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ABSTRACT

Virtual switches are a crucial component of SDN-based cloud
systems, enabling the interconnection of virtual machines in
a flexible and “software-defined” manner. This paper raises
the alarm on the security implications of virtual switches. In
particular, we show that virtual switches not only increase the
attack surface of the cloud, but virtual switch vulnerabilities
can also lead to attacks of much higher impact compared to
traditional switches.

We present a systematic security analysis and identify
four design decisions which introduce vulnerabilities. Our
findings motivate us to revisit existing threat models for SDN-
based cloud setups, and introduce a new attacker model for
SDN-based cloud systems using virtual switches.
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We demonstrate the practical relevance of our analysis
using a case study with Open vSwitch and OpenStack. Em-
ploying a fuzzing methodology, we find several exploitable
vulnerabilities in Open vSwitch. Using just one vulnerabil-
ity we were able to create a worm that can compromise
hundreds of servers in a matter of minutes.

Our findings are applicable beyond virtual switches: NFV
and high-performance fast path implementations face similar
issues. This paper also studies various mitigation techniques
and discusses how to redesign virtual switches for their inte-
gration.
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1 INTRODUCTION

Modern cloud systems such as OpenStack [7], Microsoft
Azure [26] and Google Cloud Platform [92] are designed
for programmability, (logically) centralized network con-
trol and global visibility. These tenets also lie at the heart
of Software-defined Networking (SDN) [23, 51] which en-
ables cloud providers to efficiently utilize their resources [35],
manage their multi-tenant networks [44], and reason about
orchestration [41].

The data plane of Software-Defined Networks in the cloud
are highly virtualized [44]: Virtual switches (running on
the servers) are responsible for providing connectivity and
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Figure 1: The total number of parsed high-level pro-
tocols in two popular virtual switches and OpenFlow
from 2009-2017.

isolation among virtual machines [63]. Prominent virtual
switches today are: Open vSwitch (OvS) [64], Cisco Nexus
1000V [93], VMware vSwitch [94] and Microsoft VFP [26].

Virtual switches are typically not limited to provide tra-
ditional switching but support an increasing number of net-
work and middlebox functionality [26, 33], e.g., routing, fire-
walling, network address translation and load-balancing.
Placing such functionality at the virtualized edge of the net-
work (i.e., the servers) is attractive, as it allows to keep the
network fabric simple and as it supports scalability [26, 63].

However, the trend to move functionality from the net-
work fabric to the edge (virtual switch) also comes at the
price of increased complexity. For example, the number of
protocols that need to be parsed and supported by virtual
switches (Open vSwitch and Cisco Nexus 1000v) and Open-
Flow [51] have been growing steadily over the last years [89]
(see Fig. 1).

The trend towards more complex virtual switches is wor-
risome as it may increase the attack surface of the virtual
switch. For example, implementing network protocol parsers
in the virtual switch is non-trivial and error-prone [25, 79, 82].
These observations lead us in this paper to conduct a security
study of virtual switches.

Our contributions:

e We present a systematic security analysis of virtual
switches. We find that virtual switches not only in-
crease the attack surface of an SDN-based cloud sys-
tem (compared to their traditional counterparts), but
can also have a much larger impact on cloud systems.

e Our analysis reveals four main factors that cause se-
curity issues: The co-location of virtual switches with
the server’s virtualization layer (in user- and kernel-
space); centralized control; complex packet parsing
(and processing) of attacker controlled data.

e Our findings motivate us to revisit current threat mod-
els. We observe that existing models do not encompass

the security issues identified in this paper leading us to
introduce a new attacker model for the operation of vir-
tualized data plane components in a Software-defined
Network as well as in the context of Network Function
Virtualization (NFV): A low-budget attacker can cause
significant harm on SDN-based cloud systems.

e We demonstrate the practical feasibility of our attacks
on OvS, a popular open-source virtual switch imple-
mentation used in SDN-based cloud systems. This case
study shows that commonly used virtual switch im-
plementations are not resilient against our attacker
model. Indeed, such an attacker can successfully ex-
ploit a whole SDN-based cloud setup within minutes.

e We extend our study by surveying high performance
fast paths, other virtual switch implementations, and
related SDN and NFV technologies. We find that they
are also susceptible to the same design issues. Further-
more, we find that software mitigations are commonly
not considered during the evaluation of new data plane
components.

e We find that software mitigations for the vulnerabili-
ties we exploited could be adopted with a small perfor-
mance penalty for real-world traffic scenarios. Their
use must be evaluated during design and implementa-
tion of new SDN and NFV components.

Ethical Considerations: To avoid disrupting the normal
operation of businesses, we verified our findings on our
own infrastructure. We have disclosed our findings to the
OvS team who have integrated the fixes. Ubuntu, Redhat,
Debian, Suse, Mirantis, and other stakeholders have applied
these fixes in their stable releases. Furthermore, CVE-2016-
2074 and CVE-2016-10377 were assigned to the discovered
vulnerabilities.

Structure: We provide necessary background information
on virtual switches in Section 2. Section 3 introduces and
discusses our security analysis of virtual switches and exist-
ing threat models. Based on this analysis we propose a new
attacker model. Section 4 presents a proof-of-concept case
study attack on OvS in OpenStack. We then investigate how
our findings on OvS relate to other virtual switches, high
performance fast paths and SDN/NFV in Section 5. Subse-
quently, we discuss possible software mitigations and their
performance impact in Section 6, and design countermea-
sures in Section 7. After discussing related work in Section 8,
we conclude in Section 9.

2 BACKGROUND

This section reviews the background necessary to understand
the remainder of this paper.



2.1 Virtual Switches

The network’s data plane(s) can either be distributed across
virtualized servers or across physical (hardware) switches.
OvS, VMware vSwitch, and Cisco Nexus 1000V are exam-
ples of the former and are commonly referred to as virtual
switches. Cisco VN-Link [2] and Virtual Ethernet Port Ag-
gregator (VEPA) [38] are examples of the latter.

