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Abstract: Wind farm control methods allow for a more flexible use of wind power plants over the
baseline operation. They can be used to increase the power generated, to track a reference power
signal or to reduce structural loads on a farm-wide level. Model-based control strategies have the
advantage that prior knowledge can be included, for instance by simulating the current flow field
state into the near future to take adequate control actions. This state needs to describe the real system
as accurately as possible. This paper discusses what state estimation methods are suitable for wind
farm flow field estimation and how they can be applied to the dynamic engineering model FLORIDyn.
In particular, we derive an Ensemble Kalman Filter framework which can identify heterogeneous
and changing wind speeds and wind directions across a wind farm. It does so based on the power
generated by the turbines and wind direction measurements at the turbine locations. Next to the
states, this framework quantifies uncertainty for the resulting state estimates. We also highlight
challenges that arise when ensemble methods are applied to particle-based flow field simulations.
The development of a flow field estimation framework for dynamic low-fidelity wind farm models is
an essential step toward real-time dynamic model-based closed-loop wind farm control.

Keywords: wind field estimation; dynamic wind farm modelling; wind farm control; ensemble
Kalman filter

1. Introduction

Wind turbines are frequently positioned in a wind farm in such a way as to minimize
electrical cabling costs and to utilize given space as efficiently as possible. In this context,
wake effects can have a significant impact on the power generated by the wind farm: as
one turbine extracts energy from the flow, a downstream turbine experiences lower wind
speeds and generates less energy [1]. The impact of wakes can be reduced by wind farm
layout optimization and by changing the way wind turbines are controlled. Wind farm
control (WFC) methods utilize the degrees of freedom a wind turbine provides in order to
improve the wind farm’s performance [2]. This can be performed, for instance, to increase
power generated or to reduce loads on the turbines to extend their lifetime.

Model-based WEC methods utilize a surrogate model to find the optimal control
inputs for the wind farm. This has shown to be successful in steady state, for instance
with the method of wake steering [1], where turbines are purposefully misaligned with
the main wind direction to deflect their wake. For steady-state conditions, set points can
be calculated offline and are then applied using a look-up table during operation. More
recent publications iterate on the approach and aim to also include dynamic effects, some
of which are discussed here:

Dynamic wake effects can be approximated at a low computational cost by reducing
the underlying physics. One example is the free-vortex method, which reduces the simu-
lation scope to vortices shed by the rotor and their interaction with one another. Recent
work has shown that the free-vortex method, paired with an adjoint-optimization, can be
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used for model predictive control [3]. In the presented work, the algorithm is applied to a
two-turbine wind farm during a wind direction change, where the flow field conditions
are prescribed on a global scale. While successful at a small scale, the method is currently
limited to low numbers of turbines. This is due to a steep increase in computational cost
and numerical instabilities. The free-vortex method further has inherent difficulties to
accurately describe the wake behavior once the wake does break down. The distance at
which the free vortex method begins to become inaccurate is subject to ongoing research
and can vary across different implementations. Another way of approximating dynamic
effects in wind farms is to decrease the time scale at which steady-state models are used.
In [4], the authors use a steady-state model but adapt it to take changing atmospheric
conditions on a longer time scale into account (minutes to hours). This way, they achieved
dynamic closed loop control with a steady-state model across a full diurnal cycle. The
model does not feature a dedicated flow field model but rather averages the environmental
conditions over time. On a shorter time scale of seconds to minutes, there are only a few
models which aim to simulate the flow behavior in a wind farm at a low computational
cost in order to provide control inputs in real time.

One such model is the FLOw Redirection and Induction Dynamics (FLORIDyn) model,
originally published in [5] and more recently revised in [6,7]. The model can take hetero-
geneous and transient flow conditions into account and can simulate the propagation of
turbine state changes through the wake. This is achieved by creating particles, so-called
Observation Points (OPs), at the rotor plane. These inherit the turbine state and the wind
field state at the time of their creation. Each OP then proceeds to propagate downstream
according to the wind speed and direction it has inherited. The turbine state, together with
the wind field state and the OP location, provide enough information to approximate the
influence of the turbine wake in the proximity of the OP. The FLORIDyn model uses a
parametric wake model, designed for steady state, to calculate the wind speed deficit. The
model therefore adds flow and advection dynamics to a computationally cheap steady-
state wake model. Multiple similar models have been published recently, which are briefly
described below.

The FOWFSim-Dyn model presented by [8] provides a basis for a dynamic description
of floating wind farms. It couples a parametric wake model with turbines on floaters,
constrained by mooring lines. Based on the inflow, the turbines change their location
and the wakes adapt. The inflow is assumed to be uniform throughout the domain and
is modeled as an imposed function of time. The model UFLORIS is presented in [9]. It
makes similar design choices as FLORIDyn, in its switch from [6] to [7]: instead of using
multiple OP chains to cover the entire wake, the model employs only one chain of OPs
along the center line. UFLORIS employs a 2D wake and models the wind speed as part of
the Observation Point’s state. The model presented in [10] takes a different approach and
models the wind field as its own set of ambient OPs which propagate at a different speed
than the wake OPs. The model also incorporates crosswind components at the rotor plane
and is able to show meandering effects in the wake. Similarly, Ref. [11] also employs a set
of wake-OPs and ambient-OPs to differentiate between the background flow behavior and
the wake dynamics.

The emergence of various dynamic parametric wake models shows that the field is
maturing and different design choices are being explored. A common goal for these models
is to be applied in a wind farm context for real-time control purposes. To achieve this, an
estimation framework is needed to identify the current wind field state. The identified state
can then be used to simulate into the near future and to decide on the best control actions.
Without estimation, the model does not have knowledge of the real-life circumstances and
does not lead to useful predictions. In previous work [12], a Kalman filter is proposed
to estimate the wind speed in FLORIDyn with promising results. However, the work is
lacking a wind direction estimation, and this approach does not estimate the uncertainty of
the system states but rather assumes prior knowledge of it.
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An alternative estimation method is the Ensemble Kalman Filter (EnKF) [13]. The
EnKEF follows an ensemble-based data assimilation approach and aims to estimate the state
by simulating many different versions of the model. Each realization of the model has its
own state and forms one ensemble. The states differ across all ensembles and diverge over
time if not corrected. During the correction step, the differences between the ensemble states
are used to approximate the state-error-covariance matrix, which allows the calculation of
the Kalman gain matrix. The capability to approximate the state-error-covariance matrix is
the property of the EnKF which simplifies what is a major tuning effort in other Kalman
filter implementations. Therefore, the state estimation of nonlinear systems with the
EnKEF is relatively easy compared to other methods, which might require more system
information, such as derivatives. The reduced mathematical effort comes at the cost of more
computational effort in the simulations. As a result of increasing computational capacities
and the parallelizable nature of the EnKF, this trade-off has become more tolerable. The
method can be used to estimate the state of complex nonlinear systems as well as the
uncertainty of an identified state, a property which is useful for solving control problems
in a robust manner. Successful applications of the EnKF include flow problems [14-19],
which make it particularly interesting for wind farm flow field estimation.

In a similar problem setting to FLORIDyn, an EnKF is used in [16] with the wind
farm model WFSim to estimate the state of the flow. The EnKF returns promising results
including the uncertainties of the states in addition to a computational setup which can
easily be adopted to keep the computational cost low. However, an elementary difference
between the work of [16] and FLORIDyn is that WESim has states at fixed locations, whereas
FLORIDyn propagates its states and is essentially a particle simulation. This requires an
adaptation on how the EnKF can be applied compared to its textbook examples. The work
of [14] pioneered the application of the EnKF in an adaptive mesh simulation, something
which has been further developed in [15,17]. A recent publication [19] adapts the problem
statement by incorporating Lagrangian particles in a mesh simulation. This work presents
characteristics close to FLORIDyn and shows that the EnKF can be applied for particle
simulations. The mere fact that an EnKF framework can be applied to a dynamic-low-
fidelity model has been shown by [18]: based on the power generated, an EnKF corrects
the wind speed deficit and the wake expansion.

