
TUDelft Cognitive of Robotics (CoR)

Reinforcement Learning Com-
pensated Filter for Position and
Orientation Estimation

Hao Li

M
as

te
ro

fS
cie

nc
e

Th
es

is

Reinforcement Learning Compensated
Filter for Position and Orientation

Estimation

Master of Science Thesis

For the degree of Master of Science in Mechanical Engineering at Delft
University of Technology

Hao Li

August 23, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Department of Cognitive Robotics (COR)
All rights reserved.

Abstract

Pose estimation provides accurate position and orientation information of the intelligent
agents in real time. The accuracy of the estimation directly affects the performance of sequen-
tial tasks such as mapping, motion planning, and control. EKF (Extended Kalman Filter)
is a standard theory for nonlinear pose estimation by modeling state uncertainty to Gaus-
sian distribution. However, EKF has requirements for proper initial estimate and system
noise to obtain bounded optimal estimate. Meanwhile, model nonlinearity and non-gaussian
noise modeling affect the performance of EKF significantly in practical applications. In this
thesis, we focus on improving the performance of nonlinear pose estimation by reinforcement
learning. By formulating an EKF measurement update as a Markov Decision Process (MDP),
reinforcement learning agents can be trained to learn the estimator gain through data samples
and executed as the online estimator for pose estimation tasks.

Based on the above idea, we propose a novel reinforcement learning-compensated EKF esti-
mator (RLC-EKF), where the RL agent serves as a second-time measurement update that
subsides the residual error from the standard EKF estimate. The estimator is developed and
testified on two specific pose estimation scenarios. Firstly, as a continuous work from the
previous study, a framework for 3 DOF orientation estimation using inertial sensor and mag-
netometer is replicated. Then, the framework is extended by different RL algorithms training
and multi-scale robustness validation. Besides, we implement the estimator on a feature-
based 2D plane localization framework. The proposed framework shows the feasibility of the
underlying algorithm on a localization task with a known map. As a result, the RLC-EKF
estimator gives superior performance and convincible robustness compared to classical meth-
ods in severe conditions such as varying initial states, degree of noise intensities, and model
covariance.

Keywords: Deep reinforcement learning; EKF; Orientation estimation; 2D Plane localization

Master of Science Thesis Hao Li

ii

Hao Li Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Background . 1
1-2 Motivation . 2
1-3 Research Question . 3
1-4 Contribution . 3
1-5 Thesis Organization . 4

2 Preliminaries 5
2-1 Extended Kalman Filter . 5
2-2 Reinforcement Learning Basis . 7

2-2-1 The Agent-Environment Interface . 7
2-2-2 Markov Decision Process . 9
2-2-3 Policy Gradient . 9
2-2-4 Proximal Policy Optimization (PPO) . 10

2-3 Reinforcement Learning Filter . 11
2-3-1 Multiple Layer Perceptron . 11
2-3-2 RL Filter Design . 12

3 RL Estimator for Attitude Estimation 15
3-1 RLC-EKF for orientation estimation . 15

3-1-1 Measurements From Sensors . 15
3-1-2 Orientation Estimation using EKF . 16
3-1-3 Merge with RL Estimator . 17

3-2 Simulation . 20
3-2-1 Synthetic Data Generation . 20

Master of Science Thesis Hao Li

iv Table of Contents

3-2-2 Experiment Setup . 21
3-2-3 Normal Estimation Condition . 22
3-2-4 Unreliable Initial Estimation . 24
3-2-5 Tremendous Noise Disturbance . 25
3-2-6 Generality . 26

3-3 Real Dataset . 28

4 RL Estimator for Localization 31
4-1 RLC-EKF for Localization . 31

4-1-1 Feature-based EKF Localization . 32
4-1-2 RLC-EKF Framework . 34

4-2 Simulation . 36
4-2-1 Synthetic Data Generation . 36
4-2-2 Experiment Setup . 38
4-2-3 Normal Condition . 38
4-2-4 Initial Estimate . 40
4-2-5 Measurement Noise . 41
4-2-6 Model Covariance . 41

4-3 Real Dataset . 42
4-3-1 UTIAS Dataset . 43
4-3-2 Dataset processing . 44
4-3-3 Train and Evaluation . 44

5 Conclusion 47
5-1 Question Answer . 47
5-2 Discussion . 48
5-3 Future works . 49

A Supplementary Experiments 51
A-1 Direct RL estimator . 51
A-2 Training details . 52

B Code Description 55
B-1 Environment Setup . 55
B-2 Folder Structure . 56
B-3 Training . 56
B-4 Evaluation . 57

C Quaternion Basis 59
C-1 Definition . 59
C-2 Quaternion operations . 59
C-3 Relation Between Euler Angle and Quaternion 61

Bibliography 63

Hao Li Master of Science Thesis

List of Figures

2-1 Scheme of kalman filtering[1] . 6
2-2 Agent-environment interaction cycle . 7
2-3 Visual explanation of MLP+RELU structure . 12

3-1 RLC-EKF structure for 3DOF orientation estimation 18
3-2 An example showing the composition of simulated data. With σω = 1 ·10−2, σa =

5·10−3, σm = 5·10−3. for gyroscope noise eω,t ∼ N
(
0, σ2

ωI3
)
, accelerometer noise

ea,t ∼ N
(
0, σ2

aI3
)
, and magnetometer noise em,t ∼ N

(
0, σ2

mI3
)
respectively. The

initial state of the quaternion trajectory is randomly selected. 20
3-3 Angular velocity profile used for training . 23
3-4 RMSE of the orientation estimation in normal condition 23
3-5 Comparison of RLC-EKF and EKF tracking accuracy. 4 elements in unit quaternion

of reference truth(solid line), EKF estimation(dotted line) and RLC-EKF(dashed
line) are displayed. The trajectories are the mean path value among 10 trials, with
shaded area representing standard deviation. The cost is in negative order. . . . 24

3-6 Orientation with growing initial estimate deviation. Line type description is the
same manner as section 3-2-3. 24

3-7 Orientation tracking under chaotic noise environment. The result for medium noise
1e− 3 is already given in figure 3-6. Line type description is the same manner as
section 3-2-3. 25

3-8 Different angular velocity profiles used in this scenario. 26
3-9 Same profile trained from profile1 evaluating on other profiles. 27
3-10 Result visualization for profiles benchmark . 27
3-11 Real dataset collection process. 28
3-12 Real data quaternion tracking result. 29

4-1 Illustration of dynamic and measurement models for ground localization task . . 33
4-2 RLC-EKF structure for Localization . 34
4-3 Visualization of simulation environment . 37

Master of Science Thesis Hao Li

vi List of Figures

4-4 Qualitative result of localization task in moderate condition 39
4-5 Representative trajectories with different initial estimates for visualization 40
4-6 Qualitative results of localization with different measurement noise level. Both

cost curve and variables in state vector are compared. 41
4-7 RMSE with different measurement noise level. 41
4-8 Qualitative results of localization considering different model covariance ratio, the

result of ratio 1:1 is shown in Figure 4-4. 42
4-9 Hardware essentials of UTIAS dataset[2] . 43
4-10 Illustration of UTIAS dataset loading and camera sensing process. In figure 4-

10(a), one dataset is loaded in Matlab, we only focus on one robot and filter out
others . 44

4-11 Data visualization of robot5 from the UTIAS dataset− 1 45
4-12 Cost curve, trajectory tracking and variable tracking on three different evaluation

scenarios. 46

A-1 Direct RL estimator for orientation estimation 51
A-2 Tracking performance of direct RL estimator. We compare the result between

gyroscope update(dotted line) and RL update(dashed line). 52
A-3 Training loss of RL algorithms reading from tensorboard log. 53

Hao Li Master of Science Thesis

List of Tables

3-1 Hyperparameters of PPO2 training process (orientation estimation) 22
3-2 Selection of action space . 22
3-3 Quaternion RMSE of RLC-EKF w.r.t initial deviation 25
3-4 Advantage of RLC-EKF w.r.t different measurement nose level 26
3-5 RLC-EKF evaluating on different profiles . 27
3-6 RLC-EKF on real dataset . 29

4-1 Hyperparameters of PPO2 training process (localization task) 38
4-2 RMSE of the localization task . 40
4-3 RMSE with different initial deviation . 40
4-4 RMSE with different model covariance ratio . 42
4-5 RMSE with different model covariance ratio . 45

Master of Science Thesis Hao Li

viii List of Tables

Hao Li Master of Science Thesis

Acknowledgements

First, I would like to thank my supervisor Prof. Dr. Wei Pan. He is always supportive of
providing experiment-related stuff and encourages us to enjoy the process of learning. From
him, I learned to be curious about innovative ideas and never underestimate yourself because
of the "impossible." Those lifetime benefits are precise for my future career life. I want to
thank my daily supervisor, Ir. Yujie Tang. There are many difficulties I encountered during
the thesis. She’s always willing to sit with me and solve them together. She taught me how
to schedule a timeline, plan experiments, which are necessary skills for a qualified researcher.
This is her first year supervising students, a lot of things we have to figure out together.
Now I can finally be proud to say she is an excellent tutor. I’d like to thank my family and
friends for their effortless accompany during the covid-19 period. This is an exceptional time
for everyone, glad that we are still facing it together. I also want to thank TU Delft for its
international atmosphere, responsible staff, and incredible learning experience. I will always
be proud to say I was once a TU Delfter!

Two years flicking passed by, and the bell of graduation is calling for the next splendid life
journey. Let’s open up a brand new chapter and step into the wonderful future.

Delft, University of Technology Hao Li
August 23, 2021

Master of Science Thesis Hao Li

x Acknowledgements

Hao Li Master of Science Thesis

“In fact, the world needs more nerds.”
— Ben Bernanke

Chapter 1

Introduction

1-1 Background

State estimation infers unknown states of the moving agents from the dynamic system model
and noisy sensor measurements. Under the big topic of state estimation, Pose estimation fo-
cuses on estimating the robot’s real-time position and orientation without containing velocity,
acceleration, or adjustable factors in state vectors. Pose estimation is a general topic but can
be specified in exact application scenarios due to the state of interests (SOI) required. For
example, 2DOF (Degree of Freedom) position and heading angle are required for unmanned
ground vehicle (UGV) localization. At the same time, the 3DOF orientation of each mo-
tion sensor placed at a person’s key ankle is the most basic SOI for human motion tracking
applications.

Different sensors have complementary properties; thus, they can work jointly to achieve more
accurate pose estimation with sensor fusion techniques. Global Navigation Satellite System
(GNSS) plays a vital role in an outdoor scenario, especially for vehicular positioning. Such ab-
solute position provided by satellite orbiting can be fused with relative position from onboard
sensors such as lidar[3] and radar[4]. In GPS-denied environments such as indoor, under-
water, tunnels, INS (inertial navigation system), which utilizes IMU (inertial measurement
units), is at the beginning widely researched[5]. With low-cost, high-frequency, and small-size
triaxial accelerometer and gyroscope, linear acceleration and angular velocity of the moving
agent can be measured respectively and then integrated with respect to the initial state to
be orientation and position[6]. This classic procedure is called dead reckoning. Vision sensors
can also provide pose information by odometry. Visual odometry (VO) reconstructs camera
motions by comparing sequential images through either handcrafted features or photometric
intensity. The results of image processing are then used for calculating the transformation
matrix between frames. Since most VO uses a mono camera, it cannot precept pose scalabil-
ity. Meanwhile, inertial odometry always suffers from accumulation drift issues. Thus Visual
and inertial sensors can incorporate by either loosely-coupled or tightly-coupled methods,
which is called visual-inertial odometry (VIO).

Master of Science Thesis Hao Li

2 Introduction

Pose estimation algorithms can also be categorized by methodologies. Traditional methods
include optimization-based and filtering-based methods. Optimization-based methods are
usually formulated by a maximum likelihood problem and solved by nonlinear stochastic
squares (NLS). Extended Kalman Filter (EKF)[7] is one of the most renowned filtering al-
gorithms for nonlinear pose estimation. The main idea is to linearize the system model to a
differential point by first-order Taylor series approximation. State quantity modeled by Gaus-
sian distribution is then propagated and updated the same as the standard Kalman filtering.
In case of EKF fails, Unscented Kalman Filter (UKF)[8] is another substitute that utilizes
unscented transformation techniques which determinedly sample some points around mean
point and regenerate mean and covariance accordingly.

1-2 Motivation

The above section clarifies classic position and orientation estimation methods by both sensor
fusion and methodology aspects. Those hand-designed models and algorithms work well in
well-calibrated experimental conditions but are unreliable in more complex dynamics. Such
a problem of lacking generalization motivates the emergence of machine learning technology
applications to solve pose estimation problems. With no need to specify mathematical and
physical formulas, learning methods get knowledge in a data-driven way. For supervised
learning, both CNN[9] and LSTM[10] show their capabilities for pose estimation by modeling
neural networks to motion dynamics or extracting universal features. However, the above
methods only work in specific contexts empirically, and have no guaranteed estimation con-
vergence in inexperienced scenario[11]. Meanwhile, as another important branch of machine
learning, reinforcement learning (RL) is still in its infancy stage in the field of pose estimation.
Jun[12] first proposed a novel use of reinforcement learning for estimating hidden variables
and parameters of nonlinear dynamical systems. But still, the research gap between RL and
pose estimation is huge and worthwhile for deeper exploration.
In this thesis, based on classical EKF, we are trying to develop an integrated reinforcement
learning approach for nonlinear pose estimation. Although EKF has been widely implemented
for state estimation for years, it can be sensitive due to the following factors:

• Nonlinear complexity: The accuracy of EKF diverges quickly or even fails in case of
inappropriate model linearization.

• Initial estimate: EKF is only guaranteed to converge when the initial state is chosen
properly nearby the true initial estimate.

• Irregular noise: System and measurement noise in EKF are all modeled in Gaussian
distribution. In a real application, such an assumption is not always convincing. Wrong
modeling of non-Gaussian noise can also severely downgrades estimation performance.

• Calibration: Both system model variance and noise distribution should be carefully
tuned for adjusting EKF into a specific scenario.