A virtual switch has two main components: control and
data plane. The control plane handles management and con-
figuration, i.e., the administration of the virtual switch (e.g.,
configuring ports, policies, etc.). The data plane is responsi-
ble for forwarding. This functionality can be spread across
the system running the virtual switch. The virtual switch
can, but does not have to, be separate processes. Moreover,
it can either fully reside in user- or kernel-space, or be split
across them.

Forwarding is usually based on a sequential (or circular)
packet processing pipeline. The pipeline starts by parsing the
packet’s header to extract the information that is required
for a lookup of the forwarding instructions for that packet.
The lookup is typically a (flow) table lookup—the second
stage of the pipeline. The final stage uses this result to either
forward the packet, drop it, or send it back to the first stage.

2.2 Open vSwitch

Open vSwitch (OvS) [14, 63, 64, 88] is a popular open source
SDN and multi-platform virtual switch. OvS uses two for-
warding paths: the slow path—a user-space daemon (ovs-
vswitchd) and the fast path—a datapath kernel module (open-
vswitch.ko). ovs-vswitchd installs rules and associated actions
on how to handle packets in the fast path, e.g., forward pack-
ets to ports or tunnels, modify packet headers, sample pack-
ets, drop packets, etc. When a packet does not match a rule
of the fast path, the packet is sent to ovs-vswitchd, which
then determines, in user-space, how to handle the packet. It
then passes the packet back to the datapath kernel module
to execute the action.

To improve performance for future packets, flow caching
is used. OvS supports two main flavors of flow caching:
microflow caching and megaflow caching. Oversimplifying
things slightly, the former builds rules for individual connec-
tions, while the latter relies on generalization: It automati-
cally determines the most general rule for handling a set of
microflows. The latter can significantly reduce the number
of required rules in the fast path.

2.3 MPLS

As our case study takes advantage of the MPLS (MultiPro-
tocol Label Switching) parser, we include a brief overview
here. MPLS is often deployed to address the complexity of

per packet forwarding lookups, traffic engineering, and ad-
vanced path control. MPLS uses “Forwarding Equivalence
Classes” (FECs) to place a “label” in the shim header between
the Ethernet and the IP header [76] of a packet. This label is
then used for forwarding. In addition, labels can be stacked
via push and pop operations.

An MPLS label is 20 bits long, followed by the Exp field
of 3 bits reserved space. This is followed by the 1 bit S field,
which, if set to 1, indicates that the label is the bottom of the
label stack. It is a critical piece of “control” information that
determines how an MPLS node parses a packet. The TTL
field indicates the Time-To-Live of the label.

MPLS labels should be under the providers’ administration,
e.g., offering L2/L3 VPN, and are negotiated using protocols
such as LDP (Label Distribution Protocol) [10], As per RFC
3032, MPLS labels are inherently trusted.

3 SECURITY ANALYSIS

In this section, we present a systematic security analysis of
virtual switches. Based on these insights, we first investigate
existing threat models for virtual switches and then construct
an attacker model against which virtual switches must be
resilient.

3.1 Attack Surface and Vulnerabilities

In the following we characterize the attack surface and vul-
nerabilities of virtual switches which make them feasible,
attractive, and exploitable targets. An overview of the secu-
rity analysis and the implications is illustrated in Fig. 2.
Hypervisor co-location: The design of virtual switches
co-locates them—in SDN cloud setups—with the Host system
and at least partially with the Host’s kernel, see Figure 2.
Components of the virtual switch slow-path often run with
elevated (root) privileges in user-space on the Host system.
From a performance perspective this is a sensible choice.
However, from a security perspective this co-location and
elevated privilege puts all virtual machines of the hypervisor
at risk once an attack against the virtual switch is success-
ful. Recall, such VMs include those that run critical cloud
software, e.g., the VM hosting the controller.

Centralized control via direct communication: In an
SDN the controller is tasked with all control plane decisions
for every data plane component. Hereby, the controller uses
its “southbound interface”, today most often “OpenFlow”,
to communicate with all data plane elements—here the vir-
tual switches. In a data center following industry best prac-
tises [6] this is often implemented using a trusted manage-
ment network that is shared by all the data plane elements.
This implies that a compromised data plane component can
directly send packets towards the controller and/or all other
data plane elements. Management networks, containing only
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Figure 2: An overview of the security implications of
current virtual switch designs.

trusted components, are commonly not protected with an
additional intrusion detection system.

Unified packet parser: Once a virtual switch receives a
packet it parses its headers to determine if it already has
a matching flow rule. If this is not the case it will forward
the packet to an intermediate data path (slow path) that
processes the packet further in order to request a new flow
table entry. In this step, the virtual switch commonly ex-
tracts all header information from the packet, e.g., MPLS
and application layer information, before requesting a flow
table entry from the controller. Parsing is the switch’s re-
sponsibility as centralizing this task would not scale. The
additional information from higher-level protocols is needed
for advanced functionality like load balancing, deep packet
inspection (DPI), and non-standard forwarding (see Section 5
for an overview of related technologies using these features
in their implementation). However, with protocol parsing in
the data plane the virtual switch is as susceptible to security
vulnerabilities as any daemon for the parsed protocol. Thus,
the attack surface of the data plane increases with any new
protocol that is included in parsing.

Untrusted input: Virtual switches are commonly deployed
in data centers at the network edge. This implies that virtual
switches receive network packets directly from the virtual
machines, typically unfiltered, see Section 2. This can be
abused by an attacker. She can—via a virtual machine—send
arbitrary data to a virtual switch!. Indeed, the virtual switch
is typically the first data plane component to handle any
packet from a VM. This enables attackers to take advantage
of data plane vulnerabilities in virtual switches.

