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In the actual working process, the source of vibration signal is not only the rotor itself, so the detected vibration
signal will become complicated. This complex signal makes it difficult to accurately measure the existence of
crack. In this paper, a novel method, which includes complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) and continuous wavelet transform (CWT), is proposed to analyze the cracked rotor-
rolling bearing system. The CEEMDAN-CWT successfully separates the vibration signal of the rotor itself from the

original signal and provides results similar to the simulation signal. At the speed below 2000 rpm, the 2X fre-
quency difference between cracked rotor and healthy rotor in CEEMDAN-CWT spectrum is about 1, while the
difference of FFT spectrum of original signal is about 0.6, which shows the superiority of the novel method in
extracting rotor vibration signals from complex vibration signals.

1. Introduction

Two-stage or even multi-stage rotor-bearing systems are widely used
in many fields, including water conservancy, aviation, and power gen-
eration. These systems consist of multiple stages of rotors and bearings,
which are designed to transmit rotational forces and support loads in
various industrial applications [1]. However, due to the harsh working
environment faced by rotating machinery, cracks and other faults will
inevitably occur in its components, and these faults will affect the sta-
bility of system operation [2-4]. As early as 1990 s, many scholars have
paid much more attention to the cracked rotor system. For the most
common transverse cracks, Wauer [5], Gasch [6] and Dimarogonas [7]
observed that the existence of transverse cracks on the shaft caused the
unusual vibration of the rotor system. However, traditional experiments
can’t meet the needs of theoretical research, so the development of
theoretical model used to describe cracked rotor is constantly devel-
oped. Jun et al. [8] derived and presented equations of motion for a
rotor with a breathing crack. Darpe et al. [9,10] introduced the concept
of the Crack Closure Line (CCL) and determined the opening and closing
states of the crack at any angle. Al-Shudeifat and Butcher [11] use two
new functions to formulate the time-varying stiffness matrix of cracked
elements. These new functions can be used to approximately describe
the actual breathing mechanism of cracks. The stability of the system
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considering the crack depth and rotating speed is examined using Flo-
quet theory [12]. Zhang and Li [13] developed coupled equations of
motion in 6 degrees of freedom (6-DoFs) for a cracked rotor. They
examined the effect of breathing behavior under various parameters.
The results suggested that a rotor system with 6-DoFs allows a more
accurate characterization of rotor vibration than a rotor system with
only 4-DoFs. Spagnol et al. [14] investigated the shifting of the neutral
axis in cracked rotors, demonstrating the potential of their proposed
model in modeling and detecting cracks during the middle and later
stages of rotor operation. Sinou and Denimal [15] proposed an advanced
modeling technique based on kriging and Polynomial Chaos Expansion
(PCE) to describe the breathing phenomena of cracks. Kushwaha and
Patel [16] modeled the time-varying stiffness matrix by considering the
area product moment. Then a simplified breathing function was pro-
posed to describe the actual breathing transverse cracks.

In addition, many scholars pay attention to the vibration character-
istics of cracked rotor-bearing system [17,18]. Fuetal. [19] explored the
effects of interval uncertain parameters on the vibration of a rotor sys-
tem with a transverse breathing crack, which consisted of two disks and
an elastic shaft. Then a double-disk hollow-shaft rotor model was
investigated [20]. Zhang et al. [21] proposed a multi-disk rod fastening
rotor system, revealing that the dynamic characteristics of the system
changed with the inclusion of the crack fault. In practical engineering
applications, the dynamic and vibration characteristics of the bearing
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Nomenclature

U strain energy|[-]

P; action of arbitrary force[-]

& the uncracked flexibility [-]

& the additional flexibility of crack [-]

k the shear shape coefficient

h the width of the thin plate[mm]

a the crack depth on the thin plate[mm]

R the rotor radius[mm]

o, the crack inclination angle[°]

c normal stress[MPa]

T shearing stress[MPa]

1 the length of the crack element[mm]

K® stiffness matrix in the stationary coordinate system [N/
mm]

K& stiffness matrix in rotating coordinate system [N/mm]

T, global transformation matrix

T, coordinate transformation matrix

® rotation speed [rad/s]

Aim the axial distance between the loci of inner and outer

raceway groove curvature centers[mm]

Aom the radial displacement between the loci of the groove
curvature centers[mm]

Sa axial displacement [mm]

Or radial displacement [mm]

(28 angular displacement

af the original contact angular[°]

R; the radius of the locus of inner race groove curvature
centers[mm]

Wm the azimuth of ball m[°]

Xim the axial projection of the distance between the ball center
and the outer race groove curvature center[mm]

Xom the radial projection of the distance between the ball
center and the outer race groove curvature center[mm]

Sim the inner race contact deformations [mm]

Som the outer race contact deformations [mm]

