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High density superconductor-semiconductor-superconductor junctions have a small induced super-
conducting gap due to the quasiparticle trajectories with a large momentum parallel to the junction having a
very long flight time. Because a large induced gap protects Majorana modes, these long trajectories
constrain Majorana devices to a low electron density. We show that a zigzag-shaped geometry eliminates
these trajectories, allowing the robust creation of Majorana states with both the induced gap Egap and the
Majorana size ξM improved by more than an order of magnitude for realistic parameters. In addition to the
improved robustness of Majoranas, this new zigzag geometry is insensitive to the geometric details and
the device tuning.
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Introduction.—A hybrid structure containing a semi-
conductor with strong spin-orbit coupling coupled to a
superconductor can become topological upon application
of a magnetic field stronger than a critical field Bcrit, with
Majorana bound states appearing on its edges [1,2].
Majorana bound states are a promising candidate for
forming the basis of a stable platform for topological
quantum computing [3–6]. Much of the experimental effort
[7–11] currently focuses on creating pairs of Majorana
bound states in hybrid normal-superconductor (NS) nano-
wire structures.
Recently, a modified setup has been proposed [12,13]

relying on a superconductor-normal-superconductor (SNS)
junction to lower the critical magnetic field Bc by intro-
ducing a superconducting phase difference ϕ. When both
NS interfaces are transparent, the SNS junction enters the
topological phase at ϕ ¼ π at any finite B field. Two groups
[14,15] have realized this system experimentally, but did
not yet observe a hard induced superconducting gap.
An important challenge in creating stable Majoranas is

the appearance of a soft gap—a power law decay instead
of an exponential decay of the density of states near zero
energy. In clean systems, a soft gap arises due to the
reduction of the induced gap for states with the momentum
directed along the junction [16,17]. From a semiclassical
perspective, these momenta correspond to long paths
through the semiconductor without interruption by the
superconductor, shown in Fig. 1(a). These long trajectories
have long flight times τf ≈ Lt=vF (see Fig. 1), where Lt is
the trajectory length and vF the electron Fermi velocity.
Equivalently, the Thouless energy of these trajectories
ETH ¼ ℏ=τf is small, resulting in a small gap Egap ≪ Δ.
This problem does not appear when the Fermi surface is
small and the zero point motion dominates the transverse

velocity, making a low filling of the bands a possible work
around [17,18]. However, tuning the system to a low
chemical potential requires a precise knowledge of the
band positions and makes the device more sensitive to
disorder or microscopic inhomogeneities. On the other
hand, disorder scatters these long trajectories and intro-
duces a cutoff on the scale of the mean free path [19–21]
which Ref. [22] proposes to use to improve Majorana
properties; however, disorder is impossible to control to a
required precision experimentally. In the Supplemental
Material [23], we compare the size of Egap as a function of
the mean free path le for zigzag and straight systems at
ϕ ¼ 0 and ϕ ¼ π and confirm that the zigzag geometry
and disorder both increase Egap through a similar
mechanism.
We propose a new experimental setup [see Fig. 1(b)] for

the creation of Majoranas that eliminates long trajectories
and, therefore, prevents the appearance of a soft gap, while
also increasing the topological gap (the smallest gap in the
dispersion relation) by more than an order of magnitude,
depending on the parameters. The setup consists of a zigzag
or snakelike geometry for the semiconductor where long
trajectories are not possible due to the geometry.
Setup.—We consider a Josephson junction (Fig. 1) con-

sisting of a 2D strip of semiconductor, with superconduc-
tors on both sides [12,13]. (In the Supplemental Material
[23], we demonstrate that similar physics also occurs in
devices with a single superconductor.) We modulate the
shape of the normal region to be either zigzag, as depicted
[Fig. 1(b)], or a more smooth sinusoidal-like shape. Similar
to the straight system [12], we apply a magnetic field Bx
along the x axis. The Bogoliubov-de Gennes Hamiltonians
HN and HSC of the normal region and the superconducting
(SC) region are
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HN ¼
�
ℏ2ðk2x þ k2yÞ

2meff
− μþ αðkyσx − kxσyÞ

�
τz þ EZσx;

