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EAD-GAN: A Generative Adversarial Network for
Disentangling Affine Transforms in Images

Letao Liu

Abstract— This article proposes a generative adversarial net-
work called explicit affine disentangled generative adversar-
ial network (EAD-GAN), which explicitly disentangles affine
transform in a self-supervised manner. We propose an affine
transform regularizer to force the InfoGAN to have explicit
properties of affine transform. To facilitate training an affine
transform encoder, we decompose the affine matrix into two
separate matrices and infer the explicit transform parameters
by the least-squares method. Unlike the existing approaches,
representations learned by the proposed EAD-GAN have clear
physical meaning, where transforms, such as rotation, horizon-
tal and vertical zooms, skews, and translations, are explicitly
learned from training data. Thus, we set different values of each
transform parameter individually to generate specifically affine
transformed data by the learned network. We show that the
proposed EAD-GAN successfully disentangles these attributes on
the MNIST, CelebA, and dSprites datasets. EAD-GAN achieves
higher disentanglement scores with a large margin compared to
the state-of-the-art methods on the dSprites dataset. For example,
on the dSprites dataset, EAD-GAN achieves the MIG and DCI
score of 0.59 and 0.96 respectively, compared to 0.37 and 0.71,
respectively, for the state-of-the-art methods.

Index Terms— Affine transform, disentanglement, generative
adversarial network (GAN).

I. INTRODUCTION

ENERATIVE neural models [1], [2] have gained much

attention in recent years due to their expressiveness and
visualization effect. However, it is preferable for users (e.g.,
potential designers) to have control over the generated con-
tent. To solve this problem, researchers attempted to identify
and isolate different attributes in the training data during the
generation process.

Many studies have explored the effectiveness of disentan-
gled representations [3]-[7]. The information in the data is
encoded in an interpretable and compact manner, e.g., the
texture style and the orientation of the objects [3], [5], [6]. The
learned representation is generalizable and can be useful for
downstream tasks, such as classification and visualization [3],

[4], [8].
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The concept of disentangled representation has been defined
in several ways in the literature [9]-[11]. The necessity of
explicit inductive biases both for learning approaches and
the datasets is discussed in [9]. Inductive bias refers to
a set of assumptions that a learner uses to predict out-
puts of given inputs that have not been encountered [12],
[13]. For instance, in the dSprites dataset, objects are
displayed at different angles and positions. Such prior
knowledge helps to detect and classify objects. However,
the inductive biases in existing disentangled representation
approaches are mostly implicit. The explicit affine disen-
tangled generative adversarial network (EAD-GAN) pro-
posed in this article utilizes affine transform as an explicit
inductive bias, leading to better disentangled representations
with clear physical meaning in terms of affine transforms.
Fig. 1 shows entangled representations with unclear physical
meaning.

We define the physical meaning property as follows: the
absence of physical meaning indicates that experts cannot
interpret or map the latent dimensions of disentangled rep-
resentations to physical or intuitive concepts (e.g., rotation
angle), which is a common issue for the representations
learned by existing methods [2], [7], [8], [10], [14]-[18].
A disentangled representation usually satisfies two condi-
tions: modularity and compactness [10]. In addition, the
representations learned by the EAD-GAN also achieve deter-
ministic assignment property for affine transforms. Modu-
larity measures whether a single latent dimension encodes
no more than a single data generative factor. Since some
of the latent dimensions of an entangled representation may
not have a clear physical meaning, which could be a mix-
ture of several data generative factors and lead to worse
modularity. Compactness measures whether each data gen-
erative factor is encoded by a single latent dimension. An
entangled representation may encode one data generative
factor with multiple latent dimensions. On the contrary,
each latent dimension learned by the proposed EAD-GAN
can be one to one mapped to an affine transform, which
leads to both better modularity and compactness for affine
transforms.

In a deterministically assigned representation, each latent
dimension learns a fixed attribute regardless of the training
trials and random seeds. For modularity and compactness, the
performance of existing approaches could be improved by
utilizing techniques such as contrastive learning [16]. How-
ever, a deterministic assignment cannot be achieved by those
techniques. For example, if we train an InfoGAN [8] algorithm
two times on the MNIST dataset: trials A and B, then in
trial A, the first latent dimension may learn the rotation of
the digit and the second dimension may learn the thickness
of the digit; while in trial B, the first latent dimension may
learn the thickness of the digit and the second dimension may
learn the rotation of the digit.

© 2022 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Tllustration of representations generated by InfoGAN [8] with unclear
physical meaning. Given different values, —1, 0, and 1, of the latent vector
¢ = (c1,c2,03), it is possible that the generated transforms are highly
entangled, and thus, they have no clear physical meaning. For example, ¢; may
represent both rotation and vertical zoom.

C1 C2 C3 Cy4 Cs

Fig. 2. Given different values, —1, 0, and 1, of the latent vector
¢ = (cy1,¢2,c3,c4,c5), different versions of images are generated by the
proposed EAD-GAN trained on the MNIST dataset. c;: rotation, ¢, and
c3: horizontal and vertical zooms, and ¢4 and cs: horizontal and vertical
translations. Figs. 13—19 show an entire affine transform.

In that situation, to know the attribute assigned to a specific
latent dimension for each trial, first, we need to generate a
sequence of images (e.g., ten images) by changing the value
of that latent dimension (e.g., also known as latent traversal).
Then, expert knowledge is required to find the pattern (e.g.,
rotation of the digit) hidden among the sequence of images.
This process could be cumbersome if: i) there are many latent
dimensions to observe (e.g., 100 latent dimensions in [7],
[14], and [15]) and ii) some sequences of images do not
have clear physical meaning. For a disentangled representa-
tion with deterministic assignment, the attributes learned by
the latent dimensions are fixed. For example, in EAD-GAN,
we can predefine the sequence as rotation, horizontal and ver-
tical zooms, and horizontal and vertical translations for latent
dimensions 1-5.