F, the axial load [N]

F, the radial load [N]

M the moment [N-mm]

Z the number of balls

Wa1,p1(t) the daughter wavelets|[-]

b the time parameter|[-]

significantly affect the operation of the rotor system. Hou et al. [22]
studied the dynamics of transverse cracked Jeffcott rotor with ball
bearings. Their research focused on diagnosing the nonlinear dynamic
behavior of an aircraft ball bearing-rotor system with a crack under
maneuver loads. Vashisht and Peng [23] established a nonlinear system
of a cracked rotor with a ball bearing and investigated the influence of
this system on crack detection. The results showed that the presence of
rolling bearings had a negative impact. Xiang et al. [24,25] developed a
multi-fault rotor bearing system considering the effects of cracks, oil-
film forces and rub-impact. Their research revealed enriched behavior
in the two-stage bearing-rotor system, with the ability to detect crack
near the half of subcritical speed. However, there are few reports on the
research of cracked rotor-angular contact ball bearing system.

With the continuous advancement and refinement of theoretical
models for cracked rotors, numerous methods for diagnosing rotor
cracks have been summarized by scholars, relying on these theoretical
models and experimental systems. Darpe [26] proposed a novel diag-
nostic method by applying excitation to different angular directions of
cracks and using wavelet transform to capture the transient response in
lateral vibration caused by transient torsional excitation. Gasch [27]
conducted stability analysis on a Laval rotor with crack and observed
that as the crack grew, the amplitudes at 1X, 2X, and 3X increased. Sinou
and Lees [28,29] analyzed the evolution of the orbits at various loca-
tions of the cracked rotor around 1/2 and 1/3 of the first critical speed.
Al-Shudeifat [30] performed critical and subcritical harmonic analysis
on a rotor with open transverse cracks, confirming that the whirl orbits
with inner loops were unique to breathing cracks. Additionally, wavelet
transform has shown excellent performance in processing experimental
data. Guo et al. [31] combined Empirical Mode Decomposition (EMD)
with wavelet transform spectra to examine the dynamic characteristics
of a cracked rotor. The results revealed that the 3X and 2X super-
harmonic components exhibited distinct signatures, serving as accu-
rate indicators for early detection of cracks. Subsequently, they con-
ducted an experimental investigation [32], where the appearance of
inner loops in whirl orbits proved effective for crack identification in the
cracked rotor system when the rotation speed approaches respectively
around 1/2, 1/3, 1/4, and 1/5 subcritical speed. Lu et al. [33] employed
a Kriging proxy model to identify rotor cracks based on the super-
harmonic nonlinear characteristics using an update method. The re-
sults showed that two measurement points were highly useful for real-

world applications. Compared with the existing research, the cracked
rotor model and experimental results given by scholars are a relatively
perfect reference. Its vibration signal is very pure, with only rotation
frequency and 2X component in frequency domain. However, there may
be a large number of redundant signals in the system vibration signals
detected in the actual use environment. These redundant signals may be
caused by minor defects in other parts of the rotor or the system itself.
Therefore, it is very important to eliminate the interference of these
redundant signals and observe the vibration signals better.

Regarding the application of Empirical Mode Decomposition (EMD)
in rotating machinery, Lei et al. [34] provided a summary. In their re-
view, they mentioned that EMD exhibits end effects and mode mixing
issues when dealing with transient signals. These problems greatly affect
the judgment of fault signals. To address this issue, subsequent
improvement methods have provided some directions. Among them,
CEEMDAN has gained wide popularity in fault diagnosis as an improved
method that can overcome the drawbacks of EMD. Chen et al. [35]
applied CEEMDAN to identify axial unbalance. The signals became
easier to recognize after processing with CEEMDAN. Hu et al. [36] used
CEEMDAN for vibration signal denoising in their study on brake disc
unbalance detection. In Hu’s research, the advantages and weaknesses
of EMD, EEMD and CEEMDAN are compared in detail. Compared with
EEMD and CEEMDAN, EMD has the problem of mode mixing when
dealing with relatively complex simulation signals. After the signal
reconstruction, the signal processed by CEEMDAN is smoother, which is
obviously better than the other two methods.

According to the above researches, the influence of angular contact
bearing on the dynamics of cracked rotor system is still less explored.
The raceway control theory proposed in J-H model still has high value
for angular contact ball bearing [37,38]. It is feasible to calculate the
specific parameters of bearing by J-H model and obtain the actual
bearing stiffness by combining the stiffness matrix. For breathing crack,
the model proposed by Darpe et al. [9] can estimate shaft stiffness and
represent breathing effect. This novel model can be adapted to any
steady or transient rotation speed and excitations. Therefore, the pro-
posed model can better predict the vibration characteristics of cracked
rotor-bearing system compared with the previous model.

