
SimuDICE: Offline Policy Optimization Through
Iterative World Model Updates and DICE Estimation

Cătălin-Emanuel Brit,a1

Supervisor(s): Frans Oliehoek1, Stephan Bongers1
1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Cătălin-Emanuel Brit,a
Final project course: CSE3000 Research Project
Thesis committee: Frans Oliehoek, Stephan Bongers, Catholijn Jonker

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
In offline reinforcement learning, deriving a policy from a pre-collected set of expe-
riences is challenging due to the limited sample size and the mismatched state-action
distribution between the target policy and the behavioral policy that generated the data.
Learning a dynamic model of the environment can improve the sample efficiency of the
algorithm, but this mismatch can lead to the generation of suboptimal experiences.
We propose SimuDICE, an algorithm that enhances the sampling of imaginary experi-
ences using Dual stationary DIstribution Correction (DICE), and iteratively improves
the DICE estimations with synthetically generated experiences. SimuDICE addresses
the objective mismatch issue by iteratively updating both the world model and the
DICE estimator, aligning the model’s training objective (imitating the environment)
with its usage objective (policy improvement). We show that SimuDICE requires less
pre-collected data and fewer simulated experiences to achieve comparable results to
other algorithms while having greater robustness to lower data quality.

1 Introduction
Reinforcement Learning (RL) [1] has recently shown great success in various domains such
as games [2], robotics [3], and conversational systems [4], largely due to simulation-based
trial and error [5, 6]. While feasible in environments with simulators, deploying policies
in some environments can be risky or costly. Offline RL [7, 8] addresses this challenge by
training agents from static pre-collected datasets. However, the amount of data is limited
and collected under different unknown policies, known as behavior policies, making direct
transitions from online to offline settings problematic [9, 10]. The mismatch in the state-
action distribution can lead to divergence in off-policy learning [11, 12].

Model-based RL (MBRL) improves the sample efficiency and stability of policy optimization
in the offline setting by learning a dynamic model of the environment to generate imaginary
rollouts. This approach has shown success in online RL through different world models such
as Latent Dynamics Models [13, 14, 2] or Diffusion Models [15, 16]. However, building a
perfect world model is often unfeasible, leading to hallucinations even for the most sim-
ple environments [17], significantly decreasing the performance of the policy. This issue is
amplified by the offline setting, where the learned model can hardly generalize due to the
limited amount of data and the complexity of the task [18]. To mitigate this, several works
use prioritized experience replay for policy learning [19, 20] and for action sampling in world
models [21, 22]. This prioritization usually accounts for model confidence or the state-action
distribution mismatch between the target policy and the behavioral policy.

Over the years, various approaches have been developed to mitigate the policy-induced
state-action distribution mismatch. Precup et al. [23] tackle the problem using products of
importance sampling ratios, though this approach suffers from a large variance. To correct
the distribution mismatch without incurring a large variance, Hallak et al. [24] and Liu et al.
[25] propose learning the density ratio between the state distribution of the target policy and
the sampling distribution directly. DualDICE [26] is a relaxation of previous methods, en-
abling learning from multiple unknown behavior policies via a change of variable technique.
GenDICE [27] generalizes DualDICE, stabilizing estimation in the average reward setting.
GradientDICE [28] outlines that GenDICE is not a convex-concave saddle-point problem in
all settings and proposes a new, provably convergent method under linear function approx-
imation. Despite their differences, all these algorithms use minimax optimizations, allowing
them to be combined under the regularized Lagrangians of the same linear problem [29].

1

Most of the prior work in offline MBRL (e.g., [30, 31]) pre-train a one-step forward model
via maximum likelihood estimation to be a simple mimic of the world and then uses it to
improve the policy, without further improving the dynamic model. This results in an objec-
tive mismatch, namely the objective function used for model training (accurately predicting
the environment) is unrelated to its utilization (policy optimization). Recent works have
identified objective mismatch in the model training and utilization as problematic [32, 33].

In this work, we introduce SimuDICE, an algorithm designed to learn policies from offline
data by iteratively updating both the world model and the DICE estimation using data
generated by the other component. Specifically, the world model generates samples more
likely to be encountered by the target policy using the DICE estimation, while the DICE
estimation is improved using these simulated experiences. We have extended the framework
proposed in Dyna-Q [34] that uses a Tabular World Model [35] to the offline setting and
used DualDICE [26] for the behavior-agnostic state-action distribution mismatch estimation.
Our experiments show that SimuDICE requires less offline data to converge to the target
policy compared to similar algorithms and shows greater robustness to lower data quality.
The algorithm is publicly available on GitHub 1.

2 Background
In this section, we outline the Problem setting 2.1 in which this work lies. We also discuss
some prerequisite concepts and prior work necessary for understanding this paper, specifi-
cally the Online Dyna-Q algorithm 2.2 and DualDICE estimation 2.3.

2.1 Problem setting
Setting: We consider a Markov Decision Process (MDP) [36], in which the environment
is defined by a tuple M = ⟨S,A,R, T, µ0, γ⟩ where S represents the state space, A is the
action space, R is a reward function, T is the transition probability function, µ0 is the initial
state distribution, and γ ∈ [0, 1) is the discount factor.

Policy definition: A policy π in an MDP decides what action the agent should take
given some state s. Formally, it is a mapping π : S → ∆(A), where π(s) represents the
probability distribution over actions A in state s. Figure 1 shows how a policy interacts
with an environment over n steps.

s0

a0

r0

T(-|s0, a0)

R(-|s0, a0)

? (-|s0)

s1

a1

r1

T(-|s1, a1)

R(-|s1, a1)

? (-|s1)

sn

an

rn

T(-|sn, an)

R(-|sn, an)

? (-|sn)
Initial state

distribution ?0

...

Figure 1: The policy starts at s0 ∼ µ0 and samples an action at ∼ π(st) at each step t from
the policy. This action is applied to the environment, resulting in a reward rt ∼ R(st, at)
and the environment transitions to a new state st+1 ∼ T (st, at).

