.5 W (per camera unit), as well as the GigE capability to stream the images up
to 140 FPS.

An embedded computing system delivered the processing power and image capture
fromNVIDIA, the Jetson TX2, equippedwithNVIDIA Pascal architecturewith 256NVIDIA
CUDA cores and 1.3 TFLOPS (FP16), Dual-core Denver 2 64-bit CPU and quad-core ARM
A57 complex [19]. The Jetson TX2 is designed for embedded applications using Artificial
Intelligence (AI) and Computer Vision (CV) and operates on Ubuntu 16.04 LTS allow-
ing flexibility in code deployment. The application developed for this Chapter was pro-
grammed in C++ and deployed on the device. For the development the Basler C++ Pylon
API [17] and OpenCV open-source computer vision library [20]. The image and tracking
data were extracted and plotted using the OpenCV-Matlab parsing interface repository
tmkhoyan/cvyamlParser [16].

Code development, testing and assessment were done using standard Dell Optiplex
7400 and 2.3 GHz Intel Core i5 16G MacBook and the Jetson TX2. A part of the code,
dataset and tools developed in the scope of the study are available under the repositories
tmkhoyan/adaptiveClusteringTracker [9, 11] and tmkhoyan/parallelTrackingTBB [10, 21].

I.2.4. Results and Discussion
The results of the OJF wind tunnel test conducted with the flexible and the gust generator
are discussed in this section.

I.2.4.1. Measured Wing Response
In Fig. I.2.7 the responses to 1-cosine gust and sweep input signals are shown. The time his-
tory signals correspond to the measurements taken at marker ID 1. The labelling and no-
tation of the marker IDs for the vibrometer measurement system are shown in Fig. I.1.12a.
Figures I.2.7a andI.2.7b show the wing’s response to a single gust input and a sweep sig-
nal, respectively. The solid curves correspond to the measurement by the laser vibrometer
sampled at 400 Hz; the dotted line is a spline model of this response sampled at the capture
intervals by the leading edge camera. This spline model is required to obtain synchronised
measurement points between the laser vibrometer data and the image sequences for com-
parison. The camera images were collected at approximately 40 Hz, with the Nyquist
frequency well above the expected resonance frequency of the wing of ≈ 5 Hz.

Thewing deflection at staticmotion conditions (various free stream velocities) is shown
in Fig. I.2.8b shows the baseline static deflections obtained at varying free stream veloc-
ities. In Fig. I.2.8a the dynamic response of the wing as a result of the gust excitation is
shown in a spatial and time-domain representation.



I.2

94 I.2. State Estimation and Real-Time Tracking

0 0.5 1 1.5 2 2.5 3 3.5 4

time [s]

-0.02

-0.01

0

0.01

0.02

0.03

0.04
ti
p

 d
is

p
la

c
e

m
e

n
t 

[m
]

(a) 1-cosine gust input signal for varying gust vane
angles and gust frequencies at a flow velocity of
V = 30 m/s.
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(b) Sweep input signal with varying gust vane an-
gles at flow velocity of V = 30 m/s.

(c) Tracker location.

Figure I.2.7: The laser vibrometer measurement (solid line), of the tip displacement of marker ID 1, sampled and
splined at capture intervals of the leading edge at≈ 40 Hz (dotted line).

I.2.4.2. Gust Parameter Sensitivity and Wing Response
Analysis

The wing response to various gust inputs was studied to better understand the require-
ments and the needed performance of the visual tracking. Here, the sensitivity of wingtip
response (marker ID1) to 1-cosine gust input (αg ,fg ,V ) parameters was measured.

Observing Fig. I.2.7a the effect of the change of input gust frequency is seen by com-
paring the high frequency (blue) to low frequency (yellow). At higher frequencies, above
3 Hz, the wing response resembles more an impulse response, while at lower frequencies,
it resembles more a 1-cosine input signal. Fig. I.2.9a shows the full range of frequencies
(1-5 Hz). This shift in response type appears to happen between the 3 Hz (yellow) and 4
Hz (red) lines. This can be explained as for narrower 1-cosine gust inputs, the response
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Figure I.2.8: Spatial and time representation of the series of wing deflection under static and dynamic loads.
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tends to attain the characteristics of an impulse, and the energy is absorbed in a narrower
time span by the wing.

In contrast, below the 3Hz, the response is spread over a longer time. The purple line in
Fig. I.2.9b shows this larger spread between 0-0.5 seconds. This observation indicates that
the higher frequency responses are more critical for visual tracking above 3 Hz. Therefore,
the 5 Hz gust performance is at the centre of the following discussions.

Further observations can be made regarding the sensitivity of the gust vane angle and
the free stream velocity. Fig. I.2.9b shows the responses for varying gust vane angles of
the gust generator ranging from 5 to 10 degrees (blue to cyan lines), while the free stream
velocity is kept at 30 ms. Higher gust vane angles generate larger amplitude cosine waves
corresponding to more significant input energy and higher lift. As seen from Fig. I.2.9b,
this results in larger amplitudes of the wing response. Similarly, larger free stream veloci-
ties result in higher amplitudes. Fig. I.2.9c shows how the response amplitude is increased
by over six-fold, from approximately 0.005 to 0.032 meters, between 10 ms (red) and 30
ms (blue). Both of these motion responses are relevant for visual tracking, as higher am-
plitudes in a shorter period challenge the capture and processing frame rate of the visual
tracking, and lower amplitudes, the sensitivity threshold for pixel activity, directly de-
pends on the image resolution. However, it must be noted that larger amplitudes are
more relevant for controller feedback. The differences between the gust vane angles are
impacting on the response amplitude. Therefore, mainly the gust vane angle of 10 degrees
is discussed.
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(a) Varying frequency fg at constant V of
30 ms.
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(b) Varying gust vane angleαg at constant
V of 30ms and fg of 5 Hz
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(c) Varying free stream velocity V at con-
stant αg of 10 ° and fg 5Hz.

Figure I.2.9: Effect of gust input parameters on the measured wing response.

Regarding the sweep input, it is observed that the increasing gust vane angle results
in a larger amplitude. This is shown by the wider amplitude band of the 10-degree signal
(blue) versus the 5-degree signal (yellow). The lower amplitude signal (yellow) is expected
to be more challenging for visual tracking as less activity is expected in the subsequent
image frames.

I.2.4.3. MotionReconstructionandAnalysis in Frequencyand
Time-Domain

To quantify the measured wing response and the tracked wing motion from the image
sequences, comparisons were made in terms of displacements and the frequency content
in Fig. I.2.10. The laser vibrometer measured response (in meters) was reconstructed with
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the KCF-EKF (green) pipeline I.2.4. The camera setup was calibrated to obtain the re-
constructed displacements, and the corresponding KCF-EKF point pairs from two image
streams were triangulated with the Direct Linear Transformation (DLT) method. The de-
tails of the triangulation approach are given in [10, 21]. The obtained 3D coordinates were
then transformed to align the laser vibrometer measurement. Similar to laser vibrome-
ter measurement, the baseline static displacement was subtracted to obtain the transient
displacement∆Yy as indicated by the last block in the diagram I.2.4.

Observing the reconstructed displacement of the tip marker in Fig. I.2.10a, a good
agreement with the laser measurements is found in terms of the phase of the response. The
reconstruction seems to overshoot the response at the amplitude peaks. In particular, af-
ter the first peak, the difference between the laser and reconstruction is approximately 3.5
mm. In the first peak, the difference is significantly lower, below 2mm. This difference can
be attributed to three reasons, namely, (i) the splining of the laser reference measurement
tends to undershoot the peak due to a lower sampling rate, (ii) transformation between
laser measurement and absolute reconstructed coordinates and (iii) stereo calibration er-
rors. The latter factor plays a significant role in the tracking quality and requires carefully
calibrating the entire volume of the 3D space where the motion takes place. In the current
case, the calibration could only be performed when the wing was already installed, which
prevented the cover of the spatial domain of the markers. Furthermore, errors in mea-
surement between the camera setup’s orientation and location to the laser vibrometer’s
reference system also play a role in the comparison. A fourth reason is the smoothening
of the peaks by the Kalman-filtering and the lag introduced. However, these can be more
easily adjusted by tuning the Kalman Filter parameters with the KCF-AEKF approach to
rely more on the KCF tracker measurement. It must be noted that this, however, would
also reduce the robustness of the tracking to occlusions; hence a trade-off must be made.
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Figure I.2.10: Comparison of the response and the frequency spectrum for laser vibrometer versus image tracking
pipelines with DBSCAN and the Disjoint-set data structure for run R1 and marker ID 3.

Alternatively, the good agreement of the phase of the reconstructed motion can be
further analysed by employing a frequency domain analysis. Here, the measurements
were compared in terms of the measured output’s power spectral densities (PSD). The
main objective of this analysis was to understand whether the image tracking methods
could correctly identify the frequency content of the measured signal compared to the
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reference measurement provided by the laser vibrometer. In this context, the aim was
not to extract the system’s frequency response function; hence no cross-correlation was
performed of the input to the output signal, and the power spectrum of the output alone
provided sufficient ground for comparison.

The auto-PSD of the output signal, Syy , was calculated according to the following
definition:

Syy(ω) =

∫ ∞

−∞
Ryy(τ)e

−jωτdτ (I.2.25)

The integral in the expression is the Fourier transform of the auto-correlation functionRyy

of the output signal (marker displacement). Figure I.2.10b shows the frequency content of
the image sequence corresponding to the responses of marker ID 1. As can be observed
from Fig. I.2.10b, the tracking method can provide a good estimate of the first resonant
frequency of the wing. The result shows that both peaks of the spectral densities align
at 5.316 Hz, and despite underestimation of the amplitude peaks, the resonance region is
captured well with the reconstructed signal. In general, the time and frequency domain
analysis results suggest that the oscillatory motion of the wing can be well captured and
reconstructedwith the relatively low-resolution cameras (1.3megapixels) at capturing rate
of 40 Hz. The accuracy can be further improved by higher resolution cameras and a higher
capture rate.

I.2.5. Conclusions and Recommendations
This Chapter proposed a method for robust visual tracking and reconstruction of flexible
wing motion for controller feedback. The method consisted of a tracker pair composed of
a purely visual filter, a high-speed Kernelised Correlation Filter (KCF) [7], paired with an
Augmented Extended Kalman Filter (AEKF), allowing an adaptive estimate of the states
and parameters of the system exhibiting oscillatory motion. The method consisting of
KCF-EKF, without Kalman Filter augmentation, was validated experimentally on a real-
time image stream of a very flexible wing subjected to gust excitation in the OJF (Open
Jet Facility) at the Delft University of Technology. From the measured experimental data
obtained with the laser vibrometer system, the effect of gust frequency, the gust vane
angle and the free stream velocity were studied on the wing response to demonstrate
the requirements of the visual tracking and reconstruction. The reconstructed motion of
the wingtip markers from KCF-EKF tracking showed good agreement with the reference
measurement provided by the vibrometer. Frequency and time-domain analysis and data
comparison showed that the resonance peak could be capturedwell with the reconstructed
response from the visual tracking. The results suggested that the oscillatory motion of the
wing can be well captured and reconstructed with relatively low-resolution cameras (1.3
megapixels) and a non-invasive sensing system. The low resolution allows us to reach
higher capture rates for better reconstruction accuracy. A further study is planned to
analyse the performance of the Extended and Augmented Kalman Filter for varying mo-
tion conditions under the presence of uncertainty in the visual information in the form of
marker failure.
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I n previous Chapters, a real-time wing shape reconstruction method was presented consisting of the
various image processing steps. This study elaborates on the processing steps involved with the sorting

and orientation of the detected markers using a traditional and a deep learning-based approach. In
this Chapter, a computation of 2-axis reflectional symmetry from the based geometrical relationship
of contour points was performed using the proposed GeConv algorithm. The algorithm is tested on a
1000+ image dataset, initialised with rotation, from a wind tunnel and flight test experiment as part of
a more extensive study to apply real-time visual tracking of flexible wing structures. Furthermore, an
alternative approach is presented using Deep Learning. Here a Deep Convolutional Neural Network is
trained to detect the orientation angle of extracted contour shape of the wing. Both approaches show
excellent results in detecting symmetry and orientation [1].

This Chapter is based on the following peer-reviewed conference paper:
T. Mkhoyan, C. C. de Visser, and R. De Breuker, “Fast Symmetry Detection with Deep Learning and GeConv,” in
IEEE RAS 2019 International Summer School on Deep Learning for Robot Vision, IEEE, 2019
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In many computer vision applications, knowing the object’s orientation relative to
its symmetry axis is relevant. While humans are generally very good at evaluating ob-
jects’ reflectional symmetry and relative orientation, constructing a robust symmetry
detection pipeline working out of the box is still challenging in computer vision. This is
particularly true for irregular objects with skewed geometry and irregular shapes. This
Chapter presents two symmetry and object orientation detection approaches based on
traditional computer vision and Deep Learning. First, an algorithm is presented that
allows fast computation of 2-axis reflectional symmetry of contour points and the def-
inition of a radial convex hull, Geometrical Reflectional Symmetry Detector (GeConv).
The algorithm is tested on a 1000+ image dataset from the wind tunnel and flight test
experiment. Furthermore, an alternative approach is presented using Deep Learning.
Here a 2D Conventional Neural Network is trained to detect the orientation angle of ex-
tracted contour shape of the wing. Both approaches show excellent results in detecting
symmetry and orientation. The Neural Network can achieve an angle error of up to 0.05
degreeswithout needing a contour shape as input. However, it does not generalise easily
to shapes deviating from the training set. The traditional computer vision approach ex-
cels at speed and is model-free; however, it requires a processing step to get the contour
points. This study shows the potential for implementing deep learning-based methods
for the wing shape reconstruction approach presented in the previous Chapters.

I.3.1. Introduction

The advancements in computer vision and the application of smartphones allow us to
perform and process increasingly more complex image processing routines on better

quality images. As the performance increases, the demand to do more complex tasks on
more extensive data increases. One of the fundamental problems in computer vision has
many applications in computer vision, ranging from shape recognition, shape completion,
segmentation, mesh repair, and shape editing [2, 3, 3–5].

We as humans have developed a solid sensitivity for symmetry and geometric orien-
tation of patterns allowing us to deduce the complex relationships between patterns and
their orientation in the global coordinate system. Machines, however, require instructions
to compute and compare parameters from the image data to deduce this information. In
this study, two approaches are presented. One approach presents a fast, efficient algo-
rithm, GeConv, to calculate the symmetry line of skewed image objects based on tradi-
tional computer vision using the so-called Rotational Geometric Convolution. The other
approach mimics the human brain and utilises a Deep Convolutional Neural Network
(DCNN) to train and classify the rotation of images from their initial state.

Aside from general use, these methods play an essential part in processing steps of
wing shape reconstruction which was investigated in the previous Chapters, Chapters I.1
and I.2. In particular, the use of a deep learning-based approach for replacing steps or the
entire process of wing shape reconstruction. Consequently, the approach was tested on
an image sequence of a flexible wing with LED (light-emitting diode) markers undergoing
oscillatory motion under gust excitations in the OJF (Open Jet Facility) wind tunnel at the
Technical University of Delft. In the experiment, the gust generator is used developed for
OJF in the previous study [6].

The main contributions of this Chapter are twofold. First, a comparison of conven-
tional and deep learning-based approaches for detecting the symmetry and orientation of
objects. Second, an investigation is made into the use of a deep learning-based approach
for replacing steps or the entire wing shape reconstruction process.
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This Chapter is structured as follows. Themethodology is presented in Sec. I.3.2, where
two approaches are proposed for detecting the detecting symmetry and orientation ob-
jects. In Sec. I.3.2.1 the GeConv algorithm is explained, which relies on the efficient use
of traditional computer vision methods. The overview of the algorithm is presented in
Sec. I.3.2.1. Next, in Sec. I.3.2.2, a rotation detector is presented based on raw pixel input
and a Deep Convolutional Neural Network. The structure of the DCNN is explained in
Sec. I.3.2.2 and the training approach in Sec. I.3.2.2. The experiment conducted to compare
the two methods using a recorded wind tunnel dataset is explained in Sec. I.3.3. The re-
sults are discussed in Sec. I.3.4, specifically, in Sec. I.3.4.1 and Sec. I.3.4.2 for GeConv and
Deep learning approach, respectively. Finally, the conclusions and recommendations are
presented in Sec. I.3.5.
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Figure I.3.1: Experimental setup with the wing facing the wind tunnel equipped with visual markers.

I.3.2.Methodology
This Section discusses the methodology of detecting symmetry and orientation objects in-
tending to aid the wing shape reconstruction. Two approaches are proposed for detecting
symmetry and orientation objects. In Section I.3.2.1 the GeConv algorithm is explained,
which relies on the efficient use of traditional computer vision methods. The overview of
the algorithm is presented in Sec. I.3.2.1. Next, in Sec. I.3.2.2, a rotation detector is pre-
sented based on raw pixel input and a Deep Convolutional Neural Network. The structure
of the DCNN is explained in Sec. I.3.2.2 and the training approach in Sec. I.3.2.2.

I.3.2.1. GeConv: Fast Symmetry Detector with Rotational
Geometric Convolution

The fast Geometrical Reflectional Symmetry Detector uses machine learning and image
processing to extract the contour points defining the detected shape or object. The main
idea is to convolve a geometrical shape around a rotational centre defined as the centroid.
This lends the name GeConv.
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In the current study, the wing shape is extracted based on an outline of the wing shape
defined by markers placed along the outline. The symmetry detector can also be used on
shapes without distinct markers by including an alternative image segmentation filter in
the routine. The pre-processed image is clustered with DBSCAN, after which a geomet-
rical convolution is performed on the object’s initial state. The symmetry detector can
automatically sort the detected markers (object segment corners) based on their relative
orientation concerning the centroid and the symmetry line. The geometrical convolution
detector algorithm was written in C++, and the image processing was done using the C++
OpenCV library [7]

Frame Pre-Processing Filter
The pre-processing filter takes as input image 1088×600×3 pixels image and performs
colour filtering operations to segment the object from the background. Since the wing
is equipped with distinct markers, the outlines of the markers are filtered based on their
colour properties. The colour filter allows light variations to filter the desired marker
centres properly. The filter operates in parallel on each pixel of a full RGB image and
filters the pixel’s most distinct marker RGB value + uncertainty range. After this step,
adaptive image thresholding is performed on the converted grey-scale image using the
Otsu’s [8] method based on pixel histogram values.

The latter method allows distinct segment regions based on the intensity of grey-scale
value. The background and the object will typically show two distinct peaks, separated
based on their statistical properties (mean and variance). This approach performs well
when it is assumed that the histogram distribution is bimodal, meaning that segmented
regions belong to the background or foreground class. The method shows limitations
when the background contains noise or a small object area. The limitations can be easily
overcome as the wing is equipped with distinct markers when no markers are available;
the pre-processing filter must include an alternative segmentation approach to sort the
objects of interest after Otsu’s thresholding. The diagram of the preprocessing pipeline
diagram and the result of the filtering are shown in Fig. I.3.2.

[1088x600x3] [1088x600x1] [1088x600x1]

Figure I.3.2: Result of pre-processing filter and diagram. The images are from left to right, original, colour-filtered
to greyscale, thresholding with Otsu and clustering with DBSCAN.
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Clustering with DBSCAN
A machine learning approach is used to tackle the problem of correctly detecting and
clustering the markers. In the pre-processing, an unsupervised clustering method is used,
DBSCAN [9]. This method is selected for its ability to classify noise and its unsupervised
nature requiring minimum domain knowledge correctly. In pre-processing the given data,
applying the unsupervised clustering method was crucial to ensure the method’s robust-
ness in the event of marker loss. Losing LED markers can occur when the LED circuit is
under high strain during large wing oscillations. This is elaborated in Sec. I.1.2.3, Fig. I.1.6.

The main principle of DBCAN is to identify and separate regions of high density from
low-density regions. At any given point, p, density is measured within a circular radius of
ϵ. A dense region of radius ϵ from point p is a region that contains at leastMinPts number
of points. The last two parameters are the main parameters of the algorithm. Given a
database D the epsilon neighborhood, Nϵ, of point p w.r.t. point q has the following
form [9]:

Nϵ (p) = q ∈ |dist (p, q) (I.3.1)

This definition alone, when used naively, will fail to distinguish core points (points
inside of the cluster), border points (points at the border of a cluster), and noise (a point
not belonging to any cluster). The reason is that the ϵ neighbourhood of border points
generally has much fewer points than the ϵ neighbourhood of a core point. The problem
arises when the MinPts parameter is set to a low value to include the border points,
which can cause noise to be included in the cluster. To overcome this, DBSCAN introduces
the concept of density reachability. A point is said to be Directly Density Reachable when
the following two conditions hold:

p ∈ Nϵ (q) (I.3.2)

|Nϵ (p) | ≥MinPts (core point condition) (I.3.3)

This condition thus sets a requirement for every point p in a cluster to be in the ϵ neigh-
bourhood of another point in this cluster q. Additionally (ii) ϵ neighborhood of q, N (q)
must have a minimum ofMinPts, classifying it as a core point.

Themethod introduces connectivity conditions for connectingNϵ of points and defines
noise as a point not belonging to any cluster in dataset D under the given conditions
(Density-Reachability and connectivity).

In Fig. I.1.6c the result is shown of the clustering operations both for DBSCAN scan
(purple).

GeConv Algorithm Overview
The core of the algorithm relies on finding the centroid, c̄p of a cloud of points P(x, y),
then obtaining a radially sorted distribution, a so-called convex radial hull Pθhull, of n
indices and convolve the geometry concerning its original orientation until the distance
vectors from each point to the cluster centroid are aligned with the vertical and horizontal
axis. The algorithm can also find custom symmetry at 45 or any given angle.

The steps are as follows. The algorithm takes as input an arbitrary indexed cloud of
clusters centres or a point cloud P(x, y) ∈ R2×n. The centroid of P, c̄(x, y) is calculated
to obtain the distance vector pointing towards the centroid. If the input is a continuous
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shape, the centroid is sampled at the contours of the area, otherwise for a collection of n
points:

c̄p =
1

n

n∑
i=1

pi and, (I.3.4)

dcp =P− ccp (I.3.5)

The next angle is calculated for each distance vector in the collection, and the vector is
radially sorted around c̄p in the given orientation to obtain a so-called convex radial hull
Pθhull :

θcp = arctan2(dcp), where for each point, (I.3.6)

arctan2(p)i = arctan2
(
py
px

)
(I.3.7)

The sorted index of angles is obtained from sort(θcp), and the convex radial hull is ob-
tained from sampling by this sorted index:

Pθhull = sort(P, sort(θcp)) (I.3.8)

This is required to outline points in a continuously connected area. The radial sorting is
similar to what is used in gift wrapping algorithms such as Jarvis march [10]. However,
the latter algorithm sorts the points iteratively along with its outer convex hull corner
points by visiting point by point.

Now, while we have an idea about how the points are radially distributed in our lo-
cal frame starting from index 0, the index is floating w.r.t. the geometry, and thus, we
do not have an idea about how this starting index related to the geometrical properties
(symmetry).

To find the symmetry lines, a convolution must be performed at discrete samples of θ
(0-360) for a given chosen sampling step tθ . Firstly the geometry of sampled points must
be transformed using the rotation at each kth θ sample around the centroid:

R =

[
cos(θk) − sin(θk)
sin(θk) cos(θk)

]
(I.3.9)

The new geometry becomes:

Pθk = (R · (θk−1 − θcp)
T )T + θcp (I.3.10)

Consequently, as with the initial step, the direction of the new distance vector is calcu-
lated at kth step, dkcp

. Note that this vector will have the same magnitude, as the distance
to the centroid will not change, but its orientation in the global coordinate frame will. The
angle is calculated again for this vector, obtaining a new angle vector θkcp

. No sorting is
required here. However, the crux now to obtain the symmetry line is to calculate the mean
of the vector orientations. For vertical and horizontal symmetry, these must lie along with
the 90-270 symmetry and 0-180 symmetry, respectively. Repeating this for all θ samples,
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we obtain a θV symm and θHsymm score at each sample step, and the symmetry will be
found at the minimum of this across the sampling domain:

θV symm =min(|mean(| sin(|θkcp
|)|), θV symm) (I.3.11)

θHsymm =min(|mean(| cos(|θkcp
|)|), θHsymm) (I.3.12)

The score must be as close to 1 to obtain the symmetry for each axis. This process is shown
in Fig. I.3.5.

An alternative option is to sort the histogram of these values, which ismore in linewith
what is done with the surface gradient of the pixel in on image frames in this study [11].
However, the above two equations are far more efficient than collecting histograms along
the image frame’s x and y directions. The main contribution of this method is another
addition. Moreover, the mean may not give the perfect symmetry score at the vertical
or horizontal axes for skewed geometry. This is because the corner points of the skewed
geometry, with a strongly deviating distance-vector direction dcp, will dampen out the
symmetry detection peak. To account for this, the algorithm takes a statistical threshold
parameter, zth, to calculate a statistical mean or a strimmed mean. This will reject the
outliers strongly deviating from the equation’s mean. This parameter defines the skewness
or the noisiness in the object’s symmetry. For strongly skewed objects, the parameter
will be below, otherwise high (retaining a more significant part of the θkcp

vector). The
equation now becomes:

θV symm =min(|trimmean(| sin(|θkcp
|)zth |), θV symm) (I.3.13)

θHsymm =min(|trimmean(| cos(|θkcp
|)zth |), θHsymm) (I.3.14)

Where the trimmean of a collection of values in vector p is defined as the percentile
given in by zth.

I.3.2.2. Deep Learning Rotation Detector
The symmetry detection using the artificial intelligence approach was obtained by train-
ing a DCNN. The following sections describe the methodology and structure behind this
approach.

DCNN Structure
Thenetworkwas composed of a deepCNNarchitecture. TheCNN takes as input (28×28×1)
pixels and predicts the rotation angle (0-360) degrees. The input was chosen small since
the CNN is expected to learn low-level features such as edges, and no abundant spatial
pixel information was expected to be needed for the task. Furthermore, this made the
learning and later inference much less computationally extensive, such that the learning
could be done on a modern laptop/pc CPU in a matter of minutes. Similarly, the depth of
the network was constrained to 2 layers since no high-level features needed to be earned.
A general overview of the DCNN architecture and the feature extraction process is shown
in Fig. I.3.3.

The entire structure is composed of an input layer of 28×28×1. Next, two convolution
layers are used with kernel sizes of 3×3 and 64 convolutional filters. These are followed
by a max-pooling layer with a pooling kernel of 2×2, reducing the output to half of the
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Figure I.3.3: General overview of the DCNN structure and feature extraction process.

previous layer’s output. This is again followed by a dropout layer of 0.25 to help overcome
overfitting during training and a flatter layer to reduce the input to one dimension. Finally,
a fully connected layer, a final dropout layer, and a final fully connected layer with the
number of outputs equal to the number of classes of rotation angles (0-360) follows. An
overview of the layers in the DCNN structure is given in Sec. I.A1.2 in App. I.A1.3. The
DCNN was constructed using Python, and Keras [12] with Tensorflow backend [13]. The
image processing was done using the OpenCV library [7].

DCNN Problem Formulation and Training
The problem was treated as a classification problem, meaning the model’s output was the
probability between 0-1 of the predicted angle belonging to the class 0-360 integer range.
Therefore, the output format was a vector of sizeN = 360 instead of a regression problem
where the output is a single normalised value between 0-360. This was done such that
no angle wrapping was required to deal with positive and negative differences between
predicted and actual angle values.

The difference between the predicted and true value, Mean Absolute Error (MAE), was
chosen for the loss function. Given as over a set of n predictions:

MAE =
1

n

n∑
j=1

|y − ŷj | (I.3.15)

As a type of loss function, a categorical cross-entropy was used suitable for classification
tasks. The optimizer was a stochastic optimisation method Adam [14] with the angle error
described above as the performance metric.

Frame Pre-Processing Filter
Pre-filtering was required to construct the suitable dataset as input for the CNN. The
pre-processing filter takes as input same-size images (1088×600×3) pixels in RGB for-
mat, as with the previous pre-processing filter. However, the output needs to be reduced
(28×28×1) pixels in greyscale format. First, the image was flattened to greyscale, reduc-
ing an image to 1 layer depth, after which the image was cropped and resized to a square
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[1088x600x3] [1088x600x1] [1088x600x1] [28x28x1]

Figure I.3.4: Result of DCNN pre-processing filter. The images are from left to right, original, greyscale, thresh-
olded after erode and dilate operations and after cropping and rotating.

shape. The resizing was done with linear interpolation. Since the input size is minimal,
to retain distinctive edge features in the image after interpolation, erode and dilate oper-
ations were performed to increase the size of edges (marker features). The pre-processing
pipeline and the result of the pre-processing are shown in the bottom row of Fig. I.3.4.

I.3.3. Experiments
The experiments were performed on a 1000+ dataset of image sequences gathered from the
wind tunnel test recordings. The data set was split into 0.8 ratios (training/evaluation). The
images were rotated at an arbitrary angle from their initial setting as shown in Figs. I.3.2
and I.3.4 describing the pre-processing steps (note that in the figures, the images are ro-
tated 90 degrees to allow the compact representation of the filtering steps).

I.3.3.1. DCNN Detector
For the DCNN, the training sample was 1000+ of 28×28×3 greyscale images. The training
was achieved using the stochastic optimisation method Adam [14]. The network was
trained over 40 epochs with an early stopping patience level of 5, allowing the error to
achieve a good minimum. During training, the loss value of angle error was monitored
to ensure early stopping whenever the accuracy in the validation set stopped improving.
For the entire succession of training, the best model is saved. In training, a dropout rate
of 0.25 is implemented to prevent overfitting.

I.3.3.2. GeConv
For the GeConv, the data is fed similarly by applying a random rotation from the initial
orientation. In contrast to the DCNN, GeConv did not need any training. Instead, pre-
processing filters were chosen carefully, as described in the previous Section. Also, due
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to its low computational cost, the geometrical detector could pre-filter and process the
images of full size on the fly. The processing time of the pre-processing and the detection
was recorded for comparison.

I.3.4. Results
This Section discusses the results of GeConv and the DCNN detectors performed on the
image sequences collected from the wind tunnel test. The data set was split into a train-
ing/evaluation ratio of 0.8.

I.3.4.1. GeConv
The result of the evaluation of the capabilities of the GeConv is shown in Fig. I.3.5. Here
we see the geometric detector’s consecutive rotations to convolve the original orientation
with the new consecutive rotation angle. Observing the angle from 0-360 with a step size
of 5, we see that the symmetry detection for vertical symmetry fires at the point where the
distance vectors in the polar plot are aligned vertically. We see that the vertical symmetry
is detected at an angle of 97.5 degrees rotation from the initial. This angle can be used to
correct the rotation and deduce the symmetry line as we know the global orientation in
the frame. Similarly, horizontal detection is fired when the distance vectors are aligned
horizontally.
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Figure I.3.5: Result of the vertical and horizontal symmetry detection over 0-360 degree rotation from the initial
image orientation.

I.3.4.2. DCNN Detector
The training progress is shown over 40 epochs, and batch size 12 is shown in Figs. I.3.6.
As seen, the network achieves a near 0.05 angle error over approximately 29 epochs. The
early stopping level allows extending the training with the current settings by up to 10
epochs. A dropout rate of 0.25 was implemented for the training due to the relatively small
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dataset size. We also see that no discernible overfitting is observable as the validation loss
continues to decrease without diverging from training loss. In Fig. I.3.6 it is seen that the
loss starts to settle at around 25 epochs.

Figure I.3.6: Progress of loss over successive training iterations for training and validation.

The results of the evaluation performed on the 0.2 validation set are shown in Fig. I.3.7.
The original orientation is shown; in the middle, the angle is rotated at an arbitrary de-
gree, and the rightmost column shows the predicted angle and the rotation correction. As
shown, the DCNN can achieve a perfect prediction of the rotation angle from its initial
orientation.

Initial Rotated Corrected

Figure I.3.7: Result of the evaluation of the DCNN over the evaluation data set.
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I.3.5. Discussion and Conclusions
In this study, a computation of 2-axis reflectional symmetry from the based geometrical
relationship of contour points was performed using the proposed GeConv algorithm. The
algorithm is tested on a 1000+ image dataset, initialised with rotation, from a wind tun-
nel and flight test experiment as part of a more extensive study to apply real-time visual
tracking of flexible wing structures. Furthermore, an alternative approach is presented
using Deep Learning. Here a Deep Convolutional Neural Network is trained to detect the
orientation angle of extracted contour shape of the wing. Both approaches show excellent
results in detecting symmetry and orientation. The Neural Network can achieve an angle
error of up to 0.05 degrees without needing a contour shape as input. However, it does
not generalise easily to shapes deviating from the training set. The traditional computer
vision approach excels at speed. It is model-free, meaning a good generalisation can apply
the algorithm out of the box to many types of shapes. However, it requires a processing
step to get the contour points, while the DCNN operates on the raw pixels. Due to its low
computational cost, the processing can take more detailed steps to reduce the number of
cluster points and filter out irrelevant clusters. The main disadvantage of GeConv is that,
while the orientation can be easily corrected, the head or tail of the object along a given
symmetry axis is arbitrary. Further tests will be performed to assess the algorithm on
arbitrary shapes. One of the possible applications would be lane and runway detection.

Evaluation path -

Learning path -.-

Input
img ∑

Reconstruct

3D
∆Yy

Learning
Algorithm

Reference
Data

-

Figure I.3.8: 3D Reconstruction pipeline replaced fully by Deep Learning approach.

Finally, results are shown by theDCNN for symmetry detection of thewing orientation
set and step forward towards adopting a deep learning-based approach for the wing shape
reconstruction process from raw image data. The adaptability of the DCNN provides the
possibility to implement a DCNN processor in other steps of wing shape reconstruction
or potentially replace the entire process. This would significantly simplify the processing
steps, as shown in Fig I.3.8.
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I.A1
Appendices Visual Tracking

I.A1.1. Allegra Wing Specifications

Below the specification of the Allegra wing are presented [1]:

Table I.A1.1: Parameters of the Allegra wing.

Definition Parameter Value Unit
Span b 1.6 [m]
Top chord croot 0.36 [m]
Root chord ctip 0.12 [m]
Mean chord cm 0.24 [m]
Taper rati λ 1/3 [-]
Aspect ratio ÆR 6.67 [m]
Sweep (quarter line) Λ -17 [deg]
Wing area S 0.384 [m2]
Airfoil max. thickness − 13.028 [%]
Airfoil max. camber − 2.4 [%]
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I.A1.2. Tracking Result for Run R3 with Gaussian Noise
Below the results are shown for the tracking sequence from run R3 with injected Gaussian
noise (mean of µ = 0 and standard deviation of σ = 0.5).

Figure I.A1.1: Tracking sequence on input images (0,60,80) from run R3 with injected Gaussian noise (µ = 0 and
σ = 0.5).
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Figure I.A1.2: Network structure of DCNN.

References
[1] Markus Ritter, Yasser M. Meddaikar, and Johannes K.S. Dillinger. Static and dy-

namic aeroelastic validation of a flexible forward swept composite wing. In 58th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017,
page 0637, 2017.





II
Smart Design & Optimisation

121





II.1
Distributed Morphing Wing

Design

Chapter II.2

Objectives
cord

dc

span
c

Design
Methodology

Morphing Wing

Evaluation

WT Analysis

∑

∑

NN 1

NN 2

Onboard Model Optimiser

Target
CL

Optimal Shape

Part IIIChapter II.1

I n this Chapter, a novel distributed morphing concept is presented, which addresses the drawbacks of
the initial TRIC concept and allows variation of lift distribution locally along the span. The lami-

nate design is optimised with an FSI optimisation framework considering the ply orientation, laminate
thickness, laminate properties and actuation loads. Furthermore, a numerical and experimental study
is performed to select a suitable elastomer design for inter-modular connection [1].

This Chapter is based on the following peer-reviewed conference and journal paper:
T. Mkhoyan, N. R. Thakrar, R. De Breuker, and J. Sodja, “Design of a Smart Morphing Wing Using Integrated and
Distributed Trailing Edge Camber Morphing,” in ASME 2020 Conference on Smart Materials, Adaptive Structures
and Intelligent Systems; In Review at Smart Materials and Structures Journal, ASME, sep 2020
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This Chapter investigates the design and development of an autonomous morphing
wing concept developed within the scope of the SmartX project, which aims to demon-
strate in-flight performance optimisation with active morphing. This chapter proposes
a novel distributed morphing concept with six translation-induced camber morphing
trailing edge modules to progress this goal. The modules are interconnected using elas-
tomeric skin segments to allow seamless variation of local lift distribution along the
wingspan. A fluid-structure interaction optimisation tool is developed to produce an
optimised laminate design considering the ply orientation, laminate thickness, lami-
nate properties and actuation loads of the module. Analysis of the kinematic model of
the integrated actuator system is performed, and a design is achieved which meets the
required continuous load and fulfils both static and dynamic requirements in terms of
bandwidth and peak actuator torque with conventional actuators. Themorphing design
is validated using digital image correlation measurements of the morphing modules.
Characterisation of mechanical losses in the actuator mechanism is performed. Out-
of-plane deformations in the bottom skin and added elastomer stiffness are identified
as the impacting factors of the reduced tip deflection.

Nomenclature

Acronyms
FEM = Finite Element Model
FSI = Fluid-Structure Interaction
TE = Trailing Edge
LE = Leading Edge
TRIC = Trailing Edge Induced Camber
FBD = Free-Body Diagram
DIC = Digital Image Correlation
AOA = Angle of Attack, ◦

Symbols
cp = aerodynamic pressure coefficient
CL = coefficient of Lift
Fa = actuator force, N
Fl = linkage force, N
Fr = reaction force at linkage, N
ra = torque arm length, m
δa = actuator rotation, ◦

δl = angle between Fa and Fl, ◦

Ta = actuator torque, [Nm]
xa = actuator horizontal deflection range, Nm
x,y,z = nodal displacement along x,y,z axes, m
V∞ = air speed, m/s
rho = air density, kg/m3

Mx,My ,Mz = nodal moment around x,y,z axes, Nm

Subscripts
1,2 = actuators left and right of module
lin = linear coefficient
non-lin = non-linear coefficient
lin,non-lin = linear, non-linear coefficient
max,min = maximum and minimum values
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Superscripts
aero = coefficient calculated on the aerodynamic mesh
fem = coefficient interpolated on the FEM mesh
max,min = maximum and minimum values

II.1.1. Introduction

The advancements in aerospace materials, manufacturing technology, controller and
hardware design allow for developing increasingly lighter and more complex con-

cepts such as morphing wings, which significantly benefit flight performance. Initially
inspired by avian biology, the effectiveness of such concepts is demonstrated in nature,
with wing shape adaptation and optimal gliding performance [2, 3].

As in nature, morphing wing concepts have evolved since the early years of aviation.
One of the well-documented examples was the active roll control of the Wright Flyer,
the first successful heavier-than-air powered aircraft. In this lightweight design, the lat-
eral stability was ensured by wing twist-warping [4]. In this case, the flexible fabric-
wrapped structure was well suited for morphing. However, as the flight speeds and loads
increased with the advancement of aircraft design, a stiffer wing was required to fulfil
load requirements and overcome aeroelastic instabilities. As a result, the conventional
rigid wing design, generally optimised for cruise, exhibits compromised performance in
other flight conditions. More importantly, due to continuous fuel burn and redistribution
of the weight, no optimal configuration can be found which is met through the entire
cruise phase.

Active morphing has the potential to reduce this performance gap and continuously
optimise the aircraft performance across the entire flight envelope adaptively. However,
a challenging aspect in active morphing is designing a feasible and effective morphing
mechanism such that the aircraft performance can be improved actively throughout the
flight envelope [5]. That is the subject of this Chapter.

In literature, various morphing concepts can be found. A comprehensive review of the
early morphing concepts of various approaches regarding the actuator material, the actu-
ation mechanism, and the skin types is summarised by Barbarino et al. [6]. Examples vary
from conventional to compliant mechanisms and materials in the latter two categories.
Also, various materials are investigated for the actuators, ranging from conventional to
piezoelectric and shape memory alloys. In aircraft wings, morphing can be applied to the
leading edge, trailing edge, or both.

Kintscher et al. and Sodja et al. investigate a seamless morphing droop nose concept
for the leading edge, designed to match a given target shape with different materials used
for the morphing skin such as glass-fibre pre-preg and aluminium [7, 8]. The concept by
Sodja et al. utilises conventional actuation. Here, low actuation forces are achieved by
maintaining the skin length constant during morphing, such that strains in the skin are
kept minimal. Several other concepts achieve low actuation force by utilising compliant
skin and actuation mechanisms [9–11]. While promising, the studies highlight the impor-
tance of further research into manufacturing and up-scaling complex compliant designs
since the manufacturing process of these complex shapes is still challenging.

Further, examples of the compliant mechanism and actuation are investigated. Previ-
tali et al. used conventional actuators, and Molinari et al. used piezoelectric skin actua-
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tion [10–13]. Some studies use bio-inspired design, such as the FishBAC concept, designed
to mimic the compliant skeletal frame of fish, developed at Swansea University [14–16].
Trailing edge mechanisms are also presented by FlexSys, which have been installed and
undergone flight tests on a modified Gulfstream III business jet [10, 17, 18].

Recent studies also investigated the use of ultralight, lattice-based structural mod-
ules assembled in a modular adaptive structure using carbon fibre-reinforced polymers
(CFRP) [19–21]. The advantage is that these materials can have the stiffness of a typ-
ical elastomer at the mass-density typical to aero-gel. Cremer et al. [20] demonstrate
improved aerodynamic efficiency and roll control authority with spatially programmed
elastic morphing shape of a 4.27 m wingspan aircraft in the wind tunnel. Jennet et
al. [19] present the digital morphing wing concept constructed from discrete lattice el-
ements. This concept shows increased roll efficiency compared to a conventional wing
by applying spanwise twisting deformation. While promising, due to its programmable
flexibility and lightweight, the lattice-based modules occupy most of the internal space.
Therefore, additional consideration is needed to ensure the flexibility of the structure while
reserving the room for fuel, batteries, and other components to be installed in the wing.
The lattice-based concept, presented by Keidel et al. [21], suggests a potential structurally
efficient approach through optimisation of the orientation and distribution of the CFRP
rods. However, additional consideration is needed for larger wing structures and manu-
facturability aspects for this concept.

In addition to the internal actuation mechanisms, the concept of morphing through
direct skin actuation was investigated by Bilgen et al. with piezoelectric actuators [22, 23].
Pankonien et al. investigated skin actuation with macro fibre composite actuators for
camber morphing [24]. Another wing concept by Mistry et al. demonstrated a cross-
sectional warping mechanism to realise variable camber on a rotor blade [25].

Another study developed under NASA Advanced Air Transport Technology investi-
gated the multi-flap Variable Camber Continuous Trailing Edge Flap (VCCTEF) concept
for the Generic Transport Model (GTM) [26]. This concept demonstrated effectiveness in
multi-objective control and gust load alleviation in studies [27, 28]. However, the real-life
experimental demonstrator with SMA rotary actuators revealed many challenges such as
weight effectiveness, speed and power requirements of the actuators, the complexity of
the multi-segment camber mechanism, and skin flexibility required [26].

In a recent study conducted in the EU FP7 CHANGE project, a morphing concept
called the Translation Induced Camber (TRIC) is introduced to address some of these prob-
lems [29]. This concept implements a relatively simple and effective morphing mechanism
that uses a combination of cross-sectional warping and skin bending to induce both cam-
ber and twist morphing with a pair of conventional actuators. The advantage of this con-
cept is its relative simplicity and compactness of the actuationmechanism, which increases
the fuel carrying capability and volume needed for necessary auxiliary components in the
wing. However, the main disadvantage of the current TRIC concept is that the lift distri-
bution cannot be influenced locally with a single morphing surface controlled by a single
pair of actuators. As a result, this inhibits the use of the morphing mechanism for multi-
objective flight control and limits its use as a direct replacement of conventional control
surfaces for rigid body motion control (ailerons, rudders and elevators). Various control
design studies highlight the necessity and effectiveness of multi-objective flight control,
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load alleviation, and drag reduction performed by distributed multi-flap systems such as
the VCCTEF in [27, 28] and conventionally flapped over-actuated aircraft models [30].

In summary, the literature survey suggests that manymorphing concepts are restricted
to either wing twist or camber morphing mechanisms, proposing a complex mechanism
that introduces manufacturing challenges or consumes a large portion of the wing’s inter-
nal volume. Furthermore, most concepts show a global morphing approach, while in the
scope of active control, a distributed and over-actuated mechanism is necessary to apply
simultaneous gust and manoeuvre load alleviation, flutter suppression and drag minimi-
sation.

Objectives

Drag minimisation

Lift
Distribution

Aeroelastic control

Intelligent Controller

Load Alleviation

Shape control

Figure II.1.1: Rationale of the SmartX wing [1].

The current study extends the TRIC concept to address this problem. It introduces a
distributed and modular morphing design interconnected with elastomeric skin segments
to allow seamless active twist and camber morphing. This way, the lift distribution along
the wingspan can be varied locally and actively without additional drag penalty due to
the gaps between the control surfaces. Furthermore, it allows deploying multiple control
surfaces for various control objectives. This morphing design was developed in the scope
of an autonomous smart wing project called SmartX, which aims to demonstrate an inte-
grated and coherent approach to multi-objective load alleviation, flutter suppression and
performance optimisation of adaptive aircraft wings.

In Fig. II.1.1 the rationale behind the integrated design of the SmartX wing is presented
[1]. The purpose of this technology demonstrator is to demonstrate performance optimi-
sation of multiple objectives such as (i) drag optimisation, (ii) load alleviation, (iii) flutter
suppression and (iv) shape control through multidisciplinary utilisation of smart sensing,
control, actuation, and integration [31].

Addressing the shortcomings of the previous morphing designs, the contributions of
this Chapter are threefold. First, a distributed morphing concept is developed, analysed,
and validated using Digital Image Correlation (DIC) measurements. Second, solutions
are investigated and implemented to improve the aerodynamic character and the conti-
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nuity between adjacent morphing modules. Finally, a computationally efficient design
framework is developed for analysis and design optimisation. This Chapter aligns these
objectives in the scope of the development of the SmartX-Alpha wing demonstrator.

This Chapter is structured in the followingway. First, the scope of the SmartX project is
presented in Sec. II.1.1, followed by a brief overview of the TRIC and the design evolution
of the distributed morphing concept in Sec. II.1.2. The design methodology describing
the development of the Fluid-Structure Interaction (FSI) tool and the design optimisation
framework are presented in Sec. II.1.3. The demonstrator manufacturing and integration
are presented in Sec. II.1.4. The finalised design and the design validation are shown and
discussed in Sec. II.1.5. Finally, conclusions are drawn in Sec. II.1.6.

II.1.2.Morphing Concept

Stage I Stage II Stage III
motion
direction

bend up/down twistactuation
direction

× single direction
+ low actuator force
+ linear twist

+ two directions
+ low actuator force

+ linear twist/camber
+ camber and twist

× skin shearing
× single direction
× high actuator force

Figure II.1.2: TRIC morphing concept design evolution stages I-III by Werter et al. [29].

The TRIC concept served as the basis of the design [29]. The morphing concept un-
derwent several stages of evolution, which led to the development of a fully composite
smart morphing wing concept, named the SmartX-Alpha demonstrator. The motivation
for the development of this demonstrator is explained in Sec. II.1.1, the design evolution
of distributed TRIC concept is discussed in Sections II.1.2.1 and II.1.2.2.

II.1.2.1. TRIC Overview
The literature review highlighted some shortcomings of previousmorphing designs, which
are addressed to a degree by the TRIC concept developed in CHANGE [29]. The crux of
the TRIC is to utilise a combination of cross-sectional warping and skin bending to induce
camber and twist morphing powered by conventional actuators. Due to its relative sim-
plicity and compactness, the mechanism is economical in weight and size. The following
section explains how the TRIC concept has evolved from design stages I-III, as illustrated
in Fig. II.1.2. In this figure, sections of the morphing wing are depicted, with the red area
indicating the morphing skin and the purple outline, the wing box. The direction of actu-
ation is indicated with blue arrows, and the direction of motion of the skin in red.

TRIC concept is derived from the principle of a warping cross-section [32], first in-
troduced by Vos et al. with a twist morphing concept. The first design stage of TRIC,
similar to the latter concept, introduces a cut along the span on the bottom of the wing
and utilises spanwise actuation without any chordwise movement (Stage I of Fig. II.1.2).
The spanwise actuation provides the intended warping of the skin; however, since the
wingbox is relatively stiff in comparison, shearing of the skin is also introduced. This re-
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sults in relatively large actuation forces and non-linearity in spanwise twist distribution.
In the next stage of design evolution, Stage II in the middle of Fig. II.1.2, chordwise motion
is allowed, as indicated by the red arrow. As a result, shear deformations are significantly
reduced, leading to lower actuation forces and smooth linear twist distribution along the
span. However, only twist morphing is possible since the chordwise motion is coupled to
spanwise actuation. In the final stage, stage III, the actuation direction is changed from
spanwise to chordwise, and both camber and twist morphing can be commanded inde-
pendently while the actuation forces are low. By altering the actuation direction, two
sets of actuators moving either symmetrically (in the same direction) or asymmetrically
(in the opposite direction) can now introduce pure camber morphing (Bend Up/Down) or
warp-induced spanwise twist morphing (Twist), as shown in the last column of Fig. II.1.2.

II.1.2.2. Distributed Morphing

Stage IV (SmartX-Alpha)

aircraft
integration

lift distribution

disturbance field

distributed
actuators

+ low act. forces
+ distributed camber and twist
+ distributed lift control
+ design integration

Stage V (SmartX-Beta)

Figure II.1.3: Distributed TRIC morphing concept, the SmartX-Alpha, investigated in this Chapter.

In stage III, the TRIC concept achieves an efficient compact design, where the actuation
forces are kept low, and the internal space is not compromised. While promising, a single-
pair TRIC actuator design has a significant limitation: a single control surface spans the
entire wing. Hence, neither camber nor twist can be controlled locally.

Therefore, from the perspective of control design, the actuator system cannot satisfy
multiple objectives simultaneously. Generally, the typical approach is to separate the con-
trol tasks over the available control surfaceswhen the control designmust addressmultiple
objectives [33, 34]. To prevent conflicts between various tasks such as pitch control, roll
control or load alleviation, the control surfaces are either assigned to specific tasks [35].
Another possibility for conventionally actuated flexible aircraft is to make a compromise
between the objectives, as reported in [36]. The conflict can be prevented if the aircraft
features a sufficiently high number of control surfaces such that several control tasks can
be addressed simultaneously. This would allow addressing both the attitude control of the
aircraft body (pitch, roll, yaw) and aeroelastic control (load alleviation, flutter control etc.)
by continuously adjusting the same set of control surfaces (control allocation) [30]. When
combined with morphing, more objectives can be achieved in control architecture, such
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as shape and drag optimisation, leading to a more optimal lift distribution. Variable Cam-
ber Continuous Trailing Edge Flap (VCCTEF) is an example of a multi-segment camber
morphing concept integrated on a flexible wing Generic Transport Model (GTM), where
drag minimisation is demonstrated [27, 28]. However, the complexity of this multi-hinged
distributed morphing design has restricted the development of the VCCTEF to mainly nu-
merical studies.