On the other hand, deep reinforcement learning (DRL), the combination of RL and DL, learns
policy in a neural network form. We aim to develop a DRL-based state estimator so the addi-
tional error brought from EKF, i.e., error because of system linearization and noise modeling,

Hao Li Master of Science Thesis

1-3 Research Question 3

can be mitigated by learning. Through data-driven-based training, the generalization of the
RL estimator can also be expanded by exploring a huge amount of different dynamic en-
vironments. So ideally, no EKF calibration is needed when implementing the well-trained
estimator in a changing real world. Plus, the RL model can be trained with random initial
states for every exploration episode, enhancing the estimator’s robustness to enormous initial
drifts.

1-3 Research Question

By specifying drawbacks of EKF and potential advantages we can get from RL in the last
section, here comes our research questions:

• What’s the relationship between deep reinforcement learning and filtering-based state
estimator such as EKF?

• How can reinforcement learning be combined with EKF for better pose estimation
performance?

• How can the proposed reinforcement learning filter idea be applied to specific pose
estimation tasks such as orientation estimation or localization?

1-4 Contribution

To answer the above research questions, we formulate filtering pose estimation problems
as a Markov Decision Process (MDP) to find the relationships between RL and EKF. The
contributions of this thesis can be summarized as follows:

• A novel reinforcement learning compensated EKF estimator structure is presented. The
estimator contains two parts. The first part is a standard EKF estimation. The esti-
mator’s second part keeps the structure as the EKF measurement model but learns the
measurement gain by reinforcement learning algorithms.

• As a continuous work from the previous study, an RL filtering framework for 3DOF
orientation estimation using IMU and magnetometer is successfully trained by well-
known reinforcement learning algorithm PPO2[13]. Experiments are also extended by
more detailed robustness validation w.r.t. different tracking curves, system noises, and
initial states.

• A brand new RL filtering framework for feature-based 2D vehicle localization is built
up and successfully trained and evaluated with both simulated and actual datasets.

• Successful implementations on two practical applications prove the applicability of the
proposed RL estimator idea on position and orientation estimation tasks.

• Proposed idea shows more superiors tracking accuracy on both two frameworks com-
pared with pure EKF results. We also prove that the robustness of the RL filter excels

Master of Science Thesis Hao Li

4 Introduction

the traditional EKF when facing more dynamic environments, such as varying noises
and initial estimates. Even when changing the EKF model covariance (correspond to
no EKF calibration), our RL estimator can still give acceptable results when EKF is
working clumsily.

1-5 Thesis Organization

The outline of this thesis is given as follows: Chapter 2 introduces the preliminaries for
the proposed research, mainly the basis of filtering-based nonlinear state estimation as well
as reinforcement learning. Chapter 3 presents the methodology of the proposed RLC-EKF
orientation estimation framework, followed by results from both simulation and real data
experiments. With a similar paper structure, a feature-based 2D localization RC-EKF is
explained in Chapter 4. At last, as the summary of the whole thesis report, Chapter 5 gives
out the conclusion of the thesis work clarifying both achievements and deficiencies.

Hao Li Master of Science Thesis

Chapter 2

Preliminaries

In this chapter, we go through the background knowledge covered in this thesis. First, the
most popular Bayesian filter for pose estimation, EKF, is reviewed. Then the fundamental
understanding of reinforcement learning is introduced. In the end, a RL nonlinear estimator
is constructed by combining EKF’s state estimation structure and RL’s policy that computes
the end-to-end estimator gain.

2-1 Extended Kalman Filter

Probabilistic robots acquire their states from internal actuator inputs and external sensor mea-
surements. Compared to optimization-based estimation methods, Bayesian filtering-based
methods are more computationally effective. For non-linear system, EKF is the most fre-
quently used algorithm, although it cannot promise optimal estimation like Kalman filter
does for linear system[14].

General EKF solves non-linear state estimation problem in an recursive way. The process
contains two sectors: prediction and measurement update. Consider the non-linear system as
follows:

xk+1 = f (xk, uk) + wk

yk = h (xk) + vk
(2-1)

Where xk ∈ Rn, yk ∈ Rm are the state vector and measurement vector at time k respectively.
wt ∼ N (0, Q) and vt ∼ N (0, R) are white noise (zero mean gaussian distribution) of the
process model and measurement model with correspondent covariance Q and R, respectively.
f(·) is the process model, which transfers prior state xk to new state xk+1 through current
actuator input uk. h(·) is the measurement model, which makes predictions about sensor
measurements based on current state. Such predictions will later on be compared with real
sensor measurements to refine the estimation.

Master of Science Thesis Hao Li

6 Preliminaries

Figure 2-1: Scheme of kalman filtering[1]

In EKF, not only the noise is modeled as Gaussian, robots belief over state is also formulated
in a Gaussian manner.

bel(xk) = det(2πΣ)−
1
2 exp

{
−1

2(x− µ)TΣ−1(x− µ)
}

(2-2)

This multivariate normal distribution can be written as xk ∼ N (µk,Σk), where µk and Σk

are mean and covariance of the state at step k, respectively. Starting with the initial belief
x0 ∼ N (µ0,Σ0), the estimation is amended by time update and measurement update process
recursively.

Time update

First, state is propagated by process model by:

µ̂k+1|k = fk
(
µ̂k|k, uk

)
Σk+1|k = FkΣk|kF

>
k +Qk

(2-3)

Here F is linearized transfer function calculated from original non-linear form by first order
Taylor expansion, we call it matrix of partial derivatives (the Jacobian). Similar we can also
have Jacobian H of the measurement model, they are together given by:

Fk = ∂f

∂µ

∣∣∣∣
µ̂k|k,uk

, Hk = ∂h

∂µ

∣∣∣∣
µ̂k+1|k

(2-4)

Measurement update

The measurement model compares the difference between realistic sensor measurements and
measurements ought to be observed from the state estimation we get from the previous
prediction step. The difference between them is called innovation, which is then contributed
to build kalman gain and eventually correct the estimation. The measurement model is
written in:

µ̂k+1|k+1 = µ̂k+1|k +Kkεt

Σk+1|k+1 = (I −KkHk)Σk+1|k
(2-5)

Hao Li Master of Science Thesis

2-2 Reinforcement Learning Basis 7

With measurement innovation εt, covariance innovation Sk and near-optimal kalman gain Kk

given as:

εk = yk − h(µ̂k+1|k)
Sk = HkΣk+1|kH

>
k +Rk

Kk = Σk+1|kH
>
k S
−1
k

(2-6)

Till now, we have the complete pipeline conducting estimation from state k to k+1. By
doing this iteratively, our Kalman filter can finally start spinning. The Kalman gain K, which
quantities the relative uncertainty between measurements and current state estimate, is the
most critical intermediate value that affects the accuracy of our Kalman filter.

2-2 Reinforcement Learning Basis

As one research branch of three main machine learning paradigms, reinforcement learning has
been widely researched for years. In the beginning, the research focus is on game and control
theories, etc.. While the topic of pose estimation with RL hasn’t been explored much. To
extend the flexibility and generality of RL policy, deep neural network (DNN) is first time
served as a policy approximation in deep Q-learning [15]. This thesis will also formulate our
nonlinear estimator through a deep reinforcement learning (DRL) manner. As a prerequisite,
the most fundamental philosophy of reinforcement learning is introduced in this section, part
of images and formulas are from textbook [16].

2-2-1 The Agent-Environment Interface

Reinforcement learning learns from interactions between agent and environment continually
to achieve a goal. At discrete time step t, the agent at state St takes an action at ∈ At, which
will lead the agent to a new state St+1. Meanwhile, as the feedback of the conducted action,
the environment gives back a reward Rt. And the aim for agent is to maximize the overall
reward through the whole episode time.

Figure 2-2: Agent-environment interaction cycle

In DRL, related components can be summarized as follows:

Master of Science Thesis Hao Li

8 Preliminaries

Agent & environment

An RL agent is the entity that learns by training to decide moves for optimal reward. The
environment is where the agent lives and interacts with. It transfers the agent according to
the action it takes and returns feedback. An agent only manipulates its own move and takes
no adjustment to the environment.

State & observation space

A state contains the complete information of our SoI, which may include both ego agent
information and other objects’ information(e.g., landmarks) in the surroundings. Observation,
in another word, only contains partial state information that RL problem concerns. If the
domain is fully observable, observation equals to state. In DRL, state or observation space
can be various forms, e.g., scalar, vector, matrix, depending on the state variables’ shape.

Action space

Action space restricts the range of available actions for each step. Action can be either discrete
or continuous. In pose estimation problem, it’s usually continuous.

Policy function

Policy decides the most appropriate action for an agent to take based on the current state.
It can be either deterministic or stochastic. Deterministic policy outputs one and only action
while stochastic policy gives out probability distribution of the actions. By performing a
mapping from state to a set of an action probability distribution, we have a policy function
πt(s, a). In DRL, instead of utilizing a fixed look-up policy table such as Q-learning[17], a
neural network is hired as a parameterized approximator for policy. We denote the parameters
of such a policy by θ, and a stochastic policy network can be represented by:

at ∼ πθ (· | st) (2-7)

Value function

We should define the value of the occurred states or actions so that optimal policy can
be learned from experience. The most simplest value function would be action-space pair
rt = R (st, at). However, as the goal of RL is to obtain the maximum accumulative returns,
such value function cannot represent long-term benefits. The most well-used value functions
in DRL are:

V π(s) = E
τ∼π

[R(τ) | s0 = s]

Qπ(s, a) = E
τ∼π

[R(τ) | s0 = s, a0 = a]

R(τ) =
∞∑
t=0

γtrt

(2-8)

Where R(τ) is the discounted cumulative return of the whole remaining episode. V π(s) is the
expected total reward of state s including all actions possibility while Qπ(s, a) is the expected
total reward of exact action q at state s.

Hao Li Master of Science Thesis

2-2 Reinforcement Learning Basis 9

2-2-2 Markov Decision Process

It is ideal to acquire batch information and optimize the policy in a Bayesian smoothing
manner. However, as the agent interacts with the environment simultaneously and each step
has relations with previous moves, such an optimization method is not feasible in RL. Instead,
to learn incrementally, Markov Property is the core assumption trusted by RL through the
whole story.
Markov Property
In a random process where current and all past states are given, the conditional probability
distribution of the next state depends solely on current state. Markov property in mathemat-
ics can be represented as:

P [St+1 | St] = P [St+1 | S1, . . . , St] (2-9)

Markov Decision Process (MDP) is a mathematical framework used for modeling decision-
making problems, which also shares Markov property. An general MDP framework is defined
by a 4-tuple form < S,A,P,R, γ >:

Pass′ = P
[
St+1 = s′ | St = s,At = a

]
Ras = E [Rt+1 | St = s,At = a]

(2-10)

Where S is the set of all valid states, A, is the set of all valid actions. Pass′ is the state
transition probability from s to s′ when taking action a. Ras is the state reward of the action
a and γ ∈ [0, 1) is the discount factor. Here, the next state and reward depend on what action
the agent picks, thus called the decision process.

2-2-3 Policy Gradient

The goal of an RL problem is maximizing the expected return value of the whole trajectory.
Suppose the state transition is stochastic, the expected return of a policy π for a trajectory
T can be calculated as:

P (τ | π) = ρ0 (s0)
T−1∏
t=0

P (st+1 | st, at)π (at | st)

J(π) =
∫
τ
P (τ | π)R(τ) = E

τ∼π
[R(τ)]

(2-11)

Then the optimization task of a RL problems comes to find the optimal policy for satisfying:

π∗ = arg max
π

J(π) (2-12)

By definition, action-value function Q has a direct relation with policy. So some methods
are also searching the optimal Q function instead. Such methods work better in an environ-
ment with finite and discrete states. Because multiple actions on a trajectory are optimized
together, there is always no optimal policy that deterministically selects an action.

a∗(s) = arg max
a

Q∗(s, a) (2-13)

Master of Science Thesis Hao Li

10 Preliminaries

Value-based RL algorithm such as deep Q-learning only applies to discrete action space,
plus it’s not guaranteed to converge with high state uncertainties. In this chapter, we only
introduce policy-based algorithms.

Considering a parameterized policy πθ. Parameter set θ can be optimized recursively by:

θk+1 = θk + α∇θJ (πθ)|θk (2-14)

Where ∇θJ (πθ)|θk is the policy gradient at iteration k which is calculated by log-derivative
trick:

∇θJ (πθ) = E
τ∼πθ

[
T∑
t=0
∇θ log πθ (at | st)R(τ)

]
(2-15)

2-2-4 Proximal Policy Optimization (PPO)

PPO shares a similar structure with A2C[18] while keeping a distinctive policy gradient style
similar to Trust Region Policy Optimization (TRPO)[19] at the same time. In PPO, there
are one critic and two actor networks approximating value function and policy, respectively.
Motivated by policy gradient methods, PPO attempts to find the most valuable improvement
possible during policy updating. Meanwhile, it sets a distance constraint between the new
and old policy, so the update is neither so far nor so close. This distance is represented in
a KL-Divergence form, which measures the difference between two probability distributions.
The calculation of the KL-Divergence can be complex, so simplifications are needed. Different
from TRPO, PPO simplifies KL-Divergence in a first order Taylor expansion instead of two.
PPO also invites several tricks, which makes it a more straightforward and more robust
algorithm.

Still in a gradient ascend manner, PPO updates the policy via:

θk+1 = arg max
θ

E
s,a∼πθk

[
Lclip (s, a, θk, θ)

]
(2-16)

Where Lclip is the objective function give by:

L (s, a, θk, θ) = min
(
πθ(a | s)
πθk(a | s)A

πθk (s, a), g (ε, Aπθk (s, a))
)

(2-17)

g(ε, A) =
{

(1 + ε)A A ≥ 0
(1− ε)A A < 0

(2-18)

Here πθ(a|s)
πθk (a|s)A

πθk (s, a) is the surrogate advantage which measures the relevance of the current
policy πθ towards the old policy πθk , similar in TRPO. Aπθk (s, a) is the estimated advantage
at time t. ε is a small range parameter (usually 0.1-0.2) which controls the boundary of the
constrain.