1https://github.com/Catalin-2002/SimuDICE

2

https://github.com/Catalin-2002/SimuDICE

Goal of reinforcement learning (RL): The goal of the agent is to maximize the cumu-
lative expected reward (its return), given by Eq. (1).

ρ(π) = Es0∼µ0

[∞∑
t=0

γtR(st, at) | at ∼ π(· | st)

]
(1)

To evaluate the performance of a policy, we define two functions: the Value function V π(s),
which is the expected return of policy π from state s (Eq. 2), and the Q-value function
Qπ(s, a), which represents the expected return following a policy π starting from state s
with action a (Eq. 3).

V π(s) = Eπ

[∞∑
t=0

γtR(st, at) | s0 = s

]
(2)

Qπ(s, a) = Eπ

[∞∑
t=0

γtR(st, at) | s0 = s, a0 = a

]
(3)

Bellman equation: The Bellman equation provides a recursive definition of the Q-value
by decomposing it into immediate reward and the discounted value of the next state-action
pair. Eq. (4) shows how the Bellman equation is applied to the Q-value policy function
Qπ(s, a).

Qπ(s, a) = R(s, a) + γEs′∼T (s,a),a′∼π(·|s′) [Q
π(s′, a′)] (4)

The Bellman operator Bπ iteratively applies the Bellman equation to update the Q-values
until convergence, leading to a formulation as in Eq. (5).

BπQ(s, a) = R(s, a) + γEs′∼T (s,a),a′∼π(·|s′)[Q(s′, a′)] (5)

Offline RL: The focus of this work is offline RL. Unlike online RL, where the agent actively
interacts with the environment to gather data and update its policy, offline RL aims to derive
the optimal policy π from a fixed dataset of experiences. Specifically, we assume access to

a finite dataset D =
{(

s
(i)
0 , s(i), a(i), r(i), s′(i)

)}N

i=1
, where s0 ∼ µ0, (s(i), a(i)) ∼ dD are

samples from an unknown distribution dD, r(i) ∼ R(s(i), a(i)), and s′(i) ∼ T (s(i), a(i)).

2.2 Online Dyna-Q
Dyna-Q [34] is a classic RL approach that integrates model-free and model-based techniques.
It uses simulated experiences generated by a model of the environment to optimize the
Q-values. Dyna-Q integrates planning, acting, and learning in the following ways:

1. Learning the world model: the agent learns a model T̂ that predicts the next state
s′ and the reward r given the current state s and an action a: T̂ (s, a) = (s′, r). Given
the focus on deterministic tabular environments, a simple Tabular Model [35] is used.

2. Direct RL Updates: the agent directly interacts with the environment to collect
experiences of the form (s, a, r, s′), and uses them to update the Q-values using the
Q-learning formula: Q(s, a)← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)], where α is
the learning rate and γ the discount factor.

3. Planning updates: The agent uses T̂ to sample new experiences (s, a), predict the
reward received from acting and the resulting new state (r, s′), and update the Q-values
using the same Q-learning rule.

3

The pseudocode of Dyna-Q can be found in Algorithm 1. Steps 4− 5 show the acting part,
step 6 shows the direct RL updates, while steps 7− 13 are the planning steps. Note that by
removing steps 7− 13 the remaining algorithm is one-step tabular Q-learning [37].

Algorithm 1 Dyna-Q - adapted from Reinforcement Learning: An Introduction [1]
1: Initialize Q(s, a) and Model(s, a) for all s ∈ S and a ∈ A(s)
2: while True do
3: S ← current (nonterminal) state; A← ϵ-greedy(S,Q)
4: Execute action A; observe resultant reward, R, and state, S′

5: Q(S,A)← Q(S,A) + α[R+ γmaxa Q(S′, a)−Q(S,A)]
6: T̂ (S,A)← R,S′ ▷ assuming deterministic environment
7: for i = 1 to n do
8: S,A← random previously observed state and action
9: R,S′ ← T̂ (S,A)

10: Q(S,A)← Q(S,A) + α[R+ γmaxa Q(S′, a)−Q(S,A)]
11: end for
12: end while

2.3 DualDICE estimation
In this part, we will elaborate on DualDICE estimation [26], an algorithm for off-policy
evaluation. They obtained impressive results by reducing the off-policy estimation problem
to a density ratio estimation problem and doing a change of variable optimization trick. The
value of the policy can be rewritten using the importance weighing trick as in Eq. (6).

ρ(π) = E(s,a)∼dπ [r(s, a)] = E(s,a)∼dD

[
dπ(s, a)

dD(s, a)
r(s, a)

]
, (6)

where dπ is the discounted state visitation distribution, and expressed as in Eq. (7).

dπ(s, a) := (1− γ)

∞∑
t=0

γt · Pr[st = s, at = a | s0 ∼ µ0, π] (7)

The equation can be rewritten in the offline setting as a weighted average (Eq. 8), reducing
the problem to estimating the density ratios (Eq. 9) for policy correction.

E(s,a)∼dD

[
dπ(s, a)

dD(s, a)
r(s, a)

]
=

1

N

N∑
i=1

dπ(s(i), a(i))

dD(s(i), a(i))
r(i) (8) wπ/D(s, a) :=

dπ(s, a)

dD(s, a)
(9)

Consider the zero-reward Bellman operator Bπν(s, a) := γEs′∼T (s,a),a′∼π(s′)[ν(s
′, a′)] of a

bounded function ν 2, ν : S ×A→ R. DualDICE optimizes the expression in Eq. (10).

min
ν:S×A→R

J(ν) :=
1

2
E(s,a)∼dD

[
(ν − Bπν)(s, a)2

]
− (1− γ)Es0∼µ,a0∼π(s0) [ν(s0, a0)] , (10)

where the first term of the equation is the expected squared zero-reward Bellman error and
the second specifies the initial stage. The authors of DualDICE [26] state that the first term
alone leads to a trivial solution ν ≡ 0, which is avoided by the second term that ensures
ν∗ > 0. Moreover, they prove that the Bellman residuals of ν∗ are exactly the desired
distribution corrections (Eq. 11).

wπ/D(s, a) = (ν∗ − Bπν∗)(s, a). (11)
2Note that ν is a state-action value function, analogous to Q-values, although Q-values were not utilized

in this context for completeness and to maintain generality.