ð1aÞ

HSC ¼
�
ℏ2ðk2x þ k2yÞ

2meff
− μ

�
τz þ Δ cos

ϕ

2
τx þ Δ sin

ϕ

2
τy:

ð1bÞ

Here, kx and ky are the momentum components of
the wave vector, μ is the chemical potential, and meff
is the effective electron mass. The strength of the
Rashba spin-orbit coupling is α and a Zeeman splitting
EZ ¼ 1

2
μBgBx. The superconductor has a coupling strength

Δ, and the phases of the superconductors are �ϕ=2.
The Hamiltonian acts on the spinor wave function
Ψ ¼ ðψe↑;ψe↓;ψh↓;−ψh↑ÞT , where ψe, ψh are its electron
and hole components, and ψ↑, ψ↓ are the spin-up and spin-
down components. The Pauli matrices σi act on the spin
degree of freedom and τi act on the electron-hole degree of
freedom. We consider a zigzag pattern with a period zx, a
peak-to-peak amplitude zy, andW the width of the junction

[see Fig. 1(b)]. Later, we relax this assumption and show
that the exact shape is unimportant.
We discretize our continuum Hamiltonian [Eq. (1b)] on a

square grid and implement a tight-binding model using
Kwant [24]. To preferentially sample important regions of
parameter space, we use the Adaptive package [25]. The
entire source code and the resulting raw data are available
in Ref. [26].
Unless noted differently, the Hamiltonian parameters are

α ¼ 20 meVnm, g ¼ 26, meff ¼ 0.02me, μ ¼ 10 meV,
Bx ¼ 1 T, ϕ ¼ π, and Δ ¼ 1 meV; and the geometry
parameters are W ¼ 200 nm, the period of the zigzag
zx ¼ 1300 nm, the discretization constant a ¼ 10 nm,
and the lengths of the superconductors LSC ¼ 300 nm.
Our results only weakly depend on the material parameters.
Band structures.—We apply sparse diagonalization to

the supercell Hamiltonian at different momenta kx to
compute the band structure. Because of the large perio-
dicity of the zigzag and the resulting large supercell, the
band structure is heavily folded. In Fig. 2, we show the
resulting band structures of zigzag systems with varying zy.
The introduction of the zigzag has a striking effect: the
bands flatten out and the topological gap increases by more
than an order of magnitude.
In the unfolded band structure of a straight system,

shown in Fig. 2(a), the lowest energy states occur at k ≈ kF.
We interpret the increase of the gap Egap shown in
Figs. 2(b) and 2(c) as an effect of the zigzag geometry
removing these long trajectories traveling at grazing angles.
Besides the increased Egap, the states from different seg-
ments of the zigzag pattern have a negligible overlap and,
therefore, have a vanishing quasiparticle velocity v. This
reduction in velocity strongly reduces the Majorana size,
as we discuss in the next section. Finally, in a zigzag
geometry, every trajectory encounters a superconductor
close to normal incidence. Normal incidence has a higher
transmission probability for entering the superconductor
and, therefore, a higher Andreev reflection amplitude. This
provides another mechanism of the gap enhancement.
Localization lengths and shape effects.—We model a

finite system and compute the Majorana wave function in
different geometries: ribbon, zigzag, sinelike parallel
curves, and a variant of the latter with disordered edges.
By diagonalizing the Hamiltonian, we find the Majorana
energy EM, and by using the corresponding eigenstate of
that lowest energy, we get the wave function. When
determining the Majorana size ξM in a zigzag system,
we reduce the finite size effects by introducing a particle-
hole symmetry breaking potential Vσ0τ0 on one edge, such
that one of the Majorana states is pushed away from zero
energy. Then, we find ξM by fitting an exponential to the
density of the single Majorana wave function projected on
the x axis. In the straight system, we use the eigenvalue
decomposition of the translation operator at zero energy
[18] for performance reasons.

