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An analytical flow-by capacitive deionization model 

J.W. Haverkort a,*, B. Sanderse b, J.T. Padding a, J.W. Blake a 

a Delft University of Technology, Process & Energy Department, Leeghwaterstraat 39, 2628 CB Delft, the Netherlands 
b Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG Amsterdam, the Netherlands   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A 2D transient flow-by capacity deion-
ization model is studied computationally 

• This comprehensive model is reduced to 
two coupled partial differential eqs. 

• A fully analytical solution is obtained in 
terms of the Lambert W function 

• Cell geometry and flow are optimized 
analytically for productivity and energy 
losses 

• At the cost of high pressure drops the 
productivity can be increased tenfold  

A R T I C L E  I N F O   
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A B S T R A C T   

In flow-by capacitive deionization (CDI) brackish water flows between two electrodes that capacitively remove 
salt. We assume low inlet concentrations so “salt shocks” appear in the electrodes and the process becomes 
diffusion-limited. For unit charge efficiency, a simplified model is derived consisting of two coupled partial 
differential equations. We obtain approximations, and exact solutions in terms of the Lambert W function, for the 
salt concentration as a function of time and space and for the equilibrium charge-voltage relation. These sur-
prisingly simple solutions compare well with the results from comprehensive two-dimensional simulations. 
Useful analytical expressions are obtained for optimal geometrical and operational parameters that maximize the 
productivity and minimize the specific energy losses. By making cells much thinner the productivity can be 
increased an order of magnitude compared to typical values in the literature. The optimal electrode is found to be 
roughly six times thinner than the spacer. The associated pressure drop is around 0.4 bar per 1 mM of inlet salt 
concentration, making our recommendations practically feasible only for relatively low concentrations. The 
obtained model and analytical expressions provide useful guidance to strongly improve the design process.   

1. Introduction 

Desalination of water is becoming more economical and necessary in 
a number of isolated regions with scarce freshwater supply. Common 

methods include distillation, reverse osmosis, and various types of 
electrochemical deionization including reverse electrodialysis [1]. Ad-
vantages of electrochemical techniques include that part of the used 
energy can be recovered, and that at low concentrations it can be 
energetically more favourable to remove ions from the water, rather 
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than the water from the ions. 
In Capacitive De-Ionization (CDI) [56], a voltage is applied to high 

surface-area porous electrodes, typically composed of activated carbon. 
During the adsorption or charging phase, positive ions (cations) are 
stored in the pores of the negative electrode (cathode) and negative ions 
(anions) in the positive electrode (anode). This electro-sorption process 
leads to a purified stream of desalinated water. Because more counter- 
ions (with opposite charge compared to that of the electrode) are 
absorbed than co-ions (with equally signed charge as the electrode) are 
expelled from the pores, the net effect is that ions are removed from the 
solution. During the desorption, flushing, or discharging phase the elec-
trodes are typically short-circuited, so as to release the salt again before 
a new cycle can start. Part of the stored energy spent during the charging 
phase can be recovered during this discharging phase. The applied 
voltage is typically around but below 1.23 V, above which water split-
ting can occur. CDI is claimed to require less energy than incumbent 
technologies at low salt concentrations below a few g/l [66], a few times 
20 mM, although these numbers have been questioned relatively 
recently [50]. Experimental results reported thus far show low ther-
modynamic energy efficiencies [58], but CDI is still a relatively imma-
ture technology, so strong improvements can still be made. Energy 
efficiencies similar to those in reverse osmosis should in principle be 
possible [58]. New electrode materials can lead to a small improvement, 
but the largest improvements may be expected to come from system 

design, including the reduction of resistive losses. Also, for low salinities 
the energy consumption is low so other factors like capital costs, scal-
ability, operational ease and reliability become more important [46]. 
Strong advantages of CDI include its lack of membranes, which would 
add cost and fouling, its flexible operation, and the possibility to store 
and partially recover energy. 

Capacitive deionization received a lot of attention from the academic 
community in the last two decades, but has a much longer history 
[43,49]. Initially referred to as ‘electrochemical demineralization’ its 
development was first reported in 1960 [14]. Continuous operation with 
a separate outlet for concentrate and freshwater streams was made 
possible through ‘parametric pumping’ [42] using synchronized valves 
and applied potentials. At the end of the century, 1000 kg/h demon-
stration ‘flow through capacitors’ (FTC) were designed [2] and several 
other case studies were developed [43]. Later, many larger commercial 
plants became operational [56]. 

Initially, Faradaic redox reactions and potential reversal were 
thought to be required. In 1970, the charging of the electric double layer 
(EDL) was correctly identified as the main mechanism responsible for 
charge sorption [30]. As a result, performance was improved using 
asymmetric half-cycle operation without polarity reversal. Various types 
of carbonaceous material [48] like porous activated carbon, carbon 
cloth, aerogels [18] and more recently carbon nanotubes, graphene, and 
biochar [15] are used for CDI, due to their high surface area, low cost, 

Nomenclature 

A electrode area [m2] 
c salt concentration [mol/m3] 
c0 inlet salt concentration [mol/m3] 

cup-mixing concentration 1
ULs

∫ Ls/2
− Ls/2 ucdy. [mol/m3] 

Cm volumetric capacitance [F/m3] 
D diffusivity in spacer [m2/s] 
De effective electrode diffusivity [m2/s] 
j ion flux magnitude j(x) [mol/s/m2] 
ji molar ion flux ji(y) [mol/s/m2] 
k between 1.4 and 1, see Eq. (A.2) 
L channel length in x-direction [m] 
Le electrode thickness [m] 
P productivity ULs/L [m/s] 
qm half charge density c

+
m − c−m

2 [mol/m3] 
T charging time [s] 
t time [s] 
U average channel velocity [m/s] 
u channel velocity profile u(y) [m/s] 
VT thermal potential RT/F = kBT/e [V] 
Vext externally applied cell voltage [V] 
w counterion density minus w0, Eq. (33) 
w0 value at t ∼ tRC: w̄0 = eμ̄att , 
wm half the total ion density c

+
m+c−m

2 [mol/m3] 
x streamwise coordinate [m] 
y transverse coordinate from centre [m] 
z ion charge number [− ] 

Constants 
F Faraday’s constant 96485.332… [C/mol] 
R gas constant 8.31446… [J/mol/K] 

Dimensionless numbers 
c̄, w̄, q̄ molar densities divided by c0 

D̄ diffusivity ratio D/De 

Gz Graetz number UL2
s /LD 

p porosity p = pm + pM 

L̄s spacer thickness divided by Le 

L̄ channel length divided by Le 

Shs spacer Sherwood number 
S̃h based on electrode properties ShsDLe

2LsDe 

t̄ time divided by tD = L2
e/De 

t̃ re-scaled time c0
pmwDe

(
ShsD
2Ls

)2
t 

t̂ transformed time 
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2̃t

√
− 1 

Ṽ defined by V̄ext/2+ μ̄att − Δϕ̄Ω 

x̄ streamwise coordinate x/L 
x̃ re-scaled coordinate DShs

2UL2
s
x 

ȳ transverse coordinate y/L 
δ̃ concentration profile thickness 

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2t̃

√

ζ̃ re-scaled shock location S̃hζ [m] 
ϕ̄, μ̄att, V̄ext potentials divided by VT 

Greek variables 
Δp pressure drop [s] 
μatt attraction chemical potential [V] 
ϕ electrostatic potential [V] 
ζ dimensionless location y− Ls/2

Ls/2 of salt shock 

Subscripts and other notation 
Ω ohmic 
W(x) Lambert W function W(x)eW(x) = x 
i ion index i = + , −

c charged fully (ζ = 1) 
D Donnan 
e electrode 
M macropore 
M micropore 
s spacer 
se spacer-electrode interface  
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reasonable conductivity, and chemical stability. 
The majority of studies published up to relatively recently [57] 

concern the flow-by or flow-between configuration, consisting of two 
porous carbon electrodes placed between current collectors close to each 
other, separated by a channel or a spacer. Other traditional configura-
tions include flow-through (with flow parallel to the current) [55], 
desalination with wires [49], or membrane CDI (MCDI, with ion ex-
change membranes on either side of the channel) [37]. Recent variations 
on the flow-by architecture receive increased attention, including 
inverted CDI (i-CDI: acid and amine-treated electrodes give adsorption 
during short-circuiting and salt release during charging), flow-electrode 
CDI (FCDI, MCDI with flowing electrodes) [53,61,62], the desalination 
battery (flow-by with Faradaic redox reactions to increase salt storage 
capacity), hybrid-CDI (HCDI, one battery and one capacitive electrode), 
and cation intercalation desalination (CID, two battery electrodes, and 
separate fresh and concentrated channels between an anion exchange 
membrane (AEM)) [57]. The resulting enhanced design flexibility helps 
to increase the storage capacity but also the selectivity, allowing pref-
erential adsorption of specific ions [20,63]. 

The first mathematical cell model for CDI [37] concerned a one- 
dimensional simplification to two variables describing the concentra-
tions inside the spacer and inside the electrode, both varying with the 
streamwise coordinate and time. The flux was assumed to be due to both 
potential and concentration differences between the spacer and elec-
trode, with proportionality factors fitted to experimental data. An 
analytical series-solution was obtained that compared very well with 
experimental data. Nonetheless, this successful model seems to not have 
been used subsequently or further developed. Ref. [31] developed a one- 
dimensional model, neglecting diffusion, but including both electrolyte 
and electrode resistance. The electric double layer was modelled as a 
pure capacitor. An analytical solution for the Laplace transform of the 
current density was used to study the time-behaviour. A much simpler 
zero-dimensional model treats the spacer as an ideal continuous stirred 
tank reactor (CSTR) [12], an assumption also used in for example Refs. 
[3,24,26,29,38,51]. In e.g. Refs. [11,33,67] various CSTRs were placed 
in series to create a one-dimensional model that approaches plug flow 
reactor (PFR) behaviour. A 1D flow-though CDI model was developed in 
Ref. [22]. In Ref. [38] a quasi-two-dimensional numerical model was 
made by considering the two directions separately (1D + 1D), neglecting 
streamwise diffusion and electro-migration. Ref. [54] compares resolved 
2D-pore scale simulation with homogenized continuum models and 
found only relatively small differences in integral parameters like stored 
salt. Local variables like salt concentration showed much larger differ-
ences, highlighting the need for accurately including tortuosity and 
other effective parameters. Finally, Ref. [50] describes a Randles elec-
trical circuit, consisting of a parallel resistance and capacitance in series 
with a second resistance. While for some operating conditions reason-
able fits can be made to experimental data, such simplified models are 
not useful for optimization of operating and geometrical parameters. 
They also cannot describe the salt shock regime we consider here [40]. 

Besides these cell models, the last fifteen years saw many theory 
papers focusing on improving the mathematical description of the 
double layer. Initially [6,8,12], the double layer was described by a thin 
Stern layer associated with the minimum distance that ions can 
approach the surface, in combination with a thicker diffuse layer 
described by the Gouy-Chapman model based on an analytical solution 
of the Poisson-Boltzmann equation. In this Gouy-Chapman-Stern (GCS) 
model a constant capacitance is added to a potential-dependent capac-
itance. It was soon realized that the smallest pores typically have electric 
double layers that strongly overlap, allowing the Donnan assumption of 
constant pore potential and counterion concentration to be used. In the 
developed modified Donnan (mD) model [9,13] a distinction between 
micropores (<2 nm) and macropores was made, somewhat similar to in 
Ref. [31], with a potential difference between them. This potential jump 
consists of the sum of the Donnan potential and a capacitive voltage, 
associated with a Stern layer but potentially also with quantum 

capacitance or space charge inside the solid [10,28]. The Donnan 
equilibrium in the micropores includes an attraction term μatt that de-
scribes the chemical potential of adsorption in the absence of an applied 
field. Using a concentration-independent value for μatt can strongly over- 
predict the non-electrostatically adsorbed salt at high concentrations. 
Therefore, the improved modified Donnan model (i-mD) [10] was 
developed to account for repulsive Coulombic interactions, resulting in 
an inverse proportionality between μatt and the micropore ion concen-
tration. The amphoteric Donnan model (amph-DM) [7,36] does not 
include the attraction term but instead considers regions of positive and 
negative fixed charged associated with charged surface-groups co- 
existing inside each electrode. To simplify the analysis while retaining a 
reasonable degree of generality and accuracy, in the present work we 
consider the mD model without these later improvements and assume a 
constant capacitance. Instead of further improving the double layer 
models, this work focuses on macroscopic transport modelling useful for 
cell and parameter optimization. 

An important quantity that these models predict is the charge effi-
ciency Λ [4,31,64],1 which gives the fraction of the total ionic charge 
that is used for desalting. At low voltages compared to the thermal 
voltage VT = RT/F, co-ions inside the micropores are merely swapped 
with counter-ions from outside the micropores [59]: for each two elec-
trons an ion is both expelled and adsorbed [10]. Since in the opposite 
electrode the same happens no net salt will be absorbed and Λ = 0. As 
the voltage is increased, co-ions are removed, increasing the capaci-
tance. A further increase in voltage leads to counter-ion insertion and an 
increasing Λ [59]. The charge efficiency has been found to depend only 
on the potential drop over the diffuse layer in a GCS model or the 
Donnan potential drop in a modified Donnan model. 