4

3 SimuDICE
In this work, we introduce SimuDICE, a novel algorithm for policy optimization in the
offline setting. The essence of SimuDICE lies in its conceptual framework, a flexible way
to improve policy performance, agnostic to the specific algorithms used at each stage. In
this section, we discuss the high-level idea of the algorithm (Section 3.1), then we elaborate
on the specific algorithm components in Section 3.2, and discuss how they interact with
each other in Section 3.3. Each part starts with a general discussion of its role within the
framework, followed by details about our implementation.

3.1 High level idea
SimuDICE utilizes a dynamic interplay between a learned world model and DICE estima-
tions to generate high-quality synthetic experiences, which in turn are used to enhance policy
learning. By continuously updating both the world model and the DICE estimations, the
synthetic experiences are aligned with the policy optimization objective, while also improv-
ing the sample efficiency and robustness. Figure 2 shows the three main components and
their interactions, which will be explained in more detail in Sections 3.2 and 3.3.

Figure 2: The components of SimuDICE and their interactions. Transitions adapted from
Dyna-Q [34] are in blue, while those unique to SimuDICE are depicted in black.

The algorithm extends the Dyna-Q [34] framework to iterate until convergence, enabling
continuous updates of both the DICE estimations and the sampling probabilities within the
world model. Initially, offline data is utilized to pre-train a one-step forward dynamic model
of the environment and to learn an initial target policy. This policy is iteratively refined by
sampling experiences that are likely to be encountered by the target policy, as determined
by the wπ/D weights, and the world model’s confidence in sampling those experiences. The
wπ/D estimates are improved using the synthetically generated experiences.

5

3.2 Algorithm components
In this section, we outline the general purpose of the three main components of SimuDICE:
the Target Policy Qπ 3.2.1, the World Model T̂ 3.2.2, and the wπ/D weights 3.2.3. This is
followed by a discussion about our specific implementation details.

3.2.1 Target policy Qπ

The target policy in SimuDICE is used in the agent’s decision-making process by using in-
formation from both the offline dataset and simulated experiences generated by the world
model. This integration allows the agent to adapt to newly created scenarios as well as the
ones it has previously seen.

We use the ϵ-greedy policy to balance exploration and exploitation, preventing the agent
from getting stuck in local optima by randomly selecting an action with probability ϵ. The
state-action value of the policy is represented by the Q-values Qπ(s, a), which is the expected
return by following the policy π starting at state s and performing action a. Note that in
case all the Q-values for a state s are equal, we randomly select an action.

3.2.2 World model T̂

The world model is a dynamic representation of the environment, enabling the augmenta-
tion of the offline dataset with synthetic experiences. This enhances the sample efficiency of
the algorithm by covering unseen state-action pairs, helping both policy optimization and
state-action distribution mismatch correction. It performs two main tasks: prediction and
sampling. The prediction task involves mimicking the environment, specifically predicting
the next state and the reward for an action: (s, a) → (s′, r). The sampling task involves
choosing a state-action pair (s, a) based on probabilities generated using the wπ/D weights
and the model’s confidence in that specific prediction.

In SimuDICE, we have implemented a Tabular World Model [35] that acts like a memory-
based model, a lookup table that replicates previously seen experiences. The model averages
the rewards present for a state-action pair present in the offline dataset and considers the
next state one of the options, given that the environments are deterministic. We consider
the confidence in predicting correctly an experience to be the number of occurrences of the
state-action pair has in the offline dataset, divided by the total number of elements in the
offline dataset.

3.2.3 wπ/D weights

The wπ/D weights represent the density ratio between the state-action visitation distribu-
tion of the target policy and that of the behavioral policies that collected the offline dataset.
They help steer the sampling probabilities of the world model towards state-action pairs
that the target policy is more likely to encounter. This focus on relevant state-action pairs
avoids sampling states that might never be reached using the current policy and reduces the
risk of generating hallucinated synthetic experiences.

Although this approach might be considered conservative because it limits the imaginary
exploration of the entire state-action space, we believe that it is beneficial in environments
where making mistakes is costly or risky. This design choice was made because having a
slightly worse policy is better than having a completely wrong one due to hallucinated states.

6

3.3 Component interactions
In this section, we discuss how the different components of the algorithm interact. Section
3.3.1 shows how we have adapted several components from Dyna-Q [34] to this framework.
Section 3.3.2 discusses how the distribution mismatch is estimated, while Section 3.3.3 shows
how the sampling probabilities for the world model are updated using the wπ/D weights and
the estimated confidence of the prediction. Lastly, in Section 3.3.4 we discuss how distribu-
tion mismatch estimation can be improved using the synthetically generated experiences.

3.3.1 Adapted Dyna-Q components

In this part, we discuss how each part of Dyna-Q [34] is adapted to the offline setting, except
the acting component which is completely removed due to the offline setting.

World model training: In this stage, a one-step forward dynamic model via maximum
likelihood estimation (MLE) is pre-trained on the offline dataset, aiming to be a simple
mimic of the world. Since the scope of SimuDICE is limited to deterministic grid world
environments, the world model averages the reward received for each state-action pair from
the offline dataset and uses the next seen state as the prediction.

Initial policy learning: In this stage, we use the offline pre-collected dataset to derive an
initial policy, using Experience Replay [5], which makes the policy more stable. Experience
Replay has shown several improvements in breaking correlations, faster convergence, and
avoiding bias [38]. Since SimuDICE uses the ϵ-greedy policy using Q-values, the initial
policy is learned using implicit Q-learning [39], by shuffling the experiences in the dataset
and applying the Q-learning formula as in Eq. (12).

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
, (12)

where

• Q(s, a) is the current Q-value for state s and action a.

• α is the learning rate.

• r is the reward received after taking action a in state s.

• γ is the discount factor.

• s′ is the next state.

• maxa′ Q(s′, a′) is the maximum Q-value over all possible actions a′ for the state s′.