When estimated, advantage A of the action-state pair is positive, which means the more
probability of the action, the more changes on policy. So there is a threshold of 1 + ε to avoid

Hao Li Master of Science Thesis

2-3 Reinforcement Learning Filter 11

the policy updating so far away from the previous one. Vice versa for negative advantage,
1− ε sets the lower bound for updating the policy.

Except for policy, the value function should also accept optimization. The objective function is
the mean square error between the current state value and rewards-to-go from the exploration
period. The complete process of a PPO algorithm is given as follows:

Algorithm 1 Proximal Policy Optimization (PPO)

Inputs: Initial policy parameters θ0, initial value function parameters φ0
Outputs: Trained policy and value function

1: for k = 0, 1, 2, . . . do
2: Run policy πk = π (θk) several steps according to the update frequency and collect set

of trajectories Dk = {τi}.
3: Compute rewards-to-go R̂t.
4: Compute advantage estimates, Ât based on the current value function Vφk .
5: Update the policy by maximizing the PPO-Clip objective:

θk+1 = arg max
θ

1
|Dk|T

∑
τ∈Dk

T∑
t=0

min
(
πθ (at | st)
πθk (at | st)

Aπθk (st, at) , g (ε, Aπθk (st, at))
)

via stochastic gradient ascent with Adam.
6: Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1
|Dk|T

∑
τ∈Dk

T∑
t=0

(
Vφ (st)− R̂t

)2
,

via gradient descent algorithm.
7: end for

2-3 Reinforcement Learning Filter

The relationship between reinforcement learning and Kalman filter should be identified to
build up a Bayesian filter through DRL. In this section, EKF is firstly represented as a
dynamic MDP process. Then the variables that comprise an RL environment are associated
with components in EKF. In the end, the proposed RL filter is formulated in an EKF structure.
The idea is first presented in [20].

2-3-1 Multiple Layer Perceptron

In DRL, DNNs are employed as the approximators of policy function and value function. In
our PPO algorithm, actors and critics are structured by several fully connected multiple-layer
perceptrons (MLP) followed by a rectified linear unit (RELU) as the activation function.
This is the classical network structure in DRL. Other structures such as LSTM and CNN
are not chosen because our state and action states are continuous, and no image features

Master of Science Thesis Hao Li

12 Preliminaries

are included in our experiment. The most typical MLP includes three layers: input layers,
hidden layers, and output layers. All neural networks are fully connected, as shown in figure
3-2(d). For policy networks, the input and output of the MLP depend on the size of the state
and action vector, respectively. While the hidden layer size should be selected well based on
the complexity of the filtering framework. An MLP containing two hidden layers that can be
represented in mathematics as:

z = MLP2
w(x) = w2 [f (w1 [f (w0 (x+ b0)] + b1]) + b2] (2-19)

where x is the input state, [w0, w1, w2] are weights for each layer, and f is RELU activation
added after each layer.

(a) Typical MLP structure (b) Schematic diagram of RELU function

Figure 2-3: Visual explanation of MLP+RELU structure

RELU is activation function representing in f(x) = x+ = max(0, x), which simply filters out
negative results. Activation functions always appear in pair with the neural network layer as
they give advantages to the backpropagation process.

2-3-2 RL Filter Design

The final EKF update equation in 2-5 can be written into a MDP form:

x̂k+1 = f (x̂k) +Kk (yk+1 − g (f (x̂k))

x̃k+1 ∼ P (x̃k+1 | x̃k, yk+1,Kk) ,∀k ∈ Z+

(2-20)

where next step state only relates to current state x̂k, measurement yk+1 and kalman gain
Kk.

In EKF kalman gain is computed by measurement innovation, which essentially measures the
difference of the real state x and estimated state x̂. In DRL offline training process, assume
the real state x is known for each step, then the mapping from x̂k to Kk can be modeled as
a non-linear function. By treating the non-linear mapping function as the RL policy π and

Hao Li Master of Science Thesis

2-3 Reinforcement Learning Filter 13

kalman gain K as the RL action, the RL state estimator in a MDP tuple < S,A,P,R, γ >
is structured as follows:

• State x̂k ∈ S, estimator gain a (x̂k) ∈ C, system transition probability which relates to
action P (x̃k+1 | x̃k, a (x̂k)) ∈ P

• Reward function R (x̂k,Kt) ∈ R which measures the value of the action-state pair.
In state estimation the mean square error between real and estimated state is usually
utilized.

• Policy πθ(a(·) | x̃) which employs MLPs approximator as the mapping from estimated
state to estimator gain (action).

In conclusion, we create a DNN formed policy to learn the estimator gain within a traditional
filtering framework instead of computing through handcrafted mathematical formulas. The-
oretically, any RL algorithm that is able to optimize a policy can work on training the model
through the proposed estimator framework. Likewise, we can apply the filtering framework
on different existing physical models, to solve different estimation problems.

Master of Science Thesis Hao Li

14 Preliminaries

Hao Li Master of Science Thesis

Chapter 3

RL Estimator for Attitude Estimation

In this chapter, we propose an RL-compensated EKF estimator (RLC-EKF) with the inspira-
tion of the idea introduced in section 2-3-2. The estimator is applied on a 3DOF orientation
estimation framework, which combines sensor measurements from inertial measurement units
(IMU) and magnetometer for accurate orientation. The chapter is structured as follows.
Firstly, a standard EKF orientation estimation algorithm from textbook[21] is merged with
the proposed RL estimator idea to formulate the RLC-EKF framework. Secondly, the frame-
work is trained and tested by synthetic data generated from the mathematical model. The
performance and robustness are evaluated concisely w.r.t several considerations. Finally, the
framework is taught and assessed on a real dataset showing its capacity in practical applica-
tions.

3-1 RLC-EKF for orientation estimation

3-1-1 Measurements From Sensors

Gyroscope measurement model

A tri-axis gyroscope measures angular velocity in x, y, z direction represented in the sensor
body frame. Gyroscope measurements comprise of actual angular velocity ωbnb,t from body
frame b to navigation frame n, time-varying gyroscope bias δω,t and measurement noise eω,t,
assuming that the navigation frame is fixed and the earth rotation is negligible.

yω,t = ωb
nb,t + δb

ω,t + eb
ω,t

δb
ω,t+1 = δb

ω,t + eb
δω ,t

(3-1)

In above equation, gyroscope bias δb
ω,t grows with time. eb

ω,t ∼ N (0,Σω) , eb
δω ,t
∼ N (0,Σδω ,t)

are zero mean gaussian distributions for gyroscope noise and gyroscope bias noise respectively.

Accelerometer & magnetometer measurement model

Master of Science Thesis Hao Li

16 RL Estimator for Attitude Estimation

Accelerometer and magnetometer measure earth’s gravity and magnetic field respectively.
Their measurement models share the same mechanism which transfers the local measurements
from earth frame to sensor frame.

ya,t = −Rbn
t g

n + eb
a,t

ym,t = Rbn
t m

n + eb
m,t

(3-2)

Where gn =
(

0 0 g
)>

,mn =
(

cos δ 0 sin δ
)>

are the local gravity and magnetic
intensity vectors, δ is the geometrical dip angle of the experiment place. By comparing the
magnetic field direction of the earth and measured sensor local frame, the relative sensor
heading angle can be computed. This heading angle can compensate the orientations around
gravity vector that accelerometer cannot provide.

3-1-2 Orientation Estimation using EKF

A typical filtering-based orientation estimation algorithm integrates angular velocity from the
gyroscope as the process model. While accelerometer and magnetometer together formulate
the measurement model. The purpose of sensor fusion is to utilize the gravity and local
magnetic field information measured by accelerometer and magnetometer to correct integrated
orientation from the gyroscope, which will improve estimation accuracy. Orientation in this
chapter is presented in unit quaternion states. More computation rules about quaternion
states can be found in Appendix C.

Process model

Quaternion update can be expressed by:

q̂nb
t|t−1 = q̂nb

t−1|t−1 � expq

(
T

2 yω,t−1

)
Pt|t−1 = Ft−1Pt−1|t−1F

>
t−1 +Gt−1QG

>
t−1

(3-3)

where q̂nb is the relative orientation between sensor frame and earth frame represented in
quaternion state, P is the covariance matrix that quantities state uncertainty. Q = Σω as the
gyroscope measurement noise. yω is the raw measurement from gyroscope. T is the sampling
time. � and expq(·) correspond to quaternion’s multiplication and quaternion’s exponential
function, respectively. F and G are the differentials of quaternion’s transfer function regarding
quaternion and noise, respectively, and given by:

Ft−1 =
(

expq

(
T

2 yω,t−1

))R
, Gt−1 = −T2

(
q̂nb
t−1|t−1

)L ∂ expq (eω,t−1)
∂eω,t−1

(3-4)

where (·)L and (·)R are the left- and right- quaternion-product matrices respectively.

Measurement model

The measurement model is defined as:

q̃nb
t|t = q̂nb

t|t−1 +Ktεt (3-5)

Hao Li Master of Science Thesis

3-1 RLC-EKF for orientation estimation 17

P̃t|t = Pt|t−1 −KtStK
>
t (3-6)

where εt = yt − ŷt|t−1. yt and ŷt is actual and measured value of the accelerometer and
magnetometer.

yt =
(

ya,t
ym,t

)
, ŷt|t−1 =

(
−R̂bn

t|t−1g
n

R̂bn
t|t−1m

n

)
(3-7)

St and Kt are iteratively updated from last step covariance matrix:

St = HtPt|t−1H
>
t +R, Kt = Pt|t−1H

>
t S
−1
t (3-8)

where R is the covariance matrix for accelerometer and magnetometer noise. Ht is the dif-
ferential of both acceleration and gravity measurement function regarding quaternion given
by:

Ht =


−

∂Rbn
t|t−1

∂qnb
t|t−1

∣∣∣∣
qnb
t|t−1=q̂nb

t|t−1

gn

∂Rbn
t|t−1

∂qnb
t|t−1

∣∣∣∣
qnb
t|t−1=q̂nb

t|t−1

mn

 , R =
(

Σa 0
0 Σm

)
(3-9)

Following above process, both quaternion’s mean value and covariance are propagated and
refined. But it’s no longer in unit form. So the last step is for quaternion re-normalization.

q̂nb
t|t =

q̃nb
t|t∥∥∥q̃nb
t|t

∥∥∥
2

, Pt|t = JtP̃t|tJ
T
t (3-10)

with,

Jt = 1∥∥∥q̃nb
t|t

∥∥∥3

2

q̃nb
t|t

(
q̃nb
t|t

)>
(3-11)

3-1-3 Merge with RL Estimator

Above EKF orientation estimation framework works well if the senor model noise and mea-
surement noise are well-calibrated. However, since the non-linear function is linearized in
EKF, the linearization error is inevitable. Thus the accuracy of EKF still has space to im-
prove. Also, EKF models noise solely in Gaussian distribution, limiting its performance when
noise is not regular in practice. To mitigate the above EKF’s deficiencies, an RL approach
to compensate EKF is proposed in this section, specifically for our orientation estimation
framework. The structure of the RL estimator is already introduced in 2-3.

The high-level purpose is to let the RL estimator learn from the residual error between EKF
estimation and nominal ground truth orientation during the training process. This error can
then be compensated by a second-time measurement update, where the estimator gain matrix
is obtained from the RL policy. The output of the RL strategy mainly depends on the current
RL state, i.e., the residual orientation.

Master of Science Thesis Hao Li

18 RL Estimator for Attitude Estimation

Figure 3-1: RLC-EKF structure for 3DOF orientation estimation

Due to the exact norm quantity limitation, it’s not ideal to use quaternion representation
as our RL state. Instead, we use the form of orientation deviation as the state vector of
the RL estimator, denoted by η̂nb

t . The learned compensation orientation will also be in a
deviation form during the calculation. We can treat this as the relative rotation between two
quaternions represented in matrix Lie group SO(3). Since in SO(3), it’s also convenient to
transfer the compensated orientation back to quaternion states by the exponential map so it
can be multiplied with quaternions from EKF estimation.

qη̂nb = exp
(
η̂nb

2

)
(3-12)

Let’s start again from the end of the last EKF update. To be more clear, we denote the
result of the standard EKF estimation at time t by q̂EKF

t|t = q̂nb
t|t , and quaternion related to

RL update by q̂RL
t|t . For simplification, the subscripts indicating the conversion relationship of

the coordinate system are also omitted, all of them are the orientation between body frame
b and navigation frame n. Then the second measurement update be derived as:

q̂RL
t|t = exp

(
η̂RL
t

2

)
⊗ q̂EKF

t|t

η̂RL
t = KRL

t εRL
t

(3-13)

where the estimated measurement also updates through the newest EKF estimation.

εRL
t = yt − ŷRLt|t

yt =
(

ya,t
ym,t

)
, ŷRLt|t = h

(
q̂EKF
t|t

)
=
(
−R̂EKF

t|t gn

R̂EKF
t|t mn

)
(3-14)

Hao Li Master of Science Thesis

3-1 RLC-EKF for orientation estimation 19

Here, the estimator gainKRL
t ∈ A in equation (3-13) is action generated by trained RL policy,

which is the component of the following MDP:

η̂RL
t ∼ P

(
η̂RL
t | η̂RL

t−1,K
RL
t

)
, ∀t ∈ Z+ (3-15)

P
(
η̂RL
t | η̂RL

t−1,K
RL
t

)
∈ P is the state transition probability. To equip our environment with

the ability to interact with agents, i.e., evaluates the value of the action-state pair, the ground
truth of the trajectory is needed during the training process as the environment’s inherent
information. The reward function is defined as orientation deviation between the updated RL
estimation and ground truth η̂RL→GT

t . Because the larger the distance between RL estimation
and ground truth, the less the goodness of the action. The distance cost is set to a negative
number in the reward function, and the maximum reward will be infinitely close to 0.