The modified-Donnan model showed for the first time salt ‘shock 
waves’ consisting of sharp ‘desalting fronts’ moving into the porous 
electrodes. These can be seen in Fig. 9 of Ref. [9], reproduced in Fig. 16 
of Ref [49], or in graphs associated with the 20 mM case of the sup-
porting information of Ref. [27]. At high potentials, the macropores are 
virtually depleted of salt. When the micropores cannot adsorb more salt, 
the desalting front moves on. A similar salt depletion occurs in the GCS 
model, see e.g. Ref. [8] but here the macropore concentration does not 
vanish and the shock is more smooth. Similar ‘deionization shocks’ have 
been studied in [17,35], associated with salt depletion and associated 
concentration polarization in porous membranes. A first 2D CDI model 
was reported in Ref. [27] for a flow-by configuration using the modified- 
Donnan model, and implemented in the finite element solver COMSOL. 
These simulations showed salt depletion shocks moving through the 
electrode in both directions. A similar model was used in Ref. [52]. 
Various methods were reported to improve the numerical stability 
[40,41]. 

The analytical model derived in this work combines the transient 
diffusive transport towards a narrow propagating adsorption or reaction 
front with advective transport in the perpendicular direction. Given the 
generic nature of this configuration, it may also find usage in other fields 
[23], including, for example, phase-change thermal batteries [60], 
sorption systems for thermal energy [44], cross-flow filtration combus-
tion [16], convection batteries [21], or electrochemical micro-reactors 
[19]. There are several ways in which our model may be extended, for 
example, by considering the discharging phase or recycling, different 
reaction- or adsorption kinetics, or different configurations including 
multiple channels and/or membranes, etc. 

This paper continues in Section 2 with reviewing the computational 
two-dimensional, transient, dilute, symmetric, binary electrolyte equa-
tions of Ref. [27] in dimensionless form. Section 3 discusses the 

1 This is sometimes referred to as the electric double layer (EDL) charge ef-
ficiency λdl [51]. The ionic current can be lower than the electronic current due 
to leakage currents, which is quantified by the Coulombic efficiency λc. The 
product of the two is called the dynamic charge efficiency. 
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assumptions required to derive a reduced model and derives accurate 
explicit analytical expressions for the equilibrium micropore salt con-
centration and Donnan potential. A reduced model is derived in Section 
4, resulting in two dimensionless coupled partial differential equations 
(PDEs). We obtain useful very simple solutions to these equations in 
Section 5 for low and high dimensionless times. Section 6 shows that the 
solutions of our reduced model reasonably accurately describe the re-
sults of the full computational model. Finally, in Section 7 the analytical 
solutions are used to provide explicit expressions for optimal design 
parameters. 

2. Full model 

Fig. 1 shows the domain under consideration, its dimensions, the 
coordinate system used and typical profiles for the velocity u(y), con-
centration c(x, y, t) and the electrostatic potential in the electrolyte 
ϕ(x, y, t). 

2.1. Assumptions 

Our model equations and notation will mostly follow that of 
Ref. [27], which assumes:  

• A dilute, quasi-neutral, binary electrolyte with constant and equal 
effective diffusivity De for both ions.  

• A constant attraction potential μatt within the modified Donnan (mD) 
model, accounting for non-electrostatic adsorption, equal for both 
ions,  

• Biporous electrodes with constant macropore porosity pM, micropore 
porosity pm, total porosity p = pm + pM, a constant electronic po-
tential, and constant capacitance per unit micropore volume Cm. 

In the mD model the micropore concentration cm,i of ion species i 
with valency zi is related to the local macropore concentration cM,i by a 
Boltzmann distribution 

cm,i = cM,ie− ziΔϕ̄D+μ̄att , (1)  

where the dimensionless Donnan potential Δϕ̄D = ΔϕD/VT and dimen-
sionless non-electrostatic attraction potential ̄μatt = μatt/VT are both non- 
dimensionalized with the thermal potential VT = RT

F ≈ 25 mV. As illus-
trated in Fig. 2, in the positive electrode the Donnan potential drop ΔϕD 
is positive so that the micropore concentration of cations with positive zi 
will be lower, and the anion micropore concentration will be higher than 
the macropore concentration. In the negative electrode the opposite will 
happen. See also Fig. 3. 

The Donnan potential is the difference in potential between the mi-
cropores and the macropores. The micropore potential drop is related to 
the micropore charge density 2qm by 

Δϕm = − 2F
qm

Cm
. (2) 

This represents the potential drop between the solid bulk and the 
diffuse layer of the micropore. This includes a drop over the Stern layer, 
but potentially also inside the solid [10,28]. It is modelled as a capacitor 
with effective volumetric capacitance Cm [F/m3] and charge density 2qm 

[mol/m3], both per unit micropore volume. From Eq. (1) we find 

2qm ≡ c+m − c−m = − 2ceμ̄att sinhΔϕ̄D, (3)  

where we use electroneutrality in the macropores to give cM,+ = cM,− =

c. Similarly the ion concentration reads, using Eq. (1) 

2wm ≡ c+m + c−m = 2ceμ̄att coshΔϕ̄D. (4) 

The Donnan and micropore potential together make up the differ-
ence between the potential in the electrode and the electrolyte in the 
macropore, see also Figs. 2 and 3: Fig. 1. A schematic introducing the geometry, coordinates, and concentration c 

and potential ϕ profiles in the flow-by capacitive deionization set-up under 
consideration, based on Ref. [27]. 

Fig. 2. The potential ϕ in the electrolyte, ϕe in the solid electrode, the drop 
Δϕm in the micropores, the Donnan potential ΔϕD between the micro- and 
macropores, and the ohmic drop ΔϕΩ between the centre of the channel and the 
location of the desalting front. This schematic shows how in the positive elec-
trode the difference ϕe − ϕ = Δϕm + ΔϕD is positive, corresponding to a nega-
tive counterion charge. In the negative electrode this is negative and the 
counterion charge is positive. The applied potential Vext =

2(Δϕm + ΔϕD + ΔϕΩ). Note that the electronic potential ϕe is constant 
throughout the electrodes so that the connection points may be anywhere. The 
sign of the micropore charge density qm is indicated. 

Fig. 3. An illustration of the charge distribution in the electroneutral macro-
pores and the micropores of the positive electrode, in which negatively charged 
counterions concentrated near the electrode surface primarily in the micro-
pores. A Donnan potential drop ΔϕD exists between the electrolyte potential ϕ 
in the macropores and that in the micropores. A further capacitive potential 
drop Δϕm exists between the bulk solid and micropore electrolyte. 
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ϕe − ϕ = ΔϕD +Δϕm. (5) 

In the positive electrode we have ϕe − ϕ = Vext/2 − ΔϕΩ, see Fig. 2. 
Using this in Eq. (5) gives 

Vext

2
= ΔϕD +Δϕm +ΔϕΩ. (6) 

In the negative electrode, the potential drops on the right-hand side 
are all negative, so the left-hand side requires a negative sign. This po-
tential balance does not explicitly include a finite potential of zero 
charge [5,51], but this can be easily included as a correction to the 
externally applied potential Vext. 

2.2. Dimensionless equations 

In Ref. [27] the following dimensionless equations for the concen-
tration and potential inside the porous electrodes are derived 

∂c̄
∂̄t

= ∇̄
2c̄ −

pm

pM

∂w̄m

∂̄t
, (7)  

∇̄⋅(c̄∇̄ϕ̄) =
pm

pM

∂q̄m

∂̄t
, (8)  

and inside the spacer region: 

∂c̄
∂̄t

+
D̄Gz
L̄2

s

ū
∂c̄
∂x̄

= D̄∇̄
2c̄, (9)  

∇̄⋅(c̄∇̄ϕ̄) = 0. (10) 

Here, the dimensionless variables read2 

t̄ =
tDe

L2
e
, x̄ =

x
L
, ȳ =

y
Le
, ∇̄ = Le∇, ū =

u
U
, (11)  

with U the average flow velocity, ϕ̄ = ϕ/VT, ̄c = c/c0, q̄m = qm/c0, and 
w̄m = wm/c0, and dimensionless numbers 

L̄s =
Ls

Le
, D̄ =

D
De

, Gz =
UL2

s

LD
, C̄m =

VT Cm

2Fc0
. (12)  

here De is the effective medium diffusivity inside the porous electrode. 
Ref. [27] assumed D̄ = 2 as an approximate and reasonable estimate for 
electrodes of porosities between 0.6 and 0.8. The Graetz number Gz 
characterizes the ratio of advection and transverse diffusion in the 
spacer and D̄/L̄2

s corrects this for the chosen non-dimensionalization 
based on the effective diffusivity in the electrode and its thickness. 
The dimensionless micropore capacitance C̄m can be used to write Eq. 
(2) as3 

Δϕ̄m = −
q̄m

C̄m
. (13) 

With Eq. (3) we can then write Eq. (6) as 

V̄ext

2
= Δϕ̄D +

c̄
C̄m

eμ̄att sinhΔϕ̄D +Δϕ̄Ω. (14)  

here we take V̄ext/2 = ±Vext/2VT to be positive on the positive electrode 
and negative on the negative electrode. 

2.3. Time-scales 

From a dilute binary electrolyte with equal effective diffusivity De for 

both ions, the effective conductivity in the electrode associated with the 
inlet concentration c0 reads 

κe,0 =
2F2De

RT
c0. (15) 

A characteristic resistance associated with the electrode is Le/κe,0A 
with A the electrode area. The electrode capacitance per unit electrode 
volume is pmCm, so that multiplying with ALe gives the total electrode 
capacitance. Multiplying with the characteristic electrode resistance 
gives an RC-time,4 related to the other two time-scales as follows 

tRC ≡ pm
L2

eCm

κe,0
= pmC̄mtD, (16)  

tD ≡
L2

e

De
=

D̄Gz
L̄2

s

tU , (17)  

tU ≡
L
U
. (18)  

here tD is the characteristic diffusion time associated with the electrode 
thickness and tU the transit time of a fluid parcel with the average ve-
locity U. For the parameters in Table 1, used in Ref. [27], these time- 
scales all have a similar magnitude of a few minutes. 

3. Simplified model assumptions 

To obtain approximate analytical solutions, in the next section we 
will derive a simplified mathematical model from the full equations 
discussed in the previous section. Here we will discuss the assumptions 
under which the required simplifications are valid. We will also derive 
new explicit analytical expressions for the micropore ion density and 
Donnan potential. 

3.1. Time and length-scales 

In the initial ‘flushing’ phase between 0 < t ≤ tU most of the fluid 
that leaves the channel has not traversed the full channel length. The 
charging time T is the duration of the adsorption phase of the desali-
nation cycle. We will assume T≫tU, to ensure that the flushing phase 

Table 1 
Dimensionless parameters used for the simulations in this work and Ref. [27]. 
Dimensional values leading to these values are e.g. Le = 0.68 mm, Ls = 0.8 mm, 
L = 100 mm, U = 0.438 mm/s, D = 1.9⋅10− 9 m2/s, De = 0.95⋅10− 9 m2/s, Cm =

1.5⋅108 F/m3, c0 = 20 mM, μatt = 37.5 mV, with VT = RT/F ≈ 25 mV, so tD =

487 s, tU = 228 s, and tRC = 365 s. For the calculations we additionally use a 
dynamic viscosity μ = 1 mPas.  

Symbol Description Value 

μ̄att Non-electrostatic adsorption parameter  1.5 
C̄m Micropore capacitance  0.97 
pm Micropore porosity  0.3 
pM Macropore porosity  0.4 
L̄s Length ratio Ls/Le  1.18 
L̄ Length ratio L/Le  147 
D̄ Diffusivity ratio D/De  2 
Gz Graetz number UL2

s /LD  1.48 
Shs Spacer Sherwood number  8.2 

S̃h Spacer Sherwood number 
ShsDLe

2LsDe   

7  

2 Note that while we use L to non-dimensionalize x̄ = x/L, we use Le in the 
dimensionless nabla-operator ∇̄ = Le∇ for both the x and y-component.  