Similar estimation techniques to the EnKF are the Unscented Kalman Filter
(UKF) [20], and variational data assimilation, such as the Four-Dimensional Variational
method (4D-Var) [21]. The UKF propagates selected versions of the state vector, called
sigma vectors (or sigma points). The sigma vectors are created based on the state covariance.
They are then propagated in time using the system equation and the weighted mean of the
resulting states is the estimate. The error covariance between the sigma vectors and the
outputs is then used to calculate the Kalman Gain matrix and to correct the estimate. This
allows the UKEF to perform state estimation for nonlinear systems [22]. The difference to
the EnKF is that the sigma vectors are then reseeded, based on the new state covariance.
The EnKF, on the other hand, propagates the same ensembles further in time. A downside
of the UKF is the number of sigma vectors, which is typically twice the number of states.
For FLORIDyn, this would result in hundreds to thousands of sigma vectors. Variational
data assimilation methods optimize an initial state to fit the past outputs produced by
the model over an assimilation window. The identified state can then be used to predict
future model behavior. In particular, 4D-Var is used with success for meteorological and
flow simulations [23], similar to the EnKF. This frequently leads to the question when to
choose one over the other [24]. What makes 4D-Var unsuited for FLORIDyn is that the OPs
with the identified state leave the system boundaries and are disregarded. As a result, the
algorithm would put effort into estimating states which do not have an influence anymore
at the current time step nor in the future. We conclude that the EnKF remains the most
practical and promising approach for the simulation circumstances of this work.

To summarize, dynamic—parametric analytical wake models, such as FLORIDyn, grow
in popularity. They can approximate dynamic flow behavior within a wind farm at a low
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computational cost, which makes them suitable for real-time closed-loop wind farm control.
In order to make meaningful control decisions, the model state needs to be equal to the real
wind farm state. To align the two states, an estimation framework is needed. The review
of existing methodologies suggests that the Ensemble Kalman Filter is the most suitable
estimation framework but requires some adaptation.

The main contribution of this paper is an Ensemble Kalman Filter framework to
jointly estimate the background wind speed and wind direction in a wind farm, using the
dynamic parametric wind farm model FLORIDyn. The presented framework is innovative,
as wind speed and wind direction estimation are generally treated as separate problems.
The work further contributes to the recent efforts to explore how the Ensemble Kalman
Filter as a method can be used to estimate the states of Lagrangian particle simulations.
The estimation is based on already available turbine data such as the power generated
and wind vane measurements. The results and insights of this work are also relevant for
other dynamic parametric wind farm models mentioned earlier [8-11] as well as for other
Lagrangian particle simulations.

The remainder of the paper is structured as follows. Section 2 discusses FLORIDyn's
properties and presents the resulting Ensemble Kalman Filter framework. Results obtained
with the new framework are presented in Section 3. Section 4 draws conclusions and gives
an outlook for future work.

2. Materials and Methods

In order to implement the proposed Ensemble Kalman Filter approach, FLORIDyn
needs to be described as a state-space system. We will approach this problem by first
discussing the properties of the FLORIDyn algorithm and the resulting differences to other
simulation types in Section 2.1. Following these insights, we present different ways to
formulate the Ensemble Kalman Filter framework in Section 2.2. We will also discuss
extensions of its formulation. The mathematical notation of the paper is as follows: italic,
non-bold letters denote scalars (e.g., x, Cp), bold, lowercase letters denote column vectors
(e.g., xop, ), column vectors with hats denote state estimates (e.g., Xwr), with bars
averages (e.g., Xwr). Bold, uppercase letters denote matrices (e.g., A, C), matrices with tilde
represent matrices modified by weighting or localization (e.g., A, C). Square brackets orga-
nize equations or define matrices and vectors, round brackets are function inputs, properties
or units.

2.1. Properties of the FLORIDyn Approach

FLORIDyn is a particle simulation approach to model the dynamic behavior of wind
turbine wakes given environmental conditions. In practice, so-called Observation Points
(OPs) are created at every time step and propagate downstream with the free wind speed
and along the main wind direction. The term free wind speed refers to the assumed
background wind speed, unaffected by the wakes. The OPs inherit the state of the turbine
at their time of creation. This allows them to calculate the wake of the turbine at and
around their location. The detailed process is described in [7]. The wind field states used
for propagation (wind speed, direction and ambient turbulence intensity) are also part of
the states of an OP. The full state of an OP is given by its location xf, op, the turbine states
attached to it xTop and the wind field states xygop. Combining all OP states, the system is
then propagated as follows:

xp(k+1) (A 0 Apwe(xwe(k))] [ xc(k)
XT (k + 1) =| 0 At 0 XT(k) + ...
xwr(k +1) Y 0 AWE, WF xwe (k)
[ (xL(k), xr (k), xwr (k)) BL 0 0 Iz (k)
0 +10 BT 0 XT,0 (k) ’ (1)
I 0 0 0 Bwr] [xwro(k)
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where xp refers to all OP location states, while xt and xwg refer to all stored turbine states
and the stored wind field states, respectively. The matrices Ay 1, AT and Awgwr have a
similar lower-diagonal block structure which ensures that one state is propagated to the
next row for each turbine and its OPs. The propagation of the OPs following the main wind
direction and wind speed is described by the matrix Ap, wr(xwr(k)). The nonlinear term
d(xr.(k),xr(k), xwr(k)) describes the centerline deflection, as the model presented in [7]
describes only OPs moving along the centerline. This term is zero in the presented work, as
yaw-misalignment is not part of the later presented case studies. A detailed description can
be found in [25]. As inputs, there are the turbine rotor locations It (k), the current turbine
state xro (k) and the current wind field state at the turbine locations xwg (k). The turbine
rotor locations are used to determine where the OPs are created, and the remaining inputs
serve as information stored in those newly created OPs. The full system is described in
more detail in Appendix A.1.

In order to estimate the wind field states, they have to be observable. This depends
on the way the output of the simulation is defined. We assume that we can only measure
at the locations of the turbines and treat the turbines as sensors in our framework. For
the wind direction, we assume to have a wind vane available at the turbine location. To
estimate the background wind speed, we can utilize the power generated. This way, the
algorithm requires the least input from the turbine and utilizes already available data. On
the FLORIDyn side, the power generated is estimated by calculating the effective wind
speed at the turbine location and the power coefficient Cp:

oA 1 .
Prurbine = P FLORIDyn = EAl‘Ot © Cp ugff @
ny
feff = gree | [[1—1i] (3)

i=1

where i, is the estimate of the free/background wind speed, stored in the OPs, and all
other variables with hat symbol are derived estimates. The rotor area is Arot, p denotes the
air density, and r; denotes the wind speed reduction by the i-th wind turbine wake. The
power coefficient Cp = 4a(1 — a)? is calculated based on the actuator disc theory, which
in this work is solely based on the axial induction factor as yaw is not part of the study
[26]. We assume greedy control for all turbines and set a to the Betz limit of /3. The wind
speed reduction is based on the Gaussian wake model [25] and implemented as described
in [6]. Note that the power generated is dependent on ﬁgff, which makes an estimation
of the wind speed, and its uncertainties, even more relevant. Equation (3) uses the free
wind speed at the turbine locations, which is based on the OP state xyr. It is necessary to
understand how all states are connected to the few estimates at the turbine locations to
ensure observability. In the model presented in [7], the states of the closest upstream and
downstream OP would be used to interpolate the free wind speed. This was motivated by
a similar approach in the initial FLORIDyn implementation [5]. If we define a vector {iee
as (intermediate) output of our system at every turbine location, the output matrix could
look as follows:

Ufree = C(k) XWFE,u 4)
C(k) = 0 -+ 0 w, wy 0 --- 0|’ ®)

where C(k) is the time-varying output matrix of the state-space system and wq, w, are the
non-zero interpolation weights. Note that Equation (5) is formulated for a two-turbine case
where the first turbine is uninfluenced and the second one is in the wake of the first one.
The free wind speed at the second turbine is estimated from two OPs in the wake of the
first turbine, based on the weights w; and w,. Note that we only use the velocity entries of
xwr. This formulation creates a very sparse C matrix. Figure 1 visualizes this by coloring
the OPs which are used to determine tGifee.



Energies 2022, 15, 8589

6 of 23

Figure 1. Interaction between OPs and a turbine: the initial case only considered the two closest OPs
(upper figure), while the weighted case considers a broader range of OPs (lower figure) to estimate
the wind field states at the downstream turbine location.