Summary: In combination, the above observations demon-
strate why data plane attacks are a feasible threat and how
they can spread throughout a cloud setup, see Fig. 2. By rent-
ing a VM and weaponizing a protocol parsing vulnerability
an attacker can start her attack by taking over a single virtual
switch (Step 1). Thus, she also takes control of the physical
machine on which the virtual switch is running due to hyper-
visor co-location. Next (Step 2), she can take control of the
Host OS where the VM running the network—and in most

IDepending on the implementation, the Dom0 IP stack may ensure that the
IP part of all packets are well-formed.

cases cloud—controller is hosted due to the direct commu-
nication channel. From the controller (Step 3), the attacker
can leverage the logically centralized design to, e.g., manipu-
late flow rules to violate essential network security policies
(Step 4). Alternatively, the attacker can change other cloud
resources, e.g., modify the identity management service or
change a boot image for VMs to contain a backdoor.

3.2 Attacker Models for Virtual Switches

With these vulnerabilities and attack surfaces in mind, we
revisit existing threat models. We particularly focus on work
starting from 2009 when virtual switches emerged into the
virtualization market [63]. We find that virtual switches are
not appropriately accounted for in existing threat models,
which motivates us to subsequently introduce a new attacker
model.

Existing threat models: Virtual switches intersect with
several areas of network security research: Data plane, net-
work virtualization, software defined networking (SDN), and
the cloud. Therefore, we conducted a qualitative analysis
that includes research we identified as relevant to attacker
models for virtual switches in the cloud. In the following we
elaborate on that.

Qubes OS [78] in general assumes that the networking
stack can be compromised. Similarly, Dhawan et al. [20] as-
sumed that the Software Defined Network (SDN) data plane
can be compromised. Jero et al. [36] base their assumption
on a malicious data plane in an SDN on Pickett’s BlackHat
briefing [65] on compromising an SDN hardware switch.

A conservative attacker model was assumed by Paladi
et al. [55] who employ the Dolev-Yao model for network
virtualization in a multi-tenant cloud. Grobauer et al. [28]
observed that virtual networking can be attacked in the cloud
without a specific attacker model.

Jin et al. [37] accurately described two threats to virtual
switches: Virtual switches are co-located with the hypervisor;
and guest VMs need to interact with the hypervisor. However,
they stopped short of providing a concrete threat model, and
underestimated the impact of compromising virtual switches.
Indeed at the time, cloud systems were burgeoning. However,
only recently Alhebaishi et al. [9] proposed an updated ap-
proach to cloud threat modelling wherein the virtual switch
was identified as a component of cloud systems that needs to
be protected. However, in both cases, the authors overlooked
the severity, and multitude of threats that apply to virtual
switches.

Motivated by a strong adversary, Gonzales et al. [22], and
Karmakar et al. [40] accounted for virtual switches, and the
data plane. Similarly Yu et al. [97], Thimmaraju et al. [90]
and Feldmann et al. [24] assumed a strong adversarial model,



with an emphasis on hardware switches, and the defender
having sufficiently large resources.

Hence, we posit that previous work have either assumed
a generic adversary model for the SDN data plane, stopped
short of an accurate model for virtual switches, undervalued
the impact of exploiting virtual switches, or assumed strong
adversaries. Given the importance and position of virtual
switches in general, and in SDN-based clouds in particular,
we describe an accurate, and suitable attacker model for
virtual switches in the following.

A new attacker model: Given the shortcomings of the
above attacker models, we now present a new attacker model
for virtual switch based cloud network setups that use a log-
ically centralized controller. Contrary to prior work we iden-
tify the virtual switch as a critical core component which has
to be protected against direct attacks, e.g., malformed pack-
ets. Furthermore, our attacker is not supported by a major
organization (she is a “Lone Wolf”) nor does she have access
to special network vantage points. The attacker’s knowledge
of computer programming and code analysis tools is compa-
rable to that of an average software developer. In addition,
the attacker controls a computer that can communicate with
the cloud under attack.

The attacker’s target is a cloud infrastructure that uses
virtual switches for network virtualization. We assume that
our attacker has only limited access to the cloud. Specifi-
cally, the attacker does not have physical access to any of
the machines in the cloud. Regardless of the cloud delivery
model and whether the cloud is public or not, we assume the
attacker can either rent a single VM, or has already compro-
mised a VM in the cloud, e.g., by exploiting a web-application
vulnerability [17].

We assume that the cloud provider follows security best-
practices [6]. Hence, at least three isolated networks (physi-
cal/virtual) dedicated towards management, tenants/guests,
and external traffic exist. Furthermore, we assume that the
same software stack is used across all servers in the cloud.

We consider our attacker successful, if she obtains full
control of the cloud. This means that the attacker can per-
form arbitrary computation, create/store arbitrary data, and
send/receive arbitrary data to all nodes including the Inter-
net.

4 CASE STUDY: OVS IN OPENSTACK

Based on our analysis, we conjecture that current virtual
switch implementations are not robust to adversaries from
our attacker model. In order to test our hypothesis, we con-
ducted a case study. We evaluate the virtual switch Open
vSwitch in the context of the cloud operating system Open-
Stack against our attacker model. We opted for this com-
bination as OpenStack is one of the most prominent cloud

systems, with thousands of production deployments in large
enterprises and small companies alike. Furthermore, accord-
ing to the OpenStack Survey 2016 [91], over 60% of OvS
deployments are in production use and over one third of
1000+ surveyed core clouds use OvS.

4.1 Attack Methodology

We conduct a structured attack targeted at the attack surface
identified in our analysis.

1. Attack surface analysis: The first step of our analy-
sis is validating co-location assumptions of OvS. We find
that by default OvS is co-located with Dom0’s user- and
kernel-space, see Figure 2. Furthermore, the OvS daemon
(ovs-vswitchd) has root privileges. Second, OvS supports log-
ically centralized control and OpenFlow. See Section 2.2 for
a more in-depth discussion of OvS. Finally, OvS implements
a unified packet parser in its key_extract and flow_extract
functions in the fast-past and slow-path resp.

2. Vulnerability identification: Based on our security
analysis, we expect to find vulnerabilities in the unified
packet parser of OvS. Hence, we used an off-the-shelf
coverage-guided fuzz tester, namely American Fuzzy Lop
(AFL), on OvS’s unified packet parser in the slow-path. Specif-
ically, for our tests we used AFL version 2.03b, source code
of OvS version 2.3.2 recompiled with AFL instrumentation
and the test-flows test case[81]. Following common best prac-
tice for fuzzing code, all crashes reported by the fuzzer were
triaged to ascertain their root cause.