Planning Steps: The planning phase of the algorithm improves the policy using syntheti-
cally generated data, enabling the agent to learn from a more diverse range of experiences.
The policy is updated using the same method as experiences from the offline dataset. In
SimuDICE, experiences (s, a) are sampled using the World model T̂ with different proba-
bilities, calculated based on how likely is the experience to be encountered by running the
policy and how confident is the world model on the prediction. The world model predicts
the subsequent reward and next state (r, s′) and updates the Q-values using Eq. 12.

7

3.3.2 Distribution mismatch estimation

In this stage, we aim to improve the performance of the target policy by accurately esti-
mating the discounted stationary distribution ratios - correction terms that quantify the
likelihood that an experience is visited by the new policy, normalized by the probability
with which the state-action pair appears in the offline dataset.

In this work, we chose to estimate the Dual stationary DIstribution Corrections. Given
the simple nature of the environments, we used DualDICE [26]. Moreover, since the state-
action space is relatively small, the function estimation and minimization are performed via
matrix multiplication instead of using a neural network to approximate the function’s value.
In SimuDICE, we assume that the behavior policy is not known; hence, the estimation is
based only on the state-action distribution. If the behavior policy is known, DualDICE [26]
proposes a more robust and efficient method based on policy ratios, which requires less data.
Appendix A, Algorithm 2 shows the pseudocode of the algorithm is implemented. Note that
DualDICE [26] optimizes ζ, which we assume equivalent to wπ/D.

3.3.3 Sampling probabilities update

The goal of this part is to convert the wπ/D weight estimates and the prediction confidence
of the world model into a probability function that can bias the sampling of experiences
used in the planning step.

The wπ/D weights are estimated using DualDICE [26]. We consider the confidence of a
prediction of this world model to be the number of occurrences of the state-action pair (s, a)
in the offline dataset normalized by its size. Let C(s, a) denote the confidence of a prediction
for the state s and action a.

Let P(s, a) be the probability that the world model will sample state s and action a. We
consider P(s, a) as the normalized sum of the confidence C(s, a) and the regularized softmax
of the wπ/D weights. The regularization term λ is introduced because in environments with
a large state-action space the wπ/D are too small and floating point errors occur. Below
the derivation of the probability function P(s, a) is shown. First, we define an intermediate
probability P̃(s, a) as shown in Eq. (13).

P̃(s, a) = C(s, a) + ewπ/D(s,a)·λ∑
(s′,a′) e

wπ/D(s′,a′)·λ /λ (13)

Next, P̃(s, a) is normalized to obtain the final probability function P(s, a), as in Eq. (14):

P(s, a) = P̃(s, a)∑
(s′,a′) P̃(s′, a′)

(14)

3.3.4 Dataset augmentation

The dataset augmentation step is beneficial only when the distribution mismatch estimation
is done using a neural network that is impacted by the number of trajectories. Adding an
experience to improve the wπ/D comes to finding a possible location for the state-action pair
(s, a) in another trajectory (i.e., finding in the offline dataset the index of that state), and
γ-discount the expected reward using that step number.

8

4 Experiments
In this section, we evaluate the performance of SimuDICE on three discrete grid-world
environments and compare it with other similar algorithms as detailed in Section 4.2. Ad-
ditionally, we conduct an ablation study to understand the efficiency of certain components
of the proposed algorithm, as explained in Section 4.3. The setup for these experiments is
described in Section 4.1.

4.1 Experimental setup
Environments: We evaluate the performance of different agents in three discrete grid-
world environments: Taxi, FrozenLake and CliffWalking from the Gymnasium Toy Example
Library [40]. These environments were chosen for their simplicity, deterministic nature, and
tabular format, having relatively small state-action spaces. Figure 3 shows an illustration
of these environments, and Appendix B elaborates on their reward model.

(I) Taxi (II) Frozen Lake (III) Cliff Walking

Figure 3: Illustration of the three gridworld environments used for evaluating the algorithm,
adapted from [40]. The environments include: (I) Taxi, where the agent must pick up and
drop off passengers at designated locations, (II) Frozen Lake, where the agent must navigate
across a surface to reach a goal while avoiding holes, and (III) Cliff Walking, where the agent
must traverse a grid while avoiding a cliff edge to reach the goal.

Off-policy Data Collection Method: Given the offline setting of this work, we chose
to create the statically pre-collected datasets through an online process, implemented in
two stages using Q-learning [37]. In the first stage, the agent learns optimal Q-values by
interacting with the environment over 10, 000 episodes. To ensure diverse data collection,
we use an ϵ-greedy policy where the agent selects the action with the highest Q-value 1− ϵ
of the time and a random action the remaining ϵ of the time, balancing exploration and
exploitation. We collect the dataset for a limited number of episodes, each with a maximum
of 100 environment steps, using three different ϵ values: 0.1, 0.4, and 0.7. These diverse
data collection policies enable a more effective evaluation of the algorithm’s ability to learn
from differing-quality datasets.

SimuDICE Hyperparameters: Throughout these experiments, we use the following hy-
perparameters for the SimuDICE algorithm unless stated otherwise:

• Learning rate (α): 0.1
• Discount factor (γ): 0.99
• Planning steps: 20 (number of planning steps performed for each offline experience)
• Number of iterations: 3 (number of updates for the sample probabilities)
• Probability regularizer (λ): 100

9

4.2 Discrete gridworld environments results
We compare SimuDICE with two other algorithms: Implicit Q-learning [39] and offline
adapted Dyna-Q [34]. The Implicit Q-learning algorithm is part of SimuDICE that learns
the target policy only from the offline data, without further improvement. The offline
adapted Dyna-Q is another component of SimuDICE, and it improves the policy in a single
iteration using equal sampling probabilities for each state-action pair.

As shown in Figure 4, our SimuDICE either outperforms or matches the performance of
other algorithms across various settings. In particular, in the Taxi environment, which is
considered more challenging due to its larger state-action space and the diversity of actions
and penalties, SimuDICE significantly outperforms the others. Even with only 10 planning
steps, SimuDICE maintains close performance levels to those with 20 planning steps, often
surpassing 20-step Dyna-Q.