It is here where the inherent issue lies of applying the Ensemble Kalman Filter frame-
work. The EnKF will be discussed in more detail in Section 2.2, but the main idea is that
the estimator works by employing multiple versions of the model, all evolving slightly
differently over time. As this is the case, the wind speed states of different ensembles
diverge and so do the locations of the OPs. Since the formulation of C is so sparse, different
OPs and therefore different states contribute to the wind speed estimate in each ensemble.
The estimator framework is built around the premise to estimate and correct the same
state across all ensembles, which is no longer the case. Therefore, the formulation of C
has to be altered and its non-zero entries have to be wider spread, which leads to more
robustness across different ensembles. Furthermore, it has to be ensured that the same
states are identified across all ensembles. To solve this task, a method from a very similar
model is utilized: Lejeune et al. [10] employ a spatio-temporal averaging approach to
weight the wind field states. We adopt this approach in FLORIDyn by weighting every OP
based on its downwind and crosswind distance to the location of interest and based on the
time passed since its creation. At the location of interest, the weighted average of all OPs’
states returns the free wind speed estimate. We calculate the weights using a Gaussian
function [10]:

d3 d? t — top)?
w(ddwz dew, tOP) = exp < [ZUSW zo-gw ] ) exp <[2020P]> ’ (6)
W,CW wt

w,dw

where dg,, and d, are the downwind and crosswind distance to the location of interest,
top is the time at which the OP was created and ¢ is the current time. Figure 1 indicates how
a broader range of OPs is now considered. This weighting also introduces three new tuning
constants oy, qw, Ow,cw and oy,t, which control the downwind, crosswind, and temporal
width of the Gaussian weighting function, respectively.

This way of calculating the weights is applied in two places. First, the calculation of the
C matrix is adapted. Its entries become larger for close and younger OPs, and they become
smaller for older, further away OPs. The same method is now also applied to the calculation
of the propagation distance of the OPs, which is represented by Ap wr(xwr(k)) in Equation
(1). This change overcomes the issue of one OP overtaking the other and preserves the
low-frequency changes in the wind field. In addition to the weight parameters used in [10]
for the wind speed, a new set of weight parameters are introduced for the wind direction
state. This allows for a more adaptive tuning. As discussed in Section 3, we assume the
wind direction to have a much larger area of “validity” than the wind speed, which we
assume to be more local. Additionally, we also assume that wind direction measurements
change more uniformly, which is why we decrease the weight with time stronger than with
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the wind speed estimates. To implement this change, the matrix A wr(xw) in Equation
(1) has to be extended by a weighting matrix Wwg, as well as weighting its input:

A wr(k,xL, xwr) = Apwr(Wwr (k, x1) xwr) Wy (k, x1) - )

The structure of Wwg(k,xr,) is given in Appendix A.2. The changed version of
Equation (1) is given in Equation (8). A visual representation of the weights can be seen as
part of the results in Figure 11.

2.2. Ensemble Kalman Filter Formulation

The Ensemble Kalman Filter works by employing a model multiple times with varying
starting states [13]. Additionally, it is assumed, as with all Kalman Filter formulations,
that both the states and the measurements are corrupted with a Gaussian white noise
disturbance. This randomly generated noise, along with the different starting states,
ensures that the states of the different ensembles diverge over time. The average of a state
across all ensembles is its estimate and the variance is its uncertainty.

Equation (1) is adapted as follows:

xp(k+1) AL 0 Apwe(kxy, &we)] [ x(k)
XT (k + 1) = 0 AT,T 0 XT<k) +
fwe(k+1) 0 0 AWwE, WF xwe (k)
x(k+1) Ay x(k)
d(xp(k), xr(k), &wr(k)) B 0 0 I (k) 0
0 + 0 BT 0 xT,O (k) + 0 ’ (8)
0 0 0 Bwg] [&wro(k) PwE
N’

Ay B u 14

where iy is the added noise to the wind field state. The noise combines the noise for
wind speed y,, ~ N (0,Qy) and wind direction p o™ N(0,Qy), which are assumed to be
Gaussian noise. All ensembles are propagated in time using Equation (8) with individually
generated noise.

Due to the fact that Xy is perturbed individually for all ensembles, and that the values
of Xwr are coupled to x1, this state also changes differently for all ensembles. Depending
on how far the ensembles have diverged from one another, the Xwr states are at different
locations in the different ensembles. The EnKF framework, however, assumes the states
to describe the same location. This is an inherent characteristic for all simulations which
include, or consist of, Lagrangian markers, particles traveling based on their own state.
In the literature, there are two proposed ways to address this issue: The first option is to
map the ensemble states to a common grid. The state correction is then applied at common
locations. The corrected states are then mapped back onto the individual ensemble states.
An alternative is to enhance the state with the markers position. These are then also
estimated and corrected. The idea is that the location of the OPs is correlated with the states
causing the propagation. This method can significantly increase the size of the problem,
but it also returns more information. In the case of FLORIDyn, this framework would then
also correct the location of the wake. To decrease the complexity of the problem, we apply
the former method. Rather than creating a new grid, we first calculate the mean position
of the OPs X1, across all ensembles and then apply the weighting (Equation (6)) to find the
representative state of the ensemble at X.. This can be seen as a coordinate transformation
from the states of the ensemble to the mean states of all ensembles. The corrected state
would then need to be projected back onto the ensemble states; however, an inversion of
the weighting matrix is numerically difficult. We therefore further simplify this step by
assuming that the inverse is equal to an identity matrix. This assumption is supported by
the fact that the weighting matrix has a diagonally dominant structure for the OPs which
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are in the wind field area. It is to be expected that this assumption cannot hold for more
diverging wind directions and for areas where no state correction is possible.

From this point onwards, we will refer to the resulting state of Equation (8) as a forecast
state, which is marked by an f as the upper left index. If measurements are available, the
forecast state f)’ZWF,e]. of ensemble ¢; is corrected using the difference in predicted outputs
and measured outputs with Equation (9). The result is the analysis state “Xwr,¢;. The
general formulation of the analysis step is as follows:

g)’ZWF,ei = ff(WF, e; + K |:de,‘ - g (XL, €;rs XT, fﬁWF, el‘)j| (9)

TRWE, e = W, s (10

where K is the Kalman gain matrix, g (xL,ei, XT, ff(WF’ei) describes the nonlinear output

function which converts the ensemble field state to the predicted measurements and de, is a
set of polluted system measurements. We assume xt to be equal across all ensembles. If no
measurements are available, Equation (10) is used to determine the analysis state instead
of Equation (9).

We assume that the wind direction and wind speed are uncorrelated and can be
corrected independently. Therefore, the calculation of the Kalman gain matrix is split into
Ky to correct the wind speed and K, to correct the wind direction. For the correction of the
wind speed, the power generated is used as a nonlinear output. For the wind direction, we
assume a direct measurement at the turbine location. Therefore, the output function also
varies and Ky and K, have to be calculated in a similar yet different manner. This will be
discussed in Sections 2.2.1 and 2.2.2, respectively. Figure 2 shows a block diagram of the
correction from the point of view of a single ensemble.

Measurements

. N N
Correction  temeefeeeee--- .

- T =T "-""——-—""—-—""—""~"""—"""—"q9~-"—°"~"—"~"—-° '!

Ensemble / Model

e (k+1)

L

Figure 2. Block diagram of an ensemble with correction. The left box (——) describes the state
propagation within the ensemble. If no measurements are available, the system keeps progressing
the state, and all ensembles diverge due to the influence of noise. The right box (—-) describes the
comparison of the measurements with the estimates and the resulting correction. Elements connected
to the wind direction are colored in dark blue, while elements related to the wind speed are colored
in orange. Products and functions have a one-line frame; values have a double line frame.

It visualizes how the estimated wind field states are converted into estimates at the
turbine location. The wind direction is determined by a time-varying output matrix, and
the wind speed is determined by a nonlinear function which converts the wind speed into
power generated. Both estimates are then compared to the polluted measurements. The
difference is multiplied with the respective Kalman gain matrix and the forecast states
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are corrected and fed back into the ensemble. Figure 3 visualizes which calculations are
executed for all ensembles and which calculations are used only once. The calculations are
mainly based on the EnKEF literature and adapted for this case; for more information on the
EnKE, see [13,27].

