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Abstract 
The COVID-19 pandemic poses an unprecedented challenge for the public transport system. The capacity 

of the transport system has been significantly reduced due to the imposition of social distancing measures 

to reduce the spread of the coronavirus. People remain skeptical about the use of public transport and 

prefer alternatives for their transportation as the likelihood of the virus spreading through public 

transport is high. Therefore, new avenues to increase the resilience of public urban mobility need to be 

explored. This research proposes the integration of the bike sharing system into the existing public 

transport system to compensate for public transport demand under the disruptive impacts of the COVID-

19 pandemic. To achieve this, a two-part methodology is developed. The first part concerns the 

development of a mathematical model for the demand integration of the two systems. The demand for 

the public transport system, which cannot be serviced by the system due to the distancing measures 

(distance of 1.5 meters between passengers), is considered as unsatisfied demand and is the new 

additional demand for the bike sharing system. The second part concerns the development of an 

optimization model for the design and operation of a bike sharing system with features that can cope with 

the mobility needs of the pandemic. These features of the bike sharing system are the mixed fleet, i.e., 

the system will provide the mode options of bike and e-bike, and the hybrid in its design, i.e., the bike 

system will be a free-floating system while the e-bike system will be docked. The developed methodology 

is applied in the case study of the Milan city in Italy. The two studied systems are the subway system and 

the public bike sharing system of Milan. For the implementation of the developed methodology, three 

demand scenarios and fifteen designs that reflect the needs of the bike sharing system are created. The 

parameters that differ in the designs are the number and location of the new (virtual) stations, the number 

of the maximum number of available bikes in the virtual stations of the bike system and the capacity 

specifications (number of docks) in the e-bikes stations. The selected locations of the new (virtual) stations 

in the designs are close to subway stations with unsatisfied demand. The obtained results show that 30% 

of the demand for the evening peak hour of the subway system in Milan cannot be satisfied due to 

distancing measures and that the current public bike sharing system can only compensate for 6% of the 

new demand (unsatisfied demand of public transport system and its own demand). However, the mobility 

capacity increases based on the system’s features. The separation of the bike sharing system into a free-

floating bike system and a docked e-bike system increases the covered demand at least twice (2.1-2.4 

times). Moreover, an increase of the capacity specifications of the e-stations and the available bikes in 

virtual stations by 60% brings an additional increase of the covered demand by 6.5-7.5%. Despite the 

increased mobility capacity of the system with the incorporation of the mentioned features, to fully cover 

the bike system demand it is needed 30959 bikes, while 20445 e-bikes are needed for 70% coverage of e-

bikes demand. In addition, there is no limit to the available bikes per station and the maximum number 

of docks per e-station is 200. It is concluded that the bike sharing system cannot fully counterbalance for 

limited capacity in the public transport system. These findings contribute worthwhile insights into the 

mobility capacity of the integrated public transport system during the pandemic and where the operators 

of both systems should give emphasis.  

 

Keywords ● Pandemic ●COVID-19 ●Public transport ●Bike sharing ●Resilience ●Linear Programming Model 

●Milan  
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1. Introduction 
The global impact of coronavirus disease 2019 (COVID-19) has been established. The epidemic of COVID-

19 was reported as pneumonia to the World Health Organization (WHO) on 31st December 2019 (WHO, 

2020). Due to the high contagiousness of the virus, the WHO acclaimed the outbreak as a pandemic on 

11th March 2020 (WHO, 2020). The main goal during a pandemic is to control and reduce the transmission 

of the virus. Measures and tactics such quarantine, lockdown, social distancing, travel restrictions, closing 

of restaurants and schools, and isolation help to reduce the spread of coronaviruses and were followed 

by many governments (de Haas, Faber, & Hamersma, 2020; De Vos, 2020; Qureshi, Suri, Chu, Suri, & Suri, 

2021). Coronavirus measures, as well as people’s prejudice against small and closed spaces, have greatly 

affected the public transport sector.  

During the lockdown period of the first pandemic wave, public transport demand plummeted (ITF-OECD, 

2020; Jenelius & Cebecauer, 2020). This drop in demand was due to the increased rates of e-learning and 

work from home as well as the closure of many stores and the annulment of numerous events. The result 

of the reduced demand was the reprogramming and the reduction in the frequencies of public transport 

services. Belgium, for example, reduced public transport services by about 75%, while Slovakia 

implemented a national transport program like that of weekends (ECDC, 2020). The New York 

transportation authority followed a similar tactic by reducing its services by at least 25% and modifying 

some subway lines (Goldbaum, 2020). Regarding Italy, the Ministry of Infrastructure and Transport has 

rationalized interregional services by changing and reducing non-scheduled services (Ministero delle 

Infrastrutture e dei Trasporti, 2020a). In addition, train services were rescheduled (Ministero delle 

Infrastrutture e dei Trasporti, 2020b) and there were no evening services (Ministero delle Infrastrutture e 

dei Trasporti, 2020c). However, a satisfactory level of service was sustained (Ministero delle Infrastrutture 

e dei Trasporti, 2020b). Transport for London (TfL) shut down the night overground service a few days a 

week and about 40 non-hub stations stopped operating, while in Valencia, Spain, public transport services 

operated at 65% of the usual services and there were no evening services on weekends (UITP, 2020). 

The public transport sector is affected throughout the pandemic. Τhe transmission of the COVID-19 virus 

on public transport modes is high. This is because the virus belongs to the category of respiratory viruses 

and is transmitted through the infectious aerosol which can accumulate over time in an enclosed place 

(Prather et al., (2020)). This fact affects the mobility capacity of public transport but also the 

transportation mode choice of commuters. Firstly, to reduce the transmission of the virus indoors, 

measures of social distancing (1-2 meters between people) are imposed, which greatly affect the mobility 

capacity of public transport. The capacity of a 48-passenger bus, for example, will be reduced to 11 

passengers after the implementation of social distancing measures (ITF-OECD, 2020). Considering the 

metro (Washington DC metro), the implementation of the 1.5-meter distance will reduce the train’s 

capacity by about 80%. While, if the measure of 1-meter or 2-meters distance is applied, the capacity 

reduction will be about 60% and 90%, respectively (Krishnakumari & Cats, 2020). In addition, people will 

be skeptical about the use of public transport and many of them would prefer an alternative for their 

transportation due to the high transmissibility of the virus in them. Specific group of people, like elderlies, 

are more prone and vulnerable to virus exposure (Yu et al., (2020)). Therefore, many people belonging to 

vulnerable health groups will look for an alternative for their transportation. The above reasons are 

challenges for the public transport sector. 
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1.1. Problem statement 
The limited capacity of public transport due to the COVID-19 distancing measures (distance of 1.5 meters 

between passengers), the fear of people as well as the gradual return to normal rhythms and living 

conditions will lead the public transport system to an unprecedented state. The main feature of this state 

will be the excessive demand which will not be satisfied by the existing public transport system and will 

push for a transport alternative where people will be able to move in a safe and healthy way. There are 

several alternatives that can be integrated into public transport to create a system that can handle the 

new COVID-19 situation. However, traffic congestion in most cities and air pollution are prompting the 

choice of a green alternative that does not burden the network too much. In addition, Saberi et al. (2018) 

study concludes that integrating bike sharing system into the public transport system increase the 

system’s resilience to disruptive events (e.g. strikes) and that there are already cities that plan to 

implement such systems. Taking into consideration the above, the alternative that is proposed to 

integrated in terms of mobility capacity, i.e., transport capacity supply and alternative way of 

transportation, with public transport system is the bike sharing system. With this mobility capacity 

integration and its efficient design and operation, a public transport system will be created that will be 

prepared to deal with excessive demand due to the COVID-19 measures. 

The main challenge in implementing this integrated alternative is the way of designing and operating the 

bike sharing system to provide safe mobility for all unsatisfied demand. The unsatisfied demand will be 

the result of the assumption that demand exceeding the capacity implied by the 1.5 meters in public 

transport will not be allowed to board. This implies that the existing resources and the potential new 

resources of bike sharing system should be managed in such a way that the overall public transport system 

will operate efficiently under social distancing constraints. One of the main factors to be addressed is the 

bike fleet sizing that will be needed to meet the system’s capacity needs after the effects of COVID-19 on 

the current public transport system. Increasing the number of bike fleet means that more parking slots 

and stations should be created. Therefore, the station location decision for the most efficient system 

design is added. In addition to the design of bike sharing system, we should also consider its operation. 

The main factor to consider is the relocation of the bike fleet to the bike stations according to the demand 

needs of each of them. The final step is to find the optimal features for the design and operation of the 

system including the conditions imposed by the COVID-19 measures. More specifically, the COVID-19 

distancing measures will lead to unsatisfied demand since the demand exceeding the capacity implied by 

the 1.5 meters in public transport will not be allowed to board. The demand and mobility capacity 

integration of the bike sharing system into the public transport may solve the problem of unsatisfied 

demand which is caused by the distancing measures. Unsatisfied demand due to COVID-19 distancing 

measures is the input to the optimization model of the bike sharing system. Other factors related to the 

specific case of the COVID-19 situation that should be considered are the different categories of people 

(e.g., young, elderlies, vulnerable health people) and their needs (e.g., bike or e-bikes), the disinfection of 

the fleet, the additional costs of the system.  

The literature presents several studies regarding the effective design and operation of bike sharing 

systems (Caggiani, Camporeale, Dimitrijević, & Vidović, 2020; Chen, Liu, & Liu, 2018; Frade & Ribeiro, 

2015; Lu, 2016; Martinez, Caetano, Eiró, & Cruz, 2012; Saharidis, Fragkogios, & Zygouri, 2014; Sayarshad, 

Tavassoli, & Zhao, 2012; Sun, Li, & Zuo, 2019; Yan, Lin, Chen, & Xie, 2017). These methods vary in how 

they approach and optimize the design and operation of the bike sharing system. Most of these studies 

consider some of the various costs associated with a bike sharing system in their models’ formulation. 
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Moreover, the only study that includes a mixed fleet ,i.e., bike and e-bike, in its formulation is the study 

of Martinez et al. (2012). All the above reported research study either free-floating or docked bike sharing 

systems. Therefore, they cannot cope with the features of the COVID-19 extreme situation. These 

methods do not consider the measures of social distancing and how they affect the capacity of public 

transport system, the mobility capacity integration of public transport and bike sharing system for solving 

the unpredictable increase of unsatisfied demand, and the required sanitation measures.  

The present research will focus on the optimal design and operation of a hybrid mixed-fleet bike sharing 

system. The features of the mixed fleet-bike and e-bike-and the hybridity-free floating bike system and 

docked e-bike system-of the system are due to the needs arising from the pandemic situation. The main 

goal is to create an integrated in terms of demand and mobility capacity public transport system, i.e., 

public transport (i.e., subway, trams) and bike sharing system. That is, the study deals with the creation 

of a resilient public transport system that can provide mobility capacity in extreme and special situations. 

The prospect of approaching the problem will be supply-oriented.  

 

1.2. Research objective and research questions 
The main objective of this study is to create an integrated alternative solution of public transport system 

which will ensure a reduced exposure risk to the virus and be able to counterbalance the limited mobility 

capacity of the existing public transport system due to distancing measures. The aim of this research is to 

explore the impacts of social distancing measures during the pandemic period on the mobility capacity in 

public transport system. And then optimize the design and operation of the proposed alternative system 

based on aspects of the pandemic situation to maintain mobility capacity in public transport system.  

Therefore, the research objectives have been formulated into the following main question: 

“Ηow can we maintain mobility capacity in public transport under the impacts of social distancing 

constraints, investigating the case of bike sharing mobility capacity for COVID-19 conditions?” 

This question can be decomposed in the following sub questions: 

1. How are social distancing measures limiting the mobility capacity in public transport system? 

2. To what extent can a bike sharing system counterbalance for limited capacity in the public 

transport system? 

3. Ηow can the selected COVID-19 aspects be adapted to the developed optimization model of bike 

sharing systems? 

4. To which extent these findings can be generalized? 

 

1.3. Research scope  
This section describes the scope of this research, i.e., defines the boundaries of the research. The options 

that define this research are: 

• This research refers to two transport system which are the public transport system and the bike 

sharing system. However, no changes will be made to the public transport system due to time 

constraints. Public transport lines and their timetable will remain the same.  
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• In the case of the public transport system, the case study of this research will focus on the subway 

system. A subway network usually consists of few lines compared to other public transport 

systems whose line network is more extensive. Therefore, it is easier to understand its impact and 

study it. Regarding this research, the case study concerns the city of Milan. Milan's public 

transport system consists of a network of metro, buses, trams, and trolleys. In 2019 the 

passengers of the public transport system were 820.4 million. About 50% of passengers used the 

subway (ATM bilancio finanziario 2019, 2021). The metro in Milan is therefore the most common 

choice of passengers and can be considered the most important means of public transport. 

• Users’ movements are between public transport system stations. This means that the original 

origin and final destination of the commuters are not known. This may lead to the assignment of 

commuters to bike stations located close to public transport stations rather than to bike stations 

that may be closer to the origin and destination of their overall route. Therefore, there may be a 

shift in demand between stations. 

• The choice of means of transport for users is between public transport and the bike sharing 

system. Other means of transport such as car or private bike will not be available as options for 

the users. 

 

1.4. Societal and scientific relevance 
The research conducted in this thesis has contributed to societal relevance. The result of this thesis 

provides an integrated public transport system that seeks to address the impacts of the pandemic in terms 

of mobility capacity on the existing public transport system. The demand and mobility capacity integration 

of the bike sharing system in the public transport system and the improved design and operation of the 

bike sharing system will offer a safe transport option to all the users and their movements will not be 

limited. The goal of this integration is to create a resilient public transport system that can meet the 

transport requirements during the pandemic. The integration of the public transport and bike sharing 

systems will also be beneficial in the post-pandemic period. A resilient public transport system will be able 

to cope with special transport situations such as a strike in the motorized public transport system and 

mass events. In addition, an improved system could attract users of other means of transport such as the 

private car. This might lead to a reduction in traffic congestion and thus a reduction in pollution and an 

increase in the sustainability of the city. The improved system might be an opportunity for elderlies to 

increase their mobility and not be isolated from society.  

This research also has a scientific relevance. It contributes to the existing literature in the field of public 

transport during pandemics. This research aims to create a public transport system that can meet the 

transportation needs of people during the pandemic with reduced exposure to the virus. The research 

provides insight into how pandemic social distancing measures affect the mobility capacity of the public 

transport system and whether a mobility capacity integrated transport system-public transport and bike 

sharing systems-can maintain capacity under the pandemic circumstances. In addition, an optimization 

model is developed in this study aiming at the effective design and operation of a hybrid mixed-fleet bike 

sharing system. This optimization model will study whether a bike sharing system can compensate for the 

limited capacity in the motorized public transport system due to distancing constraints. 
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1.5. Research approach 
This section provides the methodology for answering the sub questions of this thesis. A more detailed 

explanation of the developed modeling methodology is provided in Section 3.1. 

The first sub question is related to the connection between the existing social distancing measures due to 

COVID-19 pandemic and the mobility capacity in public transport systems in different counties, states, or 

cities. This step applies literature research and desk research. The factors to consider during research are 

social distancing measures due to COVID-19 pandemic situation and the capacity restriction on public 

transport system. The collection and the deliberation of various cases will give a good overview of the 

general situation. Based on this collected information, the way in which social distancing measures affect 

capacity and disrupt the operation of public transport system can be understood.  

It has already been mentioned that the bike sharing system will be operational integrated into the current 

public transport system. More specifically, this integration concerns the demand and mobility capacity 

provided by the public transport system. Thus, the next step is to determine the demand of the two 

systems, i.e., motorized public transport system and bike sharing system, considering the distancing 

measures that apply on the motorized public transport system and the new bike network. The basic 

assumption is that demand exceeding the capacity implied by the 1.5 meters in public transport will not 

be allowed to board. This unsatisfied demand will be the new demand for the bike sharing system. After 

the separation of demand in the two systems, the optimization model for the design and the operation of 

the hybrid mixed-fleet bike sharing system will be developed. 

The next step corresponds to the analysis of the case study and the implementation of the developed 

approach in the case study. The case study is the city of Milan in Italy. The two systems under study are 

the subway system and the public bike sharing system. Based on the analysis of the given data for the bike 

sharing system, the needs that exist in the system will be more understood. The system’s needs and the 

needs that will arise from the social distancing constraints will be the input information to create the 

various designs and demand scenarios. The main purpose is to understand the design and operation needs 

of the bike-sharing system in order to compensate for the limited capacity in the public transport system. 

There are different types of demand scenarios. The main distinction is between the demand scenarios for 

the normal state of the transport system and the demand scenario for the pandemic year. A bike sharing 

system is not in constant demand every day. Therefore, this fluctuation in demand will be studied by 

creating different demand scenarios. The characteristics of the bike sharing system will be reflected in the 

designs. The variables that will change in the designs are the number of stations in the system, the location 

of some stations and the values of the capacity parameters and available bikes in the stations. These 

scenarios and designs will be the input into the optimization model. Further analysis will find which 

features of the bike sharing system are more effective to compensate for the limited capacity in the public 

transport system.  

The last step is to answer the 4th sub-question which is related to the possibility of generalizing the findings 

of the above approach. To answer this question, it should be kept in mind that case studies and public 

transport systems have similarities but also differences. The researcher will have to consider several 

things. Some of these are whether the development of the methodology is based on general principles or 

is relevant to the specific case study, whether the provision of additional mobility capacity with bike 

sharing systems can be applied to other cities and whether the alternative could be extended to the 
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application of other shared mobility systems such as scooters or cars. By using critical mind, answers will 

be given to the above thoughts and the sub-question 4.  

 

1.6. Report outline 
The outline of the remaining thesis report is introduced in Figure 1-1. The literature review in Chapter 2 

provides information about the public transport systems and the impacts of the pandemic, the bike 

sharing systems, the integration of bike sharing and public transport systems and approaches for the 

design and operation of bike sharing systems. In Chapter 3, the developed methodology is analyzed. On 

the one hand, the demand integration of the two systems is analyzed and on the other hand, the 

optimization model for the bike sharing system is described. Chapter 4 presents the case study which is 

the subway and public bike sharing systems in the city center of Milan, the implementation of the 

developed approach in the case study of Milan as well as the analysis and interpretation of the results. 

The last chapter, which is chapter 5, mentions the conclusions of the study and recommendations for 

further research. 

 

 

Figure 1-1: Thesis outline 
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2. Literature review 
This section presents useful information and background work that has been on the field of this research. 

The aim is to understand how the social distancing measures affect the mobility capacity of public 

transport system and the relation that may exist between public transport and bike sharing systems. In 

addition, a broader insight into approaches to the design and operation of a bike sharing system is sought. 

Online libraries containing scientific research are used to prepare this literature review. These online 

libraries are Science Direct and Google Scholar. Some of the keywords used to find relevant literature are 

“bike sharing system design”, “bike sharing system operation”, “bike sharing system optimization model”, 

“bike”, “e-bike”, “integration of public transport and bike sharing systems”, “Covid-19”, “Covid-19 and 

public transport capacity”, “distancing measures”. With searching these keywords, many interesting and 

related papers were found. Even more relevant research was found by checking and evaluating the 

references of these papers-known as snowballing method. It should be noted that the thesis topic is a 

dynamic topic since it is currently evolving. This means that new research is constantly being presented. 

Therefore, the literature can be updated. 

The structure of the remaining chapter is as follows. Section 2.1 provide information and details for the 

public transport system and how it is affected by the Covid-19 pandemic. Section 2.2 and section 2.3 

provide information on bike sharing systems and e-bikes introduction, while section 2.4 presents the 

relation between the public transport and bike sharing systems. Finally, optimization models and 

approaches for the design and operation of the bike sharing systems are presented in section 2.5. 

 

2.1. COVID-19 safety measures and public transport system 
The pandemic situation has forced many governments to take measures to reduce the spread of the 

coronavirus. Some of these measures, known as social distancing measures, are teleworking, closing 

schools, shops, and social places, banning public events, and keep at least 1 meter distance from others 

(De Vos, 2020; WHO, 2021). On the one hand, distancing measures as well as the personal choices of 

people to avoid transportation modes where social distancing cannot be easily applied led to the change 

of travel behavior and the fall of ridership in public transport (De Vos, 2020; Jenelius & Cebecauer, 2020). 

On the other hand, distancing measures affect the public transport system since transport agencies 

reduced or change their services and reduced the capacity of modes.  

Several studies have reported a drop in public transport ridership and change in travel behavior during 

the first wave of the pandemic (Bucsky, 2020; de Haas, Faber, & Hamersma, 2020; Jenelius & Cebecauer, 

2020; Teixeira & Lopes, 2020). In Sweden, there has been a 40-60% drop in public transport ridership. 

There was a decline in the road traffic, which was overcome, while the use of bikes showed stability 

compared to last year and in some areas showed an increase (Jenelius & Cebecauer, 2020). Bucsky (2020) 

stated that there was a decrease in demand in all means of transport in Budapest. Public transport showed 

the largest decrease, while cycling and the bike sharing showed the smallest. However, the car is the one 

that replaced the public transport share (Bucsky, 2020). In the case of New York, subway and bike sharing 

systems have seen a significant reduction in their ridership. However, research shows that the bike sharing 

system was more resilient to the pandemic situation (Teixeira & Lopes, 2020). A survey conducted in the 

Netherlands, de Haas et al. (2020), showed that the public tranport had the highest decline while cycling 
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and walking become more attractive for use. Research has also shown that people are very positive about 

using a car and negative about using public transport during a pandemic de Haas et al. (2020). 

Regarding the mobility capacity of public transport, it is also affected by the safety measures. One of the 

key suggestion for reducing the spread of the virus is to avoid small areas that are overcrowed such as 

public transport (Morawska, et al., 2020). This is consistent with the fact that viruses such as Covid-19 are 

trasmitted by breathing in large or small airborne particles, which accumulate over time in enclosed 

places, and by contact with already infected people or surfaces (Morawska, et al., 2020; Prather, Wang, 

& Schooley, 2020). This has led governments and local authorities to impose personal distance restrictions 

on public transport. A research was conducted to collect data, which are presented in Table 2-1, on how 

social distancing measures have affected public transport mobility capacity. Each country/state developed 

its own measures and applied them according to the periods of the outbreak of the virus. It is observed 

that a mask is mandatory in all cases while there is variation in the reduction of the mobility capacity per 

case. There are cases where the general measure of keeping 1-2 meters distance from others applies, 

such as in the Netherlands, Kansas or Austria (Bundesregierung, 2021; COVID-19 Updates, 2021a; Reis 

alleen als het nodig is , 2021). In these cases there are signs indicating which seats can be used (COVID-19 

Updates, 2021a). There are also cases that have more specific personal distancing constraints for public 

transport such as capacity reduction rates (New measures here to suppress the pandemic spread, 

personal responsibility remains the key, 2020; Publiction: Level 5, 2021) or exact number of passengers 

on public transport (COVID-19 Updates, 2021b; Coronavirus government response tracker, 2021). In some 

cases there is a combinations of measures (Diouf, et al., 2020; Tobing, 2020) or different rates of mobility 

capacity reduction per transport system (Diouf, et al., 2020), while in other cases the rate of mobility 

capacity reduction depends on the pandemic level (Covid-19 updates: information for tourists, 2021; 

Government Gazette search, 2021).  Finally, there are extreme cases, such as the case of Albania, where 

there was no public transport service during the first outbreak of pandemic (COVID-19 Information, 2021).  

 

Table 2-1: Different cases and the way which safety measures limiting the mobility capacity in public transport system 

Country/State COVID-19 measures in public transport  

Albania 
(COVID-19 Information, 2021) 
 

• Νo public transport in Tirana for 4 months 

• Face masks are mandatory for any individual 11 years old 
and above 

Australia: New South Wales (Public 
transport to double capacity, 2021; 
Transport, 2021) 

• Till 30th June: Capacity on trains carriage was 32 
passengers, while capacity for two-door buses was 12 
passengers 

• From 1st July: Capacity on trains carriage is 68 passengers, 
while capacity for two-door buses is 23 passengers 

• Face mask is mandatory 

Austria  
(Bundesregierung, 2021) 

• Keep a distance of 1 meter on modes and stations 

• Face mask is mandatory  

Croatia (New measures here to suppress 
the pandemic spread, personal 
responsibility remains the key, 2020) 

• Public transport capacity is restricted to 40% 

• Face mask is mandatory 

Greece  
(Government Gazette search, 2021)  

• Public transport capacity is restricted to 50% or 65% 
(depends on the pandemic level of the province) 

• Face mask is mandatory  
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Country/State COVID-19 measures in public transport 

Indonesia (Tobing, 2020) • Public transport capacity is restricted to 50% 

• Keep a distance of at least 1 meter from other passengers 

• Face mask is mandatory 

Ireland  
(Publiction: Level 5, 2021)  

• Public transport capacity is restricted to 25% 

• Face mask is mandatory 

Israel (The Government Approved the 
Ministry of Health New Restrictions In 
Addition to the Ones in Force, 2021; 
Ministry of Health's Motion to Extend the 
Validity of the Activity Restriction 
Regulations and to Add Additional 
Relaxation Measures Approved, 2021) 

• Public transport capacity is restricted to 50% or 75% 
(depends on the pandemic situation) 

• Face mask is mandatory 

Italy  
(ATM and the COVID-19 emergency: the 
management of the different phases, 
2021; Covid-19 updates: information for 
tourists, 2021) 

• Public transport capacity is restricted to 50-80% (depends 
on the pandemic situation) 

• Face mask is mandatory 

Kenya (in Nairobi) (Diouf, et al., 2020) • Capacity of the formal public transport system is restricted 
to 50% 

• Paratransit (14, 25 or 30-seater matatus) capacity is 
restricted to 60% 

• Face mask is mandatory 

Netherlands (Reis alleen als het nodig is , 
2021; Verantwoord reizen tijdens corona, 
2021)  

• Keep a distance of 1.5 meters on vehicles and stations 

• Not all seats are used in public transport vehicles, and it is 
not allowed to stand 

• Face masks are mandatory for any individual 13 years old 
and above 

Nigeria (in Lagos) (Covid 19: Lagos 
emphasises 60% loading capacity for 
public buses , 2020) 

• Public buses capacity is restricted to 60% 

• Commercial buses: maximum 8 passengers (out of 14) 

• Face mask is mandatory 

Sweden (Jenelius & Cebecauer, 2020; 
Domestic travel and public transport, 
2021) 

• Public transport capacity is limited to or close to nominal 
level (1st wave) 

• Mask is recommended during peak hours or throughout 
the trip in some regions (2nd wave) 

• Capacity of long-haul public transport is restricted to 50% 
(2nd wave) 

Tanzania (in Dar es Salaam) (Diouf, et al., 
2020) 

• Capacity of the formal public transport system is restricted 
to 50% 

• Keep a distance of at least 1.5 meters on stations/stops 

• Face mask is mandatory 

USA: Kansas  
(Coronavirus government response 
tracker, 2021; COVID-19 Updates, 2021a) 

• Keep a distance of almost 2 meters (6 feet) on station and 
modes 

• Buses operate with social distancing measures  

• Face mask is mandatory 

USA: Montana (in Helena capital) (2021; 
Governor's coronavirus task force, 2021) 

• Public transport operates with social distancing measures  

• Fixed route buses capacity: maximum 4 passengers 

• ADA Paratransit Buses: maximum 2 passengers 

• Face mask is mandatory for any individual 5 years old and 
above 
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Country/State COVID-19 measures in public transport 
USA: New Hampshire  
(Coronavirus government response 
tracker, 2021) 

• Bus capacity: 9 passengers per 10 meters (35 feet) bus 

• Face mask is mandatory 

USA: Wisconsin (in Madison capital) 
(Coronavirus government response 
tracker, 2021; COVID-19 Updates, 2021b) 

• Bus capacity: 20 people per bus 

• Face mask is mandatory 

 

Public transport is a closed, overcrowded space that increases the chances of transmitting influenza 

viruses from infected to uninfected people (Goscé & Jahansson, 2018; Troko, et al., 2011). Goscé & 

Jahansson (2018) study on the London Underground showed that there is a link between undergroung 

use and the spread of influenza viruses. Research has shown that the transmission of the virus is related 

to the length of time a person stays on the mode (Goscé & Jahansson, 2018). Another study (Shen, et al., 

2020) presents the evaluation of deferences between two buses that had the same origin and destination. 

There was an infected passanger on the one bus. The study claimed that 24 of the 68 passangers on this 

bus become infected. Also, the passengers of this bus had almost 40 times higher chance of being infected 

than the passengers of the other bus (Shen, et al., 2020). These studied conclude that public transport is 

a source of COVID-19 virus transmission.  

The reduced public transport capacity due to social distancing constraints, the increased likelihood of the 

virus spreading into public transport modes, the need for people to keep moving, and the prejudice 

against public transport strengthen the need to find a safe alternative to satisfy people mobility. Based on 

the studies of (Bucsky, 2020; de Haas, Faber, & Hamersma, 2020; Jenelius & Cebecauer, 2020), it seems 

that this tends to become the car. However, global warming requires the use of a more sustainable 

alternative (Elvik, 2009). The alternative that could be integrated with the current public transport system 

in order to maintain mobility capacity in the public transport system is the bike sharing system. Beyond 

environmental reasons, there are two other reasons for choosing this alternative. Many cities around the 

world as they try to deal with social distances measures become more friendly to pedestrians and cyclists 

by providing them with more urban space (Broom, 2020; Mobycom, 2020). Moreover, this moment there 

is a surge of people turning to the use of bike shared systems (Naka, 2020; Schwedhelm, Li, Harms, & 

Adriazola-Steil, 2020). 

 

2.2. Bike sharing systems 
In recent years, bike sharing systems have become very popular around the world (DeMaio, 2009; 

Fishman, 2016; Nikitas, 2019). There are currently just under 2000 operating systems (Nikitas, 2019) 

spread across North and South America, Europe, Australia, and Asia (Parkes, Marsden, Shaheen, & Cohen, 

2013; Shaheen, Guzman, & Zhang, 2010). Therefore, there is an increase in the design and operation 

studies of these systems. However, the existence of these systems is quite old.  