(a)

(b)

FIG. 1. The straight (a) and the zigzag (b) SNS junction. The
zigzag pattern has a peak-to-peak amplitude zy and a period zx.
The yellow areas are superconductors with a phase difference of
ϕ between the top and the bottom. The middle area is the
semiconductor of width W. A magnetic field B pointing in the
x direction causes a Zeeman splitting in the semiconductor. A
trajectory traveling at a grazing angle (red curve) has a very long
flight time τf and a very small induced gap Egap ≪ Δ. At the
same time, the zigzag geometry limits the length of a trajectory,
therefore, lowering τf and increasing Egap.
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We show the resulting Majorana wave function densities
jψMj2 in different geometries in Fig. 3 using the same
Hamiltonian parameter values. In the straight system
[Fig. 3(a)], we see that the decay of the density is long
compared to the system size. This is a result of the small
topological gap combined with the quasiparticle velocity
v ≈ vF yielding a large Majorana size

ξM ¼ ℏ
v

Egap
: ð2Þ

This result follows from an avoided crossing shape of the
dispersion relation near the Fermi momentum. Therefore,

in straight junctions, the wave function extends to the
center of the system, resulting in highly overlapping
Majoranas and a Majorana coupling EM comparable
to Egap.
We observe that, in zigzag systems, the Majorana

properties improve independently of specific geometric
details. All of the zigzag-type geometries have ξM
improved by a factor ∼70 and have the Majorana wave
function localized within one segment of the zigzag.
Further, the topological gap Egap is an order of magnitude
higher than in the straight junction, and as mentioned in the
Band structures section, the quasiparticle velocity v is more
than an order of magnitude lower.
Topological phase diagram.—In Fig. 4, we compare the

phase diagrams of the straight and the zigzag junctions.
We plot Egap as a function of magnetic field and chemical
potential [EgapðBx; μÞ], and of magnetic field and super-
conducting phase difference [EgapðBx;ϕÞ] for both a straight
system [4(c) and 4(e)] and a zigzag system [4(d) and 4(f)].

(a)

(b)

(c)

(d)

FIG. 3. Density of Majorana wave functions jψMj2 for different
geometries. With (a) a straight system, (b) a zigzag system, (c) a
system where lines parallel to a sinusoid defines the normal
region, and (d) similar to (c) but with disordered edges. Inside the
figure, we indicate the Majorana length (or coherence length) ξM,
the Majorana energy EM (the energy of the first excited state), and
the topological energy gap Egap. We observe that ξM for the
straight system is almost 2 orders of magnitude longer and Egap
more than an order of magnitude smaller than for the zigzag
systems. The robustness of Egap and ξM across the zigzag
geometries means that the details of the geometry do not matter
for the improvements to occur. The length of the system is
3.5zx ¼ 4550 nm, the remaining parameter values are listed at
the end of the Setup section.

(a)

(b)

(c)

FIG. 2. Band structures of the system in Fig. 1(b) with different
zigzag amplitudes. The blue lines correspond to a trivial phase
(ϕ ¼ 0, Bx ¼ 0) and the orange lines to a topological phase
(ϕ ¼ π, Bx ¼ 1 T). The three subplots are for different amplitudes
of the zigzag, with (a) a straight system zy ¼ 0, (b) zy ¼ W=2, and
(c) zy ¼ W, where W ¼ 200 nm is the junction width. Subplot
(a) has a different x scale for kx < 0 from the other subplots and
displays the unfolded band structure. For the right-hand side of
(a) (kx > 0), (b), and (c), the folding is the same, such that the
velocity v ¼ dE=dk can be compared visually. Once there are no
more straight trajectories inside the junction (when zy ¼ W), the
spectrum becomes insensitive to the momentum kx and equiv-
alently, the quasiparticle velocity v decreases. When the zigzag
amplitude increases, the band gap Egap increases by an order of
magnitude. The combination of these ensures a significant de-
crease of the Majorana size ξM ∝ v=Egap. The parameter values are
listed at the end of the Setup section.
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Additionally, we plot the first 1300 nm (one zigzag period)
of the wave functions [4(a) and 4(b)] at the optimal point in
parameter space for the straight system. For the straight
system, we calculate Egap by performing a binary search in E
for the energy at which the propagating modes start to appear
[18]. Additionally, in Fig. 4(c), we plot the phase boundaries
obtained by solving a generalized eigenvalue problem [18].
Because of the large size of the zigzag supercell, we are
unable to apply these methods to zigzag geometries. Instead,
we calculate Egap by finding the absolute minimum of the
spectrum Egap ¼ min jEðkÞj. By both observing the gap
closings and comparing to the topological phase diagram of
the straight system, we then infer the topology of the zigzag
system and verify this by calculating the Majorana wave
function of a finite length zigzag. As a further check, in the
Supplemental Material [23], we also compute Egap as a
function of the angle of magnetic field and observe that the
zigzag device protects Majoranas from magnetic field
misalignments.
Similar to the findings of Pientka et al. [12], we see that