2.2.1. EnKF Correction of the Wind Speed

To calculate the Kalman gain matrix Ky, we follow an approach also used in [19],
which allows the use of a nonlinear output function. First, the averaged state error matrix

f Espr, 18 calculated:
1 . _ . _ A 3
L N {f RWEwe, — XWEuw RWEwe, — XwEw, -+ -, fXWF,u,ene —fRwga| , (1)
, o

where ff(WEu’ ¢; describes the wind speed estimate of the i-th ensemble and £ XwEu describes
the average across all 1. ensembles. The same is calculated for the output of the ensembles:
1

:ﬁ[Pel_P’PeZ_P""’Pn _1_)}, (12)

Ep
where P, denotes the estimation of power generated by the i-th ensemble, which is directly
dependent on f XwEu as shown in Equations (2) and (3). We can now calculate the state-
output error correlation covariance matrix, Equation (13), and the output error covariance
matrix, Equation (14):

_ T
ecf’A(WF,u/f) - Eff(WF,u Ef) (13)
T

In parallel, the power measurements P from the wind turbines have to be polluted:
Pel- =P+ €ip €Eip~ N(O, RP) (15)

where €;p is an artificial error with a Gaussian distribution, an average of 0 and the
covariance matrix Rp. The matrix Rp is a parameter which needs to be set based on prior
knowledge and tuning. If no random perturbations are added to the measurements, the
variance of the analyzed ensembles becomes too low [28]. The wind speed is then corrected
as follows:

-1
Ky = ecff(WF,u/f’ [ecf),f’ + RP} (16)
uﬁWF,u,ei = ff(WF,u,el- + Ky [Pei - f)ei (f)'ZWF,u,e,)} . (17)

2.2.2. EnKF Correction of the Wind Direction

We assume to have a measurement of the wind direction available at the turbine
locations. The state error / Eyy5 ¢ is calculated equivalently to Equation (11). Contrary to
the wind speed estimation, it is then used to calculate the state error covariance matrix:

-
erWF,zp/xWF,zp = fExWF/qz fExWF,go : (18)

To obtain the relation between the states and the output, the output matrix Cyp, is
needed. It is given by the rows of the weighting matrix Wy (k, x ) which combine /; XWF, ¢
to a wind direction estimate at the OP at the rotor plane; see Equation (7). Due to the fact
that OPs are slightly differently located in each ensemble, Cy ¢, is slightly different in each
ensemble. We assume that Cye; ~ Cype, ... Cype,, toadegree where the basic assumptions
of the EnKF still hold. However, we are diverging from the traditional calculation by
generating individual K¢, for each ensemble, based on the different C, ¢, matrices. The
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wind direction measurements ¢ are also polluted with an error €igp ™~ N (0, RfP)' which is
equal to the power measurements in Equation (15). As with Rp, R, is a parameter that
needs to be set. The resulting analysis step is described by:

-1
_e T e T
Kq’/ei - CXWF,(()/ XWE, qu,ei [C(p,e[ cXWF,(p/XWF,(p C(p,e,- + R(P} (19)
RWEge = KwEge + Kpe [(Pe,- —Cyf; *WF,(p,ei] : (20)

Note how the Equation pair (19) and (20) differs from (16) and (17): Equation (19) uses
the state-error-covariance matrix and a linear output matrix, where Equation (16) uses the
output-error-covariance matrix and the output-to-state-error-covariance matrix. As a result,
Equation (20) corrects based on a linear relation of the output to the estimated state, while
Equation (17) compares outputs with a nonlinear relation to the estimated state.

Figure 3 shows the difference between the single K, for the wind speed reduction
and the multiple matrices to correct the wind direction. Generally, this approach is not
desirable as it requires more calculations and therefore more computational effort. We
chose it as we had access to the exact output matrices and were therefore able to reduce the
number of approximations in the correction. Furthermore, the later discussed test case is a
nine-turbine case, which means that the to-be-inverted part of the Kalman gain calculation
is a 9 x 9 matrix, which resembles a manageable computational cost. As the number of
turbines grows, a single K, matrix becomes much more desirable.

vy

Be,(k+1) = F ("Re, (k), (k) + o, |
Pe, (k) = g (%, (k) | Re, (k) = e, ()

~ ~ € . . € . e "
Coe, ® Cpe, ® Copey - -- cfwa,\o,!xWF,p cff(wp‘,u,P cP,P

!

-1
_e T e T
K%e, - cXWF,:;ngwa Cap,e,» [C%el c"WF,w"WF.w C%ei + R‘F]

“RWFpe; = XwWF e, T Ko, [‘Pe,» -Gy f’A‘WF,%ei] “RWF,ue, = fiWF,U»ez +Kau [Pm - Pei]

€io ~NORy)| | @(k) || | P(k)

Ei'p ~ N(O, RP)

Figure 3. Block diagram of the correction across all ensembles. The yellow, top boxes describe all
ensembles, running in parallel. If no measurements are given, the forecast state is used as an analysis
state, and the ensembles diverge further. If measurements are given, the wind speed (orange) and
direction (dark blue) states are corrected. The measurements and their perturbations are given at
the bottom of the figure with thin double lined frames. Without perturbation, the variance of the
ensembles would become too low [28].

2.2.3. Localization

The EnKF works under the premise that enough ensembles are simulated to approxi-
mate the correlation among the states and measurements. In order to decrease the number
of ensembles needed for the error covariance approximation, prior knowledge of the system
can be used to modify the covariance matrices. In practice, this is completed by calculating
an additional covariance matrix based on the distance of the state to each other. This covari-
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ance matrix is then multiplied with the state-error covariance matrix and the output-to-state
error covariance matrix.

e _ e
CxWF,q;erF,cp = Cx;,x. © CXWF,anWF,q;
e _ e .
cf)‘ZWF,urf, - CXL/ XL, T ° Cf)'ZWF,u,P (21)

e _ e
Cf’,f’ = CXL,TIXL,T o CP,P ’

where o is the Hadamard product, Cy,  , is the localization covariance between all states,
Cx.,x_ 1 is the localization covariance between all states and the OPs at the turbine locations,
and Cx; r,x r is the localization covariance between the OPs at the turbine locations among
each other. As the initial OPs are placed at the turbine location, Cx 1,x 1 and Cx,x 1
are subsets of Cy, x, . To calculate the localization covariance, we follow [29] and use a
piece-wise defined polynom with a characteristic cut-off length . Every element c; ;(d,I) of
the covariance matrix connecting OP; and OP; is then calculated as follows, based on their
distance d to one another:

1 d=0
e [ 1 [g] 3[4 - 3[4 0<d<i
S —%zms—%[?r—%[?}3—%[%}2—5%4—%[%}_1 l<d<2 )
0 21 < d.

The equation is based on the work of [30], which also offers alternative functions. The
state and output covariance matrices in Equations (16) and (19) are subsequently replaced
by their modified equivalents, which are defined in Equation (21).

3. Results and Discussion

This section presents the results of the introduced framework. The parameters chosen
for the simulation are discussed in Section 3.1. In Section 3.2, we apply the framework to a
test case where FLORIDyn is used as both the reference system and the ensemble system. In
a second step, Section 3.3 showcases a setup where an LES simulation is used as reference.

3.1. Ensemble Kalman Filter and Localization Parameters

Table 1 lists the used parameters for the EnKF framework and the new weighting
method introduced in FLORIDyn. For the other FLORIDyn parameters, see [7]. The
number of ensembles defines how well the covariance matrices are approximated, but with
every ensemble, also a new FLORIDyn simulation has to run. Preliminary tests suggested
that using 50 ensembles yields acceptable results: the estimate becomes noisy for a few
ensembles (<20), and the results do not change significantly for higher numbers (tested up
to 150). The correction frequency Cf determines how often the framework is called and has
to be a multiple of the FLORIDyn simulation frequency, which is set to 0.25s~!. The noise
on the measurements and states is assumed to be uncorrelated and is therefore described
by an identity matrix, which is multiplied by a factor. The factors were chosen based on
the variance of the measurements in the LES simulation. The noise perturbation for the
wind direction had to be increased to allow for a faster correction. The cut-off length for
the localization function was set in accordance to be roughly double the spatial component
of the weighted average function, scaled by /10/3, which is motivated by the findings of
[31]. The values for the weighted average calculation of the wind speed are inspired by
[10] but were modified. The initial values were lower for oy, and higher for oy, gy, ,,- This
led to unreasonable weighting areas during major wind direction changes. Therefore, we
adapted the values to hold value longer but over shorter downwind distance. The weight
for the crosswind distance oy, cw,y Was also set lower, which led to very little interaction
between downstream turbines and passing wakes. The value was therefore increased.
The wind direction weights are set by manual tuning and intuition: as the wind direction
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changes, the entire flow field changes, and we can assume a more global effect than with
wind speed. If the age of the OPs would not be punished more heavily by the weighting,
old wind direction measurements would prohibit a change. We therefore chose to give the
wind direction state a wide influence area but a short lifespan. All values should be seen as
educated estimates and not necessarily as part of a final parameter set.

Table 1. Parameters used in the Ensemble Kalman Filter framework.