Morphing modules

Actuator pair
(module 5)

Elastomeric skin

Sliding interface

Integrated actuator

Wingbox

Root clamp

Piezoelectric
actuators

Figure II.1.4: Overview of the SmartX-Alpha seamless TRIC morphing concept.

Our study aims to contribute to the state-of-the-art morphing design and proposes a
distributed modular morphing wing concept suitable for multi-objective control. The pro-
posed concept extends on the simplicity of the TRIC concept and benefits from the smooth
over-actuated morphing system. In this context, it investigates a solution for the disconti-
nuity introduced by a distributed multi-flap system. In addition, the aim is to demonstrate
the concept of a wind tunnel model called the SmartX-Alpha. This demonstrator includes
six morphing modules, allowing the independent camber and spanwise twist morphing of
local span segments. This design evolution is illustrated in stage IV in Fig. II.1.3.

As with the TRIC concept, the skin is actuated internally, allowing smooth and seam-
less morphing along the chord. The morphing target shape is commanded using fast, high
torque servos embedded in the wing box. The servos allow the trailing edge bottom skin to
slide chordwise and spanwise inside a guiding slot, as illustrated in the green zoomed-in
box in Fig. II.1.4. Each module has two actuators, allowing local symmetric (pure bending)
and asymmetric (twist) morphing. Interconnected triangular skin segments, joined by an
elastomer material, allow for continuous spanwise variation of the morphing wing shape,
facilitating a continuous lift distribution over the wingspan. The triangular skin segments,
illustrated in Fig. II.1.4, are composed of elastomeric material.

Themain advantage of the current design is that by adjusting the camber and twist dis-
tribution, the lift distribution can be controlled locally and independently for each module,
allowing the wing to assume an optimal aerodynamic configuration to maximise the lift-
to-drag ratio tominimise drag. Furthermore, the lift distribution can be adapted to perform
manoeuvre load alleviationwhen necessary by redistribution of the lift closer to the root of
the wing. Lastly, fast piezoelectric actuators are placed at the tip of the morphing trailing
edge for aeroelastic control such as flutter suppression, hereby covering the targets pre-
sented earlier in Fig. II.1.1. To sustain the required loads, meet the actuator constraints,
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and achieve the desired morphing shapes, the composite skin of the wing is tailored and
optimised. Therefore, a Fluid-Structure Interaction (FSI) structural optimisation tool is de-
veloped to allow fast analysis and optimisation of ply orientation and laminate thickness
in terms of the given input loads, desired target shapes and actuator limits. The devised
design methodology used in this assessment is presented in the next section.

II.1.3. Design Methodology
The design methodology is centred around the FSI tool, which connects the Finite Element
Model (FEM) and the Aerodynamic model (XFOIL). It has the following goals in mind: (i)
to produce a detailed morphing design presented in Sec. II.1.2.2 and (ii) to allow quick
assessment of the wing performance under given aerodynamic load and commanded ac-
tuators input position for data-driven surrogate model and control design.

II.1.3.1. FSI Framework

BASELINE
WING GE-
OMETRY

GLOBAL
BOUNDARY
CONDITIONS

NASTRAN
SIMULATION

DEFORMED
WING SHAPE

XFOIL

PRESSURE
LOADS

Figure II.1.5: Flow chart of the FSI framework [1].

The general flow diagram of the FSI framework is illustrated in Fig. II.1.5 [1]. The
NASTRAN FEM model [37] and the aerodynamic model represented by XFOIL [38] are
coupled by the framework, in which MATLAB acts as the interfacing software.

The actuator displacement was used as input to the simulation for each loop iteration.
The loop was iterated until the deformed shape, lift, and actuation loads converged. As
shown in Fig. II.1.6 convergence of these variables is typically reached in three to four iter-
ations [1]. Here the progressive variation of these variables is shown over each iteration.
The dotted blue line indicates the deformation convergence criterion of 1e− 3, evaluated
as the cumulative variance of deformations over each node (continuous blue line). The
convergence criteria and the convergence study are further discussed in Sec. II.1.5.1.

The actuator displacement was modelled by displacing the nodes, which acted as the
interface between the actuator’s pushrod and the skin. This is depicted in Fig. II.1.7. The
actuator displacement would, in turn, impose a deformation of the shape, which was ex-
tracted from NASTRAN and transferred to XFOIL to exact pressure distribution data. The
pressure data was returned to the NASTRAN model as static pressure loads.

FEM
The FEM model, representing a morphing module of 500 mm chord and 300 mm span,
was developed in NASTRAN [37]. A cut is introduced at the bottom skin, and nodes are
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Figure II.1.6: FSI framework chart and convergence [1].

selected to introduce the actuation loads, according to the TRIC principle. To model the
morphing principle, the flexible skin is allowed to slide in the chordwise and transverse di-
rection to accommodate the required morphing shape under loads. Vertical deformations
and rotations about the transverse and chordwise axis are restrained. Fig. II.1.7 shows the
boundary conditions employed in the FEM model.

Sliding edge
free d.o.fs:
x, y, Mz

Fixed side

Morphing

[1]

[2]

Act.
Input [1,2]

x y

zM

yM
xM

z Ta
Fr = -Fl

Fa

ra

Fl

δl

Morphed
Bend-UP

Un-morphed
(NACA6510)

Wingbox - morphing
skin interface

Wingbox

δa ⅹa

Figure II.1.7: FEM model boundary conditions and actuator free body diagram.

These boundary conditions are chosen such as to allow the following morphing states,
which are referred to as morphing subcases in the FSI model: (i) Bend Up, (ii) Bend Down,
(iii) Twist.

Actuation Mechanism
A kinematic model of the actuation mechanism and the morphing interface has been con-
structed to facilitate the actuator sizing and the mechanical behaviour. The model pre-
sented in Fig. II.1.7 shows (in a cross-sectional view) the Free-Body Diagram (FBD) of the
actuator force and moment equilibrium for the Bend Up case. The input to the actuator
is the commanded angle, which in turn results in specific actuation torque (required to
reach the desired position). Two essential aspects can be noted regarding the actuator
input force to the morphing interface when examining the diagram: (i) the maximum ac-
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tuator force, Fmax, that can be delivered at the attachment on the servo arm will increase
by shortening the servo arm ra, (ii) the instantaneous actuator torque Ta required to bal-
ance or overcome the reaction forces at the morphing interface, Fr , is not linear for the
range of travel of the actuator. The latter aspect results from the kinematic relationship
of Fa, representing the actuator torque for a given actuator arm ra and the linkage force
Fl. Since Fa is a projection of the Fl normal to the servo arm (Fa < Fl), Fa and thus the
amount of torque required by the actuator to balance or overcome the reaction forces are
dependent to the relative position of the linkage system concerning the servo arm.

The relation of linkage force to δa is presented in the side view in Fig. II.1.7, and is
defined by the following relation:

Fl =
Fa

cos (δl)
≈ Fa

cos (δa)
(II.1.1)

As the linkage length will be much greater than the arm’s length, δl can be approximated
by δa.

Following the expression above, the actuator torque can be calculated as:

Ta = Fl cos (δl) ra (II.1.2)

In this expression, the ra represents the length of the torque arm, and the non-linear
relationship between the actuator torque, Ta and the rotation angle, δl is reflected here by
the cosine term. The following step was to establish an optimal torque arm such that the
actuation loads are kept minimal within the desired morphing shapes, which is explained
in Sec. II.1.5.3. The shapes are governed by the horizontal deflection range of the actuator
(along Fl), indicated as xa in Fig. II.1.7.

II.1.3.2. Aerodynamic Model

Cpfem

CQUAD4

Inter
polat

ion

Figure II.1.8: Mesh comparison FEM (left) and aero (right).

Aerodynamic behaviour is modelled using a 2D airfoil analysis based on strip theory.
At each FSI loop iteration, the deformed wing shape is sliced into discretised spanwise
sections to extract 2D deformed airfoils. The shape of the deformed airfoil is the input to
XFOIL, which calculates the pressure distribution over the deformed airfoil [38]. This data
is then used to calculate and interpolate the pressure loads corresponding to the structural
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mesh through the slicing of the airfoil. In NASTRAN, aerodynamic force is applied as static
pressure load (PLOAD), defined as a uniform pressure load on the quadrilateral surface
(CQUAD4) comprised of four nodal positions, indicated in the bottom part of Fig. II.1.8.
Slice planes coincide with NASTRAN grid points to limit interpolation routines. This pro-
cess of airfoil extraction is shown on the right of Fig. II.1.9. The aerodynamic mesh is

SLICING

airflow

slice plane

pressure
distribution

Cp
aero

Figure II.1.9: Airfoil slicing process.

denser than the FEM mesh to improve the resolution of the pressure distribution, particu-
larly in the leading and trailing edge area. An additional interpolation routine is deployed
to deal with the differences in meshes and sample the pressure loads on the corresponding
quadrilateral surfaces of the structural mesh. This process is explained in the next section;
the difference in the structural and aerodynamic mesh is presented in Fig. II.1.8.

System Coupling

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure II.1.10: Coupling of data between aerodynamic and FEM models [1].

As the meshes vary between the two models (i.e. the aerodynamic model has a higher
resolution), an interpolation routine was used to transfer the pressure coefficient of aero-
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dynamic mesh caerop , to their appropriate centroid location in the FEM mesh cfemp values
(Fig. II.1.8). The interpolation function implements a gridded linear interpolation method
based on Delaunay triangulation of the 2D grid data [39]. Since the interpolation is per-
formed in 2D, the airfoil’s upper and lower pressure distributions are sampled from the
aerodynamic mesh separately and projected independently onto the x, y projection of the
FEM mesh, acting as xy data sampling points for the interpolation. These sampling loca-
tions are the centroid of the mesh elements, as is illustrated in Fig. II.1.10 [1].

The interpolation method uses MATLAB’s griddata function. The interpolated pres-
sure coefficients are then converted to pressure loads by evaluating the area of the corre-
sponding mesh element. This is achieved using the NASTRAN PLOAD card [40], which
allows evaluating static pressure load directly from pressure coefficients. Appropriate
scaling must be applied with the airspeed for the aerodynamic analysis. The conversion
from non-dimensional pressure coefficient, cp to PLOAD pressure is performed as follows:

PLOAD = −cfemp

1

2
ρV 2

∞ (II.1.3)

The result of the interpolation routine can be visualised in Fig. II.1.10.

II.1.3.3. Design Optimisation

DESIGN VARIABLES
PLY ORIENTATION

LAMINATE THICKNESS

CONSTRAINTS
TARGET SHAPES

BALANCED/SYMMETRIC
LAMINATE

NASTRAN SOL200

XFOIL

CONVERGENCE

ACTUATOR
LOADS

OPTIMAL
LAMINATE

ACTUATOR
SELECTION

SURROGATE
MODEL

Figure II.1.11: FSI optimisation framework [1].

An optimised laminate design was desired, capable of attaining the three target mor-
phing conditions utilising a minimum actuation load. For this purpose, an optimisation
framework was constructed, which is presented in Fig. II.1.11 [1].

Optimisation Parameters
The core of the optimisation framework consists of NASTRAN’s SOL200 optimiser [40],
implementing the same FSI analysis strategy as shown in Fig. II.1.5. For conciseness, the
additional input blocks to the FSI loop are left out; the aerodynamic interaction is facili-
tated by XFOIL using the same convergence criteria. The three morphing conditions were
considered subcases in the optimisation routine and were simultaneously optimised.

Overview input parameters, design variables and constraints used in the optimisation
are presented in Tab. II.1.2. Here the ranges of input variables correspond to each subcase,
carried out at V∞= 35 m/s. For Bend Down and Up cases, upper and lower limits of the
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Table II.1.2: Overview of input parameters, design variables and constraints of the optimisation.

variable range unit

input
angle of attack (AoA) [-12,0,5] [◦]
deformations [30,-20,±20] [mm]
V∞ 35 [m/s]

design
ply angle [-90,-45,45,90] [◦]
thickness [1.65,0.15] [mm]

range
laminate properties balanced/symmetric [-]
target shapes [Bend Up/Down, Twist] [–]

angle of attack (-12◦,5◦) were used to consider the most adverse aerodynamic loads within
the stall limits of the airfoil. The range of deformations was accordingly to maximise the
lift coefficient change, ∆CL, from the undeformed NACA6510 state, within these stall
limits. An overview of lift coefficients for various subcases is presented in Tab. II.1.5.

The optimisation outputs were the actuator loads needed for sizing the morphing
mechanism and laminate design defined by ply orientation, layers and thicknesses.

Optimisation Model
Several optimisation strategies were investigated, which varied either the ply angle, the
laminate thickness, or both.

Optimising both the ply orientation and the thickness across discretised strips of the
morphing surface proved to be the least successful strategy for two reasons. Firstly, the
high number of variables made it reasonably difficult to converge to a solution. Secondly,
the ply continuity across the strips could not be ensured without additional constraints,
which produced an unrealistic design for hand layup. When only the ply orientation was
varied against a constant thickness, the resulting curvature of the morphed shapes exhib-
ited kinks along the cord.

The simplest approach, where the ply thickness gradually dropped with the ply orien-
tation fixed at ±45, produced good results; gradually varying the thickness allowed suffi-
cient flexibility chordwise to eliminate the kinks. Orienting the fibres along the span min-
imises the actuation force; however, this also compromises the chordwise strength. The
±45 ply orientation provided the best compromise between the actuation force, bending
stiffness and torsional stiffness. Furthermore, this configuration allowed symmetrically
balanced ply drops and was easily manufacturable from readily available woven plies.
Several laminate properties were investigated, and fibre-glass designation US 7630 (MIL-
Y-1140H) presented satisfactory results and was selected for use in the final design [41].
This finalised design is discussed in Sec. II.1.5.3.

II.1.3.4. Elastomeric Skin Design
A flexible connecting skin segment was investigated to prevent gaps between the mor-
phing modules and ensure independent actuation between adjacent modules. The re-
quirements for the connecting segments were to (i) ensure continuous morphing while
not exceeding the continuous load requirements of the selected actuators, (ii) ability to
sustain pressure loads for the operational flow regimes (up to 50 m/s), (iii) allow post-
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manufacturing integration and (iv) repair. Silicone material was selected for the skin as a
connecting body due to ease of use and a good compromise between strength and dura-
bility [42].

X Y

Z

(a) Narrow slits filled with silicone.

X Y

Z

(b) Wide silicone patch reduced slit density.

(c) Gap fully covered by silicone.

Figure II.1.12: Elastomer skin design concepts.

FEmodels were built in Abaqus to study the elastomer material’s flexibility and impact
on the actuation loads. Various skin patch designs were considered with silicone-filled
slits of varying width and slit density, as shown in Fig. II.1.12. Through assessment of the
morphing configurations, it was established that the critical aspect in elastomer integra-
tion was the amount of skin shearing required for asymmetric actuation between adjacent
modules. The analysis with the FEMmodel revealed that the best compromise was a com-
plete gap filled with an elastomer material. Further assessment was done using sample
testing, as explained in Sec. II.1.4.2.
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II.1.4. Design Integration and Testing
Thewing design discussed in Sec. II.1.3 was used to build the wing demonstrator. A manu-
facturing procedure was established to allow the simultaneous integration of sensors and
the optimised design implementation. This process is schematised in Fig. II.1.13.
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Figure II.1.13: Wing manufacturing and integration process.

II.1.4.1. Manufacturing Approach
The wing design comprised four parts (i) top skin, (ii) bottom skin, (iii) wing box and
spars, (iv) morphing trailing edge. The wing skin was manufactured by vacuum-curing
wet-laid glass fibre inside top and bottom polyurethane moulds. This manufacturing and
assembly process is shown in sub-figures A-D of Fig. II.1.13. The top skin was made in
one pass, with the ply dropping incorporated at the trailing edge (Fig. II.1.13-A). Due to
the cut incorporated for the TRIC sliding edge, the bottom skin was made in two curing
steps, the wing box skin and the morphing trailing edge.

Figures II.1.13-B, II.1.13-C and II.1.14 show the joining process and the assembly of
various components in two wing halves. Figure II.1.13-D shows the final integration
process. The skin seam along the trailing and leading edge were additionally reinforced
with a fibre-glass wrapped foam wedge.

II.1.4.2. Elastomeric Skin Assessment
During the assessment of various silicone skin configurations, it was established that high-
density slits, as shown in Fig. II.1.12a, did accommodate sufficient skin shearing to allow
opposite actuation of adjacent modules within desired limits. It was observed that grad-
ually increasing the gap between the adjacent modules and decreasing the slit density
allowed more skin shearing, as suggested in Sec. II.1.3.4. Further, prototyping and testing
using a 3D-printed jig validated the final elastomer design with a fully silicone-filled gap
leading to the best results (Fig. II.1.12c). The prototyping jig shown in Fig. II.1.15 was ac-
tuated with two Volz DA-22-12-4112 servos and represented the connection between the
adjacent modules.
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Figure II.1.14: Assembly and integration of smart sensors, actuators and components in the wing.

The jigwas used to test themaximumdeflection in BendUp/Down and Twistmorphing
of various silicone skin samples from the Wacker Elastosil series. The moisture-curing
rubber silicone Wacker E41 [43] provided the best compromise between flexibility and
bonding durability.

servo pair
(DA22) control board

servo arm

Bottom skin

Top skin Sliding interface

Figure II.1.15: Testing jig components.

Once the silicone material and configuration were finalised from the jig, a manufac-
turing procedure was established to reproduce the design. A combination of 3D printed
PLA (Polylactic Acid), and Teflon tape was used as a mould and release agent, respectively,
defining the curvature between the module gaps. In the left and right of Figure II.1.13-D,
the application process of the silicone is shown with the modules facing downward and
the silicone applied from inside.

After curing the silicone and the final assessment of the elastomeric skin on the wing
demonstrator, it was established that the joint was stiffer in shear than anticipated from
the numerical analysis explained in Sec. II.1.3.4. A feasible limit for the actuation was
between±25◦. Themanufactured demonstrator was subject to morphing characterisation
tests explained, and further discussion is made in Sec. II.1.5.4.
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Figure II.1.16: Vic3D DIC measurements system.

II.1.4.3. Digital Image Correlation Setup
A Digital Image Correlation (DIC) static measurement was conducted on the top and bot-
tom surfaces of the morphing modules to validate the design and assess the capability of
the wing demonstrator to attain the static target morphing shapes,

Measurement Procedure
TheDIC test setup is shown in Fig. II.1.16. The measurement system consisted of a Vic-3D
stereo Q400 system equipped with a lens of 15 mm focal length [44]. The wing was placed
upright, and the top and the bottom skin of twomorphing modules (modules 1 and 2) were
covered in a speckle pattern. The red patches in Fig. II.1.17 indicate the areas where the
deformations were measured are indicated by the red patches in Fig. II.1.17. The trailing
130 mm portion and 190 mm portion of the wing’s lower and upper surface were analysed.
The measurement area spanned 200 mm on the top and 250 mm on the bottom surface in
the spanwise direction, centred on the module.

Measurement area - bottom surface
Elastomer region

250 mm
130 mm

δa1

δa2

Measurement area - top surface
Elastomer region

190 mm

250 mm

Figure II.1.17: Top and bottom DIC measurement area

A measurement test matrix was designed to reflect the morphing design limits of the
airfoil (shown in Tab. II.1.3). Both modules’ maximum allowable actuation limits were
chosen between positive 25 and negative 25 degrees. The latter corresponded to the lower
bound of approximately -4.5 mm chordwise travel (Bend Down) within the guided slot,
as established by the FEM model. After evaluating the allowable stretch in the resulting
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silicone skin for continuous operation, the upper bound (Bend Up) was also limited to
4.5 mm (25 degrees).

Table II.1.3: DIC measurement test matrix.

Trial 1 Trial 2

Condition δa1 [◦] δa2 [◦] δa1 [◦] δa2 [◦] shape

S.Bend Down (-) -25 -25 -25 -25

S.Bend Up (+) +25 +25 +25 +25

A.Bend Down (+/-) -25 -25 +25 +25

A.Bend Up (+/-) +25 +25 -25 -25

The actuators were commanded in steps of 5 degrees according to the scheme pre-
sented in Tab. II.1.3. In this table, a single actuator’s Bend Up and Bend Down deflection
corresponds to +25 and -25 degree actuation inputs, respectively. In total, four cases were
considered, (i) Bend Down, (ii) Bend Up, (iii) Differential Bend Down and (iv) Differential
Bend Up. In the symmetric arrangement, both modules moved in the same direction (both
up or down), and in the asymmetric case, the modules moved opposite to each other (one
up and one down). The latter cases were designed to assess the impact of the elastomer
skin on themorphed shape. Due to the differential actuation, stretching and shearing were
expected to occur in the elastomer. The DIC static measurements were repeated twice for
the symmetric case (trial 1 and trial 2) and compared with the prediction generated by the
earlier numerical model.

The numerical model did not include the elastomer skin. Hence it is expected that the
numerical results show the best possible morphing case, where the elastomeric skin does
not affect the morphing displacement of the module. The measurements for the asymmet-
ric case were conducted similarly in two trials and compared to the symmetric cases.

Calibration Procedure The DIC measurements were transformed into the same ref-
erence frame used in the numerical model to perform comparative analyses. This was
achieved by orienting the trailing edge of the measured surfaces in line with the spanwise
axis of the numerical model. A rotation about this axis was then performed to ensure the
undeformed surfaces aligned with the undeformed analysis model. The DIC stereo camera
setup was calibrated with a standard calibration target of a 30 mm circular grid pattern.
The DIC calibration was verified on the top surface by comparing the trailing edge tip
deflections measured with DIC against deflections measured with a Vernier height gauge.

Furthermore, a repeatability assessment was performed of the commanded morphed
shape and the baseline shape at rest. The commanded actuator input configuration gener-
ated a repeatable morphed shape in both tests. Similarly, the baseline shape was assessed
to ensure commanded shapes arrived at the same baseline in the unloaded case (at rest).
This assessment was found to correspond well to the expected NACA 6510 airfoil.
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II.1.5. Results and Discussion
The results and discussion are organised into three sections. First, the verification of the
FSI tool and evaluation of non-linear structural effects are presented in Sec. II.1.5.1 and
Sec. II.1.5.2. Then the outcome of the design optimisation is discussed in Sec. II.1.5.3. Fi-
nally, the validation of the morphing design is presented in Sec. II.1.5.4. In this last section,
Digital Image Correlation (DIC) measurement was conducted on the top and bottom sur-
faces of the morphing wing to assess the capability of attaining static target shapes.

II.1.5.1. FSI Framework Verification
A key aspect in the FSI framework and, in particular, the system coupling between the
FEM and aerodynamics was to determine: (i) the required resolution of both meshes to
eliminate discretisation effects due to the selected mesh density and (ii) convergence cri-
teria for the model to exit the FSI loop. Furthermore, an assessment was necessary of
non-linear structural effects during large deformations. This was done by comparing lin-
ear and non-linear solutions in the FSI loop.

Model Convergence
The variation in deformations was analysed at each iteration, as was indicated previously
in Fig. II.1.6, Sec II.1.3.1, to evaluate the convergence of the FSI loop. The change in the
magnitude of deformation is calculated at each node, where the sum of these differences
represents the total deformation variance of the system at each iteration.

Figure II.1.18: Aerodynamic mesh convergence study of the lift coefficient [1].

Multiple analyseswere run to a high iteration countwith 2DXFOIL analysis to obtain a
satisfactory convergence bound. The change in lift coefficient and actuator input loads was
monitored between each iteration in addition to the deformation variance. It was found
that when the total deformation variance of the system was below 0.01, the variation in
the lift coefficient was less than 0.0001, representing 0.012% of the total CL of baseline
NACA6510. The actuation loads showed a variance of approximately 0.25% of peak load
(approximately 0.15 N for all subcases)

With these negligible variations in lift and loads, the convergence performance was
considered sufficient for the accuracy of this analysis, and the convergence bound was
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set with a deformation variance of 10−5. Setting this bound means that the simulation
terminates once the deformation variance ≤ 10−5.

Mesh Convergence
A mesh convergence study was conducted on both meshes to determine a suitable reso-
lution for the aerodynamic and structural mesh. The meshes were refined consecutively,
starting from the aerodynamic mesh, followed by the structural mesh with the aerody-
namic mesh fixed.

Figure II.1.19: Structural mesh convergence study [1].

For the aerodynamic mesh, three morphed states of the airfoil were analysed: (i)
XFOIL’s default NACA6510, (ii) undeformed structuralmesh slice, and (iii) deformed struc-
tural mesh slice. Peak Bend Up (30 mm), Bend Down (20 mm), and Twist (±20 mm) were
considered for the structural mesh study. The analysis was completed at zero angle of
attack and a velocity of 30 m/s.

Results of the mesh resolution studies are presented in Fig. II.1.18 and Fig. II.1.19. For
both meshes, convergence was evaluated by tracking the∆CL value. The convergence of
the actuator input load was also assessed for the structural mesh.

As observed from Fig. II.1.18, the 2D aerodynamic mesh converged at 140 nodes in a
chordwise direction. Therefore the default node XFOIL count of 160 nodes wasmaintained
for future analyses. With this setting, the structural mesh converged beyond having 1500
elements. As the run time was sufficiently short, the mesh resolution was increased to
apply ply dropping adequately, withmore design freedom and accuracy. Thiswas achieved
by increasing the mesh seed size to 10 mm, corresponding to 3360 elements.

II.1.5.2. Evaluation of Non-Linear Solution

Table II.1.4: Comparison of linear and non-linear FEM model for given design cases [1].

Subcase CLlin [-] CLnon-lin [-] ∆CL [%] tlin [s] ∆tnon-lin [%]
Bend Up -0.277 -0.296 -6.589 31.2 370
Bend Down 1.464 1.423 2.801 36.5 271
Twist 0.823 0.847 -2.916 42.7 165
Unmorphed 0.825 0.825 - - -

A further assessment was completed on the validity of a linear FEM model. Due to
large deformations of the morphing surface, a comparison between linear and non-linear
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solutions in the FSI loop is performed. In these analyses, the impact of the solver is stud-
ied for non-optimised skin. Peak Bend Up/Down and Twist cases were evaluated at zero
angles of attack and wind speed of 30 m/s. Mesh densities were kept in accordance with
the outcomes of the mesh convergence study.

Figure II.1.20: Comparison of linear and non-linear deformation for the case Bend Up [1].

Comparison of lift coefficients is presented in Tab. II.1.4 [1]. Here in the last two
columns, tlin indicates the average execution times of linear solution in seconds, and
∆tnon-lin, the average percentage increase of non-linear solution for each subcase. The
benchmarking is performed over 10 FSI loops at 3 ◦ AoA and default meshing. A compar-
ison of linear and non-linear deformations is presented in Fig. II.1.20, indicated by a blue
and red-dashed line, respectively. The difference in deformation is minimal, as can be seen
by overlapping blue and red-dashed lines; however, differences of 3-6 % are observed for
the in CL, with the highest difference in Bend Up case. Additional evaluation of actuator
load for the linear and non-linear analysis revealed a comparable percentage difference,
around three %.

It must be noted, however, that the execution times for non-linear cases presented in
Tab. II.1.4, are significantly higher. The percentage increase in time versus linear is be-
tween 165-370%, which is undesirable for batch analysis. More importantly, the relatively
small differences between linear and non-linear solutions will not significantly change the
design regarding the required actuation load, as a margin is imposed for peak loads. This
is discussed in the next section. Therefore, linear analysis is considered valid for design
optimisation.

II.1.5.3. Design Outcome
The optimisation routine described in Sec. II.1.3.3 was performed for the subcases Bend
Up, Bend Down, and Twist (Tab. II.1.2) to generate the final laminate design for the mor-
phing concept. Furthermore, the FSI framework described in the design methodology in
Sec. II.1.3 was used to finalise the actuator selection.

Laminate Design
During the optimisation process, a ply dropping sequence was determined. Fig. II.1.21
shows the undeformed morphing surface overlaid with the optimised thickness distribu-
tion. The colour map shows the number of plies required in each design region to build
the morphing surface laminate.
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Figure II.1.21: Ply dropping sequence.

The deformed morphing surfaces for the three subcases are presented in Fig. II.1.22.
They are superimposed on an undeformed surface to visualise the degree of deformations
taking place. The colour map again represents the relative vertical deformations of the
system.

Figure II.1.22: Deformed morphing surfaces for subcases, Bend Up (left), Bend Down (middle) and Twist (right).

Actuator Loads
From the results of the optimisation routine, the peak actuation loads and the deflection
range were determined. In Tab. II.1.5, the required input parameters for the three subcases
are listed. Herein, the Fa and xa indicate the actuation load and the horizontal deflection
of actuator one, respectively.

Table II.1.5: Actuator peak forces for various subcases

Subcase Fa1 [N] Fa2 [N] xa1 [mm] xa2 [mm] CL [-]
Bend up 61 61 6.5 6.5 -1.7
Bend down -60 -60 -4.5 -4.5 2.2
Twist -50 23 4.5 -4.5 0.85

The actuation load ranges from -60 N to +61 N. The deflection range of the actuator
ranges from -4.5 to +6.5 mm. The resulting lift coefficients range from -1.7 to +2.2. This
information aided in the selection of a suitable actuator for the application.

The deflection range, xa, of the free edge of themorphing surface is shown in Fig. II.1.23.
With this information, the torque arm and rotation range, δmax

act , of the servo could be set
to calculate the torque requirements from the actuator. The actuator kinematic model was
implemented according to the FBD illustrated in Fig. II.1.7.
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Figure II.1.23: Horizontal travel range.

The design aimed to minimise the torque arm and increase the available actuation
force Fa. This also resulted in an increased required range of rotation to cover the entire
horizontal travel range. The range of rotation was limited to 40◦ to ensure that the linkage
forces remained in the linear range.

The relation of linkage force to δmax
a , defined by the Eq. II.1.1, is presented in Fig. II.1.24

[1]. Herein, it can be observed that the ratio of the linkage force relative to the actuator
force rapidly moves further away from the 1:1 ratio beyond 40◦ of rotation. A higher
linkage to actuator force ratio is beneficial in actuation leverage. However, examining the
FBD illustrated in Fig. II.1.7 it can be deduced that the larger ratio comes at the price of
reduced linear travel for higher rotation angles; therefore, ±40◦ was maintained as the
maximum rotation range. For this range of rotation, the torque arm required for 7 mm of
horizontal travel was 10 mm.

Figure II.1.24: Linkage force as a function of servo rotation [1].

The actuation loads were evaluated for the entire morphing range by incrementing
horizontal travel at the actuation points, from -7 mm to 7 mm, in 1 mm increments to
determine the actuator torque requirements. Only symmetric actuationwas considered, as
loads were most adverse in this scenario. The analysis was conducted at 30 m/s. To ensure
most adverse aerodynamic loads were considered within the stall limits of the airfoil, the
angle of attack was set to +5◦ for Bend Down cases and -12◦ for Bend Up cases. The data
from these analyses are presented in Fig. II.1.25a. It can be seen that torque increases in
a non-linear fashion, with peak torque requirements being nearly 45 Ncm for Bend Up
and -60 Ncm for Bend Down. Note that, at zero travel, the lines do not coincide, as the
analyses for the two cases were done at two different angles of attack.

For the peak loads presented in Tab. II.1.5, the peak torque required to actuate all
morphing shapes at V∞ = 30 m/s is ±60 Ncm. An operating margin of ≈ 35% of peak
actuator torque was considered for continuous actuation at maximum free stream velocity
and 1 Hz continuous sinusoidal actuation frequency at maximum rotation limits for the
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(a) Torque versus horizontal travel, Bend Down and Bend Up
considered [1].
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Figure II.1.25: Actuator torque and performance parameters.

actuator selection. These requirements were selected to ensure the servo would not be
used at 100% capacity during operation and would cope with the gust load alleviation
task. These requirements resulted in±80 Ncm torque and 160 ◦/sec continuous actuation
at maximum load and maximum rotation limit (±40◦).

With these two requirements, the selection was made between the available actuator
models of the servo manufacturer Volz [45]. This servo supplier was chosen due to the
real-time actuator load and position feedback needed for the controller design. Volz DA
22-12-4112 was selected as it met both the continuous torque and bandwidth requirements
within the available range of actuators. Fig. II.1.25b shows the performance specification
data of the actuator published by the manufacturer [45]. The green region indicates the
continuously operational range of the servo. As seen, the required peak torque and the
bandwidth indicated with a blue-dotted box fall within the servo’s continuous operation
range. At the peak torque of ±80 Ncm, the actuator is capable of delivering a continu-
ous speed of 210◦/sec, corresponding to tracking of 1.3 Hz sinusoidal signal at 40◦ peak
rotations. This is indicated by the maximum operational limit, the red-dotted box. The
effectiveness of the gust load alleviation can be the highest near the region indicated by
the dotted white line (maximum load and speed).

II.1.5.4. Morphing Validation
A Digital Image Correlation (DIC) static measurement was conducted on the top and bot-
tom surfaces of the morphing modules to validate the design of static target morphing
shapes.

The DIC and the numerical model results were compared by comparing the TE tip
deflection and the airfoil shape. First, the symmetric cases shall be discussed in Sec. II.1.5.4,
where both modules moved in the same direction. Then, the mechanical losses in the
morphing system are discussed in Sec. II.1.5.4, and reflections are made on the simulation
model. Finally, in Sec. II.1.5.4 the asymmetric cases are discussed, where the modules
moved opposite to each other and the impact of the elastomer is significant.
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Morphing Assessment (Symmetric)
Figure II.1.26 shows tip deflection for the entire actuation range for two trials in both
symmetric (red, blue), asymmetric cases (purple, yellow) and estimation of the numerical
model (black dotted). Examining Fig. II.1.26 for the symmetric case, the immediate obser-

Figure II.1.26: Comparison of tip deflection between the numerical model and DIC measurement of symmetrical
and asymmetrical cases [25,−25] ◦.

vation yields that the linear curve predicted by the initial numerical model significantly
overestimates the experimental tip deflection. This is observed more clearly in Fig. II.1.27
which shows a comparison of measured and simulated peak tip deflections (top row) and
3D shape (bottom row).

Figure II.1.27: Comparison DIC and initial simulation prediction peak Bend Up and down symmetrical cases.
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The numerical model shows a linear slope between the actuator input range of ±25
degrees. While this linear trend is upheld, in the 0 to -25 degree range, the experimental
curves have a much shallower slope than the prediction. On the opposite interval, the
linear trend exhibits a dead-band for the actuator displacement between 0 and 5 degrees in
trials 1 and 2. The slopemismatch and the dead-band observations suggest thatmechanical
losses occur between the actuator input and the morphing shape, which the numerical
model does not adequately capture. Consequently, the morphed trailing edge may fall
short of delivering the maximum expected lift increment when subject to a free stream
velocity. A more in-depth analysis was set up to investigate the mechanical losses in the
system during actuation, explained in the following sections.

Mechanical Loss
After an initial evaluation of the numerical model, the mechanical system was observed
more closely to investigate the potential source of mechanical losses during actuation. To
this end, a visual inspection is performed during the Bend Up and Bend Down actuation
strokes, and the image frames are processed with an image fusion algorithm shown in
Fig. II.1.28.

baseline
desired
actual

Bend down

pickup

Bend up

Twisting/ bending

lip

Figure II.1.28: Backlash effect observed in Bend Up and Bend Down.

In this figure, composite difference images are created of the image sequences at the
maximum strokes of the actuator (±25◦ actuator input), which correspond to Bend Up
(bottom row) and Bend Down (top row) cases. The purple region indicates changes con-
cerning the baseline position (zero ◦ actuator input). The image frame captures the cross-
section view of the mechanism, where the linkage arm is attached to the skin interface
via a triangular pickup component. The purple areas clearly show the twisting of pickup
and bulging in/out. The primary cause of this behaviour is attributed to the moment offset
introduced as the servo arm pushes the vertex of the pickup and the relatively significant
stiffness difference between the aluminium pickup body and the composite skin.

Observing the zoomed section of the bottom skin in Fig. II.1.29 measured with the DIC,
the findings from the visual inspection are confirmed. Here, the out-of-plane deformation
of the bottom section of the skin near the lip is shown in peak Bend Up and Bend Down
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Figure II.1.29: Bottom skin behaviour during peak Bend Up and Down with DIC in 3D view.

cases, in Figs. II.1.29-A and II.1.29-B, respectively. Firstly, the lip bulges out during the bend
upstroke and caves in during the Bend Down, reducing tip deflection. This behaviour is
highlighted in the annotated cross-sectional view in Fig. II.1.29 for both cases. The bulging
out effect is observed clearly in Fig. II.1.30, which shows the out-of-plane deflection in the
2D contour map for the Bend Up case in the top row of the figure. Secondly, from the
3D view of the Bend Up case, it is observed that the bottom skin deforms unevenly along
the span. This is revealed in better detail in the contour map of the chordwise deflection
shown in the bottom row of Fig. II.1.30. As seen, the isolines are skewed towards the one
end of the module, and the magnitude of chordwise travel is nearly twice lower compared
to the initial simulation.

RevisedModel Theundesired out-of-plane deformations observed in themeasurements
suggest that the actuator stroke is not fully converted to a chordwise translation of the
skin; instead, a significant part of the stroke is lost in the twisting and bending of the bot-
tom skin. From the perspective of the motion system, this behaviour can be characterised
as backlash. This phenomenon is attributed to clearance inaccuracies and lost motion
in mechanical systems, which can be partially compensated by increasing the actuator
stroke. However, the numerical model cannot adequately capture this complex behaviour
and predict the tip deflection due to inaccuracies.
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Figure II.1.30: Comparison of symmetric Bend Up case for the bottom surface.

Figure II.1.31: Comparison DIC and simulation peak Bend Up/Down symmetrical cases with corrected mapping.

Adopting greater detail of actuation components and interfaces in the numericalmodel,
e.g. accounting for guiding lip and the servo pickup, is a potential approach that can better
estimate tip deflection. However, this will come at a high computational cost. Since the
measured mapping follows a reasonably linear trend, shown in Fig. II.1.26, a cost-efficient
way to improve the prediction at peak input can be done by adjusting the linear map-
ping between the actuator input and tip deflection. Figure. II.1.31 shows the comparison
between the revised model and the DIC measurements in symmetric peak Bend Up and
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Down. The revised model yields a good agreement in deflection. However, the bulging
out effect cannot be captured, as shown in the airfoil shape in the top row. Consequently,
this effect will be most apparent in the dead-band region, 0-5 degrees, where the linear
trend does not hold, as shown in Fig. II.1.27.

It must be noted that the presence of aerodynamic load may further contribute to inac-
curacies, which must be adequately accounted for during operation. Therefore, a potential
solution is to include a compensator in the closed-loop control design, which can adjust
the actuation input based on accurate instantaneous shape measurement. Robust, sensor-
based control methods, such as the Incremental Nonlinear Dynamic Inversion (INDI), ca-
pable of mitigating model uncertainties through sensor feedback, are a suitable candi-
date [36]. In terms of sensors, embedded strain gauges, optical fibres, or camera tracking
can be used [46, 47].

Morphing Assessment (Asymmetric)

Figure II.1.32: Comparison asymmetric cases top surface.

The impact of the elastomer was assessed by evaluating the asymmetric cases mea-
sured by DIC, indicated by yellow and purple colours for trials 1 and 2, respectively, in
Fig. II.1.26. The modules were actuated in the opposite direction, generating tension and
shearing in the elastomer skin. No comparison is made with the numerical model, as the
main subject of interest was to observe the impact of the silicone skin on the experimental
model. In trials 1 and 2, backlash is observed, but the trials show good agreement. The
main difference between the symmetric cases is lower tip deflection. In particular, the peak
tip deflection is significantly lower (≈ 0.065 m versus ≈ 0.012 for trial 1) for the interval
0-25 degrees, corresponding to module 1 bending upwards and module 2 downwards.

Observing the out-of-plane deflection in Fig. II.1.32 for trial one on the top surface,
Bend Down (bottom row) shows reasonable agreement; however, in the Bend Up case,
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Figure II.1.33: Comparison of peak asymmetric cases bottom surface.

the deformations are significantly reduced. The same measurement on the bottom sur-
face, shown in Fig. II.1.33, reveals a substantial bulging out effect; this is indicated with
the highlighted annotation. This suggests that the actuation energy is consumed at peak
deflection in bulging out of the skin rather than shearing the silicone skin. This also sug-
gests that a better balance between the elastomer andwing skin stiffness is needed to allow
more shearing in the critical connecting areas.

II.1.6. Conclusions and Outlook
A novel distributed morphing concept is presented, which addresses the drawbacks of
the initial TRIC concept and allows variation of lift distribution locally along the span.
The laminate design is optimised with an FSI optimisation framework considering the ply
orientation, laminate thickness, laminate properties and actuation loads. Furthermore, a
numerical and experimental study is performed to select a suitable elastomer design for
inter-modular connection.

The desired morphing flexibility and manufacturability are met by a laminate design
with fixed ±45 degree ply orientation and gradual ply thickness dropping. The inter-
modular connection is bridged with a wide silicon patch design, impacting the actuation
loads and flexibility the least. The manufacturability of the concept is demonstrated by
the realisation of the modular wing demonstrator. The finalised concept is validated for
the commanded target shapes with DIC measurements and visual characterisation.

A linear trend is observed during symmetric Bend Up and Down actuation, agreeing
with the simulation. However, the validation study of the concept revealed a significant
sensitivity to the backlash in the sliding interface and added stiffness due to the addition
of the elastomer. Consequently, the peak deflections are lower than anticipated from the
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model. The measured input-output mappings are used to correct the model, improving
peak deflection estimation. The model can be further improved with greater detail of the
actuation components and interactions of the interfaces, such as the guiding lip and servo
pickup.

However, a significantly more complex model is required to capture the combined ef-
fect of backlash accurately and added stiffness of the elastomer, particularly at the lower
input range. Capturing and integrating these effects in the design process cost-efficiently
presents a challenge worth investigating in further studies. Mitigating the backlash effect
opens another opportunity for research that can be exploited with the current concept. A
sensor-based compensator in the closed-loop controller, relying on accurate position mea-
surements from the integrated sensors, is a possible approach. Finally, a further subject of
ongoing research is to investigate the impact of a more flexible wing structure in torsion
and spanwise bending.
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Building further upon the previous Chapter, this Chapter investigates how the aerodynamic perfor-
mance can be optimised numerically, using the proposed seamless, distributed morphing wing

design and artificial intelligence as a black-box controller. It aims to maximise the steady-state lift-to-
drag ratio for a given target lift coefficient using lift and drag model predictions. The proposed method
integrates an online-trained Artificial Neural Network (ANN) onboard model with an evolutionary op-
timisation algorithm [1].

This Chapter is based on the following peer-reviewed conference and journal paper:
O. Ruland, T. Mkhoyan, R. De Breuker, and X.Wang, “Black-box Online Aerodynamic Performance Optimization
for a Seamless Wing with Distributed Morphing,” AIAA SciTech Forum 2022; In Review at Journal of Guidance,
Control, and Dynamics, p. 1840, 2022
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Morphing is a promising bio-inspired technology with the potential tomake aircraft
more economical and sustainable by adapting the wing shape for the best efficiency in
any flight condition. This Chapter proposes an online black-box performance optimi-
sation strategy for a seamless wing with distributed morphing control. Pursuing global
performance, the presented method integrates a global Radial Basis Function Neural
Network (RBFNN) surrogate model with a derivative-free evolutionary optimisation al-
gorithm. The effectiveness of the optimisation strategywas validated on aVortex Lattice
Method (VLM) aerodynamic model of an over-actuated morphing wing augmented by
wind tunnel experiment data. Simulations show that the proposed method can con-
trol the morphing shape and angle of attack to achieve various target lift coefficients
with better aerodynamic efficiency than the unmorphed wing shape. The global nature
of the onboard model allows the presented method to find shape solutions for a wide
range of target lift coefficients without the need for additional model excitation ma-
noeuvres. Compared to the unmorphed shape, up to 14.6 % of lift-to-drag ratio increase
is achieved.

Nomenclature

Symbols
A = amplitude
A = aspect ratio
CL = lift coefficient
CLt = target lift coefficient
CD = drag coefficient
CD0 = zero-lift-drag coefficient
CJ = cost penalty constant
c = chord
D = drag force
Di = induced drag force
e = Oswald efficiency factor
f = frequency
J = cost
k1 = cost function singularity prevention quantity
k2 = cost function scaling factor
L = lift force
S = power spectral density
Ti = ith Chebyshev polynomial
ui = ith virtual input
W = neural net weights
X = buffer model inputs
xhinge = hinge location as a fraction of chord length
x0 = initial solution point
Y = buffer model outputs
y = spanwise coordinate
Z = frequency domain signal
zte = trailing-edge displacement
α = angle of attack
∆f = change in frequency
δf = flap deflection
θ = actuator angle
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σ0 = initial standard deviation
ϕ = phase

Subscripts
i = iteration
m = measured
s = saturated

II.2.1. Introduction

Oover the past century, aircraft have become increasingly more efficient. During the
1960s, improvements in engine technology and wing design lead to significant im-

provements in aircraft fuel economy. In recent years, this trend of increasing efficiency has
started to stagnate. More radical departures from conventional aircraft design are needed
further to reduce the cost of flying and environmental pollution. One promising technol-
ogy is active morphing, which enables shape transformation in-flight [2, 3]. The Wright
Flyer, the first successful heavier-than-air powered aircraft, relied on twist morphing of
its fabric-wrapped flexible wings to achieve roll control [4]. However, as aircraft flew at
ever-increasing speeds, higher wing rigidity was required to sustain the loads, making
morphing challenging with the available technology. In recent years, morphing has again
been made possible by advanced developments in material science such as shape memory
alloys, compliant mechanisms, and piezoelectrics [2, 5].

The ability to reshape the wing in flight introduces the problem of determining what
that shape should be for a wide range of operational conditions. The current method for
cruise drag minimisation is scheduling configuration settings through lookup tables as a
function of gross weight, airspeed, and altitude. These lookup tables generally depend
on analytical models validated with wind tunnel or test flight data. However, different
operating conditions, aircraft production variances, and repairs can result in uncertainties
in the table-lookup method.

Online optimisation can potentially tailor the wing shape to any specific flight condi-
tion for achieving the best aerodynamic performance based on in-flight measurements.
Like birds, a smart morphing-wing aircraft could sense its environment and adapt its
wings’ shape to achieve the best performance in any condition, making itmission-adaptive.
However, many challenges remain on the path toward operational smartmorphing aircraft
wings. To begin with, any online optimisation method relies on accurately evaluating the
aircraft’s performance using onboard sensors. Furthermore, only a very limited amount
of search space exploration could realistically be afforded on a typical commercial flight.
Ideally, a global optimum in the optimisation landscape should be found with limited and
local explorations.

A real-time adaptive least-squares drag minimisation approach has been proposed for
the variable camber continuous trailing edge flap (VCCTEF) described in [6, 7]. This strat-
egy uses a recursive least squares algorithm to estimate the derivatives of the aerodynamic
coefficients concerning the system inputs. The optimal wing shape and elevator deflection
are then calculated from a constrained optimisation problem using the Newton-Raphson
method. Improvements to the model excitation method, onboard model, and optimisation
methods were demonstrated in wind tunnel experiments to achieve up to 9.4 % drag re-
duction on the common research model (CRM) with the VCCTEF at off-design conditions
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at low subsonic speeds [8]. Simulations have also indicated that a 3.37 % drag reduction
is achievable on the CRM with a distributed mini-plain flap system at Mach 0.85 [9].

Whilst the coefficients of the linear-in-the-parameters multivariate polynomial model
adopted in [8, 9] can be estimated with relatively low computational cost, the model is
only valid in the local region around the trim condition. This means that to perform real-
time drag minimisation across the entire flight envelope, the model parameters must be
re-identified at every operational point, or a global model must be constructed. Moreover,
the required model excitation manoeuvres that comprise both angle of attack and flap de-
flection inputs would induce undesirable bumpiness, structural loads, and increased fuel
consumption. Last but not least, using a local model together with a gradient-based opti-
misation method makes the solution prone to converge onto a local optimum. By contrast,
while more difficult to identify online, a global onboard model could allow for continu-
ous drag minimisation throughout the flight envelope. Additionally, when paired with a
global optimisation method, global optima with even better performance could potentially
be found.

The online performance optimisation strategy proposed in this Chapter integrates an
online trained global artificial neural network (ANN) surrogate model [10], also referred
to as the onboard model, with an evolutionary optimisation algorithm [11, 12]. The Co-
variance Matrix Adaptation – Evolutionary Strategy (CMA-ES) black-box optimisation
method was adopted because of its robustness to noise, ability to optimise non-convex
and multi-modal problems, and desirable global performance [13]. An onboard model
is adapted online to reduce the time required for optimisation and effectively retain the
knowledge gained from historical measurements. For the online identification of this on-
board model, Radial Basis Function Neural Networks (RBFNNs) were employed because
of their ability to absorb model updates locally, robustness to noise, and effectiveness on
scattered data [14, 15]. Moreover, the black-box nature allows this type of network struc-
ture to be expanded easily to fit generic models or expand the domain of existing models.
These characteristics make RBFNNs promising for in-flight aerodynamic model identifi-
cation.

The integration of these methods allows for the optimisation of the morphing wing’s
shape based on scattered and noisy flight data in real-time. A high-level overview of the
online optimisation framework is shown in Fig. II.2.1.

Optimiser
Morphing
Wing

Global on-
board Model

CL, CD

α,u

α,u
Optimiser

Figure II.2.1: High-level overview of the online shape optimisation framework.

During each iteration of the online optimisation method, the evolutionary optimiser
uses the onboard model to evaluate the performance of populations of wing shape and
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angle of attack combinationsα,u to find themost promising input combinations. Themost
promising input combination is actuated and evaluated on themorphingwing system once
per iteration. The resulting lift and drag coefficients CL, CD are then used to improve the
onboard model for the next iteration. This online shape optimisation strategy is evaluated
on a simulation model of an over-actuated seamless active distributed morphing wing
named SmartX-Alpha [16]. An overview of SmartX-Alpha is shown in Fig. II.2.2a.

Seamless morphing
modules

Piezoelectric
actuators

Actuator pair
(module 1)

Intermodular elastomeric
skin

(a) Overview of wing components. (b) Wind tunnel setup.

Figure II.2.2: Overview of the SmartX-Alpha wing demonstrator.