100 200 300 400 500

2.4

1.6

0.8

0.0

0.8

P
er

-s
te

p
re

w
ar

d

Taxi, = 0.1

100 200 300 400 500

Taxi, = 0.4

100 200 300 400 500

Taxi, = 0.7

2 4 6 8 10
Number of episodes

0.00

0.04

0.08

0.12

0.16

0.20

P
er

-s
te

p
re

w
ar

d

Frozen Lake, = 0.1

2 4 6 8 10
Number of episodes

Frozen Lake, = 0.4

2 4 6 8 10
Number of episodes

Frozen Lake, = 0.7

Implicit Q-learning Dyna-Q 10 PS Dyna-Q 20 PS SimuDICE 10 PS SimuDICE 20 PS

Figure 4: Comparison of algorithm performance in discrete tabular environments (Taxi and
FrozenLake) under different ϵ-greedy data collection policies. The different ϵ values simulate
varying offline data qualities. The performance is measured as the per-step reward (averaged
over 500 plays) given different numbers of trajectories in the offline data. PS represents the
planning steps for both SimuDICE and Dyna-Q algorithms.

In the FrozenLake environment, there is no noticeable difference between the algorithms
that use planning, all having the exact same per-step reward. The only observation is that
the planning-based algorithms outperform vanilla Q-learning in all cases, irrespective of the
quality of the offline data. This conclusion also applies to the CliffWalking environment, as
shown in Appendix D, Figure 8.

10

4.3 Ablation study
In this section, we conduct an ablation study to evaluate the effect of various added pa-
rameters on the performance of SimuDICE. Our analysis focuses exclusively on the Taxi
environment, as it represents the most complex scenario out of the three.

Planning Steps: How does the number of planning steps affect the model’s performance?

We carry out an experimental evaluation to determine how different numbers of planning
steps affect the agent’s performance. Figure 5 shows that while the number of planning
steps improves the performance, the relationship is not linear. The benefit is more obvious
in environments with higher data quality (bigger ϵ), where the behavioral policy tends to
exploit rather than explore, as seen in the Taxi environment.

50 100 150 200 250
Number of episodes

2.4

1.6

0.8

0.0

0.8

P
er

-s
te

p
re

w
ar

d

Taxi, = 0.1

50 100 150 200 250
Number of episodes

Taxi, = 0.4

50 100 150 200 250
Number of episodes

Taxi, = 0.7

SimuDICE 1 PS SimuDICE 10 PS SimuDICE 20 PS SimuDICE 50 PS

Figure 5: Impact of the number of planning steps on per-step reward under different ϵ values.

Number of iterations: How does the number of iterations (the number of updates to the
sample probabilities) change the performance of the algorithm?

To verify the effectiveness of the number of iterations (i.e., the frequency of updating the
sampling probabilities) on the performance of the agent, we conducted a comparative anal-
ysis using the SimuDICE with 20 planning steps.

50 100 150 200 250
Number of episodes

0.9

0.6

0.3

0.0

0.3

0.6

P
er

-s
te

p
re

w
ar

d

Taxi, = 0.1

50 100 150 200 250
Number of episodes

Taxi, = 0.4

50 100 150 200 250
Number of episodes

Taxi, = 0.7

SimuDICE 1 iter. SimuDICE 2 iter. SimuDICE 3 iter. SimuDICE 5 iter. SimuDICE 10 iter.

Figure 6: Effect of the number of iterations on SimuDICE under different ϵ-values.

11

Figure 6 shows that varying the number of iterations has a negligible effect on the perfor-
mance of SimuDICE in the Taxi environment, showing that SimuDICE is unaffected by the
number of iterations in this environment.

Different Sampling Probabilities Formulas: How does the algorithm’s performance
change when we alter the method for estimating sampling probabilities?

We compare our SimuDICE with three alternative variants, each employing different for-
mulas for converting model confidence and wπ/D weight estimations into probabilities. This
comparison aims to assess their effectiveness in guiding the world model to sample more
‘valuable‘ synthetic experiences. For simplicity, we assume that each probability function is
normalized to sum 1. Formula 1 is detailed in Section 3.3.3 and shown in Eq. 15. Formula
2 applies the softmax function to the sum of the world model’s confidence and the wπ/D
estimates, as presented in Eq. 16. Formula 3 applies the softmax function solely to the
wπ/D weight estimates, without considering the world model’s confidence (Eq. 17). All of
these methods are compared with the baseline of randomly sampling experiences.

P̃(s, a) = C(s, a) + ewπ/D(s,a)·λ∑
(s′,a′) e

wπ/D(s′,a′)·λ /λ (15)

P̃(s, a) = eC(s,a)+wπ/D(s,a)∑
(s′,a′) e

C(s′,a′)+wπ/D(s′,a′)
(16)

P̃(s, a) = ewπ/D(s,a)·λ∑
(s′,a′) e

wπ/D(s′,a′)·λ /λ (17)

100 200 300 400 500
Number of episodes

4.0

3.5

3.0

2.5

2.0

1.5

P
er

-s
te

p
re

w
ar

d

Taxi, = 0.1

100 200 300 400 500
Number of episodes

Taxi, = 0.4

100 200 300 400 500
Number of episodes

Taxi, = 0.7

SimuDICE estimate 1 SimuDICE estimate 2 SimuDICE estimate 3 SimuDICE no estimate

Figure 7: Comparison of per-step rewards across various sample probability estimation
formulas, based on different trajectory counts (evaluated every 50 trajectories) and ϵ-values.

Figure 7 demonstrates that the formula used in SimuDICE is more robust than others under
varying data qualities. However, when the target policy is close to the behavioral policy
used for data collection, alternative sampling methods may outperform it. Specifically, the
SimuDICE formula excels in scenarios with diverse data but yields inferior results when the
data lacks diversity and is already close to the desired distribution.

12

5 Discussion
The purpose of this work is to propose a novel framework designed for policy optimization
in the offline reinforcement learning setting by addressing the data needs, the state-action
distribution mismatch, and the objective mismatch. In this section, we discuss the findings
and their implications, including limitations and areas for improvement.