A disentangled representation learned by the proposed
EAD-GAN can explicitly make a tradeoff between compact-
ness and expressiveness. For example, the zoom attribute can
be decomposed into horizontal and vertical zooms. A compact
representation encodes the zoom by one latent dimension,
while an expressive representation decomposes it into horizon-
tal and vertical, encoded by two latent dimensions. This trade-
off between compactness and expressiveness is beneficial [10],
as different subsequent tasks may benefit from different feature
decompositions.

We are motivated by the importance of a disentangled rep-
resentation in particular for the affine transform (see Fig. 2),
where disentangling object pose is an attractive property of an
algorithm in the imaging domain [19]-[21]. Few algorithms
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have been able to successfully disentangle the affine transform.
In [20], an algorithm is introduced that disentangles rotation
and translation but not an entire affine transform. VITAE [22]
proposes to separate the spatial transforms from the appear-
ance of the input data, but the spatial transforms themselves are
highly entangled in terms of rotation, translation, and zoom.

We propose EAD-GAN, which is a generative adversarial
network (GAN) that utilizes the affine regularizer as an induc-
tive bias to explicitly disentangle the affine transform. We
assume that every image X, is formed by the multiplication
of an affine matrix M, that describes its pose and a canonical
image base X,. If we purposely transform the image X, with
a predefined affine matrix M, we obtain another transformed
image X,, where X, can also be expressed as the multiplication
of an affine matrix M, and the same canonical image base
X,. We derive the affine regularizer by decomposing an affine
matrix M into two separate transforms M, and M, and infer-
ring the transform parameters by the least-squares method.
Unlike existing approaches, the representations learned by
EAD-GAN are deterministically assigned and have clear phys-
ical meaning, where transform, including rotation, horizontal
and vertical zooms, and translations, can be explicitly learned
from data and hence can be individually selected to gener-
ate specific affine transformed data by the learned network
(see Fig. 2).

In the remainder of this article, we first review the related
work in Section II followed by reviewing InfoGAN and show
its limitations in Section III. We introduce the EAD-GAN in
Section IV, while in Section V, we show numerical results of
the disentangled representation learned by EAD-GAN. We fur-
ther discuss the advantages and weaknesses of EAD-GAN
compared to other methods in Section VI.

Our contributions are given as follows.

1) The disentangled representations obtained by
EAD-GAN have clear physical meaning in terms
of affine transforms in images. To the best of our
knowledge, EAD-GAN is the first algorithm that
can disentangle an entire affine transform, including
rotation, horizontal and vertical zooms, skews, and
translations in an unsupervised manner.

2) The disentangled representations obtained by EAD-
GAN have the deterministic assignment property. Each
attribute is assigned to a unique component of the latent
vector regardless of training trials and vice versa, which
achieves better disentangled representations for affine
transforms.

II. RELATED LITERATURE

Recent approaches to learn disentangled representations are
largely based on variational autoencoders (VAEs) [2] and
InfoGAN [8]. To promote disentanglement, VAE encourages
the factorization of the posterior Q(z|X). InfoGAN [8] pro-
poses to maximize the mutual information between a subset
¢/ of latent representation z and the generated data. Much
attention has been paid to regularizers that promote disentan-
glement. The f-VAE [7] encourages the disentanglement by
increasing the weight of the KL regularizer, thus promoting
the factorization of the posterior Q(z|X). Both FactorVAE [14]
and S-TCVAE [15] penalize the total correlation, while the
former relies on adversarial training and the latter directly
calculates the total correlation through the decomposition of
the f-VAE objective function. The HFVAE [18] proposes a
two-level hierarchical objective to control the relative degree
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of statistical independence. In the ChyVAE [23], an inverse-
Wishart (IW) prior on the covariance matrix of the latent code
is augmented to promote statistical independence. The DIP-
VAE [24] penalizes the difference between the aggregated
posterior and a factorized prior. In the AnnealedVAE [25], the
encoder concentrates on learning individual factors and vari-
ations by gradually increasing the bottleneck capacity. Con-
trolVAE [26] adds a nonlinear PI controller to automatically
tune the hyperparameter added in the VAE objective. Guided-
VAE [27] guides the VAE learning by introducing a light-
weight decoder that learns latent geometric transformation and
principal components. OOGAN [28] improves disentangle-
ment by introducing an orthogonal regularization term to the
loss function. In [29], a regularizer is introduced to punish
the disagreement between the extracted feature interactions.
The IB-GAN [17] is an extension to InfoGAN rooted in the
information bottleneck theory, which includes a mutual infor-
mation upper bound and forms a mutual information bottle-
neck. The InfoGAN-CR [16] adds a contrastive regularizer on
top of InfoGAN that compares the changes between the image
and latent space.

Although the aforementioned methods have achieved better
disentanglement performance compared to the baseline estab-
lished by VAE and InfoGAN, none of them yield disentangled
representations with deterministic assignments, nor have they
successfully disentangled an entire affine transform, which is
a desirable property in the imaging domain.

In [30]-[33], self-supervised regularization is applied, where
the difference of images before and after the affine/projective
transform is compared. The transform loss is defined as:
L = |IM(@©®") — M(0)|[3, where M is a parameterized matrix
M e R**3. However, those approaches do not achieve disen-
tanglement since no relationship between the data generative
factor and the transform is established. By contrast, the pro-
posed EAD-GAN creates a link between the data generative
factor and the transform by making a specific definition of each
element of the transform matrix and further decomposing it to
achieve explicit disentanglement (see Section 1V).