The 0.5m×1.8m rectangular half wing is made up of six translation-induced camber
(TRIC) morphing modules that comprise two actuators each and are seamlessly joined by
a highly flexible elastomer skin. The TRIC morphing mechanism allows for both camber
and twist morphing [17]. The ability to induce twisting of the trailing edge within each
module by asymmetric actuator deflection allows for smoother morphing shapes than the
distributed VCCTEFs. Control strategies for simultaneous gust and manoeuvre load alle-
viation have been demonstrated on SmartX-Alpha during wind tunnel experiments [18].
However, the in-flight drag minimisation using the distributed morphing of SmartX-Alpha
remains an open challenge, which will be addressed in this Chapter.

The main contributions of this Chapter are the first presentation and demonstration
of a novel adaptable in-flight black-box performance optimisation strategy for morphing
wings. This data-driven approach is more adaptable and can potentially realise higher per-
formance than conventional shape scheduling by lookup tables. The morphed wing shape
could be tailored in flight to maximise the performance of the particular aircraft under
consideration rather than the performance of a model built from previous test fight data
on a similar aircraft. Moreover, compared to the state-of-the-art local grey-box methods,
which require additional model excitation manoeuvres and re-identifications at each oper-
ational condition, the proposed approach retains the information learned in a global radial
basis function neural network onboard model such that smooth and direct transitions to
well-performing wing shapes can be achieved throughout the entire flight envelope. Fur-
thermore, by integrating a derivative-free evolutionary optimisation strategywith a global
onboard model, global optima can be found. The proposed method has been validated on
a Vortex Lattice Method (VLM) model augmented by wind tunnel experiment data.

The structure of this Chapter is as follows. The morphing wing system is modelled
in Sec. II.2.2. The optimisation architecture is proposed in Sec. II.2.3. The simulation re-
sults are presented and discussed in Sec. II.2.4. Finally, the main conclusions are drawn in
Sec. II.2.5.
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II.2.2. System Modelling
The following section discusses the system modelling approach utilised in this Chapter.

II.2.2.1. Virtual Inputs
The morphing wing system consists of 13 inputs: the deflections of the 12 actuators and
the wing angle of attack. The optimisation algorithm is augmented with virtual shape
functions to reduce the computational load of the optimisation problem while ensuring
a smooth spanwise representation of the wing shape. This is achieved by using 5 virtual
shape functions to describe the wing’s shape instead of using the actuator angles directly
as system inputs. These virtual inputs u1, ..., u5 scale the five basis shapes described by the
first five Chebyshev polynomials of the first kind, re-scaled onto the [0, 1.80] m domain,
where 1.8 m is the half-wing span. Chebyshev polynomials were chosen as the parametric
wing shape approximation function due to their nearly optimal property and orthogonal-
ity [19]. The spanwise distribution of the local actuator deflection is a linear combination
of the virtual inputs and the Chebyshev polynomials Ti(y) as stated in Eq. (II.2.1).

θ(y) =

5∑
i=1

uiTi(y) (II.2.1)

The order of the virtual shape functionwas chosen to be q = 5 because it resulted in the
most significant reduction in computational loads without compromising the approxima-
tion power below acceptable levels for the expected wing shapes. Fig. II.2.3 demonstrates
that the 5th order Chebyshev polynomial has sufficient approximation for an elliptical
distribution of the 1.8 m wing span.
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Figure II.2.3: Comparison of an elliptical distribution and 5th order Chebyshev polynomial approximation.

Figure II.2.4 shows that most RootMean Square Error (RMSE) reduction is achieved us-
ing the first five q polynomials, and the approximation RMSE is approximately 0.1 mm. In
contrast, the reduction in RMSE for higher order ( q > 5) stagnates, but the computational
load increases significantly.

The resulting virtual inputs and their contributions to the actuator deflection at each
location are shown in Fig. II.2.5, where the triangular markers indicate the actuator po-
sitions. The translation-induced camber morphing mechanisms are modelled as a series
of twistable plain flaps, whose local deflections vary linearly between the actuators. The
deflection of each actuator is, in turn, dictated by the virtual inputs.
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Figure II.2.4: Relation between the root mean square error of Chebyshev polynomials approximating an elliptical
distribution and the model order.
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Figure II.2.5: Virtual shape functions that dictate the amount of camber morphing at each actuator location.

The virtual shapes reduce the 13-dimensional optimisation domain for the real system
to a 6-dimensional one for the model. Concerning this cost of the optimisation framework,
the overall benefit of using the virtual shape functions is threefold, namely, (i) a smaller,
more efficient onboard RBFNN model can be used, which requires less time to train and
update, (ii) the RBFNN model can be evaluated faster, and (iii) the computational cost to
populate candidate solutions by CMA-ES is decreased. These aspects collectively reduce
the overall optimisation cost of the framework. Moreover, the basis shape functions en-
force a certain degree of smoothness in the final morphed wing shape. Their use generally
leads to smoother shapes than those resulting from 12 independent actuator deflections
as they avoid shapes with large and frequent jumps in spanwise camber. The choices for
the optimiser and the onboard model are explained in Sections II.2.3.3 and II.2.3.2
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II.2.2.2. Aerodynamic Model
The actuator deflections described by the virtual inputs are transformed into local flap
deflections to produce the geometry to be evaluated by the aerodynamic model. First, the
local vertical displacement of the trailing edge zte is computed with Eq. (II.2.2), which was
derived from digital image correlation measurements of symmetric morphing on SmartX-
Alpha [16]:

zte = θkθ (II.2.2)

where kθ = 5.6× 10−4.
The local plain flap deflection angle δf is then computed using Eq. (II.2.3), where xhinge

is the location of the flap hinge as a fraction of the chord length:

δf = sin−1

(
zte

c · (1− xhinge)

)
(II.2.3)

Between the actuator locations, where the virtual inputs specify the local flap angle, the
local flap angle varies linearly.

The aerodynamic performances of wing shape and angle of attack combinations are
evaluated using a vortex lattice method (VLM) [20] model implemented in the Aerosand-
box python package [21]. This method is used because of its high computational efficiency
and scriptability. Since Aerosandbox is a relatively new open-source aerodynamic solver,
and only one publication using this package exists in literature [22], its VLM implemen-
tation is verified against that of XFLR5 using the geometry of SmartX-Alpha. Figure II.2.6
shows results from the Aerosandbox and XFLR5 VLM solvers and wind tunnel measure-
ments for a constant spanwise actuator angle of -22 degrees. It can be observed from
Fig. II.2.6 that the outputs of Aerosandbox and XFLR5 VLM have a high consistency.
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Figure II.2.6: Comparison of VLM solvers with wind tunnel measurements for a constant actuator angle of -22
degrees.
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However, VLM neglects the effects of viscosity and thickness and can only be used to
estimate lift and induced drag. As a result, the models slightly overestimate the lift slope,
although their lift predictions remain close to the wind tunnel measurements for the linear
part of the lift curve. On the other hand, drag is consistently underestimated due to the
lack of viscous drag effects in the model. Furthermore, while asymmetric flap deflections
affect the lift-to-induced-drag ratio L

Di
through reshaping the spanwise lift distribution,

constant flap deflections along the wingspan do not affect L
Di

at all. However, to optimise
the morphing wings’ aerodynamic efficiency L

D , both the total drag and the effects of flap
deflections on the lift-to-drag ratio should bemodelled. Therefore, the model is augmented
with an estimation of the zero-lift-drag coefficient CD0

and a correction to the Oswald
efficiency factor e based on data from a previous wind tunnel campaign with SmartX-
Alpha. Furthermore, the use of the corrected model is restricted to the linear part of the
lift curve, i.e., −5.0 < α < 10.0 degrees. Wind tunnel measurements from seven angle of
attack sweeps at different spanwise constant actuator angles were used to estimate CD0

and e using the least-squares method and Eq. (II.2.4).

CD = CD0 +
C2

L

πAe
(II.2.4)

The estimates for CD0
and e were interpolated by 1st and 2nd order polynomials re-

spectively, as shown in Fig. II.2.7. With these corrections and the induced drag from
the Aerosandbox model, the total drag is estimated with Eq. (II.2.5), where δ̄f represents
the mean flap angle. The efficiency factor of the constant deflection wing shape from
Aerosandbox e0 is estimated as 0.95.
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Figure II.2.7: Two correction functions estimated based on wind tunnel measurements.

CD = CD0
(δ̄f ) + CDi

· e0
e(δ̄f )

(II.2.5)

The effects of the corrections functions are shown in Fig. II.2.8 for the case of a constant
-22 degree actuator angle. Compared with the uncorrected drag polar from Fig. II.2.6, the
zero-lift-drag correction yields a much closer result to the wind tunnel measurements.
However, the drag is still underestimated consistently. After correcting the drag predicted
byAerosandboxwith the zero-lift-drag and theOswald efficiency corrections, the resulting
drag polar closely matches the wind tunnel measurements.
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Figure II.2.8: Drag polar of the corrected aerodynamic model for a constant actuator angle of -22 degrees.

Since the corrections were estimated using wind tunnel data, their validity is limited
to the wing geometry, and flow conditions to that these measurements correspond. In
other words, the corrections in this section are only valid for the wing profile, the plan-
form described above, and an airspeed of 15 m/s at sea level air density. Nevertheless, the
presented correction method is widely applicable to other cases.

II.2.2.3. Secondary Model
For future real-world operations, white-box aerodynamic models such as the corrected
model described above would be limited to training the onboard model beforehand. In this
manner, a priori knowledge about the system is transferred to the onboard model through
the network weights. Although these will be adjusted during the online learning process,
fewer adjustments are required than would be in the case of learning from scratch. In later
stages of the technology, the network weights would hold the knowledge from previous
flights, which is superior in quality compared to any model-based predictions.

In order to demonstrate the ability of the online learning shape optimisation procedure
to adapt to a change in the system to be optimised, a secondary aerodynamic model is
used in the simulation of the online shape optimisation. The secondary model represents
a comparable yet distinctly different morphing wing system.

The secondary model is comprised of the same wing planform as the nominal model
but with a NACA4312 airfoil instead (the SmartX-Alpha airfoil is NACA6510). As the
VLM solver does not model the effects of airfoil thickness, only the maximum camber and
location of maximum camber are different between the nominal and secondary models.
Because comparable wind tunnel data for this wing does not exist, the correction function
estimation procedure cannot be repeated for the secondary wing model. Instead, the cor-
rection functions are altered directly. Therefore, the secondary model does not accurately
model the aerodynamics of a known wing anymore. Instead, the second model represents
the aerodynamics of an unknown wing, which are relatively close to those of the nominal
model. The correction functions for both the nominal and secondary models are shown in
Fig. II.2.9.

II.2.2.4. Noise Simulation and Filtering
Real-world measurements were simulated by adding noise to the aerodynamic model out-
puts. The noise realisations used were derived from noise measurements from a previous
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Figure II.2.9: Two correction functions for the nominal and secondary model.

wind tunnel experiment. The power spectral density (PSD) of the original noise signal,
sampled at 1000 Hz, was approximated by its periodogram. The PSD S(fn) is sampled at

n positive frequencies fn =
[
∆f 2∆f ... n∆f

]T
.

First, these power spectral densities are converted to amplitudes usingA(fn) =
√

2S(fn),
where A(fn) is the n× 1 amplitude vector. Subsequently, the n× 1 phase vector ϕ(fn)
is built by assigning each spectral component a random phase between 0 and 2π radians.
Next, a frequency domain signal Z(fn) is constructed using Eq. (II.2.6).

Z(fn) = A(fn) · eiϕ(fn) (II.2.6)
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Figure II.2.10: Measured and simulated lift force noise signals.

Second, the frequency domain signal is transformed into a time-domain signal using
the inverse fast Fourier transform. The resulting time-domain signal and the original noise
measurement are shown in Fig. II.2.10. Although unique in the time domain, these noise
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realisations are all made of the same spectral components. As such, the power spectral
densities of both signals are nearly identical.

Finally, the system output measurements are simulated by averaging over the 50-
second noise realisation for noise attenuation.

II.2.3. Optimisation Architecture
In this section, the online shape optimisation strategy and framework are proposed. First,
an overview of the complete optimisation architecture is presented. Then each of the
individual components is elaborated upon in the following subsections. The architecture
of the proposed online shape optimisation framework is shown in Fig. II.2.11.

Outer update loop

Inner optimisation loop

Onboard modelOnboard model

Optimiser

Cost function Onboard model

Input mapping Actuator saturation
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µ

CLt

CLm
, CDm

Xi,Yi
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Figure II.2.11: Online shape optimisation architecture.

The optimisation procedure involves a fast and a slow loop. The optimiser, onboard
model, and cost function work together in the last loop, marked by the shaded arrows. The
optimiser evaluates angle of attack (α) and wing shape combinations (u) on the onboard
model with a high frequency. The resulting lift and drag coefficients from the onboard
model are valued with a cost function (J ), which is also based on the target lift coefficient
(CLt

). These cost values are, in turn, used by the optimiser to produce amore promising set
of inputs for the next iteration of the optimisation loop. Once the optimiser has converged
onto the most promising set of inputs, they are evaluated on the system itself in the outer
loop.

The onboardmodel and optimiser describe thewing shape in 5 virtual inputsu1, ..., u5
for wing shape smoothness and computational load reduction. However, since the shape
of the morphing wing is controlled by 12 actuators θ1, ..., θ12, the virtual input vector
u ∈ R5 needs to be mapped to the actuator input vector θ ∈ R12. Next, the actuator
inputs are limited to their saturation limits of±25 degrees. Subsequently, the wing shape
and angle of attack are actuated on the system. In this Chapter, the camber-morphing
wing was simulated with an aerodynamic model of a wing with continuously distributed
flaps. The resulting lift and drag coefficients are then contaminated with noise to simulate
real-world measurements CLm , CDm . The inputs and outputs of the latest evaluation
are added to the replay buffer, with a replacement strategy aimed at maintaining a global
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coverage of the input domain inmemory. Themodel inputsXi and themodel outputsYi in
the buffer, making up the training set that is used to train the onboard model. The training
of the artificial neural networks that make up the onboard model results in new network
weights Wi+1. From here on, a new optimisation cycle is initiated with an improved
onboard model.

To evaluate the method’s adaptability, weights from previous training on a different
wing and no initial buffer data were used on the first iteration. In order to partly fill the
empty buffer with data spread out over the input domain, the first 100 iterations were
performed with quasi-random inputs instead of the optimiser-computed optima, known
as the wandering phase.

As depicted in Fig. II.2.11, the optimiser does not work with the system directly but
rather on the onboard surrogate model, which can be evaluated with much lower com-
putational costs. The genetic optimisation algorithm queries the onboard model with a
population of inputs to be evaluated. The quality of these inputs is then determined from
the model’s outputs using a cost function. The optimiser, in turn, uses this information to
generate a new group of candidate solutions. This loop is continued until the optimiser
converges, after which this most promising input can be tested on the actual system.

The objective of the optimiser is to find the set of inputs α, u1, ..., u5 that maximises
CL

CD
while meeting the target lift coefficient CLt without violating the angle of attack or

actuator limits. The mathematical representation of this optimisation problem is:

maximise
α,u

CL(α,u)
CD(α,u)

subject to α ∈ [αmin, αmax]

θmin < θ(u) < θmax

CL(α,u) = CLt

(II.2.7)

This optimisation problem is nonlinear and non-convex becauseCL andCD are nonlinear
and non-convex functions of α and u.

II.2.3.1. Cost Function
As the optimiser queries the system with certain inputs, the corresponding outputs from
the system need to be valued to, in turn, inform the optimiser how well the input is per-
formed. The inputs cannot simply be scored on their associated drag, as this would tempt
the optimiser into minimising the drag by minimising the lift produced. Instead, a promis-
ing angle of attack and wing shape combination should result in both a low drag coeffi-
cient and a lift coefficient close to the target lift coefficient. This is achieved with the cost
function shown in Eq. (II.2.8).

J(CL, CD, CLt
) = −CL

CD︸ ︷︷ ︸
efficiency

· k2
k1 + (CL − CLt

)2︸ ︷︷ ︸
deviation from lift target

(II.2.8)

The cost of any set of system outputs is dependent on the lift and drag coefficients
and the target lift coefficient. The cost varies linearly with the aerodynamic efficiency
CL

CD
and is inverse-quadratically related to the difference between the target and actual lift
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coefficients. A small quantity k1 = 1 × 10−4 is added to prevent singularities for small
error values. The parameter k2 = 2× 10−5 is used to scale the output to [−1, 0]. Two and
three dimensional plots of the cost function forCLt = 0.50 are shown in Fig. II.2.12. Note
that the cost increases rapidly for any deviation from the target lift coefficient, while steps
in the drag-coefficient axis generally result in smaller cost variations. In other words, a
solution that provides low drag at a wrong lift coefficient is valued similarly to a solution
associated with a higher drag at the right lift coefficient.

Figure II.2.12: Isometric (left) and top-down (right) view of the cost function for CLt = 0.50.

Additionally, the angle of attack and actuator constraints are also handled by the cost
function. If a set of inputs violates any of these constraints, its cost becomes, as shown by
Eq. (II.2.9).

J = (αi − α⋆)2 + CJ , J = (θi − θ⋆)2 + CJ (II.2.9)

In the case that the angle of attack of a set of inputs to be evaluated is outside the
bounds [−2.5, 10.0] degrees, the associated cost will be the square of the difference be-
tween the angle of attack α and the middle of the domain α⋆ = 3.75 degrees plus a large
constant CJ . The valid range of θ is [−25, 25] degrees so θ⋆ = 0 and Eq. (II.2.9) reduces to
J = (θi)

2
+ CJ . This cost penalty constant is set to CJ = 10 to ensure that the cost will

always be higher than that of an input set that is not in violation of these constraints. The
square term serves to provide a gradient towards the middle of the parameter domain.

It is important to note that although the cost function is formulated as a non-linear
convex cost function, the relationship of the predicted lift and drag coefficients is non-
convex and complex. The latter parameters depend on the angle of attack, α, and the
virtual shape inputs, u. Therefore, although the relationship between CL,CL and J is
convex, the relationship between α, u and CL,CL is non-convex. This necessitates using
non-linear, non-convex optimisers capable of interacting with global models.

II.2.3.2. Optimiser
The optimiser aims to find inputs to the onboard model that minimise the cost of the
model outputs as determined by the cost function. This optimisation is performed with
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the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) algorithm [13]. CMA-
ES is an evolutionary strategy for black-box optimisation of non-linear, non-convex, and
continuous problems. It can handle multi-modality and discontinuities in the function to
be optimised and has desirable global performance. CMA-ES has been used for offline
aero-structural optimisation of a 3D morphing wing model in [23, 24].

In the framework proposed in this Chapter, CMA-ES operates by iteratively generating
populations of inputs that are subsequently evaluated on the onboard model. Based on the
returned costs of these candidate solutions, the mean and covariance matrix of the next
generation’s population are adapted. This process is repeated until the variation of the cost
function converges to a threshold, selected as 1× 10−6. In the online shape optimisation
procedure, a population size of 150 was used, referred to as parameter λ. The middle of the
input domain was used as the initial solution point x0. Furthermore, the initial standard
deviation σ0 and the scaling of the input variables were selected such that x0 ± 2σ0

spanned the width of the inputs domains.
The total required number of function evaluations depends on the population size and

also varies naturally due to the stochastic nature of the evolutionary strategy. Optimisa-
tion with higher population sizes generally requires fewer optimiser iterations and more
system evaluations per iteration. With a population size of 150, on average, 180 optimiser
iterations were needed, with a total number of system evaluations of 27,000.

The optimisation problem is required to optimise the angle of attack and virtual in-
puts for a given target lift coefficient while maximising the steady-state lift-to-drag ratio.
Therefore, a limited but considerable time window could be reserved to find the solution
iteratively. The selection of the population size was made in the effort to utilise the given
time window for calculation fully. With the selected system and population size, con-
vergence was achieved on average within 10.7s and 7.5s on Intel Core i7-4510U Central
Processing Unit (CPU), 8.00 GB Random-access Memory (RAM) and Intel Xeon W-2223
CPU 3.60 GHz, 16.00 GB RAM, respectively. The robustness of the convergence of the op-
timiser with chosen population size was assessed by evaluating the offline trained onboard
model for 100 runs for the target lift coefficient of CLt

= 0.50. Figure. II.2.13 shows the
variation of the six parameters, the angle of attack, and five virtual inputs. As shown in
the figure, the variance of the five virtual inputs describing the optimised trailing edge dis-
placements of themorphingwing is contained within 0.05 mm. Furthermore, the variation
in the angle of attack is below 0.004 degrees. Collectively, these variations are considered
sufficient for the given optimisation problem.

II.2.3.3. Onboard Model
The onboard model consists of two RBFNNs that model the mapping of the system inputs
α, u1, ..., u5 to the lift and drag coefficients. TheCL andCD networks consist of a single
hidden layer with 500 and 940 centers, respectively. More approximation power is needed
for the CD network than for the CL network because of the higher degree of nonlinearity
of the drag relation compared to the lift relation. The choice for this RBFNN structure is
made due to its ability to absorb model updates locally [14], and since it allows expanding
the input space of the model with minimal changes to the remainder of the framework.

The training of the neural networks is done with mini-batch online training, with a
batch size of 32. During training, the network weights are updated using the Adagrad
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Figure II.2.13: Convergence results for 100 optimisation runs of the optimiser for the angle of attack and virtual
inputs.

algorithm proposed by Duchi et al. [25], with an initial learning rate of 0.01 and a mean
squared error loss function.

The neural network models are not initialised with random weights but rather with
stored weights from a previous training session. In future applications, such a previous
training session would be the online training performed during the most recent flight.
For the simulations in this study, the starting weights for the online shape optimisation
will be weights from offline training on the nominal aerodynamic model. It is noteworthy
that the simulated online optimisation operates with the secondary model in the loop.
Therefore, the initial weights serve only as a starting point and do not yet constitute a
model representative of the system to be optimised.

For the initial offline training of the onboard model, a data set consisting of 261,360
wing shape and angle of attack combinations and their resulting lift and drag coefficients
on the nominal model was used, with 10% of the data being reserved for validation. Both
neural nets were trained from scratch for 2,000 epochs, which equated to roughly 23 hours
of training time on a laptop (Intel ® Core ™ i7-4510U CPU, 8.00 GB RAM). Figure II.2.14
shows the corresponding training and validation losses, converted to Normalised Root
Mean Square Errors (NRMSEs) for ease of comparison.

Even with the higher approximation power of the CD network, the NRMSE of the
CL network is lower because of the lower degree of nonlinearity in the lift relation. Both
networks’ loss curves still show a decreasing trend towards the end of the training session.
The training cut-off at 2,000 epochs is a trade-off between computational cost and starting
point quality. The increased computational costs of further training yield an increasingly
diminished return in accuracy, and the networks are only to serve as a starting point for
the onboard model.

The low computational cost is the main benefit of using the onboard model instead of
direct system evaluations. The CMA-ES optimiser typically requires thousands of function
evaluations to converge on an optimum. In the neural network models, hundreds of input



II.2.3. Optimisation Architecture

II.2

175

0 500 1000 1500 2000
epochs

10
4

10
3

10
2

no
rm

al
iz

ed
 ro

ot
 m

ea
n 

sq
ua

re
d 

er
ro

r

training loss
validation loss

0 500 1000 1500 2000
epochs

10
4

10
3

10
2

no
rm

al
iz

ed
 ro

ot
 m

ea
n 

sq
ua

re
d 

er
ro

r

training loss
validation loss

Figure II.2.14: Training and validation losses for the lift (left) and drag coefficient networks (right) in offline
training.

combinations can be evaluated in less than one second, whereas in the aerodynamicmodel,
each evaluation takes 1.5 seconds on average. In other words, the indirect optimisation
using the onboard model is approximately 2500 times faster than the direct optimisation
on the aerodynamic model.

On a real-world aircraft, considerably more time would be required because of tran-
sients and noise filtering, making direct optimisation unfeasible. Direct optimisation us-
ing the nominal aerodynamic model and indirect optimisation using the offline-trained
onboard model were performed for several target lift coefficients. In order to make the
computational time of the direct optimisation more feasible, a population size of 9 was
used for both. The resulting optimal shapes as computed by the CMA-ES optimiser are
shown in Fig. II.2.15.
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Figure II.2.15: Optimal wing shapes computed directly and indirectly on the system, for various target lift coef-
ficients.

The optimal shapes computed by indirect optimisation are very close to those com-
puted using the system directly. On average, the direct optimisation took 44.7 minutes
per target lift coefficient, whereas the average computational time of the indirect optimi-
sation was only 3.9 seconds (about 688 times faster).
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II.2.3.4. Replay Buffer
During the online mini-batch training, the onboard model is trained on a training data set
in memory in the replay buffer. This buffer consists of a history of evaluated inputs and
their corresponding lift and drag measurements. Since the onboard model is adjusted to
adapt to this data, the contents of the buffer are of critical importance. If the training data
set lacks data points in a domain region, then the neural nets will unlearn the previously
learned points in this region. This phenomenon, known as catastrophic forgetting, was
first described in [26]. Therefore, a simple first-in-first-out training set buffer will not be
sufficient to learn and retain a globally accurate onboard model.

Instead, the replacement of old data points when the buffer is full is based on the
nearest neighbour search on all points in the buffer inspired by the coverage maximisation
strategy described in [27]. The data point with the lowest mean euclidean distance to its
10 closest neighbours is replaced with the latest available data point. This replacement
strategy aims to maximise the coverage domain of the training set by replacing the data
points in regions of high data density and holding onto samples in data scare regions of
the domain.

The maximum buffer size was not reached during the relatively short simulations pre-
sented in this study. In the future, the adaptation speed could be further improved by
prioritising newer data points over older ones in the more densely populated domain ar-
eas.

II.2.3.5. Summary and Remarks
It is important to note that although the cost function is formulated as a non-linear con-
vex cost function (see Fig, II.2.12 for CLt

= 0.50), the relationship of the predicted lift
and drag coefficients is non-convex, and depend on the angle of attack, α, and the virtual
shape inputs, u. For this reason, although the relationship between CL,CD and J is con-
vex, the relationship between α, u and CL,CD is non-convex. This necessitates the use
of non-linear, non-convex optimisers capable of optimising global models. Furthermore,
given that the aerodynamic model on which the onboard model is trained does not hold
explicit formulation of the candidate shape and angle of attack solutions, the candidate so-
lutions are proposed to be evaluated iteratively in the inner optimisation loop. This brings
the importance of the second part, namely the need for a low-cost data-driven onboard
model which can be updated globally in an outer loop using the measurements from the
actual shapes evaluated online. For this purpose, the low-cost RBFNN is proposed with
local sensitivity to measurement updates. Finally, the global black-box nature and local
sensitivity of the RBFNN are proposed as suitable candidates for implementing the on-
line shape optimisation strategy in a real-life experiment using actual measurements. The
implementation of this is discussed in Chapter III.3.

In summary, the optimisation architecture shown in Fig. II.2.11 two essential com-
ponents, namely, the fast inner optimisation loop and the slower outer loop, which are
responsible for updating the global RBFNN model based on new measurements of the lift
and drag coefficient obtained from the optimised shapes produced by the aerodynamic
wing model. The fast inner loop efficiently evaluates the candidate solutions of virtual
shapes and angles of attack for a given target lift coefficient. Given the current optimisa-
tion structure with the fast inner optimisation loop and the low, the CMA-ES lends itself
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suitable for implementing a parallel query approach. In this approach, the computational
time can be further reduced by implementing a query of multiple candidate solutions on
the low-cost RBFNN model. The actual approach using the experimental wing model is
discussed in Chapter III.3.

II.2.4. Results and Discussion
In this section, the results from two simulation experiments are presented. The online
optimisation algorithm was run for 15 iterations during the first simulation with a fixed
target lift coefficient of 0.75. During the second simulation, 275 iterations of online shape
optimisation were simulated with a target lift coefficient varying between 0.25 and 1.25.
The aerodynamic efficiency of the resulting wing shapes is compared to that of the wing
jig shape. The wing jig shape is defined as the shape of the wing at rest, with all morphing
actuators set to zero deflection. The wing jig shape does not have any pre-twist.

II.2.4.1. Single Target Lift Coefficient
The online shape optimisation framework was run for 115 iterations, of which the first 100
were performed in wandering mode and the rest in optimisation mode. The inputs that
were evaluated on the system are shown in Fig. II.2.16, where the optimisation phase is
marked with a red background.

As expected, the angle of attack and the virtual inputs varywithin their boundswith no
recognisable pattern during the wandering phase. The cost associated with these pseudo-
random inputs is generally high, except at iteration 26, where the resulting lift coefficient
was relatively close to the target lift coefficient by coincidence. Shortly after the algorithm
enters the optimisation phase at iteration 101, the inputs plateau. At iteration 102, a shape
is tried, resulting in a higher cost than the shape from the previous iteration. Subsequently,
the inputs move away from this location, and the associated cost decreases and converges.
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Figure II.2.16: Input history for wandering and optimisation (red background) with CLt = 0.75.
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More insight into the inner mechanisms of the optimisation algorithm is provided by
the optimal inputs as calculated by the optimiser, shown in Fig. II.2.17. The optimal angle
of attack and optimal virtual inputs remain unchanged for the first 32 iterations of the
wandering phase. During this period, measurements are collected, and the training buffer
is partially filled. Training of the onboardmodel is only started after the size of the training
set exceeds the batch size used for training.
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Figure II.2.17: Optimal inputs as calculated by the optimiser for a target lift coefficient of 0.75.

At iteration 32, the online training is started, and the algorithm’s estimation of the
optimal input changes with a sudden jump for the first time as the global minimum of the
onboard model has shifted. Subsequently, the estimation of the optimal inputs changes
repeatedly as the onboard model keeps training on increasing data points and starts to
represent the system more accurately. The fact that the optimal inputs change slowly dur-
ing the optimisation phase, where estimated optimal inputs are evaluated on the system,
indicates that the onboard model has captured the trends in the exploratory data quite
well during the wandering phase.

Two spikes in estimated optimal input can be observed at iterations 99 and 102. These
two points correspond to an input that seemed promising based on the onboard model at
the end of the wandering phase. However, the system yielded a lower performance than
expected once tested. After evaluating the system, this input combination does not show
up in the optimal inputs in later iterations.

The wing shapes evaluated on the system during both phases are shown in Fig. II.2.18.
The pseudo-random shapes, shown in blue, span the entire actuator domain. The optimal
wing shape, shown in orange, starts with only minor changes in camber near the wing
root, compared to thewing’s jig shape. Towards the tip of thewing, its camber is decreased
until the actuators in the tip module hit their maximum negative deflection angles of -
25 degrees. This morphing shape brings the spanwise lift distribution of this zero-twist
rectangular planformwing closer to the theoretically ideal elliptic lift distribution, thereby
reducing the induced drag.

One of the optimisation phase shapes looks somewhat different from its counterparts.
This is the shape that was tried on iteration 102 and resulted in an increase in cost com-
pared to the previous iteration. In the following iterations, it was not repeated.



II.2.4. Results and Discussion

II.2

179

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
spanwise position, meters

25
20
15
10
5
0
5

10
15
20
25

ac
tu

at
or

 a
ng

le
, d

eg
re

es
Wandering Optimization

Figure II.2.18: Morphing shapes evaluated on the system in the wandering and optimisation phases.

II.2.4.2. Various Target Lift Coefficients
In order to investigate the ability of the online shape optimisation algorithm to find op-
timal inputs for different target lift coefficients without repeated exploring, the optimisa-
tion phase was extended to include two repeated series of steps and a window of gradual
changes in the target lift coefficient as depicted in Fig. II.2.19. The quality of the solutions
actuated on the system was also evaluated by comparing their lift-to-drag ratios to those
of the wing jig shape.
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Figure II.2.19: Optimal inputs computed during the wandering and optimisation (red background) phases.

From 100 to 160, the target lift coefficient is increased by 0.25 every 15 iterations. The
steps in the target lift coefficient are marked with dashed vertical lines. As a direct result
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of the steps in the target lift coefficient, steps in the computed optimal angle of attack and
virtual inputs can be seen at the corresponding iterations. For the duration of the steps,
the optimal inputs are stable. The cost associated with the corresponding system outputs
is also stable, although it is noisier due to the added measurement noise.

Between iterations 175 and 275, the target lift coefficient decreases from 1.25 to 0.25
in steps of 0.01. As expected, the optimal angle of attack and mean camber of the opti-
mal shape decrease as the target lift coefficient decreases. The first virtual input, which
contributes a constant amount of camber morphing along the wingspan, decreases until
it nears the negative actuator limit of -25 degrees between iterations 175 and 248. Mean-
while, the second virtual input, representing a linear increase in spanwise camber mor-
phing, becomes less harmful. Here the optimiser increases the negative u2 input because
the lower u1 input leaves less room for spanwise lift reduction before the actuators at the
wingtip hit their maximum negative deflections. Between iterations 248 and 275, virtual
inputs u2 through u5 are decreased to zero so that u1 can move all the way to the -25
degree actuator limit. In other words, for the target lift coefficient of 0.25, the optimiser
sacrifices the increased lift induction efficiency of a more elliptical spanwise lift distri-
bution for an overall less cambered airfoil. This makes sense since the airfoil is already
relatively highly cambered, which is more efficient for producing higher lift coefficients.

After iteration 275, the same steps in the target lift coefficient are repeated. The op-
timal inputs are almost the same between the runs, with the exception of CLt = 0.50
during iterations 290-305. Even though the inputs are different in this case, the costs are
very similar. The average cost during iterations 115-130 is -0.475 with a standard devia-
tion of 0.011, whereas the average cost during iterations 290-305 is -0.481 with a standard
deviation of 0.018. Hence, on average, the performance of the inputs evaluated during iter-
ations 290-305 was slightly more desirable than those evaluated during iterations 115-130.
Nevertheless, this again highlights the importance of accurate lift and drag estimations.
Any combination of inputs can only be determined to be more efficient as long as the dif-
ference is measurable. In simulations without simulated measurement noise, the revisited
target lift coefficients yielded the same inputs.

The lift coefficients and lift-to-drag ratios measured during the wandering and optimi-
sation phases are shown together with those of the jig shape in Fig. II.2.20. As shown in
Fig. II.2.20, the quasi-random shapes from the wandering phase, shown in blue, produce
lower lift-to-drag ratios than the jig shape, shown in green, in roughly 80 % of the cases.
Many possible shape variations exist that are aerodynamically inefficient, whereas only a
smaller subset of shapes yield better aerodynamic performance. By chance, some random
inputs perform comparably or even better than the jig shape.

Except for only two data points, the optimisation points, shown in orange, all out-
perform the jig shape in terms of aerodynamic efficiency. Although, for those two data
points, the aerodynamic model output without simulated measurement noise does out-
perform the jig shape. Another effect of the measurement noise can be observed in the
decreasing spread of the optimisation point cloud with increasing lift coefficients. Natu-
rally, the lift-to-drag ratio becomes less sensitive to measurement noise as the lift and drag
coefficients become larger. The clustering of optimisation points at the target lift coeffi-
cients that were repeated for multiple iterations indicates that the optimiser can achieve
the target lift coefficient very closely whilst also outperforming the jig shape.
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Figure II.2.20: Performance comparison of the jig shape and the online optimisation shapes.

An overview of the improvements in aerodynamic performance at various target lift
coefficients is shown in Tab. II.2.2. As discussed, the relatively highly cambered airfoil is
naturally efficient at inducing higher lift coefficients. This is why the highest performance
increases from active wing morphing are observed for low lift coefficients (0.25-0.50). At
CL = 0.25 the lift-to-drag ratio is increased with approximately 14.6 %. At higher tar-
get lift coefficients, less increase in aerodynamic efficiency can be gained from changing
the average amount of camber. At CL = 1.00 the lift-to-drag ratio is increased with ap-
proximately 2.5 %. Due to the rectangular planform and absence of twist in the jig shape,
reshaping the spanwise lift distribution closer to an elliptical distribution yields an aero-
dynamic performance increase at all target lift coefficients.

Table II.2.2: Efficiency improvements of the optimised wing shapes compared to the jig shape.

CLt [-] CD [-] L
D [-] L

D increase [%] CD reduction [%]

0.25 0.02995 8.35 14.6 12.8
0.50 0.05108 9.79 5.6 5.3
0.75 0.08420 8.91 2.9 2.8
1.00 0.12906 7.75 2.5 2.4

II.2.5. Conclusions and Recommendations
This Chapter presents a novel online learning-based black-box approach to active morph-
ing wing shape optimisation. Its objective is to maximise the steady-state lift-to-drag ratio
for a given target lift coefficient using lift and drag measurements. The presented method
integrates an online-trained Artificial Neural Network (ANN) onboard model with an evo-
lutionary optimisation algorithm. This optimisation strategy was tested in simulation on
a seamless camber morphing wing model, and its performance was compared to the per-
formance of the wing jig shape. Before optimising, the algorithm was allowed to explore
the optimisation space with pseudo-random inputs in the wandering phase. Subsequently,
in the optimisation phase, the optimiser used the onboard model to find the optimal wing
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shape and angle of attack to achieve the target lift coefficient on the surrogate wing model.
During the wandering phase, the radial basis function neural networks could suffi-

ciently learn the mapping between the angle of attack, wing shape, and the resulting
aerodynamic forces to facilitate the optimiser to find wing shapes that outperformed the
jig shape in terms of aerodynamic efficiency. Due to the global character of the neural
network onboard model used, the presented optimisation strategy was able to find wing
shape and angle of attack combinations with lift-to-drag ratio increases of up to 14.6 %
for a wide range of target lift coefficients without requiring further exploration.

In the present case, the input space of the onboard model is comprised only of the wing
shape and angle of attack. In actuality, mapping these parameters to the lift and drag co-
efficients is also influenced by the Reynolds number and Mach number. Nevertheless, due
to the black-box nature of the neural network onboard model, future studies could, with
little effort, incorporate the Reynolds and Mach numbers as additional inputs to expand
its scope to the entire flight envelope of any camber morphing platform.

Finally, the current optimisation structure allows the implementation and development
of other optimisers which can be integrated with the same black-box data structure in the
inner loop. Furthermore, using the fast inner loop parallel query can be implemented of
either CMA-ES or other optimiser to evaluate candidate solutions for the given target lift
coefficient.
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I n Part II, the development and the realisation of the seamless active morphing wing concept were
presented. This Chapter presents the design and wind tunnel testing of a simultaneous gust and

manoeuvre load alleviation control law for achieving multiple desired objectives of the smart morphing
wing. The sensor-based incremental control allocation approach using Incremental Nonlinear Dynamic
Inversion and Quadratic Programming (INDI-QP) is implemented for the system to satisfy actuator
position constraints, rate constraints, and relative position constraints. The approach is augmented with
the Virtual shape functions (denoted as INDI-QP-V) to ensure the smoothness of the morphing wing [1].

This Chapter is based on the following journal paper:
X. Wang, T. Mkhoyan, I. Mkhoyan, and R. De Breuker, “Seamless Active Morphing Wing Simultaneous Gust and
Maneuver Load Alleviation,” Journal of Guidance, Control, and Dynamics, pp. 1649–1662, 2021
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ThisChapter dealswith the simultaneous gust andmanoeuvre load alleviation objec-
tive of a seamless active morphing wing. The incremental nonlinear dynamic inversion
with quadratic programming control allocation and virtual shape functions (denoted as
INDI-QP-V) is proposed to fulfil this goal. The designed control allocator provides an
optimal solution while satisfying actuator position constraints, rate constraints, and
relative position constraints. Virtual shape functions ensure the smoothness of the
morphing wing at every moment. In the presence of model uncertainties, external dis-
turbances, and control allocation errors, the closed-loop stability is guaranteed in the
Lyapunov sense. Wind tunnel tests demonstrate that INDI-QP-V canmake the seamless
wing morph actively to resist “1-cos” gusts and modify the spanwise lift distribution at
the same time. The wing root shear force and bending moment have been alleviated
by more than 44 % despite unexpected actuator fault and nonlinear backlash. More-
over, during the experiment, all the input constraints were satisfied, the wing shape
was smooth all the time, and the control law was executed in real-time. Furthermore,
as compared to the linear quadratic Gaussian (LQG) control, the hardware implementa-
tion of INDI-QP-V is easier; the robust performance of INDI-QP-V is also superior.

III.1.1. Introduction

The advancements in aerospace engineering, paired with continuing desire to develop
more fuel-efficient aircraft, lead to increasingly flexible aircraft designs. Generally,

the flexibility is considered as a side effect of the lighter aircraft design and needs to be ade-
quately accounted for to prevent undesired aerodynamics-structure couplings and ensure
the optimised aerodynamic shape. While the flexibility can be accounted for with either
passively tailored structural design or active control mechanisms, a fixed-wing shape -
generally optimised for the cruise condition - cannot be fully optimised throughout the
flight envelope due to conflicting requirements [2]. A more natural approach is to utilise
the flexibility and actively change the shape by in-flight morphing. This allows the wing
to continuously adapt to the most optimal shape when transitioning from one flight phase
to the other. Secondly, as compared to the conventional discrete trailing-edge surfaces,
smooth morphing can execute flight control and load alleviation commands with reduced
noise and drag. The combination of these two aspects can contribute to a more efficient
flight routine and a reduced structural weight, thereby improving flight sustainability.

Many research efforts have been devoted tomorphing, including piezoelectricity, shape
memory alloys materials, a compliant actuation mechanism, etc. [3]. Among all these re-
search aspects, actuation force reduction is one of the bottlenecks ofmorphing realisations.
In [4], the actuation force is reduced by a compliant skin mechanism, and a combination
of conventional and piezoelectric actuation. However, this approach results in significant
manufacturing challenges and complexities. Other concepts, such as the Fish Bone Active
Camber (FishBAC) [5] and the Mission Adaptive Digital Composite Aerostructure Tech-
nologies (MADCAT) [6] demonstrate morphing with ultralight structures. However, the
majority of the wing volume is consumed for morphingmechanisms, leaving limited room
for other components.

Overviewing the state of the art, the key shortcomings of existing morphing tech-
niques include 1) restricted morphing motions; 2) manufacturability and scalability com-
plexities; 3) compromised internal wing volume; 4) inadmissibility for distributed morph-
ing control along the wing span. To overcome these shortcomings, a distributed seamless
active morphing wing concept is proposed in [7]. As shown in Fig. III.1.1, this morph-
ing wing named SmartX-Alpha is based on the Translation Induced Camber (TRIC) con-
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cept [7], which means a cut is introduced to allow the bottom skin to slide in chordwise
and transverse directions. By altering the actuation directions, a pair of actuators can
introduce pure camber morphing or warp-induced spanwise twist morphing. To ensure
seamlessness, the adjacent TRICmodules are connectedwith elastomeric skin, whose stiff-
ness is designed considering the aerodynamic shape holding and the actuation loads. The
distributed modular composite design with released internal structural stresses makes it
relatively easy to scale up the SmartX-Alpha wing to a full-scale flight aircraft. The control
algorithms proposed in this Chapter will be applied to the SmartX-Alpha morphing wing¹.
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Figure III.1.1: The seamless active morphing wing SmartX-Alpha with the TRIC morphing mechanism.

Manoeuvre Load Alleviation (MLA) and Gust Load Alleviation (GLA) are two impor-
tant objectives in aircraft control. Conventional MLA relies on some pre-designed control
logic, e.g., when the measured load exceeds a pre-defined threshold, the pre-selected wing
control surfaces are triggered to deflect and hold for a certain time period [8]. However,
this conventional approach is not efficient and also requires intensive tuning efforts. By
contrast, Pereira et al. [9] use a linear Model Predictive Controller (MPC) and a Linear
Quadratic Regulator (LQR) to satisfy the load constraints at various critical stations. In
a study by Haghighat et al. [10], the nonlinear flexible aircraft model is linearised suc-
cessively, and then MPC controllers are designed at every linearisation point. A Linear
Quadratic Gaussian (LQG) control is designed for a SensorCraft vehicle GLA problem
in [11]. Another experimental study in the Open Jet Facility (OJF) investigated the po-
tential of load reduction with smart rotors using H∞ loop shaping and Feed Forward
control [12]. Besides, a wind tunnel experiment for alleviating the gust loads of a flexible
wing with piezoelectric control is presented in [13]. The piezoelectric patches are actu-
ated by a Proportional-Integral-Derivative (PID) controller using wing-tip linear acceler-
ation measurements. In [14], an aeroelastic morphing vehicle is controlled using Linear
Parameter-Varying (LPV) and pole placement techniques.

In the study by Nguyen et al. [15], a distributed control surface layout named Variable
Continuous Camber Trailing Edge Morphing (VCCTEF) is used to achieve multi-objective

¹The project video can be found via https://www.youtube.com/watch?v=SdagIiYRWyA&t=319s

 https://www.youtube.com/watch?v=SdagIiYRWyA&t=319s
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flight control andmanoeuvre load alleviation. Two cost functions are used in the LQG con-
trol, one for rigid-body command tracking, and another for elastic mode suppression and
wing root bending moment minimisation [15]. Simulation results in [15] show that the
pitch rate tracking performance is degraded by theMLA function. However, for an aircraft
with distributed wing control surfaces, it is physically realistic to simultaneously achieve
the necessary loads for command tracking, while alleviating the excessive loads caused by
manoeuvres and gusts. The LQG controller in [15] is augmented with an adaptive GLA
function in [16]. Based on the differences between the measured and model-predicted ac-
celerations, the gust components on rigid-body and elastic dynamics are estimated online
using a gradient adaptive law. However, because the number of accelerometer outputs is
less than the number of gust load elements, the gust estimation is only in a least-squares
sense. Moreover, the resulting estimations are not purely gusts but also contain model
uncertainties. Furthermore, as commented in [17], atmospheric disturbances have high-
frequency components, which would require prohibitively high learning rates of adapta-
tion laws.

Different from the above-mentioned linear model-based control techniques, an Incre-
mental Non-linear Dynamic Inversion (INDI) control law is proposed in [18] for alleviating
the gust loads of a flexible aircraft. In contrast to the linear control methods, INDI does
not need the tedious gain-scheduling process when applied to nonlinear dynamic systems.
In comparison to other model-based nonlinear control methods such as feedback lineari-
sation [19] and backstepping [20], INDI has less model dependency, which simplifies its
implementation process. Although its model dependency is reduced, the robustness of
INDI is actually enhanced by exploiting the sensor measurements. Experimental and sim-
ulation results have demonstrated the robustness of INDI to model uncertainties [21], gust
disturbances [18], actuator faults [22], and structural damage [23]. As opposed to adaptive
control methods, INDI does not need the uncertainty parameterisation process nor the as-
sumption of slowly time-varying uncertain parameters. Additionally, its computational
load is also lower than the adaptive control methods.

The flexible aircraft configuration used in [18] only has one aileron on each wing.
Consequently, within the INDI control loop, trade-offs among different virtual control
components have to be made. Besides, input constraints are not considered in [18]. For
the SmartX-Alpha morphing wing with distributed actuation, wing load alleviation be-
comes an over-actuated problem, where control allocation is needed. Moreover, it is cru-
cial to constrain the relative deflections between adjacent morphing modules to avoid
over-stretching the elastomer. In the literature, an Incremental Non-linear Control Allo-
cation (INCA) method has been proposed for a tailless aircraft with Innovative Control
Effectors (ICE) [24].

While this approach provided effective control allocation for a highly manoeuvrable
nonlinear aircraft model, the relative position constraints were not considered. In order to
enforce smoothness of the lift distribution and allocation for a distributed morphing con-
cept, relative position constraints and consequent smooth actuator allocation are critical.
Furthermore, the closed-loop stability in the presence ofmodel uncertainties, disturbances,
and possible control allocation must be addressed.

The contributions of this Chapter are: (i) INDI method with Quadratic Programming
Control Allocation (INDI-QP) considering actuator relative position constraints, position
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constraints, and rate constraints; (ii) INDI-QPmethod augmented with virtual shape func-
tions (denoted as INDI-QP-V), which can ensure the smoothness of a morphing wing at
every moment. (iii) implementation, evaluation and wind tunnel testing of INDI-QP-V on
a simultaneous gust and manoeuvre load alleviation problem of a seamless active morph-
ing wing; (iv) robust load alleviation performance comparisons between INDI-QP-V and
LQG control in the presence of actuator fault and nonlinear backlash. The rest of this
Chapter is structured as follows. Section III.1.2 derives the control algorithms. The exper-
imental results are presented in Sec. III.1.3. The proposed INDI-QP-V is compared to LQG
in Sec. III.1.4. Main conclusions are drawn in Sec. III.1.5.

III.1.2. Incremental Control Design
This section describes the control design for the seamless morphing wing.

III.1.2.1. Incremental ControlTheory
Considering the following nonlinear multi-input multi-output system

ẋ = f(x) +G(x)u+ d(t), y = h(x) (III.1.1)

where f : Rn → Rn and h : Rn → Rp are smooth vector fields. G is a smooth function
mappingRn → Rn×m, whose columns are smooth vector fields. d(t) ∈ Rn represents the
external disturbance vector. Assume ∥d(t)∥2 ≤ d̄. y ∈ Rp in Eq. (III.1.1) denotes the con-
trolled output vector, which can be a function of any subset of the physical measurable
outputs. This Chapter considers the case where p ≤ m. Define the vector relative de-
gree [25] of the system as ρ = [ρ1, ρ2, ..., ρp]

T, which satisfies ρ = ∥ρ∥1 =
∑p

i=1 ρi ≤ n,
then by differentiating the output vector y, the input-output mapping is given as

y(ρ) = α(x) +B(x)u+ dy (III.1.2)

In Eq. (III.1.2), α(x) = [Lρ1

f h1,L
ρ2

f h2, ...,L
ρp

f hp]
T, B(x) ∈ Rp×m, Bij = LgjL

ρi−1
f hi,

where Lρi

f hi, LgjL
ρi−1
f hi are the corresponding Lie derivatives [26]. When ρi = 1 for all

i = 1, 2, ..., p, dy = [Ldh1,Ldh2, ...,Ldhp]
T. For more general cases where ρi > 1, dy

also contains the cross-coupling terms of Ldhi and Lfhi. If ρ = n, then the system given
by Eq. (III.1.1) is full-state feedback linearisable. Otherwise, there exist n− ρ internal dy-
namics. Denote the sampling interval as∆t, the incremental dynamic equation is derived
by taking the first-order Taylor series expansion of Eq. (III.1.2) around the condition at
t−∆t (denoted by the subscript 0) as:

y(ρ) = y
(ρ)
0 +

∂[α(x) +B(x)u]

∂x

∣∣∣∣
0

∆x+B(x0)∆u+∆dy +R1 (III.1.3)

in which∆x,∆u, and∆dy respectively represents the state, control, and disturbance in-
crements in one ∆t. R1 is the expansion remainder. Consider the output tracking prob-
lem and denote the reference as yr(t) = [yr1(t), yr2(t), ..., yrp(t)]

T. Assume that yri(t),

i = 1, 2, ..., p, and its derivatives up to y
(ρi)
ri (t) are bounded for all t and each y(ρi)

ri (t) is
continuous. Then the tracking error vector yields e = ξ−R, R = [RT

1, R
T
2, ..., R

T
p]
T,
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Ri = [yri , y
(1)
ri , ..., y

(ρi−1)
ri ]T. Assume ∥R∥2 ≤ R̄. To stabilise the error dynamics, the

control increment is designed to satisfy the following equation:

B̄(x0)∆uindi = νc − y
(ρ)
0 , νc = y(ρ)

r −Ke (III.1.4)

where B̄ is an estimation of B. The gain matrix K = diag{Ki}, i = 1, 2, ..., p, and
Ki = [Ki,0,Ki,1, ...,Ki,ρi−1]. y

(ρ)
0 is directly measured or estimated. The total control

command for actuator is uindi = uindi,0 +∆uindi. Assume the row rank of B̄ equals p. If
the column rank of B̄ also equals p, then there exists a unique∆uindi satisfying Eq. (III.1.4).
If the column rank of B̄ is less than p, then the system is under-actuated and Eq. (III.1.4)
cannot be satisfied. If the column rank of B̄ is larger than p, then solving ∆uindi from
Eq. (III.1.4) is a control allocation problem. Without considering the input constraints,
there are infinite∆uindi that satisfy Eq. (III.1.4). However, when some dimensions of uindi

get saturated, it is possible that B̄(x0)∆uindi − (νc − y
(ρ)
0 ) ̸= 0 even though the column

rank of B̄ is higher than p. To make the theoretical analyses more general, Eq. (III.1.4) is
generalised to B̄(x0)∆uindi = νc − y

(ρ)
0 + εca, with εca as the possible control allocation

error. Considering the internal dynamics, the resulting closed-loop dynamics are:

η̇ = fη(η, ξ,d) =
∂ϕ

∂x
(f(x) + d(t))

∣∣∣∣
x=T−1(z)

(III.1.5)

ė = (Ac −BcK)e+Bc[δ(x,∆t) + (B(x0)− B̄(x0))∆uindi + εca +∆dy]

≜ (Ac −BcK)e+Bcεindi

whereby η represents the internal state vector, and z = T (x) = [ηT, ξT]T, with η =
ϕ(x), ξ = [ξT1, ..., ξ

T
p]
T, ξi = [hi(x), ...,Lρi−1

f hi(x)]
T, i = 1, 2, ..., p is a diffeomorphism.