Key findings and implications:

• Improved sampled efficiency: We demonstrate that SimuDICE preserves the effi-
ciency improvements introduced by Dyna-Q [34], particularly in generating imaginary
rollouts. We believe that the process of generating these synthetic experiences, referred
to as ’imagination’, is vital for developing effective decision-making agents.

• Distribution mismatch correction: SimuDICE achieves similar results with fewer
planning steps by updating the sampling probabilities of the world model. In the Taxi
environment, SimuDICE required half the planning steps (10) to achieve comparable
performance to Dyna-Q (20). This efficiency improvement is significant as it reduces
the need for both pre-collected and simulated data. By requiring fewer simulated
experiences, the risk of encountering hallucinated experiences that could lead to policy
divergence in more complex environments is decreased. Moreover, our ablation study
highlights that our formula used to calculate the sampling probabilities is robust to
different offline dataset qualities.

• Objective mismatch improvement: Our ablation study shows no performance
gain by updating the sampling probabilities multiple times during a run. We believe
this is because the objective mismatch was theorized for more complex world models
in complex environments by [32, 33], and in our implementation, this problem does
not arise. Future research should be done in this area. Still, we anticipate that when
scaled to more complex environments SimuDICE will achieve similar improvements as
the AMPL algorithm [18] due to constantly updating the objective of the world model.

Limitations:

• Simple environments: The experimental study was conducted in simple, deter-
ministic grid-world environments such as Taxi, FrozenLake, and CliffWalking. These
environments do not capture the complexity and stochastic nature of real-world sce-
narios, which might affect the generalizability of the results.

• Sensitivity to sample probabilities formula: In the ablation study, we show that
SimuDICE’s performance is significantly influenced by the formula used for estimating
sampling probabilities. Given the limited number of environments in the current
experimental setup, a more extensive evaluation across a wider range of environments
is necessary to assess the effectiveness of the sampling probability formula thoroughly.

• Comparison with other algorithms: This study compared SimuDICE only with
an offline version of Dyna-Q and Implicit Q-learning. One limitation of this work is
the exclusion of other algorithms from the comparison, as these algorithms might offer
different advantages or better performance.

13

6 Conclusion and Future Work
This study introduces SimuDICE, a novel framework designed to optimize policies in the
offline reinforcement learning setting through iterative updates of both the world model’s
sampling probabilities and the Dual stationary DIstribution Correction (DICE) estimation
using synthetically generated experiences. The core advancement of SimuDICE is its abil-
ity to correct the state-action distribution mismatch between the behavior policy and the
target policy, achieved through a bi-objective optimization of the realism and diversity of
the generated experiences. The world model samples experiences that are more likely to
be encountered by the target policy, ensuring diversity, while maintaining high confidence
in the generated experiences’ accuracy, ensuring realism. Optimizing solely for realism can
lead to a less diverse, mode-collapsed model [41] while focusing only on diversity can result
in hallucinated states [17].

Our experiments show that SimuDICE outperforms similar algorithms, such as an offline ver-
sion of Dyna-Q [34] and Implicit Q-learning [39]. The performance improvement compared
to Implicit Q-learning shows better sample efficiency. SimuDICE achieves results similar to
Dyna-Q with only half the planning steps, indicating its ability to correct for state-action
distribution mismatches. Additionally, SimuDICE is less affected by the quality of offline
data compared to the other algorithms. Our ablation study reveals that SimuDICE is sen-
sitive to the probabilities the world model samples with while being robust to changes in
other added hyperparameters like planning steps and the number of iterations.

Future work: This work introduces a proof-of-concept algorithm that steers the distri-
bution of synthetically generated experiences towards both ‘relevant‘ and ‘confident‘ ones.
Future research should extend this algorithm to more complex environments to evaluate
scalability and compare it with state-of-the-art methods.

Enhancing the current framework involves using a sample efficient world model that can
generate novel experiences, using neural-network-based approaches [2]. Additionally, using
a more stable DICE estimation is important to ensure convergence [29]. Implementing an
actor-critic policy could further improve decision-making within the algorithm [42]. These
enhancements will require exploring the necessary changes in transitions between compo-
nents, allowing us to evaluate the robustness, efficiency, and scalability of this framework.

Acknowledgments
I want to thank our professor, Frans Oliehoek, and our supervisor, Stephan Bongers, for
their support, guidance, and helpful feedback, which have been instrumental in shaping this
project. I also want to express my gratitude to my group members for the discussions and
feedback we shared during our meetings, as well as to the anonymous reviewers for their
insightful feedback.

14

7 Responsible Research
We developed SimuDICE by closely adhering to the principles outlined in the Dutch Code of
Conduct for Research Integrity [43]: honesty, scrupulousness, transparency, independence,
and responsibility.

Honesty: The implementation of the algorithm, experimental results, and logs from the
runs that produced the presented results are publicly available in a GitHub repository. We
acknowledge the importance of sharing research and have chosen the Apache License 2.0,
which allows other researchers to contribute to this work.

Scrupulousness and Transparency: The environments used to evaluate the algorithms
are publicly available in the Gymnasium Library [40], with no modifications made to them
or their reward models. These environments were selected based on their type (e.g., deter-
ministic, tabular) rather than their topic or theme.

Independence: Our evaluation criteria focused on being scientific and reproducible. We
ensured that no algorithm was disadvantaged by running all experiments multiple times. All
result logs are available in the repository, and no findings have been intentionally excluded.

Responsibility: According to the tripartite model (users, engineers, politicians) [44], en-
gineers are accountable for creating products and upholding moral principles. Therefore,
we recommend careful consideration before using this algorithm in real-world scenarios, as
independent evaluations of risks and other factors are necessary.

This paper clearly explains the assumptions and decisions made during the development
of this novel algorithm. It analytically discusses the discovered limitations and suggests
directions for future work. We believe that this thorough approach is particularly relevant
given the current reproducibility crisis in science [45].

15

References
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed.

Cambridge, MA, USA: MIT Press, 2018.

[2] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse domains through
world models,” arXiv preprint arXiv:2301.04104, 2023.