There are four generations of bike sharing systems (Fishman, 2016). The first generation, namely the 

“White Bike”, was introduced in Amsterdam in 1965 (Fishman, 2016). Fifty bikes without a locking system 

were placed in Amsterdam and everyone could use them free of charge (Shaheen et al., (2010)). However, 

this program did not survive for a long time (DeMaio, 2009; Midgley, 2011). The second generation, known 

as ‘Coin Deposit System’, was launched in Denmark (Fishman, 2016). The bikes of this system had a locking 
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system (Shaheen et al., (2010)). During the existence of the second generation, there was the first 

extensive program of shared bikes (DeMaio, 2009). These two generations of bike sharing systems have 

faced problems such as the theft of the fleet (DeMaio, 2009). To address these issues, the third generation 

of bike sharing systems has been established (Eren & Uz, 2020). This generation incorporates high-tech 

features such as smart cards or magnetic stripe cards for the locking system, phone access and 

telecommunication systems (Eren & Uz, 2020; Midgley, 2011; Shaheen, Guzman, & Zhang, 2010). Finally, 

the fourth generation of bike sharing system is demand-responsive and includes updated characteristics 

such as pricing policies for self-rebalancing and integration with the public transport or carsharing system 

(Shaheen et al., (2013)). The fourth-generation systems use GPS (Global Positioning Systems) for real time 

bikes’ tracking (Shaheen et al., (2013)) and tries to increase the quality and effectiveness of the system by 

using smart systems (Eren & Uz, 2020).  

Bike sharing systems can be divided into three categories considering the criterion of absence or existence 

of dock-based stations (Shaheen et al., (2020)). These three categories are the station-based or docked 

system, the free-floating system and the hybrid system which is a combination of both (Shaheen et al., 

(2020)). In the docked bike sharing system, the user can use a bike from one station and return it to any 

station in the system (Sayarshad et al., (2012)). This means that the users can make one-way trips, i.e., 

pick-up and drop-off stations are different, or retour trips, i.e., pick-up and drop-off station is the same. 

The disadvantages of the docked system are that its services are not door-to-door and the availability of 

bikes or parking slots at stations is not always adequate for the needs of the system (Ma, et al., 2020b). 

Another option is the free-floating bike sharing system which is dockless (Sun et al., (2019)). This system 

provides flexibility to the user as they do not need to pick up and return the bike to specific facilities (Sun 

et al., (2019)). The users do not need to worry about parking slot availability (Sun et al., (2019)) as they 

can leave the bike anywhere in the system’s operating area. The third option is the hybrid bike sharing 

system. The user can use a bike from one station and return it to any station in the system or to a non-

station area and vice versa (Shaheen et al., (2020)). In addition to its flexibility as a free-floating system, 

system stations provide additional benefits. In areas with high demand, the use of stations makes it easier 

to find a bike. In addition, the stations are charging points. Therefore, stations are useful for charging idle 

bikes (Albiński et al., (2018)).  

 

2.3. Introduction of e-bikes 
E-bikes have appeared and become a trend in parallel with the growing appearance of bike sharing 

systems (Ji et al., (2014)). Ownership of private e-bikes, despite their increased cost compared to 

conventional bikes (Ji, Cherry, Han, & Jordan, 2014; Paul & Bogenberger, 2014), is on the rise in regions 

such as Europe (Paul & Bogenberger, 2014), China (Campbell et al., (2016)) and Japan (Liu & Suzuki, 2019). 

The research of Ji et al. (2014) and Paul & Bogenberger (2014) indicate that e-bikes’ high purchase cost as 

well as the risk of such a purchase can be solved by integrating e-bike in the bike sharing system. The 

integration of e-bikes will allow users to travel longer distances without much physical fatigue and the 

terrain of the area (hills or steep slopes) will no longer be a barrier for the system (Campbell, Cherry, 

Ryerson, & Yang, 2016; Liu & Suzuki, 2019; Shaheen, Guzman, & Zhang, 2010). A study conducted in 

Australia on the elderly (age >= 65) found that e-bikes are an option for their daily commuting (Johnson 

& Rose, 2015). Therefore, the integration of e-bikes in the bike sharing system will be a solution for the 

movement of elderly as well as people with physical limitations. 
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The integration of e-bikes in the bike sharing system will bring new challenges to the system. The first 

challenge to consider is costs. Ji et al. (2014) research states that the price of e-bikes fluctuates and is 

usually twice the price of a conventional bike of the same quality. In Galatoulas et al. (2018) research, 

information was collected on different models of e-bikes. The result of the research is that the price of an 

e-bike ranges between 690 and 1375 €. Other costs to consider are the operating costs and maintenance 

costs of e-bikes and stations. The other challenge of an e-bike system is the need to charge their battery. 

To achieve this, a dependable energy source is needed. There are two sources that can be used which are 

electricity and solar energy (Cherry, Worley, & Jordan, 2010; Ji, Cherry, Han, & Jordan, 2014). Both sources 

have their drawbacks. The use of the electricity source presupposes better design in the locations of the 

station which increases the installation costs, while the use of the solar energy presents the problem of 

not easy storage of energy in the battery (Cherry, Worley, & Jordan, 2010; Ji, Cherry, Han, & Jordan, 2014). 

Both studies report that the electrical source constitutes the most dependable energy source. An 

additional element to consider is the minimum charge rate of an e-bike which will allow its use.  

 

2.4. Bike sharing and public transport systems 
There are many elements that can influence users as to whether to use the integrated public transport 

and bike sharing system (van Mil et al., (2020)). Therefore, the bike sharing system can complement or 

substitute the existing public transport system (Martin & Shaheen, 2014). Leth et al. (2017) studied the 

spatial analysis of the bike sharing system in Vienna and the connection between the bike sharing system 

and public transport system, considering travel times. The result of the research was that the bike sharing 

system in Vienna was complementary to the public transport system (Leth et al., (2017)). Another research 

that used travel time to study the influence of a bike sharing system on the public transport system is that 

of (Jäppinen et al., (2013)). The research showed that travel time was reduced in integrated system 

compared to the public transport system. However, the difference in travel time was noticeable in remote 

areas of Greater Helsinki and not so much in areas with a dense public transport network. The final 

conclusion of the research is that a bike sharing system can be complimentary to public transport 

(Jäppinen et al., (2013)). 

The research of Martin & Shaheen (2014), which was carried out in two U.S. cities -Washington DC and 

Minneapolis-, concluded that the bike sharing system was complementary to the public transport system 

in the suburbs, while it was a substitute for the public transport system in the densely populated city 

center. A recent research (Song & Huang, 2020) presented a structure based on temporal and spatial 

consideration to understand how the bike sharing system is connected to the public transport system. 

This research was tested in the Minnesota transport system. Research has shown that the two systems 

were more likely to be complementary. Another interesting thing was that even in some cases where the 

two systems were considered competitive, the first-/last-mile move to the public transport was done by 

the bike sharing system (Song & Huang, 2020). (Ma et al., (2020a)) research was conducted for the city of 

Delft in the Netherlands and aimed to understand the influence of bike sharing systems in modal shift. 

They found that bike sharing systems are competitive with bus and tram and are complementary to trains. 

Campbell & Brakewood (2017) studied the impacts of bike sharing system on bus ridership in various parts 

of New York. In their research, bus routes were separeted based on the existence or non-existence of the 

bikesharing system. The result of the research was that there was a reduction in bus ridership. The bike 

sharing system therefor operated competitively (Campbell & Brakewood, 2017).  
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A bike sharing system can also be a solution in the event of a long-term or short-term disruption of the 

public transport system (Fuller, Sahlqvist, Cummins, & Ogilvie, 2012; Saberi, Ghamami, Gu, Shojaei, & 

Fishman, 2018; Younes, Nasri, Baiocchi, & Zhang, 2019). Both researches (Fuller, Sahlqvist, Cummins, & 

Ogilvie, 2012; Saberi, Ghamami, Gu, Shojaei, & Fishman, 2018) explore the impacts of three London 

Underground strikes on bike sharing system. Fuller et al. (2012) used a discontinuous pattern of time 

series to study this. The research concluded that the disruptive events increased the number of trips per 

day in the bike sharing system. An increase in travels was also observed in the period before and after the 

strikes (Fuller et al. (2012)). In Saberi et al. (2018) research, two analyzes were combined to extract the 

results: spatial-temporal analysis and network-theoretical analysis. They found that public transport 

disruption caused a significant increase in the number of bike trips as well as an increase in travel time. In 

addition, public transport disruption has bought considerable connectivity to the bike network (Saberi et 

al. (2018)). Younes et al. (2019) research examined the impact that long-term disruptions to the 

Washington metro system have had on the bike sharing system. There has been an increase in the use of 

the bike sharing system at the topical level. However, the bike sharing system was complementary to the 

functional part of the metro system and after the ens of the disruptions, its use returned to its normal 

levels (Younes et al. (2019)).   

 

2.5. Bike sharing systems design 
An element to consider for the efficiency of a bike sharing system is its design and operation. These include 

the size of the system, the relocation of the bikes and the selection of the station locations with the goal 

of better system management. This type of problem can be addresses by optimization models. The main 

objective categories of these models are the maximization of demand coverage, the minimization of 

transportation costs and overall costs or the maximization of profit.  

Many studies in the literature deal with the fleet sizing, the management of the bike sharing system and 

stations’ location topic. The study of Saharidis et al. (2014) develops an integer linear program to satisfy 

the unmet demand having as limitation the available budget. The output of this model is the total number 

of bikes in the system, the location of the stations and their capacity as well as the allocation of the bike 

fleet in the system (Saharidis et al. (2014)). Frade & Ribeiro (2015) presents a model that maximizes 

demand coverage by having as restrictions the available budget and service level. The model, in addition 

to finding the size of the fleet and the number of relocated bikes, determines the location and capacity of 

the bike stations (Frade & Ribeiro, 2015). Çelebi et al. (2018) uses a combined approach to find the 

location and size of stations on a bike sharing system. The approach consists of a set covering problem for 

demand assignment and a queue model. The approach minimizes the total unsatisfied demand (Çelebi et 

al. (2018)). Another research that maximizes the demand covered by the installed stations is the research 

of Park & Sohn (2017). The researchers use the maximum coverage location problem to design the bike 

sharing system, i.e., bike station location and capacity of the station. 

The study of Sayarshad et al. (2012) determines the planning and analysis of a bike sharing system by 

using a multi-periodic formulation. The model defines the fleet dimensioning and the number of relocated 

bikes with the aim of maximazing the profit of the system and reducing unsatisfied demand (Sayarshad et 

al. (2012)). Another study that introduces a model that maximizes revenue is that of Martinez et al. (2012). 

The study examines the optimal solution for the station location if mixed fleet (regular and electric bikes) 
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bike sharing system having capacity limitations. In addition, the model defines the size of the fleet and 

the bike rebalancing operations in a day (Martinez et al. (2012)). 

On the other hand, the approaches of  Yan et al. (2017) minimize the overall costs of the system. They are 

proposing two time-space network models (deterministic and stochastic) to specify the size of the bike 

fleet and the allocation of the fleet of a leisure-oriented bike sharing system. The two models also 

determine the bike station location and the routing of bikes (Yan et al. (2017)). Caggiani et al. (2020) 

presents a model that minimizes costs (initial investement and operating) by trying to offer a balanced 

level of service in terms of spatial distribution. The model’s outcomes are related to the fleet sizing, the 

number and capacity of the stations, and their location. Nevertheless, the application of the model is 

limited to small-scale networks (Caggiani et al. (2020)). The model created in Lin & Yang (2011) study aims 

to minimize the overal costs and takes into account the unmet demand by introducing penalty costs for 

it. The proposed approach intends at the design of the bike sharing system, i.e., the network structure, 

the station location problem and the users’ routes, and proposes an intiger nonlinear program. The 

reseach does not apply in a real case (Lin & Yang, 2011).  Yuan et al. (2019) uses a mixed integer linear 

program to design and operate a bike sharing system. The objective function minimizes daily costs. The 

model looks at the location and size of stations, the bike allocation and the location of system depots. The 

model is applied in a real case (Yuan et al. (2019)).  

There are studies that use different approaches to designing and operating a bike sharing system. Jian et 

al.  (2016) research aims to optimize the relocation of bikes and docks for each station, trying to reduce 

dissatisfied users. To achieve this, it is developed a discrete-event simulation model and four simulation 

optimization heuristics are created. The Citi Bike system in New York was used to apply the proposed 

methods (Jian et al., (2016)). Another study that uses simulation to operate a bike sharing system is that 

of (Soriguera et al., (2018)). The proposed approach is to better provide bikes and docks on the stations 

with the aim of reducing costs. This is achieved by developing an agent-based simulation model and 

evaluating different system designs. The Barcelona bike sharing system was used to implement the model 

(Soriguera et al., (2018)). Fernández et al. (2020) uses an agent-based simulation environment to evaluate 

different policies regarding the operation of the bike sharing system. The model implemented in the 

BiciMAD Madrid system. The main goal is to create the most efficient bike sharing system installation. The 

key elements that the simulation model plans are the location and capacity of the stations and the 

relocation (Fernández et al. (2020)). 

Table 2-2 presents the above studies in summary. More specifically, reference is made to the problem 

studied by each research, the goal of the objective function of each research, the developed methodology 

and the case study of each research. The abbreviations that appear in the table are explained at the 

bottom part of the table.    

The reported studies focus on the study of the design and operation of bike sharing systems. Their 

approaches simultaneously optimize various features of a bike sharing system such as station location, 

bike relocation, bike availability at stations or fleet size. Various programming and simulation methods 

are used to formulate the optimization models of the studies. However there is no programming method 

that is chosen more often than the rest for the formulation of the optimization models. In each study, the 

formulation of optimization models is based on different factors. All optimization models, apart from the 

models presented in the studies of Çelebi et al. (2018) and Park & Sohn (2017), take into account in their  
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Table 2-2: Analysis of research for Bike Sharing System Design 

  Objective    

Reference Problem MDC MUD MP MC Method Case 

Caggiani et al. (2020) Bike station    ✓  ILP AC 
Çelebi et al.  (2018) Bike station  ✓    MINLP Istanbul 
Fernández et al. (2020) Bike location     ABS Madrid 
Frade et al. (2015) Bike station,  

Bike relocation  
✓     LP Coimbra 

Jian et al. (2016) Bike allocation 
Dock allocation 

 ✓    SO New York 

Lin et al. (2011) Bike station, 
bikeways 

   ✓  INLP AC 

Martinez et al. (2012) (E)Bike station, 
(E)Bike relocation 

  ✓   MILP Lisbon 

Park et al. (2017) Bike station ✓     BILP Seoul 
Saharidis  et al. (2014) Bike station  ✓    PILP Athens 
Sayarshad et al. (2012) Bike station,  

Bike relocation 
  ✓   ILP Tehran 

Soriguera et al. (2018) Bike rebalancing 
Bike relocation 

   ✓  ABS Barcelona 

Yan et al. (2017) Bike station,  
Bike relocation 

   ✓  MILP New Taipei 

Yuan et al. (2019) Bike station,  
Bike relocation 

   ✓  MILP Beijing 

This study Bike virtual station,  
E-bike station, 
Bike relocation 
E-bike relocation 

✓     LP Milan 

Objective: MDC (Maximization of demand coverage), MUD (Minimization of unmet demand), MP (Maximization of profit), MC 
(Minimization of costs) 
 
Method: LP (Linear Program), ILP (Integer Linear Program), MILP (Mixed-Integer Linear Program), INLP (Integer Non-Linear 
Program), MINLP (Mixed-Integer Non-Linear Program), BILP (Binary Integer Linear Program), PILP (Pure Integer Linear 
Program), SO (Simulation – Optimization), ABS (Agent-Based Simulation) 
 
AC: Artificial case 

 

formulation various costs of a bike sharing system. Regarding the computational requirements, Çelebi et 

al. (2018) model may cannot cope with solving a large-scale problem due to non-linearity and dynamic 

programming. Also, Caggiani et al. (2020) model has not been tested on large-scale problems, so maybe 

this cannot cope with solving them. This of course can be solved by developing a heuristic technique. 

However, there are studies that have either used simple model for better computational effeciency (Park 

& Sohn, 2017) or have already developed a heuristic techinque (Martinez, Caetano, Eiró, & Cruz, 2012; 

Yan, Lin, Chen, & Xie, 2017). Frade & Ribeiro (2015) model places the bike stations in each demand zone, 

however, it does not provide their exact location. The only study that includes a mixed fleet, i.e., bike and 

e-bike, is the study of Martinez et al. (2012), while the model of Yan et al. (2017) is focuded on leisure bike 

sharing systems. Therefore each model has positive and negative features as well as interesting features 

but also limitations.  
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2.6. Scientific gap 
There are many studies that research the design and operation of a bike sharing system. The optimization 

model developed in each study differs in the features, such as the level of service or the costs of the 

system, that it considers in its formulation. These features are expressed in the objective function and the 

type of constraints of the models. Most of the reported research include constraints regarding various 

costs of a bike sharing system or even their objective function refers to the cost or profit of the system. 

This means that the level of service offered by the bike sharing systems designed by these optimization 

models is limited by the available budget. It is also observed that the optimization models concern the 

design and operation of either free-floating systems or docked system whose characteristics differ. The 

main difference is that the design of the docked system requires the installation of stations, while in the 

free-floating system there may be no stations. Moreover, it is observed that only one study Martinez et 

al. (2012) approaches the design of a mixed-fleet-bike and e-bike-bike sharing system. Therefore, there is 

no study that simultaneously designs a bike sharing system consisting of a mixed-fleet and that the bike 

system is free-floating, while the e-bike system is docked. Finally, none of the research concern extreme 

situations and disturbances in public transport system such as a pandemic situation and the distancing 

constraints.  

In the case that the system costs are not considered, it leads to the development of an optimization model 

that can provide the design and operation of a bike sharing system designed to provide increased mobility 

capacity. In addition, a mixed-fleet bike sharing system can serve different cases of people such as young 

people, the elderly, or people with a vulnerable health condition and different distances. A hybrid system 

can cope with the increased demand that will result from the distancing constraints-the reduction in the 

capacity of public transport systems-as it combines the positives of docked and free-floating systems. To 

the best of authors knowledge, this is the first study which considers a pandemic situation and mobility 

needs arising due to distancing constraints on public transport system and seeks to integrate the public 

transport system and the bike sharing system in terms of mobility capacity. In addition, it is the first 

research to develop an optimization model for a hybrid mixed-fleet bike sharing system. That is, the study 

deals with the creation of a resilient public transport system that can provide mobility capacity in extreme 

and special situations. In addition, it is the first research to develop a bike sharing system optimization 

model that incorporates the design and operation of a mixed-fleet system as well as the different design 

approach-free floating and docked-of the two modes system. All the above features create an advanced 

optimization model which optimizes the design and operation of bike and e-bike systems separately but 

simultaneously. 

The following chapters present the developed methodology and its application in the chosen case study. 
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3. Modeling approach development 
This section presents the developed framework of this study. The main goal of the framework is to present 

the methodology that will be developed in this study. More specifically, it refers to the steps of the 

methodology that will be taken as well as the order and the relation that exists between these steps. The 

framework is divided into two parts which are the integration of the public transport and bike sharing 

systems and the optimization in the design and operation of the bike sharing system. In the first part of 

the integration, the existing demand of the public transport system is separated in demand for the public 

transport and bike sharing systems. The effect of the social distancing measures on the capacity of the 

public transport system and the new bike network will be considered in carrying out this part. In the 

second part, the optimization model for the design and operation of the bike sharing system based on the 

needs arising from the pandemic will be developed. The optimization model will maximize the covered 

demand, i.e., the provision of mobility capacity, considering the level of services of the bike sharing 

system. Demand scenarios and system network designs for the implementation of the optimization model 

will be developed. The purpose of the developed methodology is to create an integrated public transport 

system that considers extreme situations and disturbances in the public transport system, such as the 

pandemic situation and social distancing measures, and the needs arising from this extreme situation.  

Following the chapter, the modeling framework is described in section 3.1. The section 3.2 describes the 

assumptions made, while sections 3.3 and 3.4 present the mobility integration of the two systems and the 

optimization model of the bike sharing system, respectively. 

 

3.1. The modeling framework 
The pandemic is an unprecedented situation. Measures taken to reduce the spread of the virus have 

affected many sectors. The public transport sector is one of these sectors. The social distancing 

restrictions in force have greatly reduced public transport capacity (ITF-OECD, 2020; Krishnakumari & 

Cats, 2020). In addition, many people are suspicious of public transport because it is considered that the 

chances of transmitting the virus are increased in the closed and overcrowded public transport vehicles 

(Goscé & Jahansson, 2018; Troko, et al., 2011). The problem that arises from this situation is that the 

movement of people becomes more difficult as there is a reduced supply of mobility. The magnitude of 

this problem will be more pronounced when the normal rhythms of life return and therefore the demand 

for transportation reaches high levels. The purpose of this thesis is to create an integrated public transport 

system that can offer the required mobility capacity to public transport users during extreme situations 

and disturbance such as a pandemic situation. Therefore, a new public transport system should be set up 

to be able to counterbalance for limiting capacity in the current public transport system because of the 

distancing measures imposed. Given the global warming (Elvik, 2009), the tendency of cities to provide 

more urban space to cyclists and pedestrians due to the pandemic situation (Broom, 2020; Mobycom, 

2020) and the increase in the use of bike sharing systems at this time (Naka, 2020; Schwedhelm, Li, Harms, 

& Adriazola-Steil, 2020), the bike sharing system is chosen to be integrated into the public transport 

system. This integration will provide the necessary mobility capacity to public transport users but also the 

alternative of a safer means of transport, i.e., the absence of contact with many people. Efficient design 

and proper operation of the bike sharing system based on the needs arising from the pandemic and the 

corresponding measures will try to counterbalance the needs for mobility. The modeling framework of 

the thesis which includes the demand and mobility integration of the public transport and bike sharing 
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systems and the optimization model (design and operation) of the bike sharing system under the impacts 

of social distancing measures is shown in Figure 3-1. In essence, this framework is a flowchart. The 

flowchart shows the various steps of a process and their sequence. In this flowchart, the rectangles 

represent a process or a state, while parallelograms are used for input or output operation. The arrows 

connect the symbols and indicate the flow of process and information. The structure is described in more 

detail below. 

The above part of the framework in Figure 3-1 shows the demand integration of the public transport and 

bike sharing systems. More specifically, the pandemic has created an extreme and unknown situation and 

the measures to reduce the spread of the virus are affecting the public transport sector. Distancing 

measures have reduced public transport capacity and governments are promoting bike use by creating 

new bike network or implementing policies. The available information, which is related to the pandemic 

situation, is the capacity limitation on public transport due to the social distancing measures. Additional 

information that will be used as input to the next step is system options (public transport or bike sharing 

systems), public transportation timetable and the origin and destination of public transport system users 

of a specific day. Τhe reported data can be collected from internet sources such as the website of the 

public transport operator or case study analysis. In case some data is not available, this data can be 

generated. All this is the input data in the next step. The next step is to create a mathematical model that 

will calculate the load of each public transport vehicle per station and if exist, the demand per stop that 

cannot board the vehicle due to social distancing restrictions (system’s unsatisfied demand). The 

formulation of the model considers boarding passengers per station and disembarking passengers per 

station. Moreover, it is considered the reduced capacity of the public transport system. This means that 

boarding the public transport vehicle is not allowed if the vehicle’s available capacity due to the distancing 

measures has been exceeded. Moreover, the mathematical model will give priority to boarding people 

who have a more distant destination. This means that in the case that two passengers want to board but 

there is only one spot available based on the distancing constraints (vehicle free capacity = 1), the model 

will consider boarding the one whose destination is farthest away while the other passenger will be 

considered as unsatisfied demand. The result of implementing the mathematical model will be the 

distribution of public transport users in public transport demand and unsatisfied demand. Unsatisfied 

demand will be the demand of the bike sharing system as it has been assumed that there is only this 

transport alternative for users. Therefore, the demand will be divided into public transport system 

demand and bike sharing system demand which will be fixed. This means that the demand will be for a 

specific day. The bike sharing system consists of two modes, the bike and e-bike. The next step is the 

separation of public transport unsatisfied demand in these modes. The input data in this step will be the 

percentages of use of each mode for the realization of a certain travel distance and the travel distances 

based on the bike network between station with unsatisfied demand. The bike network consists of the 

existing network and the new network created due to the pandemic situation. After that step, the demand 

of the bike and e-bike will be known. The final output of this part will be the separation of demand into 

demand for public transport, bikes, and e-bikes systems. Demand for bikes and e-bikes is an input to the 

next part. Therefore, the demand for the bike sharing system is an exogenous factor in the next part of 

optimization.  

The next part of the framework is the optimization part in which the demand of the integration part is the 

initial input. The first step is to develop an optimization model for the bike sharing system. This 

optimization model will focus on the design and operation of the bike sharing system to provide efficient 



 

19 
 

mobility capacity in extreme situations and disturbances such as the pandemic situation. Based on this, 

the bike sharing system chosen to be studied is a hybrid mixed-fleet bike sharing system. The 

characteristics of the system-hybridity and mixed fleet-will target the needs of the pandemic. The 

provision of a mixed fleet will serve the needs of different types of users and the coverage of different 

distances, while the hybridity will serve the increased needs for the provision of mobility. These features 

are selected for the bike sharing system so that the best possible mobility capacity can be achieved. The 

main goal-objective to optimize-of the model will be the maximization of the total covered demand, i.e., 

the bike system’s demand and e-bike system’s demand, having as a criterion the level of services that the 

system will provide. The next parallel step is the creation of demand scenarios and designs. There are 

different types of demand scenarios in which the demand for the existing bike sharing system will vary 

while the demand for the bike sharing system resulting from the integration will be fixed in all scenarios 

to be used. A bike sharing system is not in constant demand every day. Therefore, this fluctuation in 

demand will be studied by creating different demand scenarios. The characteristics of the bike sharing 

system (model’s parameters) and the current bike sharing system of the city will be reflected in the 

designs. The features that will change in the designs are the number of stations in the system, the location 

of new stations and the values of the capacity parameters or the available bikes in the stations. These 

demand scenarios and designs will be the input into the optimization model. In the next step, the model 

application will take place. This step is repeated. This repetition is symbolized as N in Figure 3-1. The 

outputs from each repetition will be the values for the model variables, i.e., the portion of covered 

demand, the number of stations, the number of available modes in each station and the number of 

relocated modes, and the total fleet size of the system. Once the data for all repetitions have been 

collected, the data will be interpreted and compared. After this process, the results for the integration of 

the two systems can be formed and whether this integration can maintain mobility capacity in public 

transport system in extreme situations and disturbances. 

 

3.2. Assumptions 
At this point a reference should be made to the research assumptions. The assumptions are defined 

below: 

• It will be considered that there is no competition from other micromobility systems.  

• Demand exceeding the capacity implied by the 1.5 meters in public transport will not be allowed 

to board. 

• The optimization model satisfies the system’s demand but also relocates bikes and e-bikes. The 

system is in demand throughout the day. However, the relocation takes place at specific times 

during the day. Hence, a common balanced approach should be found. This means that the day 

will be divided into equal time periods. The result of this approach is that demand will enter the 

system at specific times rather than continuously. Therefore, the needs for mobility provision will 

be overestimated. 
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Figure 3-1: Modeling framework 

 

3.3. Demand integration of public transport and bike sharing systems 
The objective of the integration of the two systems is to find the demand per system. The approach to 

achieving this integration is based on the factors of the pandemic, namely the capacity constraints on 

public transport and the new bike system network. The first step is to create a mathematical model that 

calculates the permissible boarding of demand per station of each public transport vehicle and exports 

the unsatisfied demand per station. The mathematical model gives priority to boarding users with the 

farthest destination. The inputs of the model are the capacity of the public transport vehicle, the 

percentage of permissible occupancy due to the distancing constraints, the size of the network (i.e., the 

number of stations per line), the number of schedules and the existing demand of the public transport 

system. While the outputs of the model are the vehicle load per station, the demand boarded the vehicle 
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per station as well as its destination station and the unsatisfied demand per station as well as its 

destination station. Therefore, the destination pairs of the unsatisfied demand are known. The result of 

this mathematical model is the distribution of demand in public transport and bike sharing systems.  

The developed mathematical model and the notation of the model (Table 3-1) are presented below.  

 

Table 3-1: Integration mathematical model notation 

Sets and indices 

P                 : set of stations with indices i and j     
K                 : index for schedule 

Parameters 

𝑙𝑑𝑘𝑖             : load of schedule k in station i 
𝑑𝑒𝑚𝑘𝑖𝑗       : demand from station i to station j for schedule k 

𝑢𝑛𝑑𝑒𝑚𝑘𝑖𝑗  : unsatisfied demand from station i to station j for schedule k 

ac               : allowed capacity on the public transport vehicle 
𝑢𝑏𝑘𝑖            : disembarking passengers in station i for schedule k 
𝑏𝑘𝑖              : boarding passengers at station i for schedule k 

  

The developed integration approach is the following. 

• For the first station of the line 

The vehicle load is given by Equations (3-1) and (3-2). Equation (3-1) defines the vehicle load when it is 

lower than the available vehicle capacity, while Equation (3-2) defines the vehicle load when it is higher 

than the available vehicle capacity due to the distancing constraints. Equation (3-1) states that the load 

of the schedule k at the first station of the line is equal to the sum of the demand of the first station to all 

the other stations of the specific vehicle line. While the load of the schedule k at the first station of the 

line is equal to the allowed capacity of the vehicle due to the distancing constraints (Equation (3-2)). 