In this paper, the theoretical basis is firstly established for a model of
double-disk cracked rotor-rolling bearing system. Subsequently, the
actual vibration signals are obtained through experiments, and these
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Fig. 1. Double-disk cracked rotor system and experimental system: (a) theoretical model; (b) experimental system.

Table 1

Parameters of double-disk rotor system.

Parameters Values

Shaft diameter 10 mm

Shaft length 450 mm

Mass of disk 0.49 kg

Density of shaft 7850 kg/m*
Young’s modulus 211 x 10'N/m?
Unbalanced mass 1g

Bearing 7200C

signals are analyzed by traditional FFT and CWT. Then the CEEMDAN-
CWT is used to decompose the signal to remove the interference signal,
and its relatively pure time—frequency information is obtained through

CWT spectrum. Finally, the theoretical results are compared and
analyzed. The study results offer a new idea and method for the complex
signal study of multi-stage rotor systems.

2. Mathematical modelling and experimental setup

In this paper, a dynamic model of a 6-DoFs crack rotor system with
rolling bearing is proposed. The schematic diagram of rotor-bearing
system is presented in Fig. 1. The shaft is discretized into 11 finite ele-
ments. There is a disk on node 5 and node 8 respectively. The node 3 and
10 are bearings and a transverse crack is in the element 5. For dis-
cretization, Timoshenko beam elements are applied. The displacement
and acceleration of the shaft can be observed from the vertical, hori-
zontal and axial directions.

Fig. 2. Cracked shaft loaded with six general forces and cross section of crack with CCL.
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2.1. The equations of motion

The equations of motion for a crack rotor system is defined as follows

[37,39]:

MpX + (C+wD)X + (K+K,)X =F @)

where X, X and X are the generalized acceleration, velocity and
displacement of the system, respectively. Mg, C, @D and K are the mass,
damping, gyroscopic and stiffness matrices, respectively. K} is the
bearing stiffness matrix. F is the load vector containing the systemic
unbalance force, gravity, and external excitations. Values of the pa-
rameters are offered in Table 1.

The experimental rotating shaft adopts healthy rotor and cracked
rotor with 40 % crack depth (The depth is 4 mm) as test objects. The
parameters of the experimental shaft are the same as the simulation
(Table 1). The shaft length is 450 mm and the diameter is 10 mm.
Sensors for monitoring displacement are installed on the disk 2, and
displacement results in vertical and horizontal directions can be ob-
tained. The sampling frequency of the displacement sensor is 8192 Hz,
and the sampling time is 4 s. Their vibration signals were collected at
1000 rpm, 2000 rpm and 3000 rpm, respectively. Unbalanced mass is
considered on the disk 2.

2.2. Stiffness matrix of crack

According to Castingliano theorem, under the action of arbitrary
force P;, the displacement in its direction can be expressed as [40]:

ou

u; = 67171 )

Then the flexibility matrix of the element with the dimension of 12 x
12 can be obtained, the elements in the corresponding position can be
expressed as:

P
U =1

=27, ~6
& = opp; "t

3
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Considering the influence of cracks, the total flexibility matrix can be
written as the sum of the flexibility matrix of normal shaft section and
the additional flexibility matrix caused by cracks:

r;uUe ..
3PP, (i,j=1-6)

o*u°
gij:8§+ ij

~ 0P,0P; “

In order to establish the completed system to describe the crack
rotor, the cracked shaft is also 6-DoFs. The imaginary line CCL varies
continuously during the rotation, which is shown in Fig. 2.

The stress intensity factor is expressed as follows. k can be written as
k = 67(1;5’;) for circular sections is given in Ref. [12]. The stress intensity

factors (SIF) are given as follows:

K. = o \/7aFy (a/h) = 01sin60.F; (a/h) = % JRasin?0.F, (a/h)
K, =0
K% = 0% /maFy(a/h) = 135in20,\/7a F, (a/h) = % Vrasin26,F, (a/h)

K, = 0% /maFy(a/h) = 145in26,F,(a/h) = %\/E&sinZQFz(a/h)

K, = ofyaar (a/h) = WP E PR o i, (o)
Kt — 2Palxt ﬂ;;j"c) —Po ) asin?0.F,(a/h)
®)

According to the above formula, a more complete expression of
additional flexibility elements is obtained. Compared with traditional
methods, this method is more accurate and quantitative in describing
cracks according to the SIF and Castingliano theorem [9].

ght&n & 8is 84 s 86
&1 8 + 8 833 834 85 836 T &6
e | & %G &Bat8&s 8 s F:
8a 8 83 8T8 s s
& 852 s & LBsT8&s &
% 82T&% & 8 %s 86 T &

©)

The stiffness matrix of crack element is obtained by transfer matrix T
[41].