R
(
η̂RL
t−1,K

RL
t

)
= −EP(·|η̂RL

t−1,K
RL
t)

[∥∥∥η̂RL→GT
t

∥∥∥2
]

η̂RL→GT
t = 2 log

(((
q̂RL
t|t

)?)R
⊗ qGT

t|t

) (3-16)

where (·)? and (·)R are conjunction and right- multiple operations for quaternion respectively.

As a summary, the complete RL estimator algorithm flow is as follows.

Algorithm 2 RL Compensated EKF (RLC-EKF) Algorithm for Orientation Estimation

INPUTS: IMU measurements {yω,t, ya,t}Nt=1, magnetometer measurement {ym,t}Nt=1,
ground truth quaternion trajectory {qGT

t }Nt=1 and the initial quaternion state qnb
0|0

OUTPUTS: Improved orientation estimation q̂RL
t|t .

1: for t=1,2,3...N do
(Prediction Update)

2: Propagate current quaternion according to equation (3-3) with measured angular ve-
locity.

(EKF Correction)
3: Reduce the uncertainly after motion update by applying the measurement update

according to equation (3-5). Measurements from accelerometer and magnetometer ya,t
and ym,t are needed.

(Quaternion Re-normalisation)
4: Normalise the quaternion and its covariance as in equation (3-11).

(RL Correction - estimate the residual in estimation)
5: Compute the residual η̂RL

t and gain KRL
t from equation (3-12) to (3-15), where the

mapping from input η̂RL
t and output KRL

t is decided by well-trained RL policy model.
(RL quaternion re-normalisation)

6: Same as the post processing after EKF, re-normalize the RL result for the next itera-
tion.

7: end for

Master of Science Thesis Hao Li

20 RL Estimator for Attitude Estimation

3-2 Simulation

In this section, we train and evaluate our RLC-EKF framework by simulated data. First,
simulated data is generated from mathematical models. Then RLC-EKF estimator is trained
with selected hyperparameter settings. Finally, we inference the trained models with different
orientation estimation environments. Both performance and robustness of the proposed idea
are concisely compared with EKF.

3-2-1 Synthetic Data Generation

We should first prepare the synthetic data for training and evaluating our RLC-EKF estima-
tor. Ground truth orientation is updated by recursively multiplying nominal angular velocity
with respect to the true initial state.

(a) Simulated angular velocity(nominal and measure-
ment

(b) Simulated accelerometer measurement

(c) Simulated magnetometer measurement (d) Ground truth orientation in quaternion

Figure 3-2: An example showing the composition of simulated data. With σω = 1 · 10−2, σa =
5 · 10−3, σm = 5 · 10−3. for gyroscope noise eω,t ∼ N

(
0, σ2

ωI3
)
, accelerometer noise ea,t ∼

N
(
0, σ2

aI3
)
, and magnetometer noise em,t ∼ N

(
0, σ2

mI3
)
respectively. The initial state of the

quaternion trajectory is randomly selected.

IMU and magnetometer measurements are generated from sensor measurement model which
is clarified in section 3-1-1. In an ideal environment, we assume accelerometer is rotated

Hao Li Master of Science Thesis

3-2 Simulation 21

around the origin of the accelerometer triad so that accelerometer only measures gravity and
magnetometer only measures magnetic field. In actual experiments, gyroscope bias can be
eliminated by statistical computation. In order to make the simulation experiment as close
to reality as possible, we set the bias and bias noise of the gyroscope to 0 in the simula-
tion experiment. For the true value of gravitational acceleration and magnetic field strength,
we decide gn =

(
0 0 g

)>
and mn =

(
0.39 0 −0.92

)>
based on the 67◦ dip an-

gle of the Netherlands. By setting the covariance quantities of different gyroscope noiseeb
ω,t,

accelerometer noiseeb
a,t and magnetometer noiseeb

m,t combination, we can get different condi-
tioned orientation estimation simulation environment.

3-2-2 Experiment Setup

Objectives

Because the simulation environment is more ideal than the reality, we have more requirements
for the estimator’s performance at this stage. At the same time, we also wish to explore the
potential of the estimator as much as possible. We analyze the proposed framework from five
perspectives and compare the results with the EKF method to see the advantages.

• Normal estimation condition: Whether RLC-EKF outperforms EKF with a rela-
tively normal orientation estimation condition, i.e., medium sensor noise, model uncer-
tainty, and reasonable initial estimate.

• Unreliable initial estimation: Initial estimate that is far away from truth is provided
to test whether RLC-EKF is still robust when EKF may converge slower or even fail,

• Tremendous noise disturbance: Sensor noise intensity affects both measurements
reliability and system model uncertainty, which will affect EKF’s accuracy.

• Generality: You may question the versatility of the proposed method. For example,
whether the method can be successfully trained for different angular velocity profiles
or whether the policy model trained with an exact single profile still works fine when
deployed on other profiles.

RL training process

The training process of the RL agent is conducted by the renowned open-source reinforce-
ment learning platform, stable-baseline[22]. First, our RLC-EKF is wrapped as an Gym[23]
standard environment, comprises of MDP components, i.e., state vector, action matrix, MLP
policy, and value function. The python class of the wrapped environment has a fixed format
requirement. Before the trajectory starts, the system will be reset to the initial state. Then
the agent will execute the step function iteratively. By interacting with the environment, the
agent shifts its state and obtains a series of feedback. According to the training settings, after
a fixed number of steps being executed, the RL agent will calculate the batched reward and
update the policy and value function accordingly. When the entire trajectory is completed or
current estimation is significantly deviated from the truth, the agent stops and resets, which
is called an episode. The training process stops once the total training step is traversed.

Master of Science Thesis Hao Li

22 RL Estimator for Attitude Estimation

All RL models in this thesis is trained by PPO2 algorithm implemented in stable baselines,
which enables multi vectorized environments during training comparing to PPO1. Due to the
stochastic of the neural network, the training of the RL model is not guaranteed to success
every time, so the training parameters also need to be adjusted in detail. The training
hyperparameters used in this experiment are shown in the following table:

Table 3-1: Hyperparameters of PPO2 training process (orientation estimation)

Hyperparameters Value
Episodes 500
Time horizon 1000
Optimization batch size 128
Learning rate 2.5e−4

Value function coefficient 3e−4

Discount γ 0.99
Clip range ε 0.2
MLP dimension of πφ (64, 64)
MLP dimension of Vθ (64, 64)
State space range [−10, 10]
Action space range [−0.02, 0.02]

The shape of the state vector and action vector is (3,) and (18,) respectively, corresponding
to the shape of our error state η̂RL

t and estimator gain KRL
t . The action vector is reshaped to

(3X6) for matrix multiplication. During our experiments, the range of the RL action space
has an essential impact on the success rate of model training and model performance. That
makes sense since our action space is continuous. When the range is too large, it is difficult
for the agent to narrow down to the correct action quickly. While a too-small range will
weaken RL’s compensation for residual errors, thereby reducing performance. We calculate
the success rate of training by the scale of available models among 20 trained models.

Table 3-2: Selection of action space

Action range [−0.01, 0.01] [−0.02, 0.02] [−0.03, 0.03] [−0.05, 0.05] [−0.1, 0.1]

Training success rate 0.75 0.8 0.6 0.25 0.05

In the following sections, we train each scenario with ten policies and select the RL policy
with the lowest validation error. This best-performed model is then deployed for inferencing
unknown environments. Based on different experimental purposes, more specific experimental
settings will be introduced in correspondent subsections.

3-2-3 Normal Estimation Condition

For this scenario the model is trained with medium noise level where σω = 1 · 10−2, σa =
1 · 10−3, σm = 1 · 10−3 for gyroscope noise eω,t ∼ N

(
0, σ2

ωI3
)
, accelerometer noise ea,t ∼

N
(
0, σ2

aI3
)
, and magnetometer noise em,t ∼ N

(
0, σ2

mI3
)
respectively. The sampling rate is

100HZ and the whole trajectory lasts for 10 seconds. In the training process, at the beginning

Hao Li Master of Science Thesis

3-2 Simulation 23

of each trajectory, true quaternion state qnb
0 is randomly sampled from uniform distribution

U([−1,−1,−1,−1], [1, 1, 1, 1]), and initial estimation q̂nb
0 is added with an extra uniform distri-

bution U([−0.5,−0.5,−0.5,−0.5], [0.5, 0.5, 0.5, 0.5]) on the basis of qnb
0 . By traversing different

quaternion states, RL learns how to eliminate errors through secondary updates when EKF
converges. We use a non-trivial one direction rotation profile which is shown as follows:

Figure 3-3: Angular velocity profile used for training

The quantitative performance of the trained model is shown as follows. The results are
based on 100 Monte Carlo simulation experiments. Each trial starts with a random initial
estimation. The results are expressed in RMSE(root-mean-square error) of independent Euler
angles and quaternion error we defined in equation (3-16).

Figure 3-4: RMSE of the orientation estimation in normal condition

To visualize the orientation tracking process and RL reward (equivalent to estimation cost),
we choose a set of fixed initial true estimate, evaluate the trajectory ten times to eliminate
randomness. From the results, we can say RLC-EKF successfully compensates for the residual
error in EKF estimation, especially at the beginning estimation stage. Thus leads to faster
convergence and higher overall accuracy.

Master of Science Thesis Hao Li

24 RL Estimator for Attitude Estimation

(a) Orientation tracking (b) Quaternion error

Figure 3-5: Comparison of RLC-EKF and EKF tracking accuracy. 4 elements in unit quaternion of
reference truth(solid line), EKF estimation(dotted line) and RLC-EKF(dashed line) are displayed.
The trajectories are the mean path value among 10 trials, with shaded area representing standard
deviation. The cost is in negative order.

3-2-4 Unreliable Initial Estimation

In this scenario, we use the trained model from the last section but evaluate it on other
randomly sampled initial estimates. By traversing different initial states, RL policy learns
how to quickly keep up with the trajectory in the initial stage. To evaluate whether the trained
model is robust with unreliable initialization, the deviation between the initial estimate and
true state grows exponentially according to the ratio of 1:2:4:8. The smallest deviation is [0.2,
-0.2, 0.2, -0.2], before unit normalization. The largest deviation range is not even included in
the training process, which will testify the availability of the RL agent under the unexplored
environment.

(a) Deviation 0.2 (b) Deviation 0.4 (c) Deviation 0.8 (d) Deviation 1.6

(e) Deviation 0.2 - mean (f) Deviation 0.4- mean (g) Deviation 0.8- mean (h) Deviation 1.6- mean

Figure 3-6: Orientation with growing initial estimate deviation. Line type description is the same
manner as section 3-2-3.

Hao Li Master of Science Thesis

3-2 Simulation 25

From results we can tell that when initial state deviation increases, The uncertainty of the
RLC-EKF estimation also increases, in rare cases it performs worse than EKF. But the
overall mean accuracy of RLC-EKF still outperforms EKF, proving its capability of handling
unreliable initial estimation.

Table 3-3: Quaternion RMSE of RLC-EKF w.r.t initial deviation

Deviation 0.2 0.4 0.8 1.6

RLC-EKF 5.867 21.34 73.23 179.94
EKF 16.45 51.48 132.71 221.19
Advantage ratio 2.80 2.41 1.81 1.22

3-2-5 Tremendous Noise Disturbance

In this scenario, the trained model stays the same and is deployed in four different measure-
ment noise environments. Measurement noise also comprises model uncertainty, which will de-
fect the performance of EKF significantly. We keep the accelerometer and magnetometer noise
consistent and gradually increase their magnitude in the order of [5e− 4,1e− 3,5e− 3,1e− 2].

(a) Low noise 5e− 4 (b) High noise 5e− 3 (c) Extreme noise 1e− 2

(d) Low noise 5e− 4 - mean (e) High noise 5e− 3 - mean (f) Extreme noise 1e− 2- mean

Figure 3-7: Orientation tracking under chaotic noise environment. The result for medium noise
1e− 3 is already given in figure 3-6. Line type description is the same manner as section 3-2-3.

From results, we can observe the performance of EKF is severely damaged by enormous mea-
surement noise. EKF doesn’t even converge in high and extreme noise conditions. Meanwhile,
even under the chaotic environment, RLC-EKF still gives an acceptable performance. RL ob-
tains more benefits in large noise conditions as there is more residual error from EKF to be
compensated.

Master of Science Thesis Hao Li

26 RL Estimator for Attitude Estimation

Table 3-4: Advantage of RLC-EKF w.r.t different measurement nose level

Noise level Low(5e− 04) Medium(1e− 03) High(5e− 03) Extreme(1e− 02)

RLC-EKF 7.08 8.89 19.35 17.728
EKF 15.1 32.32 213.23 327.51
Advantage ratio 2.13 3.63 11.01 18.47

3-2-6 Generality

In this scenario, we discuss the applicability of the proposed method in different tracking
environments, i.e., angular velocity profiles. Since we use a trained model from the same
angular velocity profile in the previous scenarios, the RL agent may only perform well in
specific paths but fails when profiles change. This situation shouldn’t happen theoretically
because we design our RL update according to the error Euler angle state. RL is only
sensitive to residual errors, so there should be no obvious difference between different profiles.
To validate this, the well-trained model from profile1 in Figure 3-4 is executed on five other
angular velocity profiles shown below.

(a) Profile1 (b) Profile2 (c) Profile3

(d) Profile4 (e) Profile5 (f) Profile6

Figure 3-8: Different angular velocity profiles used in this scenario.

Notice that the last profile lasts for 70s instead of 10s to evaluate the performance under long
tracking period. We choose medium level noise 1e − 3, initial deviation [0.5, -0.5, 0.5, -0.5]
for every trajectory, the results are shown as follows.

Hao Li Master of Science Thesis

3-2 Simulation 27

(a) Tracking in profile1 (b) Tracking in profile2 (c) Tracking in profile3

(d) Tracking in profile4 (e) Tracking in profile5 (f) Tracking in profile6

Figure 3-9: Same profile trained from profile1 evaluating on other profiles.