As a byproduct of EAD-GAN, the encoder of EAD-GAN
can learn the affine transform parameters of a given image and
apply the inverse transform to the image to make it invariant to
affine transforms. To achieve invariance of affine transforms
for image data, spatial transformer network (STN) [19] can
actively transform the input images by embedding the spatial
transformer block into a target network or algorithm. Inverse
compositional spatial transformer networks (IC-STNs) [34]
use a recurrent transform manner to further improve the
alignment ability of the STN. The intuition behind STN
and IC-STN is to fulfill the target network’s learning objec-
tives, such as classification or object recognition. Different
from STN and IC-STN, the encoder of EAD-GAN is trained
in a self-supervised manner and does not need the aid of
human-annotated learning objectives such as image classifi-
cation or object recognition.

III. BACKGROUND: InfoGAN AND ITS LIMITATIONS

A. GAN: Generative Adversarial Network

GAN [1] trains a deep generative model via a minimax
game. The goal is to learn a generated data distribution Pg (X)
close to the training data distribution Py, (X) by training a
generator and discriminator. During training, first, a latent
vector z is sampled from a prior distribution P(z). Then, the
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“fake” data Xy ~ Pg(X) are generated from z through the
generator G. To train the discriminator D, the fake data X ; are
fed to the discriminator D with the label “fake,” and the real
data X, sampled from training data are fed to the discriminator
D with the label “real.” By contrast, to train the generator G,
the fake data X, are labeled as “real.” The generator G is
trained by playing against an adversarial discriminator D that
aims to distinguish between samples from the generated data
Xy ~ Pg(X) and the observation X, ~ Py (X) [1]

Lagy = mgn mlz)lx V(D, G)
= Ex ~ Pdata[IOg D(X)]
+E, ~ P(z)[log(1 — D(G(2)))]. (1)

B. InfoGAN: Information Maximization GAN

The GAN uses a simple latent vector z without imposing
any constraints on how the generator uses this latent vector,
which may lead to a highly entangled mapping between the
latent vector z and the generated data X . This is undesirable
since there is no intuitive control, i.e., a designer that uses this
model would like to generate images with explicit transforms.
To overcome this limitation and achieve disentanglement, Info-
GAN [8] decomposes the latent vector z into two parts: z’ rep-
resenting uncompressible noise and ¢’ representing a semantic
generative factor (e.g., the number of the generated digit and
the rotation of the generated digit in MNIST). In InfoGAN,
the mutual information Z(c’; X r) between the semantic data
generative factor ¢/ and the generated data X, is maximized
to promote mapping between ¢/ and X;. Thus, the variation
of the generated data X, can be reflected by that of the
data generative factor ¢’. Specifically, InfoGAN maximizes
the objective function [§]

£Inf0 = £adv + iI(Cl; xf)' (2)

However, InfoGAN achieves the disentanglement in an
implicit way since it only uses the mutual information as
an inductive bias. This representation has several limitations:
1) the latent vector (data generative factor) ¢/ does not nec-
essarily have a clear physical meaning [8], which makes the
learned representations difficult to interpret and applicable in
downstream tasks, and 2) the modularity and compactness are
not optimized and deterministic assignment is not achieved.

IV. PROPOSED EAD-GAN

To mitigate the aforementioned limitations, i.e., lack of
clear physical meaning and deterministic assignment, we aim
to equip the disentangled representation with clear physical
meaning by adding physical priors as inductive biases. Since
disentangling the object pose is an attractive property in the
imaging domain, we propose to explore the affine transform as
an explicit inductive bias to guide the disentanglement process.
We propose a network called EAD-GAN that imposes an
affine regularizer in conjunction with InfoGAN. For example,
a designer that requires an audience foreground could create
one by generating many individuals translated and skewed
with EAD-GAN. To derive the affine regularizer, we first
introduce the matrix construction process in Section IV-A,
where an affine matrix M is constructed from a latent vector.
In Section IV-B, we describe how to decompose a known
affine matrix M into two unknown affine matrices M, and M, .
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Next, we estimate the matrices M, and 1\7[, with a neural
network and further compute the matrix M Thus, we can
calculate the affine regularizer with M and M. Next, to align
each affine transform to an individual latent dimension,
we need to estimate each affine parameter from an affine
matrix. As explained in Section IV-C, since the estimation
process is nonlinear and overdetermined, we apply the LSE
to approximate the optimized solution. Finally, we show the
consolidated network structure, algorithm flow, and overall
loss function in Section I'V-D.

A. Affine Matrix Construction

To build a connection between the latent vector ¢! (semantic
generative factor) and the affine transform, we propose to
construct an affine transform matrix M by a given latent vec-
tor. Considering all possible combinations of affine transform
(rotation, horizontal and vertical zooms, skews, and transla-
tions), there are many ways to construct the affine matrix from
a semantic latent vector. As an illustration, here, we select rota-
tion #, horizontal and vertical zooms (p, ¢), and translations
(x, y) as the components of the affine matrix (see Appendix A
in the Supplementary Material for a construction of the entire
affine matrix).