3 Correcting a typo, an erroneous factor 2F, in Eq. (13) of Ref. [27]. 

4 A similar expression, with DpM/τ2 instead of De, was called the electro- 
diffusion time constant in Ref. [52]. Here τ is the electrode tortuosity and the 
square seems to have been a typo. 
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makes up only a small fraction of the cycle. When UL2
e/DL≲1 and 

pmC̄m
UL2

e
DL ≲1 this automatically implies that also T≫tD, tRC which are two 

further requirements for our analysis to hold. Our model will thus not 
include the initial dynamics and only consider times 

t≳tD, tRC, tU . (19) 

We will assume that the flow and concentration profiles are both 
fully developed5 which will hold for 

x≳0.05
UL2

s

D
≫0.05Ls. (20)  

3.2. Charge efficiency 

We will consider here the positive electrode, for which Δϕ̄D > 0, but by 
(anti-)symmetry the same results will hold for the negative electrode 
upon changing the signs of Δϕ̄D, Δϕ̄m and Δϕ̄Ω. The differential charge 
efficiency, the fraction of ionic current density which contributes to-
wards salt removal,6 is given by: 

λ ≡ −
dwm

dqm
= tanhΔϕ̄D. (21) 

An important assumption we will make for the simplified model to 
hold is that λ ≈ 1, which requires 

Δϕ̄D≳2. (22) 

In this limit, in the positive electrode Eqs. (3) and (4) give 2wm ≈ −

2qm ≈ c−m so that in the micropores there are many more counter-ions 
than co-ions (c−m≫c+m).7 Or, dimensionless: 

2w̄m ≈ − 2q̄m ≈ c̄eμ̄att+Δϕ̄D . (24) 

Defining 

Ṽ
2
≡

V̄ext

2
+ μ̄att − Δϕ̄Ω, (25)  

and assuming Eq. (22) holds, we can solve Eq. (14) analytically to give8 

Δϕ̄m =
w̄m

C̄m
= W

(
c̄eṼ/2

2C̄m

)

. (26)  

here the Lambert W function is defined by 

W(x)eW(x) = x. (27) 

This function can be relatively easily evaluated numerically solving 
Eq. (27). However, we also note the following approximations devel-
oped in Appendix A 

W
(

c̄eṼ/2

2C̄m

)

≈

Ṽ
2 + ln

(
c̄

2C̄m

)

k
≈

Ṽ
2
− ln

(
2C̄m

c̄

[
Ṽ
2
+ ln

(
c̄

2C̄m

)])

. (28) 

These approximations both have a relative error ≲15 % for argu-
ments x≫1 using k ≈ 1.15.9 This allows us to quantify Eq. (22). Eqs. (6) 
and (25) give Δϕ̄D = Ṽ/2 − Δϕ̄m − μ̄att. Inserting Eq. (26) for Δϕ̄m and 
using the second approximation of Eq. (28) allows Δϕ̄D≳2 to be written 
as 

Ṽ + 2ln
(

c̄
2C̄m

)

≫
c̄eμ̄att

C̄m
. (29) 

Using the numbers in Table 1 with c̄ = 1 gives a right-hand side of 
4.5. The second term on the left-hand-side is about − 1.4, so that Eq. (29) 
requires Ṽ≫4.5. This shows that only at high applied potentials around 
or above 1 V we can expect unit charge efficiency. It will be easier to 
satisfy this criterion at higher C̄m or lower μ̄att. 

3.3. Initial concentrations 

At t < 0, before a potential is applied, so ΔϕD = 0, Eq. (1) gives the 
increased micropore concentration due to non-electrostatic adsorption 
as c̄±m(t = 0) = w̄0, where 

w̄0 = eμ̄att , (30) 

Fig. 4(d) shows the micropore concentration for various times, ob-
tained from solving the full model of Section 2 using the parameters in 
Table 1 similar to the 20 mM simulations of Ref. [27]. 

For our simplified model we will assume that all co-ions are expelled 
from the micropores upon application of a cell potential. These expelled 
co-ions migrate towards the opposite electrode, where they add tp the 
micropore concentration of Eq. (30). This can be clearly seen from Fig. 4 
(d) where the micropore concentration can be seen to double during 
roughly the RC-time deep in the electrode from ̄c±m(t = 0) = eμ̄att ≈ 4.5 to 
c̄±m(t ∼ tRC) = 2eμ̄att ≈ 9.10 Since in effect this process merely swaps the 
co-ions with an equal number of counter-ions the ion density 2w remains 

5 Since the liquid kinematic viscosity ν≫D, the hydrodynamic entrance 
length will be much shorter than the concentration entrance length. When the 
latter can be assumed small, an inlet section like that used in Ref. [27] will not 
be needed to obtain fully developed flow in the beginning of the channel. Eq. 
(20) follows from replacing in the thermal entrance length [32] the thermal 
diffusivity with the diffusivity. We can also argue for the validity of Eq. (20) 
heuristically. Using the Lévêque approximation, the boundary layer in a fully 

developed flow has a 99 % boundary layer thickness of δ99% = 1.607
( LsDx

U
)1/3 so 

that inserting x from Eq. (20) gives δ99%≳0.6Ls. This shows that at this position 
the boundary layers from both sides will have started to overlap, a requirement 
for fully-developedness.  

6 This expression follows after using Eqs. (3) and (4). The charge efficiency 
reads Λ = − wm − w0

qm
, with 2w0 the micropore ion density at zero applied po-

tential, so that 2wm − 2w0 is the removed salt concentration. Inserting Eqs. (3) 
and (4) and using trigonometric relations this gives Λ =

coshΔϕD − 1
sinhΔϕD

= tanh ΔϕD
2 as 

derived in Refs. [13,48]. Note that these expressions are similar but slightly 
different from those in a GCS model. Ref. [6] found Λ = tanh(Δϕd/4) and 
Ref. [12] obtained a differential charge efficiency λ = tanh(Δϕd/2), with Δϕd 
the diffuse layer potential drop.  

7 With this assumption Eqs. (7) and (8) can be combined to give 

∂c̄
∂̄t

= ∇̄
2 c̄+∇̄⋅(c̄∇̄ϕ̄). (23)  

Neglecting the time-dependence of ϕe and ΔϕD, Eqs. (5), (8), and (13) 
give ∂ϕ̄

∂̄t = − ∂Δϕ̄m
∂̄t = 1

C̄m

∂q̄m
∂̄t =

pM
pm C̄m

∇̄⋅(c̄∇̄ϕ̄). This is a diffusion equation for 

the potential with a dimensionless diffusion coefficient given by pM c̄
pmC̄m

=

pM
tD
tRC

c̄. Re-inserting dimensions gives a diffusivity pML2
e c̄/tRC = κe

pmCm/pM
, 

with κe the ionic conductivity similar to Eq. (15) and pmCm/pM the 
capacitance per unit macropore volume. 

8 With Eq. (22) we have sinhΔϕ̄D ≈ eΔϕ̄D/2. Equation (14) can be written as 
Ṽ/2 = x+ c̄

2C̄m
ex, where x = Δϕ̄D + μ̄att. With Eq. (27), this equation is solved by 

x = Ṽ/2 − W
(

c̄eṼ/2

2C̄m

)
so that for Δϕ̄m = c̄ex

2C̄m 
we obtain Eq. (26). We note a formal 

analogy with the quasi-Fermi level model in Ref. [68] where electrons and holes 
are analogous to our anions and cations.  

9 Depending on the specific parameters used 1 < k < 1.3, see Eq. (A.2). Using 
the variables in Table 1 for V̄ext = 40, Eq. (A.2) gives k ≈ 1.15. The relative 
error of the second approximation in Eq. (28) rapidly decreases to zero for large 
arguments x.  
10 We note that tRC is an e-folding time-scale so that t ∼ tRC should be taken to 

mean at a time several times tRC such that the potential profile has fully 
developed. 
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unaltered, as seen from Fig. 4(c). 
For the chosen potential of V̄ = 40, Fig. 4(a) shows that deep into the 

electrode the macropore concentration approximately vanishes. This 
negligible macropore concentration will be an important assumption in 
our simplified model.11 Therefore, we investigate under which condi-
tions this will happen. In Appendix A we derive an expression, Eq. (A.7), 
for the dimensionless macropore concentration. With w̄m = w̄0, the 
macropore concentration will be small when 

c̄(̄t ∼ t̄RC) ≈ 2C̄me
kw̄0
C̄m

− Ṽ
2 ≪1. (31) 

With the parameters of Table 1 and k ≈ 1.3 this requires V̄ext≳15+

2Δϕ̄Ω, or about 0.4 V neglecting the ohmic drop. Eq. (31) is also plotted 
in Fig. 5. 

Eq. (31) is a requirement of the developed analytical model, and 
therefore poses a restriction to what parameters can be used. For typical 
porosities and potentials it will usually require C̄m = VTCm

2Fc0
≳1. So the 

electrode capacitance has to be sufficiently large to accommodate the 
inlet salt concentration c0. Unless much higher capacitance electrodes 
(Cm≫108 F/m3) are developed, this will typically limit application of 
our model to relatively low concentrations c0≪0.1 M. 

3.4. Salt adsorption capacity 

The highest salt concentration in the micropores is obtained under 
equilibrium conditions when c̄ = 1 and there is no current so Δϕ̄Ω = 0. 
In this case Eq. (26) gives w̄ = w̄max 

w̄max ≈ C̄mW
(

eV̄ext/2+μ̄att

2C̄m

)

≈ 0.87C̄m

[
V̄ext

2
+ μ̄att − ln(2C̄m)

]

, (32)  

where we used the first approximation of Eq. (28) with k ≈ 1.15. The 
Lambert W function can also be easily evaluated numerically, solving 
Eq. (27). Using the variables in Table 1, Eq. (32) gives w̄max ≈ 18 or 
2w̄max ≈ 36, very close to the equilibrium concentration for t̄ = 1 in 
Fig. 4(a) and also in Ref. [27] and its supporting information. 

Of this maximum counter-ion density ‘adsorption capacity’, only a 

Fig. 4. Simulation results halfway the channel at x = L/2 for V̄ ≈ 40 of (a) the macropore concentration c̄; (b) the electrolyte potential ϕ̄; (c) the half-ion con-
centration w̄m and (d) the counterion micropore concentration, compared to w̄0 from Eq. (30) and w̄max from Eq. (32). Using μ̄att = 1.5 from Table 1 gives 
c̄±m(t = 0) ≈ 4.5. This value can be seen for the t = 0 curve in Fig. 4(d). Once applied, the potential diffuses through the porous electrode over a time-scale tRC given by 
Eq. (16). With the parameters in Table 1 Eq. (16) gives ̄tRC = pmC̄m = 0.3. Over roughly this time-scale the potential can be seen to develop in Fig. 4(b) into a quasi- 
stationary profile coupled to the much slower evolution of the concentration profile. After t̄ ≈ 1 the shock is fully formed and the concentration approximately 
vanishes after some depth into the electrode. 

11 The observant reader may wonder where this macropore concentration goes 
as it does not seem to add much to the micropore concentration deep inside the 
electrode. Actually, it does go into the micropores but it primarily diffuses to 
near the spacer where the available potential is highest. This can be clearly seen 
from the macropore concentration profiles for small times. It is verified by the 
observation that after the RC-time the micropore concentration deep in the 
electrode has not increased much above 2w0. 
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part can be used for adsorption of ions from the channel. After the 
RC-time tRC part of it is taken up by w̄0 given by Eq. (30). We will denote 
the remaining amount12 with w̄m − w̄0, which with Eq. (26) reads 

w̄ = C̄mW
(

eṼ/2

2C̄m

)

− eμ̄att . (33) 

For the numbers in Table 1, neglecting ϕ̄Ω, and with V̄ext = 40, Eq. 
(33) gives w̄ ≈ 18.5 − 4.5 = 13, see Fig. 5. As a final criterion for our 
simplified model we require that the amount of salt that can be maxi-
mally stored in the two electrodes is substantially larger than that which 
is initially present in the spacer. This will allow focussing on desalina-
tion over time-scales t≳tU as indicated by Eq. (19). This can be quantified 
by 4wmaxpmALe≫c0ALs or, roughly 

w̄≫
L̄s

pm
. (34) 

For the numbers in Table 1, L̄s/4pm ≈ 1, so that for medium to high 
voltage this criterion will be satisfied. 

4. Simplified model derivation 

In this section we will use the assumptions discussed in the previous 
section to derive from the full model equations of Section 2.2 a simpli-
fied mathematical model. This model will be approximately valid on 
time-scales larger than the RC-time tRC, diffusive time tD, and transit 
time tU viz. Eq. (19). The applied potential V̄ext has to be sufficiently 
large to ensure a unit charge efficiency viz. Eq. (29) and negligible 
macropore concentration viz. Eq. (31), especially at the higher dimen-
sionless capacitances C̄m required by Eq. (34). 

4.1. Spacer 

The second inequality of Eq. (20), ULs/D≫1, allows us to neglect 
axial diffusion relative to advection (D∂2/∂x2≪u∂/∂x). The restriction to 
time-scales t≫tU of Eq. (19) allows neglecting the time-dependence of 
the concentration profile relative the advection term (∂/∂t≪u∂/∂x). 
Therefore, Eq. (10) can be approximated by 

u
∂c
∂x

= D
∂2c
∂y2. (35) 

The salt flux j [mol/s/m2] leaving the channel through each side 

j = − D
∂c
∂y

⃒
⃒
⃒
⃒

Ls/2
= D

∂c
∂y

⃒
⃒
⃒
⃒
− Ls/2

. (36) 

During charging j ≥ 0. Integrating Eq. (35) from y = − Ls/2 to Ls/2 
using the boundary conditions (36) gives 

(37)  

where the cup-mixing average concentration (note the relatively small 
difference in typography between c and ) is defined as 

(38) 

A factor − 2 appears in Eq. (37) since j is the positive flux entering 
one electrode, while what we need here is the flux leaving the channel 
through both sides. For a fully-developed concentration profile, the 
dimensionless Sherwood number, characterizing the total convective 
mass transfer relative to purely diffusive mass transfer [39], reads 

(39)  

where cse is the concentration at the spacer-electrode interface at y =

±Ls/2. For plug flow Shs = 12 [39]. Note that in the definition of the 
Sherwood number, Eq. (39), the flux towards both both sides is included. 
Combining Eqs. (37) and (39) 

(40)  

4.2. Concentration profile 

Satisfying Eq. (31) ensures that the macropore concentration will 
initially vanish. The adsorption will then take place in a relatively 
localized part of the porous electrode where there is still some capacity 
for adsorption w̄m < w̄max and there is some salt in the macropores. This 
leads to the salt shocks discussed in the introduction. Diffusion of salt 
from the channel will give rise to a linearly decreasing concentration 
profile up the shock location y = Ls/2 + ζLe as displayed in Fig. 6. This 

Fig. 5. Various measures for the dimensionless micropore capacity w̄m and that 
initially taken up by ions from the macropores and expelled from the counter- 
electrode w̄0 as a function of the dimensionless cell potential V̄ext = F

RTVext. The 
maximum capacity w̄max is only reached upon equilibrium. Including the effect 
of ohmic losses and a decreased macropore concentration, the remaining ca-
pacity is w̄m. In applying the indicated equations we used the parameters in 
Table 1 along with c̄ = 0.5, and Eq. (49) with ζ = 0.5 to evaluate the ohmic 
drop. The solid lines use the exact solution, while the dashed lines indicate the 
approximation of Eq. (26) which can be seen to strongly deviate only for low 
voltages, which give small arguments x in W(x). Validity of the analytical so-
lutions derived in this work require c̄(t ∼ tRC)≪1, which can be seen to be the 
case for V̄ext≳18 or Vext≳0.45. 