Table 3-5: RLC-EKF evaluating on different profiles

Angular velocity Profile1 Profile2 Profile3 Profile4 Profile5 Profile6

RLC-EKF 22.365 22.446 20.575 24.85 22.114 22.109
EKF 66.657 68.289 64.72 71.742 67.159 68.532

Cross Validation
Above result shows the generality of the model trained from exact one profile on other profiles.
In order to eliminate the coincidence that the RL model is only trainable on the selected
profile1, profile 2-5 listed in Figure 3-8 are also trained and cross-validated with each other.
The quantitative results is shown in a matrix visualization graph below:

(a) RLC-EKF (b) EKF

Figure 3-10: Result visualization for profiles benchmark

Master of Science Thesis Hao Li

28 RL Estimator for Attitude Estimation

By comparing the diagonal and off-diagonal data, we can observe that the performance of
the model on the training profile is not necessarily the best. The error of the same model on
different profiles is also within a reasonable range. Based on this, we can finally conclude the
proposed algorithm has excellent generality for orientation estimation tasks.

3-3 Real Dataset

After concisely evaluating the RLC-EKF in experimental conditions, it’s time to test the
validity in practice. A dataset containing ground truth orientation, raw IMU, and magne-
tometer measurements is used for training and evaluating the RL agent. The ground truth
orientation is provided through optical markers which are tracked by multiple cameras. While
measurement data is collected from the Trivisio Colibri Wireless IMU with a logging rate of
100Hz. The dataset is already well synchronized and ready for experiments when we got it.
We thank Manon Kok, who collects and provides the data.

We train the model through the first half of the dataset. And evaluate on the rest of the
dataset. The results show that RLC-EKF still performs well in the real environment.

(a) Hardware experiment setting (b) Sensor measurements

Figure 3-11: Real dataset collection process.

We evaluate the best trained model on whole dataset (last 100s) and last half dataset (last
50s), respectively, The result is shown below. Note that because the measurement data is
fixed noise so the EKF estimation is deterministic in Monte Carlo Simulation. That’s why
there is no standard deviation filling for EKF curves in qualitative results.

Hao Li Master of Science Thesis

3-3 Real Dataset 29

(a) Whole dataset(0-100s)

(b) 50-100s

Figure 3-12: Real data quaternion tracking result.

Table 3-6: RLC-EKF on real dataset

RMSE
(Total)

Yaw[◦] Pitch [◦] Roll[◦] Quaternion Yaw[◦] Pitch [◦] Roll[◦] Quaternion

Whole dataset 50s-100s

RL 3.425 1.334 6.267 49.738 3.696 1.101 2.583 28.666
EKF 3.992 1.54 4.534 125.343 9.237 1.487 13.342 163.907

Master of Science Thesis Hao Li

30 RL Estimator for Attitude Estimation

Hao Li Master of Science Thesis

Chapter 4

RL Estimator for Localization

In this chapter, instead of estimating orientation solely, we will implement the proposed
RLC-EKF idea on a 2D ground robot localization scenario. We focus our scenario on a
feature-based localization task within the static known map. The chapter organization is
similar to chapter 3. First, the integrated RL framework based on a classical EKF algorithm
is introduced. Then the framework is trained and evaluated on both simulated and real data.
The results are compared with that of EKF solely in terms of both accuracy and robust-
ness. The standard feature-based localization EKF algorithm is derived from the textbook
Probabilistic Robotics[24], Chapter 7.

4-1 RLC-EKF for Localization

Localization is the most basic perceptual manipulation for an intelligent ground robot. The
most fundamental SOI of a plane localization task is xt =

(
x y θ

)T
. If we assume the

uniform in z-direction, the absolute x, y position plus the heading angle(yaw) are sufficient to
locate the robot within a known scale space, namely map. Sometimes velocity and accelera-
tion are also included in the state vector depending on the task requirements. A map can be
either static or dynamic. In a dynamic map, surrounding objects such as pedestrians or cars
are moving all the time. To utilize them for localizing will also require our robot to add the
coordinates of these objects to SOI for tracking them continuously, which seriously degrades
the accuracy and efficiency of the algorithm. The input of EKF’s measurement update can
be either raw sensor measurement or pre-processed features. Features are usually the specific
geometric pattern of the object, such as lines, corners, centroids. Feature measurements take
advantage of less computation while keeping the most valuable information about surround-
ings. Overall, as this is the first time we implement our RLC-EKF filter on a localization task,
we limit our scene to be static map and feature measurements. The success of this experiment
will provide guidance for subsequent more complex scenarios.

Master of Science Thesis Hao Li

32 RL Estimator for Localization

4-1-1 Feature-based EKF Localization

In this section, we introduce a standard feature-based EKF localization algorithm. The
premise of the algorithm is a static map with known correspondence, i.e., all surrounding
landmarks’ true coordinates are known in advance. Meanwhile, each measurement contains a
signature for the correspondence to the landmark it belongs to. With the known correspon-
dence assumption, there is no need to match the measurements with the landmarks, namely
data association, which will bring enormous error and computation effort. This assumption
makes sense in the real application if there is landmark identity detection when acquiring
the measurements. Within the known map, the robot first propagates its state through a
self-motion model. Then based on the innovations between the observed and actual measure-
ments of several landmarks, EKF corrects the robot’s belief of its state and gradually narrows
down to the actual true state. Note that such a general framework applies to various sensors,
e.g., cameras, laser range finders, ultra-wideband (UWB), as long as they can provide feature
measurements with range and bearing information.

We start with the standard EKF belief x0 ∼ N (µ0,Σ0), where µ0 =
(

x0 y0 θ0
)T

and
Σ0 = I3x3 are the mean and covariance of the state’s multivariate Gaussian distribution
respectively.

Motion update

The odometry motion model g(·) of the robot is given as follows:

µt = g (ut, xt−1) = µt−1 +


vt∆t cos

(
θ + ωt∆t

2

)
vt∆t sin

(
θ + ωl∆t

2

)
ωt∆t


Σt = GtΣt−1G

T
t +Rt

(4-1)

Where ut =
[
vt ωt

]T
is the actual odometry input includes transnational velocity vt and

rotational angular velocity ωt. Note that this actual input already contains Gaussian noise
eu,t ∼ N (0, Rt), compared to nominal odometry input. Rt is the covariance matrix of the
input noise. As long as the time interval ∆t is small enough, the difference between the
distance of the sequential frame can be approximated by trigonometric projection, which is
illustrated in figure 4-1(a).

Here, Gt is the linearized function of g(·), which is given by:

Gt = ∂g (ut, µt−1)
∂xt−1

=


1 0 −vt∆t sin

(
θ + ωt∆t

2

)
0 1 vt∆t cos

(
θ + ωt∆t

2

)
0 0 1

 (4-2)

Hao Li Master of Science Thesis

4-1 RLC-EKF for Localization 33

(a) Motion model (b) Range-bearing sensor model

Figure 4-1: Illustration of dynamic and measurement models for ground localization task

Measurement update

The state uncertainty Σt always expands after odometry motion update, that’s why we utilize
feature measurements to reduce the uncertainty. In this framework we regard the sensor mea-
surements are in a range-bearing form, which is illustrated in figure 4-1(b). A measurement
attached to the specific landmark j at time t can be expressed by zj,t =

(
rj,t φj,t cj

)T
.

The range r (straightforward distance between robot and landmark) is calculated in Carte-
sian coordinate system. While the bearing φ (relative rotation) is calculated by arctangent
function. cj is the correspondence matching this measurement to the landmark j. The mea-
surement function f(·) is then given by:

ẑit = h (xt,m) =


√
q

atan 2 (mj,y − µ̄t,y,mj,x − µ̄t,x)− µ̄t,θ
mj,s


q = (mj,x − µ̄t,x)2 + (mj,y − µ̄t,y)2

(4-3)

Where mj,x,mj,y, and mj,s are the ground truth x position, y position, and identity of the
landmark j, respectively. Through the measurement model, we can convert current estimation
µ̄t into the should-have-seen range-bearing measurement form. This measurement can then
be compared with the actual observed measurement. The EKF update process for a single
measurement is given as:

µt = µ̄t +Kj
t

(
zjt − ẑ

j
t

)
Σt =

(
I −Kj

tH
j
t

)
Σ̄t

Sjt = Hj
t Σ̄t

[
Hj
t

]T
+Qt

Kj
t = Σ̄t

[
Hj
t

]T [
Sjt

]−1

(4-4)

Where zjt is the real sensor measurement at time t. Qt is the noise covariance matrix of the
sensor. Hj

t is the differential of the non-linear function h(·) given in:

Master of Science Thesis Hao Li

34 RL Estimator for Localization

H i
t = ∂h (µ̄t,m)

∂xt
= 1
q


√
qδx −√qδy 0
δy δx −1
0 0 0


δ =

(
δx
δy

)
=
(
mj,x − µ̄t,x
mj,y − µ̄t,y

) (4-5)

4-1-2 RLC-EKF Framework

In most cases, there is not only one measurement value but several values for multiple land-
marks. We can either update them one by one recursively or stack them together and update
them at once. Considering the RL agent only interacts with the environment once at each
timestamp, we stack up all available measurements together and update them as a whole.
However, the number of measurements is dynamic at each timestamp, different from the
promising single measurement we deal with in the orientation estimation experiment. Sup-
pose we want the RL agent to learn the Kalman gain matrix as the action. In that case,
the size of the action space should be fixed during the whole training and evaluation process,
which restricts us to only update the estimation with a fixed number of measurements at each
step.

Figure 4-2: RLC-EKF structure for Localization

To solve the issue, We have developed a strategy for judging whether the RL agent is activated
for compensating. When the number of current timestamp measurements is greater than
or equal to three, the RL agent selects the most suitable three measurement values for
the compensation update of EKF. When the measured value is less than three, RL stops
updating, and the estimation of EKF serves as the beginning state of the next cycle. The

Hao Li Master of Science Thesis

4-1 RLC-EKF for Localization 35

selection of the number three is inspired by [25], where the trade-off between the computation
cost and performance of the EKF is discussed in terms of the measurement instance numbers.
When measurement numbers exceed three, the selection criteria are conducted. This criterion
is inspired by part of the K-nearest neighbor (KNN) [26] algorithm. Instead of selecting
the closest measurements, we select the three furthest measurements away from the current
estimated state and utilize them for updating. The stacked update function is summarized
as follows, especially for the 3-measurements batch. Superscripts indicate the shape of the
matrix. Since the differential of the sensor model in terms of angle θ is always zero, the k
matrix of each measurement is 6X2, independent of each other.

µ3X1
t = µ̄3X1

t +K3X6
t

(
z6X1
t − ẑ6X1

t

)
Σ̄3X3
t =

(
I3X3 −K3X6

t H6X3
t

)
Σ̄t

S6x6
t = H6X3

t Σ̄3X3
t

[
H6X3
t

]T
+Q6X6

t

K3X6
t = Σ̄3X3

t

[
H6X3
t

]T [
S6X6
t

]−1

(4-6)

Now get back to the RL agent design. Similar to section 3-1-3, to be more clear, the result of
from the lastest EKF estimation and RL-compensated estimation are denoted as µ̄EKF

t and
µ̄RL
t respectively. And RL update is expressed by:

µRL
t = µ̄EKF

t + εRL
t

εRL
t = KRL

t (zt − ẑRL
t)

ẑRL
t = h

(
µ̄RL
t

) (4-7)

A markov decision process can also be formulated:

εRL
t ∼ P

(
εRL
t | εRL

t−1,K
RL
t

)
,∀t ∈ Z+ (4-8)

Here KRL
t ∈ A is a 3X6 action matrix served as the estimator gain. Also the reward function

is defined as:

R
(
εRL
t−1,K

RL
t

)
= −EP(·|εRL

t−1,K
RL
t)

[∥∥∥εRL→GT
t

∥∥∥2
]

εRL→GT
t =

√(
xGT
t − µ̄RL

t,x

)2
+
(
yGT
t − µ̄RL

t,y

)2
(4-9)

Note that the difference in angle is not included in reward function since due to the map
scale the magnitude orders of angle and translation can be huge different. At this point, we
have established a complete RLC-EKF localization framework, the whole algorithm can be
summarized as follows:

Master of Science Thesis Hao Li

36 RL Estimator for Localization

Algorithm 3 RL-Compensated EKF (RLC-EKF) Algorithm for Planar Localization

INPUTS: Odometry input {ut}Nt=1, Range-bearing measurement zt =
[
z1
t z2

t . . . zkt

]
where k is the number of measurements at time t, Ground truth path {xGT

t , yGT
t }Nt=1,

Known map m =
[
m1 m2 . . . mn

]
where n is the number of landmarks, Initial

estimate x0 ∼ N (µ0,Σ0)
OUTPUTS: Compensated pose estimation µRL

t .

1: for t=1,2,3...N do
(Motion update)

2: Propagate µEKF
t−1 and Σt−1 through motion dynamics as in (4-1).

3: if Number of measurements > 3, then
(Selection Criteria)

4: for all observed features zit =
[
rit φit sit

]T
do

5: Store d =
√(

zjt,x − µ̄t,x
)2

+
(
zjt,y − µ̄t,y

)2

into a list and sort it with the high to low order.
6: end for

(EKF Correction)
7: Pick out the furthest three measurements.
8: Update µ̄t and σ̄t by (4-4).

(RL compensation)
9: Based on last step error state εRL

t−1, generate the estimator gain matrixKRL
t through

the trained policy.
10: Calculate current error state εRL

t and compensate the residual to the EKF estima-
tion µRL

t = µ̄EKF
t + εRL

t .
11: else

(Skip update)
Directly utilize the estimation from the motion update for the next iteration.
µRL
t = µ̄EKF

t

12: end if
13: end for

4-2 Simulation

In this section, we validate the proposed algorithm in a simulated environment. Synthetic
data is generated with Gaussian noise distribution. The policy model is then trained and
evaluated based on different test criteria.

4-2-1 Synthetic Data Generation

Experiment field
First, we plan a 25m by 25m square plain area as our test site. In the field, the robot starts
from the initial state µ0 =

(
0 0 0

)T
and execute a circular motion with a radius of 10m.