3. Large-scale compromise: The pure presence of a vul-
nerability is not sufficient to state that OvS is not robust
against our threat model. We have to demonstrate that the
vulnerability does enable a large-scale compromise. Thus,
we need to turn the vulnerability into an exploit. Here, we
use a common exploit technique, namely Return Oriented
Programming (ROP) [75], to realize a worm that can fully
compromise an OpenStack setup within minutes.

4.2 Identified Vulnerabilities

Using the above methodology, we identify several vulner-
abilities in the unified packet parser of OvS (ovs-vswitchd).
In this paper we only focus on one of the vulnerabilities we
found in the stable branch (v2.3.2), as it suffices to demon-
strate the attack. Further vulnerabilities discovered during
our study include exploitable parsing errors leading to denial
of service (DoS) (CVE-2016-2074) and an ACL bypass vulner-
ability (CVE-2016-10377) in the packet filter component of
OvS.

The vulnerability is a stack buffer overflow in the MPLS
parsing code of the OvS slow-path. We acknowledge that
stack buffer overflows and how they are exploited are well



7) ROP chain end: syscall

6) Place system call
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Figure 3: A visual representation of our ROP chain (in
an Ethernet frame) for a 64-bit version of ovs-vswitchd
to spawn a shell and redirect it to a remote socket ad-
dress. The gray columns indicate the position of the
“S” bit in the MPLS label.

understood. However, we fully document it here to: (i) Un-
derline how easily such vulnerabilities can occur, especially
in software handling network packets, and, (ii) To make our
work more accessible in the context of networking research
outside the security community.

The stack buffer overflow occurs when a large MPLS label
stack packet that exceeds a pre-defined threshold is parsed.
As predicted, this attack has its root-cause in the unified
packet parser for MPLS. Indeed, we note that the specifica-
tion of MPLS, see RFC 3031 [77] and RFC 3032 [76] does
not specify how to parse the whole label stack. Instead, it
specifies that when a packet with a label stack arrives at a
forwarding component, only the top label must be popped
to be used to make a forwarding decision. Yet, OvS parses
all labels of the packet even beyond the supported limit and
beyond the pre-allocated memory range for that stack. If
MPLS would be handled correctly by OvS, it would only pop
the top label, which has a static, defined size. Thus, there
would be no opportunity for a buffer overflow.

4.3 Exploiting the Vulnerability as a Worm

Following our methodology, the next step is to show how
the discovered vulnerability can be used by an attacker to
compromise a cloud deployment. We start using the vulner-
ability to enable code execution on the virtual switch’s host.
Subsequently, we extend this to create a worm.

Exploit: The next step towards a full compromise is a
remote-code-execution exploit based on the discovered vul-
nerability. We implement this by creating a ROP [75] attack

hidden in an MPLS packet. By now, ROP attacks are well doc-
umented and can be created by an attacker who has explored
the literature on implementing ROP attacks, e.g., using Rop-
Gadget [1]. Hence, we do not describe ROP here and suggest
the reader to refer to Roemer et al. [75].

Recall from Sec. 2.3 that the MPLS label processing termi-
nates if the S bit is set to 1. Therefore, to obtain a successful
ROP chain, we select appropriate gadgets by customizing
Ropgadget and modify the shell command string. The con-
straint on the S bit for the gadgets in the MPLS labels is
shown in Fig. 3 as the gray lines.

Figure 3 also depicts the ROP chain in our exploit packet,
starting with the Ethernet header and padding, followed by
the MPLS labels. Our example ROP payload connects a shell
on the victim’s system (the server running ovs-vswitchd) to
a listening socket on the remote attacker’s system. To spawn
the shell the payload triggers the execution of the cmd bash
-c "bash -i >& /dev/tcp/<IP>/<PORT> 0>&1" through the
execve system call (0x3b). This requires the following steps:
1) Set-up the shell command (cmd) string in memory; 2)
construct the argument vector arguv; 3) place the address of
the command string in the register %rdi; 4) place the address
of argv in %rsi; 5) place the address of envp in %rdx; 6) place
the system call number 0x3b in %rax; and finally 7) execute
the system call, execve.

In summary, our exploit could also have been created by

an attacker with average programming skills who has some
experience with this kind of technique. This is in accordance
with our attacker model, which does not require an uncom-
monly skilled attacker.
Worm Implementation: We need multiple steps to prop-
agate the worm. These are visualized in Figure 4. In Step 1,
the worm originates from an attacker-controlled (guest) VM
within the cloud and compromises the host operating system
(OS) of the server via the vulnerable packet processor of the
virtual switch. Once she controls the server, she patches ovs-
vswitchd on the compromised host, as otherwise the worm
packet cannot be propagated. Instead the packet would trig-
ger the vulnerability in OvS yet again.

With the server under her control the remote attacker,
in Step 2, propagates the worm to the server running the
controller VM and compromises it via the same vulnerability.
The centralized architecture of OpenStack requires the con-
troller to be reachable from all servers via the management
network and/or guest network. By gaining access to one
server we gain access to these networks and, thus, to the
controller. Indeed, the co-location of the data plane and the
controller, provides the necessary connectivity for the worm
to propagate from any of the servers to the controller. Net-
work isolation using VLANs and/or tunnels (GRE, VXLAN,
etc.) does not prevent the worm from spreading once the
server is compromised.
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Figure 4: In a typical cloud system, a worm can prop-
agate to all the systems by exploiting security weak-
nesses of virtual switches: co-location, centralized and
directed communication channels, and the unified
packet parser.

With the controller’s server also under the control of
the remote attacker, the worm again patches ovs-vswitchd
and can then taint the remaining uncompromised server(s)
(Step 3). Thus, finally, after Step 3, all servers are under the
control of the remote attacker. We automated the above steps
using a shell script.