Ensemble Kalman Filter Localization

e (-) Cf(s™) Ly (m) lp (m)

50 1/12 v/10/3 x 500 v/10/3 x 1000

Noise Per4 s

Rp (MW) Ry (deg) Qu (ms™) Q, (deg)

0.1- I, 31y 0.4 - I 3 Ligp

Weighted Average

Ow,dw,u (m) Ow,cw,u (m) Ow,t,u (s) Ow,dw,¢ (m) Ow,cw,¢ (m) Ow,t,g (s)
256 126 256 512 512 50

3.2. FLORIDyn as Validation Platform

To understand the behavior of the developed algorithm, we first use FLORIDyn itself
as a validation platform. This allows us to model flow conditions, which could be hard to
generate in high-fidelity simulations. We also can carve out the differences of the FLORIDyn
model by itself and FLORIDyn within the EnKF framework. This gives us an idea about the
contribution of the EnKF framework. To this end, we consider a nine-turbine case subject
to heterogeneous wind speed and wind direction changes. The 3 x 3 wind farm layout
is described in Figure 4. All nine DTU 10 MW turbines [32] are placed with equidistant
spacing of 900 m, which is roughly equivalent to five turbine diameters. The FLORIDyn
model is propagated as described in Equation (8), excluding the noise term. During the
1200 s simulation duration, both the wind direction and speed change heterogeneously
throughout the field. The wind direction is initialized with 255 deg and then changes
at rates between 0.2 deg s~ and 0.05 deg s~ to 280 deg. Figure 4 shows the start and
end directions as well as the transitions for the different turbines. The wind speed is
changed in a similar manner from 8 to 10 ms~! at rates between 0.02 and 0.01 ms~2. Yaw
misalignment is not part of the presented case.

Figure 4. The left figure depicts the wind farm layout which is used in Sections 3.2 and 3.3, along
with the main wind directions in both cases. The right figure depicts the transition between the flow
variables for the different turbines during the FLORIDyn reference simulation.

Figure 5 depicts the power generated by the center row turbines, T3, T4 and T5. The
leftmost turbine, T3, experiences only free stream conditions, and the only change in power
generated stems from the increase of wind speed. As the EnKF needs to adapt to the
changing wind speed, the predicted power generated trails the reference with a delay of
~ 10 s. The other two turbines, T4 and T5, are subject to upstream wakes and show a
reduction in power generated due to passing wakes during the wind direction change.
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Both also show that the EnKF predicts the reduction in power generated, but contrary to
the prior case, and counter intuitively, the EnKF does not follow the reference simulation
but leads it. To understand this effect, we have to look at the state correction: the EnKF
has the capability to change the states of shed OPs whereas the FLORIDyn simulation only
adds new data to the OPs at the turbine locations. As a result, downstream OPs in the
EnKF simulation correct their state while they initially remain unaffected in the FLORIDyn
simulation. The effect is that the wake in the EnKF adapts sooner to the new wind direction
and crosses the downstream turbines earlier than in the FLORIDyn simulation.

Figure 5. FLORIDyn as reference: the black line shows the FLORIDyn simulation, the orange line
shows the estimate with 1,2 and 3 standard deviations.

This difference can be seen in Figure 6 where the reference state is compared to the
EnKEF estimate along with the respective wake locations in white and black. The EnKF
simulation shows a similar heterogeneous state distribution as the reference but at a higher
value. The resulting difference shows that the EnKF is uniformly at the same or higher
value than the reference simulation. The difference plot also shows how the EnKF wake
has progressed further south than in the reference case. Figure 7 depicts a similar behavior
where the reference states show bigger differences in the background wind speed than the
estimated state. The estimated state is more uniform and suggests a more steady change of
the wind speed throughout the flow field.

Reference state EnKF state Difference
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Figure 6. Estimated background flow field wind direction compared to the reference at ¢ = 564 s.
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Figure 7. Estimated background flow field wind speed compared to the reference at t = 804 s.
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To conclude, the framework creates smoother, low-pass filtered flow fields. The EnKF
adds a spatial connection to the FLORIDyn simulation that it, in this implementation,
would not have otherwise. This is due to the correction capabilities of the EnKF: the
state-error-correlation calculation and the wider localization area connect and change states
which are not necessarily connected by the spatio-temporal averaging alone, which is
applied in FLORIDyn. This could be changed by narrowing the localization window or
by widening the spatio-temporal average influence. The EnKF is furthermore able to track
heterogeneous flow field changes.

3.3. SOWFA as Validation Platform

We now consider a more realistic and complex setting, in which we use the developed
EnKF FLORIDyn framework to estimate the flow field state during a 60 degree wind
direction change. We use a high-fidelity large-eddy simulation performed with SOWFA
(Simulator fOr Wind Farm Applications) [33] as ground state. Section 3.3.1 describes the
simulation setup and case. The wind speed and direction state estimation results are
discussed in Sections 3.3.2 and 3.3.3, respectively. Section 3.3.4 highlights the influence of
spatial weighting on the state correction. Finally, Section 3.3.5 looks at the power generated.

3.3.1. Simulation Case

The wind farm layout is identical to the case discussed in the previous Section 3.2 and
is shown in Figure 4. Differences are that the wind direction changes from 255 degrees
before t = 600 s to 195 degrees at t = 900 s and afterwards. In SOWFA, the turbines are
subject to turbulent inflow at roughly 6 % ambient turbulence intensity and an average
wind speed of 8.2 ms~!. The case has been used in previous FLORIDyn publications, such
as [7] and has been described in greater detal in [6]. The SOWFA setup files and output
data are available at [34].

For the evaluation, two snapshots are considered: one at t; = 600 s, when the wakes
are fully developed within the wind farm boundaries, and one at t, = 840 s, during the
wind direction change. Animations of the full simulation are available at [35] along with
data to recreate the flow field plots and power generated.

3.3.2. Wake Location and Estimated Wind Speed

Figure 8 shows the SOWFA flow field at t; and f,, as well as the SOWFA flow field
overlaid with the FLORIDyn OPs and contour lines. The estimated flow field overlaps
well with the SOWFA simulation and follows the curved wakes, which are caused by
the wind direction change. At its current development stage, FLORIDyn cannot model
wake-meandering effects, which are present in the SOWFA flow field.

Wind speed (ms—1) Wind
10 - —

2| K
Distance (km)
Figure 8. The left figure pair depicts the SOWFA flow field before and during the wind direction

change at t; = 600 s and ¢, = 840 s, respectively. The right pair superimposes contour lines of the
estimated FLORIDyn flow field as well as the OPs.

The estimated FLORIDyn wind speed state is depicted in Figure 9, along with the
standard deviation, calculated by the relation between the ensembles. The wind speed
estimate is relatively uniform, which is also the case in the SOWFA simulation. Coarser
patterns of lower and higher wind speeds can be seen for the three turbine rows. The lower
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row of T6, T7 and T8 does also show the same lower wind speeds in the SOWFA simulation
(consider Figure 4 as reference for the turbine numbering). The standard deviation is below
0.3 ms~! and does not show a meaningful pattern. During the wind direction change,
the standard deviation rises for some downstream areas but remains bounded. The filter
properties of spatio-temporal averaging strongly contribute to this result, as small-scale
changes are averaged out. The area influenced by the averaging is discussed in detail in
Section 3.3.4.

Wind speed (ms—1) Standard deviation (10~1 ms ‘1)3

; Vi

10

2

y 0
2 1 2 Distance (km) ! 2 1 2

Figure 9. The estimated effective wind speed flow field is depicted in the left figure pair, once in
steady state at t; = 600 s and once at t, = 840 s, during the wind direction change. The right figure
pair shows the respective standard deviation.

3.3.3. Wind Direction States

The wind direction changes uniformly throughout the wind farm and is not subject to
turbulent changes, such as the wind speed. Therefore, noise is only introduced by means
of system noise and added measurement noise. If these are chosen too low, the EnKF trusts
the model state too much and adapts too slow during the actual state change. Knowledge
about the flow field effects is crucial to set the noise magnitude: in this simulation, the
wind direction changes with 0.2 deg s*. Consequently, the system noise and measurement
noise have to be chosen higher. The Gaussian noise is set to 0.75 deg s ! for both the
measurement and the system noise. In steady state, however, the difference between the
estimated and true state is minimal. This can be seen in Figure 10.

Difference to true wind direction (101 deg) Standard deviation (10~1 deg)
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Figure 10. The left figure pair shows the difference to the true value and the value extrapolated from
the OPs” wind direction states. A blue color indicates that the extrapolated wind direction is trailing
the true value during the direction change. The true values are 255 deg at t; = 600 s and 207 deg at
t) = 840 s, left and right, respectively. The right figure pair shows the standard deviation of the state
values based on the variance across the ensembles.

During the wind direction, the error increases, but due to the introduced noise, the states
are corrected and the error remains within small bounds within the wind farm. Outside of the
wind farm, little to no corrections are made, and the states keep diverging across all ensembles,
which are visible in Figure 11. This is also mirrored in the standard deviation plot in Figure 10,
where the areas between the wind turbines, with wake overlap, show the lowest values.