Hao Li Master of Science Thesis

4-2 Simulation 37

There are a total of 20 landmarks around the circumference, with fixed, known positions.
In orientation estimation experiment, we train the RL policy model with several different
angular velocity profiles. We have made improvements on this basis. In order to drive the
robot with different random trajectories for each training episode, we generate the landmark
set alongside the robot trajectory randomly per episode. This "semi-dynamic" map setting
corresponds to the scenario where the robot drives through different trajectories in a fixed
map. The coordinate range of the randomly generated landmark is limited to a circle with an
offset of [-2.5m, 2.5m] from the circular trajectory of the robot. In this experiment, we also
assume the ideal situation that at each step, the robot has at least three sensor measurements
by setting the sensor observation range as 10m, which guarantees the activation of the RL
update process.

Figure 4-3: Visualization of simulation environment

Odometry input

Odometry data includes forward velocity and angular velocity of the robot at the time, given
by:

ut = ūt + eu,t =
(
v̄t + v, t
ω̄t+ω,t

)
(4-10)

where v̄t = 1m/s, ω̄t = 0.1rad/s are the nominal values for ground truth circular path.

eu,t ∼ N (0, Rm), Rm =
[

1 0
0 0.1745

]
adds the Gaussian noise with the range of 1m/s and

10◦ on v̄t and ω̄t respectively.

Sensor measurement

Sensor measurement includes relative range and bearing between the sensor and landmark.
At each step, simulated observations of each landmark is generated based on measurement

Master of Science Thesis Hao Li

38 RL Estimator for Localization

model (4-3), given by:

zit =

 √(
mj,x − xGTt

)2 +
(
mj,y − yGTt

)2
atan 2

(
mj,y − yGTt ,mj,x − xGTt

)
− µ̄t,θ

+ ez,t (4-11)

where ez,t ∼ N (0, Qm), Qm =
[

0.2 0
0 0.01745

]
adds the Gaussian noise of 1m/s and 1◦ on

range and bearing measurement respectively. Note that this measurement is already matched
with a landmark so no data association process is needed.

4-2-2 Experiment Setup

RL training process
We continue to use PPO2 algorithm from open source reinforcement learning platform stable-
baseline to train and evaluate our RL model. The sample rate of the synthetic data is set as
10 Hz. Each trajectory lasts for 50s so 500 steps for a complete RL training episode. For each
experiment setting, we train 10 models, each for 300 episodes, and pick out the best model
which has based on evaluation performance. All results shown in this chapter is obtained
by inferring the best model with 100 times Monte Carlo simulation. Since we update three
measurements per step, the shape of the action space is the same as the orientation estimation
task, i.e. 3X6 matrix. We change the setting of the network layer dimension, range of the
action and observation space. After several attempts, the most appropriate training set up
for plane localization task is summarized as follows:

Table 4-1: Hyperparameters of PPO2 training process (localization task)

Hyperparameters Value
Time horizon 500
Optimization batch size 500
Learning rate 2.5e−4

Value function coefficient 3e−4

Discount γ 0.98
Clip range ε 0.2
MLP dimension of πφ (256, 128, 64)
MLP dimension of Vθ (256, 128, 64)
State space range [−25, 25]
Action space range [−0.002, 0.002]

Similar to the orientation estimation task, we set several criteria to evaluate the availability
of the proposed algorithm, with the consideration of initial estimate deviation, mea-
surement noise level and EKF model calibration. Details are shown in the sequential
sections.

4-2-3 Normal Condition

We first train and test the RL policy under the less difficult situation. Based on our evaluation
criteria, the variables affecting the task difficulty are noise intensity, model covariance and

Hao Li Master of Science Thesis

4-2 Simulation 39

initial estimation. For the moderate setting, we set initial estimate within the square area
ranging from [-5m, 5m] around the original site, and input noise covariance Rm, measurement
noise covariance Qm, process model covariance Rt and measurement model noise Qt as:

Rm =
[

1 0
0 0.1745(10◦)

]
, Qm =

[
0.2 0
0 0.01745(1◦)

]

Rt =

 1 0 0
0 1 0
0 0 0.523(30◦)

 , Qt,j = ll

[
0.5 0
0 0.1745(10◦)

] (4-12)

Note that the magnitude order of position and angle is different. Qt,j is the covariance of
a single measurement. The whole Qt is a 6X6 diagonal matrix. We pick out one repre-
sentative initial estimate µ0 =

(
−9.61, 3.60, −1.53

)T
to visualize. Both qualitative and

quantitative results are shown below.

(a) Trajectory cost and path. In cost curve, RLC-EKF and EKF’s
cost are shown in green and red respectively. In path curve, RL es-
timation, EKF estimation, dead reconking path and ground truth
are draw in green, red, black and blue solid lines respectively.

(b) Components of state vector x, y and θ tracking path

Figure 4-4: Qualitative result of localization task in moderate condition

The filled green and red area is the standard deviation since the model is executed 100 times,

Master of Science Thesis Hao Li

40 RL Estimator for Localization

indicating the uncertainty caused by noise and dynamic landmark settings. The model is
evaluated from random sampled initial estimates for quantitative results, indicating the RL
outperforms EKF with confidence.

Table 4-2: RMSE of the localization task

RMSE X[m] Y[m] [θ◦] Total

RLC-EKF 0.689 0.193 0.086 0.779
EKF 0.91 0.343 0.115 1.087

The results show that RLC-EKF is better than EKF in terms of either total score or sub-
items. Also, similar to what we concluded from the orientation estimation task, the main
advantage occurs at the beginning stage. From the standard deviation curve, we notice that
even the slowest RLC-EKF convergence is faster than EKF convergence.

4-2-4 Initial Estimate

We continue to investigate the sweet point, initial estimate’s effect on the performance of
RLC-EKF. In this scenario, model covariance and measurement noise keep the same as the
last subsection, while the policy is trained with the random initial estimates with the range
of [-10m, 10m]. The trained model is then evaluated on four different initial ranges, and the
results are shown below:

Table 4-3: RMSE with different initial deviation

Deviation range[m] [-3, 3] [-5, 5] [-10, 10] [-15, 15]

RLC-EKF 0.276 0.377 0.59 0.846
EKF 0.287 0.422 0.734 1.101
Advantage Ratio 1.039 1.119 1.244 1.301

The result table indicates the larger the initial deviation range, the more advantage our RLC-
EKF agent can obtain. This proves the sweet point assumption. The model is trained with a
deviation range of [-10m, 10m], but it still performs well in the range of [-15m, 15m]. Another
notice is RLC-EKF that barely gains an advantage when the initial deviation is small ([-3m,
3m]). In this case, our algorithm has little difference from the pure EKF.

(a) µ0 = 1.2, 4.7, 1.0 (b) µ0 = −4.8,−7.2, 0.5 (c) µ0 = −4.5,−8.1, 0.7

Figure 4-5: Representative trajectories with different initial estimates for visualization

Hao Li Master of Science Thesis

4-2 Simulation 41

4-2-5 Measurement Noise

Measurement noise on both input data and sensor data affects the performance of the localiza-
tion significantly. We boost the noise level used in (4-12) by 2, 5, and 10 times respectively.
For benchmark purpose, we fixed the initial estimate the same as in section 4-2-3. The results
are shown as follows:

(a) 2 times boost (b) 5 times boost (c) 10 times boost

Figure 4-6: Qualitative results of localization with different measurement noise level. Both cost
curve and variables in state vector are compared.

From the figures, we can observe, with the increase of the noise level, the uncertainty of both
RLC-EKF and EKF’s estimation expands during Monte Carlo Simulation. However, the
uncertainty of RLC-EKF is always smaller than EKF, which means it’s more robust within a
high perturbation environment. The total cost and sub-items cost curves also show superior
accuracy after RL compensation.

Figure 4-7: RMSE with different measurement noise level.

The result table indicates our advantage ratios go down when the noise level is higher. That
conflicts with the results we obtained for orientation estimation in section 3-2-5. This may
be because the original noise level is already high, and there is always a threshold for noise if
we seek the most advantage.

4-2-6 Model Covariance

Model covariance actually has non-negligible relationship with the noise intensity. In practical
applications, since both input and sensor measurement noises are unknown, we have to decide

Master of Science Thesis Hao Li

42 RL Estimator for Localization

them by statistical computation. This noise level estimation is then reflected on EKF’s model
covariance on both process model and measurement model. We regard this as the calibration
procedure of kalman filtering, for the specific experiment condition. The relative ratio between
process model covariance Rt and measurement model Qt, indicates which value do we trust
more between internal odometry and external sensor data. The more the ratio, means the
relative larger uncertainly on odometry data. So we trust on more measurement update and
less on motion update. Since our RL agent only contributes to the measurement update,
it holds the chance that we will enjoy more benefits when the ratio is larger. To validate
this idea, we set the model covariance ratio in (4-12) as 1:1, and expand measurement model
covariance by 0.5, 2, 4 times. The results are shown as follows:

(a) Ratio 1:0.5 (b) Ratio 1:2 (c) Ratio 1:4

Figure 4-8: Qualitative results of localization considering different model covariance ratio, the
result of ratio 1:1 is shown in Figure 4-4.

With the increase of the covariance ratio, we start to trust the measurement update less.
That’s why the uncertainty increases, and the curve converges slower. Meanwhile, it leaves
more space for the RL agent to compensate at the beginning stage. That’s why the RL
advantage expands.

Table 4-4: RMSE with different model covariance ratio

Covariance ratio 1: 0.5 1: 1 1: 2 1: 4

RLC-EKF 0.537 0.779 1.08 1.37
EKF 0.693 1.087 1.476 2.191
Advantage Ratio 1.29 1.395 1.366 1.599

From the quantitative results, we say RLC-EKF always outperforms pure EKF for all model
covariance ratios. This means if there is no estimator pre-calibration in advance, i.e., the
ratio or quantity of the covariance is not known in advance, RLC-EKF will always do better,
even with the same performance as the well-calibrated EKF. Plus, the more inappropriate
the calibration is, the more potential advantages we can obtain from RL compensation.

4-3 Real Dataset

After the concise simulation experiments, we move forward to implement the proposed idea in
a real application scenario. We didn’t specify exact sensor types in the simulation stage as the
proposed framework can actually be applied to different sensor combinations. For example,

Hao Li Master of Science Thesis

4-3 Real Dataset 43

odometry data (velocity and angular velocity) can be provided by either IMU, chassis con-
troller, or wheel encoder[27]. Meanwhile, range-bearing feature measurement can be provided
by camera, laser range finder (LRF)[28], UWB or even radar[29]. This gives us more flexible
options when searching for a real dataset. Eventually, since our main interest is on indoor
localization scenarios, we choose the UTIAS[2] dataset published by the Autonomous Space
Robotics Lab (ASRL) at the University of Toronto Institute for validating our algorithm.

4-3-1 UTIAS Dataset

UTIAS dataset is initially created for solving an indoor multi-robot cooperative localization
and mapping problem. The dataset collection contains nine datasets in total. Each dataset
has odometry and (range and bearing) measurement data from 5 robots, as well as accurate
ground truth data for all robot poses and 15 landmark positions. Within a 15m X 8m labo-
ratory field, five robots move with random waypoints while recording both ground truth and
measurement data from both internal and external sensors. Each moving robot is based on the
iRobot Create platform and equipped with an onboard computer and a monocular camera for
sensing. There are 15 landmarks within the field, all cylindrical tubes with attached barcodes
indicating their identity. Odometry data is directly logged from the robot’s controller, while
the robot’s and landmark’s groundtruth pose are obtained from a 10-camera Vicon motion
capture system at 100Hz with accuracy on the order of 1X10−3m. For feature measurements,
images captured by the onboard monocular camera with a resolution of 960×720, processed
to detect the barcodes on landmarks and other robots. By solving the bounding boxed from
camera frame to world coordinate and matching the barcode identities, range, bearing and
correspondence can be obtained and formulated the measurement. Since our experiment is
self-localization with a static map, we wipe the other four moving robots out. By only utiliz-
ing one robot’s odometry data and its observations upon 15 other landmarks, the experiment
is ready to go.

(a) Equipment included in experiment (b) Experiment field

Figure 4-9: Hardware essentials of UTIAS dataset[2]

Master of Science Thesis Hao Li

44 RL Estimator for Localization

4-3-2 Dataset processing

Dataset sampling
The timestamp in the original dataset is not aligned for different sources of data. There
are official Matlab scripts for loading the dataset provided by the publisher. We utilize the
toolkit to process the data based on our requirements, save it and load it in python to use.
For time synchronization, we pick the sampling rate as 0.2s. The odometry data with the
nearest timestamp becomes the value for that timestamp, while all available measurements
within the sampling range are collected and stacked as the current measurements.

(a) Dataset visualization (b) Barcode detection process

Figure 4-10: Illustration of UTIAS dataset loading and camera sensing process. In figure 4-10(a),
one dataset is loaded in Matlab, we only focus on one robot and filter out others

Outliner removal
To adapt our algorithm on the dataset, some outliners or unnecessary information are filtered
out manually, they are:

• Observation of other robots: These robots serve as dynamic landmarks, but it’s not
accepted in our algorithm since all landmarks are assumed static.

• Wrong barcode matching: When there is a problem with the barcode detection, the
measured identity number cannot match the existing landmark, we choose to abandon
these measurements.

• Absolute wrong measurements: We notice during the experiment that some measure-
ments are out of the reasonable noise range and are obviously wrong. We filtered out
these measurements by computing the cost between the measurements and its should-
have-observed true value.

4-3-3 Train and Evaluation

The select dataset lasts for 1500s. During the operation time, the robot drives freely within
the field, which is shown in figure 4-11.

Hao Li Master of Science Thesis

4-3 Real Dataset 45

(a) Ground truth trajectory (b) Odometry input

Figure 4-11: Data visualization of robot5 from the UTIAS dataset− 1

In practice, since not all landmarks are within the camera sensing view, the availability of
the measurements is far more sparse than what we obtain in simulation experiments. In this
case, we lower the update measurement number from 3 to 2, which also adjusts our RL action
space from 3X6 to 3X4. For the training process, we train the policy with the first 300s and
evaluate on the rest of the trajectory. We evaluate the dataset on Scenario 1: duration
400-700s, Scenario 2: duration 780-1080s and Scenario 3: whole rest trajectory,
three scenarios. Each dataset is trained with an individual policy respectively. The rest of
the training settings are the same as table 4-1.