4.4 Attack Evaluation

Rather than evaluating the attack in the wild we chose to
create a test setup in a lab environment. More specifically,
we use the Mirantis 8.0 distribution that ships OpenStack
“Liberty” with OvS version 2.3.2. On this platform we set up
multiple VMs. The test setup consists of a server (the fuel
master node) that can configure and deploy other OpenStack
nodes (servers) including the OpenStack controller, compute,
storage, network. Due to limited resources, we created one
controller and one compute node with multiple VMs in addi-
tion to the fuel master node using the default Mirantis 8.0
configuration. Virtual switching was handled by OvS.

The attacker was given control of one of the VMs on the
compute server and could deploy the worm from there. It
took less than 20 seconds until the worm compromised the
controller. This means that the attacker has root shell (ovs-
vswitchd runs as root) access to the compute node as well as
the controller. This includes 3 seconds of download time for
patching ovs-vswitchd (OvS user-space daemon), the shell
script, and the exploit payload. Moreover, we added 12 sec-
onds of sleep time for restarting the patched ovs-vswitchd on
the compute node so that attack packets could be forwarded.

Next, we added 60 seconds of sleep time to ensure that
the network services on the compromised controller were
restored. Since all compute nodes are accessible from the

controller, we could compromise them in parallel. This takes
less time than compromising the controller, i.e., less than
20 seconds. Hence, we conclude that the compromise of
a standard cloud setup can be performed in less than two
minutes.

4.5 Summary

Our case study demonstrates how easily an amateur attacker
can compromise the virtual switch, and subsequently take
control of the entire cloud in a matter of minutes. This can
have serious consequences, e.g., amateur attackers can ex-
ploit virtual switches to launch ransomware attacks in the
cloud. This is a result of complex packet parsing in the unified
packet parser, co-locating the virtual switch with the virtual-
ization layer, centralized and direct control, and inadequate
attacker models.

5 DISCUSSION: ANALYSIS OF RELATED
TECHNOLOGIES

While so far we were mainly concerned with virtual switches
(and in particular OvS in our case study), we believe that our
work has ramifications far beyond. Our general observations
apply not only to virtual switches across the board, but also to
emerging NFV implementations and high-performance fast
path implementations. Hence, in this section we evaluate,
which other implementations and data-plane component
classes are affected by our analysis. See Table 1 for a summary
of our observations for some representative examples from
each group.

High Performance Fast Paths: High performance fast
paths (HPFPs) are software libraries for handling packet for-
warding in user-space. Prominent examples include Data
Plane Development Kit (DPDK) [32, 66] and NetMAP [72].
HPFPs try to minimize the performance bottlenecks of packet
forwarding in the kernel. They accomplish this, by, e.g., using
large page sizes, dedicated ring buffers, uniform packet for-
mat sizes, and improved buffer management. Thus, HPFPs
can be used to increase forwarding performance in user-
space virtual switches by eliminating the kernel (fast-path),
e.g., OvS with DPDK [74].

Besides increasing virtual switch performance, an HPFP
also increases security as it reduces packet processing in the
kernel. This reduces the attack surface but does not fully
address the problem of co-location since it is still running
on the same host OS as the hypervisor. Moreover, we find
that some HPFPs are not designed with software security in
mind. Only IX [12] and Arrakis [59] are designed with the
goal of improving packet handling security. NetMAP [72] at
least discusses that not using shared memory with the host’s
kernel improves security. Furthermore, software mitigations



Table 1: Attack surface summary for HPFPs, virtual switches, and SDN/NFV example implementations.
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DPDK [67] 2011
NetMAP [72] 2012
HPFP Arrakis [59] 2014 v v
IX [12] 2014 v
ESWITCH [53] 2016
OvS [62] 2009 © © Baseline
Cisco NexusV [93] 2009 © © ? Commercial
VMware vSwitch [94] 2009 O © ? Commercial
Vale [73] 2012 0O © Using HPFP to increase perfomance.
Hyper-Switch [68] 2013 v © ©
Virtual MS HyperV-Switch [52] 2013 0 © ? Commercial
. MS VFP [26] 2017 [ ] ? Commercial
Switches NetVM [31] 2014 0O © Using HPFP to increase performance.
Lagopus [54] 2014 O © Different vSwitch with a featureset similar to OvS.
fd.io [95] 2015 0O © Uses Vector Packet Processing, e.g., see Choi et al. [16].
mSwitch [29] 2015 0 © Using HPFP to increase performance.
BESS [13] 2015 0O O Similar to the Click modular router [43].
PISCES [80] 2016 v © © Uses a domain specific language to customize parsing.
Unify [84] 2014 v © @ NFV Chaining
ClickOS [48] 2014 © e Places a software switch on virtualization host.
SDN/NFV EDEN [11] 2015 O e Places EDEN on end-hosts; Parses more to enable NF.
OVN [61] 2015 v @ © Co-locates SDN controller with the hypervisor.
SoftFlow [33] 2016 v © @ Integrating middlebox functions in OvS; more parsing.

Suspectibility to parameter: O: less than OvS; ©: similar to OvS; @: more than OvS; ?: unknown;

to limit the impact of vulnerabilities are not used by either
of them.

Virtual Switch Implementations: Our comparison of vir-
tual switches in Table 1 uses OvS as the baseline. Competing
commercial virtual switch products include Cisco’s Nexus
1000V [93], the VMware vNetwork [94], Microsoft Hyper-V
vSwitch [52] and Microsoft VFP [26]. These implementations
suffer from the same conceptual issues that we identified in
our attack surface and verified with OvS due to hypervisor
co-location [60, 64]. Since they are closed-source software
systems, we do not know specifics about their use of software
mitigations. Notably, Microsoft VFP introduces middlebox
functionality into their virtual switch thereby increasing the
susceptibility due to parsing. Lagopus, another open-source
virtual switch implementation lacks the same popularity as
OvS, yet retains its design shortcomings [54].