K=TG 'T" @)
100000 -1 0 0 0 0 0
0100000 -1 0 0 0 1

; loo1000 0 0 -1 0 -1 o0

=lo000100 0 0 0 -1 0 o0 ®
0000100 0 0 0 -1 0
0000010 0 0 0 0 -1

During the rotation of the rotor, the crack closure line position
(CCLP) will move to a certain position for each rotation angle of the
rotor, therefore, the CCLP will be evenly and slowly opened from 0 to 50,
and then slowly closed from 50 to 100. When the stiffness of the cor-
responding element in the following coordinate system is calculated, the
stiffness matrix K® in the fixed coordinate system can be solved by

combining the global transformation matrix T, [9]:
K= T'K?T. ©)

The matrix T, can be assembled by matrix T, and T, is given by:
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2.3. The rolling bearings model

In the research process of mathematical modeling of cracked rotors,
bearings are often idealized as fixed support. However, in reality, a
rolling bearing is not an ideal support. Its stiffness is related to its own
geometric parameters, load, and rotational speed. For the study of
rolling bearings, the classic rolling bearings model is established by
Jones and Harris [42]. J-H (Jones-Harris) method provides an idea,
which considers the centrifugal forces and gyroscopic moments of roll-
ing element. Geometric and mechanical relationship of rolling bearing is
shown in Fig. 3. The internal geometric relationship is given as:

Aim = BDsina® + 8, + 0R;cosy,,, 1)
Ay = BDcosa® + 5,cosy,, 12)
B=fo+fi—1 13

The relationship between variables on the Fig. 4 is linked by Pythago-
rean theorem:

(Aim — Xim)* + (Azm — Xom)® = [(fi — 0.5)D + 8 ]> = 0 a4

X2 4+X2 —[(f, — 0.5)D +6m]> =0 15)

From Fig. 3, the following equilibrium equation can be obtained by
decomposing the load in the horizontal and vertical directions [43]:

M,

QimSiNim — QomSiNAom — % (AimCOSQim — AomCOSAom) = 0 (16)
Mgm . .

Qimcosaim - Qomcosaom - T (Aimsulaim - lomsulaom) + ch =0 (17)

Through the conditions of equilibrium of mechanics, the mechanical
equations of bearings can be given as:

m=2Z
AimM,
F, — (Qi,,,sinaim - %cosaim> =0 (18)
m=1
m=Z
AimM,
F, — (chosaim - % sinaim) cosy,, =0 19)
m=1
m=2Z
AimM, AimM,
M- {(Qimsinaim — ""D gm cosaim) R + %m } cosy, =0  (20)
m=1
Qom = Komfs(l,;,sl (21)
Qin = Kimail,ﬁs (22)
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m=2Z
AimM,
F, — Z (Qimsinaim _mem cosaim) =0
m=1 D
m=Z
AimMam .
F, — (Qimcosaim - mD & smaim> cosy,, =0 (23)
m=1
m=Z

AimM,
M- %m } cosy,, =0

m=1

AimM,
|:(Qim5inaim - 1mD &m COS(Xim>Ri +

For the bearing stiffness, a 3 x 3 stiffness matrix is used to represent
the support stiffness.

oF,
05,
JF,
06,
oM
90y

(24)

According to the quasi-static model of rolling ball bearing estab-
lished in the previous section, the corresponding calculation program is
compiled. The change of contact angle with axial load was selected at
the speeds of n = Or/min, 6000r/min and 10000r/min, respectively. The
calculated results are compared with the literature’s results, which are
shown in the Fig. 4.

Through the results of literature and verification, the contact angle
tends to be stable with the increased load and the contact angle will
increase with the increased speed. These factors affect the actual stiff-
ness of bearings. Considering the main load of the rotor system in this
paper comes from the rotor system itself, and the smaller design size
brings light load. Therefore, the simulation results have an accurate
description in the light load area, which can provide sufficient calcula-
tion accuracy for the rotor-bearing system.

2.4. Theoretical description of CEEMDAN

CEEMDAN is an improved method proposed by Torres [44]. A noise
is used for each stage of the decomposition, which shows a better sep-
aration and a lesser number of sifting iterations. Therefore, based on the
complexity of the experimental signal, this method is adopted to
decompose the experimental signal and extract the vibration signal of
the rotor itself. The decomposition principle of CEEMDAN is as follows
[45]:

Define Uj(-) as the operator that produces the j-th mode obtained by
EMD, and Nj(t) is the white noise. h(t) is the target signal.