[3] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates,” in 2017 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2017, pp. 3389–3396.

[4] J. Gao, M. Galley, and L. Li, “Neural approaches to conversational AI,” CoRR, vol.
abs/1809.08267, 2018.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of
go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016.

[7] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learning,” in Reinforce-
ment Learning: State-of-the-Art, M. Wiering and M. van Otterlo, Eds. Springer, 2012,
ch. 2, pp. 45–73.

[8] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial,
review, and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020.

[9] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning without
exploration,” in Proceedings of the 36th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, vol. 97. PMLR, 2019, pp. 2052–2062.

[10] A. Kumar, J. Fu, G. Tucker, and S. Levine, “Stabilizing off-policy q-learning via boot-
strapping error reduction,” in Advances in Neural Information Processing Systems,
vol. 32. Curran Associates, Inc., 2019.

[11] L. Baird, “Residual algorithms: Reinforcement learning with function approximation,”
Machine Learning, vol. 20, no. 1-2, pp. 65–81, 1995.

[12] J. N. Tsitsiklis and B. Van Roy, “Analysis of temporal-difference learning with function
approximation,” in Advances in Neural Information Processing Systems 9 (NIPS 1996).
MIT Press, 1996, pp. 1075–1081.

[13] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Dreamer: Reinforcement learning with
latent world models,” in International Conference on Learning Representations, 2020.

[14] D. Hafner, J. Schrittwieser, D. Mankowitz, A. Barreto, and T. Lillicrap, “Mastering
atari with discrete world models,” arXiv preprint arXiv:2010.02193, 2020.

[15] E. Alonso, A. Jelley, V. Micheli, A. Kanervisto, A. Storkey, T. Pearce, and F. Fleuret,
“Diffusion for world modeling: Visual details matter in atari,” 2024.

[16] Z. Ding, A. Zhang, Y. Tian, and Q. Zheng, “Diffusion world model,” 2024.

16

[17] T. Jafferjee, E. Imani, E. J. Talvitie, M. White, and M. Bowling, “Hallucinating value:
A pitfall of dyna-style planning with imperfect environment models,” arXiv preprint
arXiv:2006.04363, 2020.

[18] S. Yang, S. Zhang, Y. Feng, and M. Zhou, “A unified framework for alternating offline
model training and policy learning,” in Advances in Neural Information Processing
Systems, 2022. [Online]. Available: https://arxiv.org/abs/2210.05922

[19] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” in
International Conference on Learning Representations, 2015.

[20] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, W. Pieter Abbeel, OpenAI, and W. Zaremba, “Hindsight experience replay,”
in Advances in Neural Information Processing Systems, 2017.

[21] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement learning with
less data and less real time,” in Machine Learning Proceedings 1993, 1993.

[22] T. Zhang, P. Ball, P. Ammanabrolu, D. Peng, S. Singh, and J. Pineau, “Learning to
plan with uncertainty,” in International Conference on Learning Representations, 2021.

[23] D. Precup, R. S. Sutton, and S. Dasgupta, “Off-policy temporal-difference learning with
function approximation,” in Proceedings of the Eighteenth International Conference on
Machine Learning (ICML 2001), C. E. Brodley and A. P. Danyluk, Eds. San Francisco,
CA: Morgan Kaufmann, 2001, pp. 417–424.

[24] A. Hallak and S. Mannor, “Consistent on-line off-policy evaluation,” in Proceedings of
the 34th International Conference on Machine Learning (ICML 2017). PMLR, 2017,
pp. 1372–1383.

[25] Q. Liu, L. Li, Z. Tang, and D. Zhou, “Breaking the curse of horizon: Infinite-horizon off-
policy estimation,” in Advances in Neural Information Processing Systems 31 (NeurIPS
2018). Curran Associates, Inc., 2018, pp. 5356–5366.

[26] O. Nachum, Y. Chow, B. Dai, and L. Li, “Dualdice: Behavior-agnostic estimation
of discounted stationary distribution corrections,” in Advances in Neural Information
Processing Systems, 2019, pp. 2315–2325.

[27] R. Zhang, B. Dai, L. Li, and D. Schuurmans, “Gendice: Generalized offline estimation
of stationary values,” in International Conference on Learning Representations, 2020.

[28] S. Zhang, B. Liu, and S. Whiteson, “Gradientdice: Rethinking generalized offline esti-
mation of stationary values,” arXiv preprint arXiv:2001.11113, 2020.

[29] M. Yang, O. Nachum, B. Dai, L. Li, and D. Schuurmans, “Off-policy evaluation via
the regularized lagrangian,” in International Conference on Learning Representations.
ICLR, 2020.

[30] P. Swazinna, S. Udluft, and T. A. Runkler, “Overcoming model bias for robust offline
deep reinforcement learning,” Engineering Applications of Artificial Intelligence, vol.
104, p. 104366, 2021.

[31] C. Cang, A. Rajeswaran, P. Abbeel, and M. Laskin, “Behavioral priors and dynam-
ics models: Improving performance and domain transfer in offline rl,” arXiv preprint
arXiv:2106.09119, 2021, abs/2106.09119.

17

https://arxiv.org/abs/2210.05922

[32] N. Lambert, B. Amos, O. Yadan, and R. Calandra, “Objective mismatch in model-based
reinforcement learning,” arXiv preprint arXiv:2002.04523, 2020.

[33] B. Eysenbach, A. Khazatsky, S. Levine, and R. Salakhutdinov, “Mismatched no more:
Joint model-policy optimization for model-based rl,” arXiv preprint arXiv:2110.02758,
2021.

[34] R. S. Sutton, “Dyna, an integrated architecture for learning, planning, and reacting,”
ACM SIGART Bulletin, vol. 2, no. 4, pp. 160–163, 1991.

[35] R. Sutton, “Integrated architectures for learning, planning, and reacting based on ap-
proximating dynamic programming,” Proceedings of the Seventh International Confer-
ence on Machine Learning, pp. 216–224, 1990.

[36] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. New York: John Wiley & Sons, 1994.

[37] C. J. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, University of Cam-
bridge, 1989.