12 Part of it will also be taken up by the ions in the macropores. These ions will 
however preferentially adsorb near the channel-side of the porous electrode, 
where the available potential is highest. Therefore, we prefer to take this into 
account as an initial condition to our simplified model. The actual adsorption 
capacity will vary along the channel as the local macropore concentration de-
creases and the ohmic drop changes. Not taking this spatial and temporal 
variation into account constitutes on of the major simplifications in our 
analytical model. In Eq. (49) we find that the ohmic drop in the channel is 
approximately constant and that in the electrode can often be neglected so that 
ϕ̄Ω ≈ 1. Therefore, we could take the ohmic drop into account in an approxi-
mate manner using a constant V̄ = V̄ext + μ̄att − 1. 
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idealized concentration profile is parametrized by13 

(41) 
The assumption of a parabolic profile in the channel is of no conse-

quence and will only be used for visualization purposes. 

4.3. Electrode 

Inside the electrode at y = Ls/2, Eq. (41) gives ∂c
∂y = − cse

ζLe 
so that the 

salt flux inside the porous electrode j = − De
∂c
∂y reads 

j = De
cse

ζLe
. (42) 

Before the adsorption front, at locations closer to the spacer, we 
assume the micropore ion density is at its maximum wmax while beyond 
the front it is at its initial value w0. Therefore, with w ≡ wmax − w0 

constant, conservation of salt allows us to write14 

j = 2wpmLe
∂ζ
∂t
. (43) 

Combining Eqs. (42) and (40) gives 

(44)  

where 

Sh− 1 = S̃h− 1
+ ζ (45)  

with Sh the overall Sherwood number and 

S̃h ≡
ShsDLe

2LsDe
, (46)  

the spacer Sherwood number based on the electrode properties. The 2 
appears here because the channel Sherwood number of Eq. (39) was 
based on flux towards two sides. When S̃h≪1/ζ the mass transfer 
resistance of the electrode can be neglected. When S̃h≫1/ζ the mass 
transfer resistance in the spacer can be neglected. Eq. (44) describes the 
flux of concentration from c in the channel to 0 at the desalting front. 
The overall dimensionless mass transport resistance Sh− 1 is formed by 
the sum of a mass transfer resistance S̃h− 1 in the channel and ζ in the 
electrode. The latter increases as time-evolves and the desalting front 
moves deeper into the electrode but is limited to a maximum of unity. 
With the numbers in Table 1 and Sh = 140/17 from Eq. (39) we have 
S̃h ≈ 7. Therefore, initially the main mass transport limitation may be in 
the channel, but as ζ increases towards 1, the main mass transport 
limitation will be in the electrode in this case. We can derive from Eqs. 
(42), (44) and (45) that 

(47) 

Initially, when ζ = 0 this gives cse ≈ 0. In the limit ζS̃h≫1 of negli-
gible channel mass transfer limitations we have cse = . 

4.4. Ohmic drop 

In the negative electrode primarily cations are transported while 
j− ≈ 0 so we have a Boltzmann distribution Δϕ̄ = Δln(c). Inserting the 
idealized profile of Eq. (41) gives for the potential drop over the elec-
trode up to y a value Δϕ̄ = ln c(y)

cse
. Close to the spacer this can be line-

arized to give Δϕ̄ ≈
|y|− Ls/2

ζLe
. Extrapolating this approximation to the 

desalting front at ∣y∣ = Ls/2 + ζLe we obtain Δϕ̄ ≈ 1 as a rough 
approximation for the total ionic ohmic drop over the electrode.15 For 
the potential drop over the spacer we will use Ohm’s law to give Δϕ ≈

jFLs
〈κ〉 where 〈κ〉 ≈ 2F2D

RT similar to Eq. (15). Referring to Fig. 2, the ohmic 
drop ΔϕΩ consists of a drop over the electrode as well as half the 
channel, so that 

(48) 

With Eqs. (44) and (46) this gives 

Δϕ̄Ω ∼ 1+
Sh
2

DeLs

DLe
= 1+

Shs/4
1 + S̃hζ

. (49) 

Using the values in Table 1 and Shs ≈ 8 for Poiseuille flow, this gives 
Δϕ̄Ω ∼ 1+ 2

1+7ζ. For ζ ≥ 1/7 the spacer ohmic drop contribution to Δϕ̄Ω, 
the second term in Eq. (49), will be smaller than that of the electrode, the 
first term. 

Note that with the assumption of zero macropore concentration 
beyond the shock, we consider mass-transfer limited operation at the 
limiting current density. In this case the flux cannot be increased by 
increasing the cell potential, because the macropore salt concentration 
vanishes at the location of the adsorption front and the rate of diffusion 
becomes limiting. Our Eq. (42) for the flux does not include the cell 
potential, in contrast with for example Eq. (9) of Ref. [47], Eq. (17) of 
Ref. [49], or Eq. (4) of Ref. [67]. There will be a potential drop over the 
spacer, but this solely cannot be used to determine the flux under the 
present mass-transport limiting conditions. Our model thus equally de-
scribes both approximately constant current as well as approximately 
constant voltage operation. Note that this does not mean that the cell 

Fig. 6. The idealized concentration profile used in the analytical model. Inside 
the porous electrode the concentration decreases linearly up to a depth ζLe as 
described by Eq. (41). In the channel, the fully developed concentration profile 
will be approximately parabolic. 

13 The prefactor 5/4 comes from Eq. (38) using u(y) = 3U
2

(

1 −
(

y
Ls/2

)2
)

. 

Approximating the concentration profile with a parabolic profile it can be 

derived that the average concentration is given by . We content 

ourselves with using the cup-mixing average instead.  
14 Eq. (7) in dimensional form, pM

∂c
∂t = pMDe∇

2c − pm
∂wm

∂t , upon integrating 

over the electrode thickness from y = Ls/2 to y = Ls/2 + Le gives pMV d〈c〉
dt = jA/

2 − pmV d〈wm〉
dt . Here brackets denote y-averages and we used the divergence 

theorem to give pM
∫

De∇
2cdV = pM

∫
De∇c⋅dA = jA/2 for the influx of salt into 

the electrode. With w constant we can write d〈wm〉
dt = w dζ

dt and with w̄m≫1 we can 
neglect the left-hand side and obtain Eq. (43). 

15 As the concentration tends to zero near the desalting zone the potential drop 
diverges. However, the assumption of a Boltzmann distribution also breaks 
down here and an accurate evaluation of the ohmic drop requires a more 
careful consideration. 
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voltage has no influence in our model. Through Eq. (33) it influences w, 
which impacts the time dynamics through Eq. (43). A higher cell voltage 
means a higher w so that ζ increases slower and the flux can be kept 
higher for longer. 

4.5. Initial condition 

Fig. 4(a) and (c) shows that within one diffusional time ̄t≲1 all of the 
salt in the macropores has entered the micropores. This salt is adsorbed 
almost all near the entrance where the largest potential difference arises 
for adsorption. Since this occurs over the short diffusional time-scale not 
included in our model, we will model this as an initial condition for ζ. 

The number of moles of ions of either charge in the macropores 
2pMVc0 divided by the micropore volume pmV gives a micropore ion 
concentration 2wm,0 = 2c0pM/pm. Of the total available adsorption ca-
pacity w a fraction 

ζ0 =
wm,0

w
=

pM/pm

w̄
, (50)  

is immediately taken up by salt adsorbed from the macropores. Using the 
numbers from Table 1 we obtained w̄ = 13 for V̄ = 40 just below Eq. 
(33) giving ζ0 ≈ 0.1. So, in this case of the maximum w̄max = 18 about 
w̄0 = 4.5 is removed due to non-electrostatic adsorption, leaving w̄ =

13. After a time t > tRC the co-ions are all expelled and traded for 
counter-ions. After a time t > tD the salt in the macropores has entered 
the micropores as well, subtracting another w̄m,0 ≈ 1.35 on average, but 
primarily near the front of the electrodes. 

4.6. Dimensionless equations 

The resulting analytical model consists of Eqs. (40), (44) and (43), or 

(51)  

where w is given by Eq. (33). These equations can be written as 

(52)  

(53)  

in terms of the dimensionless flux or current density 

(54)  

here ζ̃ = S̃hζ, x̃ = Shs
Gz x̄, and ̃t = S̃h

2

2w̄pm
t̄, where x̄ = x

L and ̄t = De
L2

e
t, or 

ζ̃ =
ShsDLe

2LsDe
ζ, (55)  

x̃ =
DShs

UL2
s

x, (56)  

t̃ =
c0

8wpmDe

(
ShsD

Ls

)2

t. (57) 

In writing Eqs. (56) and (57) we considered w̄ to be a constant. In 

general we may use x̃ =
∫ Shs

Gz dx̄ and ̃t =
∫

S̃h
2

2pmw̄ d̄t.16 Note from Eq. (45) 

that ζ̃ = ζ/S̃h− 1 is the ratio of the electrode and channel mass transfer 
resistances. For small values ̃ζ≪1 the mass transfer resistance lies in the 
channel, while for ζ̃≫1 the electrode becomes the limiting factor. 

The first order system of Eqs. (52) and (53) will be accompanied by 

(58)  

ζ̃(̃t = 0) = ζ̃0, (59)  

as boundary and initial conditions, respectively. From Eq. (50): 

ζ̃0 = S̃h
pM/pm

w̄
. (60) 

For the numbers in Table 1 we find ζ0 ≈ 0.1. Therefore, the initial 
macro-pore concentration, which during the RC-time enters the micro-
pores near the spacer, will result in charging about 10 % of the electrode 
initially. However, since S̃h ≈ 7 this gives ̃ζ0 ≈ 0.7. In this case, even 10 
% charging gives a significant mass transfer resistance in the electrodes. 
Through the numerator of Eqs. (52) and (53) this ζ̃0 ≈ 0.7 will have a 
non-negligible impact on the time-evolution. For substantially lower salt 
concentrations,17 typically ζ̃0≪1 so ζ̃0 = 0 may be used as an approxi-
mate initial condition. 

5. Analytical solutions 

5.1. Exact solution 

Under the assumptions outlined in Section 3 we managed to reduce 
the computational model of Section 2 to two coupled partial differential 
Eqs. (52) and (53) for the dimensionless cup-mixing average channel 
concentration and electrode to channel mass-transfer resistance ratio 
ζ̃ = S̃hζ, with boundary condition (Eq. (58)) and initial condition (Eq. 
(59)). Although rarely the case for coupled partial differential equations, 
this problem admits an exact analytical solution, derived in Appendix B: 

(61)  

where we introduced a new dimensionless time 

t̂ ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2̃t

(1 + ζ̃0)
2

√

− 1, (62)  

that reduces to ̃t when ̃t≪1. Note that the effect of ζ̃0 on is to replace 

x̃→ x̃
1+ζ̃0 

and ̃t→ t̃
(1+ζ̃0)

2. The effect on ̃ζ is that ̃ζ→ζ̃− ζ̃0

1+ζ̃0
. Therefore, from now 

on we will simplify Eq. (61) using ζ̃0 = 0 knowing that we can always 
recover from the below equations and approximations the more general 
result by making these substitutions. For ζ̃0 = 0, Eq. (61) becomes 

(63)  

where 

t̂ ≡
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2̃t

√
− 1, (64)  

tends to t̂ ≈ t̃≪1 for small times and t̂ ≈
̅̅̅̅̅
2t̃

√
≫1 for large times. Note 

from Eq. (63) that ζ̃ and will have the same shape, and only a 
magnitude difference depending on time. This is illustrated in Fig. 7, 
which graphically shows the analytical solution of Eq. (63). That /ζ̃ 
depends only on time implies, by Eqs. (52) and (54), that the 

16 The decrease in channel concentration in the streamwise direction cam 
have an impact on the ohmic drop and therefore w̄. The salt concentration can 
influence the capacitance, which increases with increasing micropore charge 
density [48]. The parameter w only enters t̃ and, therefore such spatial effects 
can only be included in our model very crudely by making w depend on time. 