Table 4-5: RMSE with different model covariance ratio

RMSE X[m] Y[m] [θ◦] Total

Scenario 1

RLC-EKF 0.172 0.307 0.166 0.393
EKF 0.382 0.452 0.184 0.625

Scenario 2

RLC-EKF 0.278 0.224 0.163 0.377
EKF 0.369 0.242 0.177 0.472

Scenario 3

RLC-EKF 0.123 0.129 0.345 0.23
EKF 0.117 0.123 0.317 0.243

Master of Science Thesis Hao Li

46 RL Estimator for Localization

(a) Scenario 1 (b) Scenario 1: Sub items

(c) Scenario 2 (d) Scenario 2: Sub items

(e) Scenario 3 (f) Scenario 3: Sub items

Figure 4-12: Cost curve, trajectory tracking and variable tracking on three different evaluation
scenarios.

From both qualitative and quantitative results, we can observe RLC-EKF has better perfor-
mance than EKF on different test sets. Since the advantages in the early stage are relatively
large, the performance on the whole trajectory does not outperform too much.

Hao Li Master of Science Thesis

Chapter 5

Conclusion

5-1 Question Answer

After the theoretical derivation and experiments, we can finally answer the research questions
asked at the beginning of this thesis:

What’s the relationship between deep reinforcement learning and filtering-based
state estimator such as EKF?

Both DRL and EKF hold the Markov assumption and propagate state recursively under the
instruction of Bayes rule. With this premise, EKF can be modeled as a Markov Decision
Process problem. We create an MLP formed policy network, which generates an end-to-end
estimator gain matrix from the current error state input. In offline training stage, The error
between estimation and nominal value serves as the environment reward. The policy is taught
from such reward by continuously interacting with the environment. In online inference stage,
with previously learned experience, the RL agent works in the same manner as EKF. The
only difference is the estimator gain is generated by policy instead of formula computation.

How can reinforcement learning be combined with EKF for better pose estimation
performance?

From the explanation in the last section, the RL agent can work solely as an online estima-
tor, hopefully with the equivalent performance of EKF. Instead of utilizing the RL estimator
standalone, we finally proposed a merged method that combines both EKF and RL’s advan-
tage. After a standard EKF, the RL agent conducts a second-time measurement update to
compensate for the residual error between the EKF estimation and the ground truth value.
As the policy is trained offline, RL knows how to give a proper estimator gain for mitigating
the residual error based on the current error state.

How can the proposed reinforcement learning filter idea be applied to specific
pose estimation tasks such as orientation estimation or localization?

In this thesis, we eventually implement the proposed RLC-EKF idea on two physical frame-
works, solving two practical problems, i.e., orientation estimation and plane localization.

Master of Science Thesis Hao Li

48 Conclusion

Both implementations are based on their existing standard EKF frameworks. Based on dif-
ferent task requirements, RL states are also set up accordingly (roll, yaw, pitch for orientation
estimation, x, y, theta for localization). We also tried different RL training settings (hyperpa-
rameter tuning, episode number, reward function) specifically for each experiment to achieve
the most plausible results. The idea applies to various practical applications, as long as there
are already suitable EKF applications.

5-2 Discussion

In order to analyze the algorithm comprehensively, we conduct simulation experiments first.
Then for both two tasks, we find suitable datasets that including actual sensors. From
the results of both synthetic and real data, the pros and cons of the algorithm are finally
summarized as follows:
Profits

• In orientation estimation experiments. RLC-EKF first outperforms EKF in normal
estimation conditions. Then we validate the robustness by varying measurement noise,
initial estimates, and angular velocity. The results lead to the conclusion that, the more
noise disturbance and initial deviation, the more advantage we can obtain from RLC-
EKF for orientation estimation compared to pure EKF. Also, we prove the success of
using error dynamics as the RL state, as the model doesn’t only recognize the angular
velocity profile it trained from but all other profiles.

• In localization estimation experiments, same as orientation estimation, RLC-EKF is first
proved to work in a moderate environment and then evaluate with variations. Unlike
orientation estimation, we don’t include a generality test for this scenario as the model
is already trained and evaluated in a dynamic changing environment. To wrap up, the
less measurement noise and larger initial deviation, the more advantage we can get from
RLC-EKF for localization tasks. Another change we bring for the localization task is
the variation of covariance, which represents well or bad sensor calibrations. The result
implies no matter which calibration quality, RLC-EKF always has space to improve.

• In summary, since no matter which severe condition we choose, RLC-EKF always holds
relatively large or small advantages than EKF, at least no worse than original EKF
estimation, we can finally conclude that the proposed idea is indeed a useful assistant
method that improves EKF on both accuracy and robustness aspects. We only testify
the idea for two application fields, but the scope can be turned to other topics in future
research.

Limitations

• We may notice in orientation estimation the advantage ratio increases with the mea-
surement noise level, but in the localization task, the trend is opposite. The possible
cause of this problem is the difference in noise magnitude order. For localization, maybe
the noise level is relative too loud, so the RL agent is confused to relate the innovations
with the appropriate estimator gain matrix, which degrades the performance. So for
the best advantage, the measurement level should also be appropriately allocated.

Hao Li Master of Science Thesis

5-3 Future works 49

• In this thesis, all RL states and actions are in continuous form. This actually brings
more intensive numerical resolution than in discrete form and makes the training of
the policy more difficult. Other problems occurred because of resolution lay on the
initial deviation range and the selection of action space. During experiments, if we
choose a too large initial range or inappropriate RL action space, the policy network
will hardly converge. For successful training, such a variable determination process is
always strenuous and not promising.

• Our RLC-EKF framework still lacks the ability to deal with the dynamic number of the
measurements as the action space’s shape is fixed in the RL method. In the localization
task, we fixed to update two or three measures per step, with selection criteria. The
waste of information actually affects the performance of both EKF and RLC-EKF.

• From cost curves, we also notice that RLC-EKF gains the most benefits at the beginning
convergence stage. Such faster convergence makes us ignore the performance of RLC-
EKF after stabilization. In case of small initial deviation or fast EKF convergence, the
existence of RL seems dispensable. That’s reasonable since the improvement space is
already tiny enough after stabilization. Still, this point is worth mentioning so we can
decide the suitable application condition of our algorithm rationally.

• In practical applications, there are already different tricks narrowing down the initial
estimate and calibrating the measurement noise. So the algorithm’s objective use-value
in industries is yet to be considered.

5-3 Future works

In this section, we suggest several next step topics to explore. We come up with these ideas
during conducting the thesis.

State expansion

In this thesis, the state vector components for both experiments are selected as the most basic
ones, as the idea is still immature. In the future, more valuable information can be added
and estimated together for better performance, e.g., velocity, acceleration for localization
task, and gyroscope bias for orientation estimation.

6 DOF pose estimation

Initially, we intend to implement the idea directly on a 6 DOF pose estimation task after fin-
ishing the orientation estimation experiment. The task is very common in the drone research
area. There are lots of mature visual-inertial odometry frameworks such as MSCKF[30] and
ROVIO[31]. We also tried to implement the idea on MSCKF framework, which turns to
be totally infeasible. Such algorithms usually include environment landmarks into the state
vector, either for localization or the entire SLAM. For example, MSCKF needs a state aug-
mentation step for tracking observations. Such setting forces our RL agent to neglect other
info in state vector, but update poses only since the state vector size of the RL agent is fixed.

Another problem is the map in 6DOF space is a far more complex structure than 3DOF. It
even takes massive learning efforts to save the map, which is unsuitable for a one-year thesis

Master of Science Thesis Hao Li

50 Conclusion

project. In the future, with no time restrictions, such an idea of 6DOF pose estimation, as
well as the SLAM topics, can be further explored.

Multi-robot cooperative localization

In the UTIAS dataset, we reject the other four robots and only use one robot for self-
localization. Don’t neglect this dataset is initially created for robot cooperative localization.
In this case, if each robot is treated as an RL agent, a multi-agent reinforcement learning
problem can be formulated. Based on the game theory, five robots can work together to
maximize the overall localization accuracy. Such an exciting idea is a worthy exploration in
the future.

Hao Li Master of Science Thesis

Appendix A

Supplementary Experiments

In this appendix some supplementary experiments we done besides the main topic, as well as
some RL model training details are given.

A-1 Direct RL estimator

The main topic of this thesis is the RL compensated EKF non-linear estimator, which is
derived from pure RL estimator idea which is already introduced in 2-3. Pure RL estimator
replaces EKF’s measurement update at all, meaning there is only one measurement update
per step and the estimator gain is computed by RL policy. Before implementing the new
compensated idea, we first replicate a pure RL estimator for orientation estimation task
which is invented in [32].

Figure A-1: Direct RL estimator for orientation estimation

Master of Science Thesis Hao Li

52 Supplementary Experiments

We keep the same training settings as in table 3-1. The results by the best model training
from PPO2 is shown in figure A-3. However, the RL estimator doesn’t provide stable tracking
for different noise and initial deviation settings. For example in figure A-2(b), RL estimator
loses the quaternion tracking at the turning point.

(a) Success estimation (b) Failed estimation

Figure A-2: Tracking performance of direct RL estimator. We compare the result between
gyroscope update(dotted line) and RL update(dashed line).

From the quantitative results we notice the direct RL estimator gives comparable performance
than EKF when in case of not diverging. However, because of occasional divergence, the
overall performance is with great randomness, which makes the algorithm less robust in
changing environments. That’s why we propose RLC-EKF for more guaranteed tracking. As
the RL state is set the same as current quaternion, instead of error state, the potential cause
of this problem is maybe the sudden change of the state.

A-2 Training details

In this section we roughly explain how we decide the best RL algorithm and correspondent
hyperparameters setting that are used for our RL model.

RL algorithm selection

In stable-baseline, there are several mainstream RL algorithms with standard implementation
and integration. They are either policy based, value based, or merged DRL algorithms. At
the beginning of the training stage, we tried SAC (soft Actor-Critic)[33], DDPG[34], PPO1
and PPO2 algorithms from the stable-baseline library, with default parameter settings. By
evaluating the training loss curve in tensorboard panel as shown in figure A-3(a), we rejected
SAC and DDPG since they don’t converge during the most of time. Since ppo2 is an upgraded
version of ppo1 and supports parallel environment training, which is faster, we finally choose
PPO2 to train our agent.

Hao Li Master of Science Thesis

A-2 Training details 53

(a) Different RL algorithms comparison

(b) PPO2 solely

Figure A-3: Training loss of RL algorithms reading from tensorboard log.

After fixing the PPO2, we also varying other hyperparameters to obtain the best trained RL
policy model. The variations are:

• Different learning rates: [0.00025, 0.0025, 0.025]

• Gammaγ of PPO: [0.99, 0.3, 0.25]

• Number of episodes: [100, 300, 500, 1000]

• Hidden dimension of MLP: [64, 64], [64, 128], [128, 128], [128, 64, 32]

• Action space range: [−0.01, 0.01], [−0.02, 0.02], [−0.03, 0.03], [−0.05, 0.05], [−0.1, 0.1]

Take the item Number of episodes for example. By varying this variable we intend to select
the appropriate total training time. If the value is too small, the loss of RL has not converged
to the minimum, and the RL model is too large, there is a risk of overfitting. By observing
figure A-3(b) we find out the PPO2 model usually converges after 300 episodes. We train the
model slightly longer so finally the number 500 is used for training.

In stale-baseline, they also offer a hyperparameter optimization tool based on Optuna[35],
which can automatically decides a proper hyperparameter set for the training task. We
haven’t explored this toolbox but it’s always nice to give a try in the future.

Master of Science Thesis Hao Li

54 Supplementary Experiments

Hao Li Master of Science Thesis

Appendix B

Code Description

In the spirit of sharing and hopefully making my little contribution for the future research,
the source code of both orientation estimation and localization experiments are shared on
Github. The code are available at:

https://github.com/Mrhamsterleo/RLC-EKF-Orientation-Estimation
https://github.com/Mrhamsterleo/RLC-EKF-Localization

Here we list the instruction of using RLC-EKF for localization experiment. The tutorial for
orientation estimation just has slight difference.

B-1 Environment Setup

Clone the project

git clone git@github.com:Mrhamsterleo/RLC-EKF-Localization.git
cd RLC-EKF-Localization

It’s always wise to create a virtual conda environment without affacting other projects. To
create a new environemnt:

conda create -n RLC-EKF python=python=3.6.12
conda activate RLC-EKF

Install dependencies

After you created and activated the Conda environment, you have to install the python
dependencies. This can be done using the following command:

pip install -r requirements.txt

Master of Science Thesis Hao Li

https://github.com/Mrhamsterleo/RLC-EKF-Orientation-Estimation
https://github.com/Mrhamsterleo/RLC-EKF-Localization

56 Code Description

B-2 Folder Structure

• RLestimator_ekf.py: Gym environment for RLC-EKF orintation estimator to conduct
simulation experiments.

• RLestimator_real_data.py: Gym environment for RLC-EKF orintation estimator to
conduct real dataset experiments.

• train_evaluate.py: Train and evaluate RL policy using stable-baseline platform. For
evaluation, both qualitive and quantitive results compared to pure EKF performance
can be provided.policy using stable-baseline platform.

• train_evaluate_eva_list.py: Evaluate a list of different policies (usually 10 models for
a single training). The best model can be selected out from results.

• data_simulator.py: Generate range-bearing measurements, odometry input, ground
truth of robot and landmarks, for simulation experiments.

• load_dataset.py: Data loader especially made for UTIAS dataset.

B-3 Training

For simulation related settings, in RLestimator_ekf.py change the following parameters.