[38] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland, and
W. Dabney, “Revisiting fundamentals of experience replay,” in Proceedings of the 37th
International Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 3061–3071.

[39] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning with implicit q-
learning,” arXiv preprint arXiv:2110.06169, 2021.

[40] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão,
A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J.
Tai, A. T. J. Shen, and O. G. Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

[41] P. Astolfi, M. Careil, M. Hall, O. Mañas, M. Muckley, J. Verbeek, A. R. Soriano, and
M. Drozdzal, “Consistency-diversity-realism pareto fronts of conditional image genera-
tive models,” 2024.

[42] I. Grondman, L. Busoniu, G. Lopes, and R. Babuska, “A survey of actor-critic reinforce-
ment learning: standard and natural policy gradients,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 42, no. 6, pp. 1291–1307,
2012.

[43] KNAW NWO VH VSNU, NFU, “Netherlands code of conduct for research integrity,”
Sep. 2018.

[44] I. Van de Poel and L. M. M. Royakkers, Ethics, Technology, and Engineering: An
Introduction. Wiley-Blackwell, 2011.

[45] M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature, vol. 533, pp. 452–454,
May 2016.

18

https://zenodo.org/record/8127025

A DualDICE

Algorithm 2 Get Weight Estimates for DualDICE
Require: Offline behavioral data D, Q-values Q, target policy π, regularizer λ = 10−8

1: δ ← 0|A|·|S|×|A|·|S|
2: total_weights← 0|A|·|S|
3: initial_weights← 0|A|·|S|
4: for each episode in D do
5: step = 0
6: for each (s, a, r, s′) in episode do
7: νindex ← s · |A|+ a
8: weight← γstep

9: δ[νindex, νindex]← δ[νindex, νindex] + weight
10: total_weights[νindex]← total_weights[νindex] + weight
11: p(πs)← π.get_state_probabilities(s)
12: for each (a, p(πs, a)) in p(πs) do
13: νnext_index ← s · |A|+ a
14: δ[νnext_index, νindex]← δ[νnext_index, νindex]− weight · γ · p(πs, a)
15: end for
16: p(πs0)← π.get_state_probabilities(s)
17: for each (a, p(πs0 , a)) in p(πs0) do
18: νnext_index ← s0 · |A|+ a
19: δ[νnext_index, νindex]← δ[νnext_index, νindex]− weight · γ · p(πs0 , a)
20: end for
21: step← step+ 1
22: end for
23: end for
24: Normalization:
25: td_residuals← δ√

λ+total_weights[None,:]

26: td_errors← td_residuals · td_residualsT

27: Solve for ν in the linear system td_errors + λ · I = initial_weights · (1− γ)

28: ζ ← ν·td_residuals√
λ+total_weights

B Environment Reward Models
Taxi: The Taxi environment involves picking up passengers from designated locations and
delivering them to their destinations. The agent receives positive rewards (+20) for success-
fully delivering passengers and negative rewards for any movement (-1) or for incorrectly
picking up or dropping off a passenger (-10).

FrozenLake: The FrozenLake environment requires navigating a frozen lake to reach a goal
while avoiding holes. For simplicity, there is no added stochasticity to the environment. The
agent receives a positive reward (+1) for reaching the goal and zero reward for each step
taken. Falling into a hole ends the episode with no reward. The primary challenge is to find
the optimal path to the goal while avoiding the holes.

19

CliffWalking: The CliffWalking environment involves navigating a grid world where the
agent must reach a goal at the opposite end of the grid while avoiding a cliff. The agent
incurs a significant negative reward (-100) if it steps off the cliff and is teleported back to
the start. Additionally, the agent receives a small negative reward (-1) for each step taken.
The challenge is to find a path to the goal that minimizes both the risk of falling off the cliff
and the number of steps taken.

C Offline data collection method
Offline data collection is done using Q-learning [37] in 2 stages:

1. Q-value learning: In this phase the data collection agent learns the Q-values by
interacting with the environment for a pre-defined number of episodes using the ϵ-
greedy policy.

2. Data collection phase: In this phase the previously learned Q-values are used to
store the interactions with the environment as a list of the form (s, a, r, s′). The
collection method also uses ϵ-greedy as policy.

This data collection mechanism has three parameters, each of which influences the state-
action distribution mismatch:

• Number of episodes used for Q-value learning: mostly influences the quality
of the policy the data is collected under. When the number of episodes is high, the
behavioral policy is closer to the optimal policy.

• Number of episodes used for Data collection phase: affects the amount of
diverse experiences available. When the number of episodes is high, more robust data
is generated, covering a more complete state-action distribution.

• Selected exploration term ϵ: controls the trade-off between exploration and ex-
ploitation. A higher ϵ encourages more exploration, which can help with discovering
better policies by sampling a wider range of actions. A lower ϵ favors exploitation
of the current knowledge, potentially improving the policy faster, but at the risk of
converging to a suboptimal solution.

D CliffWalking Results

0 20 40 60 80
Number of episodes

40

32

24

16

8

0

P
er

-s
te

p
re

w
ar

d

Cliff Walking, = 0.1

0 20 40 60 80
Number of episodes

Cliff Walking, = 0.4

0 20 40 60 80
Number of episodes

Cliff Walking, = 0.7

Implicit Q-learning Dyna-Q 10 PS Dyna-Q 20 PS SimuDICE 10 PS SimuDICE 20 PS

Figure 8: Comparison of Per-Step rewards across various sample probability estimation
formulas, based on different trajectory counts and ϵ-values.

20

	Introduction
	Background
	Problem setting
	Online Dyna-Q
	DualDICE estimation

	SimuDICE
	High level idea
	Algorithm components
	Target policy Q
	World model
	w/ D weights

	Component interactions
	Adapted Dyna-Q components
	Distribution mismatch estimation
	Sampling probabilities update
	Dataset augmentation

	Experiments
	Experimental setup
	Discrete gridworld environments results
	Ablation study

	Discussion
	Conclusion and Future Work
	Responsible Research
	DualDICE
	Environment Reward Models
	Offline data collection method
	CliffWalking Results