Research projects in the area of virtual switches, e.g.,
Vale [73] and NetVM [31], are mainly focused on perfor-
mance. Thus, they often rely on HPFPs. This decreases their
co-location attack surface in comparison to plain OvS. How-
ever, since they commonly still use kernel modules and/or
user mode components with elevated privileges, the princi-
ple attack vector is still there. Thus, using HPFPs does not
have a significant impact on the security of such designs. Fur-
thermore, to support, e.g., OpenFlow, they have to implement

extended parsers for packet content. In contrast to the above
projects we find that PISCES [80] reduces the attack surface
by restricting the parser to the relevant part of the packet.
Yet, its design focus on flexibility and extensibility increases
the attack surface again. Similarly, fd.io uses Vector Packet
Processing, e.g., see Choi et al. [16], to handle packets, e.g., in
between containers, but also as an interface to conventional
data-plane components. Yet, again, this packet processing
and parsing component lacks security considerations and
remains co-located with critical host components. Overall,
we find that academic virtual switch proposals rarely focus
on security or evaluate software mitigations for their virtual
switch designs.

Network Function Virtualization: Network Function
Virtualization (NFV) is a relatively new trend, whereby data
plane network functions such as routers, firewalls, load bal-
ancers, intrusion detection systems, and VPN tunnel end-
points are moved from specialized devices to VMs. With
SDNv2 [49], NFVs get folded into SDN via Virtualized Net-
work Functions (VNFs). Here, VNFs are network function
implementations that commonly use a virtual switch and add
their functionality on top, decoupled from the underlying
hardware. In principle, network functions need more com-
plex parsing and processing. Hence, their attack surface is
larger. Moreover, we find, that some NFV/VNF frameworks



are built on top of OvS as their virtual switch component.
Thus, they suffer from the same attack vectors as OvS. Some
proposals, e.g., such as EDEN [11], go a step further and
suggest to move network functions to all end-hosts. There-
fore, such proposals increase the attack surface by increasing
the number of possibly affected systems. Moreover, none of
the NFV solutions included in Table 1 consider software
mitigations or have their focus on security.

For SDN, virtual switches are again central components.

Moreover, we note that most current proposals of the SDN
community, e.g., Open Virtual Network (OVN) [61], suggest
to co-locate the SDN controller with the virtualization layer
and data plane components. Thus, SDN is highly suscep-
tible to the attack surface pointed out in this paper. With
recursively virtualized SDNs [19] this attack surface will be
increased even further.
Summary: Emerging technologies for improving perfor-
mance of user-space fast-path packet processing slightly
reduce the attack surface pointed out in this paper. How-
ever, contemporary virtual switches not employing HPFPs
suffer from the same problems as we demonstrated in OvS.
The root-cause lies in the shared architecture of such vir-
tual switches that co-locates them (partially) with the Host
system. In addition, new technologies like NFV are also af-
fected. Similar to OvS, these technologies are commonly im-
plemented across user- and kernel-space. In addition, these
technologies heavily rely on parsing, e.g., in case of DPI and
load balancing. Proposals such as EDEN even consider imple-
menting such NFV components on all end-hosts, spreading
the attack surface further. Finally, we find that software mit-
igations are typically not evaluated when designing data
plane components, as the main focus is on performance
rather than security.

6 SOFTWARE COUNTERMEASURES

There exist many mitigations for attacks based e.g., on
buffer overflows, including MemGuard [18], control flow in-
tegrity [8], position independent executables (PIEs) [57], and
Safe (shadow) Stack [46]. Any one of these severely reduces
the impact of crucial, frequently occurring vulnerabilities
like the one used as an example in this paper. However, due to
their assumed performance overhead, especially on latency,
they are commonly not deployed for virtualized network
components.

Hence, while these mitigations are widely available, we
find that they are not enabled by default for OvS. Further-
more, virtual switch solutions presented in the literature
commonly do not discuss these techniques. One possible
downside of these mitigations is their performance overhead.
Past work reported that MemGuard imposes a performance
overhead of 3.5-10% [18] while PIEs have a performance

impact of 3-26% [57]. Furthermore, prior evaluations did not
focus on the systems’ network performance. Instead, their
main focus was on the systems’ process performance, e.g.,
kernel context switches and the size of compiled binaries
with the applied mitigations. However, in the context of OvS,
network related metrics are far more relevant: Forwarding
latency and forwarding throughput.

In order to investigate the potential performance penalty

of such countermeasures, we showcase two variants of these
mitigation techniques that are supported by the Gnu cc com-
piler gcc out of the box. Namely, stack protector and position
independent executables. To determine the practical impact
of these mitigations, we designed a set of experiments to eval-
uate the performance impact on OvS’s forwarding latency
and throughput.
Evaluation Setup: The test setup is chosen to ensure accu-
rate one-way delay measurements. Thus, for our tests, we
use three systems, all running Linux kernel (v4.6.5) compiled
with gec (v4.8). The systems have 16GB RAM, two dual-core
AMD x86_64 2.5GHz, and four Intel Gigabit NICs. The sys-
tems are interconnected as follows: One system serves as
the Load Generator (LG) and replays packet traces according
to the specific experiments using tcpreplay. This system is
connected to the Device Under Test (DUT), configured ac-
cording to the different evaluation parameters. The data is
then forwarded by OvS on the DUT to a Load Receiver (LR),
a third system.

The connections between LG and DUT, and, LR and DUT
respectively are monitored via a passive taping device. Both
taps are connected to our measurement system. This sys-
tem has two dual-core Intel(R) Xeon(TM) CPUs running at
3.73GHz with hyperthreading enabled and 16GB RAM. We
use an ENDACE DAG 10X4-P card to capture data. Each line
(RX/TX) of the tapped connections is connected to one inter-
face of the DAG 10X4-P. Each interface has its own receive
queue with 1GB. This ensures accurate one-way delay mea-
surements with a high precision, regardless of the utilization
of the measurement host.