17 Or higher capacitance electrodes, which will equally increase w̄ and 
decrease ζ̃0. Also a larger spacer to electrode thickness ratio Ls/Le, through a 
decrease in S̃h, can make ζ̃0≪1. 
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dimensionless current density is spatially constant 

when ζ̃≫1. 
With dW(x)

dx = 1
x

W(x)
1+W(x) it can be verified by insertion that Eq. (61) 

satisfies Eqs. (52), (53), (58) and (59). In Appendix C a numerical 
verification is provided. The used Matlab code is provided for general as 
a supporting file. It may be extended to incorporate for example variable 
properties or different boundary conditions. 

5.2. Approximations to the exact solution 

The exact solution of Eq. (63) will require evaluation of the Lambert 
W function. In case the desired software or coding environments does 
not have the Lambert W function available it can be easily programmed 
through a root-solver using its definition, Eq. (27), or approximated by 
Eq. (A.1). To gain more insight into the analytical solution, here we 
consider further simplifications that are possible for small and large t̃. 
Using the approximation W(x) ≈ x≪1 of Appendix A, for small times 
t̂ ≈ t̃≪1 so that the mass-transfer resistance of the electrode can be 
neglected, we obtain 

(65) 

A more accurate approximation is obtained by integrating Eq. (53) 
assuming = 1 to give ζ̃ = t̂ . Integrating Eq. (52), assuming ζ̃ is inde-

pendent of time, gives = e
− x̃

1+ζ̃ so that 

(66)  

where the e-folding length-scale δ̃ = 1+ t̂ , or 

δ̃ =
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2̃t

√
. (67) 

For t̂≪1 the concentration profile will be independent of time. We 
note that an inlet velocity that decreases in time according to U = U0/
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2t̃

√
cancels the time dependence in x̂/δ̂ so that the concentration 

profile remains steady. This may be an advantageous operating regime, 
for example when there are limitations on the possible channel length. 
Since we derived our model with a constant velocity in mind, this 
operating strategy remains to be verified. 

In general, for large times ̂t≫1 we can use the approximation W(x) ≈
lnx≫1 of Appendix A so that, neglecting ln t̂ relative to ̂t, Eq. (63) gives 
ζ̃ ≈ t̂ − x̃. To retain approximate validity also for t̂ = 0 we slightly 
modify this to ζ̃ ≈ t̂(1 − x̃/δ̂), using that for large values of 1≪ t̂ = δ̃ −
1 ≈ δ̃. Therefore, ζ̃ = t̂ gives 

(68) 

This is a linear profile decreasing over a length-scale ̃δ. Note that for 
x̃≪δ̃ and ̃x≫δ̃ Eq. (68), valid for ̃t≫1, agrees with Eq. (66), valid for ̃t≪1. 
The approximations obtained in this section confirm the observation 
from Fig. 6 that the profile evolves from an approximately exponential 
profile for small times to a more or less linear profile for large times. 
They compare well with the exact solution, as shown in Figs. 7 and 8. We 
do note that the linear profile approximation of Eq. (68) for ̃t becomes 
inaccurate for low concentrations ≲0.2. Therefore it can only be used 
with good accuracy when 

x̃≲0.8δ̃ or x̃≫δ̃. (69) 

For intermediate values up to ̃t of the order 102, Eqs. (66) and (D.4) 
give better agreement near x̃ ≈ δ̃ as shown in Fig. D.14. 

5.2.1. Charged approximation 
No more salt can be adsorbed and the electrode is locally ‘fully 

charged’ when ζ = ζ̃/S̃h = 1. Eq. (63) for ζ̃ = S̃h and x̃ = 0 reads S̃h =

W(̂tet̂). From the defining relation of the Lambert W function, Eq. (27), 
this is automatically solved by ̂t = S̃h. Therefore, after a charging time 

t̃c ≡ S̃h(1+ S̃h/2), (70)  

the electrode will be fully-charged near the inlet. Solving Eq. (63) for ̃ζ =

S̃h gives for x̃ = x̃c 

x̃c = t̂ − S̃h+ ln
t̂

S̃h
. (71) 

This will give an indication of up to where the electrode is fully 
charged. The electrode upstream of this point will be already fully 
charged but the effect of this is not included in the analytical solution. 
Therefore, this is will be an under-prediction and can only be used as a 
rough approximation. The electrode will be fully charged when x̃c ≈ L̃. 
Eq. (71) can be solved for the time ̂t = t̂c,L that this happens, to give 

t̂c,L = W
(

L̂eL̃+S̃h). (72) 

Within the rough present ‘charged-approximation’ this time ̂tc,L will 
give an indication of when the whole electrode will be fully charged.18 

After a time ̃tc, given by Eq. (70), a growing region near the inlet will 
be fully charged and effectively useless for desalination.19 Therefore, we 
can at this time effectively move the inlet towards the position x̃ = x̃c since 
between x̃ = 0 and x̃c the channel concentration will remain approxi-
mately equal to the inlet concentration. We expect that Eq. (63), upon 
replacing ̃x with ̃x − x̃c, will approximately remain to hold for ̃x > x̃c and 

t̃ > t̃c.20 For large t̂≫1 we can use Eq. (68) to give ≈ 1 − x̃− x̃c

δ̃
. To 

summarize, we have 

ζ̃ − ζ̃0

1 + ζ̃0
≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W
(

t̂e
t̂− x̃

1+ζ̃0

)
x̃c < 0

S̃h − ζ̃0

1 + ζ̃0
x̃ < x̃c

W
(

t̂e
t̂− x̃− x̃c

1+ζ̃0

)
x̃ > x̃c > 0

(74)  

and 

(75)  

where ̃t in general is given by the definition in Eq. (62), ̃xc by Eq. (71). In 
Eq. (75) we leave the option open to use a different ̃xC ≡ x̃c

(
t − tlag

)
< x̃c 

18 Note that for L̂≫S̃h, Eq. (27) gives t̂c,L = L̃+ S̃h, in agreement with 
neglecting the logarithm in Eq. (71). For L̂≪1 Eq. (72) can be approximated by 
t̂ c,L = L̂eS̃h.  
19 This process can be relatively easily modelled numerically by checking for 

what x it holds that ζ(x, t − tD) ≥ 1 and setting c̄ = 1, moving the inlet condi-
tion to a new position where ζ(x, t − tD) = 1. Note that the introduction of the 
criterion ζ = ζ̃/S̃h = 1 introduces an additional variable S̃h into the model. A 

time-lag t = tD equates to a dimensionless time t̄ = 1 or t̃ = S̃h2
/pmw̄, intro-

ducing again an additional variable pmw̄ to the model.  
20 Replacing x̃ with x̃ − x̃c in Eq. (63) gives = ζ̃/ t̂ where 

ζ̃ ≈ W
(

t̂2e2̂t− x̃− S̃h/S̃h
)
. (73)   
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to account for a time-lag tlag between the electrode being fully charged 
and the concentration in the channel being affected. This time-lag is 
primarily due to the time it takes for the macropore concentration to 
equilibrate by diffusion. Therefore, we may take tlag ∼ tD, as we will do 
in the next section. See however Appendix E for more detailed consid-
erations. In the next section, we will compare the analytical solutions 
discussed in this section with those of the full model discussed in Section 
2. 

6. Model verification 

Here we will compare the exact solution of Eqs. (74) and (75) with a 
comprehensive 2D transient COMSOL model based on the general 
equations outlined in Section 2.2, see also Appendix I. Unless stated 
otherwise, the parameters in Table 1 are used, which are equal to those 
in Ref. [27]. Eqs. (33) and (49) then give the values for w̄ reported in 

Table 2. The dimensionless times t̄RC =
pm
pM

C̄m = 0.75 and t̄U =
L̄2

s
GzD̄ =

0.47. The simulation results for times ̄t≲1 have been discussed in Fig. 4. 

Here we focus on times t̄≳1 so the criteria of Eq. (19), t̄≳1, t̄RC, t̄U are 
satisfied. 

6.1. Spatial profiles 

In Fig. 9 we compare the halfway-the-channel concentration profiles 

Fig. 7. (a) The exact analytical solution (solid curves) for the dimensionless concentration c and mass-transfer ratio ζ̃ = t̂ (inset) of Eq. (63) is compared with the 
approximations (grey dashed lines) of Eq. (66) for ̃t = 0.1 and 1 and with the approximations of Eq. (68) for ̃t = 10 and 100. (b) The dimensionless current density 

of Eq. (54) becomes spatially constant and equal to /ζ̃ ≈ 1/ t̂ for ζ̃≫1 according to Eqs. (63) and (64), when the mass transfer resistance in the 

channel dominates over that in the channel. 

Fig. 8. The exact analytical solution (solid curves) for the dimensionless concentration (left) and mass-transfer ratio ζ̃ = t̂ (right) of Eq. (63) is compared with the 
approximations (grey dashed lines) of Eq. (66) for x̃ = 0.1 and 1 (left) and ̃t = 0.1 and 1 (right) and with the approximations of Eq. (68) for x̃ = 10 and 100 (left)and 
t̃ = 10 and 100 (right). 

Table 2 
Dimensionless parameters used in comparing the COMSOL simulations with the 
analytical solutions. The approximate dimensionless voltages correspond to 
Vext ≈ 0.8, 1, and 1.2 V at T = 293.15 K. Here w̄ is obtained from Eq. (33) using 
the parameters in Table 1 and neglecting the ohmic drop, taking ΔϕΩ = 0. Eq. 

(70) gives ̃tc = 31.5 so that ̄tc =
2w̄pm

S̃h2 t̂c ≈ 0.4w̄. Eq. (50) gives ζ0 =
4

3w̄ 
so ζ̃0 =

S̃hζ0 ≈ 7ζ0.  

V̄ext: 32 40 48 

w̄  9.3  13  17 
t̄c  3.9  5.2  6.5 
ζ0  0.14  0.1  0.08  
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from COMSOL simulations with the analytical profile of Eq. (41) using ̃ζ 
and from Eqs. (74) and (75), respectively. In Fig. 10 we provide the 
same results as 2D colour plots for the whole channel. Very good 
agreement can be seen for ̄t = 1,3 and 5. The analytical model assumes 
an infinitely thin salt adsorption zone, or desalination shock, resulting in 
linear concentration profiles inside the electrodes. The COMSOL models 
show a more extended adsorption zone, resulting in small deviations 
from the linear concentration profile. For t̄ = 7, the electrode can be 
seen to be fully charged near the inlet, which increase the channel 
concentration. The ‘charged approximation’ of Section 5.2.1 clearly is 
less accurate in this phase, and the errors increase. In Fig. 9 we also 
included the linear approximation of Eq. (68) without the charged 
approximation. Since strictly only valid for ̃t≫1 it does less well than the 
exact solution for ̄t = 1. Fortuitously, for the ̄t = 7 curve, not including 
the charged approximation improves the agreement for this particular 
case. 

6.2. Outlet concentration 

Fig. 11(a) shows the outlet concentration as a function of time for 
various applied potentials V̄ext and Fig. 11(b) for various channel lengths 
compared to L used in the other simulations. We see that around ̄t ∼ t̄U =

0.47 the outlet concentration starts to increase in time, and the agree-
ment with the analytical result of Eq. (75) becomes very good. After this 
transit time sometimes a “plateau region” can be seen [27]. Most of our 
simulations, except for the 4L case in Fig. 11(b), do not show such a 
constant low outlet concentration regime because the channel length 
was chosen relatively small. 

Eq. (70) predicts that around ̃tc ≈ S̃h(1 + S̃h/2) = 31.5 the electrode 
near the inlet becomes fully saturated and reaches ζ = 1. Adding the 
diffusion time lag tlag ∼ tD, Table 2 shows that the channel concentration 
is impacted between 5≲t̄c + 1≲7.5 in the voltage range 32 ≤ V̄ ≤ 48. 
From this time onwards, in the analytical solution the inlet is effectively 
placed at the location up to where the electrode is fully saturated, as 
discussed in Section 5.2.1. This results in the trend change visible be-
tween t̄ = 5 and 7.5 in Fig. 11(a). Note that for the longest channel, 
when the outlet concentration can be seen to increase, the electrode near 

the inlet is already fully charged.21 Therefore, only the analytical 
charged approximation is visible in this case. 

Fig. 12 shows how the analytical model also predicts quite well the 
location of the adsorption shock front where the macropore concentra-
tion approximately vanishes. 

With the analytical solution Eq. (61) of our simplified model Eqs. 
(52) and (53) sufficiently verified, in the next section we will use these 
relations to optimize various geometrical and operational parameters. 

7. Optimization 

Many metrics exists in the literature that can be used to compare the 
performance of different CDI experiments [25]. The analytical solution 
of the previous section, Eq. (61) and its approximations of Eqs. (66) and 
(68), will allow us to evaluate these metrics analytically. In this way the 
relation between geometrical and operational parameters and perfor-
mance can be studied. 

Both the approximation of Eq. (66) for small ̃t and the concentration 
profile of Eq. (68) for large dimensionless times depend only on the 
variable x̃/δ̃. For convenience we here summarize these main results 

(76)  

where we note that for rough engineering calculations both equations 
may suffice for any time. 

We have thus managed to find an approximate solution that depends 
only on22: 

x̃
δ̃
=

x̃
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2̃t

√ =
x̄tU/ts
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + S̃h
2

w̄pm
t̄

√ =
x/U

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

L2
s

ShsD

)2

+
L2

s
4De

t
pm w̄

√ , (77)  

where we introduced the characteristic diffusion time-scale for the 
spacer ts ≡ L2

s /ShsD in terms of which23 x̃ = tU
ts
x̄. For t̃≪1, the spatial 

variation depends only on x̃ = x̄tU/ts, proportional to the number of 
transit-times that fit into one spacer diffusion time. When ̃t is no longer 
small, the mass transfer resistance in the electrodes starts to play a role 
and will modify this spatial variation. 