δ(x,∆t) is the closed-loop value of the variations and expansion reminder:

δ(x,∆t) =
[
∂[α(x)+B(x)u]

∂x

∣∣
0
∆x+R1

] ∣∣∣
u=uindi

. Ac = diag{Ai
0}, Bc = diag{Bi

0},

Cc = diag{Ci
0}, i = 1, 2, ..., p, and (Ai

0,B
i
0,C

i
0) is a canonical form representation of a

chain of ρi integrators. The gain matrixK is designed such thatAc −BcK is Hurwitz.
In contrast to the model-based feedback linearisation, the INDI is a sensor-based con-

trol strategy [27]. By exploiting the sensor measurements, the only model information
needed by INDI is the estimated control effectiveness matrix B̄, which simplifies the im-
plementation process. Moreover, the residual perturbation in the closed-loop system is
also reduced, which enhances the control robustness against model uncertainties, exter-
nal disturbances, and sudden faults [23].

Remark 1. A stability analysis for INDI that simultaneously considers control
allocation errors, internal dynamics, model uncertainties, and external distur-
bances has not been addressed in the literature. In view of this, the following
two theorems are proposed in this Chapter:

Theorem 1. If ∥εindi∥2 ≤ ε̄ is satisfied for all ξ ∈ Rρ, fη(η, ξ,d) is continuously differ-
entiable and globally Lipschitz in (η, ξ,d), and the origin of η̇ = fη(η,0,0) is globally
exponentially stable, then the tracking error e in Eq. (III.1.5) is globally ultimately bounded
by a class K function of ε̄, while the internal state η in Eq. (III.1.5) is globally ultimately
bounded by a class K function of ε̄, R̄, and d̄.
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Proof : See Appendix.

Theorem 2. If ∥εindi∥2 ≤ ε̄ is satisfied for all ξ ∈ Rρ, fη(η, ξ,d) is continuously dif-
ferentiable, and the origin of η̇ = fη(η,0,0) is exponentially stable, then there exists a
neighborhood Dz of z = [0T,RT]T and ε∗ > 0, such that for every z(t = 0) ∈ Dz and
ε̄ < ε∗, the tracking error e in Eq. (III.1.5) is ultimately bounded by a class K function of ε̄,
while the internal state η in Eq. (III.1.5) is ultimately bounded by a class K function of ε̄, R̄,
and d̄.

Proof : See Appendix.

III.1.2.2. Incremental Control Allocation
This subsection will solve∆uindi from Eq. (III.1.4), and discuss the corresponding bound-
edness conditions for εindi (Eq. (III.1.5)). The control allocation problem considers the case
that the row rank of B̄ ∈ Rp×m equals p, while its column rank is larger than p. Under
this condition, Eq. (III.1.4) is satisfied by:

∆uindi = B̄+
(x0)(νc − y

(ρ)
0 ) + (Im×m − B̄+

(x0)B̄(x0))w (III.1.6)

Here, B̄+
= B̄T

(B̄B̄T
)−1 is the Moore-Penrose inverse of B̄. It is noteworthy that al-

though B̄B̄+
= Ip×p, B̄

+B̄ ̸= Im×m. Besides, w can be any vector in Rm×1. Never-
theless, ∆uindi only has the smallest Euclidean norm when w = 0. This least squares
solution given by pseudo-inverse is:

∆uindi-pi = B̄+
(x0)(νc − y

(ρ)
0 ) (III.1.7)

Theorem 3. When the pseudo-inverse control allocation is used (as presented in Eq. (III.1.7)),
if ∥I − B(x0)B̄

+
(x0)∥2 ≤ b̄ < 1, and if δ(x,∆t) and ∆dy are respectively bounded by

δ̄ and ∆d, then under sufficiently high sampling frequency, εindi in Eq. (III.1.5) is ultimately
bounded.

Proof : See Appendix.

Theorem 3 presents that one of the sufficient conditions for the boundedness of εindi
is a diagonally dominated B(x0)B̄

+
(x0). If this condition is satisfied, then the influences

of model mismatches can be automatically tolerated by the controller. Otherwise, online
model identification and adaptation for B̄(x0) can be needed.

Although pseudo-inverse can provide the least squares solution, the input constraints
are not considered. The servo position constraints are formulated as umin ≤ u ≤ umax,
and can be rewritten as a linear inequality [Im×m,−Im×m]T(∆u+u0) ≤ [uT

max,−uT
min]

T.
The servos also have rate limits, i.e., urate ∆t ≤ ∆u ≤ ūrate ∆t. Furthermore, to avoid
the elastomer between the morphing modules being over-stretched, the relative command
differences between adjacent servos also need to be constrained.

For u ∈ Rm, there arem − 1 relative position constraints, denoted as ūadj ∈ Rm−1,
with |ui+1 − ui| ≤ ūadj,i, i = 1, 2, ..., m − 1. The elements of ūadj are not neces-
sarily equal. For example, regarding two adjacent servos in the SmartX-Alpha, if it is an
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elastomer between them, then the relative actuation limit is set as 10 deg to prevent over-
stretching. Otherwise, the relative limit is relaxed to 55 deg. The relative position con-
straints are formulated as the following inequality: [C,−C]T(∆u + u0) ≤ [ūT

adj, ū
T
adj]

T.

C ∈ R(m−1)×m, with Ci,i = 1, Ci,i+1 = −1 for i = 1, 2, ...,m− 1. Besides, the rest ele-
ments ofC are all equal to zero. Considering the servo position, rate, and relative position
limits, the control increment vector∆u has to satisfy the following inequality:

Im×m

−Im×m

C
−C

Im×m

−Im×m

∆u ≤


umax − u0

−umin + u0

ūadj −Cu0

ūadj +Cu0

ūrate∆t
−urate∆t

 , denoted as Au∆u ≤ bu (III.1.8)

Remark 2. Equation (III.1.8) presents the first work that converts the actuator
position constraints, rate constraints, and relative position constraints into
an integrated linear inequality matrix with respect to the incremental control
vector∆u.

From a theoretical point of view, the linear equality constraint in Eq. (III.1.4) has
the highest priority. If both Eq. (III.1.4) and the inequality constraint in Eq. (III.1.8) can
be satisfied, then the rest free space of ∆u can be used to minimise the energy of u.
However, under some faulty conditions, the feasible region can become null if both the
equality (Eq. (III.1.4)) and the inequality (Eq. (III.1.8)) constraints are imposed. Actually,
it is more practical to satisfy the inequality first and then minimise the realisation er-
ror of the equality constraint. For example, consider an actuator fault condition where
Eq. (III.1.4) and Eq. (III.1.8) cannot be simultaneously satisfied; it is more meaningful to
realise Eq. (III.1.8) first and allow certain performance degradation, rather than enforc-
ing Eq. (III.1.4) by violating Eq. (III.1.8). Therefore, the first cost function is formulated as
J1 = (1/2)(B̄(x0)∆u−νc+y

(ρ)
0 )TW 1(B̄(x0)∆u−νc+y

(ρ)
0 ), whereW 1 is a positive

definite weighting matrix.
Apart from realising Eq. (III.1.4), the control allocator should make u close to its nom-

inal value u∗. A typical choice is u∗ = 0 for minimising the control energy. For a mor-
phing wing, u∗ can also be non-zero to achieve an optimised wing shape. Therefore, the
second cost function is J2 = (1/2)(∆u+ u0 − u∗)

TW 2(∆u+ u0 − u∗), whereW 2 is
another positive definite weighting matrix. Choose J3 = J1 + σJ2, where 0 < σ ≪ 1
for prioritising J1. Further derive J3 as

J3 = J1 + σJ2 =
1

2
∆uT

(
B̄T

(x0)W 1B̄(x0) + σW 2

)
∆u

+
(
(y

(ρ)
0 − νc)

TW 1B̄(x0) + (u0 − u∗)
TσW 2

)
∆u

+
1

2

(
(y

(ρ)
0 − νc)

TW 1(y
(ρ)
0 − νc) + (u0 − u∗)

TσW 2(u0 − u∗)
)

(III.1.9)

Since within every time step,u0 and y
(ρ)
0 aremeasured, whileu∗ and νc are constants,

only the terms related to ∆u need to be minimised. Therefore, the incremental control
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allocation problem is formulated as:

minimise
∆u

J4 =
1

2
∆uT

(
B̄T

(x0)W 1B̄(x0) + σW 2

)
∆u

+
(
(y

(ρ)
0 − νc)

TW 1B̄(x0) + (u0 − u∗)
TσW 2

)
∆u

subject to Au∆u ≤ bu

(III.1.10)

The optimisation problem formulated in Eq. (III.1.10) is convex because the objective
function J4 is a convex function and the feasible set given by Au∆u ≤ bu is a convex
set [28]. The active-set solver is selected because of its superior performance on solving
small to medium size quadratic programming problems [29]. In contrast to the ∆uindi-pi

in Eq. (III.1.7), it is difficult to write an analytical expression for the control input given
by quadratic programming. Consequently, Theorem 3 is not applicable here. To derive a
sufficient condition for the boundedness of εindi, when the quadratic programming allo-
cator is applied, assume at every time step, B(x0) = KB(x0)B̄(x0), then the following
theorem holds:

Theorem 4. When the quadratic programming control allocation is used (Eq. (III.1.10)), if
∥I − KB(x0)∥2 ≤ b̄′ < 1, and if δ(x,∆t), ∆dy , and εca are respectively bounded by δ̄,
∆d, and ε̄ca, then under sufficiently high sampling frequency, εindi in Eq. (III.1.5) is ultimately
bounded.

Proof : See Appendix.

III.1.2.3. Virtual Shape Functions
In the preceding subsections, the number of control inputs equals the number of servos.
Although the relative command differences of any adjacent servos have been constrained
by Eq. (III.1.8), the resulting u ∈ Rm×1 does not necessarily lead to a smooth wing shape.
This subsection will introduce virtual shape functions to solve this problem.

Define a reference axis where Os is located at the wing root, while Osxs is aligned
with the servo line (Fig. III.1.1). The aim is to make the morphing wing trailing-edge
shape as close as possible to a smooth function fs(t, xs) : [0,∞)× R → R. Referring to
theWeierstrass theorem [30], when q is sufficiently large, any sufficiently smooth function
can be approximated by a q-th order polynomial, i.e., fs(xs, t) ≈ f̃s(xs, t) = ΘT(t)Φ(xs),
withΘ(t) : [0,∞) → Rq×1, Φ(xs) : R → Rq×1.

The Chebyshev polynomials are selected in this Chapter because of their nearly op-
timal property and orthogonality [31]. Hence, the virtual shape function is designed
as Φ(xs) = [T0(xs), T1(xs), ..., Tq(xs)]

T, whose elements are the Chebyshev poly-
nomials of the first kind: T1(xs) = 1, T2(xs) = xs, Ti+1 = 2xsTi(xs) − Ti−1(xs),
i = 2, 3 , ..., q − 1. Consequently, any Θ(t) = [θ1(t), θ2(t), ..., θq(t)]

T guarantees
the q-th order smoothness of f̃s(t, xs). Denote the servo spanwise location vector as
xs = [xs,1, xs,2, ..., xs,m]T, which can be normalised by the half-wing span L, yielding
x̄s = [xs,1/L, xs,2/L, ..., xs,m/L]T.
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Substituting the normalised servo location vector into f̃s(xs, t) yields:
f̃s(x̄s,1, t)

f̃s(x̄s,2, t)
...

f̃s(x̄s,m, t)

 =


T0(x̄s,1) T1(x̄s,1) ... Tq(x̄s,1)
T0(x̄s,2) T1(x̄s,2) ... Tq(x̄s,2)

...
...

...
T0(x̄s,m) T1(x̄s,m) ... Tq(x̄s,m)



θ1(t)
θ2(t)
...

θq(t)

 ≜ Φx̄sΘ(t) (III.1.11)

where Φx̄s ∈ Rm×q becomes a constant shape matrix. Essentially, Φx̄s provides a map-
ping between a smooth wing shape andΘ(t). In view of this, choose a new control vector
uv = Θ(t) ∈ Rq×1. If the actual control command is mapped as u = Φx̄s

uv , then this u
can result in smooth wing shapes at all t ∈ [0,∞). The first five normalised virtual shape
functions for the SmartX-Alpha are illustrated in Fig. III.1.2.
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Figure III.1.2: Normalised virtual shape functions with markers indicating the SmartX-Alpha servo locations.

BecauseΦx̄s is a constant matrix, this mapping also holds for the control increments,
i.e., ∆u = Φx̄s∆uv . Actually, the control effective matrix with respect to ∆uv becomes
B̄′

(x0) =
(
B̄(x0)Φx̄s

)
∈ Rp×q . If the column rank of B̄′

is larger than p, then the
quadratic programming problem integrated with virtual shape functions is formulated as

minimise
∆uv

J5 =
1

2
∆uT

v

(
ΦT

x̄s
B̄T

(x0)W 1B̄(x0)Φx̄s + σΦT
x̄s
W 2Φx̄s

)
∆uv

+
(
(y

(ρ)
0 − νc)

TW 1B̄(x0) + (u0 − u∗)
TσW 2

)
Φx̄s∆uv

subject to (AuΦx̄s)∆uv ≤ bu

(III.1.12)

Essentially, the optimisation problem in Eq. (III.1.12) is transformed from Eq. (III.1.10)
using the mapping ∆u = Φx̄s∆uv . It can be verified that Eq. (III.1.12) formulates a
convex optimisation problem because J5 is a convex function, and because the feasible
set (AuΦx̄s

)∆uv ≤ bu is a convex set [28]. Furthermore, because the dimension of∆uv

is lower than that of∆u, the computational load is also reduced by introducing the virtual
shape functions. The corollary of Theorem 4 is given:

Corollary 1. When the quadratic programming control allocation with virtual shape func-
tions is used (Eq. (III.1.12)), if ∥I − KB(x0)∥2 ≤ b̄′ < 1, and if δ(x,∆t), ∆dy , and εca
are respectively bounded by δ̄,∆d, and ε̄ca, then under sufficiently high sampling frequency,
εindi in Eq. (III.1.5) is ultimately bounded.
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Proof : See Appendix III.A1.2.

Remark 3. The virtual shape functions were also used in [16, 32] intending to
address the relative deflection constraints. However, the usage of virtual shape
itself is not sufficient for meeting the relative position constraints. By contrast,
the control allocator formulated in Eq. (III.1.12) not only explicitly considers
the position, rate, and relative position constraints but also leads to a smooth
wing shape at every moment.

III.1.3. Experimental Results
In this section, the proposed incremental control will be applied to the SmartX-Alpha load
alleviation problems. The experiment setup will be presented in Sec. III.1.3.1, following
which the challenges in the experiment will be presented in Sec. III.1.3.2. The experimental
results for manoeuvre load alleviation, gust load alleviation, as well as simultaneous gust
and manoeuvre load alleviation, will be shown in Sec. III.1.3.3-III.1.3.5.

III.1.3.1. Experiment Setup
The experiments were conducted in the OJF wind tunnel of the Delft University of Tech-
nology. A two-vane gust generator is installed to produce aerodynamic disturbances at
various magnitudes and frequencies. Additionally, to support the identification and struc-
tural cauterisation of the morphing wing, Ground Vibration Test (GVT) was performed
prior to the wind tunnel experiments. The results of the modal testing campaign are pre-
sented in Appendix III.A1.1.

The SmartX-Alpha wing has twelve independent servos (Fig. III.1.1), thusm = 12. In
order to alleviate the excessive loads (no matter caused by gusts or manoeuvres) with-
out degrading the rigid-body command tracking performance, the load alleviation prob-
lems are converted to load reference tracking problems. As discussed in Sec. III.1.2, the
y in Eq. (III.1.1) can be a function of any subset of the physical measurable outputs. For
load alleviation purposes, choose y = [

∫
Fy,
∫
Mx]

T, where Fy and Mx are the mea-
sured wing root shear force and bending moment, respectively (Fig. III.1.3). Referring
to the Theodorsen’s theory [33], given a control surface deflection (a camber morphing
for SmartX-Alpha), half of the circulatory lift gradually builds up, while the rest happens
instantaneously. Therefore, a change in wing camber has direct influence on loads. Ac-
cordingly, for the selected inputs and outputs, the vector relative degree is ρ = [1, 1]T.

Recall Sec. III.1.2, the only model information needed by INDI is the estimated control
effectiveness matrix B̄(x0). For the selected input and output vectors, B̄(x0) ∈ R2×12. In
theory, B̄ is a function of states. Nonetheless, as has been proved byTheorems 3 and 4, the
INDI control can passively resist a wide range of model uncertainties in B̄. Therefore, in
the experiment, a constant B̄ matrix identified in the trimmed condition was consistently
used by the controller. In this way, the control implementation process was simplified; the
robustness of the controller was also tested.

In Eq. (III.1.4), the gain matrix is chosen as K = diag{0.1, 0.1}. The position con-
straints for the servos are umax = I12×1 · 30 deg, umin = −I12×1 · 30 deg. The rate
constraints for the servos are urate = −I12×1 · 80 deg/s, ūrate = I12×1 · 80 deg/s. The
relative position constrain vector ūadj ∈ R11×1. For i = 1, 2, ..., 11, when i is an odd
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number, ūadj,i = 55 deg; otherwise, ūadj,i = 10 deg. In Eq. (III.1.10), σ is chosen as 0.001
to prioritise J1. The weighting matrices are chosen asW 1 = I2×2 andW 2 = I12×12. A
block diagram for the experiment setup is presented in Fig. III.1.3.

Visual
Tracking

Gust
Generator

Noise Filter

Visual Tracking

INDI-QP-V

Noise Filter

Servo

Turn table

Commands

Fy

Mx

z

-

modules[1-12]

12

11
10

2

1

...

Root Balance

Figure III.1.3: A block diagram for experiment setup.

As shown in Fig. III.1.3, the SmartX-Alpha wing was vertically mounted on a turn
table. The operational point was selected as V = 15 m/s, α = −2.89 deg (turn table
angle equals 1.00 deg). The three-axes root reaction forces and moments were measured
by the OJF External Balance in 1000 Hz. The core component of this balance is a set of
strain gauges. For real-world aircraft, strain gauges can also be attached to wing-root
structures to provide root reaction forces for feedback control. All twelve servos were
connected to an RS-485 device, communicating serially over the physical USB bus updating
at 66.7 Hz. The communication delay was approximately 15 ms. The wing displacements
were captured by a visual tracking system (OptiTrack) [34]. The local wing loads were
measured by embedded strain gauges.

III.1.3.2. Practical Issues
Nonlinear Backlash
Backlash is a clearance or lost motion phenomenon in mechanical systems caused by gaps
between the mechanical components. Consider a general mechanical linkage; denote the
generalised displacement of the driving and driven part as u and τ , respectively. The
widely adopted free-play model entails: if u < uf− , τ = k1(u − uf−); if u > uf+ , τ =
k2(u − uf+); otherwise, τ = 0 [35]. k1 > 0, k2 > 0 are the linear slopes; uf+ > 0
and uf− < 0 represent the free-play deadband. Actuator free-play can lead to limit cycle
oscillations [36]. The backlash nonlinearity is even more challenging [37]:

τ̇ = f(τ, u, u̇) =

 k1u̇, if u̇ < 0 and τ = k1(u− uf−)
k2u̇, if u̇ > 0 and τ = k2(u− uf+)
0, otherwise

(III.1.13)

Equation (III.1.13) presents a velocity-driven dynamic system. Different from the free-
play, τ in Eq. (III.1.13) is also dependent on the history of u. This hysteresis effect was
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also observed during the experiment. In Fig. III.1.4, all the twelve servos execute the same
command: starts from 30 deg and gradually reduces to -30 deg (surfaces morph upwards),
and then gradually increases back to 30 deg (surfaces morph downwards). Figure III.1.4
shows that due to backlash, the same servo angle settings lead to different force responses
in upstroke and downstroke.
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Figure III.1.4: Backlash-induced wing root shear force hysteresis loop in the experiment.

The SmartX-Alpha is the first prototype featuring the distributed morphing TRIC con-
cept. The manufacturing and integration process involved largely handcrafted structural
components and manual laminate layup, which inevitably led to manufacturing imper-
fections. One such imperfection was the exact tolerance between the skin and the sliding
interface. This gap was filled with a spacer that added additional friction. Combined with
slack in the actuator mechanism and a relatively large stiffness gap between the rigid alu-
minium pick-up point and its attachment to the flexible skin, the pick-up point exhibited
local out-of-plane rotations. Moreover, the bottom skin exhibited local bending motions.
Consequently, whenever the servo command changes direction, the pick-up point needs
to rotate, and the bottom skin needs to bend a little before the ideal translational sliding
actually happens. These phenomena were only discovered during the tightly-scheduled
experiment and were not foreseen by the control designs. Therefore, it was decided to test
the robustness of the controller to backlash and friction in this experiment.

Actuator Dynamics and Fault
The servos of the SmartX-Alpha are the Volz DA 22-12-4112 [7]. To identify the servo
dynamics, a sweep signal with a magnitude of ±30 deg was given to the servo. By
analyzing the input and output signals, is was identified that the second-order system
H(s) = ω2

s2+2ζωs+ω2 can represent the servo dynamics. The identified parameters are
ζ = 0.71, ω = 16.52 rad/s. Consequently, the cut-off frequency of the servo equals
16.35 rad/s (2.60 Hz).

After conducting the control effectiveness identification and before implementing the
controllers, the 9th actuator was non-operational. This failure resulted from adhesive bond
failure between the aluminium pick-up point and the composite morphing skin. Conse-
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quently, the control effectiveness of the 9th actuator becomes zero. Moreover, since shear
forces can still propagate within module four via the composite shell, and propagate to the
adjacent module via the elastomer, the control effectiveness of the 8th and 10th actuators
were also affected. The repair would require unmounting the wind tunnel setup, extract-
ing the morphing trailing edge from the wing structure, and waiting for a new adhesive
layer to cure. Given the time constraints, a choice was made to disable the 9th servo and
test the robustness of the controller to actuator failures. Also, the control effectiveness
identified in the healthy condition was still used in the implementation.

Coloured Noise
The signals provided by the root balance containmeasurement noise. Experimental results
show that the measurement noises of Fy and Mx are coloured and also contain consid-
erable energy in the low-frequency range. To reduce the noise energy, the second-order
low-pass filter with transfer functionH(s) = ω2

s2+2ζωs+ω2 is selected. Choosing the filter
parameters is a trade-off: a low cut-off frequency leads to better noise attenuation but
causes a larger phase lag in the closed-loop system. After several experimental trials, the
parameters of the noise filter were chosen as ζ = 0.8, ω = 10 rad/s. Consequently, the
noise filter cut-off frequency equals 8.67 rad/s (1.38 Hz).

III.1.3.3. Manoeuvre Load Alleviation
In this subsection, the manoeuvre load alleviation performance of the proposed controller
will be evaluated experimentally. An aircraft symmetric pull-up manoeuvre is considered.
The control objective is to increase lift while reducing wing root bending moment by span-
wise lift redistribution. In Fig. III.1.5, Fy is commanded to increase by 30 %, whileMx is
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Figure III.1.5: Manoeuvre load alleviation performance of INDI with pseudo inverse control allocation.

commanded to remain at its trimmed value. A sigmoid function is adopted for a smooth
command transition. Figure III.1.5a shows that the load commands are tracked in spite of
actuator fault, delay, and backlash. Moreover, as illustrated in Fig. III.1.5b, the servo at the
wing tip (12th) receives negative command (making the wing morph upwards), while the
servo command gradually increases from the wing tip to the root. As a consequence, the
wing aerodynamic centre is moved inboard by the trailing-edge morphing.
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Figure III.1.6: Manoeuvre load alleviation performance of INDI using quadratic programming and virtual shapes.

However, neither input constraint nor spanwise servo location is considered in this
pseudo inverse control allocation (Sec. III.1.2.2). Two drawbacks are identified: first, the
hardware constraints can be violated (1st and 2nd servos in Fig. III.1.5b); second, it can
cause high tension in the elastomer. For example, at t = 53.3 s, the command difference
between the 6th and 7th servos are 14.2 deg. However, the spanwise distance between these
two servos is only 29.0 mm. This rapid angle change in a short distance can overstretch the
elastomer. These two drawbacks are overcome in INDI-QP-V, which explicitly considers
input constraints and ensures the wing smoothness. Figure III.1.6a shows that INDI-QP-
V increases Fy by 30 % without amplifying Mx. Figure III.1.6b confirms that the input
constraints are not violated and the inter-modular command gaps are much smaller than
the case in Fig. III.1.5b.

To further demonstrate the effectiveness of INDI-QP-V, the controller is asked to in-
crease Fy by 35 % without raisingMx. Since this load alleviation task is more challenging
than the previous one, the servo angle commands in Fig. III.1.7b are also saturated more
frequently. Nevertheless, the input constraints are not violated; the inter-modular transi-
tions are smooth; the load alleviation mission is also achieved (Fig. III.1.7a).
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Figure III.1.7: Performance of INDI-QP-V in a challenging manoeuvre load alleviation task.
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Figure III.1.8 shows that at the majority of time span, ∥εca∥2 ≤ 1 × 10−3. When
severe saturation occurs, ∥εca∥2 is still bounded by 0.12. Moreover, the control allocator
converges within one iteration when there is no saturation, and converges within ten
iterations when saturation occurs. In all cases, the computational load is low, and the
control commands are realised in real-time.
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Figure III.1.8: Allocation errors and number of iterations of INDI-QP-V in a challenging MLA task.

III.1.3.4. Gust Load Alleviation
In Sec. III.1.3.3, experimental results have demonstrated that INDI-QP-V performance is
superior to INDI-PI. This subsection will present the gust load alleviation effectiveness of
INDI-QP-V. To generate the “1-cos” gust, the rotational angle of each gust generator vane
obeys: θ(t) = Ag(1−cos(2πfgt+ϕ)), where ϕ is the phase shift. The corresponding gust
angle is αg(t) = (Ag/2)(1− cos(2πfg(t− dgw/V ) + ϕ)), where dgw represents the gust
travel distance; V is the nominal wind speed. To test robustness, the gust information was
kept unknown to the controller.

Denote the references for Fy and Mx as Fy∗ and Mx∗ , respectively. Four perfor-
mance metrics are introduced: 1) the reduction rate of the maximum value of Fy − Fy∗ ;
2) the reduction rate of the root-mean-square (RMS) value of Fy − Fy∗ ; 3) the reduc-
tion rate of the maximum value ofMx −Mx∗ ; 4) the reduction rate of the RMS value of
Mx −Mx∗ . Take the last performance metric as an example, the reduce rate is calculated
as (RMS(Mx−Mx∗ ))|open−(RMS(Mx−Mx∗ ))|closed

(RMS(Mx−Mx∗ ))|open
, where (·)|open and (·)|closed respectively means

evaluating (·) in the open-loop or closed-loop condition.
In Fig. III.1.9, the gust generator motions obey Ag = 3.5 deg and fg = 0.5 Hz. In the

open-loop case, the maximum load increments in Fy andMx are 27.85 N and 26.72 N·m,
respectively. By using INDI-QP-V, these values are reduced to 6.88 N and 6.64 N·m.
Over 75 % of reductions are achieved in all four performance metrics (Table III.1.1). Fig-
ure III.1.9b shows that the inter-modular transitions are smooth and no saturation occurs.
Because of the coloured measurement noises, the measured load variations are non-zero
even without gust. When these relatively small variations are fed back to the controller,
small oscillatory commands are generated. However, due to backlash (Sec. III.1.3.2), a
servo angle change within the deadband has no effect on the morphing surface, which
further results in null load change. At the next time step, when the controller “sees” that
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Table III.1.1: Gust load reduction rate using INDI-QP-V at various frequencies.

Frequency [Hz] max(Fy − Fy∗) RMS(Fy − Fy∗) max(Mx −Mx∗) RMS(Mx −Mx∗)
0.5 75.57 % 76.41 % 75.16 % 77.39 %
1.0 56.25 % 53.73 % 57.04 % 56.13 %
1.5 47.86 % 40.80 % 47.87 % 43.28 %
2.0 40.52 % 29.23 % 40.47 % 32.58 %
2.5 25.25 % 19.49 % 27.34 % 24.23 %
3.0 15.26 % 14.83 % 18.53 % 20.77 %
3.5 7.52 % 6.12 % 7.14 % 14.29 %
4.0 8.83 % -1.44 % 10.28 % 6.98 %
4.5 -0.96 % -6.77 % 5.79 % 4.24 %

the previous command has no effect, a command with a higher magnitude will be given
to the servo until it moves out of the deadband. These are the physical explanations for
the high-frequency oscillations in Fig. III.1.9b.
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Figure III.1.9: Load alleviation performance of INDI-QP-V under 0.5 Hz gusts.

Figure III.1.10 illustrates the open- and closed-loop load responses whenAg = 3.5 deg
and fg = 1.5 Hz. In the open-loop case, the maximum load increments in Fy and Mx

are 28.09 N and 26.36 N·m, respectively. With the help of INDI-QP-V, these values are
respectively reduced to 14.65 N and 13.74 N·m. Table III.1.1 shows that more than 40 %
of load reductions are achieved in all four performance metrics. Comparing Fig. III.1.10
with Fig. III.1.9, we can see that the alleviation performance degrades with the increase in
gust frequency. Moreover, the closed-loop load responses in Fig. III.1.10a are more lagged
behind than those in Fig. III.1.9a.

Table III.1.1 summarises the load reduction rates of INDI-QP-V. Note in all cases, the
control gains and Ag remain consistent. The reduction rates are over 75 % percent when
fg = 0.5 Hz, but reduces to around 20 % when fg = 2.5 Hz. When fg further increases
to 4.5 Hz, the RMS value of Fy − Fy∗ is even higher in the closed-loop condition. The
main reason for this performance degradation is the phase lag in the closed-loop system.
Recall Sec. III.1.3.2, the cut-off frequencies of the servo and the noise filter are 2.60 Hz and
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Figure III.1.10: Load alleviation performance of INDI-QP-V under 1.5 Hz gusts.

1.38 Hz, respectively. These lead to large phase lags in the high-frequency range, which
further results in the performance deterioration. To improve the performance, we can use
less noisy sensors and faster servos, and disclose the gust information to the controller if
onboard gust sensing is available.

III.1.3.5. Simultaneous Gust andManoeuvre LoadAlleviation
In the literature, GLA and MLA are usually seen as two research topics. However, during
real flights, instead of classifying loads by their causes, it is more meaningful to achieve
the necessary loads for performing manoeuvres while neutralising the excessive loads (no
matter induced by manoeuvres or gusts). INDI-QP-V is a good candidate to achieve this
goal. As presented in Sec. III.1.3.1, the real-world load alleviation task is seen as a load
command tracking problem by INDI-QP-V. Consequently, by minimising the error be-
tween the commanded and real loads, simultaneous gust and manoeuvre load alleviation
can be realised. This design also ensures the task applicability. In fact, in the experiments
of MLA (Sec. III.1.3.3), GLA (Sec. III.1.3.4), and simultaneous GLA and MLA (Sec. III.1.3.5),
only the load commands are task-dependent; there is no need to change the control archi-
tecture nor the control parameters.

Figure III.1.11 presents the experimental results for simultaneous gust and manoeuvre
load alleviation. Fy is commanded to increase by 35 % for achieving a pull-up manoeu-
vre, while Mx is asked to stay at its nominal value in spite of the manoeuvre and gusts
(Ag = 1 deg and fg = 1 Hz). Figure III.1.11a demonstrates that INDI-QP-V is able to
alleviate the excessive loads. Using the performance metrics (Sec. III.1.3.4), the maximum
and RMS values of Fy − Fy∗ are respectively reduced by 44.31 % and 67.76 %; the max-
imum and RMS values of Mx − Mx∗ are reduced by 45.58 % and 46.35 %, respectively.
After t = 17 s, the outboard wing starts to morph upwards while the inboard wing begins
to morph downwards for spanwise lift redistribution (Fig. III.1.11b). Moreover, on top of
the redistributive motions, the wing actively morphs upwards to reduce the gust-induced
loads. Furthermore, the quadratic programming control allocator ensures no saturation
occurs; virtual shape functions realise smooth wing shape at every moment.
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Figure III.1.11: Simultaneous manoeuvre and gust load alleviation performance of INDI-QP-V.

III.1.4. Comparisons with LinearQuadratic Gaussian
Control

In Sec. III.1.3, experimental results have demonstrated the effectiveness of INDI-QP-V in
GLA, MLA and simultaneous GLA and MLA tasks. According to the literature, the linear
quadratic Gaussian (LQG) control is one of the most popular methods for load allevia-
tion [11, 15, 32, 38]. Therefore, the proposed INDI-QP-V control will be compared to LQG
control.

III.1.4.1. LQG Control Design
The LQG control is essentially a combination of a Kalman filter for state estimation and
a linear-quadratic regulator (LQR) for stabilisation. The linearised SmartX-Alpha dynam-
ics are: ẋ = Ax + Bu + Bgαg, y = Cx + Du, where αg is the gust input angle.
y = [yT

b ,y
T
a]
T, with yb includes Fy andMx, and ya denotes the wing acceleration mea-

surements.
First, assume the states are known, design an LQR to make yb track its reference yr .

The LQR design requires the estimated systemmodel: Ā, B̄, C̄, D̄. In view of the benefits
of using virtual shape functions (Sec. III.1.2.3), the following transformation is also adopted
by LQR: u = Φx̄s

uv . Design an LQR for the following augmented system:

[
ẋ

yb − yr

]
=

[
Ā 0
C̄b 0

] [
x∫

(yb − yr)

]
+

[
B̄
D̄b

]
Φx̄s

uv +

[
0

−yr

]
(III.1.14)

where C̄b and D̄b respectively equal the first two rows of C̄ and D̄ (corresponding to yb).
Define the augmented state vector asX = [xT,

∫
(yb−yr)

T]T. Note that Eq. (III.1.14) can
bewritten as Ẋ = AaugX+Bauguv+yr,aug. Minimising the cost function, given by J6 =

lim 1
2

∫∞
0

[XTQX + uT
vRuv] dt, yields optimal control input uv = KXX +Kryr,aug,

KX = −R−1BT
augS,Kr = −R−1BT

aug(SBaugR
−1BT

aug−AT
aug)

−1S, in which S is the
solution of the associated Riccati equation.
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Second, design a Kalman filter for ẋ = Āx+ B̄u+ Ḡw, y = C̄x+ D̄u+ H̄w+v.
The process noisew and measurement noise v are assumed to be white. They also satisfy
E(wwT) = Qk , E(vvT) = Rk , E(wvT) = Nk . Subsequently, design a dynamic system
˙̂x = Āx̂ + B̄u + L

(
y − C̄x̂− D̄u

)
, where L is the optimal Kalman gain; this gives

x̂ → x as t→ ∞.
Finally, integrate the LQR controller with the Kalman filter state observer, the resulting

LQG control input isu = Φx̄s
uv = Φx̄s

KX [x̂T,
∫
(C̄bx̂+D̄bu−yr)

T]T+Φx̄s
Kryr,aug.

III.1.4.2. Theoretical Comparisons
The LQG bears significant differences from the nonlinear INDI-QP-V control method. Al-
though LQG can be applied to nonlinear systems, closed-loop stability is only guaranteed
locally. Extending LQG to a broader state definition domain requires the gain-scheduling
method. However, the gain-scheduled LQG is tedious to tune; its stability also heavily
depends on the linearisation density and cannot be ensured in general cases. Another
notable difference between the sensor-based incremental control is the strong robustness
against uncertainties and disturbances demonstrated in various studies [22, 27, 39]. The
robustness of LQG to model uncertainties and external disturbances can only be consid-
ered when implemented in a robust control framework such asH∞ [12, 39, 40]. Addition-
ally, methods such as the Loop Transfer Recovery (LTR) are suitable to enhance its robust
stability [41]

In reality, the tedious system identification of the complete system dynamics (for Ā,
B̄, C̄ , D̄) and tuning processes were the main barriers in LQG implementation. When
an LQR controller was designed based on the identified model and then integrated with a
Kalman filter, the resulting LQG performed poorly in our experiment. The identification
and tuning took much longer than planned, and the implemented LQG was not successful
within the time limit.

The only model information needed by INDI-QP-V is the control effectiveness matrix
B̄. Due to this reason, the identification of the B̄, gain tuning, and the entire hardware
implementation of INDI-QP-V on the SmartX-Alpha was achieved within a day. Therefore,
these evaluations have highlighted the benefits and ease of implementation of the sensor-
based INDI-QP-V.

III.1.4.3. Load Alleviation Performance Comparisons
Since the LQG control did not work in the experiment within the time limit owing to its
tedious model identification and tuning processes. There is no valid experimental data
for LQG. In this subsection, the performance of LQG and INDI-QP-V is compared in the
simulation environment. The simulation model was identified from the experimental data.
The control parameters of INDI-QP-V are kept the same as those used in the experiment.

The comparisons start with an ideal case, where measurement noise, actuator fault and
backlash are not included yet. More importantly, the state information is assumed to be
known (LQG degrades to LQR).Q is designed as a partitioned matrix, with the upper left
matrix equals CT

bCb, the lower right matrix equals 10 · I2×2, and the rests are equal to
zero. R = 260 · I5×5.

In Fig. III.1.12 the aircraft is asked to perform a pull-up manoeuvre in a gust field
(Ag = 1 deg and fg = 1 Hz). Although both controllers can make the wing follow the



III.1.4. Comparisons with LinearQuadratic Gaussian Control

III.1

207

load commands, INDI-QP-V has better load alleviation performance. The performance
metrics are summarised in the second row of Table III.1.2 (Sim no noise (Fig. III.1.12)). It
can be seen that the reduction rate of LQG is above 63 % while INDI-QP-V reduces loads
by more than 85 %.
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(b) Servo angles: LQR (left) and INDI-QP-V (right).

Figure III.1.12: Simultaneous gust and manoeuvre load alleviation without measurement noise.

Table III.1.2: Simultaneous gust and manoeuvre load reduction rate of INDI-QP-V and LQG.

Conditions
max(Fy − Fy∗) RMS(Fy − Fy∗) max(Mx −Mx∗) RMS(Mx −Mx∗)

INDI-QP-V LQG INDI-QP-V LQG INDI-QP-V LQG INDI-QP-V LQG
Exp. (Fig. III.1.11) 44.31 % - 67.76 % - 45.58 % - 46.35 % -
Sim n.noise (Fig. III.1.12) 86.65 % 68.25 % 93.95 % 85.44 % 87.48 % 68.60 % 85.71 % 63.73%
Sim noise (Fig. III.1.13) 39.99 % -11.41 % 73.99 % 63.19 % 50.90 % 3.71 % 35.95 % 4.19 %
Sim noise, fault,
+ backlash (Fig. III.1.14)

25.99 % -22.91 % 68.08 % 59.47 % 38.74 % -12.56 % 19.21 % -14.24 %

In the second comparison case, coloured measurement noises collected from the ex-
periments are added. Rk is directly calculated using the applied noise values. Neverthe-
less,Qk andNk are difficult to tune because the uncertainties and gusts are far away from
white noise. Their implemented values areNk = 10−5·[3.16, 3.16, 6.41, 6.41, 87.1, 87.1]T,
Qk = 1.02 × 10−5. As shown in Table III.1.2 and Fig. III.1.13, mainly due to the phase
lag induced by noise filtering, the minimum load reduction rate of INDI-QP-V reduces
to 35.95 %. The performance of LQG is even worse: the maximum value of Fy − Fy∗ is
even amplified by 11.41 % percent. As illustrated in Fig. III.1.13b, although phase lag exists,
INDI-QP-V actively makes the wing morph upwards to reduce the gust loads. By contrast,
although LQG can alleviate the manoeuvre load by spanwise lift redistribution, it is not
effective in alleviating the gust loads. To obtain better gust load alleviation performance,
LQG has to be used along with some additional disturbance estimators (e.g., disturbance
observer [32]).

Apart from coloured noises, actuator fault and backlash are also added to the last com-
parison case. Owing to the pick-up point failure, the 9th actuator effectiveness equals
zero, while the 8th and 10th actuator effectiveness are respectively reduced by 53.20 %
and 26.52 %. Equation (III.1.13) is used to model backlash, whereby k1 = k2 = 1, and
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(b) Servo angles: LQG (left) and INDI-QP-V (right).

Figure III.1.13: Simultaneous gust and manoeuvre load alleviation with measurement noise.

uf+ = −uf− = 0.6 deg. Figure III.1.14 and Table III.1.2 show that the performance of
LQG is further degraded by the fault and backlash. Although the reduction rate of RMS
(Fy − Fy∗) is still positive under LQG control, the other performance metrics all become
negative. On the contrary, INDI-QP-V can simultaneously alleviate gust and manoeuvre
loads in spite of coloured noises, actuator fault, and backlash. The RMS value of Fy −Fy∗

is reduced by 68.08 %, which is very close to the experimental result (67.76 %). Under
INDI-QP-V control, all the load metrics are reduced by over 19 % in the simulation and are
alleviated by more than 44 % in the experiment.
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Figure III.1.14: Simultaneous gust and manoeuvre load alleviation with noise, fault, and backlash.

III.1.5. Conclusions
This Chapter presents the design and wind tunnel testing of a simultaneous gust and ma-
noeuvre load alleviation control law for a seamless active morphing wing. To begin with,
the Incremental Nonlinear Dynamic Inversion (INDI) control is derived for a genericmulti-
input/multi-output nonlinear system with an arbitrary relative degree. Then the closed-
loop stability under the perturbation of model uncertainties, external disturbances, and
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control allocation errors are analyzed using Lyapunov methods. Moreover, two control
allocation methods and their corresponding stability criteria are derived for INDI control.
Although the INDI with Pseudo Inverse Control Allocation (INDI-PI) provides the least-
squares solution, the input constraints are not considered. On the contrary, the actuator
position constraints, rate constraints, and relative position constraints can all be satisfied
by INDI withQuadratic Programming Control Allocation (INDI-QP). Furthermore, INDI-
QP is augmented with the virtual shape functions (denoted as INDI-QP-V) to ensure the
smoothness of the morphing wing.

The effectiveness of the proposed INDI-QP-V has been validated by wind-tunnel ex-
periments. During the experiment, the pick-up point of the 9th actuator was broken; the
morphing mechanisms also presented unexpected hysteresis backlash behaviours. De-
spite these challenges, experimental results show that INDI-QP-V is robust to aerody-
namic uncertainties, gusts, actuator faults, and nonlinear backlash. In manoeuvre load
alleviation tasks, INDI-QP-V increased the total lift for performing pull-up manoeuvres
without amplifying the wing root bending moment. In the presence of successive “1-cos”
gusts, INDI-QP-V mitigated the loads without requiring any gust information. Further-
more, INDI-QP-V made the seamless wing morph actively to modify the spanwise lift
distribution and resist gusts at the same time. In all the tested cases, the input constraints
were satisfied; the wing shape was smooth; the control law was realised in real-time.

To further demonstrate the features of INDI-QP-V, is has been compared to the Linear
Quadratic Gaussian (LQG) control. As a linear control method, LQG has to be used along
with the tedious gain-scheduling method for nonlinear control problems. Its robustness
against model uncertainties and external disturbances is also not guaranteed. On the con-
trary, INDI-QP-V is a nonlinear control method with inherent robustness against uncer-
tainties and disturbances. Moreover, INDI-QP-V has less model dependency, which sim-
plifies its hardware implementation process. Furthermore, in simultaneous gust and ma-
noeuvre load alleviation tasks, INDI-QP-V can more effectively alleviate excessive loads.

In conclusion, simulations and wind tunnel experiments have demonstrated that the
proposed INDI-QP-V control is easy to implement, robust to actuator fault and backlash,
and effective in simultaneously alleviating the gust and manoeuvre loads of the seamless
active morphing wing. Scaling up the SmartX-Alpha wing to a full-scale flight aircraft will
be explored in future work.
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I n Part II and the previous Chapter, mechanical imperfections were identified, and it was established
that backlash hysteresis, in particular, contributed to nonlinearities in the actuation. In this Chapter,

a novel vision-based incremental control approach is introduced to mitigate mechanical imperfections.
An experiment is performed, demonstrating that the compensating controller can follow the tracked
command well without system design modifications [1].

This Chapter is based on the following journal paper:
B. Sun, T.Mkhoyan, E.-J. Van Kampen, R. De Breuker, and X.Wang, “Vision-BasedNonlinear Incremental Control
for A Morphing Wing with Mechanical Imperfections,” IEEE Transactions on Aerospace and Electronic Systems,
pp. 1–13, 2022
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With the increasing desire of the aerospace industry to reduce emissions and fuel
consumption, morphing wings have gained much interest due to the ability to adapt
the wing shape in-flight for improved efficiency and fuel consumption. A smart mor-
phing wing, the SmartX-Alpha, was designed, manufactured, and tested in the previous
chapters. In Chapter III.1 the SmartX-Alpha demonstrated how wing load could be al-
leviated while achieving the optimal lift distribution. However, the widely existing me-
chanical imperfections can degrade the performance of the morphing wing and even
lead to instabilities. This Chapter proposes a vision-based adaptive control approach
to compensate for mechanical imperfections and tackle these issues actively. In this
approach, an incremental model is constructed online to identify the system dynam-
ics using servo commands and vision measurements. Then nonlinear dynamic inver-
sion control is applied based on the identified model. Real-world experiments on the
SmartX-Alpha have validated this data-driven control approach with visual feedback.
The results demonstrate that the vision-based system combined with the proposed con-
trol methodology can actively compensate for mechanical imperfections with minimal
adjustments to the actual system design. Compared to a controller that only uses a
feed-forward input/output mapping, this proposed approach improves the system per-
formance and decreases the tracking errors bymore than 62 % despite disturbances. The
results collectively demonstrate the effectiveness of the proposed control system, which
sets a foundation for realising morphing in next-generation aircraft.

III.2.1. Introduction

Active morphing can bring several benefits to conventional wing designs. Morphing
wings have the potential to improve aircraft performance across the entire flight

envelope by actively adapting the shape. Due to conflicting requirements [2], conventional
wing designs generally can only be optimised for one single flight condition, such as cruise.
The SmartX project [3] was initiated at the Delft University of Technology to assess the
benefits of morphing wings.

In Part II, an over-actuated and over-sensed wing prototype was developed for this
project, named SmartX-Alpha, capable of seamless active wing morphing with six dis-
tributed Translation Induced Camber (TRIC) morphing modules [4]. Coupled with ad-
vanced nonlinear control methods, this wing has demonstrated the capability to actively
reduce gust loads while actively maintaining an optimal lift distribution in the wind tunnel
study presented in Chapter III.1 [5]. However, due to the nature of the morphing mecha-
nism, the mechanical complexity, and the manufacturing imperfections, the wing design
exhibited hysteresis nonlinearities in the actuation. The nonlinear backlash phenomenon
was observed in both wind tunnel tests and a design validation assessment with a digital
Digital Image Correlation (DIC) setup, shown in Chapter II.1. This backlash effect dimin-
ishes the achievable morphing range and consequently reduces the aerodynamic control
effectiveness of the wing.

Apart from backlash, other forms of mechanical imperfections also exist in aerospace
systems, such as input saturation [6], friction [7], deadzone [8], etc. These mechanical
imperfections can largely degrade the system performance and lead to undesirable phe-
nomena such as limit-cycle oscillations, divergence, and even flutter [8, 9]. Instead of
perfecting hardware, which is costly and non-adaptative, an alternative is to compensate
for these hardware imperfections via software algorithms actively.

Backlash compensation is the most challenging of all the aforementioned mechani-
cal imperfections because of its time sequence dependency. Some researchers attempt to
compensate for backlash in the simulation environment via an inversion approach with
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general approximators (e.g., neural networks) [10], and fuzzy controllers [11]. The back-
lash dynamics are assumed to be known or unknown but invariant in these existing pub-
lications, and global regulation is adopted for inversion. However, in a real system such
as the SmartX-Alpha wing, owing to uncertainties and disturbances, the backlash non-
linearity is not always known and invariant, which leads to invalidation of the global
model-based inversion method. The limitations in the existing methods motivate our re-
search in investigating online active compensation methods with no need for known or
invariant dynamics.

To actively compensate for mechanical imperfections, online identification techniques
are necessary such that the controller can adapt to constantly changing light conditions
and environments. Commonly used grey-box identification approaches [12] require full
state feedback and are therefore not applicable for a system such as the SmartX-Alpha.
In such systems, uncertainties and nonlinearities in the system are present and cannot be
made available through internal states.

Identification methods which are output-only are, in contrast, a suitable choice for
this system. In a recent study, an effective online identification method for dynamic sys-
tems was proposed, which requires only output-feedback (OPFB) and less computation
power than neural networks in [13]. This method identifies the so-called incremental [14]
model by utilising interval-based linearisation and discretisation using sensor feedback.
Combined with intelligent control methods, the incremental model has successfully been
applied to various aerospace systems [13, 15, 16]. However, the effectiveness of the incre-
mental model in the real-world system has not been validated yet.