3.3.4. Weighting and Corrections

The previous results underlined the importance of the applied spatio-temporal weight-
ing as well as the localization. The results also show how the weighting changes the
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way FLORIDyn acts as a simulation and how it defines boundaries to what the EnKF can
correct. This section looks at a part of the simulation in detail to quantify and understand
these implications.

Figure 11 focuses on the upper third of the wind farm area and the states within it.
During steady state, the focus lies on the OP states of the turbines T0, T1 and T2. During
the wind direction change, the wakes of TO, T1 and T2 leave the observed area, which is
why the now more present wakes of T3, T4 and T5 are discussed instead. The displayed
metrics from top to bottom are the wind speed state of the OPs, the wind direction state
of the OPs, the weights for the wind speed averaging, the weights for the wind direction
averaging and the SOWFA flow field overlapped with the FLORIDyn contour lines.

Simulation state at 600 s Simulation state at 840 s
o5 Estimated free wind speed state of the OPs
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Figure 11. This figure compares the simulation state at the start and during the wind direction change.
The top two figure rows visualize the states of all OPs connected to Turbine 0 to 2, at t; = 600 s and of all
OPs connected to Turbine 3 to 5, at t, = 840 s. The figures show the state value of the OPs with 1,2 and 3
standard deviations (std) as orange plot and y-axis, and the std alone as black plot and y-axis. A gray
area marks the OPs which have left the wind farm boundaries. The x-axis denotes the state index, e.g.,
10 relates to the 10th OP. The dotted lines mark a reference value: for the wind direction, this is the true
value; for the wind speed, this is the average precursor speed. Below the OP states are three rows of flow
field plots. They show a third of the wind farm to allow for a more detailed look. The upper two show
the weights used for the weighted average calculation; see Equation (6). These figures also show the state
indexes in the wakes of the referenced turbines. The lower row shows the SOWFA flow field overlapped
with the contour lines of the FLORIDyn simulation. The dataset [35] provides animations of the state
figures for all cases and animations of the flow field.

The wind speed state plots show the estimate of all OP states for three turbines with
+1,2,3 standard deviations, as well as a reference line at 8.2 ms~1. The reference is the
mean wind speed across the wake free flow field and only gives an indicator of where
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the estimate should be. The figures also show the development of the standard deviation
separately as a black line. The leftmost states are closest to the turbine, while the rightmost
are furthest away. The gray areas indicate where the states leave the wind farm boundaries.
Every 10th state (or OP) is marked in the weight plots to aid the interpretation across the
plots.

Looking at the wind speed state, it is notable that the standard deviation remains rather
constant at or below 0.2 ms~! within the wind farm bounds, but it then increases as the
OPs move farther away from the wind farm region. This means that within the wind farm,
the turbines and their measurements keep the variance bounded. As the OPs leave the
wind farm bounds, this effect diminishes, and the system noise leads to a divergence of
the ensembles. A noticeable difference between the variance of the wind speed states and
the later discussed wind direction states is the fact that the wind speed variance does not
significantly decrease within the wind farm bounds. This might be expected as the OPs
travel past downstream turbines, which act as correcting sensors. The lack of significant
correction can be explained by the wind speed weight plot. It shows the influence by the
OPs based on the spatio-temporal weighting. Due to the weighting parameters chosen for
the wind speed, the area of the influence of an OP has very little overlap with a neighboring
wake. The states within a wake therefore tend to develop more independently from other
wakes in this wind direction. During the wind direction change, however, the wakes cross
and areas of locally lower variance can be seen in the wakes of T3 and T4. These OPs with
lower variance are roughly in the direct neighbourhood of the wind turbines T1 and T2. For
instance, the OPs of T3 passed T2 60 s (=15 time steps) prior to the snapshot—this reduced
the variance of the OPs in the proximity of T2, which then traveled further. The lowered
variance can now be seen around OP 70 in the wake of T3.

The reduction of the variance is more dominant with the wind direction states, as the
framework assumes a wide area of influence of OPs due to the spatio-temporal weighting.
This allows the EnKF to cross-correct from one wake to another. The weighting plot also
shows how the wide area of influence decreases with the age of the OPs: OPs close to
their turbine have high values, but already, the weights of OP 10 and 20 have decreased
significantly. In contrast, the wind speed state weights remain longer at a high level. The
wind direction weights therefore encourage corrections of OPs close to the turbines. Thus,
the estimated variance decreases in the proximity of the turbines, which is an effect that is
also visible in Figure 9. The weights and therefore the connection of measurement-to-state
decreases rapidly outside of the wind farm boundaries and the ensembles diverge. During
the wind direction change, the states within the wind farm are successfully corrected, while
states outside of the wind farm are not. Different from the wind speed states, the wind
direction reference resembles the true state, which is why the value is given in absolute
difference rather than absolute values.

3.3.5. Power Generated

The power generated is not one of the estimated states, but it is inherently linked to
them, as shown in Equation (2). Figure 12 depicts the power for six out of the nine turbines
in the EnKF framework and SOWEFA.
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Figure 12. Power generated from six of the nine turbines. This reduction was made as the other
turbines are mostly in free stream conditions and do not add more information. The black line depicts
the SOWFA simulation as a reference, orange shows the EnKF estimate including 1,2 and 3 standard
deviation boundaries. As the wind direction changes from t = 600 s to 900 s, T1, T2, T4 and T5
experience a reduction in wind speed due to the passing wakes. This leads to the sudden reduction
in the generated power.

The EnKF estimates the power generated 2700 times during the simulation, 300 values
per turbine, every 4 s. Out of these, 73.5% are within one standard deviation (as estimated
by the EnKF) from the SOWFA value, 90.7% are within two, and 95% are within three. This
does not quite match the Gaussian ideal distribution of 68%, 95% and 99.7%. The mean error
lies at 0.0452 MW, about 1% of the absolute power, while the root-mean squared error lies
at 0.4936 MW, which is about 11%. The small mean error seems to justify the assumption
that the surrogate model is error-free on average, which is a necessary assumption for
the EnKF. However, the wind speed state noise might be underpredicted. Another metric
which is sometimes used for the EnKF is how often the estimate is above or below the
measured value. If we understand the true system as another ensemble, the ratio should be
about 50%. For the power generated, this value lies at 53.56% in favor of an underestimate.
Note that these simulations have been run without parameter tuning of the underlying
analytical wake model, which would influence these results.

Figure 13 shows a comparison of the same EnKF setup with different correction times,
once where the state is corrected every 12 s and once every 60 s. The vertical lines mark the
times at which the states are corrected. Note that the time window has been reduced to the
last 600 s of the simulation to allow for a clearer picture.

I35 1[T1, 605

Power generated (MW)

600 900 600 900
Time (s)

Figure 13. Comparison of the predicted power generated by Turbine 1 in an EnKF framework which
is updated every 12 s to one which is updated every 60 s. The vertical lines indicate the frequency
of correction.

The simulation with the larger correction step shows a much wider variance cone
than the simulation with a shorter step, as the ensembles have more time to diverge.
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Nevertheless, the EnKF is able to track the reference signal under most conditions. A
significant decrease of the estimation quality becomes apparent during the wake passing,
which is much delayed compared to the SOWFA simulation. In a dynamic wind farm
control scenario, this could result in delayed actions which try to improve on a situation
that already happened. The delay stems from the fact that FLORIDyn as a surrogate model
assumes a steady-state input—during the estimation, the wind direction and speed do
become corrected but are then held until the next correction. This could be exchanged for a
momentum-driven approach, which continues to change the state based on the previous
rate of change. This is subject to further research. Whether such an extension would
be valuable can only be judged based on real measurement data and conditions. The
implications for this case are that the estimated wakes adapt too slow, and the difference
leads to a delayed wake overlap prediction as well as an overshooting of the power signal.
The overshooting is also present in some of the power estimates for turbines in the case
with a shorter correction step; see T4 or T5 in Figure 12 in a similar context. The dataset
[35] contains additional plots for intermediate correction times of 24, 36 and 48 s.

Lastly, Figure 14 compares the EnKF estimate of the power generated to previous
FLORIDyn results in [7]. Previous work used the Immersion and Invariance (I & I) estimator
to estimate the effective wind speed based on the rotor speed and generator torque [36].
The base model uses a set wind speed and a prescribed wind direction change. While the
base model is unable to mirror the influence of the turbulent wind speed in the reference
simulation, it is able to predict the timing of the wake overlap as well as the approximate
magnitude. Adding the I & I estimator couples FLORIDyn to the reference simulation
and removes the need for a prescribed wind speed. It also allows a close tracking of the
power generated. This model, however, still needs a prescribed wind direction. There
is furthermore no state correction. The EnKF framework includes both wind speed and
direction. It is further able to correct previously generated states and provides certainty
bounds for the estimate. On the downside is that this model needs to simulate multiple
versions of the same simulation, while previous results were obtained with one simulation.