 

𝑙𝑑𝑘 1  

 

The unsatisfied demand of the schedule k from the first station to any other station is zero when the 

vehicle load is lower than the available vehicle capacity. (Equation (3-3)). In the case where the vehicle 

load is higher than the available vehicle capacity, the unsatisfied demand (Equation (3-4)) of the schedule 

k from the first station to a station j is equal to the sum of the demand from the first station to all other 

stations and the demand from the first station to the station j after subtracting the allowed capacity on 

the vehicle. 

 

  𝑢𝑛𝑑𝑒𝑚𝑘 1 𝑗  

  

= ∑ 𝑑𝑒𝑚𝑘 1 𝑗𝑗𝜖𝑃  , if 𝑙𝑑𝑘 1 < ac (3-1) 
   
= ac , if 𝑙𝑑𝑘 1 > ac (3-2) 

= 0 jP , if 𝑙𝑑𝑘 1 < ac (3-3) 
   

= ∑ 𝑑𝑒𝑚𝑘 1 𝑗𝑗𝜖𝑃   - ac +  𝑑𝑒𝑚𝑘 1 𝑗  jP , if 𝑙𝑑𝑘 1 > ac (3-4) 
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• For all other stations of the line 

Equation (3-5) determines that the passengers who disembark from the schedule k in station i are equal 

to the total demand of all the previous stations that have as destination the station i if you exclude the 

unsatisfied demand of all the previous stations that have as destination the station i, while passengers 

boarding the schedule k at the station i are equal to the total demand from the station i to all subsequent 

stations on the line (Equation (3-6)).  

                                            𝑢𝑏𝑘 𝑖  = ∑(𝑑𝑒𝑚𝑘 1:𝑖 𝑖 - 𝑢𝑛𝑑𝑒𝑚𝑘 1:𝑖 𝑖)  (3-5) 
                                            𝑏𝑘 𝑖  = ∑ 𝑑𝑒𝑚𝑘 𝑖 𝑖+1:𝑃 (3-6) 

 

In the case where the vehicle load is lower than the available vehicle capacity due to distancing 

constraints, the load of the schedule k at the station i is equal to the load of the schedule k at the previous 

station (i-1) and the passengers who want to board at station i minus the passengers who want to 

disembark at the station i (Equation (3-7)).  Equation (3-8) specifies that the load of schedule k at station 

i, when the vehicle load is higher than the available vehicle capacity, is equal to the allowed capacity on 

the vehicle. 

 

𝑙𝑑𝑘 𝑖  

 

Equation (3-9) states that there is no unsatisfied demand for the schedule k from station i to any other 

station j when the vehicle load is lower than the available vehicle capacity. While the unsatisfied demand 

of schedule k from station i to station j, when the vehicle load is higher than the available vehicle capacity, 

is equal to the vehicle load at the previous station (i-1) and the demand of station i to the station j after 

subtracting the allowed capacity of the vehicle and passengers disembark at station i (Equation (3-10)).  

 

  𝑢𝑛𝑑𝑒𝑚𝑘 𝑖 𝑗   

  

The unsatisfied demand that is a result of the first step, is the demand of the bike sharing system. The 

second step of the integration approach is to separate bike sharing system demand into bike demand and 

e-bike demand. This can be achieved based on the travel distances. The input data for this step are the 

unsatisfied demand from the public transport system, the travel distances of the bike network, which has 

been extended due to the pandemic situation, between the stations of the public transport system with 

unsatisfied demand and the rates of use per mode-bike and e-bike-for specific distance intervals. Travel 

distances can be aggregated from internet sources, such as google maps, while the usage rates of each 

mode for different distance intervals can be derived from the case study analysis.  

The result of this integration will be the separation of the existing demand of the public transport system 

into the demand of public transport, the demand of bike and the demand of e-bike of the bike sharing 

systems. 

= 𝑙𝑑𝑘 𝑖−1 - 𝑢𝑏𝑘 𝑖  + 𝑏𝑘 𝑖  , if 𝑙𝑑𝑘 𝑖 < ac (3-7) 
   
= ac , if 𝑙𝑑𝑘 𝑖 > ac  (3-8) 

= 0 jP , if 𝑙𝑑𝑘 𝑖 < ac (3-9) 
   

= 𝑙𝑑𝑘 𝑖−1  - ac - 𝑢𝑏𝑘 𝑖  +  𝑑𝑒𝑚𝑘 𝑖 𝑗 jP , if 𝑙𝑑𝑘 𝑖 > ac (3-10) 
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3.4. Bike sharing system model 
This subchapter presents a detailed report on the changes (Section 3.4.1) that will be made to the 

reference model (Frade & Ribeiro, 2015), the notation and the optimization model (Section 3.4.2), and 

the sensitivity analysis of the optimization model (Section 3.4.3).  

3.4.1. Model changes 
The location decision or facility location is a strategic decision. Many problems/models have been 

developed that are used in the location decision. Some of these problems/models are the p-center and p-

median problems, the maximum covering location problem, the uncapacitated facility location problem 

and the location covering problem (Contreras & Fernandez, 2012). Each of these models has its own 

mathematical model for example objective function and constraints. However, there are also similarities 

between the models i.e., common constraints. These models are considered basic models and are used 

in many applications after adapting to the needs of each situation.  

In this study, the linear optimization model proposed by Frade & Ribeiro (2015) will be used as the 

reference. It is a maximum covering location problem. This model is chosen as the reference because it 

covers some of the features that were decided to be included in the model that will be developed in this 

study. The first of these features is the objective function of the model, which maximizes the demand 

covered by the bike sharing system. The main goal of this research is to find a way to maintain mobility 

capacity in public transport under the impacts of social distancing constraints. Public transport, i.e., 

subway, buses, trams, operate with reduced mobility capacity to prevent the transmission of the virus. 

The bike sharing system is therefore being integrated into the public transport system to compensate for 

the reduced mobility capacity. Choosing an objective function that maximizes the demand covered by the 

bike sharing system helps to design a bike sharing system that offers the best possible demand coverage 

and mobility capacity. The formation of the reference also determines the location of the stations, the 

size of the bike fleet and the relocation of the bikes at the stations. All these are features that lead to good 

design and operation of a bike sharing system.  

In addition to the reference model’s features that can be considered useful for developing the 

optimization model of this study, some changes need to be made to develop an optimization model 

suitable for this study. The main difference is the introduction of the e-bike mode in the bike sharing 

system. The introduction of the e-bike mode is related to the COVID-19 situation. The e-bike is more 

durable over longer distances and is suitable for elderly or people with an underlying disease because it 

requires less physical effort. Therefore, its introduction will provide mobility capacity for people who due 

to the COVID-19 situation are afraid or feel uncomfortable to be indoors with a lot of people as is the case 

with public transport. The main goal is to provide mobility capacity so that people can continue to move. 

With this in mind as well as the extreme demand that will arise for the bike sharing system due to the 

distancing constraints on public transport, it was decided that the bike system would be considered as a 

free-floating system. However, this will not apply to the e-bike system. The reason for this option is that 

in many cases the parking slots in a docked system are also the charging system of the e-bikes. As for the 

bike mode, it should be noted that there will be no parking spaces at a station. However, e-bikes mode 

stations will be virtual stations for the bike mode. More specifically, bikes will be moved between e-bikes 

stations but there will be no restrictions on parking availability. This serves to better organize the bike 

sharing system and facilitate the assignment of demand to stations.  
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Subsequently, the changes between the reference model (Frade & Ribeiro, 2015) and the model to be 

developed for this study are presented. 

• Sets 

The study area in the reference model is divided into demand zones. There can be more than one 

station in each demand zone. The study area in the developed model is divided into stations and 

each station has its own demand. Therefore, in one case we have a set with demand zones, while 

in the other a set with stations. 

 

• Objective function 

The objective function in the reference model maximizes the demand covered by the bike sharing 

system. In this study, the bike sharing system will also consist of an e-bike system. This means that 

the objective function should include one more term for the e-bike system. 

 

• Constraints 

Reference has already been made to the introduction of e-bikes into the bike sharing system. The 

developed model should include new constraints for the e-bike system. The constrains for e-bike 

system are the constraint for the number of available e-bikes at a station, the constraint for the 

e-bikes fleet of the system that should remain the same between the first and the last period, the 

constraint for the number of docks at the stations, the constraint on the availability of free parking 

spaces and e-bikes at the stations, the constraint on the relocation of e-bikes, the constraint on 

the total e-bike fleet and the constraint on serving the demand only from existing stations.  

The bike system is designed as a free-floating system. Therefore, some of the constraints that 

exist in the reference model for the stations should be removed. These constraints concern the 

existence of docks at the stations and the existence of available parking space at the stations. An 

additional change that needs to be made is in the constraint associated with the portion of 

demand covered. In the reference model this constraint has this form ∑ 𝑥𝑖𝑗𝑡  ≤  1𝑗𝜖𝐽  iJ, tT, 

while in the developed model it will have this form 𝑥𝑖𝑗𝑡 ≤ 1 iJ, jJ, tT. The constraint on the 

reference model states that the portion of covered demand by one zone to all the others should 

not exceed 1, while the constraint on the developed model states that the portion of covered 

demand from any virtual station to any virtual station should not exceed 1. This change is taking 

place because the demand of all pairs of virtual stations should be covered. This constraint should 

also be added for the e-bike system.  

The bike sharing system is trying to compensate for public transport demand under the impacts 

of a pandemic crisis. Consequently, the design and operation of the bike sharing system are 

considered key elements of the study, while system’s costs are not a priority. So, the cost 

constraints of the reference model will not be used in the developed model. Also, the constraints 

that define the domain of decision variables of e-bike system and bike system should be 

formulated. 

• Decision variables and parameters 

The decision variables and parameters differ between the reference model and the developed 

model. In the developed model, the features of the system with an important role in the design 

of the system having as a basic guide the provision of mobility capacity were defined as variables. 
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The decision variables of the reference model are five (5), while those of the developed model 

are eleven (11). The variables of the reference model are the portion of covered demand, the 

number of bikes in zone i, the number of bikes relocated, the number of docks in zone i and the 

binary variable for the existence or not of a station. The developed model has decision variables 

for bike system and for e-bike system. The decision variables of e-bike system do not differ from 

the decision variables of the reference model. There is only one additional decision variable which 

is the total e-bike fleet. The decision variables of the bike system in the developed model are the 

portion of covered demand, the number of bikes at virtual station i, the number of bikes 

relocated, and the binary variable for the existence or not of a virtual station. Also, the total bike 

fleet is a decision variable. This contrasts with what applies to the reference model because the 

total bike fleet is a parameter. In terms of parameters, the parameters associated with the cost 

constraints of the reference model do not exist in the developed model. The parameters for the 

capacity of the stations apply only to the e-bike system in the developed model, while parameters 

are added for maximum and minimum percentage of used capacity in e-bike system and the 

maximum available bikes at a virtual station. 

3.4.2. Optimization model 
This section presents the optimization model developed in this study. The optimization model determines 

the optimal design and operation of the bike sharing system, which consists of a bike and e-bike system, 

to counterbalance for limited capacity in public transport system in extreme situations and disturbances 

such as a pandemic situation and the distancing constraints. This is achieved by maximizing covered 

demand considering location and relocation constraints.  

The model has some inputs and outputs. The inputs are a set of stations, the demand of the bike and e-

bike systems, the values for the parameters of maximum and minimum capacity, maximum available bikes 

in a virtual station, and maximum and minimum percentage of used capacity of the e-bike system and the 

number of time periods. Time periods are essentially the number of the studied periods of a day. This 

number can be determined in each case study based on its data. The model satisfies the demand of the 

system but also relocate bikes and e-bikes, so there should be a balance between them when determining 

the number of time periods. In addition, the values of maximum and minimum capacity and percentage 

of used capacity can be determined based on the literature or there can be variation in their range of 

values. This depends on the requirements of each case study. The parameter for the maximum number 

of bikes in a virtual station depends on each case of study, i.e., the availability of public space. The outputs 

of the optimization model are the covered demand of the bike sharing system, the number of stations, 

the size of the bike and e-bike fleet, the number of bikes and e-bikes at stations in each period, the number 

of relocated bikes and e-bikes per stations pairs in each period, the portion of covered demand per 

stations pairs in each period, and the number of stations of the e-bike system.  

The notation used to represent the elements of the optimization model is shown in  

Table 3-2. 
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Table 3-2: Optimization model notation 

Sets 

J       : set of stations, with indices i and j 
T      : set of time period, with index t, T = {1,…,t) 

PT : set of time period, with index t, P = {2,…,t} 

Decision variables 

𝑦𝑖      : is 1 if the bikes virtual station is opened and 0 otherwise 
𝑥𝑖𝑗𝑡   : proportion of covered bikes demand from station i to station j in period t 

𝑟𝑖𝑗𝑡    : relocated bikes from i to j at period t 

𝜐𝑖𝑡     : available bikes in station i at the onset of period t 
𝑇𝑢𝑡  : total bikes fleet size of the system 
ℎ𝑖      : is 1 if the e-bikes station is opened and 0 otherwise 
𝑣𝑖      : number of e-bikes docks in station i 
𝑤𝑖𝑗𝑡  : proportion of covered e-bikes demand from station i to station j in period t 

𝑠𝑖𝑗𝑡    : relocated e-bikes from i to j at period t  

𝑏𝑖𝑡    : available e-bikes in station i at the onset of period t 
𝑇𝑒𝑡   : total e-bikes fleet size of the system 

Parameters 

𝑢𝑖𝑗𝑡     : demand of bikes from i to j in period t 

𝑒𝑖𝑗𝑡     : demand of e-bikes from i to j in period t 

𝑧𝑚𝑎𝑥    : maximum available bikes in a virtual station 
𝑣𝑚𝑖𝑛   : minimum capacity of e-bikes station 
𝑣𝑚𝑎𝑥   : maximum capacity of e-bikes station 
𝑝𝑚𝑖𝑛   : minimum percentage of used capacity in an e-bike station i at the onset of period t 
𝑝𝑚𝑎𝑥   : maximum percentage of used capacity in an e-bike station i at the onset of period t 

 

The model is the following: 

Max Z = ∑ ∑ ∑ (𝑢𝑖𝑗𝑡  𝑡𝜖𝑇𝑗𝜖𝐽𝑖𝜖𝐽 × 𝑥𝑖𝑗𝑡)  +  ∑ ∑ ∑ (𝑒𝑖𝑗𝑡  𝑡𝜖𝑇𝑗𝜖𝐽𝑖𝜖𝐽 × 𝑤𝑖𝑗𝑡) (1) 

Subject to:  
𝜐𝑖𝑡 =  𝜐𝜄(𝑡−1) − ∑ 𝑢𝑖𝑗(𝑡−1)𝑥𝑖𝑗(𝑡−1) +  ∑ 𝑢𝑗𝑖(𝑡−1)𝑥𝑗𝑖(𝑡−1) +𝑗𝜖𝐽  ∑ 𝑟𝑗𝑖(𝑡−1) 𝑗𝜖𝐽 −  ∑ 𝑟𝑖𝑗(𝑡−1) 𝑗𝜖𝐽𝑗𝜖𝐽  

iJ, jJ, tP 

(2) 

𝑏𝑖𝑡 =  𝑏𝜄(𝑡−1) − ∑ 𝑒𝑖𝑗(𝑡−1)𝑤𝑖𝑗(𝑡−1) +  ∑ 𝑒𝑗𝑖(𝑡−1)𝑤𝑗𝑖(𝑡−1) +𝑗𝜖𝐽  ∑ 𝑠𝑗𝑖(𝑡−1) 𝑗𝜖𝐽 −  ∑ 𝑠𝑖𝑗(𝑡−1) 𝑗𝜖𝐽𝑗𝜖𝐽  

iJ, jJ, tP 

(3) 

𝜐𝑖,1 =  𝜐𝑖,𝑇  iJ (4) 

𝑏𝑖,1 =  𝑏𝑖,𝑇  iJ (5) 

𝑣𝑖 ≤  𝑣𝑚𝑎𝑥  ℎ𝑖 iJ (6) 

𝑣𝑖 ≥  𝑣𝑚𝑖𝑛  ℎ𝑖 iJ (7) 

𝜐𝑖𝑡  ≥  ∑ (𝑢𝑖𝑗𝑡𝑥𝑖𝑗𝑡)𝑗𝜖𝐽  iJ, jJ, tT (8) 

𝑏𝑖𝑡  ≥  ∑ (𝑒𝑖𝑗𝑡𝑤𝑖𝑗𝑡)𝑗𝜖𝐽  iJ, jJ, tT (9) 

𝑏𝑖𝑡 ≤ 𝑝
𝑚𝑎𝑥

 𝑣𝑖  iJ, tT (10) 

𝑏𝑖𝑡 ≥ 𝑝
𝑚𝑖𝑛

 𝑣𝑖 iJ, tT (11) 

𝜐𝑖𝑡 ≤  𝑧𝑚𝑎𝑥  𝑦𝑖  iJ, tT (12) 

∑ 𝑟𝑖𝑗𝑡  ≤  𝜐𝑖𝑡𝑗𝜖𝐽   iJ, tT (13) 

∑ 𝑠𝑖𝑗𝑡  ≤  𝑏𝑖𝑡𝑗𝜖𝐽   iJ, tT (14) 

𝑇𝑢𝑡 = ∑ 𝜐𝑖𝑡𝑖𝜖𝐽  tT (15) 
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𝑇𝑒𝑡 = ∑ 𝑏𝑖𝑡𝑖𝜖𝐽  tT (16) 

𝑥𝑖𝑗𝑡  ≤ 1 iJ, jJ, tT (17) 

𝑤𝑖𝑗𝑡 ≤ 1 iJ, jJ, tT (18) 

𝑤𝑖𝑗𝑡 ≤ ℎ𝑖  iJ, jJ, tT (19) 

𝑤𝑖𝑗𝑡 ≤ ℎ𝑗  iJ, jJ, tT (20) 

𝑥𝑖𝑗𝑡  ≤ 𝑦𝑖  iJ, jJ, tT (21) 

𝑥𝑖𝑗𝑡  ≤ 𝑦𝑗  iJ, jJ, tT (22) 

𝑟𝑖𝑗𝑡  ≥ 0 iJ, jJ, tT (23) 

𝑠𝑖𝑗𝑡  ≥ 0 iJ, jJ, tT (24) 

𝑥𝑖𝑗𝑡  ≥ 0 iJ, jJ, tT (25) 

𝑤𝑖𝑗𝑡 ≥ 0 iJ, jJ, tT (26) 

ℎ𝑖  {0,1} iJ (27) 

𝜐𝑖𝑡 , 𝑏𝑖𝑡, 𝑣𝑖, 𝑟𝑖𝑗𝑡 , 𝑠𝑖𝑗𝑡, 𝑇𝑢𝑡, 𝑇𝑒𝑡   N iJ, jJ, tT (28) 

 

The objective function (1) of this Linear programing consists of two terms. The first term is the system’s 

bike covered demand, while the second term is the system’s e-bike covered demand. The objective 

function maximizes the covered demand by the bike sharing system. Constraint (2) determines the 

available bikes at virtual station i at period t. The first term of the constraint refers to the available bikes 

at virtual station i in the previous period. The second and third terms refer to the number of bikes that 

left or arrived at the virtual station i respectively in the previous period, while the fourth and fifth terms 

refer to the bikes transported to or from the virtual station i respectively at the previous period. Constraint 

(3) determines the available e-bikes at station i at period t. Constraints (4) and (5) state that the bike and 

e-bike fleet of the system remains the same between the first and the last period. The capacity of an e-

bike station is limited by the constraints (6) and (7). Constraint (6) specifies the upper capacity limit 

(maximum number of docks at the station), while constraint (7) specifies the lower capacity limit 

(minimum number of docks at the station). The available bikes at the virtual station i should meet the 

demand of the virtual station (constraint (8)), and the available e-bikes at the station i should meet the 

demand of the station (constraint (9)). Stations should always have available e-bikes as well as available 

docks for parking. This is achieved by constraints (10) and (11). Constraint (10) specifies that the number 

of available e-bikes at the station i at period t should not exceed a specific number, and there should be 

a minimum number of e-bikes at the station (constraint (11)). Constraints (12) sets a limit on the maximum 

number of available bikes at a virtual station. The relocated bikes from the virtual station i at the period t 

should not exceed the available bikes at the virtual station i at that period (constraint (13)). The 

corresponding constraint for e-bike system is constraint (14). Constraints (15) and (16) specify the total 

bike and e-bike fleet of the bike sharing system, respectively. The portion of covered demand from virtual 

station i to j at the period t cannot exceed the value 1 (constraint (17)). The corresponding constraint for 

the e-bike system is constraint (18). The demand for the bike and e-bike system can only be served by 

existing (virtual) stations (constraints (19) - (22)). Constraints (23) – (28) specify the domain of the decision 

variables. 

3.4.3. Sensitivity analysis of optimization model 
The solver that will be used to solve the problem is the Gurobi optimizer for python. The Gurobi optimizer 

is an optimization solver for linear programming (LP), quadratic programming (QP), mixed integer linear 

programming (MILP), mixed-integer quadratic programming (MIQP), and mixed-integer quadratically 
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constrained programming (MIQCP) (Gurobi Optimization, 2020). The hardware of the used computer is 

Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz   2.90 GHz, 8.00 GB RAM and the operating system is Windows 

10 64-bit. 

The Gurobi solver offers three different methods/algorithms for solving the optimization problems. These 

methods are primal simplex, dual simplex, and barrier. Each method solves an optimization model in a 

different approach. As a result, each method may provide a different solution for the same optimization 

model. In addition, each method can be more suitable and give better results in a specific type of 

programming-linear, quadradic, mixed integer linear. The Gurobi solver has, in addition to the three 

methods, other solution options. These options offer simultaneous solution of the model with different 

methods and the fastest method is selected.  

The optimization model presented in section 3.4.2 is used to solve a small-scale problem and a large-scale 

problem with the three methods mentioned. This is to find the method that requires the least time to 

solve the model, and to identify the differences between the solutions. The data in small- and large-scale 

problems is random. Problems of different scales are used to determine whether the same conclusion 

apply in both cases.  

The inputs of the two problems are shown in Table 3-3 and Table 3-4. Some additional data are listed 

here. The values for the parameters 𝑝𝑚𝑎𝑥  and 𝑝𝑚𝑖𝑛 are 0.75 and 0.25 and for the parameters 𝑣𝑚𝑖𝑛  and 𝑣𝑚𝑎𝑥 

are 10 and 25, as mentioned in the study of Frade & Ribeiro (2015), for both models. The maximum 

number of available bikes (𝑧𝑚𝑎𝑥) at a virtual bike station is 100 for the small-scale problem and 200 for the 

large-scale problem. 

 

Table 3-3: Inputs and results of the three methods for small-scale problem 

Inputs 

Number of stations 4 

Time periods 4 

Bike demand 1184 

E-bike demand 407 

Total demand 1591 

Outputs 

 Primal simplex Dual simplex Barrier 

Time 0.18 sec 0.07 sec 0.38 sec 

Number of selected stations 4 4 4 

Number of virtual stations 4 4 4 

Covered bike demand 1180 1180 1180 

Covered e-bike demand 277 277 277 

Covered demand  1457 1457 1457 

Bike fleet 335 335 335 

E-bike fleet 72 72 72 

Relocated bikes 207 207 207 

Relocated e-bikes 126 26 216 
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As shown in Table 3-3, the dual simplex method solves the small-scale problem faster and with a relatively 

considerable time difference from the other two methods. All methods give the same outputs, except for 

the number of relocated e-bikes. The dual simplex method gives the smallest number of relocated e-bikes, 

while the barrier method gives the largest number. The large-scale problem is solved faster with the dual 

simplex method, while the slowest method is the primal simplex method (Table 3-4). The three methods 

give different results for the size of the bike fleet and the number of relocated bikes. The dual simplex 

method gives the lowest values, while the barrier method gives extremely high values. From a 

computational point of view, the dual simplex method is the best choice for both problems-small/large-

scale-since the time required for the solution of the model is the shortest. But also, in terms of design, the 

dual simplex method can be considered the best as it requires a lower fleet size and relocation of vehicles. 

Therefore, for the implementation of this linear programing optimization model for the design and 

operation of a hybrid mixed-fleet bike sharing system, the dual simplex method brings the most efficient 

application.  

The three methods give the same optimal objective value to each problem. Also, there is no violation of 

the quality statistics-i.e., bound, constraints and integrality-of the model in any case. This means that the 

model has no numerical problems. 

 

Table 3-4: Inputs and results of the three methods for large-scale problem 

Inputs 

Number of stations 290 

Time periods 9 

Bike demand 36294 

E-bike demand 31184 

Total demand 5110 

Outputs 

 Primal simplex Dual simplex Barrier 

Time 288.52 sec 74.97 sec 89.05 sec 

Number of selected stations 279 279 279 

Number of virtual stations 290 290 290 

Covered bike demand 30852 30852 30852 

Covered e-bike demand 5002 5002 5002 

Covered demand 35854 35854 35854 

Bike fleet 9886 9622 57854 

E-bike fleet 3720 3720 3720 

Relocated bikes 63640 54146 278160 

Relocated e-bikes 3778 3778 3778 

 

It should be noted that attempts were made to differentiate the formulation of the model. The first 

attempt is related to constraints 𝑥𝑖𝑗𝑡  ≤ 1 iJ, jJ, tT and 𝑤𝑖𝑗𝑡 ≤ 1 iJ, jJ, tT. These two constraints 
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originally had these forms 𝑥𝑖𝑗𝑡  = 1 iJ, jJ, tT , 𝑤𝑖𝑗𝑡  = 1 iJ, jJ, tT in the developed model. This form 

was chosen as the main purpose is to provide mobility capacity in the integrated system for those who 

want to move and do not want or cannot use public transport due to the distancing measures. In this way 

the mobility capacity of the integrated system would meet all the unsatisfied demand due to the existing 

distancing measures because of COVID-19. However, the problem was infeasible, i.e., no solution could 

be found that satisfies all the model’s constraints. Therefore, inequality is used instead of equality, that 

is, they are more relaxed so that a solution can be found.  

Another attempt did not involve constraint  𝜐𝑖𝑡 ≤  𝑧𝑚𝑎𝑥 ∗ 𝑦𝑖 iJ, tT, which limits the number of bikes 

in a virtual station. The model of this form gave large number of available bikes at some stations. At several 

stations, this number exceeded the 2000 available bikes. This means that the bike sharing system would 

take up a lot of public space. However, this may not be possible in real life. In most cases public space is 

limited. Also, having so many bikes in the area would be annoying to most people. 

 

3.5. Conclusion remarks 
This chapter describes the methodology that is developed and applied in this study. This methodology 

consists of two main parts. The first part is the operational integration of public transport and bike sharing 

systems, i.e., the demand integration, and the second part is the development of an optimization model 

for the design and operation of a bike sharing system that considers the transportation impacts of extreme 

situations and disruptions on public transport such as a pandemic and social distancing measures. The city 

of Milan in Italy is chosen to apply the developed methodology. The studied systems are the subway and 

the public bike sharing systems of Milan. The next chapter refers to the analysis of the public transport 

and bike sharing systems, the application of the developed methodology and the analysis of the findings. 
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4. Model application 
This chapter outlines and interprets the selection and analysis of the case study, the development of 

scenarios and designs, the results obtained from the implementation of the optimization model and their 

analysis. In this study, the geographical study area is the city center of Milan and the studied public 

transport systems are the subway system and the BikeMi bike sharing system. The choice is supported by 

the significant influence of the COVID-19 pandemic in Milan (Worldometer, 2021), the widespread use of 

the subway system and the availability of extensive data on the BikeMi system. The necessity to maintain 

mobility capacity in public transport under the impacts of social distancing constraints by offering a safe 

public transport system makes the choice of Milan and the integration of the two transport systems a 

promising case study.  

The remaining of the chapter has the following structure: Section 4.1 provides general information on the 

geographical study area, while Section 4.2 deals with transport systems. Section 4.2.1 gives general 

information about the subway system and the generation of demand, while Section 4.2.2 presents general 

information about the BikeMi system and the analyzes for the users of the system but also for the system 

itself. Section 4.3 describes the scenarios and designs and Section 4.4 presents the results of the model 

application and their analysis. 

 

4.1. Geographical study area 
The city center of Milan was chosen to implement the developed model. The study focuses only on the 

city center of Milan in order to have a better insight of the area and its transport needs. In addition, most 

of the BikeMi bike sharing system extends to this area of the city. In Figure 4-1, the area enclosed in the 

red line is the city of Milan, while the area enclosed in the black line is the study area.  

Milan is located in northern Italy and is the capital of the administrative region of Lombardy. The city is a 

leading financial center, a popular tourist destination and one of the main transport hubs of Italy. The 

population of Milan city is about 1.4 million and the density of the city is 7,684 inhabitants per km2 (Maps, 

analysis and statistics about the resident population, 2021).  

 

4.2.  Public transport in Milan 
Milan public transport is operated by the municipal public transport company Azienda Trasporti Milanesi 

(ATM). ATM company also manages the public transport of 46 surrounding municipalities. The company’s 

transport service consists of 4 subway lines, 131 bus lines, 19 tram lines and 4 trolley bus lines (ATM in 

Figures, 2020). The subway network mainly covers the city of Milan while the surface transport network 

also covers part of the province of Milan. The number of passengers served by the company’s network 

was 820.4 million in 2019, of which 386.8 million were served by the subway network (ATM bilancio 

finanziario 2019, 2021). The ATM company is constantly expanding its services in the sector of transport. 

The BikeMi bike sharing system is one such service. The BikeMi system is managed by the companies ATM 

and Clear Channel. 
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Figure 4-1: The city of Milan and the study area (Scale: 1:100000) 

 
The two transport systems selected in this study are the BikeMi bike sharing system and the subway 

system. The BikeMi system is chosen because it is a safe choice in terms of hygiene as well as an 

environmentally friendly choice that does not burden the surface transport network compared to other 

means of transport.  The choice of subway system is supported by its importance as it serves almost half 

of the passengers of motorized public transport and a large part of its network serves the same part of 

the city as the BikeMi system.  