For the controller to adapt to changes in the system dynamics, not only an online
identification approach is required but also an adaptive control law. A conventional gain-
scheduling approach using linear control methods is insufficient since stability and per-
formance are not guaranteed between operational points [17]. The Non-linear Dynamic
Inversion (NDI) is a widely used nonlinear control method, widely applied in the aerospace
community [12, 17–19], which allows cancelling the nonlinearities in a nonlinear system
such that the closed-loop dynamics is linear [12, 17]. For mitigation of backlash in the
current system, which exhibits a high degree of uncertainty, the Non-linear Dynamic In-
version (NDI) paired with the incremental model is believed to be a suitable approach.

To enable real-time mechanical imperfection compensation in the real world, the con-
troller has to know the shape of the morphing wing in real-time. Furthermore, our study
aims to provide a solution for an existing imperfect mechanical design, preferably impos-
ing minimal adjustments to the hardware. In this study, we propose to accomplish this
task by vision-based control. In our previous research, vision-based tracking has demon-
strated its effectiveness in flexible and morphing system shape estimations, featured by
its non-invasive and model-free nature [20]. Coupled with nonlinear filtering techniques,
a vision-based tracking system can be retro-fitted to an existing wing design and pro-
vide the capability to measure wing vibrations in the presence of gusts [20]. This setup
can also be used as a stabilisation system for flapping wings [21], obstacle avoidance for
UAVs [22], and flight manoeuvring tracking [23]. Vision-based control can also benefit
truss-based morphing mechanisms with many actuators [24], which is an active research
field in robotics [25, 26].
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The main contributions of this Chapter are summarised as follows.

• Experimental verification of a vision-based controlmethod using IncrementalModel-
based Nonlinear Dynamic Inversion (IM-NDI) with online identification performed
on the SmartX-Alpha wing.

• The methodology and real-world implementation techniques for real-time vision-
based robustmorphingwing shape reconstruction using distributed infrared sensors
are presented.

• The mechanical imperfections (including backlash, friction, and hysteresis) in the
morphing wing are actively compensated for by the vision-based IM-NDI approach
without invasive modification to the system.

The remainder of this Chapter is organised as follows: Sec. III.2.2 introduces the In-
cremental Model-based Nonlinear Dynamic Inversion control approach. Section III.2.3
describes the development of the vision-based control system. The experiment study is
presented in Sec. III.2.4, and Sec. III.2.5 summarises the work of this Chapter.

III.2.2. Incremental Model-Based Nonlinear Dynamic In-
version Control

This section presents a brief overview of the controller design using the dynamic inversion
control method and online model identification approach. The layout of the approach is
illustrated in Fig. III.2.1. The identification approach relies on an incremental data-driven
model, proposed in [13], which can be identified online using Recursive Least Squares
(RLS) algorithm and vision-based sensor data. The control design specifics, incremental
model derivation, and proofs are presented in [1].

uyref y

ŷ

inversion loop on-line identification

system

NDI controller Morphing wing Vision feedback

RLS
Incremental

model

Z−1

Z−1

Figure III.2.1: The architecture of the IM-NDI controller, where the solid lines denote the signal flows and the
dashed lines represent the parameter update paths.
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The morphing wing can be represented by the following nonlinear multi-input multi-
output system:

ẋ(t) = f(x(t), u(t)) + d(t), y(t) = h(x(t)) (III.2.1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp are the system state vector, control input vector, and
measurable output state vector, respectively. f : (Rn, Rm) → Rn and h : Rn → Rp are
assumed Lipschitz continuous on their domains. The nonlinear system is assumed to be
both controllable and observable.

To ensure that the controller constantly adapts to changes in the system and environ-
ment, online system identification, based on incremental sensory feedback, is performed.
The so-called incremental model, proposed in [13], is constructed using linearisation and
discretisation techniques. A fundamental assumption of this approach is that the sam-
pling frequency is sufficiently high compared to the time-variation of the system dynam-
ics. This ensures that errors caused by linearisation and discretisation can be bounded
within a small vicinity of zero within the sampling interval ∆t [1]. In previous studies,
this assumption has been shown to hold for a sampling frequency of 100 Hz [17, 27].
Experimental results presented in Chapter III.1 demonstrated that a sampling frequency
of 60 Hz was sufficient for morphing wing control.

Given the reference input signal and the system output, as shown in Fig. III.2.1, the
tracking error, e = y − yref, is defined as the difference between the two signals. The
tracking error can be discretised to represent the error increment,∆et+1, considering the
stable tracking error dynamics of the system given by Eq. (III.2.1).

Theorem 5. [13] Given that the nonlinear system defined by Eq. (III.2.1) is observable, then
under sufficiently high sampling frequency, the output tracking error increment ∆et+1 =
∆yt+1−∆yref,t+1 can be determined uniquely from the observations and control inputs over
a sufficiently long time horizon, [t−M + 1, t], M ≥ (n+ p)/p:

∆et+1 ≈ Ft∆et,M +Gt∆ut,M , (III.2.2)

where Ft ∈ Rp×Mp is the identified transition matrix, and Gt ∈ Rp×Mm is the identified
input distribution matrix. Furthermore, ∆ut,M = [∆uTt ,∆u

T
t−1, ...,∆u

T
t−N+1] ∈ RNm

and∆et,M = [∆eTt ,∆e
T
t−1, ...,∆e

T
t−N+1] ∈ RNp are the input and tracking error data of

N previous samples, respectively.
For slow varying dynamics, Ft∆et,M + Gt∆ut,M − yref,t ≈ −kp∆tet − kd∆et can

be approximated, where kp > 0, kd > 0 are control parameters [1]. From Eq. (III.2.2),
the nonlinear dynamic inversion control in its discrete form can be applied, which regu-
lates the tracking error to zero asymptotically despite model uncertainties, external dis-
turbances, and backlash.

III.2.3. Vision-Based Control Approach
A crucial aspect of implementing a control strategy to compensate for mechanical imper-
fections is an accurate knowledge of themorphing wings’ shape. In particular, the variable
of interest to the controller is the local vertical displacement of the wing trailing edge con-
cerning a body-fixed coordinate system. In a previous study, a morphing wing concept
utilising the distributed translation induced camber (TRIC) has been described [4]. This
design has a relatively stiff wing box and a flexible morphing trailing edge.
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A body-fixed coordinate system, FB is chosen to be near the root of the wing in the
wing box section, with an origin OB . The displacement of the trailing edge, denoted as
z = [z1, z2, ..., z12]

T along 12 stations of the span is reconstructed in the FB frame, from
a camera-fixed frame FC in real-time, utilising vision-based tracking. Two locations in
each of the six modules are tracked and fed back to the controller. The experimental setup
is shown in Fig. III.2.2.
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Figure III.2.2: The experimental apparatus with vision-based control components.

III.2.3.1. Apparatus
The experimental apparatus is shown in Fig. III.2.2. The system consists of a morphing
wing with six distributed TRIC morphing modules placed in the Open Jet Facility (OJF)
wind tunnel facility of the Delft University of Technology. Each module is actuated by two
embedded servos [4]. An array of infra-red (IR) light-emitting diodes (LEDs) of type 3528
850NMWLP PLCC2 [28], emitting IR in the 850 nm wavelength, are installed on the wing
bottom surface in the non-morphing wing-box and the morphing trailing-edge modules.
The array of IR led is powered by a 12 V DC power supply, and the brightness is actively
controlled by IRF520 Power metal–oxide–semiconductor field-effect transistor (MOSFET)
dimmer circuit [29]. Four IR markers per module (24 in total) with another three mark-
ers defining the body-fixed reference frame are tracked by five Primex41 4.1 megapixel IR
cameras at a frame rate of 250 frames per second (FPS) [30]. The deflections of the mor-
phing flaps are reconstructed in real-time with a reconstruction algorithm. The markers’
coordinate system definitions and layout are explained in Sec. III.2.2.Each morphing mod-
ule is tracked by four reference IR markers, where two are installed in the non-morphing
wing box directly behind the cut and the remainder in the trailing edge. The IR markers
are arranged so that all corners of the module can be tracked in camber and twist motion.
Another three IR LED units are installed in the wing root at right angles in a triangular
configuration, representing the body-fixed 3-axis coordinate system.

The intensity of IR has been adjusted to approximately 20 percent and tuned to obtain
the best tracking performance. Image segmentation and filtering are applied to improve
further the tracking, which will be discussed in Sec. III.2.3.2.
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III.2.3.2. Processing Framework
A 3D reconstruction procedure is required to transform the measured marker correspon-
dence x1, x2, . . . , xn detected in the image frame, u, v, to a 3D world coordinates defined
in the camera fixed reference frame, FC . Segmentation and filtering are applied to the
raw images to obtain the binary mask with marker locations in the image frames for each
camera. The filtering consists of image threshold filtering and morphological image trans-
formations [31] to improve the segmentation of distinct LED markers. An example of
similar segmentation and filtering approach is presented in [20]. Dynamic adjustment of
the IR brightness was needed to prevent two or more markers from merging into a single
blob for far-away camera views. A concise overview of the vision-based tracking pipeline
is shown in Fig. III.2.3 and explained in the following subsections.

rBC

C++ OptiTrack API engine C++ client function

ziCAMCAMCAM
Filtering 3D Recon-

struction
Coordinate
Transform

Figure III.2.3: A concise vision-based tracking pipeline.

In a previous study in OJF, a 3D reconstruction approach with a stereo-camera setup
was developed, which showed camera calibration sensitivity due to the wind tunnel’s
adverse environmental conditions (flow conditions and mechanical vibrations) [20]. A
generally suitable approach to improve the tracking accuracy and add redundancy to the
tracking system is a multi-camera (> 2) setup [32]. Therefore, a five-camera setup was
used in this study to improve robustness against calibration drift developed over time.

The problem of 3D reconstruction with two or more camera setups can be performed
with several triangulation methods. The general triangulation problem in a two-view
setup tries to find the best estimate of point in 3D denoted with vectorX given its projec-
tions x1, x2 (point correspondence) in two camera views and camera projection matrices
P1, P2, defining the location, orientation (extrinsic parameters) and the properties of the
camera lens (intrinsic parameters) of each camera. In the presence of measurements er-
rors, finding the best estimate of 3D point X̂ from noisy correspondence x̄1, x̄2 is treated
at a minimisation problem denoted by triangulation function τ : X = τ(x1, x2, P1, P2).
A common triangulation method used for linear perspective transformation is a Direct
Linear Transform (DLT) which solves the optimisation problem by sSingular Value De-
composition (SVD) [33].

The n-view 3D reconstruction problem is concerned with finding the optimal estima-
tion of an object X̂ in a 3D global coordinate frame (i.e., locations in the x, y and z-axes),
which is observable in noisy x̄1, x̄2, . . . , x̄n points correspondence in n camera views.
The point correspondences x̄i are generally defined by markers in u, v coordinates of a 2D
image plane. Back-projecting the 3D point onto the respective camera views, a minimisa-
tion problem can be defined to find the re-projection error, E =

∑n
k=1 ||xk − x̄k||2, and

solved by an expanded linear system of equations similar to SVD in a DLT procedure [34].
Global optimisation methods can be applied, such as algebraic, matrix inequality and the
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L∞ approach [35]. The development of a particular n-view triangulation method is not
considered in this study and was already presented in the earlier work conducted in the
scope of this dissertation [36].

To perform the 3D point cloud reconstruction in real-time, a proprietary reconstruc-
tion engine is used by OptiTrack API [37]. The reconstructed coordinates are streamed via
NatNet [38] client/server application over the Ethernet protocol; then, coordinate transfor-
mations are applied to obtained flap position in body-fixed coordinates. A decentralised
control architecture, capable of 1 kHz synchronisation, synchronises the data and real-
time [39]. All the applications for processing, reconstructing and accessing the data are
written in low-level C++ programming language for best performance. Multi-camera cal-
ibration is performed by wandering process, resulting in an average calibration error of
0.25 mm for all cameras. The accuracy of a similar setup has been verified in [40].

The final step in the vison-based tracking pipeline is a coordinate system transforma-
tion from the global camera-fixed coordinate system, FC with an origin OC , to the body
body-fixed coordinate system, FB with an origin OB . This transformation is needed to
express the relative deflections of the trailing-edge modules zi concerning the baseline
un-morphed shape. The coordinate frames and their respective origins, located approx-
imately 2 meters away, are connected by a vector rBC as shown in Figure III.2.2. The
transformation FC → FB is achieved by a translation, followed by 3-axis rotations in
pitch, roll, and yaw axes (θ,ϕ,ψ). The transformations are performed continuously as the
morphing may continuously exhibit motions relative to the frame FB . The average total
processing latency was in the range of 5-7 ms, which is smaller than the control sampling
interval (16.67 ms).

Four tracking markers define each trailing-edge morphing module; two are attached
to the non-morphing wing-box, and two to the morphing trailing edge. In each morphing
module, two tracking bodies are defined, responsible for the deflection estimate of, e.g.,
z1 and z2 for the module, along the module span in FB frame. Two markers within each
module are shared, as shown in (Fig. III.2.2). In total, 24 marker points are defined, with
three additional points for the definition of the body’s fixed origin located at the root of
the wing.

III.2.4. Experimental Results and Discussions
In the following sections, the effectiveness of the proposed control approach toward the
backlash effect is verified in an experimental study with the morphing wing system. As
described in Section III.2.3, the system consists of 6modules, each driven by two embedded
actuators [4]. Module 2 is chosen for validation, and its adjacent modules are used to
produce disturbances, as all modules exhibit comparable performance, and the disturbance
is unknown. The two control channels of Module 2 are indexed by subscripts 3 and 4,
respectively. It is noted that these two channels are identified together, leading to a 2-
input-2-output system. The control command and vision feedback data are transmitted at
60 Hz between the host computer and the physical system, while the identifier and the
controller work in a host computer at 500 Hz.
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Online Identification Performance
Prior to evaluating the closed-loop control performance, the online identification perfor-
mance of the incremental model is evaluated. The width of the sliding window is set as
N = 50, which means 50 previous data sets stored in the host computer are utilised,
rather than 50 real samples. The forgetting factor γRLS is set to be 0.99995 such that
the more recent data set has more dominant weight. F t, Gt and Covt are initialised as
F 0 = [I2, 02×98], G0 = [I2, 02×98] and Cov0 = 103 · I200, respectively, where 02×98

denotes the 2-row-98-column matrix with all zero elements.
The identification effectiveness of the incremental model is validated in an open-loop

manner using the sinusoidal control input signal, with an amplitude of Aδ = 20 deg,
and an angular frequency ωδ sweeps from 0.2π rad/s to 4π rad/s. The identification is
activated 1.5 s after the open-loop control process begins. As illustrated in Fig. III.2.4, the
predicted displacements converge quickly to their values measured by the vision system
as the identification is activated. The identification errors reach the minimum values at
around t = 3 s, and then keep increasing as the angular frequency increases. Overall,
despite some disturbances and outliers, the identification errors, which are mainly caused
by delays, can be bounded within ±2 deg. The experiment results verify the incremental
model’s effectiveness, making it suitable for closed-loop control purposes.
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Figure III.2.4: Open-loop identification performance with a varying-frequency sinusoidal control signal.

Closed-Loop Control Performance
The closed-loop control performance of the Incremental Model-based Nonlinear Dynamic
Inversion (IM-NDI) is evaluated and compared to the Feed-Forward (FF) controlmethod. A
2×2 FF mapping matrix between the servo angular inputs and the corresponding trailing-
edge displacements is identified from the physical system. This matrix directly converts
the morphing displacement commands to the servo commands in the FF control cases.
For IM-NDI, we experimentally choose kp = 22.5 and kd = 1.5. These gains are tuned
considering the trade-off between tracking error reduction and noise attenuation. The ex-
periments are conducted to track a sinusoidal signal with the same amplitudeAm = 4mm
at varying angular frequencies, ω in range [3 rad/s-12 rad/s] and step 3 rad/s steps. For
conciseness, the results forω = 3 rad/s and ω = 12 rad/s are selected as representatives,
shown in Figs. III.2.5 and III.2.6. These figures show that both IM-NDI and FF can success-
fully track the reference, but IM-NDI has smaller lags and reduced tracking errors.
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In Figs. III.2.5 and III.2.6, the control command is the direct output of the IM-NDI con-
troller, while the “measurement” denotes the real angle feedback from the servo. Although
small oscillations occur, the actuator shows desirable performance for command tracking.
Coping with mechanical imperfections is one of the most challenging issues in this task.
Backlash is the most dominant and influential nonlinearity in this system among all me-
chanical imperfections, which is also the primary cause of the tracking lag. As illustrated
in subfigure (c), the ideal tracking curve is a line segment defined on [−4, 4] mm with a
slope of 1. Due to the backlash, the sinusoidal reference and the actual measurement are
characterised by a circle curve. It is clear that IM-NDI outperforms the FF controller in
handling backlash nonlinearity because the curve of IM-NDI is closer to the ideal tracking
line.

Figure III.2.7 represents an illustrative example of the performance metrics defined
to intuitively compare the tracking performance in terms of the width and length of the
backlash circle. Here, the left plot illustrates the standard backlash nonlinearity with a
width of 2 mm. The ideal tracking is defined as a black dashed line whose endpoints
are marked as stars. The widthWb and length Lb, are the origin-centred horizontal line
segment spanning the with and the portion of the ideal tracking segment, spanning the
length of the backlash.

Generally, the widthWb is the more common metric for describing the backlash; how-
ever, as revealed by the actual backlash curve, shown in the right plot of Fig. III.2.7, the
real-world nonlinearity is complex and does not precisely obey themathematical represen-
tation of the standard backlash in [10]. Therefore, bothWb andLb are used for assessment
in this Chapter. ThewidthmeasurementWb intends to describe the lagging propertywhen
changing the command direction, and a smallerWb represents better performance. More-
over, the length measurement Lb can reflect the magnitude shrinking effect, and a larger
Lb indicates better performance. Figure III.2.7 shows that as compared to the standard
backlash nonlinearity, the effect caused by the real-world backlash nonlinearity is mainly
reflected on the Wb, whereas the magnitude shrinking phenomenon is less severe. The
control performance comparison regarding different angular frequencies is summarised
in Table III.2.1, and the data represent the average value of the two actuation channels. It
can be observed that thanks to the active compensation, IM-NDI outperforms FF in both
Wb and Lb for all angular frequencies, and even the worst case of IM-NDI is better than
the best one of FF.

0 5 10 15
-5

0

5

z 3
[m

m
]

Reference IM-NDI FF

0 5 10 15
t [s]

-5

0

5

z 4
[m

m
]

(a) Tracking performance

0 5 10 15
-20

0

20

/ 3
[d

eg
]

Command Measurement

0 5 10 15
t [s]

-20

0

20

/ 4
[d

eg
]

(b) Control input of IM-NDI

-5 0 5
zref
3 [mm]

-4

-2

0

2

4

z 3
[m

m
]

-5 0 5
zref
4 [mm]

-4

-2

0

2

4

z 4
[m

m
]

IM-NDI FF Ideal response

(c) Backlash nonlinearity

Figure III.2.5: Control performance when tracking a sinusoidal signal with ω = 3 rad/s, Am = 4 mm.
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Figure III.2.6: Control performance when tracking a sinusoidal signal with ω = 12 rad/s, Am = 4 mm.
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Figure III.2.7: Illustrative example of the performance metrics for the backlash nonlinearity.

Table III.2.1: Performance comparison regarding the backlash compensation, [mm]

ω [rad/s] 3 6 9 12 Ideal

Wb
FF 2.5050 3.3850 4.5000 5.6000 0
IM-NDI 0.6250 1.3550 1.9750 2.0750 0

Lb
FF 10.0409 10.1399 10.1823 10.1116 11.3137
IM-NDI 11.0592 11.0309 10.9743 10.8187 11.3137

Closed-Loop Control Performance with Disturbance
The last part of the results contains the effect of external disturbances on the robustness of
the approach. As presented in Chapter II.1 the actuation of the existence of the elastomeric
skin impacts the distributed modules of the SmartX-Alpha, smooths the airflow, and limits
the drag.

The disturbance is injected as interfering actuation frommodules 1 and 3 in the form of
an open-loop sinusoidal signal, while the setting ofmodule 2 is kept identical. The directive
thus makes the controller’s task more challenging to follow the reference while mitigating
both the disturbance and backlash. For the disturbance generated by module 1, an open-
loop sinusoidal signal of amplitudeAd = 20 deg, angular frequency of ωd = 5 rad/s and a
zero phase ϕd = 0 is chosen. For module 2, the disturbance signal parameters are chosen
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as Ad = 25 deg, ωd = 10 rad/s and ϕd = π
2 rad , respectively. The tracking performance

is shown in Figs. III.2.8-III.2.9, where the shadowed area stands for the period that the
external disturbances are injected.

It must be noted that the disturbances are proportionally significant; hence, the control
performance of both methods is expected to degrade to certain extents. For the FF con-
troller, the inability to adapt to change in actuation dynamics is much more significant, as
seen from Figs. III.2.8-III.2.9. The IM-NDI, in contrast, manages to track the given refer-
ence despite disturbances by adaptively adjusting the control inputs. This is confirmed by
the root-mean-square (RMS) of the tracking errors shown in Table III.2.2. Here, the RMS
values are averaged over the actuator pair signal driving module two for the remaining
angular frequencies in the range (3 and 12 rad/s). While it is observed that the tracking
errors are higher for increasing angular frequencies, the IM-NDI approach can constrain
the RMS within 0.9 deg.

For completeness, tracking errors are also represented in boxplots of Fig. III.2.10. The
trend of higher tracking error with an increased angular frequency of the reference signal
is confirmed for both methods, which is believed to be a direct consequence of physical
limitations of the servo bandwidth (i.e. faster servo would be more effective at tracking in
both cases). However, the FF error shows skewness in standard deviation due to the in-
ability to adapt to disturbances. IM-NDI error, in contrast, appears to be more predictable
and has zero mean.
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Figure III.2.8: Disturbance rejection performance when tracking a sinusoidal signal with ω = 3 rad/s,
Am = 4 mm. The shaded area denotes the disturbance injection phase.

Table III.2.2: Comparison of the RMS of tracking errors, [deg]

ω [rad/s] 3 6 9 12
Disturbed No Yes No Yes No Yes No Yes
FF 1.17 1.76 1.55 2.19 1.95 2.43 2.37 2.98
IM-NDI 0.34 0.62 0.55 0.74 0.73 0.86 0.84 0.87
Improvement 71.06% 64.78% 64.40% 66.34% 62.61% 64.69% 64.69% 70.82%
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Figure III.2.9: Disturbance rejection performance when tracking a sinusoidal signal with ω = 12 rad/s, Am =
4 mm. The shaded area denotes the disturbance injection phase.
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III.2.5. Conclusions
This Chapter presents the experimental verification of a data-driven Incremental Model-
based Nonlinear Dynamic Inversion (IM-NDI) control approach designed to mitigate the
mechanical imperfections in a seamless active morphing wing. The system dynamics are
identified online using the stored input/output data without a prior-known model. Then
the NDI controller is developed based on the identified dynamics.

A crucial aspect of improving these imperfections is an accurate knowledge of the
morphing wing’s shape. A vision-based control system was developed, which has shown
to be adequately effective for this task, given its robustness, high frame rates (250 FPS),
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and good calibration accuracy (average 0.25mm). A real-world experiment is conducted
based on computer vision feedback to evaluate the proposed method. The experimental
results demonstrate that the morphing wing can track reference signals with different
frequencies despite external disturbances by applying the IM-NDI. Under feed-forward
control, the morphing wing suffers from mechanical imperfections, reflected by the lag-
ging and magnitude shrinking phenomena in the tracking responses. The performance
of feed-forward control also degrades in the presence of external disturbances. By con-
trast, experimental results show that IM-NDI can effectively decrease the tracking errors
by more than 62 % despite disturbances. Furthermore, the proposed vision-based system
combined with the control methodology demonstrates the ability to compensate for me-
chanical imperfections without changing the morphing hardware. All results collectively
illustrate the effectiveness of the proposed IM-NDI in dealing with mechanical imperfec-
tions existing in the morphing wing system.

In summary, the overall results confirm two points, namely that (i) adaptability of IM-
NDI lead to better robustness against disturbance and backlash, (ii) limited servo band-
width impairs the ability to mitigate disturbances and track faster-referred signals, and
(iii) the effectiveness of compensation can be achieved without the requirement for inva-
sive changes to the design of the morphing mechanism.
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I n previous Chapters, a control strategy was proposed for load alleviation objectives and mitigation of
mechanical imperfections. This Chapter combines these learnings and builds further on Chapter II.2

to address the shape optimisation objective. For this purpose, an online black-box shape optimisation
architecture for actively distributed camber morphing wings has been proposed and experimentally
validated. Compared to the unmorphed wing baseline shape, a drag reduction of 7.8 % was achieved
on the SmartX-Alpha demonstrator for a target lift coefficient of 0.65 and between 6.5 % and 19.8 %
a wide range of other target lift coefficients, with higher drag reductions being associated with lower lift
coefficients [1].

This Chapter is based on the following journal paper:
T.Mkhoyan, O. Ruland, R. De Breuker, and X.Wang, “On-line Black-boxAerodynamic Performance Optimization
for a Morphing Wing with Distributed Sensing and Control,” In Review at IEEE Transactions on Control Systems
Technology, 2021
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Inspired by nature, smart morphing technologies enable the aircraft of tomorrow
to sense their environment and adapt the shape of their wings in flight to minimise
fuel consumption and emissions. A primary challenge on the road to this future is how
to use the knowledge gathered from sensory data to establish an optimal shape adap-
tively and continuously in flight. To address this challenge, this Chapter proposes an
online black-box aerodynamic performance optimisation architecture for active mor-
phingwings. Theproposedmethod integrates a global online-learnedRadial Basis Func-
tionNeural Network (RBFNN)model with an evolutionary optimisation strategy, which
can find global optima without requiring in-flight local model excitation manoeuvres.
The actual wing shape is sensed via a computer vision system, while the optimised wing
shape is realised via nonlinear adaptive control. The effectiveness of the optimisation
architecture was experimentally validated on an active trailing-edge camber morphing
wing demonstrator with distributed sensing and control in an open jet wind tunnel.
Compared to the unmorphed shape, a 7.8% drag reduction was realised while achiev-
ing the required amount of lift. Further data-driven predictions have indicated that up
to 19.8% of drag reduction is achievable and have provided insight into the trends in
optimal wing shapes for a wide range of lift targets.

III.3.1. Introduction

Recent trends in aviation highlight the ever-increasing need for fuel economy and sus-
tainability. Active morphing technology can offer significant benefits over conven-

tional wing designs. Due to conflicting requirements [2], conventional wings are only
optimised for a single flight condition (such as cruise). By contrast, the ability to morph
wings into a desirable shape can allow aircraft to improve flight performance across the
full flight envelope actively. While many challenges exist in morphing design, the key
challenge to efficiently benefit from active morphing during in-flight operation is how to
establish a shape optimisation strategy that is adaptive and can find the global optimum.

The currently practised method of ”determining” the optimal wing shape is by se-
lecting from an offline-determined and fixed look-up table. However, the relationship
between the wing shape and aerodynamic efficiency depends on many uncertain param-
eters, which makes the look-up table method suboptimal. By contrast, online data-driven
nonlinear optimisation is a promising method, which can change the wing shape adap-
tively and optimally to any specific flight condition, like birds do [3].

Online shape optimisation strategies for active morphing wings do exist in the litera-
ture. In [4], a generative set search method was used to optimise the deflections of eight
leading- and trailing-edge control surfaces at a fixed angle of attack (AOA) to reduce the
drag on a wind tunnel model. This local black-box optimisation strategy uses a linear
lift coefficient model, the parameters of which have to be identified before optimisation
through sweeps of the control surfaces for the given angle of attack. The local scope of
the linear lift model and the local search character of this black-box direct search method
makes this method prone to converge on local optima.

A real-time adaptive least-squares drag minimisation approach has been proposed for
the Variable Continuous Camber Trailing Edge Morphing (VCCTEF) concept [5]. It uses
a recursive least-squares algorithm to estimate the derivatives of the aerodynamic coeffi-
cients with respect to the inputs. The optimal wing shape and elevator deflection are then
calculated using the Newton-Raphson method from a constrained optimisation problem.
Improvements to the model excitation method, onboard model, and optimisation methods
were demonstrated in wind tunnel experiments to achieve up to 9.4 % drag reduction on
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the Common Research Model (CRM) with VCCTEF at low subsonic speeds [6]. Simula-
tions have also indicated that a 3.37 % drag reduction is achievable on the CRM with a
distributed mini-plain flap system at Mach 0.85 [7].

While the linear-in-the-parameters multivariate polynomial model adopted in [5–7]
has a low computational cost, a significant shortcoming is that the model coefficients are
only valid around a trimmed equilibrium. The implications of this approach are that the
model parameters must be re-identified at every operational point to perform real-time
drag minimisation throughout the flight envelope. The model excitation manoeuvres re-
quired for re-identification need sweeps of the angle of attack and control surfaces which
cause increased fuel consumption and reduced ride comfort. Although the inherent model
structure assumptions reduce the model identification cost, they also make the model
structure less adaptable. To preserve the same model accuracy, the polynomial model
order and the number of coupling terms have to be varied in different flight regimes. Fur-
thermore, gradient-based optimisation methods combined with local models are prone to
converge to local optima [8].

The issues of local grey-box model strategies can be overcome by an online black-box
global model identification and optimisation approach, which has two potentials: first,
global wing shape solutions can be found, leading to more effective drag reductions; sec-
ond, no additional model excitation manoeuvres or changes to the model structure will
be needed for operation at various flight conditions. The global optimisation approach,
however, does not come without challenges.

Global optimisation methods generally require more objective function evaluations
than local gradient-basedmethods, making them impractical for direct application to com-
plex aerodynamic shape optimisation. Low evaluation cost global surrogate models may
provide a solution by sample-efficiently generalising the information gathered by onboard
sensors [9, 10]. Surrogate modelling methods in the literature include Polynomial Re-
gression (PR) [11], Artificial Neural Networks (ANNs) [12], Radial Basis Function (RBF)
models [13], and Gaussian Process (GP), also referred to as kriging [14, 15]. In an on-
line data-driven framework, ANNs are promising candidates due to their adaptability and
ability to approximate complex nonlinear functions. A type of feedforward ANN is the
Radial Basis Function Neural Network (RBFNN), which is featured by its ability to han-
dle noisy, multi-parameter, and scattered data as well as its sensitivity and adaptability to
fresh data [16]. These characteristics make RBFNNs promising for in-flight aerodynamic
model identification.

Genetic algorithms, also known as evolutionary algorithms, solve optimisation prob-
lems by mimicking natural evolution. Analogous to the survival of the fittest principle in
evolutionary biology, only the highest quality solutions and their offspring are selected
for further consideration. Evolutionary algorithms can deal with discontinuities in the
objective function and are suitable for multi-modal and high-dimensional problems [17].
They have been demonstrated to be effective global black-box optimisation tools combined
with surrogate models for aerodynamic shape optimisation problems [18, 19]. However,
to the best of the authors’ knowledge, the existing applications of evolutionary algorithms
to the aerospace field are only limited to offline design optimisation problems. Exploiting
the merits of evolutionary algorithms in online and real-world scenarios remains an open
challenge.
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After a global optimal wing shape is determined in flight, a real-time challenge still
exists in realising this optimised shape. Intuitively, a feedforward mapping between the
servo angle and the trailing-edge displacement can be utilised. However, owing to the
nonlinear couplings between aerodynamics and structural dynamics, this mapping is un-
certain and is perturbed by external disturbances. Moreover, in an earlier validation ex-
periment of a morphing wing prototype [20], a nonlinear phenomenon named backlash
was observed [21, 22]. Owing to the backlash, the output of the morphing mechanism not
only depends on the actuator inputs at the current instant but is also determined by the ac-
tuation history, leading to an undesirable hysteresis phenomenon [22, 23]. One promising
approach to robustly observe and regulate the motions of a physical system is vision-based
control, which has shown its effectiveness in aircraft position tracking [24] and inverted
pendulum stabilisation [25]. However, the effectiveness of vision-based control in dealing
with nonlinear hysteresis and wind disturbances remains unknown.

This Chapter proposes and experimentally validates an effective and adaptable online
performance optimisation architecture for active morphing wings. The main contribution
is threefold.

1. An online optimisation framework integrating an evolutionary optimisation strat-
egy with a global online-learned radial basis function neural network model for
global optimisation, which does not require local model excitation manoeuvres af-
ter offline training;

2. Realises the global optimal shape in the presence of backlash hysteresis, model un-
certainties, and external gust disturbances using a nonlinear adaptive control algo-
rithm supported by real-time computer vision sensing;

3. Validates the proposed architecture on a seamless active morphing wing demon-
strator with distributed sensing and control in an open jet wind tunnel.

This paper is organised as follows. Section III.3.2 formulates the problem. The optimi-
sation architecture is then designed in Sec. III.3.3. The optimised shape realisation using
a distributed vision-based control is proposed in Sec. III.3.4. The experimental setup and
results are presented in Sec. III.3.5 and Sec. III.3.6, respectively. Finally, conclusions are
drawn in Sec. III.3.7.

III.3.2. Preliminaries and Problem Formulation
This section describes the formulation of the online optimisation problem for themorphing
wing.

III.3.2.1. Morphing Wing
The active morphing wing considered in this research is illustrated in Fig. III.3.1¹. The
wing has six distributed translation-induced camber modules, allowing the independent
camber and spanwise twist morphing [20]. There are twelve servos (two per module)
embedded in the wing box, allowing the trailing-edge bottom skin to slide in chord-wise
and spanwise directions along a guided sliding interface. Elastomeric skin segments are

¹The project video can be found via https://www.youtube.com/watch?v=SdagIiYRWyA&t=319s

 https://www.youtube.com/watch?v=SdagIiYRWyA&t=319s
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integrated between the modules to reduce noise and drag. As shown in Fig. III.3.1, the
rotational motion of the servo is converted to the sliding motion of the skin by a ball joint
linkage system, which results in active morphing of the wing from its nominal NACA6510
shape [20].

Morphing modules

Actuator pair
(module 5)

Elastomeric skin

z

y xz

Sliding interface

Integrated actuator

Wingbox

Root clamp

Figure III.3.1: Morphing wing actuation mechanism and coordinate system.

III.3.2.2. Online Optimisation Problem
The goal of online shape optimisation is to find the most aerodynamically efficient wing
shape and angle of attack combination without altering the intended flight path of the
aircraft. This task is complicated by the uncertainties, unsteadiness, and nonlinearities in
aerodynamics. The wing shape is governed by a virtual shape input vector u ∈ Rq×1,
which will be elaborated in Sec. III.3.3.1. The wing angle of attack (AOA) is denoted as α.
The mappings from α,u to the lift and drag coefficients CL and CD are highly nonlinear
and depend on many uncertain parameters. The maximisation of lift-to-drag ratio CL

CD

results in reduced fuel consumption of the aircraft. Moreover, the right amount of lift
force must be generated to maintain level flight, which is determined by the target lift
coefficient CLt . Therefore, the objective of the optimiser is to find the set of inputs α,u
that maximises CL

CD
while meeting the target lift coefficientCLt

without violating the AOA
and actuation limits, which is formulated as

minimise
α,u

CL(α,u)
CD(α,u)

subject to CL(α,u) = CLt

α ∈ [αmin, αmax]

u ∈ [umin,umax]

(III.3.1)

This optimisation problem is nonlinear and non-convex because CL and CD are non-
linear and non-convex functions of α and u.

It is important to note that although the cost function is formulated as a nonlinear
convex cost function, the relationship between the predicted lift and drag coefficients is
non-convex and complex. The latter parameters depend on the angle of attack, α, and the
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virtual shape inputs, u. Therefore, although the relationship between CL, CL and J is
convex, the relationship between α, u and CL, CL is non-convex. This necessitates the
use of nonlinear, non-convex optimisers capable of interacting with global models.

III.3.3. Optimisation Architecture
To solve the online optimisation problem formulated in Sec. III.3.2.2, the input u is first
elaborated in Sec. III.3.3.1 using virtual input functions. This is followed by the cost
function design in Sec. III.3.3.2. The optimisation strategy, using the Covariance Matrix
Adaptation – Evolutionary Strategy (CMA-ES) and Radial Basis Function Neural Network
(RBFNN) onboard model are designed in Sec. III.3.3.3 and Sec. III.3.3.4, respectively. Fi-
nally, the overall optimisation architecture is presented in Sec. III.3.3.5.

III.3.3.1. Virtual Shape
The optimisation algorithm is augmented with virtual shape functions to ensure a smooth
spanwise representation of the wing shape. The virtual inputs are the parameters of an
approximation function that describe the wing shape utilising an input vector u ∈ Rq×1

instead of the actuator inputs. Thewing shape is normally represented by the trailing-edge
(TE) displacements at the twelve actuator locations z = [z1, z2, ..., z12]

T. These param-
eters can be chosen to be less than the number of actuators while still ensuring smooth
shape, as was shown in the previous Chapter, Chapter III.1. These virtual shape functions
have been used effectively in Chapter III.1 to augment the quadratic solver in the Incre-
mental Nonlinear Dynamic Inversion with the Quadratic Programming (INDI-QP-V) ap-
proach for simultaneous gust and manoeuvre load alleviation objective with smoothness
constraints.

In the context of the current wing shape optimisation approach, the virtual shape func-
tions have an essential role in decoupling the optimisation problem’s dimensionality from
the morphing wing’s input dimensionality, thereby reducing the computation load sub-
stantially.
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Figure III.3.2: Comparison of an elliptical distribution and 5th order Chebyshev polynomial approximation.

Consistent with Chapter II.2 and III.1, Chebyshev polynomials were chosen as the
parametric wing shape approximation function due to their nearly optimal property and
orthogonality [26]. The virtual inputs are the parameters of this polynomial function that
scale q basis shapes, which are described by the first q Chebyshev polynomials of the first
kind: Tq(x) = cos(q · arccos(x)), where q is a non-negative integer. These polynomials
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are orthogonal in the interval [−1, 1] and are re-scaled onto the [0, 1.80]m domain, where
1.8 m is the half-wing span. In other words, the five virtual inputs u1, u2..., u5 are the
coefficients of a fifth-order Chebyshev approximation of the spanwise camber distribution
function that describes the morphed wing shape. The order of the virtual shape function
was chosen to be q = 5 because it resulted in the greatest reduction in computational
loads without compromising the approximation power below acceptable levels for the
expected wing shapes. Fig. III.3.2 demonstrates that the 5th order Chebyshev polynomial
has sufficient approximation for an elliptical distribution of the 1.8 m wing span.

This distribution function is given as

z(y) =

5∑
i=1

uiTi(y) (III.3.2)

in which z is the trailing-edge (TE) vertical displacement as a function of the spanwise
location y (Fig. III.3.1). The local TE displacement zi at the i-th actuator is zi = z(yi),
where yi is the spanwise location of the actuator. The shapes described by these basis
polynomials and their contributions to the amount of camber at the actuator locations are
shown in Fig. III.3.3.
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Figure III.3.3: Virtual input basis functions.

Figure II.2.4 in Chapter II.2 shows that most reduction in the Root Mean Square Er-
ror (RMSE) is achieved using the first five q polynomials, and the approximation RMSE
is approximately 0.1 mm. In contrast, the reduction in RMSE for higher order (q > 5)
stagnates, but the computational load increases significantly. The following sections ex-
plain the choices for the optimisation strategy, using CMA-ES and the onboard model, us-
ing RBFNN within the optimisation framework. Concerning the cost of this optimisation
framework, the overall benefit of using the virtual shape functions is threefold, namely, (i)
a smaller, more efficient onboard RBFNN model can be used, which requires less time to
train and update, (ii) the RBFNNmodel can be evaluated faster, and (iii) the computational
cost to populate candidate solutions by CMA-ES is decreased. These aspects collectively
reduce the overall optimisation cost of the framework. More results regarding the RMSE
on the experimental data are discussed in Sec. III.3.6.3.
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III.3.3.2. Cost Function
The cost function is used to score the desirability of the system outputs CL, CD . It is
designed to maximise the lift-to-drag ratio while regulating the error between the actual
and the target lift coefficients, as presented in Eq. (III.3.3).

J(CL, CD, CLt
) = −CL

CD︸ ︷︷ ︸
efficiency

· k2
k1 + (CL − CLt

)2︸ ︷︷ ︸
deviation from lift target

(III.3.3)

The efficiency and lift target terms are multiplied such that a low cost can only be
reached when high efficiency and the correct amount of lift are achieved simultaneously.
A constant k1 = 1 × 10−4 is added to prevent singularities for small error values. The
constant k2 = 2× 10−5 serves to scale the cost function output to [−1, 0]. As an example,
the cost function for CLt

= 0.50 is shown in Fig. III.3.4.

Figure III.3.4: The cost function for CLt = 0.50.

It can be observed from Fig. III.3.4 that a solution that deviates from the target lift
coefficient is undesirable even if it provides low drag. In this research, the virtual inputs
and angle of attack bounds pose constraints on the inputs and are implemented directly
as constraints on the input space. By contrast, the TE displacement bounds and target
lift coefficient pose constraints on intermediate and output variables and are implemented
indirectly through the cost function scoring. Suppose the local TE displacement at any
actuator location is outside of the bounds. In that case, the cost of the associated inputs
becomes J = max(|z|)2 + CJ , in which CJ is a significant positive constant such that
the cost will always be higher than those of inputs that do not violate the constraints. The
square of the maximum absolute local TE deflection provides a cost gradient to aid the
optimiser in steering the solution back to the feasible space.
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III.3.3.3. Covariance Matrix Adaptation – Evolutionary
Strategy

To solve the nonlinear and non-convexmorphing wing shape optimisation problem, while
considering online calculation efficiency, the CMA-ES [27] is adopted to perform opti-
misation. CMA-ES is an evolutionary optimisation strategy for black-box optimisation
of nonlinear non-convex continuous problems. With sufficiently large population sizes,
CMA-ES has desirable global search performance [27]. CMA-ES iteratively samples pop-
ulations of candidate solutions from a multivariate normal distribution N (m,C), which
is uniquely identified by its mean m ∈ Rn and covariance matrix C ∈ Rn×n [28]. Based
on the returned costs of these candidate solutions, the mean and covariance matrix of the
next generation’s population are deterministically adapted. This process is repeated until
the variation of the cost function converges to below a set threshold.

With g the generational counter, the kth offspring from the subsequent generation g+1
is sampled from a multivariate normal distributionN , which is dependent on the current
generation’s mean search distribution value m(g), overall standard deviation or step size
σ(g), and covariance matrix C(g) as shown in Eq. (III.3.4).

x
(g+1)
k ∼ N (m(g), (σ(g))2,C(g)), for k = 1, . . . , λ (III.3.4)

The distribution of N (m(g), (σ(g))2,C(g)) is equal tom(g)+σ(g)N (0,C(g)). In Eq. (III.3.4),
m(g) shifts the centre of themultivariate normal distribution in an-dimensional space; σ(g)

scales the size of the distribution; C(g) adapts the shape of the distribution. During each
iteration of the algorithm, m(g),σ(g), and C(g) are updated based on the object parameter
variations. As shown in Eq. (III.3.5), the mean of the next generation is a weighted average
of the µ best scoring search points from the sample x(g+1)

1 , . . . ,x(g+1)
λ . In other words,

the centre of the next generation’s distribution is shifted in the average direction of the
best performing candidates:

m(g+1) =

µ∑
i=1

wi x(g+1)
i:λ (III.3.5)

The adaptation law for the covariance matrix is shown as

C(g+1) = (1− ccov)C(g) +
ccov
µcov

p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one update

(III.3.6)

+ ccov

(
1− 1

µcov

)
×

µ∑
i=1

wi

(
x(g+1)
i:λ − m(g)

σ(g)

)(
x(g+1)
i:λ − m(g)

σ(g)

)T

︸ ︷︷ ︸
rank-µ update

in which ccov and µcov are the learning rate for updating the covariance matrix and weight-
ing parameter between rank-one and rank-µ updates, respectively. The rank-µ update
uses information from previous generations to improve the reliability of the covariance
matrix estimator for small population sizes.
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The rank-one update exploits the directional information from past generations using
the evolution path p(g+1)

c , which is a sum of successive steps defined as

p(g+1)
c = (1− cc)p(g)c +

√
cc(2− cc)µeff

m(g+1) − m(g)

σ(g)
(III.3.7)

where cc is the learning rate for cumulation for the rank-one update; µeff is the variance
effective selection mass defined as

µeff =

(
µ∑

i=1

w2
i

)−1

(III.3.8)

The overall standard deviation σ(g) scales the size of the search distribution based on the
length of the evolution path compared to its expected length under random selection as

σ(g+1) = σ(g) exp

 cσ
dσ


∥∥∥p(g+1)

σ

∥∥∥
E ∥ N (0, I)∥

− 1

 (III.3.9)

in which cσ and dσ are the learning rate for the cumulation for the step size control and
a damping parameter, respectively. The scaling of the distribution with σ(g) can be used
to either broaden the distribution’s search space or to focus it. When an evolution path
is relatively long, the successive steps are roughly in the same direction and the step size
should be increased so that fewer iterations are needed to cover the distance. Conversely,
when the evolution path is short, the successive steps, at least partially, cancel out each
other and the step size should be decreased [28].

III.3.3.4. Onboard Model – Radial Basis Function Artificial
Neural Networks

To reduce the online objective function evaluation cost, a global surrogate model (also
referred to as the onboard model) is established to approximate the mappings from the
angle of attack and wing shape inputs to the lift and drag coefficient outputs using two
RBFNNs. These ANNs use RBFs as activation functions and are widely used as function
approximators, particularly suitable for establishing multivariate and nonlinear mappings
from multi-parameter, noisy, and scattered data sets [16].

The architectures of the two single-hidden-layer RBFNNs used in this research are
shown in Fig. III.3.5. Both of them use six inputs: the angle of attack α and the five virtual
inputs that describe the wing shape u1, . . . , u5. Their respective outputs are the lift and
drag coefficients CL and CD .

Equation (III.3.10) represents the hidden unit activations given by the basis functions
ϕj (e.g., Gaussian basis functions). These depend on the input activations from the previ-
ous layer x, and on the parameters µ and σj [16], where µ represents the RBF location in
Rq+1 and σj denotes the RBF radius.

ϕj(x) = exp

(
−∥x− µj∥2

2σ2
j

)
(III.3.10)
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Figure III.3.5: Single-hidden-layer radial basis function neural network architecture.

Both the centre locations and the radii of the RBF basis functions are determined by
the network training process. To train the onboard model, the adaptive gradient algorithm
(Adagrad) is used [29], which maintains and adapts one learning rate for each dimension
using historical data as

θt+1,i = θt,i −
η√

Gt,ii + ϵ
· gt,i (III.3.11)

in which gt,i is the gradient of the loss function w.r.t. parameter i at time t, and Gt,ii =∑t
τ=1 g

2
τ,i is the cumulative sum of the squares of the past gradients. The effect of Gt,ii

in Eq. (III.3.11) is that the effective learning rate is diminished over time. Since this di-
minishing depends on the parameter gradient histories, higher learning rates are used for
parameters relating to infrequent features, whereas lower learning rates are used for pa-
rameters relating to frequent features. This makes Adagrad well-suited for dealing with
sparse data.

The chosen onboard model approach using the trained RBFNN is consistent with the
approach used in Chapter II.2. Here it was also shown that the RBFNN onboard model
can generalise and adapt online to a secondary wing model, similar in configuration but
different aerodynamic baseline shape. This demonstrated the ability to generalise to un-
certainties in the wing model, making the structure suitable for global evaluation of the
experimental morphing wing model.

III.3.3.5. Optimisation Architecture and Algorithms
An overview of the optimisation architecture is shown in Fig. III.3.6. The left-hand side of
Fig. III.3.6 presents a fast model optimisation loop, which comprises three main parts: the
cost function (Sec. III.3.3.2), the optimiser (Sec. III.3.3.3), and the onboardmodel (Sec. III.3.3.4).
A pseudocode description of the online optimisation algorithm is given by Algorithm 1.

During each iteration of the optimisation procedure, the evolutionary optimiser gener-
ates a population of λ candidate solutions and queries the onboard model (RBFNNs) with
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Figure III.3.6: Online shape optimisation architecture diagram with inner optimisation loop and the correspond-
ing components marked in dark gray.

Algorithm 1: Online morphing shape optimisation.
Input: CLt

Output: CLm
, CDm

Initilialize: ϵ = 1.0
while running do

while calculating the running averages F̄xm , F̄ym do
while ϵ > 1× 10−6 do

Generate a population of λ candidates;
for k = 1, . . . , λ do

Compute candidate ĈLk
, ĈDk

using RBFNNs;
Evaluate cost function γk = J(ĈLk

, ĈDk
, CLt

);
end
γ = [γ1, . . . , γλ];
ϵ = max(γ)− min(γ);

end
Define the most promising candidate as the β-th that leads to min(γ);
Transform uβ → zref ;
ψref = αβ − ε;
Command ψref and zref ;

end
Transform F̄xm , F̄ym to CLm , CDm ;
Add CLm , CDm to training buffer;
Retrain RBFNNs;

end

their angle of attack andwing shape combinationsαk,uk , where k = 1, . . . , λ. In turn, the
onboard model predicts the steady-state lift and drag coefficients ĈLk

, ĈDk
resulting from

each of these inputs, and the cost function scores the desirability γk = J(ĈLk
, ĈDk

, CLt
)

of these predicted outputs. Subsequently, the scores of the evaluated input combinations
are used by the optimiser to generate a more promising population of input combinations.
This cycle is repeated with a frequency of approximately 15 Hz, depending on the pop-
ulation size and available computing power. This process continues until the optimiser
converges onto a single most optimal α,u combination, whose index is defined as β. This
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input combination is then actuated on the real system and the resulting measurements are
subsequently used to improve the onboard model.

Since the zero position of the turntable did not coincidewith the zeroAOA, the turntable
angle to be commanded to realise any true aerodynamic angle of attack was unknown
beforehand. To address this challenge, the angular difference ε between the commanded
turntable angleψref and the aerodynamic angle of attackα, was estimated usingmeasure-
ments of a sweep in AOA with the wing jig (baseline) shape and the iterative approach
outlined in Algorithm 2. During this procedure, the turntablemisalignment constant εwas
iteratively estimated by matching the measurement-based estimated zero-lift AOA α̂CL=0

to the theoretical zero-lift AOA α∗
CL=0. This theoretical zero-lift AOA was determined

to be −6.5570 degrees using the 3D panel viscous solver XFLR5 v 6.48. This estimation
procedure was performed once at the beginning of the experiment.