(1) EMD is used to decompose each h;i(t) = h(t) + eoNi(®), (=1, ...,
L). The first CEEMDAN mode and the first residue can be expressed as:

1 d
Hi=7 le Ha (25)
Ri(t)=h(t) —-H; (26)

(2) Same method is used to decompose each R;(t) + e1U1(Ni(t)), (i =
1, ..., I,). The second CEEMDAN mode can be expressed as:

1

=1 S R0 + U (D) @

~

(3) The j-th, (j = 2, 3, ..., N) residue is calculated. The (j + 1)-th
CEEMDAN mode can be defined as:

Ri(t) =R (t) - H; (28)
i =1 Y U(R() + U (N(0) 29)

i=1

Repeat step 3 until the residue cannot be decomposed by EMD.
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3000 rpm.

Therefore, the target signal can be expressed as:

h(t) = Z

The coefficient ¢ allows the selection of the SNR at each stage. Ac-
cording to Ref. [46], It is pointed out that input SNR has no influence on
the performance of CEEMAN, and the recommended values are 0.2.
Therefore, values of the added noise of CEEMDAN are set between 0 and
1. According to the EMD and CEEMDAN decomposition of the same
experimental signal in Fig. 5, it can be seen that EMD has a mode mixing
problem in processing this kind of experimental signal. CEEMDAN s
results are excellent. Every IMF has almost no mode mixing problem,
and the unique vibration characteristics can be clearly observed. This is
because the adjustable noise is added to cover up the possible interfer-
ence, which makes the processed signal closer to the ideal signal of EMD,
that is, the number of extreme points and the number of zero crossings
are equal or not more than one difference in the whole data. However,
the average value of the upper envelope formed by the local maximum
point and the lower envelope formed by the local minimum point is zero
at any moment. This shows that CEEMDAN can effectively process such
signals.

Fig. 6 shows the concrete steps of the whole process including
CEEMDAN for the signal processing. Initially, in the simulation part, the
geometric parameters and operational conditions of the rotor and
bearings are incorporated to derive the bearing stiffness and vibration
signal of the crack-free rotor. Subsequently, the solution results of the
crack-free rotor serve as a foundation for resolving the cracked rotor,
leading to further solutions and the ultimate vibration signal.

In the experimental part, the sensor is applied to measure the vi-
bration signal of the cracked rotor under corresponding conditions. The
collected signal is then subjected to CWT and CEEMDAN for processing.

T

[; + Ry (t) (30)

A comparison is made between the CWT spectra of the simulated and
experimental results to identify differences. Following the application of
CEEMDAN processing to the experimental signal, a comparison is made
with the simulated vibration signal. Results that exhibit similarity to the
simulated signal are further subjected to CWT processing to observe
their time-frequency characteristics and compare them with the simu-
lated results. The method of combining CEEMDAN and CWT is called
CEEMDAN-CWT method, which is used to decompose complex vibration
signals and express the decomposed signals through time-frequency
information.

3. Results and discussion
3.1. Time domain vibration signal and CWT

In the operation of a double-disk rotor system, observing the rotation
frequency and amplitude changes of other frequency components is the
key to judge whether cracks appear in the system [25,47]. Fast Fourier
transform (FFT), as a traditional method to process time domain signals,
is widely used in the calculation of frequency spectrum. But this method
can’t display the instantaneous frequency. Sinou [48] describes a
method of analyzing cracked shaft using continuous wavelet, in which
can be defined as:

+o0
Wiawb) = [ f(0w,, (0 31
1 t—b;
o ® = v (57 (32)

Continuous wavelet spectrum describes the frequency intensity of a
signal on the time scale. Therefore, the frequency changes of the system
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Fig. 9. Dynamics of cracked rotor systems with unbalanced mass: (a) time domain — 1000 rpm, (b) whirl orbit — 1000 rpm, (c) FFT — 2000 rpm, (d) time domain —
2000 rpm, (e) whirl orbit — 2000 rpm, (f) FFT — 2000 rpm, (g) time domain — 3000 rpm, (h) whirl orbit — 3000 rpm, (i) FFT — 3000 rpm.

at different time nodes can be observed during its operation. It is more
valuable in time scale than FFT spectrum.

3.1.1. The theoretical results and CWT

The time domain signal of cracked rotor contains abundant vibration
information, it can be further processed to obtain frequency spectrum
and whirl orbit of rotor system for fault analysis. The theoretical time
domain vibration signal of cracked rotor-bearing system with double-
disk is solved. In addition, the realistic experimental rotor vibration
signals are also obtained to further signal processing.

The stiffness of bearing seat is also considered due to the actual rotor
system structure. Fig. 7 shows the response results of the theoretical
model constructed in this paper at 3000 rpm with different crack depths.
From Fig. 7(a) and Fig. 7(b), it can be found that the change of crack
depth affects the amplitude change of each frequency component, and
the deeper the depth, the greater the amplitude. For the whirl orbit, it
can be seen in Fig. 7(c) and Fig. 7(d) that the whirl orbit with inner loops
can be clearly observed considering the breathing crack model in section
2.