Given a latent vector ¢/ = (¢, ¢'), we separate ¢/ into ¢
and another latent vector ¢’. The latent vector ¢! in InfoGAN
encodes various attributes; the component ¢ of ¢! encodes the
affine transform. Given a latent vector ¢ = (cy, ¢2, ¢3, €4, C5)
randomly sampled from the uniform distribution Unif[—1, 1],
we first normalize it to the given range of affine parame-
ters. As an illustration, we set the affine transform range
as rotation § € [—e&y, 9], horizontal and vertical zooms
D,q €[1 —¢,4, 1 +&,4], and horizontal and vertical transla-
tions x, y € [—é&yy, &xy]. The parameter ¢ is the multiplier that
adjusts the latent vector to a proper affine parameter range. For
example, if we want the rotation range to be [—z /10, 7 /10],
we should set &9 = 7 /10. The affine parameters are computed
from the latent vector ¢ as follows:

0 =cieg, p=crepg+1, g=ciepq+1

X = C4&xy, Y = C5&xy. (3)

From those parameters, the affine matrix M is constructed
as in (4) (A;; are the elements of an affine matrix M). For 2-D
affine transfom, a 2 x 2 matrix controls the rotation, zooms,
and skews of an image. A 2 x 3 matrix adds control over
horizontal and vertical translations. We add [0, O, 1] as the
third row for the matrix for the convenience of inverse matrix
calculation

Air Ap A
M= |Axy Axn Ax
0 0 1
cosf —singd OJ[p O Ol O «x
=|sinf cosé® Of|0 g O[O0 1 y|. @
0 0 1{L0 0 1Jl0 0 1

B. Decomposition of Affine Transform

An affine transform links two images before and after the
transform, but an encoder infers the affine transform parameter
from a single input image. To let a network learn an affine
transform encoder, we propose to decompose an affine trans-
form M into two parts M, and M,.
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Fig. 3.  Decomposition of the affine transform. The solid line refers to the
affine transform from a real image X, to a transformed image X;. The dashed
lines refer to the affine transform from the canonical base image X, to the
real image X, and to the transformed image X;.

We represent the spatial coordinates of an image X by the
variables (x, y) and define a column vector x = (x, y, 1)7.
Then, an affine transform of an image X by a transform matrix
M can be expressed by the matrix multiplication Mx. We
express an image X, as the combination of an affine matrix
M, that describes its pose and a canonical image base Xp,
X, = M,x,. If we purposely transform the image X, with
a predefined affine matrix M, we obtain another transformed
image X, from x, = Mx,. Both X, and X, can be expressed
as different transformed versions of the same image X, where
x, = M,x; and x, = M,x;, = MM, x, (see Fig. 3). The pur-
pose of introducing canonical image base X, is to construct the
equation M;x;, = MM, x,. Once the equation is established,
X, can be removed from both sides of the equation, and we
obtain the relative affine transform equation M, = MM,.. The
relative affine transform equation is further used to calculate
the affine regularizer.

Thus, from one image, we generate a pair of images X, and
X, for training the transform encoder E (which is equivalent to
the auxiliary network Q in InfoGAN). To map the transform
from image space to latent space, we encode both X, and
X; to latent vectors €&, anq ¢ usir}\g a learned encoder E. The
estimated affine matrices M, and M, are then constructed from
¢, and &,. The estimated affine matrix M is eventually obtained
by M = M,M! (see Fig. 4).

The base i 1mage X, does not refer to any particular image,
rather a canonical basis of the images from the training
dataset (see Fig. 5). It could be the average manifold of all
images within the same category. For instance, the digits “0,”
“1,7...,“9” in MNIST are different categories. If there are n
images of digit “1” with a; degrees of rotation in the dataset,
X, could be an image of digit “1” with >\, (a;/n) degrees
of rotation.

C. LSE of the Affine Parameter

Although we can minimize the difference between the
ground-truth affine transform matrix M and its prediction M,
during training, this does not promote one-to-one mapping
between individual affine transform parameters and latent rep-
resentations ¢. Thus, we further decompose the predicted affine
matrix M into affine parameters &, p, 4, %, and $.

Equation (4) leads to a s1mu1taneous equation group that
has six nonlinear equations with five unknowns. Hence, there
is no closed-form solution since the equation is nonlinear and
overdetermined.

To resolve this problem, we propose to infer the affine
parameters from the affine matrix M by the least-squares esti-
mation (LSE). To obtain estimations of the affine parameters,
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Fig. 4. Pipeline of the affine block. Inputs: latent vector ¢ randomly sampled from Unif(—1, 1) and image X, sampled from training data. Output: transformed
image X, and predicted latent vector ¢. The affine regularizer loss is: Laffine = min ||c — éll%. E stands for encoder. LSE stands for least-squares estimation.

Affine transform refers to the operation: x;, = MXx,.

A ANMAWAVAVAVAVAVAVS

%1%13(3|3|3(3|3|3

Fig. 5. Tllustration of canonical image base X;. The image in the red box
is the X}, in its respective category.

we minimize the sum

2 3
L0, p.a,x,3) = DD (Ay = [0, p.q. . 7))
i=1 j=1
= (A1 — pcos0)? + (A1p + ¢ sin6)?
+ (A2 — psind)? + (Ax — g cos6)?
+ (A3 — pxcos@ + gy sin0)?

+ (A3 — pxsin@ — gy cos 0)>. 5)

The resulting LSEs are as follows (see more detail in
Appendix B in the Supplementary Material):
A 2(A11A2 — ApAn)
0 = - arctan — 5 5 5
2 Al + Ay — A — Ay
p = A cosl + Ay sind

@:—Algsin9+A2] Sil’lé (6)
. A cosd + Ay sind
X = —
p
. —Ani sinf + Ay cosd
y= = .
L q

To compare with the ground-truth latent vector ¢, the esti-
mated affine parameters 6, p, g, £, and § are converted to a
latent vector ¢

&1 =0(1/89), &= (p—1D(1/epy)
Gy = (fl - 1)(1/81711)7 Gy = )’e(l/gxy)» Cs = j\)(l/gxy)- (7

D. Framework of the Proposed EAD-GAN

The main framework of EAD-GAN is shown in Fig. 6,
where the affine block is shown in Fig. 4. Algorithm 1
describes the procedures to compute the affine regularization
loss Laffine = min||c — é||%, where ¢ is the sampled latent
vector and ¢ is the estimated latent vector. The loss function
of the proposed EAD-GAN is

Leap = Lagy + AZ(€"; X 1) + B Latine- (8)

Fig. 6. Main framework of EAD-GAN. G stands for generator, D stands
for discriminator, and E stands for encoder. X is the generated image, X, is
the image sampled from the training dataset, and X, is the affine transformed

image from X,. 7’ is the latent noise sampled from the normal distribution.