The optimisation problem is required to optimise the angle of attack and virtual in-
puts for a given target lift coefficient while maximising the steady-state lift-to-drag ratio.
Therefore, a limited but considerable time window could be reserved to find the solution
iteratively. The selection of the population size was made in the effort to utilise the given
time window for calculation fully. With the selected system and population size, con-
vergence was achieved on average within 10.7s and 7.5s on Intel Core i7-4510U Central
Processing Unit (CPU), 8.00 GB Random-access Memory (RAM) and Intel Xeon W-2223
CPU 3.60 GHz, 16.00 GB RAM, respectively. The optimiser’s convergence robustness was
evaluated in Chapter II.2, Sec. II.2.3.2 (Fig. II.2.13) and discussed further in Sec. III.3.5.3 for
the experimental system and chosen optimiser configuration.

Algorithm 2: Turntable misalignment estimation.
Input: ψ, Fxm

, Fym
, α∗

CL=0

Output: ε
Initilialize: ϵ = 1.0, ε = 1.0
while ϵ > 1× 10−8 do

Adjust ε based on error ϵ: ε = ε+ 0.5 · ϵ;
Calculate angles of attack α = ψ + ε;
Transform Fxm

, Fym
to CL, CD using α;

Estimate dCL/dα;
Estimate zero lift angle of attack α̂CL=0;
Update error: ϵ = α̂CL=0 − α∗

CL=0;
end

Using the ε estimation, the most promising aerodynamic AOA αβ is converted to an
equivalent turntable angle reference ψref = αβ − ε. In addition, the virtual shape inputs
uβ are transformed to the reference TE displacements at the twelve actuator locations
zref ∈ R12. Then, the reference table angle and trailing edge displacements are sent to
the turntable and morphing controllers, respectively. The morphing controller uses the
TE displacement feedback zm from a vision system to steer the TE displacements to their
reference values by controlling the morphing actuators θ. The vision system and the mor-
phing controller will be elaborated in Sec. III.3.4.

After the controllers have converged and the intended wing shape and angle of attack
are actuated on the system, the resulting aerodynamic forcesFxm , Fym aremeasured using
a force balance which is mounted to the turntable. The 40-second running averages of the
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resulting measurements denoted as F̄xm , F̄ym are then transformed to the lift and drag
coefficients CLm , CDm using an α-dependent nonlinear mapping. Both the inputs used
and the resulting aerodynamic coefficients are added to the training set, which is kept
in memory. Finally, the loop is closed by training the onboard model, which results in
updated parameterswi+1.

III.3.3.6. Summary and remarks
It is important to note that although the cost function is formulated as a nonlinear convex
cost function (see Fig, III.3.4 forCLt

= 0.50), the relationship of the predicted lift and drag
coefficients is non-convex, and depend on the angle of attack, α, and the virtual shape
inputs, u. For this reason, although the relationship between CL,CD and J is convex,
the relationship between α, u and CL,CD is non-convex. This necessitates the use of
nonlinear, non-convex optimisers capable of optimising global models.

Furthermore, given that the aerodynamicmodel onwhich the onboardmodel is trained
is data-driven, candidate shape and angle of attack solutions cannot be formulated explic-
itly for the given lift coefficient. Therefore, the candidate solutions are proposed to be
evaluated iteratively in the inner optimisation loop. This brings the importance of the
second part, namely the need for a low-cost data-driven onboard model which can be up-
dated globally in an outer loop using the measurements from the actual shapes evaluated
online. For this purpose, the low-cost RBFNN is proposed with local sensitivity to mea-
surement updates and the capability to be trained on the actual morphing wing model in
a real-world experiment.

In summary, the optimisation architecture shown in Fig. III.3.6 two essential com-
ponents, namely, the fast inner optimisation loop and the slower outer loop, which are
responsible for updating the global RBFNN model based on new measurements of the lift
and drag coefficient obtained from the optimised shapes on the experimental wing model.
The fast inner loop efficiently evaluates the candidate solutions of virtual shapes and an-
gles of attack for a given target lift coefficient. Given the current optimisation structure
with the fast inner optimisation loop and the synchronisation architecture discussed in
Sec. III.3.5.2, the CMA-ES lends itself suitable for implementing a parallel query approach.
In this approach, the computational time is further reduced by implementing a query of
multiple candidate solutions on the low-cost RBFNN model. This completes the architec-
ture.

III.3.4. Optimised Shape Realisation – A Vision-Based
Control Approach

A vision-based control approach is adopted to realise the optimised shape on the real
physical system while resisting external disturbances, model uncertainties, and mechan-
ical imperfections. The distributed vision system is described in Sec. III.3.4.1, while an
adaptive nonlinear shape control algorithm is presented in Sec. III.3.4.2.
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III.3.4.1. Vision System
Vision-based Shape Reconstruction
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Figure III.3.7: Coordinate systems and vision-based wing shape reconstruction.

A distributed vision system is developed to provide the knowledge of the morphing
wing’ shape to the controller in real-time. The variable of interest to the controller is the
local vertical displacement of the wing trailing edge with respect to a body-fixed coordi-
nate system. The body-fixed coordinate system FB is chosen to be near the root of the
wing with an origin OB (Fig. III.3.7). The trailing edge displacement is reconstructed in
the FB frame in real-time utilising a 5-view vision-based tracking system. Each morph-
ing module is fitted with a pair of active infrared (IR) light-emitting diodes (LEDs), with
3 additional markers for the definition of FB . An overview of the vision-based tracking
pipeline is shown in Fig. III.3.8.

3D Reconstruction
The n-view 3D reconstruction problem is concerned with finding the optimal estimation
of an object X̂ in a 3D global coordinate frame (i.e., locations in the x, y and z-axes), which
is observable in noisy x̄1, x̄2, . . . , x̄n points correspondence in n camera views. The point
correspondences x̄i are generally defined by markers in u, v coordinates of a 2D image
plane and transformed to a camera fixed reference frame FC via triangulation [30].

Several successive image processing steps are implemented to refine the observation
of point correspondences before this process. The most common setup for triangulation is
a calibrated 2-view stereo camera setup, which was demonstrated in a previous study for
reconstructing flexible wingmotion [31]. However, the tracking accuracy and redundancy
can be improved by adding more distributed camera observations. As highlighted in [31],
this is particularly beneficial for objects subject to adverse environmental conditions (such
as disturbing flow conditions and mechanical vibrations), where calibration drift can be
accumulated over time. Therefore, a five-camera setup was adopted in this research.
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Figure III.3.8: Real-time vision-based tracking pipeline.

The principle of n-view reconstruction relies on back-projecting the 3D point onto the
respective camera views, allowing to define a minimisation problem for the re-projection
error, E =

∑n
k=1 ||xk − x̄k||2. The n-view minimisation problem is commonly solved by

an expanded linear system of equations similar to singular value decomposition (SVD) in a
direct linear transform (DLT) procedure [32]. Global optimisation methods can be applied,
such as algebraic, matrix inequality, and the L∞ approach [33]. More computationally
intensive methods also exist, such as bundle adjustment, where the camera calibration
parameters are not known a priori and are included in the minimisation problem [30, 32].
This research adopted a proprietary 3D point cloud reconstruction engine in the OptiTrack
API system [34]. Multi-camera calibration was performed by a wanding process, resulting
in an average calibration error of 0.25 mm for all cameras.

Coordinate Transformation
As illustrated in the 3D view of Fig. III.3.9, a coordinate system transformation from FC

to FB is required for shape reconstruction. This transformation is performed by a trans-
lation, followed by 3-axis rotations in pitch, roll, and yaw axes (θ, ϕ, ψ). It is noteworthy
that FB is attached to the wing and thus rotates along with the turntable. Therefore,
the transformations have to be performed continuously in real-time. The applications for
processing, reconstructing, and accessing the data are written in a low-level C++ program-
ming language for performance enhancement. The average total processing latency of the
complete processing pipeline (Fig. III.3.8) was in the range of 5-7 ms, which is smaller than
the control sampling interval (16.67 ms).

III.3.4.2. Nonlinear Adaptive Vision-Based Control
The objective of the morphing controller is to steer the distributed actuators to morph the
wing to the optimal shape commanded by the optimiser, using the real shape reconstructed
by the vision system as a feedback signal (Fig. III.3.6).
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Figure III.3.9: A 3D orientation of the cameras with respect to the morphing wing positioned in the wind tunnel.

The morphing wing can be represented by the following nonlinear multi-input multi-
output system:

ẋ(t) = f(x(t), u(t)) + d(t), y(t) = h(x(t)) (III.3.12)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp are the system state, input, and measurable output,
respectively. d(t) ∈ Rn is the external disturbance vector. For this morphing control
problem, the output signal y is provided by computer vision. f : (Rn, Rm) → Rn and
h : Rn → Rp are assumed to be Lipschitz continuous on their domains.

To make the controller constantly adapt to changes in the system and environment,
online system identification is necessary. A precise online identification method for dy-
namic systems that only requires output feedback and less computation power than neural
networks has been proposed in [35]. This method identifies the so-called incremental [36]
model using sampling interval-based linearisation and discretisation.

Theorem 1. [35] If the nonlinear system given by Eq. (III.3.12) is observable, then un-
der sufficiently high sampling frequency, the output tracking error increment ∆et+1 =
∆yt+1 − ∆yref,t+1 can be determined uniquely from the observations and control inputs
over a sufficiently long time horizon, [t−M + 1, t], M ≥ (n+ p)/p:

∆et+1 ≈ Ft∆et,M +Gt∆ut,M , (III.3.13)

where Ft ∈ Rp×Mp is the augmented transition matrix, and Gt ∈ Rp×Mm is the aug-
mented input distribution matrix. Also, ∆ut,M = [∆uTt ,∆u

T
t−1, ...,∆u

T
t−N+1] ∈ RNm

and ∆et,M = [∆eTt ,∆e
T
t−1, ...,∆e

T
t−N+1] ∈ RNp are the input and tracking error data

of N previous samples, respectively. Using Eq. (III.3.13), the nonlinear dynamic inver-
sion control in its discrete form can be applied, which regulates the tracking error to zero
asymptotically in spite of model uncertainties, external disturbances, and backlash.
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III.3.5. Experimental Design and Setup
To assess the performance of the proposed online shape optimisation architecture, an ex-
periment was conducted with the SmartX-Alpha morphing wing at the Open Jet Facility
(OJF) wind tunnel [37].

Wind tunnel test section

Optimizer

Synchronization [1kHz]

[200 Hz]

Servo pair

RS485 [60 Hz]

Control box

Clamp

USB hub

DSIM / Ethernet

Vision system

Elastomer

[1 kHz]

.NET
[250 Hz] [60 Hz]

[200 Hz][200 Hz]

Controller

Figure III.3.10: Experimental apparatus with various hardware, software, and vision-based control components.
The green, red, and blue lines represent mechanical, electrical, and synchronisation paths, respectively.

III.3.5.1. Apparatus
The experimental apparatus is shown in Fig. III.3.10. The system consists of the SmartX-
Alpha morphing wing, mounted vertically on an actively controlled turntable system, and
placed in the wind tunnel test section. The operational point was selected as V = 15m/s.
The wing is clamped on a three-axis external balance measurements system, allowing
to measure root reaction forces and moments at 1000 Hz. The shape command and the
resulting lift distribution are achieved by twelve high-performance servos connected to
an array of RS-485 devices communicating serially via the RS-485 protocol. The update
rate is constrained by the physical USB host interface with a fixed time delay of 15 ms. The
actuation angles of the servo are constrained to ±25◦ as not to exceed the physical limits
of the morphing system. The online optimisation was carried out on Intel Xeon W-2223
CPU 3.60 GHz Central Processing Unit (CPU) system, 16.00 GB Random access memory
(RAM).

An array of IR-LEDs of type 3528 850NMWLP PLCC2, characterised by 850 nm wave-
length, is installed on the wing bottom surface and powered by a 12V direct current
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(DC) power supply. The brightness is actively controlled by the IRF520 Power metal–
oxide–semiconductor field-effect transistor (MOSFET) dimmer circuit. Five Primex41 4.1
megapixel IR cameras are responsible for marker tracking at a frame rate of 250 frames
per second (FPS) [34]. The shape-reconstruction algorithm is written in C++ and deployed
on Dell Optiplex 7400 i5-8500 3.0 GHz CPU system, with 8.0 gigabytes (RAM).

To continuously control the wing AOA, a real-time turntable control loop has been im-
plemented. The Franke turntable of type LTB 400 is equipped with a brushless TC-60-1.3
motor with encoder and braking system. An MSR-40-MOR rotary encoder measures the
table angle. The turntable is controlled by a proportional–integral–derivative algorithm
whose parameters are tuned to provide smooth table angle command tracking while sat-
isfying servo rate and position limits. The servo commands are communicated via RS232
protocol over a USB controller. A .NET-based software control interface is developed to
set control parameters and receive the encoder feedback signal, which is interfaced to the
synchronisation framework in real-time at 200 Hz. The control interface acted only as the
connecting interface between the servo control hardware and the data synchronisation
framework. The actual servo control was achieved by the embedded servo controller of
the LTB 400 turntable.

III.3.5.2. Real-Time Synchronisation
Various hardware and software components must cooperate coherently and harmoniously
in real-time. To facilitate this, a distributed data-sharing architecture was developed based
on the decentralised communication principle, which allows parallel integration of hard-
ware and software components in various programming languages (Python, Matlab, Simulink,
C++, .NET, etc.) and various communication protocols (RS485, Ethernet, Modbus, etc.).
The architecture software is developed in C++ with the real-time D-SIM framework, con-
necting several PC nodes over a local Ethernet network [38], and enabling synchronisation
as depicted in the bottom part of Fig. III.3.10. This approach provides several key benefits
over conventional centralised systems: 1) running hardware and software processes in
parallel at non-uniform sampling rates with a 1 kHz synchronisation of shared variables
between processes; 2) scalability and easy-to-be modified system structure; 3) mixing var-
ious programming languages and protocols for various experimental components.

III.3.5.3. Optimisation Configuration
The CMA-ES algorithm was used to solve the optimisation problem. A relatively large
population size of λ = 150 was used to improve the global search performance of the al-
gorithm. Themiddle of the input domainwas used as the initial solution point x0. To allow
global convergence, the initial standard deviationσ0 and the scaling of the input variables
were selected such that x0 ± 2σ0 spanned the width of the domain in each of the input
axes. A suitable cost function variation convergence threshold was found at 1×10−6, such
that the optimiser yielded adequate convergence considering the computational load. The
computational time was further reduced by a parallel query of 150 candidate solutions, im-
proving the approach presented in Chapter II.2. With the selected system and population
size, convergence was achieved on average 7.5s on Intel Core i7-4510UCPU, 8.00 GB RAM
and Intel XeonW-2223 CPU 3.60 GHz, 16.00 GB RAM, which was used for the experiment.
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Figure III.3.11: Control flow and timeline of the experimental system.

The onboard model on which the candidate solutions from the optimiser are evaluated
comprises two single-hidden-layer RBFNNs. These networks are continuously improved,
with training being performed each iteration using training data kept in memory in the
replay buffer. After balancing approximation power and computational load, the lift and
drag coefficient networks (Fig. III.3.5) was configured with 500 and 940 neurons, respec-
tively. The higher neuron count in the drag coefficient network is necessary for capturing
the higher degree of nonlinearities and spanwise distribution dependencies in drag. Dur-
ing training, the RBF centre locations, radii, network weights, and the bias parameter are
updated using the Adagrad algorithm with a mean squared error loss function. The initial
learning rates for both networks were configured as 0.01.

The training data, comprised of previously evaluated inputs and their lift and drag
coefficients, is stored in a buffer. In this research, replacing old data points when the buffer
is full is based on the nearest neighbour search on all points in the buffer, inspired by the
coverage maximisation strategy presented in [39]. The data point with the lowest mean
euclidean distance to its ten closest neighbours is replaced with the latest available data
point. This replacement strategy aims to maximise the coverage domain of the training
set by replacing the data points in regions of high data density and holding onto samples
in data scare regions of the domain.

Because of the backlash effects in the actuation mechanism, the required actuator an-
gles for any given wing shape are not unique and are unknown beforehand. Therefore,
limits were imposed on the commanded local z-displacements of the trailing edge at the
actuator positions z1, z2, . . . , z12. The maximum absolute displacement achievable at any
actuator position is dependent on the actuation of the neighbouring actuators. Actuator
pairs that deflect in unison can effectuate larger trailing-edge displacements than actuator
pairs that deflect in opposite directions. The local vertical displacements allowed for the
optimiser were selected as ±10 mm.



III.3.6. Experimental Results and Discussion

III.3

253

III.3.5.4. Experimental Procedures
The experimental control flow is shown in Fig. III.3.11, responsible for the operation of
various system components during the experiment. The order and measurement condi-
tions of the performed runs are shown in Table III.3.1. The three types of runs performed
are baseline, wandering, and optimisation. The baseline runs are AOA sweep with a fixed
(jig) wing shape to establish a performance baseline. During the wandering phase runs,
pseudo-random (PR) inputs were actuated on the system to explore the input space for
onboard model identification. Throughout the optimisation runs, the optimal angles of
attack and wing shapes established by the optimiser were commanded to maximise the
lift-to-drag ratio.

Table III.3.1: Experiment test matrix, measurement with the angle of attack bias in grey (PR = Pseudo-Random).

CLt
α wing shapes type no. of samples

- sweep jig shape baseline 18
- PR PR wandering 150
0.65 optimal optimal optimisation 15
- sweep jig shape baseline 18
- PR PR, reduced bounds wandering 57
0.40 optimal optimal optimisation 30
0.75 optimal optimal optimisation 30
0.90 optimal optimal optimisation 40

III.3.6. Experimental Results and Discussion
In this section, the experimental results are presented and discussed. First, a perfor-
mance baseline is established, and the wandering phase measurements are presented in
Sec. III.3.6.1. Then, in Sec. III.3.6.2, the results from online optimisation forCLt

= 0.65 are
elaborated upon. Finally, experimental data-driven optimisation predictions are shown in
Sec. III.3.6.3 for a wider range of target lift coefficients.

III.3.6.1. Baseline and Wandering Phase
A performance baseline was established by measuring the aerodynamic forces of the wing
jig shape at various angles of attack. This wing jig shape was realised by performing a dou-
blet manoeuvre without wind. Subsequently, forty-second averaged force measurements
were taken at table angles from−18 to 10 degrees in increments of two degrees at a wind
speed of 15 m/s.

The performance baselinewas established by interpolating the jig shapemeasurements
with a 16th degree polynomial. This was done to provide a sufficient approximation of the
region between 0.4 and 1.2 target lift coefficient. Since additional data was used to con-
struct the polynomial outside of the shown interval in Fig. III.3.12, no oscillations (Runge’s
phenomenon) were encountered in the evaluated target lift coefficient interval [0.2-1.2].

Both the jig shapemeasurements and the fittedmodel are shown in Fig. III.3.12. During
the wandering phase, the actuation space was explored with pseudo-random inputs. As
shown in Fig. III.3.12, naturally, the performances of the pseudo-randomwandering inputs
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Figure III.3.12: Wing jig shape baseline performance measurements (orange dots), wing jig shape performance
fitted model (orange line), and performance measurements from pseudo-random exploration (blue dots).

are distributed around the jig shape performance curve. While the jig shape curve serves
as a baseline, the distribution of the wandering phase performances roughly indicates the
physical bounds of the attainable performance with active morphing for SmartX-Alpha.

III.3.6.2. Online Optimisation
After the first 150 wandering phase measurements, 15 iterations of online wing shape op-
timisation were performed with a target lift coefficient CLt

= 0.65. The resulting lift and
drag coefficient measurements are shown in Fig. III.3.13. During the first six iterations, the
discrepancies between the targeted and the measured lift coefficients are relatively large,
i.e., ±0.25. At the same time, the measured drag coefficients also fluctuate considerably.
This is to be expected, as the lift-induced drag dominates the total drag. Furthermore, these
initially evaluated wing shapes are suboptimal, attributed to the observation of increased
amounts of camber near the root and tip. While the true optimal shape is unknown, the
amounts of camber at those locations are expected to decrease for constructing a nearly
elliptical optimal lift distribution.

After iteration six, the measured lift coefficient converges to its target. Moreover,
Fig. III.3.13 shows that the wing shape and AOA combinations evaluated from iteration
seven onward not only realised CLt

but also achieved a lower CD . In other words, the
executed wing shapes are more efficient, as indicated by the positive lift-to-drag ratio
increase percentage. The most desirable performance was measured for the input combi-
nation evaluated during iteration 12 with CL = 0.642. The measured lift-to-drag ratio at
this iteration was 10.015, corresponding to a 7.8 % drag reduction compared to the wing
jig shape at the same CL.

The wing shape evaluated at iteration 12 is shown in Fig III.3.14. This shape comprises
maximum positive camber between 1.4 and 1.6 m from the wing root (corresponds to
module 5), a steep decrease at the wing tip, and a gradual reduction of the local camber
towards the root end of the wing. It is mainly the reduction of the local camber near
the wing ends, which is supposed to reduce the strength of the wing tip vortices, that
results in the observed improvement in the aerodynamic efficiency. These vortices result
from the spanwise flow components caused by the ”leaking” of high-pressure air from
the bottom side of the wing around the wing tips towards the lower pressure regions on
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Figure III.3.13: Measured lift and drag coefficients, and selected wing shapes from online optimisation with a
target lift coefficient of 0.65 for 15 iterations.

Figure III.3.14: Shape evaluated at iteration 12 during online optimisation with a target lift coefficient of 0.65.

the upper wing surface. Nevertheless, the optimal location of the maximum camber is
expected to be between the wing root and the centre of the wing, which corresponds to an
interpolation between the elliptical distributions associated with wings with one and two
free ends. There, it is suspected that even though the given shape already offers a 7.8 %
drag reduction over the wing jig shape for this target lift coefficient, even more efficient
wing shapes exist.
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An advanced, efficient wing shape is predicted using the measurements from the sec-
ond wandering phase. After the first optimisation run, the zero angles of the turntable was
reset by reconfiguring the turntable hardware and software as part of the shut-down and
start-up procedure. The shift in the turntable zero position was approximated by match-
ing the force balance readings to earlier established benchmarks through variation of the
table angle. However, later analysis revealed this approximation method to be less accu-
rate than was expected. Post-processing of the measurements using Algorithm 2 showed
that the shift in the table angle zero position was overestimated by approximately 1.6 de-
grees. As a result, the accurate AOA and the AOA-dependent lift and drag coefficients
of the second wandering phase were unintentionally biased, affecting the performance of
the later optimisation runs negatively. Nevertheless, more accurate optimal wing shape
predictions are achieved by correcting these biases in post-processing. These results are
presented in Sec. III.3.6.3.

III.3.6.3. ExperimentalData-DrivenOptimisationPredictions
To make an improved estimation of the optimal shape and its corresponding drag reduc-
tion and to make a more general prediction about the optimal wing shapes at other target
lift coefficients, the online training was simulated using experimental data collected dur-
ing wandering phases. In post-processing, the samples measured after the AOA bias was
introduced in the turntable were corrected. These samples were then fed to the optimi-
sation algorithm on a per-sample basis to simulate the wandering phase experiment. A
validation subset of samples was used to estimate the predictive accuracy of the trained
model.

When CLt
= 0.65, the optimal wing shape as computed by the optimiser on the

trained onboard model, was shown in Fig. III.3.15. With an AOA of 0.8 degrees, the pre-
dicted lift-to-drag ratio of this shape is 10.35. This corresponds to an 11.1 % drag reduction
compared to the wing jig shape. Furthermore, the shape shown closely represents the ex-
pected optimal shape described in Sec. III.3.6.2, with a gradual reduction of airfoil camber
towards the free wing tip end and a more moderate amount of camber reduction at the
root end as a result of pressure leakage at the root intersection.

Figure III.3.15: Experimental data-driven optimal shape prediction for CLt = 0.65.
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The predictive accuracy of the trained onboard model was evaluated using error mea-
sures computed on the validation data set. The RMSE and their normalised counterparts
are shown in Table III.3.2. The normalisations were performed using the domain width
of the corresponding output variables, i.e., NRMSE = RMSE/(ymax − ymin). Table III.3.2
shows that the NRMSE values of the lift and drag coefficient RBFNN models are close to
each other. By contrast, the lift-to-drag ratio NRMSE is higher because the lift-to-drag ra-
tio is not approximated with a dedicated neural network but by the ratio of two estimated
outputs. Nevertheless, based on the relatively small training data set, the onboard model
can predict the lift and drag coefficients of the validation data set samples with an average
prediction error of approximately 2.5 % of their respective domain widths.

Table III.3.2: Model error measures on the validation data set.

RMSE [-] NRMSE [%]
CL 0.0147 2.34
CD 0.0026 2.50
L/D 0.2818 7.75

To reveal the trend in the estimated optimal wing shape, shape optimisation was also
conducted for target lift coefficients of 0.35, 0.50, and 0.80. The predicted optimal shapes
for these lift coefficients are shown in Fig. III.3.16. Generally, the maximum amount of
camber morphing is commanded at approximately one-quarter span, with a gradual re-
duction approaching theminimum camber limit towards thewing tip. For higher target lift
coefficients, the area under the virtual shape curves, which can be considered the overall
amount of camber, is increased.
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Figure III.3.16: Experimental data-driven optimal shape predictions for four target lift coefficients.
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For active camber morphing airfoils, the amount of lift generated can be changed with
variations of both the AOA and the airfoil camber. Hence, multiple combinations of the
AOA and camber morphing can be employed to realise any given CLt . However, due to
the underlying aerodynamics, these different solutions will not necessarily come with the
same drag penalties. Computational Fluid Dynamics (CFD) simulations for active cam-
ber morphing airfoils have shown that the trailing-edge deflection for the best lift-to-drag
ratio increases with increasing lift coefficients [40]. Moreover, in the case of a three-
dimensional distributed active camber morphing wing, CLt can be realised with different
combinations of the AOA and the spanwise camber distribution. Earlier wind tunnel ex-
periments on SmartX-Alpha have shown that for a uniform spanwise camber morphing,
the optimal amount of trailing-edge displacement also increases with increasing lift coeffi-
cients. Therefore, the trend of increasing the overall camber with increasingCLt

conforms
to the expectations.

As long as the morphing limits are not reached, both the best overall amount of camber
and the ideal spanwise lift distribution, which is elliptical for induced drag reduction, can
be achieved simultaneously. Comparing the camber distributions for CLt

= 0.35 and
CLt = 0.50, the largest difference between the two distributions is a flat increase of camber
along the entire wing span. For the CLt = 0.50 distribution, the 4th and 5th servo units
have already reached their upper limits. Consequently, for CLt

= 0.65 and CLt
= 0.80,

no flat camber increases across the span are observed, but rather reshaping of the spanwise
distribution occurs. This can be explained by the tradeoff between increasing the overall
camber for achieving CLt

and retaining an ideally shaped spanwise lift distribution when
the morphing saturation limit is locally reached.

Table III.3.3: Angles of attack and aerodynamic coefficients corresponding to predicted optimal wing shapes.

CLt
[-] CD [-] L

D [-] α [deg] CD reduction [%]
0.35 0.02762 12.67 -2.50 19.8
0.50 0.04188 11.94 -1.05 17.4
0.65 0.06282 10.35 0.81 11.1
0.80 0.09023 8.87 2.97 6.5

The lift and drag coefficients and the angles of attack of the predicted optimal shapes
are given in Table III.3.3, which proves that over 6.5 % of drag reduction has been suc-
cessfully reached for all the tested target lift coefficients. It can be seen from Table III.3.3
that higher CD reductions are achieved for lower target lift coefficients. As mentioned
before, the relatively highly cambered baseline wing shape (NACA6510) is naturally effi-
cient at inducing higher lift coefficients. Consequently, the wing can benefit more from
active morphing for lower target lift coefficients. In addition, for a lower CLt

, the associ-
ated drag is also lower, meaning that the relative error of the drag coefficient prediction
becomes larger, and the maximum lift-to-drag ratio may become optimistic.

Due to experimental time constraints, the measured data set is relatively small but
adequate for demonstrating the effectiveness of the proposed optimisation architecture. In
the future, with more data, even higher-accuracy neural network models could be trained
to enable more accurate evaluations for the highest achievable drag reductions.
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Finally, the current optimisation structure allows the implementation and development
of other optimisers, which can be implemented with the same black-box data structure in
the inner loop, using a similar parallel approach as with the parallel query of CMA-ES
candidate solutions.

III.3.7. Conclusions
An online black-box shape optimisation architecture for actively distributed camber mor-
phing wings has been proposed and experimentally validated. Compared to the unmor-
phed wing base shape, a drag reduction of 7.8 % was achieved on the SmartX-Alpha
demonstrator for a target lift coefficient of 0.65. For a wide range of target lift coeffi-
cients, the predicted drag reductions vary between 6.5 % and 19.8 %, with higher drag
reductions associated with lower lift coefficients.

The ability of the proposed architecture to realise the best wing shape for various
lift coefficients online eliminates the need for model excitation manoeuvres at every trim
condition, as is characteristic of existing grey-box methods employing local models.

Furthermore, with the inner and outer loops, the online optimisation structure pre-
sented in the current Chapter allows the implementation and development of other opti-
misers, which can be implemented using the same black-box model in the inner loop. It is
recommended to investigate Hyperparameter Optimisation (HPO) strategies of the neural
network parameters further to enhance the prediction performance of the RBFNN model.

Finally, by virtue of its black-box nature, the proposed optimisation architecture shows
promising potential for application to generic morphing wing platforms. Chapter II.2
showed how the RBFNN onboard model could generalise and adapt online to a secondary
wing model, similar in configuration but with different aerodynamic baseline shapes.

For future applications to real-world commercial aircraft, the external force-balance,
the vision system used in the experimental setup, and the optimisation architecture can
be adopted onboard with embedded GPU computational units, such as the Jetson AGX
TX2/Xavier and real-time systems target machines such as the Speedgoat [41, 42]. These
features make the proposed optimisation architecture effective and practical for achieving
sustainable aviation.

References
[1] T. Mkhoyan, O. Ruland, R. De Breuker, and X. Wang, “On-line Black-box Aerody-

namic Performance Optimization for a MorphingWing with Distributed Sensing and
Control,” In Review at IEEE Transactions on Control Systems Technology, 2021.

[2] T. A. Weisshaar, “Morphing aircraft systems: Historical perspectives and future chal-
lenges,” Journal of Aircraft, vol. 50, pp. 337–353, mar 2013.

[3] D. Lentink, U. K. Müller, E. J. Stamhuis, R. De Kat, W. Van Gestel, L. L. Veldhuis,
P. Henningsson, A. Hedenström, J. J. Videler, and J. L. Van Leeuwen, “How swifts
control their glide performance with morphing wings,” Nature, vol. 446, no. 7139,
pp. 1082–1085, 2007.



III.3

260 References

[4] M. Jacobsen, “Real time drag minimization using redundant control surfaces,”
Aerospace Science and Technology, vol. 10, no. 7, pp. 574–580, 2006.

[5] Y. Ferrier, N. T. Nguyen, and E. Ting, “Real-Time Adaptive Least-Squares Drag Min-
imization for Performance Adaptive Aeroelastic Wing,” in 34th AIAA Applied Aero-
dynamics Conference, (Washington, D.C.), American Institute of Aeronautics and As-
tronautics, June 2016.

[6] N. Nguyen, N. B. Cramer, K. E. Hashemi, E. Ting, M. Drew, R. Wise, J. Boskovic,
N. Precup, T. Mundt, and E. Livne, “Real-Time Adaptive Drag Minimization Wind
Tunnel Investigation of a Flexible Wing with Variable Camber Continuous Trailing
Edge Flap System,” in AIAA Aviation 2019 Forum, (Dallas, Texas), p. 3156, AIAA, jun
2019.

[7] N. Nguyen and J. Xiong, “Real-TimeDrag Optimization of Aspect Ratio 13.5 Common
Research Model with Distributed Flap System,” in AIAA Scitech 2021 Forum, (virtual
event), p. 69, AIAA, January 2021.

[8] J. Snyman, Practical Mathematical Optimization: An Introduction to Basic Optimiza-
tionTheory and Classical and New Gradient-Based Algorithms, p. 24. 233 Spring Street,
New York, NY 10013, USA: (Springer Science and Business Media, Inc., 2005.

[9] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances and future
challenges,” Swarm and Evolutionary Computation, vol. 1, no. 2, pp. 61–70, 2011.

[10] W. Gong, A. Zhou, and Z. Cai, “A Multioperator Search Strategy Based on Cheap
Surrogate Models for Evolutionary Optimization,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 5, pp. 746–758, 2015.

[11] J. L. Chávez-Hurtado and J. E. Rayas-Sánchez, “Polynomial-Based Surrogate Model-
ing of RF and Microwave Circuits in Frequency Domain Exploiting the Multinomial
Theorem,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12,
pp. 4371–4381, 2016.

[12] W. Zhang, F. Feng, J. Jin, and Q.-J. Zhang, “Parallel Multiphysics Optimization for Mi-
crowaveDevices Exploiting Neural Network Surrogate,” IEEEMicrowave andWireless
Components Letters, vol. 31, no. 4, pp. 341–344, 2021.

[13] R. G. Regis, “Evolutionary Programming for High-Dimensional Constrained Expen-
sive Black-Box Optimization Using Radial Basis Functions,” IEEE Transactions on Evo-
lutionary Computation, vol. 18, no. 3, pp. 326–347, 2014.

[14] B. Liu, Q. Zhang, and G. G. E. Gielen, “A Gaussian Process Surrogate Model Assisted
Evolutionary Algorithm for Medium Scale Expensive Optimization Problems,” IEEE
Transactions on Evolutionary Computation, vol. 18, no. 2, pp. 180–192, 2014.

[15] J. Luo, A. Gupta, Y.-S. Ong, and Z. Wang, “Evolutionary Optimization of Expensive
Multiobjective Problems With Co-Sub-Pareto Front Gaussian Process Surrogates,”
IEEE Transactions on Cybernetics, vol. 49, no. 5, pp. 1708–1721, 2019.



References

III.3

261

[16] C. S. K. Dash, A. K. Behera, S. Dehuri, and S. B. Cho, “Radial basis function neural
networks: A topical state-of-the-art survey,” Open Computer Science, vol. 6, no. 1,
pp. 33–63, 2016.

[17] I. Bajaj, A. Arora, and M. M. F. Hasan, Black-Box Optimization: Methods and Applica-
tions, pp. 35–65. Cham: Springer International Publishing, 2021.

[18] E. Iuliano and D.Quagliarella, “Efficient aerodynamic optimization of a very light jet
aircraft using evolutionary algorithms and Reynolds-averaged Navier–Stokes flow
models,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, vol. 225, no. 10, pp. 1109–1129, 2011.

[19] D. Keidel, G. Molinari, and P. Ermanni, “Aero-structural optimization and analysis
of a camber-morphing flying wing: Structural and wind tunnel testing,” Journal of
Intelligent Material Systems and Structures, vol. 30, no. 6, pp. 908–923, 2019.

[20] T. Mkhoyan, N. R. Thakrar, R. De Breuker, and J. Sodja, “Design of a Smart Morphing
Wing Using Integrated and Distributed Trailing Edge Camber Morphing,” in ASME
2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. –,
American Society of Mechanical Engineers, sep 2020.

[21] M. Ruderman and L. Fridman, “Model-Free Sliding-Mode-Based Detection and Es-
timation of Backlash in Drives With Single Encoder,” IEEE Transactions on Control
Systems Technology, vol. 29, pp. 812–817, mar 2021.

[22] X. Wang, T. Mkhoyan, I. Mkhoyan, and R. De Breuker, “Seamless Active Morph-
ing Wing Simultaneous Gust and Maneuver Load Alleviation,” Journal of Guidance,
Control, and Dynamics, vol. 44, pp. 1649–1662, sep 2021.

[23] D. Papageorgiou, M. Blanke, H. H. Niemann, and J. H. Richter, “Robust Backlash
Estimation for Industrial Drive-Train Systems—Theory and Validation,” IEEE Trans-
actions on Control Systems Technology, vol. 27, no. 5, pp. 1847–1861, 2019.

[24] P. Serra, R. Cunha, T. Hamel, C. Silvestre, and F. Le Bras, “Nonlinear image-based
visual servo controller for the flare maneuver of fixed-wing aircraft using optical
flow,” IEEE Transactions on Control Systems Technology, vol. 23, pp. 570–583, mar
2015.

[25] Y. Xu, S. Yin, S. X. Ding, H. Luo, and Z. Zhao, “Performance Degradation Monitoring
and Recovery of Vision-Based Control Systems,” IEEE Transactions on Control Systems
Technology, vol. 29, pp. 2712–2719, nov 2021.

[26] M. M. Gomroki, F. Topputo, F. Bernelli-Zazzera, and O. Tekinalp, “Solving Con-
strained Optimal Control Problems Using State-Dependent Factorization and Cheby-
shev Polynomials,” Journal of Guidance, Control, and Dynamics, vol. 41, pp. 618–631,
mar 2018.

[27] N. Hansen and A. Ostermeier, “Completely Derandomized Self-Adaptation in Evolu-
tion Strategies,” Evolutionary Computation, vol. 9, pp. 159–195, June 2001.



III.3

262 References

[28] N. Hansen, The CMA Evolution Strategy: A Comparing Review, pp. 75–102. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006.

[29] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. 61,
pp. 2121–2159, 2011.

[30] R. Hartley and A. Zisserman,Multiple View Geometry in Computer Vision. Cambridge
University Press, 2 ed., Mar. 2004.

[31] T. Mkhoyan, C. C. de Visser, and R. De Breuker, “Adaptive Real-Time Clustering
Method for Dynamic Visual Tracking of Very Flexible Wings,” Journal of Aerospace
Information Systems, vol. 18, pp. 58–79, jan 2021.

[32] K. Kanatani, Y. Sugaya, and Y. Kanazawa, “Multiview Triangulation,” in Guide to 3D
Vision Computation, pp. 133–147, Cham: Springer International Publishing, 2016. Se-
ries Title: Advances in Computer Vision and Pattern Recognition.

[33] R. Hartley and F. Kahl, “Optimal Algorithms in Multiview Geometry,” in Computer
Vision – ACCV 2007, vol. 4843, (Berlin, Heidelberg), pp. 13–34, Springer Berlin Hei-
delberg, 2007. Series Title: Lecture Notes in Computer Science.

[34] OptiTrack, “OptiTrack - Primex 41 - In Depth.”

[35] B. Sun and E. J. van Kampen, “Intelligent adaptive optimal control using incremen-
tal model-based global dual heuristic programming subject to partial observability,”
Applied Soft Computing, vol. 103, no. February, 2021.

[36] E. Tal and S. Karaman, “Accurate Tracking of AggressiveQuadrotor Trajectories Us-
ing Incremental Nonlinear Dynamic Inversion and Differential Flatness,” IEEE Trans-
actions on Control Systems Technology, vol. 29, pp. 1203–1218, may 2021.

[37] J.-W. van Wingerden, A. Hulskamp, T. Barlas, I. Houtzager, H. Bersee, G. van Kuik,
and M. Verhaegen, “Two-Degree-of-Freedom Active Vibration Control of a Pro-
totyped “Smart” Rotor,” IEEE Transactions on Control Systems Technology, vol. 19,
pp. 284–296, mar 2011.

[38] multiSIM, “multiSIM: Distributed simulation D-SIM,” 2021.

[39] D. Isele and A. Cosgun, “Selective Experience Replay for Lifelong Learning,” in 32nd
AAAI Conference on Artificial Intelligence, AAAI 2018, (New Orleans, Louisiana),
pp. 3302 – 3309, American Institute of Aeronautics and Astronautics (AIAA), 2018.

[40] S. J. Huntley, B. K. Woods, and C. B. Allen, “Computational Analysis of the Aerody-
namics of Camber Morphing,” in AIAA Aviation 2019 Forum, (Dallas, Texas), Ameri-
can Institute of Aeronautics and Astronautics, June 2019.

[41] NVIDIA, “High Performance AI at the Edge | NVIDIA Jetson TX2.”

[42] Speedgoat, “Performance real-time target machine | Speedgoat.”



Appendices

263





III.A1
Appendices Smart Control

III.A1.1.Modal Testing
To support the identification of the structural and aerodynamic parameters of the mor-
phing wing, a Ground Vibration Test (GVT) was performed on the fixed-free clamped
(cantilever) wing. The following analysis is presented as supporting data for the wind
tunnel campaign described in Chapter III.1 and in publication [1].

Themodal testing campaign was realised in the Open Jet Facility (OJF) at the Delft Uni-
versity of Technology alongside the wing tunnel experiment performed in Chapter III.1. A
GVT setup was constructed where the wing was subjected to a known excitation (input)
using a modal shaker. The response (output) was subsequently measured using a laser
vibrometer system.

III.A1.1.1. Experimental Setup
The experimental hardware, the type of excitation used in the structural vibration tests,
and data acquisition are described in this section.

Hardware
The schematic of the test setup is shown in Fig. III.A1.1. The wing was mounted on a
turntable with a force-balance system, which in turn was attached to a heavy-duty cast
iron test table. A 31 N modal shaker with a built-in amplifier (K2007E01 Smart Shaker
[2]) was used for excitation during testing. The shaker was secured on a separate solid
base such that the construction would not touch the test table. To connect the shaker
to the driving point on the wing a long (50 cm) flexible stinger was manufactured. The
driving point was chosen near the leading edge on the bottom surface of the wing and
approximately 20 cm above the root. A mechanical impedance sensor, attached to the
stinger-wing interface, measured the force and the acceleration at the driving point with
a sensitivity and broadband resolution of 10.2 mV/m/s2 and 0.02 m/s2 rms, and 22.4 mV/N
and 0.0089 N in acceleration and force respectively. The force and acceleration signals
from the impedance sensor were fed to the PSV-500 data acquisition system as reference
signals.
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Figure III.A1.1: Schematic of the Ground Vibration Testing (GVT) setup: 1) SmartX-Alpha wing; 2) Open-Jet
Facility (OJF) subsonic wind tunnel test section; 3) modal shaker; 4) modal stinger; 5) turntable with force balance
system; 6) heavy-duty cast iron test table; 7) Polytec PSV-500-1D laser vibrometer; 8) PSV DAQ PC.

Excitation Input
Sine sweep excitation was used for all runs of measurements, structural and aeroelastic.
Compared to harmonic excitation at a distinct frequency, the sine sweep significantly re-
duces the measurement time yet still provides a good Signal-to-Noise Ratio (SNR) [3, 4].

Sine sweep excitation was used for all runs of measurements. The signal is represented
by the following equation:

Fsweep(t) = A sin
(
2πf1t+ 2π

f2 − f1
Ttot

t2
)

(III.A1.1)

where f1 and f2 are the initial and final frequencies of the sine sweep signal in Hz, A is
the wave amplitude, and Ttot is the total measurement time.

Data Acquisition
Similar to the setup of Chapter I.2, a Polytec PSV-500 laser vibrometer system [4] with a
resolution (RMS) of 200 µm/s was used to measure the vibration response of the wing in
terms of the velocity and displacement. Since the laser allowed for the measurement of
only a single point at a time, to be able to reconstruct the vibrational shape of the wing,
multiple measurements had to be taken along the surface of the vibrating wing. To ensure
the quality of those measurements, multiple measurements had to be taken at each scan
point and averaged across the corresponding re-runs. For all vibrometrymeasurements, 58
scan points were distributed along the upper surface of the wing, of which 22 scan points
along the main wing body and 2×18 evenly spread over the 6 actuator modules along
two rows. Each scan point measurement, of approximately 30 seconds, was repeated 15
times and the vibration signal averaged over those repeated runs. The frequency range of
interest was 0-100 Hz; a sampling rate of 5 times the maximum range was used.
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III.A1.1.2. Modal Analysis
Thepostprocessing andmodal analysis of the acquired vibration data was performed using
the Simcenter Testlab 2021 software [5]. The result of the GVT yielded a set of structural
modes as shown in Fig. III.A1.2. The main first and second wing bending were found
at 5.8 and 18.5 Hz, respectively. The general torsional mode was found at 30.7 Hz. The
remaining modes in Fig. III.A1.2 are coupled with control surface modes. Since SmartX-
Alpha has 6 distributed flaps, there are several symmetric and asymmetric control panel
modes coupled with wing bending.

Table III.A1.1: SmartX-Alpha Identified structural modes from vibration tests.

Mode N.Freq., f [Hz] Damping, η [%] Description

1 4.90 1.22
Coupled Rigid Body Mode – base/wing root translation in UZ
+ wing rotation RX

2 5.76 0.7
1st global wing bending in RX (longitudinal) – fixed-free wing
with flaps

3 18.4 0.9
2nd global wing bending in RX (longitudinal), with base trans-
lation in UZ

4/5 24.9/26.5 0.8/1.16 Coupled mode global longitudinal (RX) / lateral (RY) bending
6 27.6 1.22 Global wing bending with (inboard) control panel modes
7 30.7 2.2 1st Wing Torsion
8-15 34-60 - Control panel modes

(a) Mode 2 [5.78 Hz] (b) Mode 3 [18.4 Hz]

(c) Mode 4 [25 Hz] (d) Mode 7 [30.7 Hz]

(e) Mode 8 [34 Hz] (f) Mode 10 [44.7 Hz]

Figure III.A1.2: SmartX-Alpha main modes 0-60 Hz.
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Themodal analysis results in Fig. III.A1.2 reveal imperfect fixed-free (one end clamped)
boundary conditions of this experimental setup. The heavy-duty cast iron test table (refer
to Fig. III.A1.1-(6)) –on top of which the turntable/force-balance holding the wing was
mounted– exhibited a natural frequency at 4.9 Hz (Mode 1). Moreover, as the clamped end
is not perfectly fixed, the support structure essentially acts as an extension of the wing and
contributes to its dynamic behaviour. As no referencemeasurementwas taken of any point
on the test table or the clamp directly during the laser vibrometer runs, the data needed to
eliminate the effect of the support on the wing dynamics in the postprocessing step was
not directly available. Therefore, the presented mode shapes exhibit slight translations or
rotations at the clamped end of the wing w.r.t. the undeformed shape.

It should be noted that the purpose of the vibration test was not to update a FEMmodel
using these modal results; if so, then the test table, the turntable, and the clamp – the entire
support would have to be modelled along with the wing itself. In contrast, the objective of
the performed tests was to identify the properties of the very structural system that would
be subjected to subsequent wind tunnel tests. This structural system is not the wing on its
own but includes every structural component supporting it during the test run. As such,
there was a practical need to retain the same real boundary conditions on the structure as
those existing during the wind tunnel experiments.
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III.A1.2. Proof of Theorems
Below, the proof of theorems in Chapter III.1 and [6] are presented.

Proof of Theorem 1:
Denote the initial time point as t∗. Choose V1(e) = eTPe, where P = P T > 0 is

the solution of the Lyapunov equation P (Ac −BcK) + (Ac −BcK)TP = −I . Then
α1(∥e∥2) ≤ V1(e) ≤ α2(∥e∥2), α1(∥e∥2) ≜ λmin(P )∥e∥22, α2(∥e∥2) ≜ λmax(P )∥e∥22.
α1, α2 belong to the class K∞ functions. Using Eq. (III.1.5), the time derivative V1 is:

V̇1 =eT[P (Ac −BcK) + (Ac −BcK)TP ]e+ 2eTPBcεindi

≤− ∥e∥22 + 2∥e∥2∥PBc∥2ε̄ ≤ −θ1∥e∥22, ∀∥e∥2 ≥ 2∥PBc∥2ε̄
1− θ1

≜ µ1ε̄ (III.A1.2)

with constant θ1 ∈ (0, 1). Consequently, for ∀ e(t∗) ∈ Rρ, there exists a classKL function
β and finiteT1 ≥ 0 such that ∥e(t)∥2 ≤ β(∥e(t∗)∥2, t−t∗), t∗ ≤ ∀ t ≤ t∗+T1, ∥e(t)∥2 ≤
α−1
1 (α2(µ1ε̄)), ∀ t ≥ t∗ + T1 ≜ t′∗. In other words, the tracking error e is bounded for

all t ≥ t∗ and is ultimately bounded by α
−1
1 (α2(µ1ε̄)) =

√
λmax(P )/λmin(P )µ1ε̄.