Evaluation Parameters: We evaluate forwarding latency
and throughput for eight different combinations of traffic
composition and software mitigations. We compare a vanilla
Linux kernel (v4.6.5) with the same kernel integrated with
grsecurity patches (v3.1), which protects the in-kernel fast-
path by preventing kernel stack overflow attacks using stack
canaries, address space layout randomization and ROP de-
fense. For both kernels, we evaluate two versions of OvS-
2.3.2: The first one compiled with -fstack-protector-all
for unconditional stack canaries and -fPIE for position inde-
pendent executables; the second one compiled without these
two features. Since gcc, the default compiler for the Linux
kernel, does not support Safestack (safe and unsafe stack) we
did not evaluate this feature, even though it will be available
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Figure 5: Forwarding performance of OvS, with and without countermeasures on a vanilla kernel and a grsecurity

enabled kernel exclusively in the slow and fast path.

with clang, another compiler, starting with version 3.8. The
selected mitigations increase the total size of ovs-vswitchd
from 1.84 MB to 2.09 MB (+13.59%) and openvswitch.ko from
0.16 MB to 0.21 MB (+31.25%). However, apart from embed-
ded systems, the size changes are not relevant on modern
systems with several hundred gigabytes of memory.

One important feature in virtual switches, recall Section 2,
is, whether traffic is handled by the slow or the fast path.
We decided to focus on the corner cases where traffic is
either handled exclusively by the fast or by the slow path. By
isolating the two cases we can assess if and to what extent
the software security options impact each path. Hereby, we
follow current best practices for OvS benchmarking, see
Pfaff et al. [64]. To trigger the slow path for all packets in
our experiments, we disable the megaflows cache and replay
a packet trace in which each packet has a new source MAC
address (via sequential increments). For measuring fast path
performance, we pre-establish a single flow rule on the DUT,
a wildcard-one, that matches all packets entering from the
LG. The rule instructs the virtual switch to process these
packets via the fast path and forward them on the interface
connected to the LR. Therefore, for the sake of consistency,

we can replay the same traces as used for the slow path
experiments. Additionally, to reduce the uncertainty in our
setup, we pin ovs-vswitchd to a single core.

Latency Evaluation: For the latency evaluation, we studied
the impact of packet size on OvS forwarding. We selected
the following packet sizes from the legacy MTU range: 60B
(minimum IPv4 UDP packet size), 512B (average packet), and
1500B (maximum MTU) packets. In addition, we also select
the following jumbo frames: 2048B packets (small jumbo
frame) and 9000B (maximum jumbo frame). For each exper-
imental run, i.e., packet size and parameter set, we contin-
uously send 10,500 packets from the LG to the LR via the
DUT at a rate of 10 packets per seconds (pps). To eliminate
possible build-up or pre-caching effects, we only evaluate
the last 10,000 packets of each experiment.

The results for the latency evaluation are depicted in Fig-
ures 5a and 5b for the slow path and fast path resp. We find
that grsecurity (grsec default and grsec all) imposes a mini-
mal increase in latency for all packet sizes in the slow and
fast path. We observe a minimal impact of user-land protec-
tion mechanisms, 1-5%, see Figure 5a, for slow path latency,
both, for a vanilla and a grsecurity enabled kernel. Naturally,



there is no impact of the user-land protection mechanisms
in the fast path, see Fig. 5b.

Throughput Evaluation: For the throughput evaluation
we use a constant stream of packets replayed at a specific
rate. We opted for small packets to focus on the packets per
second (pps) throughput rather than the bytes per second
throughput. Indeed, pps throughput indicates performance
bottlenecks earlier [34] than bytes per second. As in the
latency experiments, we opted to use packets that are 60B
long. Each experimental run lasts for 1000 seconds and uses
a specific replay rate. Then we reset the system and start
with the next replay rate. Our evaluation focuses on the last
900 seconds. For the slow path, the replay rates start from
10k to 40k packets per second, in steps of 1k pps. For the fast
path, the replay rates start from 300k to 900k packets per
second, in steps of 10k pps. For better readability we show
the slow path plot from 10k to 35k pps.

An overview of the results for the slow and fast path

throughput measurements are depicted in Figures 5¢ and 5d
resp. In the slow path, packet loss for the vanilla kernel
first sets in just after 18k pps, while the experiments on the
grsecurity enabled kernel already exhibit packet loss at 14k
pps. In the fast path, grsec exhibits packet loss from 350k
pps whereas the vanilla kernel starts to drop packets at 690k
pps. Hence, we note that the grsecurity kernel patch does
have a measurable impact on the forwarding throughput in
the slow and fast path of OvS. With respect to the user-land
security features, we observe an overhead only in the slow
path of approximately 4-15%.
Summary: Our measurements demonstrate that user-land
mitigations do not have a large impact on OvS’s forwarding
performance. However, grsecurity kernel patches do cause
a performance overhead for latency as well as throughput.
Given that cloud systems support a variety of workloads, e.g.,
low latency or high throughput, kernel-based mitigations
may or may not be used. However, cloud systems such as
the one studied by Pfaff et al. [64] can adopt the user-land
and kernel software mitigations described in this paper.

It is only a question of time until the next wormable vul-
nerability in a virtual switch is discovered. As software miti-
gations can be more easily deployed than a fully re-designed
virtual switch ecosystem, we strongly recommend the adop-
tion of software countermeasures, until a more securely de-
signed virtual switch platform can be rolled out.

Moreover, our security analysis underlines the need for
networking researchers to include software countermeasures
in their design, implementation, and evaluation of novel
networking components. As indicated by our analysis of
related virtual switch network technologies, the networking
research community must integrate security considerations
into their work on new SDN and NFV technologies.

7 DESIGN COUNTERMEASURES

Specific attacks against virtual switches may be prevented by
software countermeasures. However, the underlying prob-
lems of co-location and a worm-friendly system design re-
main. Hence, in this section, we present mitigation strategies
that detect, isolate, and prevent the spread of attacks via the
data plane and, thus, reduce the attack surface we identified.
We do so not only for cloud based systems and OvS but also
in the more general context of SDN.