 

4.2.1. Subway system 

4.2.1.1. Subway system general information 

The Milan subway or Metropolitana di Milano opened in 1964. The red line or line 1 was the first line to 

operate and connect the stops from Sesto Marelli to Lotto station. At the moment the subway consists of 

four lines which have the names M1: Rho Fiera/Bisceglie – Sesto 1o Maggio, M2: Assago Milanofiori 

Forum/Abbiategrasso – Cologno Nord/Gessate, M3: Comasina – San Donato and M5: San Siro Stadio - 

Bignami and a fifth line is under construction. The system has 106 stations, and the length of its network 

is almost 100 kilometers. The subway is operated by Azienda Trasporti Milanesi (ATM) and is the largest 

subway system in Italy in terms of length and number of stations. Figure 4-2 illustrates a network map of 

Milan’s subway.  
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Figure 4-2: Map of Milan subway network (Scale: 1:100000) (Source: (Giromilano, 2021)) 

 

4.2.1.2. Subway system demand generation 

Subway system demand data, i.e., origin-destination pairs data, are not available. Therefore, it is 

necessary to generate origin-destination data for the year 2019 for the needs of the case study. The 

generation of data means that the used data for the application of the developed methodology 

approximates reality but does not reflect the exact needs of the subway system. It should be noted that 

the generation of demand took place between stations of the same subway line. That is, the origin and 

destination of each passenger belongs to the same subway line. The first step in this process is to find 

information about the subway system and its demand. The available information is related to the daily 

passenger demand per line in 2018, the total daily system demand for 2019, the passenger use of each 

station (low, medium, or high) during the day at time intervals of half an hour for the first week of April 

2021 and the system’s peak hours. Based on this data, the generation of the origin-destination pairs will 

be performed. 

The first information used is related to the daily passengers per line for the year 2018. In addition, the 

total daily demand of the subway system for the year 2019 is known. From the total daily demand of the 

two years, it results that the total daily demand of the system increased by 0.5% in 2019 compared to 

2018. Based on this percentage and the available data for 2018, the daily demand per line for 2019 is 

calculated (Table 4-1). 

Information related to the stations and their use during the day is then collected. This information was 

collected in the first week of April 2021. The selection of the specific period is made in order to be 

consistent with the data period of the BikeMi system. Based on this information, aggregate tables per 

subway line are created that show what hours of the day a station presents high, medium, or low 

passengers use. A small example of such a table is illustrated in  

Table 4-2. The green color indicates that  
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Table 4-1: Daily demand of subway system for 2018 and 2019 

Subway line 
Daily passengers demand 

2018 2019 

M1 501480 504000 

M2 473620 476000 

M3 306460 308000 

M5 1114400 112000 

Total 1393000 1400000 

 

the station is not in high demand at that time and trains have space available, the yellow color specifies 

that the station may be in high demand and there may be a wait for boarding on a train and the red color 

indicates that the station is in high demand and a change of travel time is suggested.  

 

Table 4-2: Passenger use of M1 subway line (a small example) 

Stations/Time 6:00-6:30 6:30-7:00 7:00-7:30 7:30-8:00 8:00-8:30 

Bisceglie           

Inganni           

Primaticcio           

Bande Nere           

Gambara           

 

Based on the occurrence rate of low, medium, and high demand, stations are classified in terms of 

passengers use, i.e., which station has the highest and which the lowest demand. This analysis is 

performed per subway line, and it is assumed that each color (green, yellow, red) has the same importance 

in terms of demand regardless of the time of its appearance. The ranking of stations per line from lowest 

to highest demand can be found in Appendix B. Then the demand per station is found. In this process, 

each subway line is studied separately. For this process a Python code script is created which generates 

random numbers. The inputs to this code script are the number of stations per line and the total demand 

per line. Based on this data and the code script, 1000 different demand paradigms are created for each 

subway line. In each paradigm, the generated numbers are equal to the number of stations on the 

corresponding line, i.e., if the subway line has 25 stations, the paradigm will consist of 25 numbers, and 

the sum of stations demand is equal to the total demand of the line. The averages of these one thousand 

paradigms are the final demand per station considering the mentioned ranking of station. The output of 

this process is finding the demand per station shown in Figure 4-3. 
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Figure 4-3: Subway station demand resulting from the computational process 

 

Once the demand per station is known, the next step is to distribute the demand of each station by 

direction-two directions per stations. The first step is to divide the station demand evenly. This can be 

calculated by Equation (4-1). The station demand and the number of line stations are used for this 

calculation. Equation (4-1) states that the demand of each station is divided by the number of stations on 

the route minus one station. Demand is divided by the number of stations minus one because each station 

has demand for all other stations but not for itself. The output of equation (4-1) is denoted by Τ. The 

second step concerns the calculation of the station demand per direction. This is calculated from equation 

(4-2). Equation (4-2) shows that the station demand per direction is equal to the value of T (output of 

Equation (4-1)) multiplied by the number of stations further down the route, i.e., the number of 

subsequent stations on the line in one direction. 

                                 T = demand of station / (Number of route station – 1) (4-1) 
Demand of station per direction = T * Number of stations further down the route (4-2) 

 

At this point the stations demand per direction is known. The next step is related to the distribution of 

demand during the day (6 a.m. to midnight). The subway system has two peak periods during the day, the 

morning rush hour, 7:00 – 10:00, and the evening rush hour, 16:30 – 20:00. Based on the existence of 

these two peaks, the distribution used to disperse demand during the day is the binomial distribution, 

which is a mixture of two normal distributions with different average values and the same variance. The 

inputs to the distributions are the mean values, the variances, and the sample number. In this case, the 

first distribution has a mean value of 9, a variance of 3 and a sample number of half the station demand, 
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while the second distribution have a mean value of 18, a variance of 3 and a sample number of half the 

station demand. The choice of values for average prices is related to the peak hours of the system. From 

this process arises the demand of the station per hour and direction. 

The final step is to distribute the hourly demand to origin-destination pairs. This procedure takes place 

for 6 hours during the evening, 15:00 to 21:00. This period is selected because it includes the evening rush 

hour. The choice of the evening rush hour versus the morning rush hour is based on the bike sharing 

system. The bike sharing system is in greater demand during the evening rush hour in 2019, this is 

presented in Chapter 4.2.2.3,  and that is why it is chosen. Note that lines M1 and M2 are treated as 4 

routes, i.e., line M1 has 2 routes and line M2 has 2 routes, because they have branches in their network. 

As for the stations of each line that belong to both routes, their demand is divided in half. The distribution 

chosen to disperse demand in origin-destination pairs is the normal distribution. This distribution is 

chosen because most of the demand of a station will be aimed at the intermediate stations of the rest of 

the route and not the nearby or distant stations of the origin station. The mean value of the normal 

distribution will be the number of stations further down the route divided by two, the variance will take 

values from 4.4 - 1.8 (depends on the value of mean) and the sample will be equal to the demand of the 

station. The result of the process will be the hourly demand of the subway system in origin-destination 

pairs. 

4.2.2. BikeMi system  

4.2.2.1. BikeMi general information 

The bike sharing system started operating at the end of 2008 and is a public bike sharing system. In 2015, 

e-bikes were introduced in the BikeMi system. At present the system has 4280 conventional bikes and 

1150 e-bikes of which 150 are pedal-assisted bikes with child seat. The current number of operational 

stations is 320 and the system operates all year round from 6 am to midnight. The system’s schedule can 

be extended on special occasions/days. During off-hours, users can only return a bike to a station. A bike 

can be used for a maximum period of two hours. If this time limit is exceeded, the user will be charged a 

fine.  

Figure 4-4 shows the bike sharing system BikeMi in the city of Milan. The black dots represent the stations 

of the system. It is observed that most stations of the system are located in the city center of Milan which 

is the study area.  

The analysis of the BikeMi system and its users is presented in the following subchapters. The data for the 

bike system, which were initially available, correspond to a two-week period of 2018. Therefore, the initial 

analysis was based on them. Then there were additional data available for 2018 as well as for the years 

2019, 2020 and the analysis was expanded. 
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Figure 4-4: BikeMi system in the city of Milan (Source: (Station Map, 2021)) 

 

4.2.2.2. BikeMi users’ analysis 

The BikeMi system users’ analysis is performed for the years 2018, 2019 and 2020. The available data 

provides information on the type of subscription of each user, the activation date, and personal details 

such as gender, age, and profession of users. In this section, the users’ analysis of the years 2019 and 2020 

is presented. The year 2019 is considered as a normal year without any particular disturbances, while the 

year 2020 is the pandemic year which is characterized by uncertainty. It should be noted that the analysis 

of 2020 does not include December due to lack of data. In addition, all the figures presented in this section 

are derived from the researcher's analysis of the available data. Further analysis of the year 2018 can be 

found in the Appendix C.  

Based on the analysis, the annual subscriptions of the system range between 26 – 37 thousand. Figure 4-5 

shows that the BikeMi system had the highest number of subscriptions in 2018. In 2019 there was a small 

drop of 3% compared to 2018, while the system subscription in 2020 decreased slightly more than 1/4 

compared to the previous two years. During each year there is a variation in the number of subscriptions. 

This variation is shown in Figure 4-6. For all three years, the subscriptions are increased in spring and 

summer compared to autumn and winter months. The months of March and April 2020 are an exception. 

These two months, the system has a very low number of subscriptions. This is due to the strict lockdown 

implemented in Italy to curb the COVID-19 virus. The system presents the peaks of subscriptions in April 

2018, September 2019, and May 2020, while the months with the lowest number of subscriptions are 

February, November, and April respectively.    
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Figure 4-5: Annual subscriptions of BikeMi system for the years 2018 – 2020 

 

 

Figure 4-6: Monthly subscriptions of BikeMi system for the years 2018-2020 

 

The basic subscriptions of the BikeMi system, which are available to the general public, are annual, weekly 

and daily. Their cost is 36€, 9€ and 4.5€ respectively. In basic subscriptions, in addition to the cost of 

purchasing the subscription, the user pays specific amounts depending on the time of use of a mode. 

There are also special subscriptions such as Freecard GOLD, Freecard Premium and Supervisor. In Freecard 

GOLD and Freecard Premium, the user uses the system’s modes without paying extra based on the time 

of use. In 2019 the Corporate subscription was introduced in the system. Figure 4-7 and  Figure 4-8 show 

that the monthly percentage of users who create one of the special subscriptions is low for all months of 
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the two years. The monthly users’ percentages of the weekly subscription range between 8-22% for 2019, 

while they range between 9-14% for 2020. It is observed that the highest percentages of users prefer the 

daily subscription. The months of March and April 2020 are an exception. During these two months, there 

is a drop in daily subscriptions and an increase in annual subscriptions. This differentiation is logically due 

to the strict lockdown that was implemented in those months. More specifically, during these months 

only essential movements were allowed. Therefore, daily subscription may not have been practical for 

the system’s users. While the annual subscription offers a long-term use during an uncertain period of a 

transport system that is safe, i.e., there is no contact with other people, and has not been affected by the 

imposition of social distancing measures. 

 

Figure 4-7: Subscription types of BikeMi users for the year 2019 (%) 

  

 

Figure 4-8: Subscription types of BikeMi users for the year 2020 (%) 
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An additional analysis performed based on the available data is related to the gender of the system users. 

It is observed that a significant percentage of users did not have this information available. This 

percentage exceeds 60% most months. However, it is not known if the data set is incomplete for this 

information or if it was the users’ choice not to provide this information during the creation of the 

subscription. Figure 4-9 shows that for the whole 2019 the percentage of the male users is higher than 

women. The same trend prevails for the year 2020. However, this differs in the lockdown months (March 

and April) as well as for the next two.  

 

 

Figure 4-9: BikeMi users’ gender for the years 2019 and 2020 (%) 

 

The final analysis performed for the users of the system based on the available data is related to their 

profession. Unlike gender, information about the profession of users is available to almost all users. Figure 

4-10 shows that most users of the BikeMi system in 2019 are either employees (29%) or students (25%). 

A large percentage of users have also chosen the option ‘Other’ (20%). A significant percentage of users 

are either Executive/Manager (10%) or Entrepreneur/Freelancer (11%). In contrast to the previous, the 

percentages of users, 3% and 1% respectively, who are in categories Worker/Craftsman and Retired are 

quite low. Regarding 2020 (Figure 4-11), the percentages of users per professional category present small 

differences compared to 2019. However, some categories show significant differences during the 

lockdown period. The percentages of Employee category, which is 34%, show a high increase during the 

lockdown period, while the percentages of the Student category (19%) show a particularly significant 

decrease. This drop in student users’ rate is because educational institutions were closed at that time.    
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Figure 4-10: BikeMi users’ profession for the year 2019 (%) 

 

 

Figure 4-11: BikeMi users’ profession for the year 2020 (%) 

 

4.2.2.3. BikeMi analysis 

The analysis of the BikeMi system was conducted for the years 2018, 2019 and 2020. More specifically, 

the first two weeks of April were selected. The choice of this period was due to the data that was initially 

available. The initial analysis of the BikeMi system was limited to the year 2018, while then it was 

conducted for the other two years. It was deemed necessary to process the data for the same period of 

each year and to compare the results between the same days. Therefore, the analysis of the system 

corresponds to the time periods 1-15 April 2018, 31 March-14 April 2019, and 29 March-12 April 2020. It 
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would be good to note that the 1st of April 2018, 31st of March 2019 and 29th of March 2020 were Sundays. 

The available data provide information on the system demand, i.e., the origin-destination pairs and when 

they made, the identification number of the used bike, the type of used mode, the duration of the trip 

and the distance traveled, the calories consumed by the user and the carbon dioxide avoided by not using 

a car for this trip.  

In this study, the day is set between midnight and 11:59 p.m. Based on the data, the system operates from 

7 a.m. to 1 a.m. in the years 2018 and 2019, while it operates from 6 a.m. to midnight in 2020. It is 

observed that on some days the system operates at night (1 a.m. to 7 a.m.). Based on the information 

found, the system operates 24 hours a day in special cases. However, these days are an exception and 

therefor it is decided not to include night hours in the system’s analysis.   

Based on the available data, an attempt is made to understand the BikeMi system and its operation, as 

well as find information that can be used elsewhere in this study. The first analysis performed to 

understand the system is the daily use and daily usage rates of bikes, e-bikes, and e-bikes with a child 

seat. For the aggregate representation of daily use and daily usage rate per mode, the dates are reported 

as days, i.e., Day 1 represents 1/4/18, 31/3/19 and 29/3/20, while Day 15 represents the dates 15/4/19, 

14/4/19 and 12/4/20. The same way of matching dates with days applies to intermediate cases. Regarding 

the daily use (Figure 4-12), there is no specific demand pattern between the years. The system demand 

increases towards the end of the week in 2018, while it increases at the beginning of the week in 2019. In 

2020 the demand has decreased a lot due to the strict lockdown. However, the system demand shows a 

small range on working days per week. The daily usage rates of bikes and e-bikes, which are presented in 

Figure 4-13, show a uniformity in the years 2018 and 2019. The percentage of users who use an e-bike 

ranges between 13%-19%. This pattern, however, does not apply to 2020. In this year, about 1/3 of daily 

users choose to use an e-bike. The introduction of e-bikes with child seat took place in 2019. The 

percentage of use of these e-bikes is less than 1% most days. 

 

 

Figure 4-12: Daily use of the years 2018, 2019, and 2020 
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Figure 4-13: Daily usage rates of bikes, e-bikes, and e-bikes with child seat of the years 2018, 2019, and 2020 

 

The network of system stations is growing over time. The system consists of 269, 290, and 302 stations in 

2018, 2019, and 2020, respectively. The system currently has 320 stations. This indicates that the needs 

of the system have increased, and the result is the thickening of the network of stations or that the system 

is being developed in new areas. The extension of the station network for 2019 is illustrated in Figure 

4-14a, while for 2020 in Figure 4-14b. The new stations are in the red circles. In both years there is a 

thickening and expansion of station network. 

 

  
Figure 4-14: a) System extensions 2019 (left) and b) System extensions 2020 (right) 

 

A further analysis is the daily use of the BikeMi system per hour. The purpose of this analysis is to find the 
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mentioned. The hours for which the analysis is performed differ for each year as the system seems to 

have small changes in its operating hours. Therefore, the period for 2018 and 2019 is 7 a.m.-1 a.m., while 

for 2020 it is 6 a.m.-midnight. In this section the way the analysis was performed will be explained, the 

results of the daily average demand analysis for 2019 is given as an example (Figure 4-15), and some 

general conclusions will be reported. For more details on this analysis one can refer to the Appendix C.  

After separating the daily demand of the system per hour, the average daily demand and the overall 

average demand per annual period are calculated. Then the hours whose demand exceeds the 

corresponding daily average demand-the blue cells in Figure 4-15-and the hours whose demand exceeds 

the overall average demand per annual period are found. The general conclusions that can be drawn are 

that the BikeMi system is in relatively high demand on weekends as well. Therefore, the system is 

preferred by the users not only for their daily movements but also for their movements in their leisure 

time. It is observed that in the morning on weekdays, 7 a.m.-10 a.m., the demand exceeds the 

corresponding daily average. This also happens at noon and in the afternoon. On weekends, demand 

exceeds the corresponding average between 10 a.m. or 11 a.m. and 8 p.m. or 9 p.m. If one considers 

human activities such as work/school/university daily or leisure activities on the weekends, the above 

conclusions make sense. Regarding the analysis of the overall average demand per annual period, the 

conclusions differ slightly. It is observed that on days with low demand there is either no excess of the 

overall average demand or there is an excess in very few time periods. This is because the overall average 

demand is affected by the high demand values of some days. On the days with higher demand, the excess 

of the overall average demand presents a similar pattern to the analysis of the daily average demand.  

Through this information, there is better insight into the system. Also, some information can be used to 

determine the parameters of the research.  

 

 

Figure 4-15: System daily demand per hour in 2019 and demand exceeds the corresponding daily average demand (blue cells) 

 

Then the analysis of the stations and their use is given. The first step is to find the number of bikes rented 

and delivered to each station per day. The next step is to calculate the generator and attractor average 

per station for the study period per year. Therefore, two averages are obtained for each station per year. 
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The ratio of these two averages characterizes each station as “generator”, “attractor” or “neutral”.  The 

ratio is calculated as: 

 𝑅𝑎𝑡𝑖𝑜 = 
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
                                                                                           (4-3) 

 

If the ratio is less than 1 then the station is designated as “attractor”, if the ratio is greater than 1 then it 

is designated as “generator”, while if the ratio is equal to 1 then the station is considered “neutral”.   

The results of this analysis are on two levels. The first level is the range of averages and therefore the use 

of stations, and the second level is the categorization-generator, attractor, or neutral-of stations. The main 

report presents only the analysis of 2019 and a typical reference to the years 2018 and 2020. Regarding 

the first level of analysis, the value interval of the generator and attractor averages used in the analysis 

are the same for all three years. On the one hand, the analysis needs to be as detailed as possible, on the 

other hand, the visualization of the analysis should be easily understood. Given this, the value intervals 

are six (0-29, 29-58, 58-88, 88-117, 117-146, 146-175) and are equal. Figure 4-16 and Figure 4-17 show 

the generator and attractor averages per station of 2019, respectively. It is observed that the busiest 

stations are in the city center of Milan, while as the distance from the city center increases, the low usage 

stations increase. The above remarks are also valid for 2018, while in 2020 the use of the system is very 

low throughout the network of the stations due to the strict lockdown.  

 

 

Figure 4-16: Generator averages of BikeMi stations 2019 (scale: 1:38000) 
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Figure 4-17: Attractor averages of BikeMi stations 2019 (scale: 1:38000) 

 

In the second level of the analysis, stations are categorized according to the ratio value of the equation 

(4-3). It is concluded that 57% of the stations in 2018 are characterized as “attractor”, 42% as “generator”, 

while only 1% as “neutral”. The percentages of “attractor” stations show a decrease in 2019 and 2020. 

“Attractor” station in 2019 constitute 52%, while in 2020 they constitute 46%. The percentage of “neutral” 

stations remain stable for 2019, while it increases to 4% in 2020. Considering the narrow value range that 

the ratio receives, as well as the variations in the value range per year, it is decided that it is best to 

determine the values range of the ratio for each year separately. However, as in previous analysis, the 

value intervals are six and equal per station category- “generator” and “attractor”. The value range is 0.7-

1.62, 0.66-1.46 and 0-3.83 for 2018, 2019, and 2020, respectively. Detailed reference is made to the year 

2019, while the values of the ratios for the years 2018-2019 and the visualization of the analysis for the 

years 2018 and 2020 are presented in detail in Appendix C. 

Figure 4-18 shows the ratio values (Equation (4-3)) of the stations. The generator stations are depicted in 

blue, while the attractor stations are depicted in red. The different sizes of the bubbles represent different 

interval ranges. The smaller the bubble size, the lower the interval range it represents in the 

corresponding categorization. It is observed that most network stations in 2019 are stable. More 

specifically, the generator average and the attractor average per station do not differ much from each 

other. About 56% of the stations have a ratio value belonging to the value interval 0.94-1.08 (value range 

0.14), while 82% of the stations gave a ratio value belonging to the value interval 0.89-1.15 (value range 

0.26). The year 2018 presents a similar degree of stability with the year 2019, i.e., approximately 86% of 

the stations have a ratio value belonging to the value interval 0.9-1.21 (value range 0.31). In contrast to 

the years 2018 and 2019, the year 2020 does not show much station stability. Approximately 70% of the 
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stations have a ratio value on the interval 0.83-1.48 (value range 0.65). The percentage is much lower 

compared to the other two years, while the value range is almost double. This instability is logically due 

to the lockdown and the realization of only the essential moves.  

 

 

Figure 4-18: Generator and attractor stations of 2019 (scale: 1:38000) 

 

The final analysis performed is related to the travel distance and the frequency of use per vehicle. The 

main conclusions of these analyzes are as follows. The e-bikes with child seat are introduced in the system 

in 2019. However, their use is low compared to the other two modes. E-bikes and bikes are used to 

perform similar travel distances, 0-10 km. The most common traveled distance is 1-2 km. However, bikes 

have higher rates of use at shorter distances, while e-bikes at longer distances (Table 4-3). This conclusion 

was expected as existing research (Campbell, Cherry, Ryerson, & Yang, 2016; Shaheen, Guzman, & Zhang, 

2010) indicates that the e-bike is more tolerant of long distances. Long distances intervals (6-10 km) have 

small percentages. Concerning the frequency of use per vehicle, in 2018 the highest percentage of bikes 

is used 1-3 times a day, while e-bikes 1-4 times. The frequency of use per day of bikes and e-bikes is 1-4 

times in 2019 but also the frequencies 5 and 6 show significant percentages. The frequency of use for 

2020 is one time for bikes and 1 or 2 times for e-bikes. The smaller number of e-bikes in the system may 

explain the higher frequency of use per e-bike. It has already been reported that the number of 

subscriptions in 2019 has decreased slightly compared to 2018 (Figure 4-5). However, the frequency of 

use per vehicle shows a relative increase in 2019. This is due to the more frequent use of the system by 

users. This indicates that the system has seen an increase in user preferences.   
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Table 4-3: Average percentage of the two weeks studied period per travel distance interval (m) 

travel distance 
(m) 

Average (%) of the 2 weeks studied period  

Bike 2018 E-bike 2018 Bike 2019 E-bike 2019 Bike 2020 E-bike 2020 

0-500 4.22 4.78 4.22 5.23 14.06 13.03 

500-1000 16.26 11.12 17.04 11.97 12.44 7.11 

1000 - 2000 40.03 33.86 39.88 34.52 29.91 25.06 

2000 - 3000 23.18 25.35 23.28 25.06 21.72 21.96 

3000 - 4000 10.24 14.05 9.70 13.50 11.24 14.00 

4000 - 5000 3.85 6.41 3.88 5.54 6.02 9.34 

5000 - 6000 1.53 2.90 1.38 2.80 2.37 5.14 

6000 - 7000 0.46 1.15 0.41 0.88 1.15 3.04 

7000 - 8000 0.14 0.29 0.16 0.36 0.73 0.50 

8000 - 9000 0.06 0.09 0.03 0.09 0.27 0.79 

9000 - 10000 0.01 0.00 0.01 0.04 0.04 0.04 

 

Collectively, some conclusions about the BikeMi system that emerged from its analysis at specific time 

periods. The use of the system has increased over the years. This may be the reason why the number of 

stations is constantly increasing. Of course, during the pandemic year (2020) the use of the system fell 

sharply due to the strict lockdown. Despite this decrease, the number of stations increased again. This 

may be to better cover some areas. There is no consistent pattern of demand between the years, but 

during the same year there is a relatively uniformity. As for the demand pattern during a day, it follows 

the working hours on a weekday, i.e., high demand during the hours of arrival and departure from the 

workplace. In addition, 4 out 5 users prefer to use a bike over an e-bike. However, in the pandemic year 

(2020), the use of the e-bike increases, i.e., 2 out of 5 prefer it. Finally, most stations have a balance 

between the number of rental and return vehicles.  

 

4.3. Scenarios and designs  
This chapter presents the designs used to implement the optimization model and the different demand 

scenarios. 

The developed demand scenarios concern the demand of the bike sharing system, which is available for 

different days, and the unsatisfied demand of the public transport system, which results from the 

application of the mathematical model of integration of the two systems. The demand for the bike sharing 

system varies between days and for this reason it is decided to use days with different demand in the 

creation of the scenarios. Therefore, two days are chosen which are 4/4/2019 and 8/4/2019. On 4/4/2019 

the bike sharing system is in low demand while on 8/4/2019 the system is in high demand. As for the 

demand for the subway system, it remains stable in the developed scenarios as it is the result of 

generation and not real data.  

There are three demand scenarios (SClow, SChigh, SClockdown). SClow is the combination of the 

unsatisfied demand for public transport system (bike demand: 44715 and e-bike demand: 12685) and the 

demand for the bike sharing system on 4/4/19 (bike demand: 798 and e-bike demand: 195). SChigh 
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includes the unsatisfied demand for public transport system (bike demand: 44715 and e-bike demand: 

12685) and the demand for the bike sharing system on 8/4/19 (bike demand: 3474 and e-bike demand: 

540). Regarding SClockdown, it is the demand for the bike sharing system on 8/4/20 (bike demand: 148 

and e-bike demand: 91). The bike sharing system during the period of strict lockdown is in low demand all 

the studied days. The date 8/4/20 is chosen because it is one of the most demanding days in terms of 

demand for the system during the lockdown period. SClockdown does not include unsatisfied demand 

from the public transport system as the human movements were very low due to the strict lockdown. 

Demand in the subway system decreased by 90% and although subway services were reduced to 75% of 

their normal service, they were sufficient to meet the existing demand. The three different demand 

scenarios will be used as inputs for the designs. The basic demand scenario that most designs will consider 

is SClow. SChigh and SClockdown will be used as inputs for a few designs. 

The designs are created based on the needs of the bike sharing system. The parameters that differ in the 

designs are the number of virtual stations and e-bike stations in the bike sharing network, the location of 

the virtual stations and e-bike stations, the maximum number of bikes per virtual station and the capacity 

of the e-bike stations. The first categorization of the designs concerns the number of virtual stations and 

e-bike stations in the bike sharing network, the location of the virtual stations and e-bike stations. Based 

on these two parameters, 7 basic designs are created. Each design is named with the capital letter D from 

the word design and the number of stations. These are D225, D245, D238, D241, D236, DM285 and D227. 

The locations of the new stations are close to subway stations. Then the other two parameters are 

considered, i.e., the maximum number of bikes per virtual station and the capacity of e-bikes stations. 

Two main types of designs emerge from this separation, Da and Db. Da has a maximum number of bikes 

per virtual station at 50 bikes, a minimum number of e-bikes docks at 10 and a maximum number of e-

bikes docks at 25. Mb has a maximum number of bikes per virtual station at 80, a minimum number of e-

bike docks at 10 and a maximum number of e-bike docks at 40. Design D0 is the design of the bike sharing 

system in 2019. The size of the stations is between 15 and 39 docks and the system is docked for both 

modes. Design D0 consists of stations with 30 docks as it is the most common station size. These 30 docks 

are divided into bike docks and e-bike docks. This means that the maximum number of bike docks per 

station is 20, the minimum number of e-bike docks is 1 and the maximum number is 10. The specifications 

of design D0 also apply to D227, which is the network of stations during the lockdown period (2020). The 

final design that is created is the Mc, in which there is no limit to the maximum number of bikes per station 

while the maximum and minimum number of e-bike docks are 10 and 200, respectively. Therefore, fifteen 

designs have been created, which are D225/D0 (current system), D225a, D225b, D245a, D245b, D238a, 

D238b, D241a, D241b, D236a, D236b, D285a, D285b, D285c and D227. The common features of all 

designs are the following. The bike sharing system is studied for six hours in the afternoon, 15:00 – 21:00, 

which include the evening rush hour. The optimization model requires the definition of time periods. In 

this case the time periods are three, τ1: 15:00-17:00, τ2: 17:00 – 19:00 and τ3: 19:00 – 21:00. Therefore, 

the demand for the system is divided into these 3-time periods. In addition, the maximum and minimum 

used capacity percentages are 25% and 75%, respectively. That is, at the beginning of a period each station 

should have 25% of its capacity filled with e-bikes but also should have 25% of its capacity empty for 

parking availability. Figure 4-19 shows the above scenarios and designs. The combination of each scenario 

and design is an independent input into the application step of the optimization model and the order in 

which each implementation will take place is not particularly important for the next step which is the 

analysis of the outputs. 
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Figure 4-19: Scenarios and designs 

 

The following is an illustration of the bike sharing system network for design D225 (Figure 4-20), which is 

the bike sharing station network of the city center of Milan for 2019. The Figure 4-21, Figure 4-22, Figure 

4-23, Figure 4-24 and Figure 4-25 show the new stations that will be added to the network of 2019 (D225) 

depending on the study design. That is, design D245 is the network of bike stations of 2019 (D225) and 

the new stations of the bike sharing system that are placed near the subway stations of the M1 line that 

have unsatisfied demand. Figure 4-21 shows the new stations of design D245. Figure 4-22 shows the new 

stations of design D238 located near stations of the subway line M2. Figure 4-23 (design D241) and Figure 

4-24 (design D236) show the new stations that are added to the already existing station network of 2019 

(D225) and are located near stations of the subway lines M3 and M5 respectively. Design D285 consists 

of the network of bike stations of 2019 (D225) and the stations that are placed in all subway stations that 

have unsatisfied demand. Figure 4-25 shows only the new stations that will be added to the existing 

network of 2019 (D225). Finally, Figure 4-26 represent the network of bike stations of design D227, which 

is the network of stations during the lockdown period (2020). The station network of 2020 presents small 

changes and additions in relation to the network of stations of 2019 (D225) and that is why Figure 4-26 

shows the whole network.  
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Figure 4-20: Bike sharing system’s stations network of design D225 (scale: 1:30000) 

 

 

Figure 4-21: New stations of design D245 (scale: 1:30000) 
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Figure 4-22: New stations of design D238 (scale: 1:30000) 

 

 

Figure 4-23: New stations of design D241 (scale: 1:30000) 
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Figure 4-24: New stations of design D236 (scale: 1:30000) 

 

 

Figure 4-25: New stations of design D285 (scale: 1:30000) 
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Figure 4-26: Bike sharing system’s stations network of design D227 (scale: 1:30000) 

 

4.4. Results and analysis 

4.4.1. Bike sharing system demand resulting from the integration of the two systems 
The first analysis carried out is related to finding the unsatisfied demand of the public transport system. 