As further discussed in Appendix F, there are many metrics that can 
be optimized. Here, we give priority to maintaining a low salt outlet 
concentration throughout the charging cycle, maximal productivity or 
flow rate per unit area, and minimal specific energy dissipation. 

Fig. 9. Comparison of the dimensionless concentration c̄ between simulation 
and the analytical solution of Eq. (41), including the charging approximation 
(Eqs. (74)–(75)), and the approximate solution (Eq. (68)) halfway the channel 
at x = L/2 and V̄ext = 40, using the parameters in Tables 1 and 2. The 
respective profiles in the spacer and electrode are determined through Eq. (41). 

21 Note that in Fig. 11(b) the value for w̄, and therefore the time at which the 
electrode is charged near the inlet, is the same for all curves. However, the 
COMSOL results show a visible trend change later for longer channels. This can 
be only in small part attributed to the time-lag tU = L/U for the impacted flow 
near the inlet to reach the outlet, since for L = 4 the transit time halfway the 
channel ̄tU/2 ≈ 1. To a larger degree it seems that the transition to the charged 
approximation becomes more smeared out for larger L.  
22 There are a few things to note that make things slightly more complicated: 

1) unless it is small compared to 1 the value of ̃ζ0 will also play some role 2) For 
small to moderate t/tU, the time-scale tU will also play a role, as discussed in H. 
3) When the desalting front reaches the end of the electrode the additional time- 
scale t̃c = S̃h(1 + S̃h/2) of Eq. (70) enters the solution, approximately in the 
form of Eqs. (74)–(75) 4) The parameter w̄ used to define ̃t in Eq. (57) is further 
related to the dimensionless V̄ext, μ̄att, C̄m, and pM/pm in Eq. (33). 5) In between 
the limits ̃t≪1 and ̃t≫1 the behaviour of the exact solution Eq. (61) depends on 
a more complex combination of x̃ and t̃.  
23 Also: S̃h = L̄s

2
tD
ts 

so that t̃ = L̄2
s

8w̄pm

tD
t2
s
t but we prefer to keep S̃h here. 
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7.1. Channel length L and charging time T 

The dimensionless penetration depth δ̃ =
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2̃t

√
will increase in 

time. As long as the channel length is larger than this depth, the outlet 
concentration will remain low relative to the inlet concentration. To 
maintain a low outlet concentration24 throughout the charging phase, 
but not use more electrode area than strictly needed, we propose to use a 
channel length approximately equal to the penetration depth at the end 
of the charging phase. Note that in case T̃≫1 this will mean that initially, 
at the start of the charging phase, a large fraction of the electrode will be 
inactive, as illustrated in Fig. 7. However, this choice allows us to make 

no compromise and always ensure a high salt-rejection. 
Additionally, to ensure that the electrode is not unnecessarily thick 

we will demand that at the end of the charging phase the electrode is 
fully charged at x = 0, so T̃ = t̃c.25 Eq. (70), together with T̃ = t̃c and ̃L =

δ̃ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2T̃

√
, gives 

Fig. 10. Dimensionless concentration profiles c̄(x, y, t) for various dimensionless times using the parameters in Tables 1 and 2 at V̄ext = 40 (top) simulated in 
COMSOL; compared to (bottom) the analytical profile of Eq. (41) using Eqs. (74) and (75). 

Fig. 11. Dimensionless cup-mixing concentration at the channel outlet, out given by the COMSOL simulation, compared with the analytical solution, including the 
charged approximation (Eq. (75)), and the approximate solution (Eq. (68)) using the parameters in Tables 1 and 2 at (a) V̄ext = 32, 40, and 48 and (b) for channel 
lengths L/4, L/2, L, 2L and 4L. Eq. (75) gives an excellent match to the simulation for tD < t < tc + tD and approximately includes the effect of the electrode becoming 
locally fully charged for t > tc + tD. The time t̄c + 1 can be clearly seen by the trend change in the analytical solution. 

24 For small times ̃t≪1, inserting L̃ = 1 in Eq. (65) gives ≈ 1/e ≈ 0.37. This is 
not particularly small, so that in this case, depending on the requirements, a 
slightly longer channel should be chosen. Doubling the channel length reduces 
the outlet concentration to a perhaps more acceptable e− 2 ≈ 0.13. 

25 Note that part of the electrode material near the outlet will remain under-
used in this case. Therefore, to save material, the electrode could be made 
thinner there. The analytical result for ζ(x,T) can be used to find the optimal 
shape. Alternatively, a single electrode may be shared between two counter- 
current flow-channels in a monopolar stack so that the electrode is used fully. 
To avoid advective cross-over, the hydraulic resistance of the electrodes should 
be sufficiently high in this case. In case it will not be strictly necessary to always 
maintain a low outlet concentration throughout the charging phase, for 
example when continuously recycling the salt solution, Eq. (71) may alterna-
tively be used to relate T and L, so that entire electrode is fully charged at the 
end of the charging phase. 
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T̃opt = S̃h(S̃h/2+ 1), (78)  

L̃opt = S̃h+ 1. (79) 

Inserting dimensions gives26 

Topt = pmw̄
(

L2
e

De
+

4LsLe

ShsD

)

, (81)  

Lopt =
ULsLe

2De
+

UL2
s

DShs
. (82) 

The first term in these expressions is the result for negligible spacer 
mass transfer resistance S̃h≫1 or Ls≪Le

ShsD
2De

. The final term dominates in 
case the mass transfer in the electrodes is negligible compared to that in 
the spacer. 

7.2. Productivity 

The productivity P [m/s] gives the volume of water desalinated per 
unit time, per unit geometrical frontal electrode area. This is a useful 
performance metric as it divides something desirable; the volume of 
treated water, by something that is undesirable due to the costs associ-
ated with it; electrode area. Inserting Eq. (82) gives in the productivity 
for an optimally long electrode as 

P ≡
ULs

L
=

1
Le

2De
+ Ls

DShs

. (83) 

The inverse of the productivity thus follows as the sum of the inverse 
of two mass transfer coefficients: 2De/Le for the two electrodes and 
DShs/Ls in the spacer. Somewhat counter-intuitively, a decrease in 
spacer thickness can thus lead to a higher productivity. Increasing the 
productivity, given the used constraints of Eq. (79), thus purely requires 
improving the mass transport. We note that increasing Shs, for example 
through fluidic dispersion in a porous spacer or by means of static 

mixers, has the same effect as decreasing the spacer thickness Ls. On the 
other hand, mass transport inside the electrodes can be improved with 
either thinner electrodes or with additional mixing by means of flow 
through the electrodes. 

7.3. Electrode/spacer thickness 

For a fully-developed laminar flow the planar Hagen-Poiseuille 
equation gives for the pressure drop 

Δp = 12μ U
L2

s
L. (84) 

A larger spacer thickness will allow processing more salt at the same 
velocity or pressure drop. However, a too large thickness can give 
additional mass transfer resistance as well as ohmic resistance. Several 
metrics related to energy efficiency can be devised, see Appendix F.5. 
Here we aim to minimize the dissipation per unit area with respect to the 
spacer distance. The dissipation per unit area due to pumping ULsΔp/
(
Lηp
)
= PΔp/ηp is given by the product of volumetric flow rate and 

pressure drop, divided the area and the pump efficiency ηp. The ohmic 
dissipation in the spacer per unit area, jFΔϕΩ,s, is given by the product of 
the current density jF and the average ohmic drop in the spacer ΔϕΩ,s. 
Using conservation of salt we find, in the case that all inlet salt is 
adsorbed, that the flux j(z) is constant and equal to the channel-averaged 
flux 〈j〉 = ULsc0/L = Pc0. The concentration, and therefore the con-
ductivity, will decrease along the channel away from the inlet. From the 
simulations, we find it to be a reasonable approximation to calculate the 
average ohmic dissipation using half the inlet conductivity. This gives 
for the dissipated power in the spacer per unit area [W/m2] 

Pspacer ≈ (F〈j〉 )2Ls

κ0
+

12μU2

ηpLs
= P2

(

FVT c0
Ls

D
+

12μL2

ηpL3
s

)

, (85)  

where we used Eqs. (84) and (15) to give κ0 = 2FD
VT

c0. Counter-intuitively, 
the ohmic losses increase with increasing c0 because the current in-
creases with increasing c0. 

The ratio of the spacer dissipation and the productivity Pspacer/P 
gives the number of Joules dissipated in the spacer per cubic meter of 
water processed. Clearly, this is something one would want to minimize. 
The productivity P, on the other hand is something to be maximized. To 
take both of these desires into account we propose to maximize the ratio 
of these two metrics, or P2/Pspacer. This will be equal to minimizing 
Pspacer/P2, which is given by the expression between brackets in Eq. (85). 
Note that this is the first and only significant trade-off we make. In this 
minimization, we do not assume a fixed channel length L but instead 

Fig. 12. (a) The dimensionless location ζ =
y− Ls/2

Le 
of the concentration shock in the electrode at V̄ext = 40 and (b) the x-averaged depth of the concentration shock in 

the electrode at V̄ext = 34, 40, and 48, given by the simulation (there where c̄ = 0.05), the analytical solution with the charged approximation (Eq. (74)), and the 
approximate solution (Eq. (68)). Shortly after the electrode becomes locally fully charged (t > tc), the shock front begins to encroach more rapidly to account for the 
inability of the charged electrode in x < xc to adsorb salt. 

26 We are constrained by T≫L/U implied by Eq. (19), which is shown in Eq. 
(F.1) to guarantee a high flow-efficiency. Eq. (34) showed this to be satisfied 
when 

Ls

Le
≪

pmw
c0

(80)  

So, the higher the amount of salt pmw that can be stored per unit volume, relative 
to the inlet concentration c0, the thicker the spacer can be made relative to the 
electrode. Inserting T from Eq. (81) and L/U from Eq. (82) shows that these 
optimal values roughly satisfy this constraint. 

J.W. Haverkort et al.                                                                                                                                                                                                                           



Desalination 582 (2024) 117408

16

include its dependence on Ls through Eq. (82). Inserting this relation and 
solving ∂

(
Pspacer/P2)/∂Ls = 0 gives after some algebra 

S̃hopt ≡
ShsD
2De

Le

Ls
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
U2

opt

U2

√

, (86)  

where 

Uopt ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
FVT c0Dηp

12μ

√

Shs. (87) 

The optimal spacer to electrode mass transfer coefficient ratio is thus 
equal to one (when U≫U2

opt) or larger than one. So the mass transfer in 
the channel should be always at least as good as that in the electrode. 
Inserting Eq. (86) into Eq. (83) gives 

P =
DShs/Ls

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + U2
opt

/
U2

√ . (88)  

7.4. Optimal parameters 

We here summarize the various formulas for optimal parameters 
derived above and insert typical values from Table 1. From Eq. (88) we 
find that when U is at or above Uopt the productivity is close to its 
maximum and can no longer be improved with increasing the velocity. 
There are however disadvantages to increasing the velocity more than 
needed, for example an increase in pressure drop. Therefore, we propose 
Uopt as an optimal value. This gives a productivity that is less than 20 % 
below its maximum. 

The spacer thickness then follows from the desired productivity P 
from Eq. (88) as 

Ls,opt =
DShs/P
1 +

̅̅̅
2

√ ≈
23mm

P[l/h/m2]
. (89) 

For the values in Table 1 used in our simulations and in the simu-
lations and experiments of Ref. [27] the productivity is 12.6 l/h/m2, see 
also Table 3. This gives an optimal spacer thickness of 1.85 mm, 
compared to the used 0.8 mm. Since the productivity is the volumetric 
flow rate of treated water per unit area, the choice for a desired pro-
ductivity will typically depend on economical arguments related to the 
cost of materials and the value of desalinated water. For a more ambi-
tious productivity the optimal spacer thickness can become very thin. 

With U = Uopt, Eq. (86) shows that S̃hopt =
̅̅̅
2

√
so Eq. (86) gives 

Le,opt

Ls,opt
=

2
̅̅̅
2

√
De

ShsD
≈ 0.17, (90)  

in the final expression inserting the values from Table 1. The electrode 
should thus be substantially thinner than the spacer, to keep their mass 
transfer coefficients of similar size. Note that Eq. (90) combines with Eq. 
(34) to give c0≲pmw providing a maximum inlet concentration for a 
given capacitance and voltage. 