Measurement noise

#line 104 (for odometry input noise)
self.Q_sim = np.diag([0.2, np.deg2rad(1.0)]) ** 2 * 0.1
#line 106 (for feature measurement noise)
self.R_sim = np.diag([1.0, np.deg2rad(10.0)]) ** 2 * 0.1

Initial deviation

#line 90 (range of uniform distribution)
self.initial_bias = np.random.uniform(-1, 1, size=(self.STATE_SIZE, 1)) * 3

Model covariance

#line 93 (for EKF process model covariance)
self.Cx = np.diag([1, 1, np.deg2rad(30.0)]) ** 2
#line 97 (for EKF measurement model covariance)
self.Cx_obs = np.diag([0.5, 0.5, 0.5, 0.5, 0.5, 0.5]) ** 2

Tracking trajectory

#line 110-111 (defined by velocities)
v = 1.0 # [m/s]
yaw_rate = 0.1 # [rad/s]

Hao Li Master of Science Thesis

B-4 Evaluation 57

Landmark

Position devation for landmark placed in circular only, the landmark distribution can also be
changed to other shape.

#line 136
m_sim = np.diag([2.5, 2.5]) ** 2

Other settings adjustment can be done in train_evaluate.py.

• model_num: Policy model you want to train for each script execution.

• episodes: The number of episodes for agent to explore.

• T : Total length of each eposide.

• env_name: The name of the gym formed enviroment.

To change the structure and activation of the MLP network, you can do:

Custom MLP policy of two layers of size 32 each with tanh activation function
policy_kwargs = dict(act_fun=tf.nn.tanh, net_arch=[32, 32])
Create the agent
model = PPO2("MlpPolicy", "Env_name", policy_kwargs=policy_kwargs, verbose=1)

When all settings are done, directly execute the script and wait for finishing. During the
training, a tensorboard log file is generated in the folder ./logs. You can want the simutanous
training loss through:

TensorBoard --logdir=logs/your_saved_model_name/PPO2_0_1 --host=localhost

B-4 Evaluation

Besides the experiment condition setting which is introduced in last section, there are few
adjustments we can made for evaluation:

• model = PPO2.load(”model_path”): To load the best trained model for agent to
explore.

• num_of_paths: The number of Monte Carlo Simulation for stastical results neglecting
odd disturbance.

• MODEL_PATH: Folder path of multiple models we want to select the best model
from. After setting is done, we can directly run the evaluation script, and obtain cost,
trajectory and sub-items graphs. The numerical results of EKF and RLC-EKF are also
given in the terminal.

• show_animation: Whether display the result statically or simutanously.

Master of Science Thesis Hao Li

58 Code Description

Evaluation with real data

There are 4 types of UTIAS dataset with different sampling rate, presented in .mat for-
mat under the folder /datasets. For switching differnt dataset collection, change the line in
”RLestimator_ekf_realdata.py”:

#line 87-88 (robot label indicates individual robot you want to use)
dataset_path = "dataset/" + "MRCLAM0.2.mat"
robot_label = 5

Hao Li Master of Science Thesis

Appendix C

Quaternion Basis

In this appendix we introduced quaternion’s definition and mathematical operation involved
in this thesis. They are summarized from book "Quaternion kinematics for the error-state
Kalman filter[36]."

C-1 Definition

A quaternion can be represented as the combination of scalar and imaginary parts.

Q = qw + qxi+ qyj + qzk ⇔ Q = qw + qv
Q = 〈qw,qv〉

q ,

[
qw
qv

]
=


qw
qx
qy
qz


(C-1)

By taking the notation {qw, qx, qy, qz}, the quaternion is presented in a 4X1 vector.

C-2 Quaternion operations

Sum

Quaternion sums by simply adds the scalar part and imaginary part respectively.

p± q =
[
pw
pv

]
±
[
qw
qv

]
=
[
pw ± qw
pv ± qv

]
(C-2)

Product Product is calculated by:

Master of Science Thesis Hao Li

60 Quaternion Basis

p� q =
[

pwqw − p>v qv
pwqv + qwpv + pv × qv

]
(C-3)

In this thesis, instead of using the direct quaternion product formula, we utilize its two
equivalent matrix products, namely left- multiply and right- multiply, given as:

q1 � q2 = [q1]L q2 and q1 � q2 = [q2]R q1

[q]L =


qw −qx −qy −qz
qx qw −qz qy
qy qz qw −qx
qz −qy qx qw

 , [q]R =


qw −qx −qy −qz
qx qw qz −qy
qy −qz qw qx
qz qy −qx qw

 (C-4)

Sometime we also use the cross-product inspection which involves skew operator [·]x:

qtL = qwI +
[

0 −q>v
qv [qv]x

]
, [q]R = qwI +

[
0 −q>v
qv − [qv]×

]

[a]× ,

 0 −az ay
az 0 −ax
−ay ax 0


(C-5)

Conjugation

The conjugate of a quaternion is defined by:

q∗ , qw − qv =
[

qw
−qv

]
(C-6)

With properties,

q � q∗ = q∗ � q = q2
w + q2

x + q2
y + q2

z =
[
q2
w + q2

x + q2
y + q2

z

0v

]
(p� q)∗ = q∗ � p∗

(C-7)

Norm Norm of a quaternion is used in this thesis for unit re-normalization after each quater-
nion update, it’s simply the mean square root of 4 components in the quaternion vector.

‖q‖ ,
√

q � q∗ =
√

q∗ � q =
√
q2
w + q2

x + q2
y + q2

z ∈ R (C-8)

For unit quaternions, ‖q‖ = 1, and therefore,

q−1 = q∗ (C-9)

Exponential

We have, for q ∈ H and t ∈ R

qt = exp
(
log

(
qt
))

= exp(t log(q)) (C-10)

Hao Li Master of Science Thesis

C-3 Relation Between Euler Angle and Quaternion 61

If ‖q‖ = 1, we can write q = [cos θ,u sin θ], thus log(q) = uθ, which gives

qt = exp(tuθ) =
[

cos tθ
u sin tθ

]
(C-11)

Logarithm of unit quaternions

For unit quaternion, we have

log q = log(cos θ + u sin θ) = log
(
euθ
)

= uθ =
[

0
uθ

]
(C-12)

C-3 Relation Between Euler Angle and Quaternion

We directly cite the very nice and clear table in [36] for the conversion between quaternion
and Euler angle.

Rotation matrix, R Quaternion, q
Parameters 3× 3 = 9 1 + 3 = 4

Degrees of freedom 3 3
Constraints 9− 3 = 6 4− 3 = 1
Constraints RR> = I; det(R) = +1 q ⊗ q∗ = 1

ODE Ṙ = R[ω]× q̇ = 1
2q ⊗ ω

Exponential map R = exp ([uφ]×) q = exp(uφ/2)
Logarithmic map log(R) = [uφ]× log(q) = uφ/2
Relation to SO(3) Single cover Double cover

Identity I 1
Inverse R> q∗

Composition R1R2 q1 ⊗ q2
Rotation operator R = I + sinφ[u]× + (1− cosφ)[u]2× q = cosφ/2 + u sinφ/2
Rotation action Rx q ⊗ x⊗ q∗
Interpolation Rt = I + sin tφ[u]× + (1− cos tφ)[u]2× qt = cos tφ/2 + u sin tφ/2

R1
(
R>1 R2

)t
q1 ⊗ (q∗1 ⊗ q2)t

q1
sin((1−t)∆θ)

sin(∆θ) + q2
sin(t∆θ)
sin(∆θ)

(C-13)

Cross relations

R{q} =
(
q2
w − q>v qv

)
I + 2qvq>v + 2qw [qv]×

R{−q} = R{q} double cover
R{1} = I identity

R {q∗} = R{q}> inverse
R {q1 ⊗ q2} = R {q1}R {q2} composition

R
{
qt
}

= R{q}t interpolation

(C-14)

Master of Science Thesis Hao Li

62 Quaternion Basis

Hao Li Master of Science Thesis

Bibliography

[1] D. Roetenberg, H. J. Luinge, C. T. Baten, and P. H. Veltink, “Compensation of mag-
netic disturbances improves inertial and magnetic sensing of human body segment ori-
entation,” IEEE Transactions on neural systems and rehabilitation engineering, vol. 13,
no. 3, pp. 395–405, 2005.

[2] K. Y. Leung, Y. Halpern, T. D. Barfoot, and H. H. Liu, “The utias multi-robot coopera-
tive localization and mapping dataset,” The International Journal of Robotics Research,
vol. 30, no. 8, pp. 969–974, 2011.

[3] P. Srinivas and A. Kumar, “Overview of architecture for gps-ins integration,” in 2017 Re-
cent Developments in Control, Automation & Power Engineering (RDCAPE), pp. 433–
438, IEEE, 2017.

[4] S. A. Mohamed, M.-H. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen, and
J. Plosila, “A survey on odometry for autonomous navigation systems,” IEEE Access,
vol. 7, pp. 97466–97486, 2019.

[5] D. Titterton, J. L. Weston, and J. Weston, Strapdown inertial navigation technology,
vol. 17. IET, 2004.

[6] Y. S. Suh, “Orientation estimation using a quaternion-based indirect kalman filter with
adaptive estimation of external acceleration,” IEEE Transactions on Instrumentation
and Measurement, vol. 59, no. 12, pp. 3296–3305, 2010.

[7] A. Gelb, Applied optimal estimation. MIT press, 1974.

[8] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceed-
ings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[9] C. Luo, X. Chu, and A. Yuille, “Orinet: A fully convolutional network for 3d human
pose estimation,” arXiv preprint arXiv:1811.04989, 2018.

Master of Science Thesis Hao Li

64 Bibliography

[10] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, “Vinet: Visual-inertial odome-
try as a sequence-to-sequence learning problem,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2017.

[11] C. Chen, B. Wang, C. X. Lu, N. Trigoni, and A. Markham, “A survey on deep learning
for localization and mapping: Towards the age of spatial machine intelligence,” arXiv
preprint arXiv:2006.12567, 2020.

[12] J. Morimoto and K. Doya, “Reinforcement learning state estimator,” Neural computation,
vol. 19, no. 3, pp. 730–756, 2007.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[14] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[17] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,
1992.

[18] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Interna-
tional conference on machine learning, pp. 1928–1937, PMLR, 2016.

[19] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in International conference on machine learning, pp. 1889–1897, PMLR,
2015.

[20] L. Hu, C. Wu, and W. Pan, “Lyapunov-based reinforcement learning state estimator,”
arXiv preprint arXiv:2010.13529, 2020.

[21] M. Kok, J. D. Hol, and T. B. Schön, “Using inertial sensors for position and orientation
estimation,” arXiv preprint arXiv:1704.06053, 2017.

[22] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann, “Stable
baselines3.” https://github.com/DLR-RM/stable-baselines3, 2019.

[23] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

[24] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, no. 3, pp. 52–
57, 2002.

[25] S. B. Samsuri, H. Zamzuri, M. A. A. Rahman, S. A. Mazlan, and A. Rahman, “Compu-
tational cost analysis of extended kalman filter in simultaneous localization and mapping
(ekf-slam) problem for autonomous vehicle,” ARPN Journal of Engineering and Applied
Sciences, vol. 10, no. 17, pp. 153–158, 2015.

Hao Li Master of Science Thesis

https://github.com/DLR-RM/stable-baselines3

65

[26] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p. 1883, 2009. revision
#137311.

[27] Y. Cheng, M. Maimone, and L. Matthies, “Visual odometry on the mars exploration
rovers,” in 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 1,
pp. 903–910, IEEE, 2005.

[28] Y. Zhuang, S. Yang, X. Li, and W. Wang, “3d-laser-based visual odometry for au-
tonomous mobile robot in outdoor environments,” in 2011 3rd International Conference
on Awareness Science and Technology (iCAST), pp. 133–138, IEEE, 2011.

[29] R. Ghabcheloo and S. Siddiqui, “Complete odometry estimation of a vehicle using single
automotive radar and a gyroscope,” in 2018 26th Mediterranean Conference on Control
and Automation (MED), pp. 855–860, IEEE, 2018.

[30] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman filter for
vision-aided inertial navigation,” in Proceedings 2007 IEEE International Conference
on Robotics and Automation, pp. 3565–3572, IEEE, 2007.

[31] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odometry
using a direct ekf-based approach,” in 2015 IEEE/RSJ international conference on in-
telligent robots and systems (IROS), pp. 298–304, IEEE, 2015.

[32] L. Hu, Y. Tang, Z. Zhou, and W. Pan, “Reinforcement learning for orientation estimation
using inertial sensors with performance guarantee,” arXiv preprint arXiv:2103.02357,
2021.

[33] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor,” in International conference
on machine learning, pp. 1861–1870, PMLR, 2018.

[34] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[35] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-generation
hyperparameter optimization framework,” in Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

[36] J. Sola, “Quaternion kinematics for the error-state kalman filter,” arXiv preprint
arXiv:1711.02508, 2017.

Master of Science Thesis Hao Li

66 Bibliography

Hao Li Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Background
	Motivation
	Research Question
	Contribution
	Thesis Organization

	Preliminaries
	Extended Kalman Filter
	Reinforcement Learning Basis
	The Agent-Environment Interface
	Markov Decision Process
	Policy Gradient
	Proximal Policy Optimization (PPO)

	Reinforcement Learning Filter
	Multiple Layer Perceptron
	RL Filter Design

	RL Estimator for Attitude Estimation
	RLC-EKF for orientation estimation
	Measurements From Sensors
	Orientation Estimation using EKF
	Merge with RL Estimator

	Simulation
	Synthetic Data Generation
	Experiment Setup
	Normal Estimation Condition
	Unreliable Initial Estimation
	Tremendous Noise Disturbance
	Generality

	Real Dataset

	RL Estimator for Localization
	RLC-EKF for Localization
	Feature-based EKF Localization
	RLC-EKF Framework

	Simulation
	Synthetic Data Generation
	Experiment Setup
	Normal Condition
	Initial Estimate
	Measurement Noise
	Model Covariance

	Real Dataset
	UTIAS Dataset
	Dataset processing
	Train and Evaluation

	Conclusion
	Question Answer
	Discussion
	Future works

	Appendices
	Supplementary Experiments
	Direct RL estimator
	Training details

	Code Description
	Environment Setup
	Folder Structure
	Training
	Evaluation

	Quaternion Basis
	Definition
	Quaternion operations
	Relation Between Euler Angle and Quaternion

	Back Matter
	Bibliography