Unsatisfied demand arises from the use of the mathematical model of integration of the two systems-

public transport and bike sharing systems-and the demand of the public transport system. Demand for 

the public transport system is hourly. It is therefore divided equally among the schedules operated on 

each direction of subway line per hour. This means that, for example, if there are ten subway schedules 

taking place within the hour, the hourly demand will be divided equally among all the schedules, i.e., 

hourly demand/number of schedules within an hour. Unsatisfied public transport system demand due to 

social distancing constraints is around 30%. It should be noted that there is unsatisfied demand at stations 

outside the study area which is not included in the analysis. Also, unsatisfied demand for stations in the 

study area whose destination is outside the study area is not included in the analysis. The unsatisfied 

demand shown in Figure 4-27 is the total unsatisfied demand of the public transport system for the entire 

study period (15:00 – 21:00). However, it should be noted that the period 17:00 – 19:00 presents the 

highest unsatisfied demand, which is logical since it is the central peak hours of the public transport 

system. About 55% of stations belong to the first demand value interval (8-1150 passengers unable to 

board), while only 14% belong to the two highest value intervals (3434-5718 passengers unable to board). 

The stations with the highest unsatisfied demand are located peripherally of the study area and belong to 

the subway lines M1 and M5. Stations belonging to the other three value intervals are scattered in the 

study area and belong to all subway lines.  
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Figure 4-27: Bike sharing system demand resulting from the integration of the two systems 

 

Unsatisfied demand for the public transport system is essentially the demand for the bike sharing system 

resulting from the integration of the two systems. This demand should be divided into bike and e-bike 

demand. The distances of the bike network between the subway stations with unsatisfied demand and 

the percentages of bike and e-bike use for specific travel distances intervals are used to separate the 

demand between the two modes. The percentages of bike and e-bike use for travel distances intervals 

are derived from the analysis of the case study and are listed in Appendix C. About 22% of the total 

demand resulting from the integration of the two systems is the demand for e-bikes and 78% is the 

demand for bikes. The trends that have been reported to prevail for the total demand of the bike sharing 

system due to the integration, also prevail in the cases of the demand for bike and e-bike. Figure 4-28 

illustrates the bike demand resulting from the integration of the two systems, while Figure 4-29 presents 

the e-bike demand.  
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Figure 4-28: Bike demand resulting from the integration of the two systems 

 

 

Figure 4-29:E-bike demand resulting from the integration of the two systems 
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4.4.2. Bike sharing system analysis 
The analysis of the bike sharing system considering aspects of the pandemic situation uses the 

optimization model for a hybrid with mixed-fleet system as well as the various designs developed. The 

aggregate results of all designs and their inputs are listed in Appendix D. The analysis of the 

implementation of the optimization model consists of comparing different results such as the covered 

demand per design, the number of (virtual) stations in relation to the number of bikes or e-bikes, and the 

number of bikes and e-bikes and their relocation. The analysis follows by category. 

• Covered demand per design 

This analysis is performed simultaneously for both systems and is shown in Figure 4-30. Covered demand 
in design D0, current system’s design, is just 6% for the bike system and just under 7% for the e-bike 
system. In all other designs there is at least a doubling of the covered demand rates, i.e., 2.1-2.4 times 
more covered demand. Only D227 fully meets the demand of both systems, which is logically due to the 
very low demand that characterizes SClockdown, the input demand scenario. The other design that has 
full coverage of bike system demand and high coverage of e-bike system demand (almost 70%) is D285c. 
The large coverage rates in this case are related to the design features of the system, i.e., an unlimited 
number of bikes per virtual station and a large capacity of the e-stations. In all other designs, it is observed 
that the covered demand is higher in percentage for the e-bike system. More specifically, the percentage 
of coverage of the demand for e-bikes in the designs is 2.1-4.4% more than the corresponding percentage 
of coverage of the demand for bikes. This may be due to the lower demand requirements for the e-bike 
system. In addition, it is observed that the Da designs, which have lower values in the capacity of their 
stations, have a lower percentage of covered demand compared to the scenarios Db, which are 
characterized by higher capacity of the stations. More particularly, an increase of the capacity of the e-
stations and the available bikes in virtual stations by 60%, i.e., from 50 to 80 bikes and from 25 to 40 docks, 
brings about an additional increase of the covered demand by 6.5-7.5%. Demand rates in designs Db show 
a steady growth rate compared to the corresponding Da designs.  
 

 

Figure 4-30: Covered demand per design 

 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

C
o

ve
re

d
 d

em
an

d
(%

)

Scenarios and designs

Βike demand

Ε-bike demand



 

58 
 

• Covered demand and fleet size 

The analysis that correlates the covered demand with the fleet size is performed separately for the two 

systems. For the sake of better illustration, the D285c design is not included in the graphs. The general 

trend in the bike system is that the covered demand increases with the increase of the bike fleet (Figure 

4-31). For example, design D241a has covered 5977 trips with 2608 bikes, while design D238a has covered 

6333 trips with 2748 bikes. It is also observed that in each design the fleet size is about half in relation to 

the covered demand. The ratio (covered demand/fleet size) is between 2.13 and 2.36. This observation 

does not apply only to the D227 design in which the fleet size (137 bikes) and the covered demand (148 

trips) are almost in the same size and the D285c design in which the fleet size (30959 bikes) is lower than 

the covered demand (45513 trips) but not to the trend prevailing in the other designs. In this case the 

ratio (covered demand/fleet) size is 1.47.  

 

 

Figure 4-31: Covered bike demand and fleet size 

 

The e-bike system does not show the same trends between the covered demand and the fleet size as the 

bike system (Figure 4-32). However, there are designs (D241b and D236b) that have a similar fleet size 

(3027 and 3040 e-bikes respectively) and the covered demand (4599 and 4564 trips respectively) between 

the designs is quite the same. However, the increase in the fleet in design D236b does not imply an 

increase in demand compared to design D241b which has a smaller fleet. Also, designs D227 and D285c 

have a large fleet size (402 and 20445 e-bikes respectively) in relation to covered demand (91 and 8896 

trips respectively). The design of the e-bike system in the optimization model contains stricter capacity 

constraints of the stations and may be this is the reason for this variation between covered demand and 

fleet size.  
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Figure 4-32: Covered e-bike demand and fleet size  

 

The differences for the D227 design, which is in low demand, and D285c design, in which the design 

specifications of station capacity are large, are observed in both systems-bike and e-bike. These two 

differences indicate that the bike sharing system based on its design has service specifications, such as 

the availability of bikes and e-bikes, regardless of the size of its demand. 

• Covered demand and number of stations 

Then the relation between the covered demand and the number of stations is studied and shown in Figure 

4-33, Figure 4-34, and Figure 4-35. This analysis is performed separately for the 2 systems-bike and e-bike. 

Regarding design D227, in which the SClockdown scenario applies, the demand of both systems is fully 

covered since the demand requirements are low. Although the demand is low, the size of the station 

network is relatively large (227 virtual stations and 107 e-stations). This indicates that demand is spread 

across the study area and wide station coverage is needed even in this case.  

For the bike system, the same number of stations can cover more demand in the case of high station 

capacity specifications (Db designs). For example, designs D238a and D238b have the same number of 

stations. However, the capacity specifications of the stations in design D238b are increased in relation to 

designs D238a by 60%. This increase in stations’ capacity specifications results in greater demand 

coverage, i.e., 3051 more trips are covered. Moreover, an increase in the number of stations does not 

always lead to an increase in covered demand. Namely, design D238b has 7 stations less than design 

D245b but covers 298 trips more. This observation applies in both cases of station capacities (designs Da 

and Db). In case the demand scenario, i.e., scenario with higher demand (SChigh), for a specific design 

(D285b) changes, it is observed that the same number of stations (285) can satisfy more demand.  More 

specifically, design D285b covers 2660 more trips when SChigh is applied than when SClow is applied.  
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Figure 4-33: Bike covered demand and the number of stations  

 

As far as the e-bike system is concerned, it is observed that the increase of the stations is not in line with 

the increase of the covered demand in some cases. In the case of designs D245a and D236a it is observed 

that design D236a has 6 more stations but covers 40 fewer trips than design D245a. Also, there are designs 

with the same number of stations, such as D236a and D238a with 188 stations and D245b and D238b with 

180 stations, but in which the covered demand differs. In the first case there is a difference of 120 covered 

trips while in the second case this difference is 59 trips. However, this difference in covered demand is  

 

 

Figure 4-34: E-bike covered demand and the number of stations for Da designs 
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considered low in comparison to the total demand of the system. The two above-mentioned conclusions 

concern both cases of capacity specifications of the stations, designs Da and designs Db. The resulting 

differences between the number of stations and the covered demand may be due to the demand of the 

selected stations. In cases where the number of selected stations is almost the same such as D236a and 

D236b, designs with high-capacity specifications (designs Db) satisfy more demand, i.e., 1061 more trips. 

 

 

Figure 4-35: E-bike covered demand and the number of stations for Db designs 

 

• Number of stations and fleet size 

An interesting analysis is the number of system’s stations compared to the size of the fleet. The bike 

system presents uniformity between the results of designs with low (Da designs) and high (Db designs) 

capacity specifications. The size of the fleet increases as the number of stations increases. This 

statement differs only when the number of network stations is 241 (D241a and D241b) and 245 

(D245a and D245b). In these two cases it is observed that the bike fleet shows a decrease compared 

to D238a and D238b designs of which the number of stations is 238, i.e., 3 and 7 stations less 

respectively. However, this is in line with the demand coverage, i.e., the same fluctuations exist in the 

designs’ covered demand as shown in Figure 4-33. In case the demand of the system increases, 

different demand scenarios-SClow and SChigh-the same number of stations (285 stations) satisfies 

more demand.  
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Figure 4-36: Fleet size of bikes and number of virtual stations 

 

Figure 4-37 shows the correlation of the number of stations and the e-bike fleet for the low-capacity 

specifications designs (Da) in the e-bike system. There can be no clear trend in this case. It is worth noting 

that the designs D238a and D236a has the same number of stations (188), but they have a relatively large 

difference in fleet size which is 842 e-bikes. However, there is higher demand coverage in the design with 

the largest fleet which is the D238a design (Figure 4-34).  

 

 

Figure 4-37: Fleet size of e-bikes and number of stations for Da designs 
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The corresponding analysis for designs with high demand specifications (Db designs) is shown in Figure 

4-38. It is observed that the designs D245b and D238b have 180 stations but show a small difference in 

the size of their fleet which is 232 e-bikes. However, in this case, the D238b, which is the design with the 

lowest fleet size, satisfies higher demand as shown in Figure 4-35. In addition, the difference in the fleet 

size between a system with 180 stations and a system with 189 stations is significant, i.e., more than 2000 

e-bikes. However, this does not mean an increase in covered demand, but a decrease in covered demand 

(Figure 4-35). In other cases, as the number of stations increases, so does the number of fleet size as well 

as the covered demand. 

 

 

Figure 4-38: Fleet size of e-bikes and number of stations for Db designs 

 

• Fleet size and relocation size 

The analysis between the size of the bike fleet and the size of the bike relocation is shown in Figure 4-39. 

The size of the bike relocation follows an upward trend as the size of the bike fleet increases. For example, 

the design D238a has 2748 bikes, and the number of the relocated bikes is 2287, while the design D285a 

has 3105 bikes and 2596 bikes for relocation. In a few cases there is a decrease in the size of bike relocation 

while there has been an increase in the size of the fleet. These cases are the designs D245a, D245b and 

D285b under the SClow demand scenario. It is observed that the size of the relocations is always smaller 

than the size of the fleet. Only the case of design D227 is an exception. This may be due to the large 

number of stations (227 stations) relative to the small fleet size (137 bikes). It should also be noted that 

there is no difference in results between designs with low capacity (Da designs) and high capacity (Db 

designs) specifications on stations. 
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Figure 4-39: Bike fleet size and relocation size 

 

The corresponding analysis for the e-bike system is shown in Figure 4-40. The e-bike system cannot be 

characterized by stability in the relation between fleet size and relocation size. The size of the fleet is 

higher than the size of the relocations for all designs beyond the D225a design. In the designs with the 

high-capacity specifications (Db designs) in their stations, there is a greater number of relocations in 

relation to the size of the fleet than in the designs with the low-capacity specifications (Da designs).  

 

 

Figure 4-40: E-bike fleet size and relocation size 
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• Cost analysis 

The values used to perform the cost analysis are not related to the case study but are based on the 

literature. The choice of the price of an e-bike was based on the study of Galatoulas et al. (2018). The e-

bike chosen is the Runner model which costs 725€. The study by Ji et al. (2014) states that the e-bike 

usually has twice the price compared to the conventional bike. Therefore, based on this, the price of the 

bike is considered equal to 360€. In terms of relocation costs, this is set at 0.2€ per relocated (e-)bike. The 

results of SClow-D285c are not presented in the graphs for reasons of better representation of the other 

results. 

Figure 4-41 shows the total cost of the designs. The total cost consists of the purchase cost of bikes and 

e-bikes and the relocation cost of bikes and e-bikes. The cost of buying e-bikes is the highest cost. Designs 

D227 and D285c show the lowest, which is 891579€, and highest, 25976534€, total costs respectively, 

which is reasonable given the size of the system of each design. In the first case the fleet consists of 137 

bikes and 402 e-bikes while in the second case of 30959 bikes and 20445 e-bikes. Low station capacity 

designs (Da designs) have lower final costs than higher station capacity designs (Db designs). The only 

design of category Da that surpasses some designs of category Db is the D285a design. This is due to the 

large number of e-bikes (3267) that this design has. However, in all cases the Db design have a higher total 

cost than the corresponding Da design. For example, design D241a has a total cost of 2831957€ while 

design D241b has a total cost of 4727638€, which is 1895681€ higher than the cost of D241a. The number 

of e-bikes and bikes explains the variation in the costs of the designs. 

 

 

Figure 4-41: Total costs per design 

 

The following analysis relates the bike fleet size of a design and their relocation cost. The cost of relocating 

bikes is relatively low compared to the purchase costs of the fleet. The lowest relocation cost has designs 

D227 and D0-current system’s design-which have the smallest bike fleet size. Their relocation costs are 

36€ and 229€ respectively. While the highest cost, which is 6066€, has design D285c. All designs with low 
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station capacity specifications (Da designs) show lower relocation cost than the corresponding design with 

high station capacity specifications (Db designs). However, in both categories of designs (Da and Db), an 

increase in the bike fleet size does not imply an increase in relocation cost. Namely, the fleet size of designs 

D241b and D245b is 3866 and 3939 bikes respectively while the relocation costs are 702€ and 654€ 

respectively. Although design D245b has 73 bikes more than design D241b, its relocation cost is 48€ less. 

 

 

Figure 4-42: Bike fleet size and relocation costs 

 

Figure 4-43 shows the analysis of the size of the e-bikes fleet with their relocation cost. As is the case with 

the bike system, the D227, D0 and D285c designs have the lowest and highest relocation costs. These 

costs are 75€, 95€, and 2604€ respectively. It is observed that the relocation costs for e-bikes are about 

2.5 times lower than the relocation costs for bikes in designs D0 and D285c. However, this does not apply 

to design D227 in which the relocation cost for e-bikes is twice the corresponding cost for bikes. This may 

be because the D227 design has more e-bikes than bikes, something that does not apply to the other 

designs. In this system, there are designs with the low-capacity specifications in their stations (Da designs) 

whose relocation cost exceeds the relocation cost of designs with stations of high-capacity specifications 

(Db designs) such as D238a and D285a. However, in all cases the designs Db exceed in cost the 

corresponding designs Da. Only in the case of design D238 the opposite happens. 
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Figure 4-43: E-bike fleet size and relocation costs 

 

The latest cost-related analysis concerns the final cost of each design and the covered demand. The cost 

ranges from 340880€, which has the design D227, to about 26 million €, which has the design D285c. In 

both cases the bike demand coverage rate is 100%. However, in the first case the demand of the system 

is 148 users, while in the second case it is 45513 users. For the e-bike system, the coverage rate is 100% 

in the case of D227 design and 70% in the case of D285c design. Although the difference in the cost of the 

two systems is enormous, the cost per user in design D227 is 1426€, while for design D285c is 477€. 

However, for the rest of the designs there is no specific trend in terms of increasing the covered demand 

and costs per user. There are designs with relatively low demand coverage (D225a design) that present 

low cost per user (230€) and there are designs with high demand coverage (D285b design) that present 

high cost per user (398€). Finally, it is observed that the increase in the covered demand does not imply 

an increase in costs. For example, design D236b fulfills 11868 trips, and its final cost is 4673400€, while 

design D245b fulfills 12224 trips, i.e., 356 trips more, with a system cost of 3314250€ which is 1359151€ 

less.  
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Figure 4-44: Covered demand and total costs 

 

4.5. Conclusion remarks 
This chapter summarizes the results of the application of the mathematical model used in the integration 

of the two systems and the optimization model for the design and operation of a bike sharing system that 

considers an extreme situation such as a pandemic and the needs arise from this situation. Demand 

scenarios and designs that reflect the bike sharing system network and its capacity specifications are 

developed to implement the optimization model. 

Initially, the use of the mathematical model for integrating the two systems-subway and bike sharing 

system-in Milan city results in the fact that about 30% of the demand for the public transport system in 

the afternoon and evening hours cannot be met. This is due to the social distance measures applied which 

affect the mobility capacity of the subway system (1.5 meters distance between passengers). Therefore, 

about a third of users will not be able to travel to their destination with the current public transport system 

and will look for a transportation alternative. The existence of this unsatisfied demand leads to the need 

to create a public transport system that will be able to provide mobility capacity for all users during the 

pandemic. In this study, the bike sharing system will be integrated into the public transport system in an 

effort to maintain the mobility capacity needs during this extreme and special situation. 

The current public bike sharing system of Milan city is docked for both modes-bike and e-bike-and its 

stations consist of 30 docks of which 20 are for bikes and 10 for e-bikes. This system has very low demand 

coverage rates. These rates are about 6% for the bike mode and about 7% for the e-bike mode. This means 

that this system is unable to meet the new mobility needs that arise due to the pandemic situation and 

the social distancing measures and changes need to be made. The main change that is taking place is the 

different design approach of the bike system in relation to the e-bike system. The bike system is designed 

as a free-floating system, while the e-bike system as docked system. This design separation results in a 

significant increase in meeting system’s demand. More specifically, this system’s separation increases the 

covered demand at least twice (2.1-2.4 times). Also, an increase of the capacity of e-stations and the 
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available bikes in virtual station by 60% brings about an additional increase of the covered demand by 6.5-

7.5%.  

As far as the free-floating bike system is concerned, an increase in fleet size is usually equivalent to an 

increase in covered demand. It is also observed that there is stability in the ratio of fleet size and covered 

demand. The ratio (covered demand/fleet size) is between 2.13 and 2.36. This means that in case of 

known demand for the public bike sharing system in Milan, the fleet size forecast will be quite close to 

the actual fleet needs of the system. However, this only applies to the bike system. No similar stability is 

observed in the ratio of fleet size and covered demand in the e-bike system. 

The needs of the bike system in terms of the number of stations are higher than those of the e-bike 

system. This means that in the respective cases of the two systems, the bike system network always 

consists of more stations than the e-bike system network. Moreover, both systems do not show a clear 

correlation between the number of stations and the covered demand. This means that an increase in the 

number of stations does not equate to an increase in covered demand. However, for the bike system, it 

is observed that the same number of stations can serve more demand when the capacity specifications 

increase. More specifically, an increase of 60% in the maximum available bikes on virtual stations can lead 

to an increase of 46.8-49.3% in the covered demand.  

Another thing to note is that the needs of the bike sharing system in number of stations and fleet size are 

high even when the demand for the system is low, i.e., SClockdown where the bike demand is 148 and e-

bike demand is 91. The covered demand to fleet size ratio is 1.1 for the bike system and 0.23 for the e-

bike system. Also, the network of stations is wide, 107 e-station and 227 virtual stations. Therefore, even 

in the case of low demand, the system has a spatial range of demand, and it should meet some design 

requirements (e.g., number of stations and size fleet) to meet the demand. Moreover, to fully meet the 

bike system demand, it is needed 30959 bikes, while 20445 e-bikes are needed for 70% coverage of e-

bikes demand. In this case, there is no limit to the available bikes per station and the maximum number 

of docks per station is 200.  

The e-bike system does not show stability in the relations between the number of stations and the size of 

the e-bike fleet. However, there is a reference point to the number of stations, which is 180 stations, 

where beyond that increasing the number of stations equals increasing the size of the fleet. Regarding the 

bike system, the increase in the number of stations is related to the increase in the size of the fleet. Also, 

the same number of stations show a higher fleet size in case the capacity specifications increase. More 

specifically, a 60% increase in the maximum available bikes on virtual stations results in a 48.2%-57.4% 

increase in bike fleet size.  

In the bike system, the size of the fleet and the size of the bike relocation are related. This means that the 

larger the fleet size, the greater the relocation requirements. It is also observed that the ratio between 

the size of the fleet and the size of the relocation (bike fleet size/relocation size) does not differ much 

between the cases of low or high-capacity specifications of the stations. In the case of low-capacity 

specifications at stations, the ratio varies between 1.1 and 1.3, while in the case of high-capacity 

specifications it varies between 1.1 and 1.2. For the e-bike system, no clear conclusion can be drawn about 

the relation between the e-bike fleet size and the relocation of e-bikes. Regarding the ratio (e-bike fleet 

size/relocation size), in the case of stations with low-capacity specifications it ranges from 0.8-1.7, while 

in the case of stations with high-capacity specifications it ranges from 1.0-1.3.  
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Regarding the costs of the bike sharing system, it is noted that it is not the real costs as the used values 

for the costs are determined by the literature and not at values related in the case study of Milan. The 

purchase of e-bikes is the most important cost of the system, while the costs for the relocation of bikes 

and e-bikes are low in relation to the purchase costs. The cost of the bike sharing system increases in case 

the capacity specifications of the stations increase. This is because in this case the needs of the system in 

the fleet size increase. In addition, it is observed that there is no clear correlation trend between fleet 

size-bike or e-bike-and relocation costs. However, the trend is that relocation costs for e-bikes are lower 

than the corresponding relocation costs for bikes. It is interesting to note that the covered demand does 

not increase with the increase in costs. 

In conclusion, the integrations of public transport system and bike sharing system and the design of a 

hybrid mixed-fleet bike sharing system can help provide more mobility capacity during an extreme 

situation such as a pandemic situation and provide better coverage of unsatisfied demand due to 

distancing constraints. However, the integrated system cannot provide full demand coverage as fleet and 

station size requirements are high. It is worth noting that the design of the system, i.e., the number of 

stations and their capacity specifications, affects the provision of mobility capacity. Therefore, the choices 

when designing the bike sharing system should be very careful. This can be achieved by scrutinizing each 

case and classifying needs and requirements. 
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5. Conclusions and recommendations 
During the pandemic, many sectors are affected by the governments’ measures to reduce the spread of 

the coronavirus. The transport sector is one of the sectors most affected by this pandemic situation and 

will continue to be affected in the long run. The mobility capacity of public transport system is reduced by 

the imposition of the distancing measures. This means that the mobility capacity of the motorized public 

transport system is reduced, and that part of the existing demand cannot be served especially when life 

rhythms return to normal, i.e., work from the office, open schools, and market. This leads to the need of 

creating a new public transport system that can offer mobility capacity to those who need it during the 

extreme situation of a pandemic. The integration of the bike sharing system and the existing public 

transport system is this new system proposed in this study. The main goal in the design and operation of 

the bike sharing system is to meet the needs of the pandemic situation, i.e., the extreme demand that 

arises due to social distancing measures but also the human prejudice regarding their use. The first need 

that arises is to provide a solution that can serve all groups of people, i.e., from young to elderly, but also 

different distances. This need can be met by using a mixed fleet-bikes and e-bikes. The bike can be 

preferred for shorter distances and by people with better physical condition, while the e-bike can be 

preferred by people with a health problem but also for longer distances since its use does not require 

much physical fatigue. The second need that arises due to pandemic is the increased unsatisfied demand 

for transportation due to the reduced mobility capacity of public transport caused by the distancing 

measures. The separation of the bike sharing system into a free-floating bike system and docked e-bike 

system meets this need. This separation results in greater mobility capacity in the bike sharing system. 

This research seeks to fill the research gap in providing mobility capacity during an extreme situation and 

disturbances in public transport system such as a pandemic situation and the social distancing measures 

by integrating public transport and bike sharing systems and design a hybrid mixed-fleet bike sharing 

system. 

To achieve tο fill the mentioned gap, a mathematical model that integrates the demand needs of public 

transport and bike sharing systems is being developed. This mathematical model, which has as inputs the 

demand of the public transport system, the capacity of the vehicle and the percentage reduction of the 

capacity due to the social distancing measures, results in the separation of the demand in the two systems. 

Moreover, a model for optimizing a hybrid mixed-fleet bike sharing system is being developed that does 

not include cost-related constraints. The non-use of cost-related constraints leads to the development of 

an optimization model that aims for the best level of service. The objective of the optimization model is 

to maximize the system’s covered demand, i.e., to maximize the mobility capacity of the bike sharing 

system. The optimization model is used to apply different designs, which concern the bike sharing system 

network and its design specifications, and demand scenarios in order to identify the prevailing trends for 

the design and operation of a hybrid mixed-fleet bike sharing system that aims to provide mobility 

capacity during the pandemic. The city of Milan is used as a case study for the implementation of the 

developed approach. 

The remainder of the chapter has the following structure: Section 5.1 presents the key research findings 

and answers the research question and the sub-questions. Section 5.2 deals with the implication of the 

research, while Sections 5.3 and 5.4 refer to the study limitations and the recommendations for future 

work. 
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5.1. Key findings 
This section presents the answers to the research question and the sub-questions based on the research 

conducted and the analysis of the results. 

RQ: “Ηow can we maintain mobility capacity in public transport under the impacts of social distancing 

constraints, investigating the case of bike sharing mobility capacity for COVID-19 conditions?” 

This research examines the design and operation of the bike sharing system to maintain the mobility 

capacity of the public transport system under the impacts of social distancing constraints. First, the 

problem should be identified. The mathematical model developed for the integration of the two systems 

can help identify the problem of unsatisfied demand. The mathematical model considering the reduced 

mobility capacity of the public transport system due to the social distancing measures can calculate the 

demand that could be served by the public transport system and the unsatisfied demand. This will result 

in finding the areas of the transport network that demand will not be able to meet and therefore finding 

the areas where mobility capacity is required. The bike sharing system will try to meet the required 

mobility capacity considering the needs of the pandemic situation. Different groups of people constitute 

the unsatisfied demand and origin-destination pairs vary in travel distance. These needs arising from the 

pandemic situation will be met by using two modes in the bike sharing system, the bike, and the e-bike. 

Also, to try to meet the increased demand resulting from the social distancing measures in public 

transport system, the bike sharing system will be hybrid. This means that the bike system will be free-

floating, while the e-bike system will be docked. This separation increases the capacity of the bike sharing 

system. A free-floating bike system has more relaxed capacity constraints as there are no stations with 

docks. Also, the stations, which can also be charging points, will be entirely for the e-bike system so there 

are more docks available for this system. Based on the needs arising from the pandemic situation, 

unsatisfied demand should be split into bike demand and e-bike demand. This is done by cycling travel 

distances between areas of unsatisfied demand and rates of use per mode at various distance intervals. 

It should be noted that the bike network has expanded due to the pandemic situation, so this is another 

aspect of the pandemic that is included in the developing approach. The optimization model for the bike 

sharing system is then developed considering the elements that meet the needs arising from the 

pandemic situation. As the main goal is to provide as much mobility capacity as possible during the 

pandemic, the model will not include cost constraints that can significantly reduce the main purpose. 

Simultaneously with the model, designs are being developed that reflect the needs arising from the 

pandemic, i.e., the creation of bike stations in areas with unsatisfied demand. The designs also cover cases 

of different capacity specifications on stations and different station locations. In addition to the designs, 

demand scenarios are also created. The application of the model is carried out in the combination of 

demand scenarios and designs, and the analysis of the results provides an insight into how the design 

parameters affect the mobility capacity.  