Regarding the internal dynamics, because the origin of η̇ = fη(η,0,0) is globally
exponentially stable, then there exists a Lyapunov function V2(η) defined in Dη = {η ∈
Rn−ρ} that satisfies c1∥η∥22 ≤ V2(η) ≤ c2∥η∥22, ∂V2

∂η fη(η,0,0) ≤ −c3∥η∥22,
∥∥∥∂V2

∂η

∥∥∥
2
≤

c4∥η∥2, for some positive constants c1, c2, c3, c4. Denoteα′
1(∥η∥2) ≜ c1∥η∥22,α′

2(∥η∥2) ≜
c2∥η∥22, then α′

1, α
′
2 belong to class K∞ functions. Furthermore, because fη(η, ξ,d) is

continuously differentiable and globally Lipschitz in (η, ξ,d), then there exists a global
Lipschitz constant L such that ∥fη(η, ξ,d)− fη(η,0,0)∥2 ≤ L(∥e∥2 + ∥R∥2 + ∥d∥2),
∀η ∈ Rn−ρ. As a result, the time derivative of V2(η) satisfies:

V̇2(η) =
∂V2

∂η
fη(η, ξ,d) ≤ −c3∥η∥22 + c4L∥η∥2(∥e∥2 + R̄+ d̄) ≤ −c3(1− θ2)∥η∥22, ∀∥η∥2

≥
c4L(∥e∥2 + R̄+ d̄)

c3θ2
(III.A1.3)

with constant θ2 ∈ (0, 1). Denote

µ2 ≜ c4L( sup
t′∗≤τ≤t

∥e∥2 + R̄+ d̄)/(c3θ2) ≜ θ3( sup
t′∗≤τ≤t

∥e∥2 + R̄+ d̄) (III.A1.4)

then V̇2(η) ≤ −c3(1 − θ2)∥η∥22, ∀∥η∥2 ≥ µ2, ∀t ≥ t′∗. Consequently, there exists a
class KL function β′ such that ∥η(t)∥2 ≤ β′(∥η(t′∗)∥2, t − t′∗) + α′−1

1 (α′
2(µ2)), ∀t ≥

t′∗. Since β′ is a KL function, then the norm value of η(t) yields ∥η(t)∥2 ≤ θ4ε̄ +
α′−1
1 (α′

2(θ3(α
−1
1 (α2(µ1ε̄)) + R̄ + d̄))), ∀t ≥ t∗ + T1 + T2 for some finite T2 > 0 and

θ4 > 0. In other words, η is globally ultimately bounded by a class K function of ε̄, R̄,
and d̄. □

Proof of Theorem 2:
Essentially, Theorem 2 is a local version of Theorem 1. When global Lipschitz and

global exponential stability are not ensured, the stability criteria impose constraints on
both initial conditions and perturbation bound. Because the conditions for tracking error
remain unchanged, Eq. (III.A1.2) still holds, which proves that e is ultimately bounded
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by a class K function of ε̄. Nevertheless, a V2(η) and a Lipschitz constant only exist in
a neighborhood of η = 0, which is denoted as D′

η = {η ∈ Rn−ρ| ∥η∥2 < rη}. Take
0 < r < rη such thatDr ⊂ D′

η . According to the boundedness theories [7], Eq. (III.A1.3)
only holds when µ2 < α′−1

2 (α′
1(r)), ∥η(t′∗)∥2 ≤ α′−1

2 (α′
1(r)). Using Eq. (III.A1.4), the

perturbation is constrained by ε̄ < ε∗ ≜ (1/µ1)α
−1
2 (α1((1/θ3)(α

′−1
2 (α′

1(r)))− R̄− d̄)).
When the constraints on the initial condition and perturbation bound are satisfied, η is
ultimately bounded by a class K function of ε̄, R̄, and d̄. □

Proof of Theorem 3: Recall Eqs. (III.1.3, III.1.4, III.1.5), the output dynamics under INDI
control can also be written as y(ρ) = νc + εindi. Also, at the previous time step, y

(ρ)
0 =

νc0 + εindi0 . Therefore, using Eq. (III.1.5), εindi can be rewritten as

εindi =(B(x0)B̄+
(x0)− Ip×p)(νc − y

(ρ)
0 ) + δ(x,∆t) + εca +∆dy

=(Ip×p −B(x0)B̄+
(x0))εindi0 − (Ip×p −B(x0)B̄+

(x0))(νc − νc0 ) + δ(x,∆t) + εca +∆dy

≜Eεindi0 −E∆νc + δ(x,∆t) + εca +∆dy (III.A1.5)

which can be written in a recursive way as εindi(k) = E(k)εindi(k− 1)−E(k)∆νc(k) +
δ(k)+εca(k)+∆dy(k). When the input constraints are not considered, the control alloca-
tion error εca equals zero. Moreover, νc is designed to be continuous in time (Eq. (III.1.4)),
thus lim∆t→0 ∥νc − νc0∥2 = 0, ∀x ∈ Rn. This equation also indicates that ∀ ∆νc > 0,
∃ ∆t > 0, s.t. for all 0 < ∆t ≤ ∆t, ∀x ∈ Rn, ∥νc − νc0∥2 ≤ ∆νc. As a consequence,
the following equation holds:

∥εindi(k)∥2 ≤(b̄)k∥εindi(t = 0)∥2 +
k∑

j=1

(b̄)k−j+1∥∆νc(j)∥2

+

k−1∑
j=1

(b̄)k−j∥δ(j) + ∆d(j)∥2 + ∥δ(k) + ∆d(k)∥2

≤(b̄)k∥εindi(t = 0)∥2 +∆νc
b̄− b̄k+1

1− b̄
+ (δ̄ +∆d)

1− b̄k

1− b̄
(III.A1.6)

Because b̄ < 1, then ∥εindi∥2 ≤ ∆νcb̄+δ̄+∆d
1−b̄

, as k → ∞. In conclusion, εindi is ultimately

bounded by ∆νcb̄+δ̄+∆d
1−b̄

. □

Proof of Theorem 4:
In contrast to Eq. (III.1.7), the analytical expression for the control increment given

by quadratic programming ∆uindi-qp is unknown. Instead, the only information about

∆uindi-qp is that it satisfies B̄(x0)∆uindi-qp = νc − y
(ρ)
0 + εca, where εca is the control

allocation error. Using Eqs. (III.1.3, III.1.4, III.1.5), the corresponding εindi is derived as

εindi =(KB(x0)− Ip×p)(νc − νc0 − εindi0 + εca) + δ(x,∆t) + εca

+∆dy ≜ E′εindi0 −E′(∆νc + εca) + δ(x,∆t) + εca +∆dy (III.A1.7)

which can be written in a recursive way as εindi(k) = E′(k)εindi(k−1)−E′(k)(∆νc(k)+
εca(k)) + δ(k) + εca(k) + ∆dy(k). Analogous to the proof of Theorem 3, given a non-
zero but bounded εca, the resulting εindi is bounded for all k, and is ultimately bounded by
∆νcb̄

′+δ̄+∆d+(b̄′+1)ε̄ca
1−b̄′

. □
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Proof of Corollary 1:
Denote the solution of the INDI control with quadratic programming control alloca-

tion considering virtual shapes as ∆uindi-qp-v, then correspondingly, εindi = δ(x,∆t) +
(B(x0)Φx̄s

− B̄(x0)Φx̄s
)∆uindi-qp-v + εca +∆dy . It is known that the control allocation

leads to(
B̄(x0)Φx̄s

)
∆uindi-qp-v = νc − y

(ρ)
0 + εca, thus:

εindi = (KB(x0)− Ip×p)(νc − y
(ρ)
0 + εca) + δ(x,∆t) + εca +∆dy (III.A1.8)

Analogous to the proof ofTheorem 4, εindi is ultimately bounded by
∆νcb̄

′+δ̄+∆d+(b̄′+1)ε̄ca
1−b̄′

.
□
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SmartX-Neo

Fast control

Lift Distribution

I n previous Parts of this dissertation, the development, realisation and validation of an activemorphing
wing were presented, demonstrating the achievement of multiple control objectives through smart

active morphing design. However, actuator bandwidth and mechanical imperfections were identified
as areas of improvement associated with the complexities of morphing wing designs. This Chapter
addresses those areas and concludes the work of this dissertation through the evaluation and realisation
of a distributed and over-actuated aeroelastic wing demonstrator, with the assessment of faster actuation
and simplified mechanical design. Aerodynamic and structural analyses were performed to determine
actuator torque requirements and actuationmechanism design. The effect of actuator design was studied
through a series of gust simulations of closed-loop control of a parametric aeroservoelastic model for
gusts with various frequencies [1].

This Chapter is based on the following peer-reviewed conference and journal paper:
T. Mkhoyan, X. Wang, and R. De Breuker, “Aeroelastic Wing Demonstrator with a Distributed and Decentralized
Control Architecture,” AIAA SciTech Forum 2022; Submitted to AIAA Journal, p. 1551, 2022
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This Chapter investigates the design and development of an autonomous aeroser-
voelastic wing concept with distributed flaps. This wing demonstrator was developed
in the scope of the SmartX project, aiming to demonstrate in-flight performance op-
timisation and multi-objective control with over-actuated wing designs. Following a
successful test campaign with a previous wing design based on active morphing, this
study aims to develop an over-actuated aeroelastic wing design suitable for aeroelastic
control, including flutter suppression, manoeuvre and gust load alleviation. A decen-
tralised control architecture is developed for the over-actuated and over-sensed system,
allowing efficient sensing data processing and control algorithms. Aerodynamic and
structural analyses are performed to determine actuator torque requirements and actu-
ation mechanism design. Furthermore, buckling analysis is performed to size the wing
structure. A state-space aeroelastic dynamic model is established to analyse the gust
response and control effectiveness of the wing. It is established that a linear quadratic
regulator significantly improves the closed-loop performance. Furthermore, the hy-
potheses are confirmed that fast actuation improves load alleviation performance and
high-frequency disturbance rejection effectiveness. Themanufacturing and integration
of the wing demonstrator are discussed, which lay a foundation for future static and dy-
namic wind-tunnel experiments.

IV.1.1. Introduction

Advancements in aircraft materials, manufacturing technology, control algorithms, and
hardware design enable the development of increasingly flexible aircraft concepts.

Generally, flexibility comes as a side effect of lighter aircraft design andmust be adequately
considered in the design.

However, a more natural approach is to utilise the flexibility for the benefit of better
performance, much like it is seen in nature with wing morphing for better gliding per-
formance [2, 3]. As in nature, flexible wing concepts have been evolving since the early
years of aviation. One of the well-documented examples was the active roll control of the
Wright Flyer, the first successful heavier-than-air powered aircraft. In this lightweight
design, the lateral stability was ensured by wing twist-warping [4]. This was possible
because the flexible fabric-wrapped structure was well suited for morphing.

As the flight speeds and loads increased with the advancement of flight, a stiffer wing
was required to fulfil the structural requirements and overcome aeroelastic instabilities.
As a result, the considerably more rigid wing design - generally optimised for cruise con-
ditions - is faced with a compromised performance under other flight conditions. To har-
ness the potential of a flexible wing, two design choices are possible: active morphing
design and conventionally flapped distributed wing designs. Both design concepts can al-
low the lift distribution to be tailored actively, potentially reducing this performance loss
and improving aircraft performance across the flight envelope. Furthermore, both design
concepts can be distributed and modular (i.e. having multiple flaps along the span). Both
concepts mimic the distributed nature of feathers found in avian biology.

While active morphing benefits aerodynamic efficiency, the morphing mechanism re-
quired for smooth shape control generally needs larger actuation forces and a more com-
plex design. In our previous study, we demonstrated a seamless morphing wing con-
cept [5, 6], the SmartX-Alpha, capable of performing objectives such as shape control,
drag minimisation, and simultaneous gust and manoeuvre load alleviation [7]. This de-
sign showed a significant advantage over previous morphing concepts, allowing the lift
distribution to be controlled locally by individually adjusting the camber and twist of each
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morphing module. However, the complexity of the morphing mechanism and increased
torque required for morphing demand actuators with high continuous torque. The cur-
rent study aims to address this gap and investigate the potential of discrete morphing with
conventionally free hinged flaps. The benefit is significantly lower actuation forces and a
simpler actuation mechanism. This objective initiated the development of the SmartX-Neo
wing demonstrator concept.

This Chapter describes the design and aeroelastic analysis of the wing demonstra-
tor. Furthermore, the development and integration of the wing concept are discussed for
future static and dynamic wind-tunnel experiments at the Open Jet Facility (OJF). The
main contribution of this Chapter is threefold. First, an aeroelastic wing demonstrator
with distributed control surfaces is designed, analysed, and manufactured. Second, a dis-
tributed and decentralised control architecture is proposed and implemented. Third, dy-
namic closed-loop simulations of the demonstrator were performed in the presence of
gusts, verifying the structure and actuator design and highlighting the necessity of dis-
tributed control for local load alleviation.

The structure of the Chapter is as follows. The philosophy of SmartX is presented in
Sec. IV.1.2, followed by the design methodology in Sec. IV.1.3. The demonstrator manu-
facturing and integration are presented in Sec. IV.1.4. The results are shown and discussed
in Sec. IV.1.5. Finally, conclusions are drawn in Sec. IV.1.6.

IV.1.2. SmartX Philosophy
In the following sections, Sec. IV.1.2.1 and Sec. IV.1.2.2, the aim of the SmartX project and
the objectives of the SmartX-Neo are presented and discussed.

IV.1.2.1. Goals of SmartX
The SmartX project aims to demonstrate in-flight performance optimisation of several
objectives such as (i) drag optimisation, (ii) load alleviation, (iii) flutter suppression, and
(iv) shape control through multidisciplinary integration of control sensing and morph-
ing design. Within the scope of this project, a smart morphing wing was developed: the
SmartX-Alpha is capable of continuous active morphing with distributed Translation In-
duced Camber (TRIC) [8]. The advantage of this design was the capability of local control
of the lift distribution along the span through individual adjustment of the camber and
twist of each morphing module, allowing the wing to settle into the most optimal lift-to-
drag ratio (shape control) to minimise drag and perform the load alleviation tasks [7].

IV.1.2.2. Objectives of SmartX-Neo
With SmartX-Alpha, the first three objectives of the SmartX project were achieved. How-
ever, due to limitations of the actuation bandwidth, faster objectives such as flutter sup-
pression were not achievable with morphing alone. The bandwidth limitation arises due
to two reasons. Firstly, due to the nature of the TRIC morphing concept, the morphing
mechanism of the SmartX-Alpha relies on a loaded hinge concept. The skin acts as a hinge
between the rigid wing box and the flexible trailing edge (TE), and this requires higher
torque from the servo to overcome the internal strain. Higher torque servos generally
have to compromise in actuation speed. The current study aims to address this gap by
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Drag minimisation

Load Alleviation

SmartX Objectives

Shape control

Aeroelastic
control

Smooth controlSmooth control

SmartX-Alpha SmartX-Neo

Fast control

Lift Distribution

Tip deflection and
twist

Figure IV.1.1: Comparison of the objectives of the SmartX-Alpha and SmartX-Neo.

investigating the potential of discrete morphing with conventionally free hinged flaps. The
benefit is significantly lower actuation forces and a simpler actuation mechanism. This
yielded the concept of the SmartX-Neo¹ as shown in Fig. IV.1.1.

The SmartX-Neo was developed to investigate the following:

• comparison of discretemorphing versus smoothmorphing in terms of actuation band-
width and design complexity;

• benefits of conventionally hinged flap versus morphing;

• benefits of over-actuated wing concept for aeroelastic control with advanced control
methods;

• influence of the actuation speed on the control objectives.

IV.1.3. Design Methodology
In the following sections, the design methodology of the SmartX-Neo is presented. Sec-
tion IV.1.3.1 discusses the wing and aircraft planform design. The aeroservoelastic model
and the control design are presented in Sec. IV.1.3.2 and Sec. IV.1.3.3. The actuator model
and the hypotheses of the numerical experiment are presented in Secs. IV.1.3.4 and IV.1.3.5,
respectively.

IV.1.3.1. Planform Design and Analysis
The wing design was evaluated using an aerodynamic model, built with XFLR5 [9] and
a Finite Element Model (FEM) built with ABAQUS [10], representing the structure of the
wing.

¹The project video can be found at https://www.youtube.com/watch?v=WuxM2vmumkQ

https://www.youtube.com/watch?v=WuxM2vmumkQ
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Planform Design
The wing model was designed to investigate the benefits of advanced control methods for
over-actuated aeroelastic wings, with the potential of being integrated into an autonomous
glider platform. The goal was to build the designed wing to conduct a wind tunnel test in
the OJF at the Delft University of Technology, equipped with a gust generator [11]. The
wing design is evaluated for the condition of 35 m/s at a cruise angle of 4 degrees. The
free stream velocity is chosen with a margin over the wind tunnel’s maximum available
free stream velocity. The cruise angle of attack is determined through preliminary design
and assessment of the suitable flight platform and glider configuration. This is discussed
in brief in the following sections.

instrumented
wings

NACA 0015

NACA 0010

27mm

c.g.

2.35m
0.65m

0.25m

AR=13.6

z

x
y

1.7m

0.56m

Autonomous glider platform

(a) Aircraft planform design.

root clamp servos 1 ... 10

flaps 1 ... 10 kevlar hinge

1 2 3 ... 10

t=0.036 mflap
hinge 0.75c

c=0.250 m

(b) Wing planform design.

Figure IV.1.2: Overview of the wing planform design.

NACA0015 was selected as the wing profile as a good trade-off between aerodynamic
performance and required structural components and instrumentation volume. The span
was selected to be 1.7 m considering the manufacturing constraint of the mould. The
planform is shown in Fig. IV.1.2.

A preliminary design of the glider platform was conducted in XFLR5. A conventional
aircraft configuration was chosen, with the elevator and vertical stabiliser conventionally
actuated in a typical glider configuration. A thinner airfoil, NACA0010, was chosen for
these wings as there was no requirement for large component volume compared to highly
instrumented main wings. The elevator and vertical stabiliser were sized relative to the
main wing according to common ratios, such that a balanced design was obtained. The rel-
ative placement of the wings and the body was achieved via steady-state stability analysis
in XFLR5 at cruise conditions. With a total wing mass of 5.7 kg and payload mass of 1.5
kg, a centre of gravity (COG) x location of 27 mm aft of the main wing leading edge was
found, which provided sufficient lateral stability to trim the aircraft in cruise condition at
α = 4◦. The neutral point was found to be 0.305 m aft of the main wing. The remaining
parameters are presented in Appendix IV.A1 and Tab. IV.A1.1.

Aerodynamic and Structural Design
To fulfil the requirements of the wind tunnel model and assess the aerodynamic loads
expected on the wing structure, as well as the lift generated by the flaps, an aerodynamic
model was built using XFLR5. This software is based on the 2D analysis capabilities of
the XFOIL code and can implement the Vortex Lattice Method (VLM) and the 3D panel
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(a) Aerodynamic analysis for conditions α = 4◦ and α = 1◦ , at
V∞ = 35 m/s.

(b) Lift slope CLαw
distribution main wing used in the

aeroservoelastic model, V∞ = 35 m/s, α = 4◦ .

Figure IV.1.3: Aerodynamic analysis and win lift distribution.

method [9, 12]. The resulting torque on the flap hinge was extracted from the aerodynamic
analysis performed in XFLR5, allowing us to evaluate the lift generated by the flap and the
wing. The aerodynamic mesh was selected to have 2600 VLM panels and 5225 3D panels,
with a 13 (cosine) × 10 (sine) distribution along chord and span.

A type 1 (fixed speed) viscous analysis (Viscosity=1.5e-05 m2/s) was performed at
V∞ = 35 m/s, α = 4◦ degrees of angle of attack to obtain lift distribution along the
span of the wing planform at cruise condition. This is the distribution (blue curve) shown
in IV.1.3b, the red curve is the mean distribution used as the wing lift coefficient CLαw

.
The top figure shows the streamlines (wake) in purple, generated behind the wing and
near the wingtips at this condition. Fig. IV.1.3a shows the 3D lift distribution (green), in-
duced drag (yellow) and streamlines (magenta) at V∞ = 35 m/s and two angles of attack,
α = 4◦ and α = 1◦. The latter angle is selected to show the configuration of the elevator.
The figure shows that the elevator is designed with a fixed (4 degrees) negative incidence
angle to balance the aircraft at level flight and compensate for the moment generated by
the main wing. At cruise (bottom figure), the majority of the lift is generated by the main
wing.

Buckling Analysis
The wing-box structure was constructed to reinforce the structural design. Design it-
erations were evaluated in terms of buckling resistance. The worst-case condition (i.e.
V∞ = 50 m/s, α = 4◦, δflap = 25◦) were imposed on the structural FEM model in Abaqus
to investigate the buckling behavior. This analysis was necessary due to the flexibility of
the structure and the high number of cutouts made in the skin for actuator access bay pan-
els. A limit load of 750 N was established. Figure IV.1.4a shows the setup of the Abaqus
model. Two loads were applied, lift load Fy and torsional momentMx, to make a conser-
vative estimation of the aerodynamic loads induced during the worst-case condition. The
boundary conditions (BCs) were imposed to clamp the wing at the root.

Design iteration was made for a suitable rib design, rib pitch, and shape. No buck-
ling occurred below the maximum limits. After initial iterations, the weak point in the
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design iterations

Fy

Mx

wingbox

buckling
region

Loads BCs

rib pitch/shape

buckling modes

(a) Setup of the Abaqus FEM model for buckling analysis.

bottom buckling
mode

top

(b) The first buckling mode predicted by the FEM model.

Figure IV.1.4: Buckling model setup and analysis.

design was found to be near the buckling region, between the first cutout panel for servo
1 (Fig. IV.1.2a) and the wing clamp bonded at the root. Additional reinforcing ribs were
added to support the cutout region, as shown in Fig. IV.1.5a. The result of the linear anal-
ysis for the first buckling mode with the final wing-box design is shown in Fig. IV.1.4b.
The eigenvalue for the first mode was found at -1002.4, well above the limit loads.

Actuator Selection
The actuation loads and the resulting flap moments were evaluated to determine the ac-
tuator’s torque requirements in XFLR5 and select a suitable actuator. The analysis was
conducted at 35 m/s. The angle of attack was maintained at 4◦. Figure. IV.1.6 shows a
comparison of two servo configurations and the achievable control objectives for SmartX-
Alpha versus SmartX-Neo. The right one shows the characteristics of the servo selected
for the SmartX-Alpha demonstrated. Here, the actuator torque requirement was evaluated
for various morphing conditions of the flaps [5].

servo mount reinforcing
ribs

pressure
tapsflap seal

flap 10

servo bay

(a) Flap close-up view.

linkage rod servo hornpickup
skin

(b) Flap side view.

Figure IV.1.5: Overview of the actuation mechanism.

As opposed to a simple flap design of the SmartX-Neo (Fig. IV.1.5a), the morphing
mechanism of the SmartX-Alpha requires relatively high torque servos, which are limited
in continuous actuation speed (Fig. IV.1.6a). In turn, the ability to fulfil the control objec-
tives is limited as well. By contrast, the faster servo depicted on the right (Fig. IV.1.6b)
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shows higher continuous actuation capability and wider scope of possible control objec-
tives. The white dots indicated in Fig. IV.1.6 are potential operational points described
in Fig. IV.1.1. Gust Load Alleviation (GLA) can be maximised at the highest torque and
continuous load setting. Manoeuvre Load Alleviation (MLA) is less limiting on actuation
speed, as this objective can be achieved in a longer time scale.
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Figure IV.1.6: Comparison of the actuator continuous torque requirement, SmartX-Alpha versus SmartX-Neo.

The aerodynamic analyses performed for the SmartX-Neo yielded three times faster
continuous actuation and six times lower loads on the control surface (10 Nm versus 60-
80 Nm) for SmartX-Neo compared to SmartX-Alpha [5]. The actuator bandwidth of the
selected servo is presented in Fig. IV.1.6b. The Volz DA-15-N-BLDC servo was selected
due to its high continuous load and position feedback capabilities. Figure IV.1.6b shows
the performance specification data of the actuator published by the manufacturer [13] and
the comparison to the Volz DA-22-12-4112 used for the SmartX-Alpha. The green region
indicates the range in which the servo can operate continuously. As seen, the peak torque
requirement, indicated with a red-dotted box, falls within the continuous operation range
of the servo.

IV.1.3.2. Aeroservoelastic Model
An aeroservoelastic model is developed in Matlab/Simulink to assess actuator require-
ments concerning the expected dynamic response of the wing demonstrator and to de-
velop a controller capable of fulfilling the objectives of the SmartX-Neo. The model is
adapted from [14] and represents a coupled unsteady aeroservoelastic model, trimmed at
an air density ρair = 1.225 kg/m3 and free stream velocity V∞ = 35 m/s. It is composed
of ten aerodynamic strips placed at equal distances along the span corresponding to the
number of flaps.

Structure
The structure is modelled as a linear Euler-Bernoulli beam. Each actuator (flap) is modelled
as a second-order mass-spring-damping system, with a hinge moment control inputM act

f .
The clamped beam-flap model has four degrees of freedom at each node, represented by
the state vector xs =

[
w ϕ θ β

]T
. Where,w, ϕ, θ, represent the transverse displace-
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ment (↓ +), bending (⟲ +), and torsion (⟲ +) while β is the flap rotation angle (⟳ +).
The dynamics for the clamped beam are given by:

Msẍs +Csẋs +Ksxs =
[
Fr Fext

]T
(IV.1.1)

where Ms,Cs,Ks are the structural mass, damping and stiffness matrices, respectively.
On the right-hand side, Fr and Fext are the wing root reaction forces and the distributed
external forces. The wing root reaction forces are, the shear force, the root bending mo-
ment, and torsional moment contained in vector Fr =

[
Fw Mϕ Mθ

]T
. Structural

damping is added proportionally to the stiffness matrix, though Cs = kKs, where Cs is
the damping matrix and k a scaling factor.

In Eq. (IV.1.1) beam structural mass and stiffness matricesMs andKs are augmented
to include the effect of the flap, yieldingMaug

s andKaug
s , as follows:

Maug
s =


 Ms

 Sβ

0
Iβ + b(c− a)Sβ

Sβ 0 Iβ + b(c− a)Sβ Iβ

 (IV.1.2)

Kaug
s =


 Ks

 0
0
0

0 0 0 Kβ

 (IV.1.3)

In Eqs. (IV.1.2) and (IV.1.3), the flap angle state β is coupled with the main beam struc-
ture through inertia couplings and a rotational spring, serving as actuator stiffness. The
measurable outputs are the shear force, the root bending moment, and the node displace-
ments in the heave direction w. In total, ten nodes are movable; the first node, denoted
as the 0th, is the reference node at the root (clamped). The remaining nodes are labelled
1-10th and correspond to the centre location of each flap as shown in Fig. IV.1.7.

Aerodynamics
Because of the high aspect ratio of the wing, the two-dimensional strip theorywas adopted
where the unsteady aerodynamic forces on each strip are represented in a time-domain
formulation, equivalent to Theodorsen’s frequency-domain model [15]. The time-domain
formulation used in this study is the indicial function approximation by Leishman [16].

Referring to Ref. [16], four lag states are introduced for each aerodynamic strip to
model the circulatory part of the aerodynamic response. Similar to the structural part,
aerodynamic state vector is represented by xa =

[
w ϕ θ β zi

]T
. Where the latter

entry are the lag states. The aerodynamic force vector, Fa, is defined as:

Fa = Maẍa +Caẋa +Kaxs +Kzzi (IV.1.4)

Couplings
The coupling of the structural and the aerodynamic models is described in [14]. The full
aeroservoelastic model contains the following states:

xae =
[
ẋs xs z1 z2 z3 z4

]T
(IV.1.5)
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where xs is the structural state vector, representing the nodal degrees of freedom for each
of the 11 nodes; z1, z2, z3, z4 are the aerodynamic lag states.

An overview of the coordinate system, nodes and axis definitions of the aeroelastic
system is presented in Fig. IV.1.7. Here Ow represents the right wing frame.

yw

MφMθ

zw

Fw
xw

wt

Ow
10 nodeth

0 nodeth

Ow

Figure IV.1.7: Reference frames, axis definitions, and degrees of freedom of the aeroelastic system (the right
wing).

Gust model
Initial assessment of the dynamic response is performed with a simplified gust model,
a “1-cosine” gust profile, assumed to be uniform across the span and represented as an
increment in α:

αg (t) =Wg (1− cos (ωgt)) (IV.1.6)

whereWg is the gust magnitude, and ωg is the gust frequency in radians, defined as ωg =
2πfg , where fg is the gust frequency in Hz.

IV.1.3.3. Control design
Theaeroservoelastic SmartX-Neowing is controlled by a Linear-Quadratic Regulator (LQR)
controller [17]. This is a linear optimal control method that provides the optimal feedback
gain matrix K to stabilise the system. The aeroservoelastic wing is modelled in a state-
space form as:

ẋ = Ax+Bu+Bgαg (IV.1.7)

y = Cx+Du (IV.1.8)

Where A,B,Bg,C,D are the system dynamic matrices, while the gust angle of attack
input αg is defined in Eq. (IV.1.6).

The gain matrix is obtained to minimise the objectives of interest, namely: the wing
root shear force Fw , the wing root bending momentMϕ, and the wing tip displacement
wt. The state feedback law minimises the quadratic cost function [18]:

J =

∫ ∞

0

[
xTQx+ uTRu

]
dt (IV.1.9)

where the weight matricesQ andR are positive definite matrices that penalise the cost of
deviation of the states from zero and the cost of actuation, respectively. The state feedback
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gain matrix that minimises the cost is defined byK = R−1BTS, where S is the solution
to the Ricatti equation:

ATS+ SA− SBR−1BTS+Q = 0 (IV.1.10)

The closed-loop system dynamics are:

ẋ = Ax+Bu+Bgαg = (A−BK)︸ ︷︷ ︸
Aclp

x+Bgαg (IV.1.11)

In this Chapter,Q is chosen asCTC, whileR is chosen as an identity matrix In, with
n = 10. It is noteworthy that the gust is unknown to the controller. The LQR assumes that
full state feedback is available. Suppose full state feedback is not available for a real-life
system, then the Linear Quadratic Gaussian (LQG) control law can be designed, which
contains a Kalman filter state estimations using a combination of sensory measurements
(e.g., cameras, gyros).

IV.1.3.4. Actuator dynamics
One of the objectives of this study is to investigate how design changes in actuation can
affect the performance of control objectives (Fig. IV.1.1). In particular, the study aims to
assess the role of faster actuation for achieving these control objectives. It is to be expected
that the servo bandwidth influences the performance of gust load alleviation. Therefore,
a parametric model of actuator dynamics is constructed to investigate its influence. Actu-
ator dynamics can be modelled by a second-order system, which is analogous to a mass-
spring-damping system. To parametrically adjust the damping and stiffness parameters,
a parameter k is chosen, with the following relationship:

Kβ = Kfk
2, Cβ = Cfk (IV.1.12)

where Kβ and Cβ are the stiffness and damping matrices in the augmented structural
model corresponding to the entries of the flap. The matricesKf and Cf are the original
actuator stiffness and damping matrices. Equation (IV.1.12) ensures that the natural fre-
quency of the actuator dynamics is scaled proportionally while the damping ratio is kept
invariant.

IV.1.3.5. Hypotheses
The analysis performed in this study shall be limited to Gust Load Alleviation (GLA) and
the influence of actuator dynamics. Considering these constraints and the assumptions
made in the aeroservoelastic model and the actuator model, two hypotheses are formu-
lated:

1. The first hypothesis is that higher actuator bandwidth will be more effective for
GLA;

2. The second hypothesis is that a higher actuator bandwidth shall allowmore effective
GLA at higher gust frequencies.

The last hypothesis means that we expect that faster actuators will allow the controller
to respond faster to more high-frequency disturbances encountered by the system. In
Sec. IV.1.5 simulations are set up to investigate the hypotheses.
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IV.1.4. Demonstrator Manufacturing and Integration
The design analysis discussed in Sec. IV.1.3 was used to support the manufacturing of a
composite wing demonstrator, SmartX-Neo, with a wing-box structure and an integrated
actuation mechanism.

IV.1.4.1. Manufacturing Process

vacuumflap hinge

bay cutouts/panels
foam corecarbon fibre

layupmould preparation

A B C DKevlar

Figure IV.1.8: Manufacturing process.

The composite wing design was constructed in four parts (i) top skin, (ii) bottom skin,
(iii) wing box structure, and (iv) distributed flap modules. A mould consisting of top and
bottom halves was manufactured out of Polyurethane based SikaBlock with a density of
650 kg/m3 [19]. The composite wing skin consisted of three layers of 160 g/m2 carbon
fibre and additional fibreglass of 40 g/m2 for a smooth surface finish. The skin was manu-
factured and cured with the hand layup technique in the top and bottom vacuum bagged
moulds as shown in Fig. IV.1.8. The spars were cured in a separate mould and made of 2
layers of 160 g/m2 carbon fibre and assembled into the main wing structure.

Figure IV.1.8 shows the first phase of the manufacturing process in sub-figures A-D.
This process is initiated by the preparation of the mould (Fig. IV.1.8-A), where the pre-
manufactured servo panel covers are arranged at the location of the cutouts. The panels
are placed underneath the initial layer such that the actual panel cutouts are formed to
the specifications and the surface is smooth. Ten cutouts were made to facilitate actuator
maintenance and assembly, corresponding to 10 flaps per wing. The flaps are numbered
as 1-10, with the 10 th flap corresponding to the outermost flap of module 10 and the 1 th
flap the one closest to the fuselage, as indicated by the red colour in Fig. IV.1.2a. Process A
is followed by hand layup (Fig. IV.1.8-B), where the flap hinge material is stacked between
the carbon fibre layers.

The hinge for the flap mechanism was based on foam-reinforced Kevlar material. A
single strip of 110 g/m2 Kevlar was added between carbon fibre layers 2 and 3 (most inner
layer). Additionally, a Herex foam strip was added for additional stiffness, as depicted in
Fig. IV.1.8-C. The process is completed by vacuum bagging and curing (Fig. IV.1.8-D).
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Figure IV.1.9: Assembly integration process.

IV.1.4.2. Integration Process
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Figure IV.1.10: Module and sensor integration.

The assembly and integration process is depicted in sub-figures A-D of Fig. IV.1.9. The
actuation mechanism was designed such that it was fully integrated inside the wing and
could be assembled after the joining of top and bottom parts (Fig. IV.1.9-A). The parts
were 3D printed from polylactic acid (PLA) and used in the assembly process as shown in
Fig. IV.1.9-B. A 3D-printed base was designed to house the actuators and bonded to the
top skin, shown in the bottom part of sub-Fig. IV.1.9-A. To resist buckling, a supporting
rib structure was added near the cutouts and bonded to the skin.

The assembly process is shown in Fig. IV.1.9-C. Here, two wing halves were joined
after the wiring and all assembly components were in place. To bond the two wing halves,
epoxy was deposited on the contact surfaces between the wing-box. Epoxy-infused foam
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cores were arranged along the wing seams to ensure a stronger bond. The final step in the
integration was the curing and demoulding (Fig. IV.1.9-D).

The sensor andmodule integration process is depicted in sub-figuresA-D of Fig. IV.1.10.
An overview of the various sensors and their arrangement in the wing is illustrated in
Fig. IV.1.10-A. Strain gauges (Fig. IV.1.10-B) were installed on the top and the bottom in
90◦ arrangement (shown as a plus) and 45◦ arrangement to measure the twist near the
root (shown as a cross). In addition to the strain gauges, two fibre optics sensors were
installed along the span on the top and bottom sides. Furthermore, pressure taps were
installed (Fig. IV.1.10-C) to allow characterisation of the pressure distribution in the wind
tunnel test. These were arranged in an array of 22-28 taps per airfoil cross-section at ap-
proximately 15◦ angle with respect to the free stream velocity. This was done such that
the interference in pressure measurements along the chordwise taps was reduced. The
tubing was guided through the wing root and D-box area at the root of the wing.

Flexible feather-like patcheswere integrated between themodules for improved smooth-
ness and aerodynamic properties of the flaps. Figure IV.1.10-D shows the triangular seg-
ment between the outer flap (9) and the adjacent flap (8). The segments were made of
the same material as the skin, supported by elastomeric filler material. This filler material
(Elastosil E41) was deposited during the integration phase from the inner side of the flap.
Triangular cutouts were then made to facilitate flexibility.

IV.1.4.3. System Control Architecture
An overview of the control architecture of the glider platform is visualised in Fig. IV.1.10.
In this figure, the blocks AFCS and SFC represent the Automatic Flight Control System
(AFCS), responsible for the controller, and the Sensor Fusion Computer (SFC), responsible
for processing the multitude of sensor data (camera, strain gauge, pressure sensors, etc.),
respectively. A distributed data-sharing architecture is developed based on the decen-
tralised communication principle to facilitate smooth and adaptable integration of over-
actuatedwing systems and themultitude of sensors in a real-time operation. This principle
was investigated in sensor-based distributed control of the SmartX-Alpha demonstrated
in a wind tunnel experiment in OJF [7]. Based on shared memory structure, the principle
allows parallel integration of hardware and software components in various programming
languages (Python, Matlab, Simulink, C++, .NET, etc.) and various communication proto-
cols (RS485, Ethernet, ModBus, etc.).

The architecture software is developed in C++ with the real-time D-SIM framework,
connecting several PC nodes over a local Ethernet network [20], and enabling synchroni-
sation as depicted in Fig. IV.1.10. Here, the blue line is the data-sharing bus that facilitates
the integration of modular hardware and software components.

The benefits of the proposed approach include: (i) the control functions have the flex-
ibility to choose their inherent sampling rates; (ii) each sensor can be sampled at the op-
timal sampling rate of the sensor with its dedicated hardware (ADC converter etc.); (iii)
controller tuning with hardware-in-the-loop (HIL) becomes very flexible; (iv) ease of in-
tegration and up-scaling of the system with additional sensors; (v) allows implementation
of robust sensor fusion algorithms.
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Figure IV.1.11: Overview of the distributed and decentralised control architecture.

IV.1.5. Results and Discussions
In this section, the analysis of the design and the results of the simulation experiment are
discussed. First, the effect of the actuator dynamics on the performance of the baseline
LQR controller is discussed. Then the analysis of the wing planform design and aircraft
characteristics are discussed.

IV.1.5.1. Gust Load Alleviation
A state-space aeroelastic dynamic model was established to analyze the gust response and
control effectiveness of the wing. The aeroelastic model, as described in section IV.1.3.2
was subjected to discrete gust signals. The actuator dynamics implemented in the aeroser-
voelastic model were modified through the scaling parameter k governing the actuation
design and dynamics (Sec. IV.1.3.4).

Simulation Setup

Table IV.1.1: Simulation and design configurations.

Design Simulation

k [-] fg [Hz] Wg [rad] dt [s] tsim [s]
1.00 1.00 2/V∞ 0.001 1.20

input 0.75 2.00 2/V∞ 0.001 1.00
0.50 3.00 2/V∞ 0.001 1.00
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Three scaling values were chosen; additionally, three different gust frequencies were
evaluated to assess the effectiveness of the controller, resulting in a total of 9 different
simulation conditions. In each simulation, the control gain matrix was kept constant as
described in Sec. IV.1.3.3 and an actuation limit of 25 degrees of flap deflection was consid-
ered. The simulation was evaluated at ρair = 1.225 kg/m3 and V∞ = 35 m/s. For slower
gust (fg = 1 Hz), a longer simulation time was used to ensure the entire gust onset was
captured. The varied input conditions are presented in Table IV.1.1. Each row of the design
parameter k was varied with the entries of the simulation parameters (fg,Wg, dt, tsim).

The first simulation run would thus consist of the first row of Table IV.1.1, and the
second would be composed of the parameter sets: k = 0.75, fg = 1 Hz,Wg = 2/35 rad,
dt = 0.001 s, tsim = 1.20 s. The parameters of the aeroservoelastic model, which were
kept invariant, are presented in Table IV.1.2.

Table IV.1.2: Parameters of aeroservoelastic model.

Parameter Symbol Value Unit
Half span Lw 1.70 [m]
Chord 2b 0.25 [m]
Shear centre location a 0.00 [m]
Wing lift coefficient CLαw

4.75 [-]
Mass per unit length m 0.75 [kg/m]
Flap mass per unit length mf 0.25 [kg/m]
Moment of inertia Iθ 0.24 [kgm2]
Bending stiffness EI 1/2 · 103 [Nm2/m]
Torsional stiffness GJ 105 [Nm/m]

In Eq. (IV.1.12),Kf = 100 andCf = 10−4. To evaluate the performance of the closed-
loop system, two metrics are used: the maximum percentage difference of the peak fmax
and the area difference farea between closed- and open-loop responses. For example, for
the shear force Fw , the performance metric is defined as:

fmax(∆Fw) =

(
1− max(|Fw|)closed

max(|Fw|)open

)
· 100% (IV.1.13)

The area difference defined for the shear force Fw is:

farea(∆Fw) =

(
1− area(|Fw|)closed

area(|Fw|)open

)
· 100% (IV.1.14)

In Tables IV.1.3 and IV.1.4 the operator f(·) is used to describe the operation needed
to obtain the aforementioned metrics.

Effects of Gust Frequency
The effectiveness of the controller for gust load reduction was evaluated for various gust
inputs with parameters described in Table IV.1.1. The result of simulations for the metrics
peak magnitude and peak area are presented Tables IV.1.3 and IV.1.4, respectively. Herein,
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the values indicated are the percentage reduction of the specified metric as compared to
the open-loop. Three gust load reduction objectives were considered, the shear force Fw ,
root bending moment Mϕ, and the tip displacement wt. The rows in the table indicate
variations in the scaling parameter k.

Table IV.1.3: Gust load reduction comparison for metric peak magnitude for varying gust frequency and scaling.

Variables fg = 1.00 [Hz] fg = 3.00 [Hz] fg = 5.00 [Hz]

f(∆Fw∗) f(∆Mϕ∗) f(∆wt∗) f(∆Fw∗) f(∆Mϕ∗) f(∆wt∗) f(∆Fw∗) f(∆Mϕ∗) f(∆wt∗)
k=1.00 71.26 78.25 65.00 69.67 76.26 63.25 67.39 73.20 60.71
k=0.75 77.15 82.88 70.22 75.71 81.30 68.58 73.50 78.54 65.99
k=0.50 82.30 83.84 69.24 81.14 82.46 67.83 79.23 79.85 65.06

k=0.75 [∆k=1] +5.89 +4.63 +5.22 +6.04 +5.03 +5.33 +6.11 +5.34 +5.29
k=0.50 [∆k=1] +11.04 +5.59 +4.24 +11.47 +6.19 +4.58 +11.83 +6.65 +4.35

Looking at the first row, corresponding to the nominal actuator dynamics (k = 1), it is
observed that significant reductions (65-85 %) are achieved for all metrics and objectives
with the closed-loop control. Furthermore, it is observed that the reduction is consistently
less effective for increasing gust frequencies (e.g., 71.78 %, 69.67 %, 67.39 % for shear force)
for all objectives for the metric peak magnitude. This is consistent with the expectation
that the higher gust frequency will induce a sharper disturbance onset from the wing
in the open-loop, requiring faster effort by the controller (faster response). The time re-
sponses to the gust onset are plotted for the three objectives and the highest and lowest
gust frequency in Figs. IV.1.12 and IV.1.13, respectively. The gust input also follows a sim-
ilar shape to the open-loop response, indicated by the blue dashed curve. The columns in
these plots correspond to shear force, bending moment, and tip deflection, respectively.
Here, it is observed that the peak magnitude for the open-loop is smaller for slower gusts.
Besides, the response is also narrower. The effectiveness of GLA is determined by the abil-
ity of the controller to flatten the onset peak and reduce the area underneath the curve.
The closed-loop responses at varying scales clearly support the effectiveness (e.g.,≈ 180 N
versus ≈ 40 N for the shear force at 1 Hz).

Flap Deflections
Given that the amount of disturbance the controller can resist is constrained by the band-
width of the actuator –in thismodel governed by a second-order system actuator dynamics–
the effectiveness decreases as gust frequency increases.

The flap allocation corresponding to the gust onset and responses in Figs. IV.1.12 and
IV.1.13 are plotted in Figs. IV.1.15a and IV.1.15b, where the flap location corresponding to
the flap distribution along the span of the wing, are differentiated by colour. The shape of
the line differentiates the varying scaling, dash-dotted corresponding to the fastest actu-
ator. The distributions observed for one and 5 Hz gusts, respectively, show significantly
narrower flap onset and more actuator input to counter the gust (e.g.,≈ 15◦ versus≈ 25◦)
for inboard flaps. Furthermore, observing the differences between the nominal and fastest
actuator (dash-dotted line), the flap angles are twice as high at k=0.50 (e.g., ≈ 10◦ versus
≈ 20◦ for flap four at 1 Hz).
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Figure IV.1.12: Open and closed-loop wing response comparisons at gust frequency 1 Hz.
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Figure IV.1.13: Open and closed-loop wing response comparisons at gust frequency 5 Hz.

Effect of Faster Actuator Dynamics
Consequently, as the bandwidth of the actuator is increased, the controller can react to
the gust disturbance, and therefore the effectiveness of the GLA should increase. Higher
reduction percentages observed for lower scaling parameters, corresponding to rows in
the mentioned tables, Tables IV.1.3 and IV.1.4, confirm this hypothesis. The fourth and
fifth rows in these tables represent the percentage difference of reduction compared to
slower nominal dynamics; +, indicating an improved delta. Here we see significant im-
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provements in the GLA for all objectives. In particular, we see significant improvements
in shear force and bending moment reduction (e.g., 5.89 %, 11.04 % for the shear force at
1 Hz) for increasing k.

A second critical observation can be made from the comparison of the deltas for each
objective across varying frequencies. It is clear that the faster actuator positively impacts
the controller effectiveness (e.g., 11.04 %, 11.47 %,11.83 % for the shear force at k=0.50
[∆k=1]) for faster gust onsets, confirming the second hypothesis, namely, that disturbance
rejection for higher actuator bandwidth will be more apparent at higher gust frequencies.
Differences are also observed across the objectives. Bending moment and tip displacement
deltas follow the same trend, meaning better reduction for faster actuator but lower mag-
nitude. The only exception to this lower positive delta reduction for k=0.75 compared to
k=0.5 (e.g., 5.89 %, 11.04 % at 1 Hz) for the tip displacement. However, the faster actuator is
still beneficial at higher gust frequencies even for this objective (e.g., +5.22 %,5.33 %,5.29 %
k=0.50 [∆k=1]).

A possible explanation for the differences observed between the objectives is the time
scale that characterises their responses. The shear forces directly relate to instantaneous
acceleration triggered by a gust event, being the faster the one and thus more apparent to
reduce. Similar observations are made from the time responses for closed-loop at different
scaling parameters (Figs. IV.1.12 and IV.1.13). Here, the curves corresponding to decreas-
ing scaling parameter k are indicated by red, yellow, and magenta curves. In all cases, the
magenta curve (the fastest actuator) is the flattest curve except for the tip displacement.

Differences in Metrics and Distributions

Table IV.1.4: Gust load reduction comparison for metric area for varying gust frequency and scaling.

Variables fg = 1.00 [Hz] fg = 3.00 [Hz] fg = 5.00 [Hz]

f(∆Fw∗) f(∆Mϕ∗) f(∆wt∗) f(∆Fw∗) f(∆Mϕ∗) f(∆wt∗) f(∆Fw∗) f(∆Mϕ∗) f(∆wt∗)
k=1.00 [-] 71.68 78.70 65.48 71.69 78.70 65.50 71.69 78.70 65.50
k =0.75 [-] 77.51 83.20 70.65 77.51 83.21 70.66 77.51 83.21 70.66
k=0.50 [-] 82.58 84.11 69.59 82.58 84.12 69.60 82.58 84.12 69.60

k=0.75 [∆k=1] +5.83 +4.51 +5.17 +5.82 +4.51 +5.17 +5.82 +4.51 +5.16
k=0.50 [∆k=1] +10.90 +5.42 +4.11 +10.89 +5.42 +4.11 +10.89 +5.42 +4.11

In Table IV.1.4 the result is shown for the metric area. Whereas the max peak metric
shown in Table IV.1.3 is related to onset maxima and minima, the area metric is related
to the shape of the response (area under the curve comparison) as shown in responses in
Figs. IV.1.12 and IV.1.13. Observing the shape of the curve between gust frequencies 1 and
5 Hz, it is seen that the gust onset in open-loop versus closed-loop scales consistently. This
can explain why the area metric seems invariant to the gust frequency (e.g., the variations
of the percentage differences are similar across gust frequencies). Observing the deltas in
rows 4 and 5, we see a similar trend between the objectives (higher shear force reduction)
and higher effectiveness for a faster actuator. It can also be concluded from these observa-
tions that, in general, the gust onset reduction mechanism of the LQR is aimed at reducing
the area underneath the peak compared to the open-loop. The LQR controller achieves
this consistently for various gust frequencies. It should be noted that the LQR controller
was kept invariant in these simulation scenarios.
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(a) Wing node displacements 1 Hz. (b) Wing node displacements 5 Hz.

Figure IV.1.14: Spanwise wing node displacements comparison for two frequencies and varying scaling param-
eter.

(a) Flap deflections 1 Hz. (b) Flap deflections 5 Hz.

Figure IV.1.15: Spanwise flap deflections comparison for two frequencies and varying scaling parameter.

IV.1.5.2. Initial Design Evaluation
Preliminary evaluation of the wing and planform design was performed based on the nu-
merical simulations described in the previous section. The control allocation, particularly
the maximum flap angles at the peak of the onset dictated by the GLA controller for gusts
of 1 Hz and 5 Hz, was evaluated with the aircraft planform. These allocations are shown
in Figures IV.1.15a and IV.1.15b. The flap deflections at transient peaks (maximum flap
deflection) for k = 0.50 are shown in Table IV.1.5. For 1 Hz and 5 Hz, these are at ≈ 0.5
and ≈ 0.125, respectively.

Table IV.1.5: Peak flap deflections ([deg]) for 1 Hz and 5 Hz gust frequencies at k = 0.50 and V∞ = 35 m/s.

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
1.00 Hz 2.9904 -10.976 -18.144 -21.322 -20.47 -17.76 -13.624 -8.4668 -2.4377 4.5271
5.00 Hz 2.9722 -10.556 -18.451 -21.843 -21.152 -18.448 -14.248 -8.9932 -2.8749 4.1325
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The analysis of the resulting actuator allocations was performed in XFLR5 at V∞ = 35
m/s at cruise conditions. In particular, an initial assessment of the pressure distribution,
induced drag, and the wake behaviour behind the wing were studied. Figures IV.1.16a
and IV.1.16b show the wake characteristics of the corresponding gust frequencies. Figures
IV.1.17a and IV.1.17b show the pressure distributions of the corresponding frequencies.

(a) Wake at 1 Hz. (b) Wake at 5 Hz.

Figure IV.1.16: Wake characteristics at V∞ = 35 m/s corresponding to the flap angles in Table IV.1.5.

As can be seen from Table IV.1.5, the deflections are comparable but relatively higher
for the 5 Hz frequencies. The corresponding lift distributions observed from the XFLR5
analysis are also sharper. In both cases, a low-pressure region is generated by upward de-
flections of the inboard flaps, which consequently reduces the lift to counter the incoming
gust. Due to more extensive flap settings, more considerable induced drag (yellow) and
wake (purple) are generated behind the wing at 5 Hz. It must be noted that the aerody-
namic solution found for these cases is a steady-state solution and does not include the
effect of transient allocation. However, these initial analysis results suggested that the
allocation cannot be carried out without an additional drag penalty. Therefore, additional
analysis is recommended to study the drag penalty associated with the flap deflections and
possibly include this as an additional objective for the LQR controller.

(a) Pressure distributions at 1 Hz. (b) Pressure distributions at 5 Hz.

Figure IV.1.17: Pressure distributions and streamlines at V∞ = 35 m/s corresponding to the flap angles in
Table IV.1.5.

IV.1.6. Conclusions and Recommendations
Adistributed over-actuated aeroelasticwing demonstratorwas developedwithin the frame-
work of the Smart-X project, aiming to demonstrate in-flight performance optimisation
and multi-objective control with over-actuated wing designs. Aerodynamic and struc-
tural analyses were performed to determine actuator torque requirements and actuation
mechanism design. The effect of actuator design was studied through a series of gust
simulations of closed-loop control of a parametric aeroservoelastic model for gusts with
various frequencies. Actuator dynamics were implemented in the system through scaling
of the stiffness and damping of a second-order system. With the nominal LQR controller,
reductions of peak gust load up to 78 % were achieved compared to the open-loop case.
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It was observed that lower scaling corresponding to faster actuation provides significant
improvements of up to 11 % over the nominal actuator configuration, yielding reductions
of gust loads up to 84 %. Furthermore, it was observed that the effectiveness of faster ac-
tuators improves for higher frequency gusts. This confirms the potential of SmartX-Neo
to deal with faster control objectives more effectively.

It must be noted that the result presented here consider a purely numerical scenario
with full state feedback of the system. In a more realistic case, the noise and bandwidth
limitations of the sensors will impact the effectiveness of GLA. It is recommended to in-
clude and study these effects in further research. Furthermore, it is recommended to eval-
uate the prioritisation of objectives on the effectiveness of gust load alleviation.

Finally, the manufacturing and integration of the wing demonstrator were discussed
in preparation for future static and dynamic wind-tunnel tests at the OJF wind tunnel.

References
[1] T. Mkhoyan, X. Wang, and R. De Breuker, “Aeroelastic Wing Demonstrator with

a Distributed and Decentralized Control Architecture,” AIAA SciTech Forum 2022;
Submitted to AIAA Journal, p. 1551, 2022.