Next, we turn to the optimal velocity which by Eq. (87) depends only 
on c0, which in the below equations has units of mol/m3 or mM 

Uopt ≈ 0.14
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c0[mM]

√
m
/

s, (91) 

where we assumed a pump efficiency ηp = 80 %. So even for a low 
c0 = 1 mM the optimal velocity is 0.14 m/s, which is several orders of 
magnitude higher than what is typically used. Correspondingly, with 
such high velocities the channels should be much longer. Eqs. (78) and 
(79) become, after inserting Uopt from Eq. (87) 

Topt = 8
(

1+
̅̅̅
2

√ )
w̄pmDe

(
Ls,opt

ShsD

)2

≈ 1.8
(
Ls,opt[mm]

)2

c0[mM]
h, (92)  

Lopt =
(

1+
̅̅̅
2

√ )
L2

s,opt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
FVT c0ηp

12μD

√

≈ 22
(
Ls,opt[mm]

)2 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c0[mM]

√
m, (93)  

where we used a constant w = 0.29 M corresponding to the 1 V values in 
Tables 1 and 2 using c0 = 1 mM.27 With an optimal spacer thickness of 
1.85 mm and c0 = 1 mM, this gives a channel length of 76 m and a 
charging time of 6.2 h. Such long channels may be fabricated using 
serpentine flow fields. We note that higher capacitance electrodes with a 
higher w̄ give a longer charging time Topt, increasing the flow efficiency 
of Eq. (F.1). Unless a higher capacitance comes at the expense of for 
example a lower macro porosity, the effect seems to be primarily 
beneficial. 

Inserting Uopt, Lopt, and Eq. (90) into Eq. (84) gives 

Δpopt =
(

1+
̅̅̅
2

√ )
FVT c0ηpShs ≈ 0.4(c0[mM] )bar, (94)  

resulting in a substantial pressure drop of 0.4 bar for c0 = 1 mM and a 
high 7.7 bar for the c0 = 20 mM used in the experiments of Ref. [27]. 
The optimal processing of more concentrated brines with CDI thus re-
quires rather high pressure equipment. Practical considerations like the 
maximum head of a pump, or the maximum pressure allowed by the 
cells to avoid leakages will therefore determine the maximum salt 
concentration that can be optimally processed. 

In Table 3 we compare the optimal values for two different cases, one 
with the same productivity of 12.6 as used in the simulations and 
Ref. [27], and a more ambitious case with a twenty times higher pro-
ductivity. This is an extremely high productivity, an order of magnitude 
larger than what is typically achieved in CDI or similar techniques 
[25,45]. 

8. Conclusion and discussion 

We provided a comprehensive mathematical analysis of flow-by 
capacitive deionization in the mass-transport limited regime. The 
various conditions on time-scales, Eq. (19), electrode capacitance, Eqs. 
(31) and (34), and geometry, Eq. (20), are often satisfied for the con-
centrations and potentials used in CDI. For a modified Donnan model 
with unit charge efficiency, we found an exact expression for the 
micropore potential drop: Eq. (26). A simplified expression, Eq. (49), 
was obtained for the ohmic drop. 

The model equations were reduced to two dimensionless coupled 
partial differential equations, Eqs. (52) and (53), for which we were able 
to find an exact analytical solution, Eq. (61), and excellent approxima-
tions: Eqs. (66) and (68). The analytical solution was verified against a 
numerical solution and successfully compared to COMSOL simulations 
using a comprehensive 2D transient model. 

Using the approximate solutions we found expressions for the 

Table 3 
Optimal geometrical and operational parameters for two different throughput 
productivities, the second 20 times larger than the first. They both correspond to 
c0 = 1 mM and have the same velocity of Uopt = 0.14 m/s and pressure drop of 
Δpopt = 0.4 bar. We used D = 2De = 1.9⋅10− 9 m/s, μ = 1 mPa s, Shs = 140/17, 
pm = 0.3, w = 0.29 M (from Eq. (33) with Cm = 1.5⋅108 F/m3 and V̄ = 40), VT =

25 mV, and ηp = 0.8.  

P= ULs/L: 12.6 l/h/m2 252 l/h/m2 

Ls,opt 1.85 mm 93 μm 
Le,opt 320 μm 16 μm 
Lopt 76 m 19 cm 
Topt 6.2 h 1 min  

27 This value is obtained from Eq. (33) and weakly depend on the concen-
tration. For the twenty times higher c0 = 20 mM used in the simulations it gives 
w ≈ 0.26 M and the 1.8 in Eq. (92) changes to 1.6. 
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optimal channel length and charging time that maintains a low outlet 
concentration up to the point the electrode is fully charged near the 
inlet. In order to find optimal values for the spacer and electrode 
thickness, we assumed a desired volumetric flow rate per unit area, or 
productivity. In Eq. (83) we find that the inverse of the productivity is 
given by the sum of the inverse of the channel and electrode mass 
transfer coefficients, the expected equivalent circuit of two mass transfer 
resistances in series. The ratio of the productivity and spacer energy 
dissipation per unit volume of treated water is maximized, resulting in 
an optimal electrode to spacer thickness ratio of around 0.17, viz. Eq. 
(90). In turn, the optimal spacer thickness is inversely proportional to 
the desired productivity viz. Eq. (89). The resulting pressure drop of 
these optimal conditions is found to be around 0.4 bar per 1 mM of inlet 
concentration. Therefore, operation under these optimal conditions will 
only be feasible at relatively low concentration. We found that with the 
proper proposed design parameters it should be possible to process a 
very high 250 l/h/m2 of 1 mM brackish water in a 0.2 m long channel 
with a charging time of 1 min. This analysis gives the thorough quan-
titative understanding necessary to show the direction in which CDI cells 
should be designed to be as productive and efficient as possible. 
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Appendix A. Lambert W approximation 

The Lambert W function, referred to as ProductLog in Mathematica, is a special function defined by Eq. (27). We are interested here in positive 
arguments, giving the zeroth branch, sometimes denoted with W0. We found that this function can be approximated with a relative error always below 
3% using 

W(x) ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x
1 + 0.8x0.8 x < 2.3

ln
kx
lnx

x ≥ 2.3,
(A.1)  

where 

k(x) ≈
1 + (ln

̅̅̅
x

√
)

0.77

(lnx)− 1
+ (ln

̅̅̅
x

√
)

0.77 for x ≥ 2.3. (A.2) 

The function k varies only weakly between 1.26≲k≲1.39 for 5 ≤ x ≤ 104 and tends to unity in the limit of x→∞. 

In Eq. (26) we have x = c̄eṼ/2

2C̄m
. Assuming x≳2.3, or using the definition in Eq. (25) 

ΔṼ
2

≳ln
(

4.6C̄m

c̄

)

, (A.3)  

we can use the second approximation in Eq. (A.1) with k ≈ 1.3 approximately constant, to approximate Eq. (26) as 

Δϕ̄m =
w̄m

C̄m
≈

Ṽ
2
− ln

(
2C̄m

kc̄

[
Ṽ
2
+ ln

(
c̄

2C̄m

)])

. (A.4) 

From this we calculate Δϕ̄D = V̄ext
2 − Δϕ̄Ω − Δϕ̄m to be given by 

Δϕ̄D = ln
(

2C̄m

kc̄

[
Ṽ
2
+ ln

(
c̄

2C̄m

)])

− μ̄att, (A.5)  

so that with w̄m ≈ c̄
2eΔϕ̄D+μ̄att 

w̄m ≈
C̄m

k

[
Ṽ
2
+ ln

(
c̄

2C̄m

)]

. (A.6) 

Interestingly, this approximation W(x) ≈ lnx
k , differs from that of Eqs. (A.1) and (A.4). Without the approximation of Eq. (A.1), Eq. (A.6) would read 
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w̄m = c̄eμ̄att
2 eV̄ext/2− W(x) which with W(x)eW(x) = x would be equal to the solution of Eq. (26). However, the approximation of Eq. (A.1) does not exactly 

satisfy this relation, so that a small difference arises between these expressions. However, as long as x ≥ 2.3 the difference is small. The expression of 
Eq. (A.6) has the advantage of being slightly simpler, while the expression of Eq. (A.4) is much less sensitive to the exact value of k used and is accurate 
for large arguments using the simple constant value k = 1, which is therefore used in the second approximation of Eq. (28). 

Eq. (A.5) gives with some algebra for c̄ = 2w̄e− μ̄att − Δϕ̄D , 

c̄ ≈ 2C̄me
kw̄m
C̄m

− Ṽ
2 . (A.7)  

Appendix B. Exact solution derivation 

Here we derive an exact solution to Eqs. (52)-(53), which satisfy the following conservation equation 

∂c
∂x̃

+
∂ζ̃
∂̃t

= 0, (B.1)  

where, from Eq. (53), 

c = (1+ ζ̃)
∂ζ̃
∂̃t
. (B.2) 

Inserting this into Eq. (B.1) gives 

∂ζ̃
∂x̃

∂ζ̃
∂̃t

+(1+ ζ̃)
∂2ζ̃
∂̃t∂x̃

+
∂ζ̃
∂̃t

= 0, (B.3)  

which can be written as 

∂
∂̃t

[

(1+ ζ̃)
∂ζ̃
∂x̃

]

+
∂ζ̃
∂̃t

= 0. (B.4) 

This can be integrated with respect to ̃t to give 

(1+ ζ̃)
∂ζ̃
∂x̃

+ ζ̃ = ζ̃0, (B.5)  

where ̃ζ0 is the solution at ̃t = 0, since for our initial conditions ∂ζ̃
∂x̃
= 0 at ̃t = 0. Equation (B.5) can be classified as particular case of an Abel equation of 

the second kind. We can solve it, for example using the method of characteristics, to give 28 

ζ̃ − ζ̃0

1 + ζ̃0
= W

(
e

f (̃t)− x̃

1+ζ̃0

1 + ζ̃0

)

. (B.6) 

Inserting into Eq. (B.2) and solving the boundary condition c(x̃ = 0, t̃) = 1 gives 

f (t) = t̂ + ln(̂t(1+ ζ̃0) ), (B.7) 

where ̂t is given by 

t̂ ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2̃t

(1 + ζ̃0)
2

√

− 1 ≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t̃
(1 + ζ̃0)

2 ≪1,

̅̅̅̅
2̃t

√

1 + ζ̃0
≫1.

(B.8)  

Eq. (B.7) satisfies (1 + ζ̃0)
2df

dt = 1
t̂
. Eq. (B.2) gives c = (ζ̃ − ζ̃0)

df
dt so c = 1

t̂
W
(

e
f (̃t)− x̃

1+ζ̃0

1+ζ̃0

)

and from Eq. (B.6) we find ζ̃− ζ̃0

1+ζ̃0
= t̂c. 

Appendix C. Numerical solution of the simplified model 

Conveniently, the system of equations (52)-(53) with conditions (58) and (59) has no free parameters so that it has a single unique solution that we 
have to obtain only once. The same solution can be used for any inlet concentration, cell voltage, electrode capacitance, etc. by converting back the 
dimensionless variables of Eqs. (55)-(57) to dimensional variables. When the numerical solution is obtained once for a large enough range of ̃t and x̃, 

28 We may introduce a new variable s in terms of which dζ̃
ds = 1 + ζ̃ so that dζ̃

ds = ζ̃0 − ζ̃. This can be solved to give ζ̃ = ζ̃0 + Ce− s so that x̃(s) = s(1 + ζ̃0) − ke− s + C2. 
Solving for s and inserting into ζ̃ = ζ̃0 + Ce− s gives the solution. 
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the solution for any channel length and charging cycle duration can be obtained from it. 
The coupled partial differential equations Eqs. (52) and (53) will here be solved using a finite difference solution. We introduce a computational 

grid consisting of Nx nodes located at x̃i = iΔx̃, i = 1…Nx, and Δx̃ = x̃Nx/Nx. On this grid we have the approximations and 
ζ̃h,i(t) ≈ ζ̃(x̃i, t̃). The first order derivative in (52) is then discretized by the central difference approximation 

(C.1) 

After spatial discretization, the system (52)-(53) can thus be written as 

(C.2)  

(C.3)  

where Dh is the Nx × Nx matrix that represents the central difference approximation (C.1). This semi-discrete system can be viewed as consisting of one 
evolution equation, (C.3), and a constraint (C.2). This constraint introduces so-called stiffness in the problem, so that we propose to use the implicit 
BDF2 time integration method and to handle the constraint (C.2) fully implicitly in time. This leads to the following system of equations that is solved 
at each time step: 

(C.4)  

(C.5) 

Here is the approximation to (x̃i, t̃n
). This is a coupled system of nonlinear equations that can be efficiently solved with Newton’s method. The 

required Jacobian matrices ∂fh
∂ch 

and ∂fh
∂ζ̃h 

can be computed analytically. The overall accuracy of the discretization method is second order in space and 

time. The used Matlab code will be free to use as a supporting information file. The result for four different times ̃t = 0.1, 1, 10, and 100 is shown in 
Fig. C.13. The agreement with the analytical results gives confidence in the correctness of the analytical solution as well as the numerical imple-
mentation.

Fig. C.13. The dimensionless concentration and mass-transfer ratio ζ̃ obtained from solving Eqs. (C.4) and (C.5) (crosses) and the exact solution from Eq. (61) 
(coloured solid lines) for ̃t = 0.1,1, 10,100. 