Figure 14. Comparison of the power generated by T1 in different FLORIDyn implementations. The
gray area indicates the time window during which the wind direction changes.

4. Conclusions

The presented work formulates an ensemble-based wind farm flow field estimation
framework which can estimate the background wind speed as well as the wind direction. It
is based on the dynamic parametric wind farm model FLORIDyn and utilizes the Ensemble
Kalman Filter approach to correct wind speed and direction across the simulation. The
approach was tested in a 3 x 3 wind farm case with heterogeneous and changing flow
conditions. The results show that the framework is able to follow the flow field changes. Its
estimate and corrections strongly depend on the spatio-temporal averaging and localization
parameters. These can limit but also enable state corrections and are a vital part of the
inner workings of framework. This work also shows that the EnKF can be used to estimate
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the state of purely Lagrangian particle-based simulations. It further gives an idea on how
a state augmentation with the particle position can be avoided by instead projecting the
ensembles onto common particle positions. This is under the assumption that the particles
across different ensembles are not too far apart.

Given the broader context of wind farm flow control, this work presents an essential
building block for a realistic closed-loop dynamic control approach for operational wind
farms. Future work will need to address how the framework works in larger wind farms
and what the correct parameter choices are under realistic circumstances as well as what
framework extensions are necessary.
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Abbreviations

The following abbreviations are frequently used in this manuscript:

EnKF Ensemble Kalman Filter

FLORIDyn FLOw Redirection and Induction Dynamics model
WEC Wind Farm Control

or Observation Point

SOWFA Simulator fOr Wind Farm Applications

Appendix A. State Space Description

This appendix describes two aspects of the state space description of FLORIDyn more
in detail: Appendix A.1 presents the system matrix and the input matrix of the FLORIDyn
model. Appendix A.2 then discusses how spatio-temporal weighting is applied in the
system matrix.

Appendix A.1. Simple Propagation

The following equations describe the state propagation in the FLORIDyn model and
the structure of the matrices:

xp(k+1) (AL 0 Apwr(xwe(k))] [ xw(k)
xr(k+1) | =| 0 Agr 0 x(k) | +
XWF (k + 1) L 0 0 AWF, WE XWF (k)
_5(XL(k),XT(k),XWF(k)) BL 0 0 lT(k)
0 +10 BT 0 XT0 (k) . (Al)
L 0 0 0 Bwr] [xwro(k)
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The matrix Ay, is given by
AL,L,T1 0 0 ce e 0
0 AL,L,TZ 0 <o 0
AL = : : (A2)
0 s 0 AL,L,an] 0
0 ce 0 0 Al
sy ny-NopT NL XNT-NOPT NI,
0 0 e e 0]
AL,L,OP1 0 .. ... 0
ALt = 0 ApLop, - 5 (A3)
0 . 0 A
L L/L’OPnORT . nOP,T'nL XnOP,T'nL
Arrop, =1y, (Ad)

where I;; is the ny, x ny, identity matrix and ny, describes the number of location states
per OP. The number of turbines is given by nt and nopt describes the number of OPs
per turbine. The matrices At and Awgwr are similar; they only differ in the size of their
smallest components: the matrices Attop and Awrwgop differ in size as the number of
stored turbine and wind field states is different.

The matrix Apwr(xwr(k)) is described by the same structure than Ay 1 ; only the
smallest component differs:

Atcos(gop) 0
Arwrop = | Atsin(gop) 0 (A5)
0 0 ny, XNwrg
where At is the time step of the simulation and @gp is the wind direction at the location of
the OP. The number of wind field states is given by nyp. We assume here that the first state
is the wind speed.
The input matrices feed inputs into the first OPs of the turbine. For the location data,
this is defined as follows:

By, 0 0 - 0
0 By 0 - 0
By =| : : (A6)
0 - 0 By, 0
0 - 0 0  Brr
sonT nr-ny-NOpT XNT N,

I 0
BL1, = [03 0] . (A7)
nL~nORT Xny,

We assume here the same use of location states as described in [6,7], where world
coordinates are stacked on wake coordinates. The other two input matrices are defined
similarly, with the difference that By, and Bywgr, consist only out of an identity matrix in
the first rows and not as in By 1, accompanied by zero columns:

I

NWE NQOP,T X NWFE
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Appendix A.2. Weighted Propagation

To apply a spatio-temporal weighting of the wind field states, the time-varying matrix
Wwe(k, xp) is introduced and applied as follows:

AL wr = ALwr(Wwe(k, x1) xwr) W (k, x1). (A9)

The matrix weights all OP states with respect to a location of interest. The locations
of interest in this case are the OPs themselves. As a result, row i contains the weights to
sum the influence of all OP states onto OP i. The weights are calculated by Equation (6)
and then normalized by the sum of the row. To calculate the time weight, the location
of the OP within the state vector can be used along with the time step of the simulation
At. If a variable time step is used, this needs to be adapted. In the presented work, only
the wind speed and direction are weighted. Weights are denoted as w; ; , or w; j ,, where
i is the OP of interest, j is the OP influencing OP; and u or ¢ represent the wind speed
or direction, respectively. Furthermore, we use three wind field states: the wind speed,
direction and ambient turbulence intensity. No weighting is applied to the latter but could
be implemented in a similar fashion. The matrix Wy is then assembled as follows:

[ Wwiii(kxe)  Wweia(kxy) - Wwging (K x1)
Wweoi(kx)  Wweoo(kxe) -+ Wwgongs (kx1)
Wy (k, x) = . . nor (A10)
[ WWEnop,1(k,XL)  WwEngp2(k,XL) -+ WwEngpnop (K XL)
'wi,j,u (k, XL) 0 0
W j(k,xL) = 0 wijo(k,xy) 0 (A11)
L 0 0 wi,]',Io
1 ifi=j
Wiilo = {0 otherwise’ (Al2)

Note that the row-sum of Wwg/(k, x;) must return a vector of 1.

References

1. Fleming, P.; Annoni, J.; Shah, ].J.; Wang, L.; Ananthan, S.; Zhang, Z.; Hutchings, K.; Wang, P.; Chen, W.; Chen, L. Field Test of
Wake Steering at an Offshore Wind Farm. Wind. Energy Sci. Discuss. 2017, 2, 229-239 . https://doi.org/10.5194/wes-2017-4.

2. Kheirabadi, A.C.; Nagamune, R. A Quantitative Review of Wind Farm Control with the Objective of Wind Farm Power
Maximization. |. Wind. Eng. Ind. Aerodyn. 2019, 192, 45-73. https://doi.org/10.1016/jjweia.2019.06.015.

3. vanden Broek, M.J.; De Tavernier, D.; Sanderse, B.; van Wingerden, ].W. Adjoint Optimisation for Wind Farm Flow Control with
a Free-Vortex Wake Model. Renew. Energy 2022, in press. https://doi.org/10.48550/ ARXIV.2208.11516.

4. Howland, M.F; Ghate, A.S.; Lele, S.K.; Dabiri, ].O. Optimal Closed-Loop Wake Steering — Part 1: Conventionally Neutral
Atmospheric Boundary Layer Conditions. Wind. Energy Sci. 2020, 5, 1315-1338. https:/ /doi.org/10.5194/wes-5-1315-2020.

5. Gebraad, PM.O.; van Wingerden, ].W. A Control-Oriented Dynamic Model for Wakes in Wind Plants. J. Phys. Conf. Ser. 2014,
524,012186. https://doi.org/10.1088/1742-6596/524/1/012186.

6. Becker, M.; Ritter, B.; Doekemeijer, B.; van der Hoek, D.; Konigorski, U.; Allaerts, D.; van Wingerden, J.W. The Revised
FLORIDyn Model: Implementation of Heterogeneous Flow and the Gaussian Wake. Wind. Energy Sci. 2022, 7, 2163-2179.
https://doi.org/10.5194 /wes-7-2163-2022.

7. Becker, M.; Allaerts, D.; van Wingerden, ].W. FLORIDyn—A Dynamic and Flexible Framework for Real-Time Wind Farm Control.
J. Phys. Conf. Ser. 2022, 2265, 032103. https://doi.org/10.1088/1742-6596/2265/3/032103.