The developed approach that considers different aspects of the pandemic situation is how we can 

maintain mobility capacity in the integrated public transport system. Based on the analysis and 

interpretation of the results obtained from the implementation of the approach, presented in Chapters 

4.4.2 and 4.5, some conclusions are drawn. Firstly, the integration of the bike sharing system into the 

public transport system cannot fully maintain mobility capacity in public transport system during extreme 

situations such as a pandemic because it is needed high fleet and station size requirements. However, the 

separation of the bike sharing system into a free-floating bike system and a docked e-bike system and the 
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creation of bike stations near subway stations with unsatisfied demand, increases the covered demand, 

i.e., provide more mobility capacity, at least twice compared to the current system. Moreover, an increase 

of the capacity of the e-stations and the available bikes in virtual stations by 60% brings an additional 

increase of the covered demand by 6.5-7.5%. Therefore, the key elements in providing more mobility 

capacity are the separation of the bike sharing system into free-floating for bikes and docked for e-bikes 

as well as the increase in capacity specifications at the e-station and the number of available bikes at the 

virtual stations. 

 

SQ1: “How are safety measures limiting the mobility capacity in public transport system?” 

This sub-question can be answered based on the literature research conducted. All countries have 

implemented and continue to impose social distancing measures on public transport system, and this of 

course affects their mobility capacity. The implementation of the general rule of social distancing, i.e., 

distance between passengers 1-2 meters, can lead to a reduction in metro train capacity of 60%, 80% and 

90% for distances of 1, 1.5 and 2 meters, respectively (Krishnakumari & Cats, 2020) and in reducing the 

capacity of a 48-passenger bus to 11 passengers (ITF-OECD, 2020). However, each country applies its own 

social distancing measures. There are cases where the general measure of keeping 1-2 meters distance 

from others applies (Bundesregierung, 2021; COVID-19 Updates, 2021a; Reis alleen als het nodig is , 2021), 

but there are also cases that have more specific personal distancing measures for public transport system 

(COVID-19 Updates, 2021b; Coronavirus government response tracker, 2021; Publiction: Level 5, 2021). 

In some cases, the social distancing measures are stricter, while in other cases the measures are more 

relaxed. However, in both cases, the mobility capacity of public transport system is reduced. Mobility 

capacity in public transport system is limited to a range of 25% to 80% (ATM and the COVID-19 emergency: 

the management of the different phases, 2021; Publiction: Level 5, 2021; Tobing, 2020). Many countries 

have a capacity reduction rate range and impose different rates depending on the pandemic situation 

(Covid-19 updates: information for tourists, 2021; Government Gazette search, 2021). In other cases, 

there is a combination of measures (Diouf, et al., 2020; Tobing, 2020) or different rates of mobility capacity 

reduction per transport system (Diouf, et al., 2020). There are also extreme cases where for a period there 

was no public transport at all (COVID-19 Information, 2021). The conclusion is that the mobility capacity 

of public transport system is drastically reduced even in cases where low-capacity reduction rates are 

applied. 

 

SQ2: “To what extent can a bike sharing system counterbalance for limited capacity in the public transport 

system?” 

Based on the interpretation of the results, Sections 4.4.2 and Section 4.5, it appears that the current public 

bike sharing system of Milan city-stations of 30 docks of which 20 are for bikes and 10 for e-bikes-covers 

a very small percentage of demand, i.e., 6% for the bike mode and about 7% for the e-bike mode. This 

means that the current system provides a low percentage of mobility capacity. However, following the 

changes in the bike sharing system resulting from the pandemic aspects, demand coverage is increasing. 

More specifically, it is observed that the separation of the bike sharing system into a free-floating bike 

system and a docked e-bike system brings about a significant increase in the satisfaction of the existing 

demand. This system’s separation increases the covered demand at least twice (2.1-2.4 times). It is also 
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observed that an increase of the capacity specifications of the e-stations and the number of available bikes 

in the virtual station by 60% results in an additional increase of covered demand by 6.5-7.5%, i.e., the 

percentages of covered demand range from 18.4% to 21.3%. Moreover, the needs of the bike system in 

terms of the number of stations are higher than those of the e-bike system. This means that in the 

respective cases of the two systems, the bike system network always consists of more stations than the 

e-bike system network.  However, no specific trend is observed between the number of stations of the 

two systems. It is observed that the satisfaction of the total demand of bike system and 70% of the total 

demand of e-bikes system requires great fleet size of bikes (30959) and e-bike (20445) and high-capacity 

specifications at stations, i.e., no limit to the available bikes per station and the maximum number of docks 

per station is 200. However, it should be noted that these numbers of fleets are overestimated due to the 

time specifications set by the optimization model as the two-hour demand of the system is required to be 

met at a specific point in time. An important factor that should be considered in the design of the bike 

sharing system is the creation of new bike and e-bike stations near the areas that have unsatisfied demand 

due to pandemic social distancing measures. In conclusion, a hybrid mixed-fleet bike sharing system can 

partly compensate for the limited capacity in the public transport system due to the distancing 

constraints. Moreover, attention should be paid to the required system specifications, system demand 

needs and the choice of system design parameters such as the capacity specifications of the stations. 

 

SQ3: “Ηow can the selected COVID-19 aspects be adapted to the developed optimization model of bike 

sharing systems?” 

This study deals with the creation of a resilient public transport system that can provide mobility capacity 

in extreme and special situations and disturbances in public transport system such as the COVID-19 

pandemic and the social distancing measures. This system consists of the integration of the bike sharing 

system in the public transport system. Therefore, one of the main goals is to develop an optimization 

model for the design and operation of a bike sharing system that considers the needs arising from the 

COVID-19 pandemic. Τhe transmission of the COVID-19 virus on public transport modes is high. This is 

because the virus belongs to the category of respiratory viruses and is transmitted through the infectious 

aerosol which can accumulate over time in an enclosed place (Prather et al, (2020)). This fact affects the 

mobility capacity of public transport but also the transportation mode choice of commuters. As a result, 

there is a demand that can no longer be satisfied by public transport system as it used to be. Moreover, 

in many cases the state has created new bike network to promote bike and e-bike use in order to avoid 

the use of public transport system. These aspects of the pandemic are the key factors in the new demand 

that the bike sharing system is trying to provide mobility capacity. This unsatisfied demand due to the 

COVID-19 virus situation is the main input to the optimization model.  

As for the optimization model itself, high demand leads to the design and operation of a bike sharing 

system to meet transport needs. These needs-high demand, different types of users and different 

distances-can be met using two different modes-bikes and e-bikes. So, the optimization model aims at the 

design and operation of these two systems, the bike system, and the e-bike system. Also, the high demand 

needs result in the design of the bike system as free-floating, and the e-bike system as docked- as this will 

increase the mobility capacity of the bike sharing system. The above-mentioned features of the bike 

sharing system that developed to meet the needs of the COVID-19 pandemic situation are applied to the 

optimization model in the form of constraints, variables, parameters as well as to objective function. 
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Initially, the objective function consists of two parts, one related to the satisfaction of the demand of the 

bike system while the other to the satisfaction of the demand of the e-bike system. In addition, the model 

consists of constraints and variables that affect both systems.  

 

SQ4: “To which extent these findings can be generalized?” 

The developed methodology concerns the integration of a bike sharing system in the public transport 

system and the creation of a public transport system which can provide mobility capacity during the 

COVID-19 pandemic situation and the social distancing measures. This integrated public transport system 

can be described as resilient since it can provide mobility capacity in the extreme and special situation of 

the pandemic. However, the creation of this integration and therefore the existence of a resilient public 

transport system can be generally useful. Initially it gives an extra transport alternative to the users but 

offers mobility even in other special situations that affect the existing public transport system as well. 

Some of these extreme and special situations that affect the mobility capacity of the public transport 

system are a strike or a possible maintenance of the public transport system or even mass events. 

The mathematical model for the integration of the two systems is one of the things developed in this 

study. In this case it was used for the subway system in Milan, but its use can be extended to other public 

transport systems. This is because its development was not based on the subway system. The 

mathematical model is based on parameters such as the initial capacity of the mode, the reduction rate 

in capacity, system demand, the number of schedules per line. All of these are common features of all 

public transport modes (e.g., bike, tram, trolley). Therefore, its use can be extended.  

The optimization model concerns the design and operation of a hybrid mixed-fleet bike sharing system. 

The model was not developed based on the specific case study of the bike sharing system in Milan city. It 

was developed based on the needs of the COVID-19 pandemic situation. However, a bike sharing system 

with hybrid and mixed fleet characteristics can be exist in a city even in other non-pandemic situations. 

Moreover, the formulation of the optimization model and the used values can be change easily. It can 

therefore be applied in any case where a similar bike sharing system is sought. 

Regarding the results of the Milan case study, i.e., the specific results from the application of the 

methodology, a little more attention is needed for their application in other case studies. The conclusions 

related to the relationship between the covered demand and the separation of the two systems-bike and 

e-bike-or the different capacity specifications of the stations could be applied in other cases as well. 

However, results related to, for example, the correlation between fleet size and relocation needs may not 

be safe to apply to other case studies without further analysis of the other case study. 

 

5.2. Research implications 
In this section, the scientific and practical implications of the research outputs are presented. 

This research provides theoretical contribution to the literature. Research shows the significant impact on 

public transport mobility capacity caused by the pandemic situation and the social distancing measures. 

It also analyzes the results of different designs of a bike sharing system and shows that a bike sharing 



 

76 
 

system can partly counterbalance for the limited capacity in the public transport system if the system is 

designed based on the aspects of the pandemic and the careful selection of its design parameters.  

During the research, an optimization model is developed for the design and operation of a hybrid mixed-

fleet bike sharing system. As far as the author is aware, there is no corresponding model in the literature 

that designs a hybrid mixed-fleet bike system. There are studies that develop models for design and 

operation of mixed fleet bike sharing systems (Martinez et al,  (2012)). However, the combination of mixed 

fleet, free-floating system for the bike system and docked system for the e-bike system is applied for the 

first time in an optimization model. Also, this model does not contain cost constraints, so it is based on 

optimizing the system in terms of the level of service it provides.  

In practice, the findings of the study can be used by the stakeholders, i.e., the operators of public transport 

and bike sharing systems. The main findings and policy implications are summarized subsequently: 

• Based on the results, it is observed that 30% of the demand for the evening peak hour of the 

subway system in Milan cannot be satisfied due to distancing measures. In an effort to maintain 

mobility capacity in public transport system, it is proposed the integration of the bike sharing into 

the public transport system. Therefore, it is recommended the cooperation between the 

operators of the public transport and bike sharing systems.  

• The current bike sharing system can only compensate for 6% of the public transport system and 

its own demand. The proposed advice to bike sharing system operator in order to increase this 

percentage is to separate the system design. That is, to invest in the creation of e-bike stations 

and in the free-floating bike system.  

• The separation into a free-floating bike system and a docked e-bike system and the creation of 

bike stations near the subway stations with unsatisfied demand, increases the covered demand 

at least twice (2.1-2.4 times). It is therefore proposed that the bike sharing system should invest 

in the construction of stations near subway stations. 

• An increase of the capacity of the e-stations and the available bikes in virtual stations by 60% 

brings about an additional increase of the covered demand by 6.5-7.5%. Based on this, it is 

consulted to the bike sharing system operator to pay special attention to the capacity 

specifications of the stations during their design. 

• As far as the free-floating bike system is concerned, it is also observed that there is stability in the 

ratio of covered demand and bike fleet. The ratio (covered demand/fleet size) is between 2.13 

and 2.36. It is suggested that the bike sharing system operator take this into account for a rough 

initial fleet forecast. Based on this, it will provide the necessary mobility but will also make a 

careful investment.  

• The demand for the e-bike system is 22% of the unsatisfied demand and 78% for the bike system. 

Based on this, the lower station requirements, and the instability of e-bike system results, it is 

recommended that the bike sharing system operator should carefully invest in the e-bike system 

and then extend it based on the needs that arise.  

• In the study’s results, it is observed that the bike sharing system during the lockdown period fully 

satisfies its low demand, However, the fleet needs in relation to the covered demand are high. 

The covered demand to fleet size ratio is 1.1 for the bike system and 0.23 for the e-bike system. 

Also, the network of the stations is wide, 107 e-stations and 227 stations. This shows that the 



 

77 
 

system has a spatial range of demand. It is consulted to the bike sharing system operator to 

develop a wide network of stations. 

• The results show differences in fleet needs, 137-5575 bikes and 402-5884 e-bikes, and station 

needs, 107-271 e-stations and 225-285 virtual stations. It is recommended to the bikes sharing 

system operator to install some stations on mobile trailers to can be easily moved. An additional 

advice would be that the available fleet on the system should be period-based. 

As for the users of the public transport system, their main concern is the ability to move whenever needed. 

Unfortunately, during the pandemic period due to social distancing measures in public transport system, 

this is not always possible, or the waiting times are increased. Also, there are people who will prefer a 

safer alternative than the enclosed public transport modes. The findings of this study can benefit these 

people as it offers a new integrated and resilient system-public transport and bike sharing systems-that 

can provide better mobility capacity. 

 

5.3. Research limitations 
The scope of the research has narrowed. This is due to the time limitations on performing this research. 

This section summarizes these limitations. 

• The purpose of the research is to design and operate an integrated public transport system that 

can maintain the needs for mobility capacity in an extreme situation such as a pandemic. The two 

systems that have been integrated are the public transport and the bike sharing systems. 

However, this research focuses on the better design and operation of the bike sharing system. 

There are no changes to the design of the public transport system such as increasing the frequency 

of services. Simultaneous design of services of both systems may be able to better maintain the 

mobility of the public transport system. 

• The effects of pandemic measures, i.e., distancing constraints, are studied only for the subway 

system. Other means of public transport such as buses, trams or trolleys are not included in the 

study. Therefore, the overall problem of the reduced mobility capacity of the city's public 

transport system is not known. Perhaps the study of each mode and the improvement of its 

services will offer a better balance in providing mobility in a pandemic situation. 

• The origin-destination data of the public transport and bike sharing systems users are between 

the stations of the respective network. Therefore, the exact origin and the exact destination of 

the users are not known. If the data related to the users’ movements were from the exact origin 

to the exact destination, the distribution of demand in the systems and the corresponding stations 

might have been different as users may have been assigned to the other system or other station. 

This may have changed the need for mobility capacity in the system. 

• The only options given to the users are the alternatives of the public transport system and the 

bike sharing system. In other words, it is assumed that users who will not be able to be served by 

the public transport system, should be served by the bike sharing system. Other means of 

transport such as car or private bike are not options in this study. Moreover, the option of 

choosing other shared transport systems i.e., another bike sharing system or e-scooter sharing 

system, is not included in this study. In fact, there is no competition from other micromobility 

systems. Therefore, a single system bears the need for extra mobility capacity which in real life 

does not happen as users have other mode options or preferences. Thus, for future research it 
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would be beneficial to include other choices of systems or means of transport based on people's 

preferences. 

• The optimization model concerns the satisfaction of the system’s demand and the relocation of 

the bikes and e-bikes. The first service is continuous while the second takes place at specific times. 

In this model the use of specific times is selected, i.e., the demand will enter the system at specific 

times and not continuously. Therefore, mobility needs will be overestimated, and mobility 

requirements will be increased. However, the optimization model is a good approach to use when 

installing a bike sharing system. 

 

5.4. Recommendations for future research 
This research focuses on creating an integrated public transport system in terms of adequate mobility 

capacity supply considering the distancing constraints on motorized public transport system due to the 

pandemic situation and the needs of the pandemic. The goal of the research is achieved with the 

development of a mathematical model that integrates distancing constraints and seeks to separate the 

demand of the motorized public transport system into all the alternatives of the integrated public 

transport system. Also, the development of an optimization model for the design and operation of a 

hybrid mixed-fleet bike sharing system helps to achieve the research goal. The bike sharing system is 

chosen to be hybrid and mixed fleet to offer different options to users but also to provide better mobility 

capacity.  

However, there are aspects in the mathematical model but also in the optimization model that can be 

improved. Initially, the mathematical model based on the distancing constraints on motorized public 

transport calculates vehicle load by giving priority to people with the longest distances and provides public 

transport system demand and bike sharing system demand. The approach of the integration of the two 

systems can be done based on the travel time. The mathematical model will calculate the travel time and 

suggest the mode with the shortest travel time to the user. This approach can be made more detailed and 

even more pandemically oriented. This can be achieved by combining this travel time-oriented model and 

an application that detects the movement of infected people. Therefore, the user will be informed in real 

time about the chances of coming in contact with an infected person and will choose accordingly the 

means he desires.  

Secondly, there are sections where the optimization model can be extended. The formulation of the 

developed optimization model refers to the design and operation of a docked e-bike sharing system. The 

main issue that can arise in e-bikes is their battery level which of course decreases with their use. This can 

result to the use of an e-bike that is uncharged. This research does not consider the issue of battery level. 

It is suggested that future research include the choice of whether to use an e-bike based on its battery 

level. In addition, the developed optimization model relocates bikes and e-bikes. However, it is limited to 

finding the number of bikes and e-bikes that are relocated from one station to another in each period 

without considering how the relocation takes place. Therefore, in future research the model could be 

extended to the design of bike and e-bike repositioning/rebalancing process.  

With some attention to adaptation, the optimization model could be used in other sharing systems as 

well. Of course, each system has its own characteristics and particularities. For example, an e-scooter 

sharing system has several similarities to a bike sharing system. The procedures for selecting the location 

of the stations (if any), the fleet and the availability of the e-scooters as well as their relocation are 
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common features. However, the issue of charging e-scooters cannot be omitted. Another example is the 

car sharing system which is quite different from bike sharing system. Car sharing systems are divided into 

one-way and round way. The two forms of the system are different in terms of design and operation. The 

one-way system requires relocation of the fleet, however not as frequent as in the bike sharing system, 

while the round way system does not require relocation since the user will return it to the station. In 

addition, in the case of the car sharing system the cost cannot be skipped as it is a high-cost system. 

Perhaps an approach that jointly determines supply and demand is more efficient in this case. Hence, the 

adaptation of the bike sharing system optimization model requires more attention in the case of car 

sharing system. 

Finally, this study focuses on providing mobility capacity during the pandemic period by integrating public 

transport and bike sharing systems. The study’s approach is supply oriented. In addition, it gives only two 

options to the users of public transport and does not deal at all with the real preferences of users. It is 

suggested in future research that the study of users' preferences regarding the means of transport during 

the pandemic period precede. From this research will emerge the new modal share and based on this 

data the study for the provision of mobility capacity will be carried out. 
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Can Shared Mobility Compensate for Public Transport Disruptions? An 
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Abstract 

The COVID-19 pandemic poses an unprecedented challenge for the public transport systems. The capacity 
of the transport system has been significantly reduced due to the social distancing measures. Therefore, 
new avenues to increase the resilience of public urban mobility need to be explored. In this work, we 
investigate the integration of the bike sharing and public transport systems to compensate for public 
transport demand under the disruptive impacts of the COVID-19 pandemic. As a first step, we develop a 
data analysis model to integrate the demand of the two underlying systems. Next, we build an 
optimization model for the design and operation of a hybrid mixed-fleet bike sharing systems (i.e., free-
floating, and station-based bike-sharing with electric and conventional bikes---to consider requirements 
of elderly passengers). We analyze the case of the subway and public bike sharing systems in Milan to 
apply the methodology. We find that the bike sharing system (in its current state) can only compensate 
for a minor share of the public transport capacity, as the needs in fleet and station capacity are very high. 
However, the resilience of public urban mobility further increases when new design concepts for the bike 
sharing system are considered. An extension to a hybrid free-floating bike and docked e-bike system at 
least doubles the covered demand of the system. While an extension of the station capacity of about 60% 
yields an additional increase of the covered demand by 6.5-7.5%. On the other hand, such a hybrid mixed 
fleet bike sharing system requires a large number of stations and a relatively large fleet to provide the 
required mobility even at low demand requirements. 

Keywords: Pandemic, COVID-19, Public transport, Bike sharing, Resilience, Linear Programming Model, 

Milan 

 

 

 

 

mailto:G.Liouta@student.tudelft.nl
mailto:F.Schulte@tudelft.nl
mailto:giorgio.saibene@studium.uni-hamburg.de
mailto:N.vanOort@tudelft.nl
mailto:o.cats@tudelft.nl


 

89 
 

Introduction 

The global impact of COVID-19 has been established. Due to the high contagiousness of the virus, the 
outbreak was recognized as a pandemic in March 2020 (WHO, 2020). Measures such quarantine, 
lockdown, social distancing, travel restrictions, closing of restaurants and schools, and isolation help to 
reduce the spread of corona-viruses and are followed by many governments (de Haas, Faber, & 
Hamersma, 2020; De Vos, 2020; Qureshi, Suri, Chu, Suri, & Suri, 2021). The proposed measures for social 
distancing in closed places have a great impact on the mobility capacity of public transport systems (PTSs) 
(ITF-OECD, 2020; Krishnakumari & Cats, 2020).  

PTSs are mostly closed, overcrowded spaces that increase the chances of transmitting influenza viruses 
such as COVID-19 virus from infected to uninfected people (Goscé & Jahansson, 2018; Troko, et al., 2011). 
The aforementioned studies conclude that PTSs are sources of COVID-19 virus transmission. Therefore, 
social distancing measures have been implemented reducing the mobility capacity of PTSs. The result of 
the implementation of these measures can be seen, for instance, in the case of the Milan subway in Italy 
(Figure 1). 

 

 

FIGURE 1: Social distancing measures affect the capacity of PTSs. Here, it shows how the implementation of the 

general rule of social distancing (i.e., 1.5 meters between passengers) affects the capacity of subway trains and the 
BSS demand in Milan. The red dots represent subway stations, while the black dots represent BSS stations. 

 

The limited capacity of PTSs due to the COVID-19 distancing measures (i.e., mostly 1-2 meters between 
passengers), the precautionary behavior of people and the gradual return to normal life rhythms leads 
PTSs in unprecedented states. A main issue is the excessive demand which is not satisfied by the motorized 
PTSs and pushes for an alternative where people will be able to move in a safe way. There are several 
alternatives that can be integrated into PTSs to create systems that can accommodate this new situation. 
However, traffic congestion in most cities and air pollution are prompting the choice of a green alternative 
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that does not burden the network too much. In line with this paradigm, the city of Milan has converted 
public roads into bicycle lanes during the pandemic.  

A recent study on public transit strikes (Saberi et al., (2018)) concludes that integrating bike sharing 
systems (BSSs) into the PTS increases the system’s resilience to disruptive events. Moreover, several 
studies investigate the interplay of bike sharing and public transport in cities such as Pozna (Radzimski & 
Dzięcielski, 2021), Oslo (Böcker et al., (2020)), or Vienna (Leth et al., (2017)). Nevertheless, hardly any 
research considers disruptive events comparable to the COVID-19 pandemic, and, to the best of our 
knowledge, there is no study on the COVID-19 scenario available. In this work, we propose an alternative 
to be operationally integrated in terms of demand and mobility capacity, that is, public transport capacity 
supply and alternative safe way of transportation, with PTSs and BSSs. With this integration and the 
efficient design and operation of the BSS, a new integrated PTS is created that is suitable to deal with 
excessive unsatisfied demand due to the social distancing measures or similar capacity-limiting disruptive 
events. 

The main challenge in implementing this integrated alternative is the way of designing and operating the 
BSS to provide safe mobility for all unsatisfied demand (demand exceeding the capacity implied by the 1.5 
meters distance criterion). Distancing measures to combat the COVID-19 pandemic situation have 
affected PTSs and created a lack of transport. The main purpose of this integrated PTS and the design of 
the MFHBSS is to ensure the necessary supply. This means that the prospect of approaching the problem 
is supply oriented. In this work, we focus on the optimal design and operation of a mixed fleet hybrid BSS 
(MFHBSS) considering the COVID-19 situation and aiming to create an integrated PTS. To this end, we 
propose a data analysis model to integrate the demand of the two underlying systems and build an 
optimization mode for the design and operation of a hybrid mixed-fleet bike sharing systems. Such a 
system integrates free-floating and station-based bike-sharing with electric and conventional bicycles---
to consider requirements of elderly passengers. We analyze the case of the subway and public bike sharing 
systems in Milan to apply the methodology. 

 

 Related work 

The reduced public transport capacity due to social distancing measures, the increased likelihood of the 

virus spreading in PTSs, the need for people to keep moving, and the prejudice against PTSs strengthen 

the need to find a safe alternative to satisfy people mobility. The safe alternative that could be integrated 

with the current PTSs to maintain mobility capacity is the BSS. This choice is reinforced by the fact that 

many cities around the world, as they try to deal with social distances measures, become more friendly 

to pedestrians and cyclists by providing them with more urban space (Broom, 2020; Mobycom, 2020). 

Moreover, in this moment, there is a surge of people turning to the use of BSSs (Naka, 2020; Schwedhelm, 

Li, Harms, & Adriazola-Steil, 2020). 

The BSSs can complement or substitute the existing PTSs (Campbell & Brakewood, 2017; Leth, Shibayama, 

& Brezina, 2017; Ma, Yuan, Van Oort, & Hoogendoorn, 2020a; Martin & Shaheen, 2014). Moreover, a BSS 

can be a solution in the event of a long-term or short-term disruption of the PTS (Fuller, Sahlqvist, 

Cummins, & Ogilvie, 2012; Saberi, Ghamami, Gu, Shojaei, & Fishman, 2018; Younes, Nasri, Baiocchi, & 

Zhang, 2019). An element to consider for the efficiency of a BSS is its design and operation. This type of 

problem can be addressed by optimization models. The main objective categories of these models are the 

maximization of demand coverage (Çelebi, Yörüsün, & Işık, 2018; Frade & Ribeiro, 2015; Park & Sohn, 

2017; Saharidis, Fragkogios, & Zygouri, 2014), the minimization of transportation costs and overall costs 
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(Caggiani, Camporeale, Dimitrijević, & Vidović, 2020; Lin & Yang, 2011; Yan, Lin, Chen, & Xie, 2017; Yuan, 

Zhang, Wang, Liang, & Zhang, 2019) or the maximization of profit (Martinez, Caetano, Eiró, & Cruz, 2012; 

Sayarshad, Tavassoli, & Zhao, 2012). Moreover, there are studies that use different approaches to design 

and operate a BSS like simulation approach (Fernández, Billhardt, Ossowski, & Sánchez, 2020; Jian, 

Freund, Wiberg, & Henderson, 2016; Soriguera, Casado, & Jiménez, 2018). Table 1 presents the above 

studies in summary. 

 

TABLE 1: Analysis of research for BSS Design and Operation 

  Objective    

Reference Problem MDC MUD MP MC Method Case 

Caggiani et al. (2020) Bike station    ✓  ILP AC 
Çelebi et al.  (2018) Bike station  ✓    MINLP Istanbul 
Fernández et al. (2020) Bike location     ABS Madrid 
Frade et al. (2015) Bike station,  

Bike relocation  
✓     MILP Coimbra 

Jian et al. (2016) Bike allocation 
Dock allocation 

 ✓    SO New York 

Lin et al. (2011) Bike station, 
bikeways 

   ✓  INLP AC 

Martinez et al. (2012) (E)Bike station, 
(E)Bike relocation 

  ✓   MILP Lisbon 

Park et al. (2017) Bike station ✓     BILP Seoul 
Saharidis  et al. (2014) Bike station  ✓    PILP Athens 
Sayarshad et al. (2012) Bike station,  

Bike relocation 
  ✓   ILP Tehran 

Soriguera et al. (2018) Bike rebalancing 
Bike relocation 

   ✓  ABS Barcelona 

Yan et al. (2017) Bike station,  
Bike relocation 

   ✓  MILP New Taipei 

Yuan et al. (2019) Bike station,  
Bike relocation 

   ✓  MILP Beijing 

This study Bike virtual station,  
E-bike station, 
Bike relocation 
E-bike relocation 

✓     MILP Milan 

Objective: MDC (Maximization of demand coverage), MUD (Minimization of unmet demand), MP (Maximization of profit), MC 
(Minimization of costs) 
 
Method: ILP (Integer Linear Program), MILP (Mixed-Integer Linear Program), INLP (Integer Non-Linear Program), MINLP 
(Mixed-Integer Non-Linear Program), BILP (Binary Integer Linear Program), PILP (Pure Integer Linear Program), SO (Simulation 
– Optimization), ABS (Agent-Based Simulation) 
 
AC: Artificial case 

 

There are many works that study the design and operation of a bike sharing system. The optimization 

models developed in each study differ in the features, such as the level of service or the costs of the 

system, that it considers in its formulation. These features are expressed in the objective function and the 

type of constraints of the models. Most of the reported research include constraints regarding various 

costs of a bike sharing system or even their objective function refers to the cost or profit of the system. 

This means that the level of service offered by the bike sharing systems designed by these optimization 
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models is limited by the available budget. It is also observed that the optimization models concern the 

design and operation of either free-floating systems or docked system whose characteristics differ. The 

main difference is that the design of the docked system requires the installation of stations, while in the 

free-floating system there may be no stations. Moreover, it is observed that only one study (Martinez et 

al., (2012)) approaches the design of a mixed fleet-bike and e-bike-bike sharing system. Therefore, there 

is no study that simultaneously designs a bike sharing system consisting of a mixed fleet-bike and e-bike-

and that the bike system is free-floating, while the e-bike system is docked. Finally, none of the reviewed 

studies considers extreme situations and disturbances in public transport system such as a pandemic 

situation and the distancing constraints. In the case that the system costs are not considered, it leads to 

the development of an optimization model that can provide the design and operation of a bike sharing 

system designed to provide increased mobility capacity. In addition, a mixed fleet bike sharing system can 

serve different cases of people such as young people, the elderly, or people with a vulnerable health 

condition and different distances. A hybrid system can cope with the increased demand that results from 

the distancing constraints-the reduction in the capacity of public transport systems-as it combines the 

positives of docked and free-floating systems. To the best of the authors knowledge, this is the first study 

which considers a pandemic situation and mobility needs arising due to distancing constraints on public 

transport system and seeks to integrate the public transport system and the bike sharing system in terms 

of mobility capacity. That is, the study deals with the creation of a resilient public transport system that 

can provide mobility capacity in extreme and special situations. In addition, it is the first research to 

develop a bike sharing system optimization model that incorporates the design and operation of a mixed 

fleet system as well as the different design approach-free floating and docked-of the two modes system. 