the straight geometry has a diamond-shaped topological
region in ðϕ; BxÞ space. The topological phase diagram of
the zigzag system has a qualitatively similar shape but a
significantly increased topological gap. The asymmetry of

the phase diagram upon replacing ϕ → −ϕ is consistent
with the symmetry of the Hamiltonian, because both
inversion and time reversal change both ϕ → −ϕ and
Bx → −Bx.
Discussion and conclusions.—The zigzag geometry

increases the topological gap in the high-density regime
by more than an order of magnitude and substantially
reduces Majorana size. The improvements occur in a broad
range of parameter values, moreover, even usingBx optimal
for the straight system in the high-density regime (Fig. 4),
the Majorana size ξM and Egap are still more than an order
of magnitude better for the zigzag system. We expect
that the improvement of the device performance will
significantly simplify the creation of Majorana devices
and the detection of Majorana states. Additionally, it
offers a controllable way to remove long trajectories,
making it easier to rely on than disorder [22], which has
a similar effect.
A soft gap may arise due to mechanisms that do not

involve ballistic trajectories: both interface disorder and
pair breaking [27] or temperature and dissipation [28] may
create a soft gap. Further, in a multimode junction, the
dependence of transmission [29] may produce a subgap
conductance similar to that in a device with a soft gap.
The zigzag geometry has no impact on these alternative
phenomena, and therefore, it may serve as a tool for
distinguishing different mechanisms.
Our work is the first demonstration of the impact of the

Majorana device geometry on its performance, and it opens
a possible research avenue for finding the optimal geom-
etry. A promising approach for tackling this question would
rely on constructing a quasiclassical model of the zigzag
devices. Finally, we neglected several important physical
effects, such as disorder, electrostatics, the orbital effect of
the magnetic field, and the finite thickness of the sample.
Although we do not expect these phenomena to influence
our qualitative findings, a more detailed simulation should
provide better guidance to future experiments.
The zigzag geometry is within reach of the standard

fabrication techniques as demonstrated by an ongoing
experimental project [30]. Further, according to our sim-
ulations, the zigzag devices should be robust against the
unavoidable variation in the experimental device geometry.
Therefore, we expect that the new approach to controlling
the proximity superconductivity by means of modifying the
geometry will become a commonly used technique.

We are grateful to S. Goswami, A. Keselman, P. P.
Piskunow, T. Ö. Rosdahl, D. Varjas, F. K. de Vries, Q.
Wang, and J. B. Weston for useful discussions. This work
was supported by the Netherlands Organization for
Scientific Research (NWO/OCW), as part of the
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(Grants No. 016.Vidi.189.180 and No. 680-47-537), an
ERC Starting Grant No. STATOPINS 638760, and the
project Quantox of QuantERA ERA-NET Cofund in

(a) (b)

(c) (d)

(e) (f)

FIG. 4. A comparison of a straight device (left panels) and a
zigzag one (right panels). The top panels show the Majorana
wave functions, near the left edge of the system, at the value of Bx
for which Egap is maximized in a straight geometry for μ ¼
10 meV and ϕ ¼ π as well as the values of the gap and the
Majorana size. The other panels show gap as a function of μ and
Bx at ϕ ¼ π (middle panels) and as a function of ϕ and Bx at
μ ¼ 10 meV (bottom panels). The dashed lines and the dot
indicate the parameters used in the other panels. Additionally, in
subplot (c), we overlay the phase boundaries. The remaining
parameter values are listed at the end of the Setup section, except
with a ¼ 5 nm and LSC ¼ 800 nm.
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