¢/ = (¢, ¢) is the sampled semantic latent vector. ¢ is a subset of ¢!

representing affine transform. ¢, and ¢, are the affine parameter predictions of
X; and X, from the encoder. ¢ is the prediction of ¢ from the network. é’/ is

the prediction of Xy from the encoder. 7 (c!; X/) is the mutual information
loss. Lagy(D, G) is the GAN loss. Lafine is the affine regularization loss.
Fig. 4 shows more details about the affine block. S1 stands for Subblock 1.
S2 stands for Subblock 2.

The loss function of EAD-GAN only adds one more loss
term Lygne to the loss of InfoGAN, which is easy to imple-
ment and computationally efficient. To compute the affine
regularizer, the encoder of InfoGAN is reutilized. Hence, the
EAD-GAN has the same trainable parameters as InfoGAN.
Unlike EAD-GAN, InfoGAN-CR uses an additional encoder
to compute the contrastive loss. IB-GAN uses an additional
encoder to compute the mutual information upper bound. The
proposed affine regularization achieves the following targets:
1) clear physical meaning is assigned to each component
of the latent vector ¢ and 2) each latent dimension in ¢ is
deterministically assigned by constructing the affine matrix
from ¢ and decomposing the affine matrix with the LSE to
obtain the estimated ¢. Thus, each latent dimension is moti-
vated to be assigned to a specific affine transform. Besides,
by constructing the affine matrix with different combinations
of the latent vector, we can flexibly select the desired affine
transform. For example, we can construct the horizontal and
vertical zooms (p, ¢q) from a single ¢; for a more compact
representation or construct p from c¢; and g from ¢, for a
more expressive representation.
Compared to InfoGAN, three new components are inte-
grated to the network.
1) The random semantic latent vector ¢ of EAD-GAN is
used to construct affine transform M.

2) Affine transform augmented image X, is introduced.
While in InfoGAN X, is the positive sample fed to the
discriminator, in EAD-GAN, we use X, as the positive
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Algorithm 1 Affine Regularizer

Input: training images: X,, latent vector: ¢
Olltpllt: ,Cafﬁne

1: M = Matrix Construction(c) with Eq. 3 and 4
2: X, = Mx,

3: ¢ = Encoder(X;)

4: ¢, = Encoder(X,)

5. M, = Matrix Construction(¢;) with Eq. 3 and 4
. N

7

8

: M, = Matrix Construction(¢,) with Eq. 3 and 4
: M =M,M;!
: ¢ = LSE(M)

Lattne = min ||e — €|[3

sample fed to the discriminator, which guarantees that
the affine transform is observed by the network.

3) Affine regularization loss Lysine is added by comparing
the ground-truth latent vector ¢ and its prediction €
from the network. Lyne builds up the correspondence
between the representation learned by InfoGAN and
affine transform parameters.

V. NUMERICAL RESULTS

The goal of the experiments in this section is to investigate,
both qualitatively and quantitatively, the disentangled repre-
sentations obtained by EAD-GAN. The datasets evaluated in
this section are MNIST, CelebA [35], dSprites [36], and col-
ored dSprites [9]. MNIST contains 60000 training and 10000
testing grayscale hand-written digits. CelebA is a more chal-
lenging dataset that involves 200000 RGB celebrity images
with large pose variations and background clutter. dSprites
is a well-known dataset designed for evaluating the perfor-
mance of disentangled representations, which contains 737280
grayscale images with different shapes, scales, orientations,
and positions. Colored dSprites adds random RGB color to
the object in the dSprites images, where random scaling for
each channel uniformly between 0.5 and 1 is multiplied to the
object. A major difference between dSprites/colored dSprites
and the other aforementioned datasets is that dSprites/colored
dSprites contain the ground-truth value for all the variations,
making it possible to calculate the disentanglement score.
Some sample images generated by the proposed EAD-GAN
trained on the CelebA [35], MNIST, and dSprites [36] datasets
are shown in Figs. 7-12, in Figs. 13-20, and in Figs. 21-22,
respectively. For quantitative results, the disentanglement score
for EAD-GAN is presented and compared to benchmarks
on the dSprites and colored dSprites datasets (see Tables I
and II), while the disentanglement scores for MNIST and
CelebA datasets are not presentable due to the lack of
ground truth of transform in the dataset. As an alterna-
tive, we compare the correspondence between the prede-
fined transform value and the latent vector value predicted
by EAD-GAN in Appendix F in the Supplementary Mate-
rial. We also provide manually transformed images as the
ground truth to compare with the latent traversal results (see
Figs. 7-12 and 13-20). The parameters of the affine transform
are selected as follows: rotation range: [—x /9, 7 /9], zoom
range: [0.8, 1.2], and translation range: [—0.1, 0.1]. The affine
transform range should be small to keep the data distribution
of the transformed image x; close to the training image x,.
For all the experiments, we use the Adam optimizer [37]
with the learning rate of 0.0002 for the discriminator and
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Fig. 7. Ground-truth rotated images and latent traversal with latent vector
c1. Row 1: ground-truth transformed images. The image in the middle is
generated by given value 0 to c¢. The images on the sides are obtained by
manually transforming (e.g., rotating) the middle image with the boundary
value of the predefined affine transform range (e.g., [—7 /9, 7/9]). Row 2:
latent traversal images: given different values, —1, 0, and 1, of a component
¢; (e.g., c1: rotation) while fixing all other values of the latent vector ¢ =
(c1, ¢2, €3, ¢4, C5), different versions of images are explicitly generated by the
proposed EAD-GAN trained on the CelebA dataset.

nOoe
NoOC

-

Fig. 8. Ground-truth (row 1) horizontal zoom images and latent traversal
(row 2) with latent vector ¢, on the CelebA dataset.