Fig. 8 shows the theoretical corresponding CWT for three different
speeds when the disk 2 has an unbalanced force. With the increased
speed, the amplitude increases. The rotation frequency and 2X fre-
quency can be captured through CWT. These frequencies show a banded
distribution in time, which is similar to the results of Refs. [30] and [31].
The amplitudes of rotation frequency and 2X frequency also increase
with the increased speed.

3.1.2. The experimental results and CWT

However, the experimental rotor vibration signals are obviously
more complex than the theoretical signals, which are revealed in Fig. 9.
With the increased speed, the amplitude of time domain signal increases,
and the time domain signals are not stable at different speeds. The result
of Fig. 9(e) is similar to those in Ref. [13], but the inner ring is not easy
to be observed. When the speed increases to 3000 rpm, the orbit of the
system is similar to an oblate circle. The FFT spectrums of cracked rotor
at three speeds are also observed, which shows that the rotation fre-
quency increases with increased speed. The frequencies of 3X and 4X are
obvious at 2000 rpm, and the 2X frequency is higher than the former at
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Fig. 10. Dynamics of healthy rotor systems with unbalanced mass: (a) time domain — 1000 rpm, (b) whirl orbit — 1000 rpm, (c) FFT — 2000 rpm, (d) time domain —
2000 rpm, (e) whirl orbit — 2000 rpm, (f) FFT — 2000 rpm, (g) time domain — 3000 rpm, (h) whirl orbit — 3000 rpm, (i) FFT — 3000 rpm.

3000 rpm. According to the results in Ref. [32], the whirl orbits of 1/3
critical speed in the reference is similar to the results in Fig. 9(e), but the
results of 1/2 critical speed are different from those in Fig. 9(i). The
breathing crack identification method can’t be applied well from the
regular whirl orbit and frequency spectrum.

Fig. 10 shows the vibration signal of a healthy rotor. With the
increased speed, the time domain amplitude increases continuously. The
orbits ring of a healthy rotor system is smaller than that of a cracked
rotor system, but it is not a relatively obvious circle like the orbits of an
ideal healthy rotor. The 2X, 3X and 4X frequencies also exist in the FFT
spectrums. Comparing the FFT spectra of Fig. 9 and Fig. 10, it can be
observed that the 2X frequency of cracked rotor is slightly higher than
that of healthy rotor, and this phenomenon is more obvious with the
increased speed. This phenomenon is similar with the results of
Ref. [49]. This is because FFT can’t display the complete information on
time scale, it is necessary to put the experimental signal into CWT
spectrum to observe the vibration characteristics of the actual rotor

10

system.

The CWT spectrums from Fig. 11 show the experimental results at
different rotation speeds. Not only the rotation frequency but also other
frequency components can be observed in the experimental signals.
From CWT spectrum, the vibration frequency of rotor system can be
displayed on time scale. The frequency distribution proposed by FFT and
the time variation characteristics of each frequency intensity both can be
observed. For the rotation frequency, there is a stable band distribution
at three rotating speeds, which is also mentioned in Ref. [30]. However,
the fluctuations phenomena of 3X and 4X frequencies can be clearly
caught in Fig. 11(c) and Fig. 11(d) at 2000 rpm. For this kind of fluc-
tuation, it seems to imply the vibration impact of the rotor system.

Compared with the theoretical CWT spectrums and the results which
are mentioned in Ref. [30] and [31], it can be observed that there are not
huge amplitude 3X and 4X frequencies when the rotating speed is 2000
rpm. The results show that neither open crack nor breathing crack can
make the system appear such fluctuations on the time-frequency
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diagram at a stable speed. In Fig. 8, no similar fluctuation can be
observed. For a rotor system, bearings and couplings are also involved in
the operation in addition to the shaft part. If these components are
misaligned during installation, their vibration frequency may be excited.
Therefore, this phenomenon seems to imply that these frequencies are
not caused by cracks. These unavoidable influencing factors increase the
recognition accuracy and difficulty of the fault recognition for crack
rotor-bearing system. Therefore, it is necessary to extract the vibration
signal of the rotor itself for better observation.

3.2. Signal analysis by the coupled CEEMDAN-CWT method

The above-mentioned issues are addressed in this section by utilizing
CEEMDAN to decompose these signals and extract the characteristic
signals of the rotor itself. Subsequently, the accuracy of the decompo-
sition is verified through time-frequency analysis using the CWT
spectrogram.