All the above features create an advanced optimization model which optimizes the design and operation 

of bike and e-bike systems separately but simultaneously. 

 

Modeling approach 

In this section, we introduce the applied modeling framework, the data analysis approach to integrate 
the PTSs and BSSs, and the developed optimization model. 

Modeling framework 

The modeling framework of the study, which includes the integration of the PTSs and BSSs and the 

optimization model of the MFHBSS under the impacts of social distancing measures, is shown in Figure 2.  

Integration of public transport and bike sharing systems 

The objective of the integration of the two systems is to find the demand per system. The approach to 

achieving this integration is based on the factors of the pandemic, namely the capacity constraints on the 

PTS and the new bike system network. The first step is to create a mathematical data analysis model that 

calculates the permissible boarding of demand per station of each public transport vehicle and exports 

the unsatisfied demand per station. The model gives priority to boarding passengers with the farthest 

destination. The inputs of the model are the capacity of the vehicle, the percentage of permissible 

occupancy due to the distancing constraints, the number of schedules and the demand of the PTS. While 

the outputs of the model are the vehicle load, the demand boarded the vehicle and the destination station  
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FIGURE 2: This is the modeling framework. It shows the various steps of the process and their sequence. The 

rectangles represent a process or a state, while parallelograms are used for input or output operation. The arrows 

connect the symbols and indicate the flow of process and information. 

 

and the unsatisfied demand and the destination station. Therefore, the destination pairs of the unsatisfied 
demand are known. The result of this model is the distribution of demand in PTSs and BSSs. 

P is the set of stations indexed by i and j, k is the index for schedule, 𝑙𝑑𝑘𝑖  is the load of schedule k in station 

i, 𝑑𝑒𝑚𝑘𝑖𝑗  is the demand from station i to station j for schedule k, 𝑢𝑛𝑑𝑒𝑚𝑘𝑖𝑗  is the unmet demand from 

station i to station j for schedule k, ac is the allowed capacity on the vehicle, 𝑢𝑏𝑘𝑖 is the debarcation 

passengers in station i for schedule k, 𝑏𝑘𝑖 are boarding passengers at station i for schedule k. 
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Subsequently, the integration approach is described. For the first station of the line, in case the vehicle 

load is lower than the available vehicle capacity due to the distancing constraints, the following holds: 

𝑙𝑑𝑘 1 = ∑ 𝑑𝑒𝑚𝑘 1 𝑗𝑗𝜖𝑃  (1) 

𝑢𝑛𝑑𝑒𝑚𝑘 1 𝑗 = 0  jP (2) 

 

Equation 1 states that the load of the vehicle schedule k at the first station is equal to the sum of the 

demand of the first station to all the other stations of this line. The unsatisfied demand of the schedule k 

from the first station to any other station is zero (Equation 2). 

In case the vehicle load is higher than the available vehicle capacity due to the distancing constraints, the 

following holds: 

𝑙𝑑𝑘 1 = ac (3) 

𝑢𝑛𝑑𝑒𝑚𝑘 1 𝑗 = ∑ 𝑑𝑒𝑚𝑘 1 𝑗𝑗𝜖𝑃   - ac +  𝑑𝑒𝑚𝑘 1 𝑗 jP (4) 

 

The load of the schedule k at the first station is equal to the allowed capacity of the vehicle due to the 

distancing constraints (Equation 3). In this case the unsatisfied demand, Equation 4, of the schedule k 

from the first station to a station j is equal to the sum of the demand from the first station to all other 

stations and the demand from the first station to the station j after subtracting the allowed capacity on 

the vehicle.  

For all other stations of the line, in case the vehicle load is lower than the available vehicle capacity due 

to the distancing constraints, the following holds: 

𝑢𝑏𝑘 𝑖  = ∑(𝑑𝑒𝑚𝑘 1:𝑖 𝑖 - 𝑢𝑛𝑑𝑒𝑚𝑘 1:𝑖 𝑖)  (5) 
𝑏𝑘 𝑖 = ∑ 𝑑𝑒𝑚𝑘 𝑖 𝑖+1:𝑃 (6) 
𝑙𝑑𝑘𝑖  = 𝑙𝑑𝑘 𝑖−1 - 𝑢𝑏𝑘 𝑖  + 𝑏𝑘 𝑖  (7) 

𝑢𝑛𝑑𝑒𝑚𝑘 𝑖 𝑗  = 0 jP (8) 

 

Equation 5 determines that the passengers who disembark from the schedule k in station i are equal to 

the total demand of all the previous stations that have as destination the station i if you exclude the 

unsatisfied demand of all the previous stations that have as destination the station i, while passengers 

boarding the schedule k at the station i are equal to the total demand from the station i to all subsequent 

stations (Equation 6). The load of the schedule k at the station i is equal to the load of the schedule k at 

the previous station (i-1) and the passengers who want to board at station i minus the passengers who 

want to disembark at the station i (Equation 7). Equation 8 states that there is no unsatisfied demand for 

the schedule k from station i to any other station j. 

In case the vehicle load is higher than the available vehicle capacity due to the distancing constraints: 

𝑙𝑑𝑘 𝑖 = ac (9) 

𝑢𝑛𝑑𝑒𝑚𝑘 𝑖 𝑗  = 𝑙𝑑𝑘 𝑖−1  - ac - 𝑢𝑏𝑘 𝑖  +  𝑑𝑒𝑚𝑘 𝑖 𝑗 jP  (10) 

 

Equation 9 specifies that the load of schedule k at station i is equal to the allowed capacity on the vehicle, 

while the unsatisfied demand of schedule k from station i to station j is equal to the vehicle load at the 
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previous station (i-1) and the demand of station i to the station j after subtracting the allowed capacity of 

the vehicle and passengers debarking at station i (equation 10). 

The second step of the integration approach is to separate BSS demand into bike demand and e-bike 

demand. This can be achieved based on the travel distances. The data for this step are the unsatisfied 

demand from the PTS, the travel distances of the bike network, which has been extended due to the 

pandemic situation, between the stations of the PTS with unsatisfied demand and the rates of use per 

mode-bike and e-bike-for specific distance clusters. The result of this integration is the separation of the 

existing demand of the PTS into the demand of the PTS, the demand of bikes and the demand of e-bikes 

of the BSS. 

Optimization model 

The optimization model introduced below determines the optimal design and operation of a hybrid mixed 

fleet bike sharing system to counterbalance for limited capacity in public transport system because of 

social distancing constraints. This is achieved by maximizing covered demand considering location and 

relocation constraints. The proposed model follows a maximal covering location paradigm as, for instance, 

applied by (Frade & Ribeiro, 2015). The notation used to represent the elements of the optimization model 

is shown in Table 2. 

The model has some inputs and outputs. The inputs are a set of stations, the demand of the bike and e-

bike systems, the values for the parameters of maximum and minimum capacity, maximum available bikes 

in a virtual station, and maximum and minimum percentage of used capacity of the e-bike system and the 

number of time periods. Time periods are essentially the number of periods into which a day is divided. 

This number can be determined in each case study based on its data. The model satisfies the demand of 

the system but also relocates bikes and e-bikes, so there should be a balance between them when 

determining the number of time periods. In addition, the values of maximum and minimum capacity and 

percentage of used capacity can be determined based on the literature or there can be variation in their 

range of values. This depends on the requirements of each case study. The parameter for the maximum 

number of bikes in a virtual station depends on each case of study, that is, the availability of public space. 

The outputs of the optimization model are the covered demand of the hybrid mixed fleet bike sharing 

system, the number of stations, the size of the bike and e-bike fleets, the number of bikes and e-bikes at 

stations in each period, the number of relocated bikes and e-bikes per stations pairs in each time period, 

the portion of covered demand per stations pairs in each time period, and the number of stations of the 

e-bike system. 
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TABLE 2: Optimization model notation 

Sets 

J       : set of stations, with indices i and j 
T      : set of time period, with index t, T = {1,…,t) 

PT : set of time period, with index t, P = {2,…,t} 

Decision variables 

𝑦𝑖      : is 1 if the bikes virtual station is opened and 0 otherwise 
𝑥𝑖𝑗𝑡   : proportion of covered bikes demand from station i to station j in period t 

𝑟𝑖𝑗𝑡    : relocated bikes from i to j at period t 

𝜐𝑖𝑡     : available bikes in station i at the onset of period t 
𝑇𝑢𝑡  : total bikes fleet size of the system 
ℎ𝑖      : is 1 if the e-bikes station is opened and 0 otherwise 
𝑣𝑖      : number of e-bikes docks in station i 
𝑤𝑖𝑗𝑡  : proportion of covered e-bikes demand from station i to station j in period t 

𝑠𝑖𝑗𝑡    : relocated e-bikes from i to j at period t  

𝑏𝑖𝑡    : available e-bikes in station i at the onset of period t 
𝑇𝑒𝑡   : total e-bikes fleet size of the system 

Parameters 

𝑢𝑖𝑗𝑡     : demand of bikes from i to j in period t 

𝑒𝑖𝑗𝑡     : demand of e-bikes from i to j in period t 

𝑧𝑚𝑎𝑥    : maximum available bikes in a virtual station 
𝑣𝑚𝑖𝑛   : minimum capacity of e-bikes station 
𝑣𝑚𝑎𝑥   : maximum capacity of e-bikes station 
𝑝𝑚𝑖𝑛   : minimum percentage of used capacity in an e-bike station i at the onset of period t 
𝑝𝑚𝑎𝑥   : maximum percentage of used capacity in an e-bike station i at the onset of period t 

 

In the following the model is presented: 

Max Z = ∑ ∑ ∑ (𝑢𝑖𝑗𝑡  𝑡𝜖𝑇𝑗𝜖𝐽𝑖𝜖𝐽 × 𝑥𝑖𝑗𝑡)  +  ∑ ∑ ∑ (𝑒𝑖𝑗𝑡  𝑡𝜖𝑇𝑗𝜖𝐽𝑖𝜖𝐽 × 𝑤𝑖𝑗𝑡) (1) 

Subject to:  
𝜐𝑖𝑡 =  𝜐𝜄(𝑡−1) − ∑ 𝑢𝑖𝑗(𝑡−1)𝑥𝑖𝑗(𝑡−1) +  ∑ 𝑢𝑗𝑖(𝑡−1)𝑥𝑗𝑖(𝑡−1) +𝑗𝜖𝐽  ∑ 𝑟𝑗𝑖(𝑡−1) 𝑗𝜖𝐽 −  ∑ 𝑟𝑖𝑗(𝑡−1) 𝑗𝜖𝐽𝑗𝜖𝐽  

iJ, jJ, tP 

(2) 

𝑏𝑖𝑡 =  𝑏𝜄(𝑡−1) − ∑ 𝑒𝑖𝑗(𝑡−1)𝑤𝑖𝑗(𝑡−1) +  ∑ 𝑒𝑗𝑖(𝑡−1)𝑤𝑗𝑖(𝑡−1) +𝑗𝜖𝐽  ∑ 𝑠𝑗𝑖(𝑡−1) 𝑗𝜖𝐽 −  ∑ 𝑠𝑖𝑗(𝑡−1) 𝑗𝜖𝐽𝑗𝜖𝐽  

iJ, jJ, tP 

(3) 

𝜐𝑖,1 =  𝜐𝑖,𝑇  iJ (4) 

𝑏𝑖,1 =  𝑏𝑖,𝑇  iJ (5) 

𝑣𝑖 ≤  𝑣𝑚𝑎𝑥 × ℎ𝑖 iJ (6) 

𝑣𝑖 ≥  𝑣𝑚𝑖𝑛 ×  ℎ𝑖  iJ (7) 

𝜐𝑖𝑡  ≥  ∑ (𝑢𝑖𝑗𝑡𝑥𝑖𝑗𝑡)𝑗𝜖𝐽  iJ, jJ, tT (8) 

𝑏𝑖𝑡  ≥  ∑ (𝑒𝑖𝑗𝑡𝑤𝑖𝑗𝑡)𝑗𝜖𝐽  iJ, jJ, tT (9) 

𝑏𝑖𝑡 ≤ 𝑝
𝑚𝑎𝑥

 𝑣𝑖  iJ, tT (10) 

𝑏𝑖𝑡 ≥ 𝑝
𝑚𝑖𝑛

 𝑣𝑖 iJ, tT (11) 

𝜐𝑖𝑡 ≤  𝑧𝑚𝑎𝑥 ∗ 𝑦𝑖  iJ, tT (12) 

∑ 𝑟𝑖𝑗𝑡  ≤  𝜐𝑖𝑡𝑗𝜖𝐽   iJ, tT (13) 

∑ 𝑠𝑖𝑗𝑡  ≤  𝑏𝑖𝑡𝑗𝜖𝐽   iJ, tT (14) 

𝑇𝑢𝑡 = ∑ 𝜐𝑖𝑡𝑖𝜖𝐽  tT (15) 

𝑇𝑒𝑡 = ∑ 𝑏𝑖𝑡𝑖𝜖𝐽  tT (16) 
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𝑥𝑖𝑗𝑡  ≤ 1 iJ, jJ, tT (17) 

𝑤𝑖𝑗𝑡 ≤ 1 iJ, jJ, tT (18) 

𝑤𝑖𝑗𝑡 ≤ ℎ𝑖  iJ, jJ, tT (19) 

𝑤𝑖𝑗𝑡 ≤ ℎ𝑗  iJ, jJ, tT (20) 

𝑥𝑖𝑗𝑡  ≤ 𝑦𝑖  iJ, jJ, tT (21) 

𝑥𝑖𝑗𝑡  ≤ 𝑦𝑗  iJ, jJ, tT (22) 

𝑟𝑖𝑗𝑡  ≥ 0 iJ, jJ, tT (23) 

𝑠𝑖𝑗𝑡  ≥ 0 iJ, jJ, tT (24) 

𝑥𝑖𝑗𝑡  ≥ 0 iJ, jJ, tT (25) 

𝑤𝑖𝑗𝑡 ≥ 0 iJ, jJ, tT (26) 

ℎ𝑖  {0,1} iJ (27) 

𝜐𝑖𝑡 , 𝑏𝑖𝑡, 𝑣𝑖, 𝑟𝑖𝑗𝑡 , 𝑠𝑖𝑗𝑡, 𝑇𝑢𝑡, 𝑇𝑒𝑡   N iJ, jJ, tT (28) 

 

The objective function 1 of this Linear programming model consists of two terms. The first term is the bike 
covered demand, while the second term is the e-bike covered demand. The objective function maximizes 
the covered demand by the BSS. Constraint 2 determines the available bikes at virtual station i at period 
t. The first term of the constraint refers to the number of available bikes at virtual station i in the previous 
period. The second and third terms refer to the number of bikes that left or arrived at the virtual station i 
respectively in the previous period, while the fourth and fifth terms refer to the bikes transported to or 
from the virtual station i respectively at the previous period. Constraint 3 determines the number of 
available e-bikes at station i at period t. Constraints 4 and 5 state that the bike and e-bike fleet of the 
system remains the same between the first and the last period. The capacity of an e-bike station is limited 
by the constraints 6 and 7. Constraint 6 specifies the upper capacity limit (number of docks), while 
constraint 7 specifies the lower capacity limit. The available bikes at the virtual station i should meet the 
demand of the virtual station (constraint 8), and the available e-bikes at the station i should meet the 
demand of the station (constraint 9). Stations should always have available e-bikes as well as available 
docks for parking. This is achieved by constraints 10 and 11. Constraint 10 specifies that the available e-
bikes at the station i at period t should not exceed a specific number, and there should be a minimum 
number of e-bikes at the station (constraint 11). Constraints 10 sets a limit on the maximum number of 
available bikes at a virtual station. The relocated bikes from the virtual station i at the period t should not 
exceed the available bikes at the virtual station i at that period (constraint 13). The corresponding 
constraint for e-bike system is constraint 14. Constraints 15 and 16 specify the total bike and e-bike fleet 
of the BSS, respectively. The portion of covered demand from virtual station i to j at the period t cannot 
exceed the value 1 (constraint17). The corresponding constraint for the e-bike system is constraint 18. 
The demand for the bike and e-bike system can only be served by existing (virtual) stations (constraints 
19 - 22). Constraints 23 – 28 specify the domain of the decision variables. 

 

Case study and numerical results 

In this section, we present the underlying case study, the considered scenarios, and the obtained 
computational results. 

 Case study 

In this study, the area of investigation is the city center of Milan, and the studied systems are the subway 

system and the public BSS. Milan is located in northern Italy and is the capital of the administrative region 
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of Lombardy. The Milan subway has 4 lines (M1, M2, M3 and M5) and 106 stations. The public BSS started 

operating at the end of 2008. At present the system has 4280 bikes and 1150 e-bikes. The number of 

operational stations is 320. It should be noted that there is no data available on subway demand, so it will 

be generated. 

Scenarios and designs 

There are three demand scenarios (SClow, SChigh, SClockdown). SClow and SChigh consist of the 

unsatisfied demand of the PTS and the demand of different days of the public BSS (4/4/19 and 8/4/19, 

respectively), while SClockdown consists of the demand of the BSS on 8/4/20. The three different demand 

scenarios are used as inputs for the designs. The basic demand scenario that most designs consider is 

SClow. SChigh and SClockdown will be used as inputs for a few designs. 

The designs are created based on the needs of the BSS. The parameters that differ in the designs are the 

number and the location of (virtual) stations in the network, the maximum number of bikes per virtual 

station and the capacity (number of docks) of the e-bike stations. The first categorization of the designs 

concerns the number and the location of virtual stations and e-stations. Based on these two parameters, 

7 basic designs are created. Each design is named with the capital letter D from the word design and the 

number of stations. These are D225, D245, D238, D241, D236, D285 and D227. The locations of the new 

stations are close to subway stops. Then the other two parameters are considered. Two main types of 

designs emerge from this separation, Da and Db. Da has a maximum number of bikes per virtual station 

at 50 bikes, a minimum number of e-bikes docks at 10 and a maximum number of e-bike docks at 25, 

while Mb has 80 bikes, 10 e-bikes docks and 40 e-bikes docks, respectively. Design D0 is the design of the 

BSS in 2019 with parameters value of 20, 1 and 10, respectively. The specifications of design D0 also apply 

to D227. The final design that is created is the Mc, in which there is no limit to the maximum number of 

bikes while the maximum and minimum number of e-bike docks are 10 and 200, respectively. The 

common features of all designs are the following. The system is studied for six hours, 15:00 – 21:00. The 

optimization model requires the definition of time periods. In this case the time periods are three, t1: 

15:00-17:00, t2: 17:00 – 19:00 and t3: 19:00 – 21:00. Therefore, the demand for the system is divided into 

these 3 time periods. In addition, the maximum and minimum used capacity percentages on e-stations 

are 25% and 75%, respectively. Figure 3 shows the scenarios and designs. 

 

 

FIGURE 3: These are the developed scenarios and designs for the model application. There are three demand 

scenarios and 15 designs in which their parameters are differentiated.  
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Experimental results 

The first analysis is related to the unsatisfied demand of the PTS. Unsatisfied demand arises from the use 

of the mathematical model for the integration of the two systems-PTS and BSS-and the demand of the 

PTS. Demand for the PTS is hourly. It is therefore divided equally among the schedules operated on each 

subway line per hour. Unsatisfied PTS demand due to social distancing constraints is around 30%. The 

unsatisfied demand at stations outside the study area and for stations in the study area whose destination 

is outside the study area is not included in the analysis. Then, the unsatisfied demand (30%) is divided into 

bike and e-bike demand based on the bike network travel distances and the rates of bike and e-bike use 

for specific travel distances intervals. About 22% of the total demand resulting from the integration of the 

two systems is the demand for e-bikes and 78% is the demand for bikes. 

The analysis of the BSS considering aspects of the pandemic situation uses the optimization model for a 

MFHBSS and the various designs developed. The outputs of the model are the number of stations, the 

covered demand and the size of the fleets and the relocation. Table 3 shows the outputs of some designs, 

of which the correlations are analyzed below. The system demand is the same for all designs presented 

in Table 3. 

 

TABLE 3: Inputs and Outputs of some of the developed designs 

                                                                   Inputs 

  D0 D285a D285b D285c  

Number of stations 225 285 285 285  

Max number of bikes 20 50 80 unlimited  

Max number of docks 10 25 40 200  

                                                                    Outputs  

 D0 D285a D285b D285c  

Number of selected stations 169 211 215 210  

Number of virtual stations 225 285 285 285  

Covered bike demand 2732 6599 9685 45513  

Covered e-bike demand 871 2160 3279 8896  

Bike fleet 1213 3105 4488 30959  

E-bike fleet 627 3267 4886 20445  

Relocated bikes 1146 2596 3746 30329  

Relocated e-bikes 474 2045 3865 13019  

 

Initially, the covered demand per design is analyzed. Covered demand in design D0 is just 6% for the bike 

system and just under 7% for the e-bike system. In all other designs there is at least a doubling of the 

covered demand rates (2.1-2.4 times). Only D227 fully meets the demand of both systems, which is 

logically due to the low demand of the input SClockdown. The other design that has full coverage of bike 

system demand and high coverage of e-bike system demand is D285c. The high coverage rates in this case 

are related to the design features of the system, that is, unlimited number of bikes per virtual station and 

large capacity of the e-stations. In all other designs, it is observed that the covered demand is higher in 
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percentage for the e-bike system. This may be due to the lower demand requirements for this system. In 

addition, it is observed that the Da designs, which have lower values in the capacity of their stations, have 

lower covered demand compared to the scenarios Db, which are characterized by higher stations capacity. 

Demand rates in designs Db show a steady growth rate compared to the corresponding Da designs. 

 

 

FIGURE 4: Covered demand per design is shown in the figure. For each design the demand of the bike system is 

presented in blue, while the demand of the e-bike system is presented in gray. 

 

Considering the relation between the covered demand and the fleet size, the general trend in the bike 

system is that the covered demand increases with the increase of the bike fleet. It is also observed that in 

each design the fleet size is about half in relation to the covered demand. This observation does not apply 

only to the D227 design in which the fleet size and the covered demand are almost in the same size and 

the D285c design in which the fleet size is lower than the covered demand but not to the trend prevailing 

in the other designs. The e-bike system does not show the same trends between the covered demand and 

the fleet size as the bike system. Designs D227 (low demand) and D285c (high station capacity 

specifications) have a large fleet size in relation to covered demand for both systems. This indicate that 

the BSS based on its design has service specifications, such as the availability of bikes and e-bikes, 

regardless of the size of its demand. 

The analysis of covered demand and the number of stations is performed separately for the 2 system. 

Regarding design D227, the demand of both system is fully covered. Although the demand is low, the 

station network is relatively great (227 virtual stations and 107 e-stations). This indicates that demand is 

spread across the study area and wide station coverage is needed even in this case. For both systems, it 

is observed that the increase of the stations is not in line with the increase of the covered demand in some 

cases. In cases where the number of selected stations is the same or almost the same, designs with high-

capacity specifications (Db designs) satisfy more demand. For bike system, in case the demand scenario, 
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that is, scenario with higher demand, for a specific design changes, it is observed that the same number 

of stations can satisfy more demand. 

An interesting analysis is the number of stations compared to the size of the fleet (Figure \ref{fig:efleet}). 

There can be no clear trend for the Da designs of e-bike system. For the Db designs, it is observed that the 

fleet presents slightly different for the same number of stations (180). However, the design with the 

lowest fleet size satisfies higher demand. In addition, the difference in the fleet size between a system 

with 180 stations and a system with 189 stations is significant. However, this does not mean an increase 

in covered demand. In other cases, as the number of stations increases, so does the number of fleet size 

as well as the covered demand. 

 

 

FIGURE 5: For each design, the relationship between the number of stations (x-axis) and the size of the e-bike 

fleet (y-axis) is presented. 

 

The bike system presents uniformity between the results of designs with low (Da) and high (Db) capacity 
specifications. The size of the fleet increases as the number of stations increases. This statement differs 
only when the number of network stations is 241 and 245. In these two cases it is observed that the bike 
fleet shows a decrease. However, this is in line with the demand coverage. In case the demand of the 
system increases, the same number of stations satisfies more demand (design D285b under different 
demand scenarios). 
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FIGURE 6: For each design, the relationship between the number of stations (x-axis) and the size of the bike fleet 

(y-axis) is presented. The gray color illustrates the Db designs, while the blue color illustrates the Da designs. 

 

The size of the bike relocation follows an upward trend as the size of the bike fleet increases. In a few 
cases there is a decrease in the size of bike relocation while there has been an increase in the size of the 
fleet. The size of the relocation is always smaller than the size of the fleet. Only the case of design D227 is 
an exception. This may be due to the large number of stations (227 stations) relative to the low fleet size 
(137 bikes). It should also be noted that there is no difference in results between designs with low capacity 
(Da) and high capacity (Db) specifications on stations. The e-bike system cannot be characterized by 
stability in the relation between fleet and relocation size. The size of the fleet is higher than the size of 
the relocation for all designs beyond one design. In the designs with the stations of high-capacity 
specifications, there is more relocation in relation to the size of the fleet than in the designs with the low-
capacity specifications. 

The final analysis concerns the system costs. The total cost consists of the purchase costs and the 
relocation costs. The cost of buying e-bikes is the highest cost. In most cases, low station capacity designs 
(Da) have lower final costs than higher station capacity designs (Db). The cost of relocating (e)-bikes is 
relatively low compared to the purchase costs of the fleet. For both systems, an increase in the fleet size 
does not imply an increase in relocation cost. Finally, it should be noted that there is no correlation 
between costs and covered demand. 

 

Conclusions and future work 

During the COVID-19 pandemic, many sectors are affected by the government measures to reduce the 
spread of the virus. The transport sector is one of the sectors most affected by these measures. The 
mobility capacity of PTSs is reduced by the implementation of the distancing measures. This means that 
part of the system's capacity can no longer be provided. This leads to the need of finding a new PTS that 
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TABLE 4: The bike fleet and the relocation sizes per design 

Designs Bike fleet size Relocation size E-bike size Relocation size 

SClockdown-D227 137 178 402 373 

SClow-D0 1213 1146 627 474 

SClow-D225a 2379 1866 1192 1500 

SClow-D236a 2542 2200 1927 1147 

SClow-D241a 2608 2197 2610 1936 

SClow-D245a 2622 2146 1874 1387 

SClow-D238a 2748 2287 2769 2257 

SClow-D285a 3105 2596 3267 2045 

SClow-D225b 3568 3024 2729 2142 

SClow-D236b 3786 3264 4564 4438 

SClow-D241b 3866 3508 4599 4506 

SClow-D245b 3939 3269 2614 2030 

SClow-D238b 4325 3907 2382 2130 

SClow-D285b 4488 3746 4886 3865 

SC2-D285b 5575 5180 5884 4880 

SClow-D285c 30959 30329 20445 13019 

 

can offer mobility capacity to those who need it during the pandemic or similar future situations. The 

integration of the BSS and the existing PTS is one form of such a new system. In this work, the objective 

has been the design and operation of a BSS to meet the needs of the pandemic situation. The first need 

that arises is to provide a solution that can serve all groups of people, that is, young and elderly, but also 

different distances. This need can be met by using a mixed fleet, that is, bikes and e-bikes. The bike can 

be preferred for shorter distances and by people with better physical condition, while the e-bike can be 

preferred by people with a health problem but also for longer distances since its use does not require 

much physical fatigue. The second need that arises due to pandemic is the increased demand for 

transportation due to the reduced mobility capacity of PTS caused by the distancing measures. The 

separation of the BSS into a free-floating bike system and docked e-bike system addresses this need. This 

separation results in greater mobility capacity in the BSS. In this way, this work overcomes a research gap 

in providing mobility capacity during a pandemic (or similar capacity-limiting events) by integrating PTSs 

and BSSs and adds to earlier work on the interplay of BSSs and PTSs as presented in case studies different 

cities (Böcker, Anderson, Uteng, & Throndsen, 2020; Leth, Shibayama, & Brezina, 2017; Radzimski & 

Dzięcielski, 2021). 

To achieve this, a data analysis model that integrates the demand needs of PTSs and BSSs has been 

developed. Moreover, a model for optimizing a MFHBSS has been proposed that does not include cost-

related constraints. The integration method results in the separation of the demand in the two systems, 

while the optimization model is used to solve different designs and demand scenarios in order to identify 

the prevailing trends for the design and operation of a MFHBSS that aims to provide mobility capacity 

during pandemic. The city of Milan is used as a case study for the implementation of the approach. The 

main findings and policy implications are summarized subsequently: 
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• Based on our analysis, we see that 30% of the demand for the evening peak hour of the subway 

system in Milan cannot be satisfied due to distancing measures. In an effort to maintain mobility 

capacity, we would propose the integration of the BSS into the PTS. Therefore, we recommend 

the cooperation between the operators of the PTS and BSS. 

• The current BSS in Milan can only compensate for 6% of the PTS and its own demand. Our advice 

to BSS operators in order to increase this percentage is to separate the system design. That is, to 

invest in the creation of e-bike stations and in the free-floating bike system.  

• The separation into a free-floating bike system and a docked e-bike system and the creation of 

bike stations near the subway stations with unsatisfied demand, increases the covered demand 

at least twice (2.1-2.4 times). We therefore propose that the BSS should invest in the construction 

of stations near subway stations. 

• An increase of the capacity of the e-stations and the available bikes in virtual stations by about 

37\% brings about an additional increase of the covered demand by 6.5-7.5%. Based on this, we 

would like to advise the BSS operator to pay special attention to the capacity specifications of the 

stations during their design. 

• As far as the free-floating bike system is concerned, it is also observed that there is stability in the 

ratio of covered demand and bike fleet. The ratio (covered demand/fleet size) is between 2.13 

and 2.36. It is suggested that the Milan BSS take this into account for a rough initial fleet forecast. 