8.  Kheirabadi, A.C.; Nagamune, R. A Low-Fidelity Dynamic Wind Farm Model for Simulating Time-Varying Wind Conditions and
Floating Platform Motion. Ocean. Eng. 2021, 234, 109313. https://doi.org/10.1016/j.oceaneng.2021.109313.

9. Foloppe, B.; Munters, W.; Buckingham, S.; Vandevelde, L.; van Beeck, J. Development of a Dynamic Wake Model Accounting for
Wake Advection Delays and Mesoscale Wind Transients. J. Phys. Conf. Ser. 2022, 2265, 022055. https:/ /doi.org/10.1088/1742-
6596/2265/2/022055.

10. Lejeune, M.; Moens, M.; Chatelain, P. A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for
Operational Wind Farm Flow Prediction. Front. Energy Res. 2022, 10, 884068. https://doi.org/10.3389/fenrg.2022.884068.

11.  Braunbehrens, R.; Schreiber, J.; Bottasso, C.L. Application of an Open-Loop Dynamic Wake Model with High-Frequency SCADA

Data. J. Physics: Conf. Ser. 2022, 2265, 022031. https://doi.org/10.1088/1742-6596/2265/2/022031.



Energies 2022, 15, 8589 23 of 23

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

Gebraad, PM.O,; Fleming, P.A.; van Wingerden, ].W. Wind Turbine Wake Estimation and Control Using FLORIDyn, a Control-
Oriented Dynamic Wind Plant Model. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1-3
July 2015; pp. 1702-1708. https://doi.org/10.1109/ACC.2015.7170978.

Evensen, G. The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. Ocean. Dyn. 2003, 53, 343-367.
https:/ /doi.org/10.1007 /s10236-003-0036-9.

Tossavainen, O.P; Percelay, J.; Tinka, A.; Wu, Q.; Bayen, A.M. Ensemble Kalman Filter Based State Estimation in 2D Shallow Water
Equations Using Lagrangian Sensing and State Augmentation. In Proceedings of the 2008 47th IEEE Conference on Decision and
Control, Canctin, Mexico, 9-11 December 2008; pp. 1783-1790. https://doi.org/10.1109/CDC.2008.4738999.

Du, J.; Zhu, J.; Fang, F; Pain, C.C.; Navon, LM. Ensemble Data Assimilation Applied to an Adaptive Mesh Ocean Model:
Ensemble Data Assimilation Applied to an Adaptive Mesh Ocean Model. Int. |. Numer. Methods Fluids 2016, 82, 997-1009.
https://doi.org/10.1002/fld.4247.

Doekemeijer, B.M.; Boersma, S.; Pao, L.Y.; van Wingerden, J.W. Ensemble Kalman Filtering for Wind Field Estimation in
Wind Farms. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24-26 May 2017; pp. 19-24.
https://doi.org/10.23919/ACC.2017.7962924.

Kumar Jain, P.; Mandli, K.; Hoteit, I.; Knio, O.; Dawson, C. Dynamically Adaptive Data-Driven Simulation of Extreme
Hydrological Flows. Ocean. Model. 2018, 122, 85-103. https://doi.org/10.1016/j.0cemod.2017.12.004.

Shapiro, C.R,; Starke, G.M.; Meneveau, C.; Gayme, D.F. A Wake Modeling Paradigm for Wind Farm Design and Control. Energies
2019, 12, 2956. https://doi.org/10.3390/en12152956.

Sampson, C.; Carrassi, A.; Aydogdu, A.; Jones, C.K. Ensemble Kalman Filter for Nonconservative Moving Mesh Solvers with a
Joint Physics and Mesh Location Update. Q. J. R. Meteorol. Soc. 2021, 147, 1539-1561. https://doi.org/10.1002/q;j.3980.

Julier, S.J.; Uhlmann, ].K. New Extension of the Kalman Filter to Nonlinear Systems; Signal Process. Sens. Fusion Target Recognit.
1997, 3086, 182-193. https://doi.org/10.1117/12.280797.

Talagrand, O.; Courtier, P. Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory:
VARIATIONAL ASSIMILATION. I: THEORY. Q. J. R. Meteorol. Soc. 1987, 113,1311-1328. https://doi.org/10.1002/qj.49711347812.
Wan, E.; Van Der Merwe, R. The Unscented Kalman Filter for Nonlinear Estimation. In Proceedings of the IEEE 2000 Adaptive
Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00OEX373), Lake Louise, AB, Canada, 1-4
October 2000; pp. 153-158. https://doi.org/10.1109/ ASSPCC.2000.882463.

Bauweraerts, P.; Meyers, ]. Reconstruction of Turbulent Flow Fields from Lidar Measurements Using Large-Eddy Simulation.
J. Fluid Mech. 2021, 906, A17. https://doi.org/10.1017 /jfm.2020.805.

Skachko, S.; Errera, Q.; Ménard, R.; Christophe, Y.; Chabrillat, S. Comparison of the Ensemble Kalman Filter and 4D-Var Assimila-
tion Methods Using a Stratospheric Tracer Transport Model. Geosci. Model Dev. 2014, 7, 1451-1465. https://doi.org/10.5194/gmd-
7-1451-2014.

Bastankhah, M.; Porté-Agel, F. Experimental and Theoretical Study of Wind Turbine Wakes in Yawed Conditions. . Fluid Mech.
2016, 806, 506-541. https://doi.org/10.1017/jfm.2016.595.

Betz, A. Introduction to the Theory of Flow Machines; Elsevier Science: Amsterdam, The Netherlands, 1966.

Evensen, G. Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast
Error Statistics. . Geophys. Res. Ocean 1994, 99, 10143-10162. https:/ /doi.org/10.1029/94]JC00572.

Burgers, G.; van Leeuwen, PJ.; Evensen, G. Analysis Scheme in the Ensemble Kalman Filter. Mon. Weather. Rev. 1998,
126, 1719-1724. https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

Petrie, R. Localization in the Ensemble Kalman Filter. MSc. Thesis, University of Reading, Reading, UK, August 2008.

Gaspari, G.; Cohn, S.E. Construction of Correlation Functions in Two and Three Dimensions. Q. J. R. Meteorol. Soc. 1999,
125,723-757. https:/ /doi.org/10.1002/qj.49712555417.

Lorenc, A.C. The Potential of the Ensemble Kalman Filter for NWP—a Comparison with 4D-Var. Q. J. R. Meteorol. Soc. 2003,
129, 3183-3203. https://doi.org/10.1256/qj.02.132.

Bak, C.; Zahle, F; Bitsche, R.; Kim, T.; Yde, A.; Henriksen, L.C.; Hansen, M.H.; Blasques, ]. P.A.A.; Gaunaa, M.; Natarajan, A. The
DTU 10-MW Reference Wind Turbine. Available online: https://orbit.dtu.dk/en/publications/the-dtu-10-mw-reference-wind-
turbine (accessed on 27 October 2022).

National Renewable Energy Laboratory. Simulator for Offshore Wind Farm Applications. GitHub Repositories 2022. Available
online: https://doi.org/10.5281/zenodo.3632051 (accessed on 28 October 2022).

Becker, M. SOWFA Simulation Setup Belonging to the Paper: The Revised FLORIDyn Model: Implementation of Heterogeneous
Flow and the Gaussian Wake. 4TU.ResearchData 2022. Available online: https://doi.org/10.4121 /20026406 (accessed on 27
October 2022).

Becker, M. Dataset Belonging to the Paper: Ensemble Based Flow Field Estimation Using the Dynamic Wind Farm Model
FLORIDyn. 4TU.ResearchData 2022. Available online: https://doi.org/10.4121/21215924 (accessed on 3 November 2022).

Liu, Y,; Pamososuryo, A.K.; Ferrari, RM.G.; van Wingerden, ].W. The Immersion and Invariance Wind Speed Estimator Revisited
and New Results. IEEE Control. Syst. Lett. 2022, 6, 361-366. https://doi.org/10.1109/LCSYS.2021.3076040.



	Introduction
	Materials and Methods
	Properties of the FLORIDyn Approach
	Ensemble Kalman Filter Formulation
	EnKF Correction of the Wind Speed
	EnKF Correction of the Wind Direction
	Localization


	Results and Discussion
	Ensemble Kalman Filter and Localization Parameters
	FLORIDyn as Validation Platform
	SOWFA as Validation Platform
	Simulation Case
	Wake Location and Estimated Wind Speed
	Wind Direction States
	Weighting and Corrections
	Power Generated


	Conclusions
	State Space Description
	Simple Propagation
	Weighted Propagation

	References