Fig. 9. Ground-truth (row 1) vertical zoom images and latent traversal (row 2)
with latent vector ¢3 on the CelebA dataset.

0.0001 for the generator and encoder. The batch size is 128 for
MNIST, 128 for dSprites, and 16 for CelebA. The regulariza-
tion weights o and f in (8) are set to 1 by default. Our code
is available at https://github.com/letao1991/EAD-GAN.

A. Qualitative Results

As mentioned before, deterministic assignment refers to
the property that each attribute corresponds to a specific
latent dimension. In the CelebA dataset, typical attributes are
azimuth, sunglasses, emotion, and so on. Existing methods [8],
[14], [15] have successfully disentangled those attributes (see
Appendix G in the Supplementary Material). However, other
attributes, such as the roll, width, and length of the face and
relative position of the face in the frame, are rarely tackled.
Due to the deterministic assignment property, EAD-GAN can
explicitly learn those attributes (see Figs. 7-12).

We notice that there are some negligible differences between
the ground-truth images and the images generated by the
EAD-GAN in Figs. 9, 10, and 12. In Figs. 9 and 12, the
ground-truth images have the artifacts due to the interpolation
effect, while the images generated by EAD-GAN do not have
such imperfections. In Fig. 10, for the images generated by
the EAD-GAN, the human faces at the sides tend to gaze at
the center of the image frame, while the ground-truth images
always gaze at the front. This is because GAN tends to
generate “realistic” images that are close to the training data
distribution. For the human face dataset, most of the human
faces at the sides in the training data gaze at the center of
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Fig. 15.  Ground-truth (row 1) vertical zoom images and latent traversal
(row 2) with latent vector ¢3 on the MNIST dataset.

Fig. 10.  Ground-truth (left) horizontal translation images and latent traver-
sal (right) with latent vector ¢4 on the CelebA dataset. q q q

Fig. 16.  Ground-truth (row 1) horizontal skew images and latent traversal
(row 2) with latent vector ¢4 on the MNIST dataset.

Fig. 11. Ground-truth (row 1) vertical translation images and latent traversal
(row 2) with latent vector ¢s on the CelebA dataset. 3 3 3 q q q

Fig. 17.  Ground-truth (row 1) vertical skew images and latent traversal
(row 2) with latent vector ¢s on the MNIST dataset.

Fig. 12.  Ground-truth (row 1) zoom images and latent traversal (row 2) with
latent vector ¢ and c¢3 on the CelebA dataset. 0 0 é

Fig. 13. Ground-truth (row 1) rotation images and latent traversal (row 2)
with latent vector ¢; on the MNIST dataset.

5|S5|SQY|4 4

Fig. 14.  Ground-truth (row 1) horizontal zoom images and latent traversal
(row 2) with latent vector ¢, on the MNIST dataset.

Fig. Ground-truth (row 1) horizontal translation images and latent
traversal (row 2) with latent vector ¢ on the MNIST dataset.

0006|606
O 00666

Fig. 19.  Ground-truth (row 1) rotation images and latent traversal (row 2)
with latent vector ¢7 on the MNIST dataset.

the frame (this is also observed in StyleGAN [38]). Overall, Material for the construction of the entire affine matrix). In
the EAD-GAN generates more “natural” images compared to  Figs. 14 and 16, we notice that the images generated by the
manually transformed images. EAD-GAN have larger transform compared to the ground-

Figs. 13-19 show the disentangled representation generated truth images, and this is because the transform range of the
by EAD-GAN with an entire affine transform, which includes EAD-GAN is the sum of the predefined transform range and
rotation, horizontal and vertical zooms, skews, and transla- the variation of the data distribution. Since the horizontal zoom
tions. To the best of our knowledge, EAD-GAN is the first and skew are the dominant attributes in the MNIST dataset
algorithm that can disentangle an entire affine transform in an  (also observed in InfoGAN), the overall transform range is
unsupervised manner (see Appendix A in the Supplementary larger than the predefined transform range.
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Fig. 20. Ground-truth (row 1) zoom images and latent traversal (row 2) with
latent vector ¢ and ¢3 on the MNIST dataset.

-1 Cy 1

Fig. 21.  Given different values in [—1, 1] of a component ¢; while fixing
all other values of the latent vector ¢ = (i, ¢2, ¢3, ¢4), different versions of
images are explicitly generated by the proposed EAD-GAN trained on the
dSprites dataset. ¢: rotation, ¢;: horizontal and vertical zoom, c3: horizontal
translation, and c4: vertical translation. The variation by rows is the changing
of shape controlled by giving different values, 0, 1, and 2, of the categorical
latent vector cq,. Rows 1-3: ellipse, heart, and square, respectively.