11

Based on the CEEMDAN method, many IMF components are ob-
tained through decomposition. The first to eighth components are
selected as the main analysis targets. As Fig. 12 shows, the experimental
signal has many forms, but the most important signal form appears in
IMF7 or IMF8. It can be seen that the main signal presents a sine-like
wave, which is similar to the waveform observed by simulation.
Compared with the components of healthy rotor system, the existence of
cracks for cracked rotor system will affect the amplitude of IMF7 (1000
rpm) and IMF8 (2000 rpm, 3000 rpm), but the amplitude of other
components has little change. According to the above analysis, it is
inferred that this is a vibration signal belonging to the rotor system itself.

Small amplitude vibration signal appears in the signals of healthy
and cracked rotor system at various speeds, and their amplitude ranges
are very close, which implies that this vibration component is not
affected by other factors. It is speculated that the test platform is placed
on another flat platform, and the vibration of the test platform itself is
excited during the operation of the rotor, which affects the sensor’s
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Fig. 12. IMF components obtained by CEEMDAN decomposition of experimental time domain signals of cracked rotor and healthy rotor with unbalanced mass.

monitoring of the vibration of the rotor itself. For the 5th to 6th
component (2000 rpm — 3000 rpm) or the 7th component (1000 rpm),
the obvious periodic fluctuation can be observed. This fluctuation varies
in amplitude at different speeds, which is related to rolling bearings or
other rotating parts. The original signals can be decomposed one by one,
and the amplitude and vibration characteristics of various vibration
signals can be observed more completely through CEEMDAN.

From the results of CEEMDAN, it can be observed that the experi-
mental signal contains rich dynamic characteristics. If these dynamic
characteristics are only analyzed by FFT, their changes in time scale will
be covered up because of FFT’s own characteristics. Therefore, CWT can
better explore the reasons for the differences between experiments and
simulations from the time-frequency perspective.

In Fig. 13, it can be observed that the frequency distribution from the
first to the sixth components moves from the high frequency band to the

12

low frequency band. It can be observed that each IMF component has a
fixed distribution in specific frequency bands. As the IMF number in-
creases, these distributions become more concentrated and clearer, with
little presence of other information in other frequency bands. This in-
dicates that CEEMDAN successfully separates these complex signals step
by step in the decomposition process. It proves that CEEMDAN has good
performance. The first component is weak in the observation range
while the second component is distributed in the high frequency area
near 1000 Hz. The appearance of these high-frequency components
further confirms that these vibration signals belong to the system itself.
Because the rotating part itself has its own natural frequency and it is
impossible to appear in such a high frequency band. For the third to
fourth components, the frequency is distributed in the middle of the
observable range, and with the increased speed, the frequency presents a
band distribution, mainly between 300 Hz and 450 Hz. For cracked rotor
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Fig. 13. CEEMDAN-CWT spectrums of cracked and healthy rotor systems with unbalanced mass at 2000 rpm (Blue background-healthy rotor; White background-

cracked rotor).

system, a certain distribution can be found in the frequency band below
200 Hz. For the 5th and 6th components at 2000 rpm and 3000 rpm, a
large number of intermediate and low frequency signals can be
observed, which are mainly distributed between 100 Hz and 400 Hz. In

addition, there are a lot of cluster fluctuations in the 5th and 6th com-
ponents from the CEEMDAN-CWT spectra at different speeds. This
phenomenon is very obvious at 2000 rpm as shown in the Fig. 13. The 3X
and 4X frequency fluctuation signals are very similar to the 3X and 4X

13
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frequency fluctuation signals in Fig. 11(c) and Fig. 11(d).

Because the multi-component vibration will be transmitted to each
other in the actual system, it is necessary to further explore the influence
of bearing vibration on the rotor system. Fig. 14 shows the experimental
results of bearing acceleration signals in a healthy rotor system and a
cracked rotor system. It can be observed from the time-domain vibration
signals that there are certain pulse signals in the running process of
bearings, whether it is a cracked rotor system or a healthy rotor system,
and these signals are also shown in the CWT spectrum. Through CWT
spectrum, it can be observed that the fluctuations similar to those in
IMF5 and IMF6 in Fig. 13. This shows that the vibration characteristics
of bearings aggravate the complexity of system signals. CEEMDAN-CWT
can well separate the bearing vibration signal from the original signal.

When the speed is 3000 rpm (Fig. 15), the amplitudes of these
fluctuations are far less than that at 2000 rpm, but they can still be
caught. Through a single FFT or CWT processing, it can be observed that
numerous frequency information is mixed together, making it difficult
to distinguish the causes of the excitation of high frequency components
other than the rotational frequency. However, through CEEMDAN-CWT
processing, various dynamic information in the rotor vibration signal is
reflected in the individual spectrograms, which cannot be obtained by
traditional spectrograms. Furthermore, the time—frequency information
can be used to further analyze the vibration sources indicated by
different IMF components.