Based on this, it will provide the necessary mobility but will also make a careful investment. 

• The demand for the e-bike system is 22% of the unsatisfied demand and 78% for the bike system. 

Based on this and the instability of e-bike system results, it is recommended that the BSS operator 

should carefully invest in the e-bike system and then extend it based on the needs that arise. 

• In our results, we observe that the system during the lockdown period fully satisfies its low 

demand. However, the fleet needs in relation to the covered demand are high. The covered 

demand to fleet size ratio is 1.1 for the bike system and 0.23 for the e-bike system. Also, the 

network of stations is wide, 107 e-stations and 227 virtual stations. This shows that the system 

has a spatial range of demand. We would advise the BSS operator to develop a wide network of 

stations. 

• The results show differences in fleet needs, 137-5575 bikes and 402-5884 e-bikes, and station 

needs, 107-271 e-stations and 225-285 virtual stations. We would advise the BSS operator to 

install some stations on mobile trailers to can be easily moved. An additional advice would be that 

the available fleet on the system should be period-based. 

• To fully meet the bike system demand, it is needed 30959 bikes, while 20445 e-bikes are needed 

for 70% coverage of e-bikes demand. In addition, there is no limit to the available bikes per station 

and the maximum number of docks per stations is 200. It is concluded that the BSS cannot fully 

counterbalance for limited capacity in the public transport system. 

• The BSS may have been designed based on the needs of the pandemic but the use of such a system 

may be more extensive. The basic criterion for the implementation of a MFHBSS is its ability to 

satisfy the mobility needs of each case. 

Nevertheless, this work also has some limitations that could be addressed in future research. The 

approach of the systems integration can be done based on the travel time and be more pandemic-

oriented with the integration of application that detects the movement of infected people. Therefore, the 

user will be informed in real time about the chances of meeting an infected person and will choose 



 

105 
 

accordingly the means he desires. Moreover, the formulation of the developed optimization model refers 

to the design and operation of a docked e-bike sharing system. It is suggested that future research include 

the choice of whether to use an e-bike based on its battery level or consider the rebalancing processes. 

Finally, for future research it would be beneficial to include people's preferences regarding the choice of 

means of transport to travel. 
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Appendix B: Subway Analysis 
 

B1: Rush hour per subway line  
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B2: Demand per stop 

 

Table B2-0-1: Demand per subway station for lines M3 and M5 

M3 line M5 line 

Stations Demand Stations Demand 

Turati 1328 San Siro Ippodromo 563 

Affori FN 2614 Zara 1123 

Sondrio 3913 Marche 1698 

Affori Centro 5244 Portello 2252 

Dergano 6530 Monumentale 2857 

Porto Di Mare 7825 Segesta 3439 

Montenapoleone 9106 Domodossola FN 4051 

Maciachini 10508 Bignami Parco Nord 4657 

Corvetto 11902 San Siro Stadio Danz 5253 

Brenta 13185 Cenisio 5875 

Duomo 14546 Istria 6482 

Repubblica 15935 Bicocca 7115 

Missori 17283 Lotto 7727 

Comasina 18683 Tre Torri 8319 

Zara 20057 Gerusalemme 8905 

LodiTibb 21418 Isola 9490 

Crocetta 22797 Ca'Granda 10098 

Centrale Fs 24187 Ponale Prysmian group 10737 

P.Ta Romana 25589 Garibaldi FS 11360 

San Donato 26965 

 Rogoredo FS 28387 
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Table B2- 0-2: Demand per subway stations for lines M1 and M2 

M1 line M2 line 

Stations Demand Stations Demand 

QT8 672 Cascina Antonietta 736 

Pero 1335 Villa Pompea 1476 

Bonola 1986 Villa Fiorita 2239 

S. Leonardo 2651 Cascina Burrona 2986 

Uruguay 3293 Bussero 3740 

Lotto Fieramilanocity 3948 Assago 4512 

Amendola 4601 Assago Nord 5257 

Conciliazione 5258 Vimodrone 6004 

Buonarroti 5927 Romolo 6744 

Cordusio 6635 Cassina De' Pecchi 7462 

Palestro 7336 Colongo Sud 8192 

Molino Dorino 8027 Caiazzo 8938 

Lampugnano 8728 Famagosta 9709 

RHO Fieramilano 9438 Gioia 10452 

San Babila 10121 P.Za Abbiategrasso 11205 

Lima 10794 Loreto 11982 

Rovereto 11483 Gorgonzola 12749 

Pagano 12172 Gessate 13545 

Loreto 12844 Cologno Nord 14322 

Gorla 13541 S. Ambrogio 15100 

Cairoli 14218 Lambrate FS 15810 

Bande Nere 14913 Cologno Centro 16573 

P.Ta Venezia 15654 Cascina Gobba 17376 

Gambara 16344 Centrale FS 18106 

Inganni 17046 Moscova 18886 

Primaticcio 17744 Piola 19640 

Wagner 18452 Lanza 20389 

Duomo 19144 S. Agostino 21205 

De Angeli 19857 cimiano 21993 

Cadorna FN 20520 Crescenzago 22798 

Precotto 21194 Garibaldi FS 23606 

Sesto Rondo 21886 Cernusco S.N. 24418 

Turro 22578 P.Ta Genova FS 25169 

Bisceglie 23303 Cadorna FN 25959 

Villa S. Giovanni 24021 Udine 26723 

Sesto Marelli 24727 

 

Pasteur 25430 

Sesto 1 Maggio Fs 26178 
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Appendix C: BikeMi further Analysis 
 

      C1: BikeMi users’ analysis 2018  

 

 

Figure C1-0-1: Subscription types of BikeMi users for the year 2018 (%) 

 

 

Figure C1-0-2: BikeMi users’ gender for the years 2018 (%) 
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Figure C1-0-3: BikeMi users’ profession for the year 2018 (%) 
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C2: BikeMi daily use per hour and average demand analysis 
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C3: BikeMi station analysis 

 

Table C3-0-1: Stations designated as attractor station and their ratio (picked up bikes average/returned bikes average) in 2018 

Attractor stations 

2018 

Stations Ratio Stations Ratio Stations Ratio Stations Ratio Stations Ratio 

29 0.700 250 0.876 91 0.928 215 0.953 102 0.971 

100 0.732 145 0.877 173 0.930 254 0.953 38 0.972 

59 0.746 31 0.881 65 0.930 16 0.954 402 0.976 

164 0.769 311 0.883 120 0.931 169 0.954 67 0.978 

80 0.793 70 0.889 76 0.936 207 0.955 192 0.978 

28 0.807 174 0.891 14 0.938 315 0.955 107 0.979 

1 0.807 81 0.897 71 0.939 149 0.956 105 0.979 

66 0.818 5 0.898 139 0.940 12 0.957 259 0.979 

251 0.828 241 0.899 221 0.941 8 0.958 159 0.980 

60 0.837 232 0.901 163 0.941 86 0.959 108 0.981 

104 0.837 226 0.905 303 0.941 115 0.960 205 0.981 

153 0.840 64 0.911 304 0.941 39 0.961 63 0.982 

130 0.845 208 0.915 35 0.941 18 0.963 98 0.986 

82 0.846 4 0.917 151 0.943 27 0.964 214 0.991 

34 0.847 74 0.917 258 0.943 46 0.965 45 0.991 

329 0.856 13 0.918 62 0.947 155 0.966 325 0.991 

195 0.857 305 0.920 52 0.947 57 0.966 117 0.992 

101 0.862 165 0.920 204 0.949 148 0.966 157 0.993 

135 0.865 77 0.922 58 0.949 263 0.966 211 0.994 

330 0.872 49 0.922 6 0.950 131 0.968 313 0.995 

190 0.873 55 0.923 227 0.951 32 0.969 194 0.995 

22 0.875 321 0.924 270 0.953 255 0.971 168 0.996 

  302 0.926 68 0.953 229 0.971 61 0.997 
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Table C3-0-2: Stations designated as attractor station and their ratio (picked up bikes average/returned bikes average) in 2019 

Attractor stations 

2019 

Stations Ratio Stations Ratio Stations Ratio Stations Ratio Stations Ratio 

341 0.663 70 0.883 323 0.933 105 0.965 62 0.982 

326 0.733 141 0.883 112 0.933 206 0.965 258 0.982 

384 0.742 303 0.886 34 0.933 144 0.965 118 0.982 

151 0.771 36 0.886 100 0.937 222 0.966 161 0.983 

313 0.772 82 0.892 30 0.938 159 0.967 325 0.983 

29 0.776 130 0.892 260 0.938 26 0.968 253 0.983 

59 0.788 57 0.893 173 0.939 47 0.970 152 0.984 

80 0.796 102 0.896 35 0.939 93 0.970 251 0.984 

165 0.798 343 0.897 58 0.942 85 0.971 198 0.984 

385 0.803 163 0.897 197 0.943 143 0.971 317 0.985 

94 0.808 120 0.898 69 0.944 14 0.971 77 0.985 

22 0.840 315 0.900 266 0.944 106 0.971 81 0.986 

135 0.846 1 0.903 186 0.946 114 0.972 158 0.987 

342 0.850 259 0.903 32 0.946 13 0.974 123 0.987 

229 0.851 281 0.907 99 0.948 87 0.975 310 0.988 

210 0.855 302 0.911 205 0.949 194 0.975 171 0.989 

149 0.855 68 0.912 42 0.950 117 0.975 4 0.991 

146 0.856 31 0.913 190 0.951 16 0.975 402 0.991 

330 0.857 101 0.914 133 0.951 63 0.976 136 0.992 

232 0.861 125 0.915 153 0.951 263 0.976 213 0.993 

184 0.865 174 0.921 176 0.952 191 0.977 134 0.993 

164 0.875 383 0.923 15 0.953 220 0.977 216 0.995 

340 0.878 66 0.926 39 0.955 328 0.977 73 0.995 

207 0.878 27 0.928 21 0.957 280 0.977 5 0.996 

122 0.878 254 0.929 226 0.957 214 0.979 145 0.996 

208 0.882 239 0.929 139 0.959 221 0.980 140 0.996 

204 0.882 154 0.931 124 0.963 227 0.980 150 0.998 

  12 0.981 37 0.998 
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Table C3-0-3: Stations designated as attractor station and their ratio (picked up bikes average/returned bikes average) in 2020 

Attractor stations 

2020 

Stations Ratio Stations Ratio Stations Ratio Stations Ratio Stations Ratio 

36 0.000 342 0.667 263 0.800 254 0.867 66 0.917 

251 0.000 1 0.674 307 0.800 15 0.868 52 0.917 

385 0.000 324 0.688 341 0.800 172 0.870 62 0.917 

197 0.200 49 0.700 221 0.815 48 0.871 109 0.920 

357 0.286 359 0.700 120 0.818 241 0.871 319 0.923 

358 0.375 210 0.700 215 0.818 82 0.872 266 0.926 

328 0.455 7 0.714 42 0.826 227 0.872 383 0.929 

327 0.471 304 0.714 103 0.826 143 0.875 211 0.933 

13 0.500 111 0.714 340 0.829 76 0.875 139 0.937 

154 0.500 301 0.722 28 0.833 100 0.875 127 0.940 

253 0.500 75 0.745 44 0.833 370 0.875 69 0.942 

70 0.516 91 0.750 361 0.833 380 0.875 182 0.944 

189 0.533 40 0.750 248 0.833 362 0.879 23 0.947 

121 0.538 141 0.755 222 0.838 151 0.881 38 0.947 

119 0.556 130 0.762 41 0.840 363 0.886 122 0.947 

68 0.560 131 0.767 132 0.840 51 0.889 8 0.950 

146 0.583 262 0.773 32 0.842 164 0.889 80 0.951 

78 0.588 175 0.776 73 0.844 310 0.889 128 0.951 

104 0.600 140 0.778 27 0.846 179 0.891 57 0.955 

20 0.600 203 0.778 31 0.850 22 0.900 229 0.955 

190 0.605 325 0.778 354 0.850 81 0.900 283 0.956 

106 0.611 72 0.780 214 0.855 168 0.900 64 0.957 

25 0.615 134 0.786 184 0.857 196 0.900 233 0.962 

191 0.615 158 0.786 202 0.857 250 0.900 169 0.964 

26 0.625 107 0.790 366 0.857 257 0.900 187 0.969 

34 0.643 137 0.800 343 0.860 17 0.905 192 0.974 

114 0.647 166 0.800 77 0.864 206 0.906 29 0.979 

101 0.667 201 0.800 14 0.864 267 0.909 313 0.980 

155 0.667 225 0.800 350 0.865 381 0.909 87 0.981 

5 0.667 261 0.800 226 0.867 88 0.913 205 0.982 

  10 0.990 
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Table C3-0-4: Stations designated as generator station and their ratio (picked up bikes average/returned bikes average) in 2018 

Generator stations 

2018 

Stations Ratio Stations Ratio Stations Ratio Stations Ratio Stations Ratio 

73 1.002 7 1.025 282 1.041 161 1.065 87 1.119 

152 1.002 328 1.026 238 1.041 184 1.067 89 1.120 

122 1.003 283 1.027 48 1.041 256 1.067 141 1.124 

146 1.003 124 1.028 51 1.042 17 1.068 281 1.125 

134 1.003 197 1.028 54 1.042 307 1.068 167 1.128 

144 1.004 265 1.028 257 1.043 36 1.069 137 1.133 

249 1.005 224 1.029 179 1.043 21 1.071 206 1.141 

264 1.005 136 1.029 327 1.044 110 1.073 172 1.145 

143 1.007 126 1.029 113 1.045 253 1.075 23 1.146 

301 1.008 44 1.029 150 1.045 133 1.078 236 1.157 

26 1.009 50 1.030 19 1.045 239 1.080 210 1.158 

42 1.009 111 1.031 121 1.045 181 1.082 323 1.158 

187 1.009 156 1.033 106 1.046 183 1.084 309 1.161 

322 1.009 30 1.033 158 1.046 109 1.087 280 1.165 

296 1.010 99 1.034 188 1.047 125 1.089 318 1.166 

40 1.011 261 1.034 213 1.048 178 1.091 260 1.172 

72 1.011 114 1.035 191 1.049 262 1.091 182 1.177 

96 1.014 69 1.035 103 1.049 41 1.092 219 1.177 

200 1.015 212 1.035 129 1.049 324 1.094 118 1.181 

199 1.015 53 1.035 142 1.049 140 1.095 56 1.214 

75 1.018 170 1.036 37 1.051 127 1.097 203 1.227 

186 1.018 94 1.036 43 1.053 310 1.099 312 1.246 

47 1.018 162 1.036 33 1.055 171 1.101 160 1.255 

216 1.018 138 1.036 9 1.055 119 1.105 3 1.257 

222 1.022 154 1.036 20 1.055 252 1.106 78 1.268 

116 1.023 93 1.038 88 1.056 196 1.107 193 1.270 

147 1.023 225 1.039 112 1.056 84 1.107 233 1.299 

11 1.024 10 1.040 97 1.058 185 1.107 180 1.316 

201 1.024 123 1.040 132 1.064 248 1.109 128 1.322 

175 1.024 317 1.040 237 1.065 176 1.111 25 1.340 

    319 1.117 334 1.615 
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Table C3-0-5: Stations designated as generator station and their ratio (picked up bikes average/returned bikes average) in 2019 

Generator stations 

2019 

Stations Ratio Stations Ratio Stations Ratio Stations Ratio Stations Ratio 

86 1.002 113 1.023 200 1.045 18 1.085 168 1.129 

23 1.003 142 1.023 115 1.046 324 1.085 182 1.138 

179 1.005 188 1.023 162 1.050 92 1.086 237 1.143 

319 1.005 109 1.024 155 1.050 183 1.089 167 1.150 

71 1.005 305 1.024 97 1.051 45 1.091 137 1.153 

7 1.007 95 1.024 199 1.053 249 1.091 128 1.159 

282 1.008 40 1.025 181 1.054 119 1.092 127 1.168 

131 1.009 48 1.025 309 1.054 327 1.092 11 1.176 

255 1.009 148 1.027 189 1.056 307 1.098 180 1.178 

60 1.010 211 1.027 19 1.058 110 1.099 8 1.178 

52 1.010 172 1.028 111 1.059 107 1.100 160 1.181 

55 1.010 261 1.028 267 1.060 72 1.104 256 1.181 

202 1.011 38 1.029 241 1.060 169 1.105 248 1.192 

75 1.011 215 1.032 65 1.060 185 1.105 56 1.192 

76 1.012 54 1.032 126 1.060 20 1.109 33 1.194 

79 1.013 43 1.033 296 1.061 6 1.110 25 1.198 

147 1.013 270 1.034 250 1.062 304 1.111 233 1.199 

257 1.014 311 1.035 129 1.063 96 1.111 3 1.201 

53 1.014 238 1.036 225 1.066 178 1.111 28 1.204 

264 1.015 51 1.036 9 1.067 132 1.114 235 1.209 

196 1.017 329 1.036 170 1.067 89 1.117 78 1.219 

262 1.017 175 1.039 74 1.068 301 1.119 84 1.235 

98 1.017 104 1.039 318 1.069 322 1.120 10 1.236 

157 1.019 265 1.040 121 1.071 321 1.120 166 1.238 

116 1.019 64 1.040 67 1.072 193 1.120 236 1.239 

201 1.020 283 1.041 103 1.078 91 1.120 312 1.250 

268 1.020 49 1.041 17 1.079 44 1.122 219 1.261 

187 1.022 156 1.042 192 1.079 195 1.123 203 1.268 

252 1.022 108 1.043 138 1.080 61 1.127 50 1.275 

224 1.023 24 1.044 46 1.083 88 1.129 41 1.293 

  334 1.455 
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Table C3-0-6: Stations designated as generator station and their ratio (picked up bikes average/returned bikes average) in 2020 

Generator stations 

2020 

Stations Ratio Stations Ratio Stations Ratio Stations Ratio Stations Ratio 

315 1.015 321 1.074 171 1.135 16 1.255 112 1.441 

259 1.016 116 1.075 133 1.143 165 1.257 129 1.455 

237 1.022 113 1.077 352 1.150 6 1.261 264 1.500 

309 1.023 174 1.083 63 1.155 4 1.263 280 1.500 

220 1.026 60 1.087 176 1.161 54 1.263 372 1.500 

159 1.027 303 1.087 268 1.161 152 1.269 258 1.500 

212 1.029 282 1.091 162 1.167 236 1.276 142 1.545 

232 1.032 255 1.094 200 1.167 239 1.290 35 1.600 

126 1.034 183 1.094 219 1.171 135 1.292 97 1.600 

86 1.036 105 1.095 18 1.174 79 1.294 24 1.615 

281 1.036 149 1.095 265 1.182 173 1.294 53 1.636 

94 1.040 181 1.095 118 1.190 216 1.300 312 1.667 

207 1.041 296 1.097 123 1.190 323 1.300 12 1.714 

39 1.043 249 1.098 110 1.192 302 1.303 98 1.742 

30 1.054 193 1.100 47 1.194 180 1.304 326 1.800 

351 1.056 45 1.103 305 1.200 144 1.313 384 1.800 

157 1.057 102 1.105 163 1.205 83 1.333 224 1.833 

186 1.060 85 1.111 55 1.208 148 1.346 156 1.889 

402 1.061 260 1.111 167 1.208 67 1.375 153 2.000 

311 1.063 185 1.117 318 1.214 89 1.375 208 2.000 

322 1.063 71 1.118 61 1.219 46 1.382 3 2.053 

213 1.065 204 1.120 369 1.222 65 1.400 252 2.750 

194 1.065 19 1.121 256 1.226 136 1.400 9 3.000 

93 1.067 74 1.125 11 1.250 145 1.405 329 3.000 

195 1.067 117 1.125 50 1.250 95 1.421 199 3.250 

178 1.068 238 1.129 108 1.250 37 1.423 96 3.833 

115 1.068 138 1.133 160 1.250 99 1.429 33 generator 

124 1.070 147 1.135 198 1.250 235 1.435 59 generator 
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Table C3-0-7: Stations designated as 

neutral station and their ratio (picked 
up bikes average/returned bikes 

average) in 2018 

Neutral stations 

2018 

Stations Ratio 

15 1.000 

85 1.000 

95 1.000 
 

 
Table C3-0-8: Stations designated as 

neutral station and their ratio (picked 
up bikes average/returned bikes 

average) in 2019 

Neutral stations 

2019 

Stations Ratio 

83 1.000 

212 1.000 
 

 
Table C3-0-9: Stations designated as 

neutral station and their ratio (picked 
up bikes average/returned bikes 

average) in 2020 

Neutral stations 

2020 

Stations Ratio 

21 1.000 

43 1.000 

56 1.000 

84 1.000 

125 1.000 

150 1.000 

170 1.000 

188 1.000 

270 1.000 

317 1.000 

334 1.000 
 

 

 
Table C3-0-10: Common attractor stations for the years 

2018-2020 

Attractor stations 

1 66 151 

13 68 164 

14 70 205 

22 77 214 

27 80 226 

29 81 227 

31 82 229 

32 100 251 

34 101 254 

57 120 263 

62 130 313 

  325 
 

 
Table C3-0-11: Common generator stations for the years 2018-

2020 

Generator stations 

3 126 224 

9 138 236 

11 147 237 

19 156 238 

33 160 249 

50 162 252 

53 178 256 

54 181 264 

89 183 265 

96 185 282 

97 193 296 

110 199 309 

113 200 312 

116 219 318 

  322 
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Figure C3-0-10: Generator averages of BikeMi stations 2018 (scale: 1:38000) 

 

 

Figure C3-0-11: Attractor averages of BikeMi stations 2018 (scale: 1:38000) 
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Figure C3-0-12: Generator averages of BikeMi stations 2020 (scale: 1:38000) 

 

 

Figure C3-0-13: Attractor averages of BikeMi stations 2020 (scale: 1:38000) 
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Figure C3-0-14: Generator and attractor stations of 2018 (scale: 1:38000) 

 

 

Figure C3-0-15: Generator and attractor stations of 2020 (scale: 1:38000) 
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Figure C3-0-16: Neutral stations for the years 2018-2020 (scale 1:38000) 
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C4: BikeMi travel distance analysis 

 

 

Figure C4-0-17: Travel distance for bikes in 2018 

 

 

Figure C4-0-18: Travel distance for bikes in 2019 
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Figure C4-0-19: Travel distance for bikes in 2020 

 

 

Figure C4-0-20: Travel distance for e-bikes in 2018 

 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

2
9

-0
3

-2
0

3
0

-0
3

-2
0

3
1

-0
3

-2
0

0
1

-0
4

-2
0

0
2

-0
4

-2
0

0
3

-0
4

-2
0

0
4

-0
4

-2
0

0
5

-0
4

-2
0

0
6

-0
4

-2
0

0
7

-0
4

-2
0

0
8

-0
4

-2
0

0
9

-0
4

-2
0

1
0

-0
4

-2
0

1
1

-0
4

-2
0

1
2

-0
4

-2
0

P
er

ce
n

ta
ge

 o
f 

B
ik

es

Dates

9000 - 10000 m

8000 - 9000 m

7000 - 8000 m

6000 - 7000 m

5000 - 6000 m

4000 - 5000 m

3000 - 4000 m

2000 - 3000 m

1000 - 2000 m

500-1000 m

0-500 m

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0
1

-0
4

-1
8

0
2

-0
4

-1
8

0
3

-0
4

-1
8

0
4

-0
4

-1
8

0
5

-0
4

-1
8

0
6

-0
4

-1
8

0
7

-0
4

-1
8

0
8

-0
4

-1
8

0
9

-0
4

-1
8

1
0

-0
4

-1
8

1
1

-0
4

-1
8

1
2

-0
4

-1
8

1
3

-0
4

-1
8

1
4

-0
4

-1
8

1
5

-0
4

-1
8

P
er

ce
n

ta
ge

 o
f 

Eb
ik

es

Dates

9000-10000 m

8000 - 9000 m

7000 - 8000 m

6000 - 7000 m

5000 - 6000 m

4000 - 5000 m

3000 - 4000 m

2000 - 3000 m

1000 - 2000 m

500-1000 m

0-500 m



 

131 
 

 

Figure C4-0-21: Travel distance for e-bikes in 2019 

 

 

Figure C4-0-22: Travel distance for e-bikes for 2020 
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Table C4-0-12: Travel distance intervals and used percentage per mode (bike and e-bike) 

Travel distance (m) E-bike (%) Bike (%) 

0-500  19.08 80.92 

500-1000  11.80 88.20 

1000 - 2000  14.15 85.85 

2000 - 3000  17.02 82.98 

3000 - 4000  20.96 79.04 

4000 - 5000  21.39 78.61 

5000 - 6000  27.78 72.22 

6000 - 7000  29.00 71.00 

7000 - 8000  30.23 69.77 

8000 - 9000  39.25 60.75 

9000 - 10000  45.43 54.57 

10000 - 11000  0.00 100.00 

11000 - 12000  100.00 0.00 

12000 - 13000  69.71 30.29 
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Appendix D: Model application and Bike sharing analysis  
 

D1: Model results 

 

Table D1-0-1: Inputs and results of SClow-D0 and SClockdown-D227 

Inputs  
  SClow SClockdown   

  D0 D227  

Number of stations 225 227  

Time periods 3  

Max number of bikes 20  

Min number of docks 1  

Max number of docks 10  

Bike demand 45513 148  

E-Bike demand 12880 91  

Total demand 58393 239  

Results 

 

 
  D0 D227  

Number of selected stations 169 107  

Number of virtual stations 225 227  

Covered bike demand 2732 148  

Covered e-bike demand 871 91  

Covered demand 3603 239  

Bike fleet 1213 137  

E-bike fleet 627 402  

Relocated bikes 1146 178  

Relocated e-bikes 474 373  
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Table D1-0-2: Inputs and results of SClow-D225a, SClow-D245a, SClow-D238a, SClow-D241a, SClow-D236a and SClow-D285a 

Inputs  
  SClow  

  D225a D245a D238a D241a D236a D285a  

Number of stations 225 245 238 241 236 285  

Time periods 3  

Max number of bikes 50  

Min number of docks 10  

Max number of docks 25  

Bike demand 45513  

E-Bike demand 12880  

Total demand 58393  

Results 

 

 
  D225a D245a D238a D241a D236a D285a  

Number of selected stations 169 182 188 176 188 211  

Number of virtual stations 225 245 238 241 236 285  

Covered bike demand 5618 6095 6333 5977 5931 6599  

Covered e-bike demand 1871 2019 2099 1965 1979 2160  

Covered demand 7489 8114 8432 7942 7910 8759  

Bike fleet 2379 2622 2748 2608 2542 3105  

E-bike fleet 1192 1874 2769 2610 1927 3267  

Relocated bikes 1866 2146 2287 2197 2200 2596  

Relocated e-bikes 1500 1387 2257 1936 1147 2045  
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Table D1-0-3: Inputs and results of SClow-D225b, SClow-D245b, SClow-D238b, SClow-D241b, SClow-D236b and SClow-D285b 

Inputs  
  SClow  

  D225b D245b D238b D241b D236b D285b  

Number of stations 225 245 238 241 236 285  

Time periods 3  

Max number of bikes 80  

Min number of docks 10  

Max number of docks 40  

Bike demand 45513  

E-Bike demand 12880  

Total demand 58393  

Results 

 

 
  D225b D245b D238b D241b D236b D285b  

Number of selected stations 166 180 180 201 189 215  

Number of virtual stations 225 245 238 241 236 285  

Covered bike demand 8387 9086 9384 8787 8828 9685  

Covered e-bike demand 2910 3138 3197 3027 3040 3279  

Covered demand 11297 12224 12581 11814 11868 12964  

Bike fleet 3568 3939 4325 3866 3786 4488  

E-bike fleet 2729 2614 2382 4599 4564 4886  

Relocated bikes 3024 3269 3907 3508 3264 3746  

Relocated e-bikes 2142 2030 2130 4506 4438 3865  
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Table D1-0-4: Inputs and results of SC1-DMc and SC2-DMb 

Inputs  
  SClow SChigh  

  D285c D285b  

Number of stations 285 285  

Time periods 3  

Max number of bikes unlimited 80  

Min number of docks 10 10  

Max number of docks 200 40  

Bike demand 45513 48189  

E-Bike demand 12880 13225  

Total demand 58393 61414  

Results 

 

 
  D285c D285b  

Number of selected stations 210 271  

Number of virtual stations 285 285  

Covered bike demand 45513 12345  

Covered e-bike demand 8896 3624  

Covered demand 54409 15969  

Bike fleet 30959 5575  

E-bike fleet 20445 5884  

Relocated bikes 30329 5180  

Relocated e-bikes 13019 4880  
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D2: Cost results 

 

Table D2-0-5: Costs per design (a) 

  
SClow-

D0 
SClockdown

-D227 
SClow-
D225a 

SClow-
D245a 

SClow-
D238a 

SClow-
D241a 

SClow-
D236a 

SClow-
D285a 

Bike fleet 
cost 436680 49320 856440 943920 989280 938880 915120 1117800 

E-bike fleet 
cost 454575 291450 864200 1358650 2007525 1892250 1397075 2368575 

Relocated 
bikes cost 229.2 35.6 373.2 429.2 457.4 439.4 440 519.2 

Relocated 
e-bikes cost 94.8 74.6 300 277.4 451.4 387.2 229.4 409 

 

Table D2-0-6: Cost per design (b) 

  
SClow-
D225b 

SClow-
D245b 

SClow-
D238b 

SClow-
D241b 

SClow-
D236b 

SClow-
D285b 

SChigh-
D285b 

SClow-
D285c 

Bike fleet 
cost 1284480 1418040 1557000 1391760 1362960 1615680 2007000 11145240 

E-bike fleet 
cost 1978525 1895150 1726950 3334275 3308900 3542350 4265900 14822625 

Relocated 
bikes cost 604.8 653.8 781.4 701.6 652.8 749.2 1036 6065.8 

Relocated 
e-bikes cost 428.4 406 426 901.2 887.6 773 976 2603.8 

 