To disentangle object style on dSprites, we choose to model
the latent space by a 4-D continuous latent vector sampled
from uniform distribution [—1, 1]—c: rotation, c¢: zoom,
and c¢3 and c4: horizontal and vertical translations. We also
use a 3-D categorical latent vector c., (three classes) sam-
pled from a uniform categorical distribution [8] to model
the shape attribute. Since the rotation and zoomed-in view
dSprites is object centered rather than image frame centered,
where the objects are located at random positions, we break
the training into two steps. We first train an EAD-GAN
network that only learns horizontal and vertical translations
and then train another EAD-GAN network that learns all the
transforms. A detailed process is described in Appendix C in
the Supplementary Material. To the best of our knowledge,

Ce

Fig. 22.  Given different values in [—1, 1] of a component ¢; while fixing
all other values of the latent vector ¢ = (..., cs, cg, ¢7), different versions
of images are explicitly generated by the proposed EAD-GAN trained on
the colored dSprites dataset. c¢s: red, cg: green, and c7: blue. The variation
by rows is the changing of shape controlled by giving different values, 0,
1, and 2, of the categorical latent vector c.y. Rows 1-3: square, heart, and
ellipse, respectively.

EAD-GAN is the first algorithm that can disentangle the
shape attribute by means of a categorical latent variable in
the dSprites dataset (see Fig. 21), while existing methods
[2], [8], [10], [14]-[18], [26]-[28] tend to mix shape and
other attributes (e.g., rotation) together (see Appendix D in
the Supplementary Material). Note that the affine transform
range (e.g., rotation range: [—z /9, 7 /9]) we set is only for
training the encoder. The affine transform range of the image
generated by the learned network is determined by the training
data distribution (e.g., see Fig. 21 ¢, rotation range for heart:
[0, 27 ], ellipse: [0, 7], and square: [0, 7 /2]).

Besides the affine transform, we show in Appendix E in
the Supplementary Material that the RGB color transform
can also be explicitly modeled with a similar methodol-
ogy to our proposed one for the affine transform. To dis-
entangle the object style on colored dSprites, we use
a 3-D categorical latent vector c.y (three classes) and
a 7-D categorical continuous latent vector: cj: rotation,
c>: zoom, c¢3 and c4: horizontal and vertical translations,
and cs—c7: red, green, and blue color transforms. Similar
to dSprites, we also break the training into two steps (see
Appendix C in the Supplementary Material), where we first
train an EAD-GAN network that only learns horizontal and
vertical translation, and the RGB color transforms, and then
train another EAD-GAN network that learns all the transforms.
The disentanglement of color transform for colored dSprites
dataset is shown in Fig. 22.

B. Quantitative Results

Tables I and II show that the proposed EAD-GAN out-
performs the state-of-the-art methods for all disentanglement
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TABLE I

DISENTANGLEMENT SCORES ON THE DSPRITES DATASET. FOR VAE APPROACHES, THE REFERENCE VALUES FROM f-VAE TO ANNEALED-VAE
APPROACHES ARE THE BEST SCORES OF THE VIOLIN PLOTS FROM [9, TABLE 13], THE REFERENCE VALUE FOR CONTROL-VAE Is FROM
[26, TABLE 2], AND THE REFERENCE VALUE FOR GUIDED-VAE AND GUIDED-S-TCVAE ARE FrROM [27, TABLE 2]. FOR GAN
APPROACHES, THE REFERENCE VALUES FOR GAN, INFOGAN, AND IB-GAN ARE FROM [17, TABLE 1], THE REFERENCE VALUE
FOR GAN-VARIATION IS FROM [29, TABLE 2], THE REFERENCE VALUE FOR OOGAN Is FROM [28, TABLE 1], AND THE
REFERENCE VALUES FOR INFOGAN-CR ARE FROM [16, TABLE 1]. A PERFECT DISENTANGLEMENT CORRESPONDS
TO A SCORE OF 1.0. THE PROPOSED EAD-GAN OUTPERFORMS STATE-OF-THE-ART METHODS FOR ALL
DISENTANGLEMENT METRICS ON THE DSPRITES DATASET. THE RESULTS OF THE PROPOSED EAD-GAN ARE
THE AVERAGE OF TEN RUNS WITH RANDOM INITIALIZATION

Model BetaVAE FactorVAE MIG DCI Modularity SAP
B-VAE 0.90 0.82 0.39 0.52 091 0.09
FactorVAE 0.94 0.88 0.34 0.51 0.93 0.08
B-TCVAE 0.91 0.90 0.38 0.53 0.95 0.09
DIP-VAE-I 0.87 0.70 0.20 0.23 0.96 0.08
VAE DIP-VAE-II 0.92 0.78 0.16 0.24 0.93 0.08
Annealed-VAE 0.88 0.66 0.38 0.41 0.94 0.08
Control-VAE 0.56 4+ .02
Guided-VAE 0.67 0.43
Guided-38-TCVAE 0.73 0.45
GAN 0.40 £+ .05
InfoGAN 0.61 £+ .03
IB-GAN 0.80 &+ .07
GAN OOGAN 0.81 4+ .08
GAN-variation 0.88
InfoGAN-CR 095 4+ .01 0.88 £ .01 037 £.01 071 £.01 0.96 &+ .00 0.58 £+ .01
EAD-GAN (ours) 1.0 &+ .00 097 + .01 059 +.01 096+ .01 1.0+ .00 0.73 + .01
TABLE II