Fig. 16 shows the CEEMDAN-CWT spectra of IMF7 and IMF8. The
time-frequency information of the experiment is mainly concentrated in
the rotation frequency, and the 2X and 3X frequencies of the time-
domain signal are very close to the theoretical signals (as shown in
Fig. 8) after CEEMDAN-CWT processing. At 1000 rpm and 2000 rpm, a
certain 3X frequency component can be observed in both experiment
and simulation. Besides, the 3X frequency component is very weak at
3000 rpm. These results shows that the accuracy of the theoretical model
has been improved based on the Castingliano theorem and J-H model,

14

which are in good agreement with the experimental results.

In order to better show the amplitude of each frequency, the two-
dimensional spectrogram is converted into a three-dimensional spec-
trogram in Fig. 17. It can be observed from the 3D diagram that the 2X
frequency amplitude of a healthy rotor is basically around 3, and its
frequency changes little with the change of rotating speed and there is
almost no obvious increase. But compared with cracked rotor, its
amplitude is about 4 at 1000 rpm. At 2000 rpm, its amplitude exceeds 4,
and its maximum value is about 4.4. When the rotating speed changes to
3000 rpm, its maximum amplitude reaches 5. Because the rotating shaft
with cracks will increase with the increased rotation speed, and its 2X
frequency will obviously increase, it can be seen that these high fre-
quencies of a healthy rotor are probably not caused by cracks. In addi-
tion, at the rotating speed below 2000 rpm, the 2X frequency difference
between cracked rotor and healthy rotor in CEEMDAN-CWT spectrum is
about 1, while the difference of FFT spectrum of original signal is about
0.6, which shows that CEEMDAN-CWT can better judge the difference
between the two rotor systems.

Besides, it can be found that there is still a difference in amplitude
between the theoretical results and the simulation results. The main
reason for the results is that the crack in the experimental rotor is not an
ideal crack, which has a great weakening effect on overall stiffness of the
rotor system. Compared with the simulation results, it can be seen that
the CEEMDAN- CWT method can separate the rotor vibration signal
from the complex experimental vibration signal, and the time-frequency
spectrum close to the simulation results is observed through CEEMDAN-
CWT spectrum. This shows that CEEMDAN-CWT method can better
analyze the time—frequency variation characteristics of the rotor system
itself.

4. Conclusion

In this paper, the CEEMDAN and CWT are applied to a dual-disk
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Fig. 15. CEEMDAN-CWT spectrums of cracked and healthy rotor systems with unbalanced mass at 3000 rpm (Blue background-healthy rotor; White background-

cracked rotor).

cracked rotor-rolling bearing system to address the challenge of deter-
mining the presence of crack faults in cases where complex vibration
signals are present in two or even multiple stages of rotor-rolling bearing
systems. The vibration signal of double-disk cracked rotor-angular
contact ball bearing system is simulated and experimentally explored.
The time domain signals of healthy rotor and crack rotor are analyzed by
the CEEMDAN and CWT. The calculated results imply that the novel
CEEMDAN-CWT method can decompose the complex vibration signal
effectively and accurately. The main findings are as follows.

1. Traditional signal analysis methods such as FFT and CWT have
shown good performance in processing ideal vibration signals of
cracked rotors. However, in practical scenarios, the environment in
which the rotor operates makes its vibration signal more complex.
When frequency components appear in healthy rotors that are
beyond the rotational frequency, these components can interfere
with the determination of whether the rotor system has crack faults.

. CEEMDAN is better than EMD in processing the experimental rotor
system signal. There are a large number of signals with similar
amplitude and vibration pattern in the experimental signal decom-
position results of healthy rotor and cracked rotor, which are not
caused by cracks. The results show that the complex experimental
rotor vibration signal decomposed by the CEEMDAN method is
similar to the theoretical modeling signal, which shows that CEE-
MADAN method has a good performance in decomposing complex
rotor system signals.

. Through CEEMDAN-CWT processing, the vibration signal of the
rotor system itself is clearer, and the difference of 2X frequency be-
tween the cracked and healthy rotor systems is more obvious. At the
rotating speed below 2000 rpm, the 2X frequency difference between
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cracked rotor and healthy rotor in CEEMDAN-CWT spectrum is about
1, while the difference of FFT spectrum of original signal is about 0.6,
which shows that CEEMDAN-CWT can better judge the difference
between the two rotor systems. The characteristics of the experi-
mental cracked rotor can be better identified and have a good sim-
ilarity with the simulation results according to CEEMDAN-CWT
method.

. From the 3D CEEMDAN-CWT spectrum, the 2X frequency of healthy
rotor will not change obviously with the increased speed, but the 2X
frequency of cracked rotor will increase obviously. This is different
from the situation that both of them increase with the rotating speed
in FFT spectrum, which shows that this method eliminates interfer-
ence and makes the measurement more accurate.
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