Virtualized/Isolated data plane: One essential feature
of the identified attack surface is the co-location of data
plane and hypervisor (see Section 3). Addressing this prob-
lem in OpenStack is non-trivial due to the sheer number of
interacting components and possible configurations, e.g.,
virtualized/non-virtualized, integrated/distributed, redun-
dant/hierarchical controllers [69].

One way to design a system with stronger separation is to
virtualize the data plane components, thereby de-coupling it
from the virtualization layer. For virtual switches one exam-
ple of such a proposal is to shift the position of the virtual
switch from the host to a dedicated guest as proposed by
Jin et al. [37]. However, the IOMMU of the host must be
used to restrict access of the network cards to the network
interfaces. Otherwise the physical host and the operating
system running there are left vulnerable to direct memory
access (DMA) attacks [86]. Such a design reduces the host
OS’s Trusted Computing Base (TCB) and, thereby, the attack
surface of the virtual switch. We note that Arrakis [59] and
IX [12] are promising proposals for HPFPs that would allow
for designing such a system. Note, that while Arrakis utilizes
the IOMMU, the authors of IX left this for further work.

Furthermore, to reduce the attack surface of hypervisors,
Szefer et al. [87] suggest that the hypervisor should disen-
gage itself from guest VMs, and the VM should receive direct
access to the hardware (e.g., NIC). In conjunction with our
suggestion of transferring the virtual switch into a virtual
machine, the approach of Szefer et al. results in a more secure
data plane that can no longer attack the hypervisor.
Control plane communication firewalls: Another
method to contain and prevent attacks like the worm is
tight firewalling of the control plane. In contrast to “normal”
Internet traffic, control plane traffic has characteristics that
enable a tighter and more secure firewall design: (i) The con-
trol plane traffic volume should be significantly smaller than
regular network traffic. (i) Nodes should only communicate
via the controller and not among each other. Hence, there is a
central location for the firewall. (iii) On the control channel
there should only be the control communication protocol, e.g.,
the OpenFlow protocol. Even if more protocols are neces-
sary, e.g., Simple Network Management Protocol (SNMP),
the list is small, favoring a white-listing approach. (iv) The



communication protocol for SDN systems is clearly defined.
Hence, in addition to the networking layer checks a strict
syntactic white-listing of the control messages is feasible.

Thus, implementing a firewall and/or IDS that intercepts
and cleans all control communication appears feasible. De-
pending on the threat model, one may even opt to chain
multiple IDS/firewalls or use physical appliances for such
firewalling [24].

8 RELATED WORK

Cloud systems: In the past, various attacks on cloud sys-
tems have been demonstrated. Ristenpart et al. [70] show
how an attacker can co-locate her VM with a target VM to
obtain secret information. Costin et al. [17] find vulnerabili-
ties in web-based interfaces operated by cloud providers. Wu
et al. [96] assess the network security of VMs in computing
clouds. They point out what sniffing and spoofing attacks
a VM can carry out in a virtual network. Ristov et al. [71]
investigate the security of a default OpenStack deployment
and show that it is vulnerable from the inside rather than the
outside. Indeed, the OpenStack security guide [6] mentions
that OpenStack is inherently vulnerable to insider threats
due to bridged domains (Public and Management APIs, Data
and Management, etc.).

SDN security: Several researchers have pointed out secu-
rity threats for SDN. For example, Kloti et al. [42] report
on STRIDE, a threat analysis of OpenFlow, and Kreutz et
al. [45] survey several threat vectors that may enable the
exploitation of SDN vulnerabilities.

So far, work on how to handle malicious switches is sparse.
Sonchack et al. describe a framework for enabling practical
software-defined networking security applications [85] and
Shin et al. [83] present a flow management system for han-
dling malicious switches. Work on compromised data planes
is sparse as well. For example, Matsumoto et al. [50] focus on
insider threats. Furthermore, national security agencies are
reported to have bugged networking equipment [5] and net-
working vendors have left backdoors open [3, 4, 15], leading
to additional threats.

Hong et al. [30] focus on how the controller’s view of
the network (topology) can be compromised. They identify
topology based attacks in an SDN that allow an attacker to
create false links to perform man-in-the-middle and black-
hole attacks. Although they discovered novel SDN attacks,
their threat model does not account for a compromised data
plane.

Data plane security: Lee et al. [47] investigate how ma-
licious routers can disrupt data plane operations, while
Kamisinski et al. [39] demonstrate methods to detect mali-
cious switches in an SDN. In addition, Porez-Botero et al. 58]
characterize possible hypervisor vulnerabilities and identify

Network/IO as one. In contrast to our work, they omit a
deep analysis on the challenges introduced by co-located
data planes. Hence, they did not find any network based
vulnerabilities. Dobrescu et al. [21] develop a data plane
verification tool for the Click software. They prove proper-
ties such as crash-freedom, bounded execution, or filtering
correctness for the switch’s data plane. Although software
verification can ensure the correctness and security of green-
field software data plane solutions, they currently fall short
of ensuring this for legacy software. In such a scenario, cov-
erage guided fuzz testing is a more appropriate approach.

9 CONCLUDING REMARKS

In this paper we present our study of the attack surface of
today’s virtualized data planes as they are frequently used
in SDN-based cloud systems. We demonstrate that virtual
switches are susceptible to various attacks by design. Fur-
thermore, we point out that existing threat models for vir-
tual switches are insufficient. Accordingly, we derive a new
attacker model for virtual switches and underline this by
demonstrating a successful attack against OpenStack.

Our survey of related data plane technologies including
NFV/SDN and other virtual switches finds that they are sus-
ceptible to the same security design flaws. We find that read-
ily available software security measures are commonly not
evaluated for new data plane components. This is unfortu-
nate, as our evaluation of such techniques indicates that they
introduce minor performance overheads in user-space.

With hardware vendors, e.g., Broadcom, selling so-called
SmartNICs [27, 56], i.e., NICs running a full fledged virtual
switch such as OvS, we believe the attack surface has been
extended to the NIC as well. As we demonstrated, neglecting
security during the design of virtual switches, SDN, and, NFV
data plane components can have dramatic consequences on
deployed real-world systems.
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