DISENTANGLEMENT SCORES ON THE COLORED DSPRITES DATASET. FOR VAE APPROACHES, THE REFERENCE VALUES ARE THE BEST SCORES OF
THE VIOLIN PLOTS FROM [9, TABLE 13]. FOR GAN APPROACHES, THE REFERENCE VALUES FOR GAN, INFOGAN, AND IB-GAN ARE FROM
[17, TABLE 1]. A PERFECT DISENTANGLEMENT CORRESPONDS TO A SCORE OF 1.0. THE PROPOSED EAD-GAN OUTPERFORMS STATE-
OF-THE-ART METHODS FOR ALL DISENTANGLEMENT METRICS ON THE COLORED DSPRITES DATASET. THE RESULTS OF THE
PROPOSED EAD-GAN ARE THE AVERAGE OF TEN RUNS WITH RANDOM INITIALIZATION

Model BetaVAE  FactorVAE MIG DCI Modularity SAP
B-VAE 0.90 0.88 0.33 0.49 0.94 0.09
FactorVAE 0.90 0.9 0.35 0.47 0.92 0.08
VAE B-TCVAE 091 0.91 0.30 0.54 0.96 0.08
DIP-VAE-I 0.86 0.70 0.18 0.25 0.95 0.08
DIP-VAE-II 0.92 0.75 0.14 0.21 0.93 0.07
Annealed-VAE 0.87 0.68 0.38 0.47 0.93 0.08

GAN 0.35 + .04

InfoGAN 0.55 4+ .08

GAN IB-GAN 0.79 % .05

EAD-GAN (ours) 1.0 +.00 094 +£.01 059 + .01 0.90 +.01 1.0+ .00 0.73 + .01

metrics on the dSprites and colored dSprites datasets. Both
BetaVAE [7] and FactorVAE [14] measure the correlation
between the change of the ground-truth attribute and the
change of the latent vector predicted from the encoder (we
omit “predicted from the encoder” for brevity in the following
description). DCI [11] measures the deviation between the
latent vector and the ground-truth attribute. SAP [24] mea-
sures the average difference of the prediction error of the two
most predictive latent dimensions for each attribute. Modu-
larity [39] measures whether each latent dimension conveys
information about at most one attribute. MIG [15] measures
the mutual information between the latent vector and the
ground-truth attribute. The clear physical meaning assigned
to the latent vector links the learned representations and the
ground-truth attributes. The one-to-one mapping between indi-
vidual transform parameters and latent dimensions promotes
the independence between each latent dimension and avoids
the permutation between latent dimensions. The results in

Table I suggest that the disentangled representations learned
by the proposed EAD-GAN are better aligned with the defin-
ition of disentanglement on the dSprites dataset. Compared to
InfoGAN-CR [16], which achieves the state-of-the-art disen-
tanglement score, both EAD-GAN and InfoGAN-CR utilize
the contrastive learning loss. However, InfoGAN-CR does not
explicitly model the affine transforms as the data generative
factors.

VI. DISCUSSION

In the literature, several methods have been proposed to
learn semantic attributes from data. However, oftentimes, the
learned representations do not have a clear physical mean-
ing [2], [6]-[9], [14]-[17]. Moreover, the learned represen-
tations of existing methods are sometimes not one-to-one
mapped to the interpretable attributes, which makes the learned
representations less explainable and inefficient for downstream



LIU et al.: EAD-GAN: A GENERATIVE ADVERSARIAL NETWORK FOR DISENTANGLING AFFINE TRANSFORMS

tasks. Besides, in existing methods, each latent dimension
may not learn a fixed attribute in different trials or with
different random seeds. To mitigate these problems, the pro-
posed EAD-GAN introduces the affine transform to facili-
tate the training process, where the physical meaning of the
affine transform is transferred and integrated into the net-
work. The qualitative results in Figs. 7-21 show that the
proposed EAD-GAN consistently learns the affine transform
across different datasets. By comparing the qualitative results
on the dSprites dataset between EAD-GAN in Fig. 21 and
other methods in Appendix D in the Supplementary Material,
we see that EAD-GAN achieves much better disentanglement
for affine transform. EAD-GAN achieves the highest disentan-
glement scores for all the metrics compared to the benchmarks
in Tables I and II, which suggest that EAD-GAN is better
aligned with the definition of disentanglement. This is consis-
tent with the purpose of modularity and compactness, where
each attribute should be assigned to a unique component of the
latent vector and vice versa. Several methods have been pro-
posed to promote the independence between each latent com-
ponent ¢; for better disentanglement [7], [14]-[16]. From the
perspective of independence, affine transform parameters are
intrinsically independent of each other, which may also explain
why EAD-GAN achieves the highest disentanglement scores.
The resulting affine parameter estimates are accurate, showing
that EAD-GAN does not simply memorize the affine trans-
form, as it can extrapolate beyond the the parameter ranges
explored during training. However, there are still limitations
for EAD-GAN. The component ¢’ in ¢/ = (¢, ¢’), which is not
covered by the affine transform, encoding other information,
may lack physical meaning and may not be deterministically
assigned.

VII. CONCLUSION

This article proposes an EAD-GAN that explicitly learns
disentangled representations by incorporating an affine trans-
form encoder in the generative model. The encoder learns
to represent the affine transform of images by an unsuper-
vised learning procedure. In contrast to the earlier approaches
to disentanglement where inductive biases are not explicit,
the disentangled representations obtained by EAD-GAN are
explicit; as a result, they are deterministically assigned and
have clear physical meaning. As the proposed affine regular-
izer is model-based, it can be extended to include other forms
of expert knowledge as inductive bias. Besides affine trans-
form, we show how to explicitly disentangle color transform
on the colored dSprites dataset as an illustration. As a possible
extension of the 2-D affine transform, the 3-D transform can
be learned by constructing and decomposing the 3-D affine
transform matrix. The proposed explicit regularizer provides
a task-specific pathway to disentanglement compared to the
existing general implicit regularizers.
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