[2] D. Lentink, U. K. Müller, E. J. Stamhuis, R. De Kat, W. Van Gestel, L. L. M. Veldhuis,
P. Henningsson, A. Hedenström, J. J. Videler, and J. L. Van Leeuwen, “How swifts
control their glide performance with morphing wings,” Nature, vol. 446, no. 7139,
pp. 1082–1085, 2007.

[3] P. Henningsson, A. Hedenström, and R. J. Bomphrey, “Efficiency of Lift Production
in Flapping and Gliding Flight of Swifts,” PLoS ONE, vol. 9, p. e90170, Feb. 2014.

[4] H. R. Jex and F. E. C. Culick, “Flight Control Dynamics of the 1903 Wright Flyer,” in
12th Atmospheric Flight Mechanics Conference, (Reston, Virigina), pp. 534–548, Amer-
ican Institute of Aeronautics and Astronautics, Aug. 1985.

[5] T. Mkhoyan, N. R.Thakrar, R. De Breuker, and J. Sodja, “Design and Development of a
Seamless Smart Morphing Wing Using Distributed Trailing Edge Camber Morphing
for Active Control,” in AIAA Scitech 2021 Forum, p. 0477, 2021.

[6] T. Mkhoyan, N. R. Thakrar, R. De Breuker, and J. Sodja, “Design of a Smart Morphing
Wing Using Integrated and Distributed Trailing Edge Camber Morphing,” in ASME
2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. –,
American Society of Mechanical Engineers, sep 2020.

[7] X. Wang, T. Mkhoyan, I. Mkhoyan, and R. De Breuker, “Seamless Active Morph-
ing Wing Simultaneous Gust and Maneuver Load Alleviation,” Journal of Guidance,
Control, and Dynamics, vol. 44, pp. 1649–1662, sep 2021.

[8] N. Werter, J. Sodja, G. Spirlet, and R. De Breuker, “Design and Experiments of a Warp
Induced Camber and Twist Morphing Leading and Trailing Edge Device,” in 24th
AIAA/AHS Adaptive Structures Conference, (San Diego, California, USA), American
Institute of Aeronautics and Astronautics, Jan. 2016.



References

IV.1

297

[9] A. Deperrois, XFLR5 Theoretical overview, 2021.

[10] Dassault Systèmes, ABAQUS/CAE Theory Guide, Version 6.19. Dassault Systèmes,
2019.

[11] K. Jongkind, A. Falkmann, and H. van der Veer, “Open Jet Facility,” 2020.

[12] M. Drela, “XFOIL: An Analysis and Design System for Low Reynolds Number Air-
foils,” in Low Reynolds Number Aerodynamics, vol. 54, pp. 1–12, Berlin, Heidelberg:
Springer Berlin Heidelberg, 1989. Series Title: Lecture Notes in Engineering.

[13] Volz, “Volz DA 22 Actuator Technical Specification,” tech. rep., Volz Servos GmbH,
2013.

[14] R. De Breuker, S. Binder, and A. Wildschek, “Combined Active and Passive Loads
Alleviation through Aeroelastic Tailoring and Control Surface/Control System Opti-
mization,” in 2018 AIAA Aerospace Sciences Meeting, (Kissimmee, Florida), American
Institute of Aeronautics and Astronautics, Jan. 2018.

[15] T. Theodorsen, “General Theory of Aerodynamic Instability and the Mechanism of
Flutter,” tech. rep., NACA Technical Report No. 496 (NACA-TR-496), 1935.

[16] J. G. Leishman, “Subsonic unsteady aerodynamics caused by gusts using the indicial
method,” Journal of Aircraft, vol. 33, pp. 869–879, Sept. 1996.

[17] X. Wang, T. Mkhoyan, and R. De Breuker, “Nonlinear Incremental Control for Flexi-
ble Aircraft Trajectory Tracking and Load Alleviation,” Journal of Guidance, Control,
and Dynamics, vol. 1, pp. 1–19, aug 2021.

[18] Y. Ferrier, N. T. Nguyen, E. Ting, D. Chaparro, X.Wang, C. C. de Visser, and Q. P. Chu,
“Active Gust Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft,” in 2018
AIAA Guidance, Navigation, and Control Conference, (Reston, Virginia), American
Institute of Aeronautics and Astronautics, Jan. 2018.

[19] Sika, “Model and Mold Manufacturing,” 2021.

[20] multiSIM, “multiSIM: Distributed simulation D-SIM,” 2021.





IV.2
Conclusions and
Recommendations

Any product that needs a manual to work is broken.

Elon Musk

F ollowing the findings presented in the previous Parts and Chapters, the conclusions of this disserta-
tion are organised into three Parts. Firstly, a reflection is made on the research question posed in

Chapter 1 and the objectives achieved in this dissertation. Secondly, following the representation of an
active morphing system in Fig. 1.1 in terms of primary building blocks, each block’s main findings cor-
responding to the dissertation’s Parts are summarised. Finally, a prospective outlook of future research
in active morphing systems is outlined, and recommendations are made.
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Significant advancements have been made in morphing distributed aeroservoelastic sys-
tems, sensors, and control methodologies in the past decade. However, the literature

review highlighted the need for morphing and aeroelastic systems that are actively con-
trolled to maximise fuel efficiency and reduce structural weight. Furthermore, a holistic
approach was emphasised where novel sensing, design and manufacturing, control and
optimisation methodologies are considered and integrated simultaneously into an active
morphing system. Therefore the following research goal was established:

Research Goal

Develop the smart morphing framework for real-time in-flight performance op-
timisation, through multidisciplinary parallel integration of sensor-based control
laws and the smart distributed sensing and actuation systems.

It was established that simultaneous integration of the building blocks of the active
morphing wing was crucial to realising this goal. Therefore, the following research ques-
tion was formulated:

ResearchQuestion

How can multidisciplinary integration of sensor-based control laws, model-free sens-
ing methods, and actuation mechanisms be used for real-time, in-flight, multi-
objective optimisation framework of actively morphing wings?

IV.2.1. Conclusions
In the following sections, the main findings of the previous Chapters are presented, fol-
lowed by a future outlook.

IV.2.1.1. Part I: Smart Sensing: Visual Tracking
In Part I, a non-invasive sensing approach was investigated and proposed to estimate the
states of morphing and flexible wings in real-time, suitable for control feedback. Novel
algorithms were proposed using a holistic approach from the domains of state estimation,
machine learning, computer vision and deep learning.

Chapter I.1: Adaptive Real-Time Clustering for Visual Tracking
This Chapter developed a non-invasive vision-based image tracking pipeline using a ro-
bust machine learning approach to automatically detect and label visual markers from an
image stream and integrate state estimation routing into the control feedback loop. An
emphasis was put on robustness and the ability of the algorithm to deal with image noise.
A novel approach was proposed using an inverse formulation of the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), DBSCAN−1. Figure IV.2.1 illustrated
the focus of Chapter I.1.

The processing pipelinewas constructed of image segmentation, Hue-Saturation-Value
(HSV) colour filtering and morphological operations designed to preprocess the image
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Figure IV.2.1: High level overview of the vision-based sensing approach proposed in Chapters I.1, I.2 and I.3.

frame for clustering operation. In the last step, the markers were detected and labelled
with an unsupervised density-based clustering algorithm, DBSCAN [1]. The performance
of DBSCAN was compared to another unsupervised clustering method, the Disjoint-set
data structure [2] by processing (i) performance data obtained from a performance test
with randomly generated cluster data and (ii) experimental data obtained from the mea-
surements of the wing response undergoing oscillatory motion under gust excitations in
the Open Jet Facility (OJF) wind tunnel at the Delft University of Technology.

The density-based approach, with DBSCAN, demonstrated more resilience against
noise in the input image and higher accuracy. An error of ≈ 1 pixel was observed for
most of the markers clustered with DBSCAN concerning the validation dataset. However,
this Chapter highlighted an essential shortcoming of the de-noising HSV-morphological
segmentation filter to clustering outcome. Namely, that (i) the clustering performance
degraded without morphological operations and (ii) the mask for the clustering opera-
tions could be erased by morphological operations under certain lighting conditions (high
illumination). This suggested that morphological operations are not always possible or
beneficial, and highlighted the relevance and the need for a novel clustering approach.

To tackle this problem, a novel formulation of DBSCAN, the inverse DBSCAN−1, was
proposed, where the clustering problem is reformulated into a noise filtering problem. In-
stead of rejecting the noise, this approach explicitly detects the noise, making the clustering
an implicit task. The experimental dataset was processed using the DBSCAN−1 pipeline,
and it was shown that the actual clusters were successfully identified and isolated from
the noise in the image. After isolating the clusters, DBSCAN−1 must be followed by an
additional nominal DBSCAN clustering to extract the exact location of the markers. The
final nominal DBSCAN can be done at a significantly lower computational cost due to
the removed noise. Further studies were suggested to assess the performance gain of
DBSCAN−1 compared to additional filtering steps in various lighting conditions.

Finally, the experimental dataset, consisting of image sequences, was processed with
the clustering pipeline and analysed in the time and frequency domain. The main ob-
jective of this analysis was to understand whether the proposed image tracking method
could correctly (i) estimate the time response and (ii) identify the frequency content of
the measured wing displacement signal compared to the reference measurement provided
by the laser vibrometer. For frequency domain analysis, the power spectral density of
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the output signal was used as an assessment metric. The results demonstrated that the
proposed method could capture and analyse the motion of an oscillating wing with rela-
tively low-resolution cameras (1.3 megapixels). For this purpose, markers exhibiting high
motion amplitude (closer to the tip) were the most favourable.

Main findings of Part I, Chapter I.1:

• Robustness against the noise of density-based clustering can be increased by
reformulating the clustering problem into a noise filtering problem. The clus-
tering problem becomes an implicit task, where the noise is no longer rejected
but explicitly detected.

• The motion of an oscillating wing can be captured and analysed with rela-
tively low-resolution cameras (1.3 megapixels) using unsupervised clustering
integrated into an image processing pipeline.

Chapter I.2: State Estimation and Real-Time Tracking
This Chapter followed up on the second part of the proposed visual sensing approach as
shown in the diagram in Fig. IV.2.1. The primary purpose was to develop a robust state
reconstruction approach, which would take as input a point correspondence pair detected
from two image frames and reconstruct the tip deflection response in 3D induced by gust
input on the wing. Sorting and detection were provided by the methodology introduced
in Chapter I.1.

The proposed method consisted of a tracker pair composed of a purely visual filter – a
high-speed Kernelised Correlation Filter (KCF) [3], paired with an Extended Kalman Filter
(EKF)–, allowing robust estimation of a system exhibiting oscillatory motion under the
presence of marker failure and occlusions. The KCF-EKF method was validated experi-
mentally on a real-time image stream of a very flexible wing subjected to gust excitation
in the OJF wind tunnel. The method is further improved with the expansion of the EKF
to the Augmented Extended Kalman Filter (AEKF) form, where the uncertain system pa-
rameters are included in the Kalman Filter model, thereby estimating both the states and
parameters online adaptively. The last stage of the reconstruction step is the triangula-
tion with the Direct Linear Transformation (DLT) method and coordinate transformation
needed to obtain the relative displacement from the static displacement under a given free
stream velocity.

The laser vibrometer measured response (in meters) was reconstructed with the KCF-
EKF (dark grey) pipeline shown in the top right of Fig. IV.2.1. The camera setup was cal-
ibrated to obtain the reconstructed displacements, and the corresponding KCF-EKF point
pairs from two image streams were triangulated with the DLT method. The details of the
triangulation approach are given in previous studies conducted within the scope of this
dissertation with the DLT and the parallel tracking approach [4, 5]. The obtained 3D coor-
dinates were then transformed to align the laser vibrometer measurement. Similar to the
prior measurement, the baseline static displacement was subtracted to obtain the transient
displacement of dy as indicated by the last block in the diagram in Fig. IV.2.1.

Analysis of the experimental data and the reference data of the wing tip displacement
measured by the laser vibrometer system highlight the sensitivity of the wing response
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to gust frequency, the gust vane angle and the free stream velocity, allowing a better un-
derstanding of the requirement for the visual tracking. The higher free stream velocity
and larger gust vane angles induce higher oscillatory wing tip amplitudes. The lower fre-
quency of the gust alters the response characteristics from the impulse to 1-cosine. The
shift is found near 3 Hz, where, for narrower 1-cosine gusts, wing response tends to attain
the characteristics of an impulse, and the energy is absorbed in a narrower time span by
the wing, while at lower frequencies, the wing response follows the shape of the 1-cos
gust. The sensitivity analysis shows that higher amplitude and faster changes in response,
higher gust frequencies, higher free stream velocity and gust vane angles are more critical
for visual tracking and control feedback.

The reconstructedmotion of thewingtipmarkers fromKCF-EKF tracking showed good
agreement with the referencemeasurement provided by the vibrometer. Differences in the
peaks of the motion amplitude were found of up to 3.5 mm in the most adverse conditions,
which were suggested to be due to (i) the splining of the laser reference measurement and
(ii) coordinate system transformation between the laser and camera setup and (iii) stereo
calibration errors. Equivalent frequency and time-domain analysis, as introduced in Chap-
ter I.1, conducted on the reconstructed response, showed that the resonance peak could
be captured well with relatively low-resolution cameras. In particular, it was suggested
that the tracking performance could be directly improved by (i) more rigorous calibration
of the tracking volume, (ii) more accurate measurement of the orientation and location of
the camera setup concerning the wing and the reference system, and (iii) tuning of the
smoothening introduced by the Kalman Filter.

Main findings of Part I, Chapter I.2:

• Motion of a flexible wing subjected to gust excitation can be estimated robustly
through visual tracking methods by adding information about its dynamics in
the Kalman Filter model. The system states and parameters can be estimated
simultaneously by augmenting the Kalman Filter model with unknown system
parameters, increasing the model’s adaptability.

• Visual sensing is a robust and non-invasive approach for reconstructing wing
motion for control feedback, which can be realised with relatively low-cost cam-
era hardware and a combination of real-time algorithms.

Chapter I.3: Vision-Based Deep Learning Methods
In the previous Chapter, the reconstruction of the wing shape was realised through suc-
cessive and relatively elaborate processing steps. Chapter I.3 investigated how the in-
troduction of artificial intelligence, and in particular deep learning from raw image data,
could help simplify the processes involved in the proposed smart visual sensing approach
or even potentially replace it entirely.

To explore the deep learning-based concept of Smarter Visual Sensing, a Deep Con-
volutional Neural Network (DCNN) is trained to perform a part of the sorting operation
as shown in Fig. IV.2.1 and detect the orientation angle of extracted contour shape of the
wing. Simultaneously, the Geometrical Reflectional Symmetry Detector (GeConv) algo-
rithm proposes an efficient algorithm-based solution to the problem to compare the two
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methods. Both approaches show excellent results in detecting symmetry and orientation.
The Neural Network can achieve an angle error of up to 0.05 degrees without needing a
contour shape as input. However, it does not easily generalise shapes deviating from the
training set. The traditional computer vision approach excels at speed and is model-free,
meaning a good generalisation can apply the algorithm to many types of shapes. How-
ever, it requires a processing step to get the contour points, while the DCNN operates on
the raw pixels. The main disadvantage of the GeConv is that, while the orientation can
be easily corrected, the head or tail of the object along a given symmetry axis is arbitrary,
which does not occur with the deep learning-based method.

The crux of the concept was based on the idea that a DCNN could be trained to ac-
cept sequences of raw image data and perform either a regression or classification task.
Given a sequence of image data correlated through time, its successive evaluation with the
trained DCNN should predict the variable of interest, either the orientation of an image,
the location of a marker, or the wing displacement. This approach could yield a signifi-
cant simplification as not only a single camera stream would be required, but the image
processing steps are also reduced significantly.

Main findings of Part I, Chapter I.3:

• Deep Convolutional Neural Networks (DCNN) can be trained to replace parts or
all processing steps involved in smart visual sensing by performing regression
or classification from raw image data.

• Combining time-correlated image data with DCNN offers the potential for wing
state reconstruction using only a single image stream.

IV.2.1.2. Part II: Smart Design & Optimisation
In this Part, the central element of the active morphing is investigated, namely, the system
itself. First, a novel distributed morphing design is proposed and analysed. Some of its
shortcomings are highlighted, which are addressed in the subsequent Part. A numerical
study follows this up by investigating the benefits of the distributed morphing design in
the context of online shape optimisation. The proposed approach optimises the steady-
state lift-to-drag ratio for a given target lift coefficient online through evolutionary-based
optimisation coupledwith a Radial Basis Function Neural Network (RBF-NN).The analysis
is done in preparation for the wind tunnel test discussed in Part III.

Chapter II.1: Distributed Morphing Wing Design
This Chapter presented a novel distributed morphing concept integrated into a seamless,
actively morphing wing demonstrator called SmartX-Alpha. The proposed concept al-
lowed variation of lift distribution locally along the span and addressed the drawbacks
of the initial Translation Induced Camber (TRIC) concept. A Fluid-Structure Interaction
(FSI) optimisation framework was developed to produce the optimised laminated design of
the morphing skin, taking into account the ply orientation, laminate thickness, laminate
properties and actuation loads.

Fixed ±45 degree ply orientation and gradual ply thickness dropping achieved the
desired morphing flexibility and manufacturability. The introduction of local lift variation



IV.2.1. Conclusions

IV.2

305

Chapter II.2 Part III

Chapter II.2

Objectives

cord
dc

span
c

Design
Methodology

Span

Camber

Wing Model

Evaluation

Analysis

∑

∑

NN 1

NN 2

Onboard Model Optimiser

Target
CL

Optimal Shape

Figure IV.2.2: High level overview of morphing design and optimisation proposed in Chapters II.1, II.2.

presented an additional design challenge for inter-modular elastomeric skin design, which
was required to allow sufficient flexibility and have the most negligible impact on the
actuator load. A gap fully covered by silicone skin yielded the best design configuration
for the inter-modular skin. The finalised concept is validated for the commanded target
shapes with Digital Image Correlation (DIC) measurements.

The critical contributions of this Chapter are the realisation of the smart distributed
actively morphing concept, characterisation and demonstration of the manufacturability
of this concept. Another important finding of the validation study was the sensitivity to
the backlash hysteresis. This nonlinear effect was identified as a mechanical imperfection
resulting frommanufacturing uncertainties and added stiffness due to the elastomer, caus-
ing lower than anticipated peak deflections. This finding, in turn, presented a worthwhile
opportunity to investigate a possible control strategy designed to mitigate the impact of
backlash through the learnings of previous sections involving novel hardware and sensor
approach.

Main findings of Part II, Chapter II.1:

• Realisation of the smart distributed actively morphing concept, its characterisa-
tion and demonstration of its manufacturability.

• Revelation of the backlash phenomenon presents a key challenge to be solved
utilising the capabilities of the smart actively morphing wing.

Chapter II.2: Learning-Based Aerodynamic Performance Optimisation –
Numerical
Building further upon Chapter II.1, this Chapter investigated the aerodynamic perfor-
mance improvement that could be achieved with the proposed seamless, distributed mor-
phing design, utilising artificial intelligence as a black-box controller. Using lift and drag
measurement updates, a novel learning-based shape optimisation method was proposed
to optimise the shape online in order to maximise the steady-state lift-to-drag ratio for a
given target lift coefficient. An online-trained Artificial Neural Network (ANN) acted as an
onboard lift and drag coefficient value model for given actuator input angles, which could
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be adapted online. An evolutionary optimisation algorithm was responsible for finding
the most optimal shape and the angle of attack for the given lift coefficient targets. The
sampling of pseudo-random inputs explored the optimisation space during the wander-
ing phase. A surrogate model based on Radial Basis Function Neural Network (RBF-NN)
was responsible for learning the mapping between wing shape and the angle of attack as
inputs, and the lift and drag coefficient as outputs.

The simulation experiment demonstrated that the surrogate model could estimate suf-
ficiently across a large spectrum of inputs and outputs, facilitating the optimiser to pro-
duce optimal wing shapes outperforming the jig shape in terms of aerodynamic efficiency.
With the global nature of the optimisation approach, the optimisation strategy allowed to
find wing shape and angle-of-attack combinations with lift-to-drag ratio increases of up to
14.6% for a wide range of target lift coefficients without requiring further exploration. The
ability to update the onboard RBF-NN surrogate model using new measurements demon-
strated a relevant and beneficial aspect of the proposed approach to actively morphing
systems, namely, adaptability. As demonstrated through the wandering phase, this ap-
proach would lend itself practical for the in-flight flight-test scenario, where the behaviour
of the wing model is partly unknown and must be identified during manoeuvres. Further-
more, as the model is input-output based, the structure could be adapted to include other
variables such as Reynolds and Mach numbers to cover the entire flight envelope.

Main findings of Part II, Chapter II.2:

• Evaluation of a black-box performance optimisation strategy can be adapted on-
line and utilised for in-flight shape optimisation for an actively morphing wing.

• Global optimisation can be pursued by adaptive Neural Network structure based
on Radial Basis Functions and evolutionary-based optimiser given sufficient
knowledge of the optimisation space through exploration. Adaptability is a key
aspect of an actively morphing system.

IV.2.1.3. Part III: Smart Control & Integration
In the previous Part, a novel morphing wing design was proposed, and a numerical study
was conducted to investigate online aerodynamic performance optimisation. Following up
on the previous one, this Part covers the fundamental control design required for achiev-
ing the main objectives and the integration of all systems – evaluated during wind tunnel
experiments. First, a robust control method is proposed for simultaneous gust and ma-
noeuvre load alleviation based on Nonlinear Dynamic Inversion (INDI) and Quadratic
Programming (QP), tested experimentally in the OJF wind tunnel equipped with a gust
generator. This is followed by a data-driven Incremental Model-based Nonlinear Dynamic
Inversion (IM-NDI) control approach designed to mitigate the mechanical imperfections
in a seamless active morphing wing, as established in Part II. Finally, this Chapter is fol-
lowed by the development and validation of the complex experimental setup, where all
previous elements of an active morphing wing are combined to investigate online perfor-
mance optimisation in a real-life experiment.
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Figure IV.2.3: High level overview of control and online shape optimisation proposed in Chapters III.1, III.2 and
III.3.

Chapter III.1: Gust andManoeuvreLoadAlleviationofaMorphingWing

This Chapter investigates the design and wind tunnel testing of a simultaneous gust (GLA)
and Manoeuvre Load Alleviation (MLA) control law for a seamless active morphing wing.
First, the Incremental Non-linear Dynamic Inversion (INDI) is introduced for a generic
nonlinear system. Since the morphing system has a distributed array of actuators, a con-
trol allocation strategy is investigated for the controller, which considers the actuator po-
sition, rate and relative position constraints. The proposed approach with INDI combined
with Quadratic Programming (INDI-QP) satisfies these constraints in contrast to INDI
with Pseudo Inverse control allocation (INDI-PI). To increase the smoothness of the con-
trol allocation, the INDI-QP is augmented with the virtual shape functions (abbreviated to
INDI-QP-V).

The effectiveness of the proposed INDI-QP-V is validated by wind tunnel experiments
in a complex experimental setup running in real-time. Inmanoeuvre load alleviation tasks,
INDI-QP-V increased the total lift for performing pull-up manoeuvres without amplifying
the wing root bending moment. In the presence of successive “1-cosine” gusts, it miti-
gated the loads without requiring any gust information. A key revelation of the proposed
method was the robustness against aerodynamic uncertainties, gusts, actuator faults, and
nonlinear backlash. The INDI-QP-V was effective in mitigating the effect of gust, while
the 9th actuator had become inoperable due to mechanical failure.

The evaluation of the proposed method also highlighted a critical factor responsible
for the degradation of the load alleviation performance at higher gust frequencies, namely
the phase lag in the closed-loop system. The lag is contributed by two sources in the mor-
phing system, the identified cut-off frequency of the servo (2.60 Hz) and the filter’s cut-off
frequency needed to attenuate the relatively high noise level of the load balance system.
Therefore, these aspects of the morphing system are considered limiting performance fac-
tors and must be designed accordingly to meet the desired performance criteria of the load
alleviation objective.
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Main findings of Part III, Chapter III.1:

• The proposed INDI-QP-V control is an efficient and easy-to-implement sensor-
based control strategy for simultaneous gust and manoeuvre load alleviation of
an over-actuated and over-sensed actively morphing wing.

• The ability to account for model uncertainty through real-time control and sens-
ing architecture has demonstrated that objectives can still be met in a fault-
tolerant manner, even in the presence of significant model error sources such as
actuator fault and backlash. This is an important step toward the scalability of
the concept to full-scale test flight.

• The responsiveness of the servo and sensor strategy is the limiting factor for
faster objectives of an actively morphing wing.

Chapter III.2: Mitigating Backlash and Disturbances Using Vision-Based
Control
This Chapter presents the experimental verification of a data-driven Incremental Model-
based Nonlinear Dynamic Inversion (IM-NDI) control approach designed to mitigate the
mechanical imperfections in a seamless active morphing wing. The system dynamics are
identified online using the stored input/output data without a prior-known model. Then
the NDI controller is developed based on the identified dynamics.

A crucial aspect of improving these imperfections is an accurate knowledge of the
morphing wings’ shape. A vision-based control system was developed, which has shown
to be adequately effective for this task, given its robustness, high frame rates (250 frames
per second), and good calibration accuracy (reprojection error 0.25mm).

A real-world experiment was conducted based on computer vision feedback to evalu-
ate the proposed method. The experimental results demonstrate that the morphing wing
can track reference signals with different frequencies despite external disturbances by ap-
plying the IM-NDI. Under Feed-Forward (FF) control, the morphing wing suffers from
mechanical imperfections, reflected by the tracking responses’ lagging and magnitude
shrinking phenomena. The performance of Feed-Forward control also degrades in the
presence of external disturbances. By contrast, experimental results show that IM-NDI
can effectively decrease the tracking errors by more than 62 % despite disturbances.

Furthermore, the proposed vision-based system combined with the control methodol-
ogy demonstrates the ability to compensate for mechanical imperfections without chang-
ing the morphing hardware. All results collectively illustrate the effectiveness of the pro-
posed IM-NDImethod in dealing with inherent mechanical imperfections of the morphing
wing system.

Main findings of Part III, Chapter III.2:

• The adaptability of the proposed vision-based IM-INDI control approach leads
to better robustness against disturbance and backlash and is able to cope with
mechanical imperfections in the morphing system.
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• Limited servo bandwidth impairs the ability to mitigate disturbances and track
faster-referred signals with compensating controllers.

• The effectiveness of backlash compensation can be achievedwithout the require-
ment for invasive changes to the design of the morphing mechanism.

Chapter III.3: Learning-Based Aerodynamic Performance Optimisation –
Experimental
Expanding on the objectives achieved experimentally in the previous Chapter, namely, si-
multaneous gust and load alleviation, this Chapter focuses on the realisation of the shape
optimisation objective for improved performance of the morphing wing. Moreover, this
Chapter builds further on the simulation study presented in Chapter II.2 and proposes
and validates an online black-box shape optimisation architecture experimentally for dis-
tributed actively morphing wings.

The proposed approach consists of an evolutionary optimisation strategy, Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) coupled with a low cost, Radial Basis
Function Neural Network (RBF-NN) onboard surrogate model for online optimisation of
the steady-state lift-to-drag ratio of the morphing wing for a given target lift coefficient.
The onboard RBF-NNmodel is trained with experimental data collected during wandering
phases to capture the behaviour of the wing model and predict the steady-state lift and
drag coefficients. The computational time is reduced by implementing a parallel query of
150 candidate solutions for the angle of attack and virtual shape using CMA-ES in the inner
optimisation loop. The RBF-NN model is updated globally using the outer loop, based on
actual measurements.

Compared to the unmorphed wing base shape, a drag reduction of 7.8 % was achieved
on the SmartX-Alpha demonstrator for a target lift coefficient of 0.65. For a wide range
of target lift coefficients, the predicted drag reductions vary between 6.5 % and 19.8 %,
with higher drag reductions associated with lower lift coefficients. Although shape opti-
misation is governed by the steady-state behaviour of the wing, accurate and fast shape
feedback is a crucial factor formitigating the backlash effects and providing accurate shape
feedback such that the online model can be adapted. Vision-based control and sensing are
critical factors for achieving this in an effective and non-invasive manner.

The proposed approach has shown significant benefits over existing methods. Firstly,
grey-box methods rely on model excitation manoeuvres at every trim condition, which
is undesired. The proposed methods can eliminate this need by employing a black-box
approach and online adaptation, providing the optimal wing shape for various lift coef-
ficients. The black-box nature of the onboard model facilitates the use of experimental
or in-flight data to capture the wing model behaviour. Secondly, the black-box nature of
the proposed methods is model-independent, meaning that the strategy can be applied
to other morphing wing platforms and concepts with adequate learning. This, again, is
a critical step towards maturing the active morphing wing technology and conducting a
full-scale test flight. Finally, the current optimisation structure allows the implementation
and development of other optimisers which can be implemented with the same black-box
data structure in the inner loop.
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Main finding of Part III, Chapter III.3:

• The proposed black-box online shape optimisation approach demonstrates sig-
nificant benefit over grey-box methods, as no excitation is required at every
trim condition. The black-box nature of the onboard model facilitates the use of
in-flight or experimental data to capture the wing model behaviour. Moreover,
this approach is model-independent and scalable to generic morphing wing plat-
forms due to its adaptability.

• High-accuracy and fast sampling sensors are critical for backlash compensation
and shape optimisation in an experimental setting. Vision-based sensing is a
critical, non-invasive sensory element for active morphing systems that rely on
shape feedback.

IV.2.1.4. Part IV: Outlook
The active morphing wing demonstrator concept was proposed in the previous sections,
and its feasibility was investigated through incremental improvements and successive
wind tunnel tests.

A key finding was that actuator bandwidth, and the quality of the sensor noise atten-
uation were critical factors required to push the envelope for multi-objective optimisation
and mitigation of aeroelastic loads. The last Chapter investigates the impact of faster
actuation on load alleviation performance and the ability to achieve faster aeroelastic ob-
jectives. For this purpose, a distributed over-actuated aeroelastic wing demonstrator was
developed, the SmartX-Neo, allowing faster actuationwith amuch simpler flapmechanism
and ensuring the same integrated sensing capability as the SmartX-Alpha. The difference
in objectives addressed with the two demonstrators is shown in Fig. IV.2.4 below.
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Figure IV.2.4: Comparison of the objectives of the SmartX-Alpha and SmartX-Neo.

The effect of actuator design was studied through a series of gust simulations of closed-
loop control of a parametric aeroservoelastic model of the SmartX-Neo, for gusts with
various frequencies. Actuator dynamics were implemented in the system by scaling the
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stiffness and damping of a second-order system. With the nominal LinearQuadratic Reg-
ulator (LQR) controller, reductions of peak gust load up to 78 % were achieved compared
to the open-loop case. It was observed that lower scaling corresponding to faster actu-
ation provides significant improvements of up to 11 per cent over the nominal actuator
configuration, yielding reductions of gust loads up to 84 %. Furthermore, it was observed
that the effectiveness of faster actuators improves for higher frequency gusts, confirming
the potential of SmartX-Neo to deal with faster control objectives more effectively.

This Chapter’s main contribution is a step towards maturing and increasing the Tech-
nology Readiness Level (TRL) of distributed morphing and over-actuated wing concepts,
which is a critical step towards adopting this technology in future aircraft designs.

Main finding of Part IV, Chapter IV.1:

• For an over-actuated aeroelastic system, a faster actuator can be represented by
a proportional scaling value below one and yields better load alleviation and
improved effectiveness for higher frequency gusts.

• Realisation of a distributed-over actuated aeroservoelastic wing concept through
a simpler and faster actuation mechanism.

IV.2.2. Recommendations
This section presents the recommendations of this dissertation and a discussion on the
scalability of the proposed technologies.

IV.2.2.1. Maturing Wing Morphing Technology
The final Chapter, Chapter IV.1, sets an important step towards maturing active morphing
wing technology with the realisation of a simple over-actuated wing concept, extending
the capabilities of a distributed smooth morphing wing with a simplified actuation ap-
proach. The implicit aim of this dissertation, to accelerate the TRL and the adoption of
actively morphing wing concepts, which must include a smart sensing, control and inte-
grated system, is therefore strengthened through the findings in this dissertation. Still,
some recommendations can be made on the specifics of an actively morphing system pre-
sented in previous Chapters and assumptions made in the final Chapter.

The numerical experiment, performed in Chapter IV.1, presents a purely numerical
scenario with the assumption of full state feedback of the system. In a more realistic case,
a state estimator must be integscrated with the LQR (analogous to LinearQuadratic Gaus-
sian (LQG)). Moreover, the noise and bandwidth limitations of the sensors will impact
the effectiveness of Gust Load Alleviation (GLA). Including and studying these effects in
further assessment of fast actuators within the scope of GLA and MLA is recommended.
Furthermore, it is recommended to evaluate the prioritisation of objectives on the effec-
tiveness of gust load alleviation to include the impact of specific control allocation on drag
performance.
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IV.2.2.2. Smart Visual-Based Sensing
In this dissertation, a non-invasive vision-based sensing strategy was proposed to estimate
the shape of a morphing and flexible wing with distributed control surfaces in real-time,
suitable for control feedback. Model independence and non-invasiveness were demon-
strated by incremental improvements to the vision-based sensor system across various
closed-loop control experiments. Several critical elements of the processing pipeline were
investigated: unsupervised clustering, correlation-based tracking filtering, Kalman Filter-
ing, 3D reconstruction and deep learning.

Adaptive Clustering for Increased Robustness
The proposed formulation of DBSCAN, the inverse DBSCAN (DBSCAN−1), demonstrated
how the clustering problem is reformulated into a noise filtering problem, where, instead
of rejecting it, the noise was detected explicitly, making the unsupervised clustering an
implicit task. The image segmentation analysis also showed that the approach chosen
for image thresholding plays a critical role in obtaining an optimal mask for the cluster-
ing problem. Various approaches were investigated, using global normalisation, baseline
thresholding and Otsu’s thresholding, where Otsu’s method produced the cleanest mask.
However, the latter method still assumes that the image pixel intensity histogram has
bimodal nature (i.e. there is a clear separation between an image background and fore-
ground), which may not always be the case, in particular, with a noisy dataset.

It is evident that there is a significant link between segmentation and clustering. How-
ever, since pixel intensities naturally reflect a dynamic response captured from the oscillat-
ing wing, these processes must also be connected in time. Implementing a Sliding Discrete
Fourier Transform (SDFT) could yield an efficient method for capturing the change in the
pixel intensities or its footprint in the spatial domain [6]. The thresholding value for the
segmentation can be adjusted adaptively across the image sequence. As more data reflect-
ing the motion of the marker and its corresponding intensity is collected gradually in the
SDFT time window, a distinct value of the resonant frequency of wing motion can be ob-
tained such that the threshold value is adjusted. The suggested approach is illustrated in
Fig. I.1.31.

The accuracy and motion resolution could be further improved by increasing the cam-
era’s resolution and utilising markers less sensitive to lighting conditions, such as active
Infrared (IR) markers. However, a thorough trade-off is essential, as increased resolution
would generally increase the computational cost of the tracking pipeline and reduce the
maximum processing frame rate, subsequently reducing the tracking bandwidth.

Tracking Dynamics and Reconstruction
This dissertation proposed a reconstruction method combined with a 2D tracking method
followed by a 3D reconstruction step from synchronised image frames. The proposed KCF-
EKF tracking method demonstrated that significant tracking speed and robustness could
be achieved when a purely visual filter is paired with an Extended Kalman Filter, allow-
ing system prediction through knowledge of its dynamics. Since the Kalman Filter was
coupled to the motion of a marker in a 2D image plane, the simplest representation of the
system is linear particle dynamics. The dynamics can be further enhanced by augmenting
the Kalman Filter model with system parameters, allowing state and parameter estimation.
As the wing exhibits oscillatory motion under gust excitation, which is also true in the 2D
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image plane, oscillator dynamics were used in the augmented formulation of the AEKF.
This formulation did not take into account disturbance to the system, which was caused
by a discrete gust input. The gust input can be modelled as an unknown disturbance force
and estimated together with the remainder of the parameters. The structure of the AEKF
can expand the estimator dynamics to more complex dynamics, further improving the
estimation.

It must be noted that in the proposed approach, the Kalman Filters estimating a cor-
responding image pair from two camera streams are not coupled. Using this approach, a
strategy can be devised where the two Kalman Filters are coupled through a synchroni-
sation variable, indicating the change of state in either position or the marker’s velocity.
Finally, the robustness of the reconstructed 3D estimate of the correspondence pair can be
further improved by including a Kalman Filter estimate of the 3D position and velocity.
This approach has already been demonstrated in a study conducted in a mobile experi-
mental setup [5]. Finally, the computational cost of the preprocessing and tracking can be
further reduced by utilising a parallel tracking approach with Threading Building Blocks
(TBB) as developed in the previous study conducted within the scope of this dissertation.
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Figure IV.2.5: 3D Reconstruction pipeline replaced fully by Deep Learning approach.

Chapter I.3 demonstrated that the relatively elaborate image processing steps in Chap-
ters I.1 and I.2 could be replaced in part by the deep learning approach from raw image
data. A DCNN was trained to perform operations relating to the sorting and clustering of
images. To further simplify the process, the entire reconstruction can be potentially re-
placed by DCNN. In this potential setup, as shown in Fig. IV.2.6, a DCNN can be trained to
predict the 3D marker displacement from features learned in the raw image data. Feeding
the sequences of images would then yield a lookback prediction of the current displace-
ment. Thiswould be a significant simplification as not only a single image is used, meaning
a single camera image would suffice, but all the processing steps would also be removed.

Developments in the methodologies and hardware have significantly improved the
capabilities of artificial intelligence (AI) and data-driven sensing, allowing for real-time
implementation of control tasks. With the recent developments in Recurrent Neural Net-
works (RNN) [7] and Graph Neural Networks (GNN) [8], the ability to introduce time de-
pendency in the Convolutional Neural Network (CNN), which is tailored for image-based
spatial data, becomes a promising aspect. The proposed approach, where image sequences
are not correlated, can be improved in two ways. First, a recurrent network structure can
be considered, where the image sequences are correlated and thus better reflect the time
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history of the wing deflection. Secondly, while training the neural network, the input
channel can be blended with other time-series data to represent a spatio-temporal im-
age fusion, as shown in Fig. IV.2.5. It must be noted that there are many challenges and
caveats to such an approach as unbalanced data, noise and domain adaptation can be sig-
nificant issues for successful deployment of such DL-based methods. Therefore, further
investigation is necessary to assess the potential of these types of methods.
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Figure IV.2.6: General overview of the DCNN structure and feature extraction process.

IV.2.2.3. Morphing Wing Design & Optimisation
The distributed active morphing design concept proposed in this dissertation aimed to ad-
dress the drawbacks of previous morphing designs, and its manufacturability was demon-
strated through the realisation of the hardware demonstrator.

Design Improvements and Challenges
The morphing modules’ Symmetric Bend Up and Down actuation showed a linear trend,
agreeing with the simulation. However, the validation study revealed a significant sensi-
tivity to the backlash phenomenon and added stiffness due to the addition of the elastomer,
leading to the overestimation of peak deflections. While model correction from reference
data yielded a better estimation, the numerical model can be further improved by im-
plementing greater detail of the actuation components and interactions of the interfaces
(e.g.the guiding lip and servo pickup). However, a trade-off must be made between model
complexity (i.e. high computational cost) required to capture the combined effect of back-
lash in the actuation mechanism and added stiffness of the elastomer and the achievable
accuracy.

Capturing and integrating these effects in the design process cost-efficiently presents
a challenge worth investigating in further studies. Mitigating the backlash effect opens
another opportunity for research exploring the current concept. In Chapter III.2, a closed-
loop control system, relying on accurate position measurements from the vision-based
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sensors, demonstrated how this effect could be mitigated effectively by a data-driven IM-
NDI control approach. Finally, a recommended future research topic is to investigate the
impact of a more flexible wing structure in torsion and span-wise bending.

Learning-Based Optimisation Structure
Combing the potential of the proposed distributed morphing concept with artificial intel-
ligence, an investigation of feasible aerodynamic performance improvement was made by
implementing a novel black-box controller and evolutionary optimisation strategy. With
this controller, the shape of the wing was actively optimised for a given target lift coef-
ficient using the lift and drag measurement updates. The simulation experiment demon-
strated that the optimisation strategy allowed optimal wing shapes to outperform the jig
shape in terms of aerodynamic efficiency for a wide range of lift coefficient targets while
also allowing the onboard RBF-NN surrogate model to be adapted online. The input of
the onboard model consisted only of the wing shape and angle of attack, and the outputs,
the lift and drag coefficients. Aside from these inputs, the Reynolds number and Mach
number have a prominent influence on lift and drag coefficients. Consequently, the input
space of the onboard model should be expanded to include these parameters across the
entire flight envelope. With adequate training, the RBF-NN can be easily suited to this
purpose owing to its black-box nature.

Due to the adaptable onboard model and its flexible inner-outer-loop structure, the
online optimisation framework presented in Chapters II.2 and III.3, allows the implemen-
tation and development of other optimisers, which can be integrated using the same neural
networkmodel in the inner loop. However, it is recommended to investigate Hyperparam-
eter Optimisation (HPO) strategies for the neural network and optimisation parameters to
enhance further the prediction performance of the RBF-NN model.

IV.2.2.4. Control & Integration of Morphing Wing Systems
Following the design and numerical studies with the proposed concept, a robust control
method was proposed for simultaneous gust and manoeuvre load alleviation and tested
in a wind tunnel experiment. This was followed by the development and testing of a
complex experimental system. Here, all previous elements of an active morphing wing
were combined to investigate black-box online performance optimisation in a real-life
experiment.

The evaluation of the INDI-QP proposed method highlighted the phase lag in the
closed-loop system as a critical factor responsible for the degradation of the load alle-
viation performance at higher gust frequencies. Contributed to the identified cut-off fre-
quency of the servo and cut-off frequency of the filter needed to attenuate the relatively
high noise level of the load balance system, the apparent approach to improving the per-
formance is to make the servo faster and the sensor less noisy.

The final Chapter of this dissertation, Chapter IV.1, demonstrated that faster actuation
significantly improves the ability to cope with faster objectives and the effectiveness of
gust load alleviation. The modularity of the distributed TRIC concept and conventionally
driven actuation system allows selecting the best available servo within the cost limits and
performance requirements. Dividing the wing section into smaller modules is another ap-
proach to reduce actuation and increase the actuation speed. A different approach is to
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replace the relative complex morphing modules with a simply hinged distributed array of
discrete flaps. The attainable wing shape, hence lifts distribution, would be less smooth;
however, the actuation loads are significantly reduced, and the skin is no longer bent or
twisted for actuation. SmartX-Neo was initiated to investigate the benefits of this ap-
proach. Further tests are recommended to assess the potential of these two distributed
over-actuated wing concepts.

Sensor setup can be improved by relying on less noisy sensory information or devel-
oping a sensor fusion strategy from various sensor sources. The information about the
upstream gust can also be observed and disclosed to the controller with Light Detection
and Ranging (LIDAR) based sensors. Several options have been proposed in the scope of
sensor fusion, which includes centralised, parallel, decentralised, and cascaded Kalman
Filters [9]. A decentralised Kalman Filter is a suitable approach when the system is dis-
tributed; a large number is sensor data is needed to be processed quickly, and fault detec-
tion is desired [10]. A potential sensor diagram is shown in Fig. IV.2.7 with a decentralised
setup.
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Figure IV.2.7: Conventional sensor fusion approach with Decentralised Kalman Filtering.

Selecting the optimal Kalman Filter configuration is the most challenging aspect of
this setup, and thorough characterisation of the sensor’s performance, calibration and
assessment of uncertainties is required for the multitude of sensors. This master fuser
then has the ultimate decision to merge the sensor data accordingly such that the amount
of uncertainty in the final output is reduced. The output can be formulated to include the
switching modes or adaptive modes to prioritise certain types of sensors during a specific
control task (e.g., GLA, MLA). Furthermore, adaptability can be added to detect faults and
adjust sensor mixing.

IV.2.2.5. In-Flight Performance Optimisation and
Architecture

Thefinal experiment in Chapter III.3 demonstrated the realisation of the black-box learning-
based shape optimisation approach for maximising the steady-state lift-to-drag ratio for
a given target lift coefficient using the lift and drag measurement updates. The approach
was evaluated using a complex experimental control architecture. An additional layer of
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vision-based control was responsible for backlash compensation using real-time shape up-
dates from the vision system. The realisation of the complex experiment is an essential
step toward in-flight shape optimisation for active morphing wings with various layers of
control and sensing components and objectives.

The ability of the proposed architecture to realise the best wing shape for various lift
coefficients online eliminates the need for model excitation manoeuvres at every trim con-
dition, as is characteristic of existing grey-box methods employing local models. More-
over, as discussed previously, the onboard model can and should be expanded to in-
clude other input parameters characterising the flight envelope. The adaptability, model-
independency and non-requirement of model excitation are key benefits of successful de-
ployment of the black-box in-flight optimisation approach. Here again, the use of HPO
can help accelerate the expansion of themodel input space and adaptation to in-flight data.

IV.2.2.6. Scalability of Proposed Technologies
As with most morphing concepts and supporting technologies, scalability to full-scale air-
craft is the hardest and, for particular concepts, an infeasible challenge. However, this is
the critical step needed for maturing the technology for adoption in the aircraft indus-
try. Some of the known reasons include (i) coupling of the actuation approach with not
easily scalable smart materials (e.g. piezoelectric materials), (ii) power and control sys-
tem demand (e.g. high voltage and amplifiers), (iii) low control authority, hysteresis and
nonlinear behaviour (e.g. actuation, temperature sensitivity), (iv) weight impact due to
actuation and control system and finally, (v) maintenance and fatigue of the proposed
system.

Several observations were made in the previous sections regarding the choices and
merits of the technology proposed in this dissertation. Therefore, the choice was made in
this dissertation to consider the holistic view of the active morphing wing system. The lat-
ter is represented by the building block analogy, each with associated technology which is
easy to integrate but is detachable from a particular choice for the morphing wing concept.

In Part II, distributed actively morphing concept was realised, and its manufacturabil-
ity was demonstrated through the implementation of conventional actuation and manu-
facturing methods. The inherent simplicity of the distributed TRIC concept, low actuation
forces and modular principle are favourable aspects for upscaling the morphing technol-
ogy. While adapting the concept to full-scale aircraft will not come without additional ob-
stacles, enabling larger wing surfaces and coping with higher control surface loads can be
supported by larger conventional actuators and adequate design of the supporting com-
posite structure. However, as highlighted in Chapter II.1, the inherent principle of dis-
tributed TRIC requires chordwise actuation and spanwise motion occurring at the sliding
interface, which comes with associated mechanical friction contributing to mechanical
imperfections. The latter is further exacerbated by the added stiffness of the elastomer,
but can be mitigated to an extent by a rigorous selection of materials and designs.

However, an important aspect to consider is potential fatigue and debonding of the
skin at the upper and lower skin bondline (e.g. at the trailing edge or leading edge bond or
the composite layup near the highly loaded skin plies) or the interfaces with the actuation
mechanisms and the elastomer connection. The distributed approach is beneficial due to
its modularity and replaceability. However, routine maintenance is required to monitor
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the wear of the mechanical components and additional interfaces. Consequently, consid-
eration must be made to improve the bond interface near the leading edge, trailing edge
and elastomer connection. Furthermore, the fatigue characteristics of the composite skin
in high strain areas (the upper/lower surface near the wing box-flap) must be assessed.
Collectively, these considerations are critical for convincing the industry to adopt active
morphing concepts and lay the foundations for the certification process.

As presented in Part I, the proposed sensing technology relies only on external visual
markers or raw pixel data, which is adaptable to the chosen system (wing). As demon-
strated in Chapters I.1 and III.3, it was equally effective for the forward swept, flexible
wing as the distributed morphing wing. Consequently, it was developed with scalability
in mind.

As presented in Part III (Chapter III.1), the simultaneous gust and manoeuvre load
alleviation technology, based on an incremental sensor-based control approach, demon-
strated the ease of implementation, robustness to actuator fault and backlash in a real-life
experiment with a relatively low computational load. These traits make the proposed ap-
proach a favourable candidate for alleviating excessive loads in full-scale flight caused
by manoeuvres and gusts. Manufacturing and mechanical imperfections, the consequent
model and sensor uncertainty and system complexity are expected to play a more promi-
nent role in upscaling of the wing and transition to full-scale flight. The ability to cope
with model uncertainties and external disturbances, presented in both Chapter III.1 as
III.2, without the need for invasive changes to the design of the morphing mechanism, is
similarly favourable merit for scalability.

Finally, the online black-box shape optimisation architecture proposed in Chapter III.3
shows promising potential for in-flight application to generic morphing wing platforms.
This potential was emphasised by the ability of the online RBFNN onboardmodel to gener-
alise to a secondary wing model with different aerodynamic baseline shapes. The inherent
ability to restructure the onboard model for new input space and training data from data-
driven sources (i.e. numerically or experimentally generated) is a significant merit for the
scalability and generalisation of this technology.
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Distributed control and vision-based sensing architecture were critical elements of
shape optimisation, which were implemented non-invasively through incremental im-
provements of the hardware demonstrator across various experiments. The final recom-
mendation for future applications to real-world commercial aircraft is to deploy this ap-
proach in scaled test-flight and integrate Graphics Processing Unit (GPU) based hardware-
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acceleration for online processing and fusion of the sensory data in unison with Flight Test
Instrumentation (FTI) and Sensor Fusion Computer (SFC). An illustration of the approach,
analogous in configuration to the SmartX-Neo presented in Part IV, Chapter III.3 is shown
in Fig. IV.2.8. The hardware acceleration can be achieved with embedded GPU computa-
tional units, such as the Jetson AGX TX2/Xavier and real-time systems target machines,
such as the Speedgoat [11, 12].
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IV.A1
Planform Parameters

Table IV.A1.1: Planform parameters.

Parameter Symbol Value Unit
Wing aspect ratio A 13.6 [-]
Wing span bw 3.4 [m]
Wing loading bw 6.706 [kg/m2]
Fuselage length Lf 2.345 [m]
Elevator span be 0.56 [m]
Vertical stabilizer span bs 0.25 [m]
Wing chord (NACA 0015) cw 0.25 [m]
Elevator chord (root,tip) (NACA 0010) ce (1.67,1.45) [m]
Vertical stabilizer chord (root,tip) (NACA 0010) cs (0.24,0.19) [m]
Elevator incidence angle αi -4 [◦]
Fuselage position x (w.r.t. wing) xf -0.645 [m]
c.g. position x (w.r.t. wing) xcg 0.027 [m]
Neutral point x (w.r.t. wing) xnp 0.305 [m]
Total mass Wt 5.7 [kg]
Payload mass Wp 1.5 [kg]
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