Appendix D. Approximate solutions 

For ζ̃≪1 the mass transfer resistance in the electrodes is negligible compared to that in the channel. Integrating Eq. (52) with ζ̃ = 0 gives 

(D.1) 

This time-independence approximation is only a good approximation for small times ̃t≪1. For larger times we find the following expressions to be 
reasonably good approximations 

(D.2)  

(D.3)  

(D.4) 

These approximations are compared with the numerical solution in Fig. D.14 and agree very well, except for very low concentrations. Similarly, 
another insertion works better when ̃t ∼ O

(
103). 
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Fig. D.14. The exact analytical solution (solid curves) for the dimensionless concentration of Eq. (63) is compared with the approximations (grey dashed lines) of 
Eqs. (66) (̃t = 0.1), (116) (̃t = 1), (117) (̃t = 10), (118) (̃t = 102) 

Appendix E. Time lag 

The diffusion of salt into the electrode will not suddenly stop when the electrode is fully charged. Ions will no longer appreciable enter the mi-
cropores, but the concentration in the macropores is still smaller than that in the channel. Therefore, the diffusion of salt into the electrode will 

continue over a timescale of the order of the diffusion time tD = L2
e/De or ̃tD = S̃h2

/pmw̄. However, Fig. E.15 shows that the diffusion of salt into the 
charged electrode continues for much longer. The reason is that as the current density decreases, the total ohmic drop reduces, increasing w̄. A lower- 
estimate for the associated time-lag tlag is obtained by multiplying the initial superficial diffusion flux Dec0pm/Le with the electrode area A and tlag to 
obtain the number of moles of salt added and equate this to to the number of moles pMALec0/2 to be added to the macropores and (w̄max − w̄0 −

w̄)c0ALepm to be added to the micropores to give

Fig. E.15. Simulated dimensionless macropore concentration gradient in the y-direction, ∂c̄
∂ȳ, inside the porous electrode, using the parameters in Tables 0 and 1 for 

V̄ext = 40. While the shock reaches the electrode edge around ̄t ≈ 4, this is still only just beginning to have an effect on the flux at the spacer-electrode boundary at 
t̄ = 7. This is in part due to the diffusion time to fill the macropores, but additional adsorption capacity in the micro-pores is also freed up as the current density and 
therefore the ohmic drop decreases. 

t̄lag ≈
pM

2
+(w̄max − w̄0 − w̄)pm ≈

pM + 0.87C̄mpm

2
, (E.1)    

where in the second expression we used the approximation of Eq. (32) to give w̄max − w̄ ≈ 0.87C̄mΔϕ̄Ω/2 and we neglected the second term in Eq. (49) 
assuming Shs

1+ζ̃
≪1 so that Δϕ̄Ω ∼ 1. For the numbers in Table 1 this gives ̄tlag ≈ 0.3. This is an order of magnitude smaller than the time between the 
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arrival of the shock at the back of the electrode and the vanishing of the flux near the inlet in Fig. E.15. In part this is because the flux will decrease in 
time and only when it has decreased to zero does the ohmic drop vanish and can the additional micropore capacity be used. However, it is also clear, 
from e.g. Fig. 4, that the adsorption region is in actuality much more spread out than in our model. As a result, the shock arrives earlier than we predict 
and more additional micropore capacity than we predict will become available as the potential equilibrates. To take into account the effects of a more 
spread-out adsorption zone will require further investigation beyond the scope of this work. 

After the time-lag, the diffusion into the electrode ceases locally and only then the average channel concentration profile will be impacted by the 
electrode being fully charged. Next, it takes roughly another transit time x/U before this channel change is noticed further downstream, but in the 
present approximation we will not take this into account. We therefore modify Eq. (71) to x̃C ≡ x̃c (̂tC) or 

x̃C = t̂C − S̃h+ ln
( t̂C

S̃h

)
, (E.2)  

where ̂tC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2
(
t̃ − t̃lag

)√

− 1 includes the time-lag. While x̃c gives the approximation location at which the electrode is fully charged, the position 
x̃C will roughly indicate the location at which the concentration profile will be impacted. Further downstream the electrode will not be fully charged so 
the desalination can continue. 

Appendix F. Metrics 

Many different metrics for CDI exist in the literature. A useful feature of an analytical model is that these metrics can be evaluated analytically as 
well, providing ‘structure-property’ relations linking design parameters to performance. In this way, the cell geometry and operational conditions can 
be chosen in such a way that they maximize the desired performance metric. 

F.1. Charge efficiencies 

Several commonly used measures of efficiency can be readily evaluated on the basis of our simplifying assumptions and conditions:  

• The Coulombic efficiency λc is the instantaneous ratio of electronic current and the rate of ion charge adsorption.29 Since no leakage currents [51], 
for example due to water splitting or other side-reactions, have been included in the present model, we have a Coulombic efficiency λc = 1.  

• The flow efficiency Λflow [24,31] quantifies the inefficiency associated with the finite volume of the spacer: during the first transit time tU, the 
residence time is not as long as for newly entering water, resulting in poorer desalination. With T the charging time, the flow efficiency can be 
approximated by [31] 

Λflow ≈ 1 − tU
/

2T. (F.1) 

Our model is only valid for times t≳tU, see Section 2.3. Therefore, we typically consider T≫tU so that Λflow ≈ 1.  

• The differential charge efficiency λ = tanhϕ̄D is assumed to be approximately 1, see Eq. (22). Therefore, the equilibrium charge efficiency Λ =

tanh(ϕ̄D/2), see footnote 6, is also close to 1. The actual dynamic charge efficiency λλcΛflow ≈ 1 that can be measured over a cycle [65] can in 
general differ from this equilibrium value [24]. 

F.2. Salt rejection (SR) 

The time-average of the relative concentration reduction during a cycle is called the salt rejection [38] SR, or salt-removal efficiency [62]. 
The analytical solution of Eq. (63) cannot be exactly integrated with respect to time. Therefore, we consider here the linear approximation of Eq. (68) 
which gives30 

(F.2) 

To obtain a high salt rejection close to SR=1 thus requires L̃2 > 1+ 2T̃. This shows that the channel length has to be sufficiently high compared to 
the used flowrate, in order to store all the salt. Much larger will not be necessary, leading to the optimal channel length expression of Eq. (82). 

29 Sometimes it is defined on the basis of a full cycle in which λc = 1 corresponds to the electronic charge exchanged with the cell during charging equalling that 
during discharging [25].  
30 This requires splitting the integral into a range from a dimensionless ̃t = 0 to L̃

2
− 1
2 during which the integrand is approximately 1 and the remaining part up to T̃. 

When L̃ <
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2T̃

√
and T̃≫1 we can alternatively write SR ≈ 1 −

(
L̃̅̅̅̅̅
2T̃

√ − 1
)2

≈ 2L̅̅̃̅̅̅
2T̃

√ − L̃
2

2T̃
. 
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F.3. Throughput productivity (P) 

A primary performance metric is the (throughput) productivity [m/s], the volume treated per unit geometrical electrode area and time, given by31 

P =
Ls

L
U. (F.4) 

Note that a large spacer thickness Ls increases the productivity and decreases the pressure losses, but increases the ohmic losses. Therefore, an 
optimum has to be found here by invoking a combined productivity-energy metric. 

A derived productivity metric is the Average Salt Adsorption Rate ASAR [mol/m2/s]32: 

ASAR = c0SR×P. (F.5) 

This metric gives the number of moles of salt removed from the channel per unit area per discharge time. It is therefore equal to the time and space- 
average current density divided by F. 

Another derived metric, the salt adsorption capacity, defined as the mass of adsorbed salt over a cycle divided by the combined electrode mass, is 
given by33 

SAC =
MT

2ρeLe
×ASAR, (F.7)  

where ρe is the effective electrode density and M the salt molarity [kg/mol]. 

F.4. Current efficiency 

Not all of the current is used for desalination. Salt adsorbed and removed from the inlet stream are not the same since some salt may be in the 
channel or micropores. The current efficiency CE is defined as the ratio of the ion charge removed from the channel and that passed by the current over 
a cycle [31]. 

Integrating Eq. (37) gives for the instantaneous space-averaged flux 〈j〉 ≡ 1
L
∫ L

0 jdx [mol/m2/s] 

(F.8)  

where in the final expression we inserted Eq. (68). Note that this is an average over the entire channel length: the local flux in the region from ̃x = 0 to 
x̃ = δ̃ is constant in the linear approximation of Eq. (68) and will be a factor L̃/δ̃ higher when ̃δ < L̃. Integrating also over time gives for the time-and- 
space-averaged flux 

〈〈j〉〉 ≡
1
T

∫ T

0
〈j〉dt = c0

ULs

L
× SR = ASAR. (F.9) 

Since we assume a 100 % charge efficiency, this is also the salt-removal flux Jsalt. An additional amount of salt 2w0pmLe [mol/m2] is initially 
transported in the RC-time, where w0 = c0eμ̄att is given by Eq. (30). Therefore, considering only the charging phase, the current efficiency CE ≡

〈〈j〉〉T
〈〈j〉〉T+2w0pmLe 

reads with Eqs. (F.9): 

CE =
1

1 +
2w0pmLe/T

ASAR

. (F.10)  

here 2w0pmLe represents the number of moles of salt present in the micropores initially per unit area. We see from Eq. (F.10) that the goal of a high salt 
rejection and productivity, as quantified by ASAR, conveniently aligns with a high current efficiency. A longer charging time T also helps to increase 
the current efficiency. 

31 With Lz the thickness in the direction normal to the flow and the current, the volume of water treated over a discharge time T is given by V = LsLzUT. With 
A = LzL the geometrical electrode area A, we have 

V

A
= UT

Ls

L
. (F.3)  

Usually the productivity is defined by dividing by the whole cycle time, but since we only consider the charging phase we use T instead. Inserting Eq. (F.3) into P = V
AT 

gives Eq. (F.4).  
32 Sometimes the term Average Salt Removal Rate (ASRR) is used to account for other ways of removal than adsorption [62]. Sometimes, instead of U the volumetric 

flow rate of treated water is divided by the electrode mass rather than electrode area. [25].  
33 The product MT × ASAR gives the mass of adsorbed salt per unit area. The mass of the two electrodes, per unit area is 2ρeLe. The maximum or equilibrium salt 

adsorption capacity is the maximum amount of salt that can be adsorbed per unit electrode mass and is an important parameter for the comparison of different 
electrodes [56]. It is obtained by multiplying the maximum micropore salt concentration 2wmax with the micropore volume 2pmV and dividing by the combined 

electrode mass. Sometimes also the electrode volume V is used, which then gives in [mol/m3]mSAC = 2wmaxpm ≈
Cmpm

kF

(
Vext
2 + μatt + VT ln

(
cF

VT Cm

))
, (F.6)where in the 

second approximation we used Eq. (32) and re-inserted dimensions. A value of k ≈ 1.15 gives a reasonable approximation. This shows how this metric increases 
offset-linearly as a function of Vext and sub-linearly as a function of Cm in our model. 
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F.5. Energy 

F.5.1. Specific energy consumption (SEC) 
The energy consumption during the charging phase consist of direct electrical energy and pumping energy. The former is given by the product of 

applied voltage and current times charging time, while the latter is often neglected [62] and is given by multiplying the pressure drop Δp with the 
flowed volume V = LsLzUT and dividing by the energy efficiency ηpump of the pump. The specific energy consumption, in desalination generally is 
reported per unit volume water produced. In CDI it is typically rather per kg or mol of salt removed [58]. The volumetric or specific energy consumption 
SEC [J/m3], neglecting energy recovery in the discharging phase 

(F.11)  

where the current I = A〈〈j〉〉F and we used Eq. (F.9) with Δ = SR × c0 the average removed salt concentration. 

F.5.2. Energy normalized adsorbed salt (ENAS) 
A derived secondary metric is the energy-normalized adsorbed salt [mol/J] 

(F.12) 

This metric combines the need for both increasing the average desalinated concentration difference Δ and decreasing the specific energy con-
sumption SEC. Through Eq. (F.9) it simply inversely proportional to the applied voltage when neglecting the pumping energy. It is somewhat 
reminiscent of an energy efficiency, although in units of mol/J rather than J/J. 

Further multiplying with the productivity gives in [mol⋅m/J⋅s] 

(F.13) 

This metric shows the need to both minimize the energy used per amount water treated and increase the productivity. As such it may be a useful 
quantity to maximized, or its inverse can be treated as a cost function to be minimized. With ASAR=PΔ the relation between the various metrics given 
here was also given in e.g. Ref. [24]. A similar metric, dubbed the energetic operational metric, EOM = ASAR × ENAS = P(Δ )2/SEC was proposed in 
Ref. [26]. 

F.5.3. Power efficiency 
We may alternatively introduce an energy efficiency based on what energy has to be spent under equilibrium conditions compared to what is 

actually spent. Here we assume that, of the various components making up Vext in Eq. (6), the Donnan and micropore potential drops are unavoidable, 
while the ohmic drop can be avoided by approaching equilibrium. Including also dissipation in the pump gives 

ηpower ≡
2I(ΔϕD + Δϕm)

IVext + V Δp
/

Tηpump
=

1

1 +
ΔϕΩ+PΔp/2Fηpump j

ΔϕD+Δϕm

. (F.14)  

F.5.4. Thermodynamic energy efficiency (TEE) 
As argued in Ref. [58] the SEC cannot be used as a measure of energy efficiency since it does not take into account how difficult a separation is by 

involving the Gibbs free energy of separation [6]. 
The Thermodynamic energy efficiency is defined as TEE = ΔG/SEC. Somewhat resembling the ENAS it is an actual energy efficiency between 0 and 

1. 

Appendix G. Comparison with Ref. [37] 

In our notation the dimensionless equations formulated in Ref. [37] read: 

(G.1)  

(G.2)  

where C̄ = C/c0 with C the salt concentration in the electrode per total unit volume, not just of the liquid, is assumed to be independent of y. The 
solution can be expressed as a series expansion: 
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(G.3) 

where34 

(G.4)  

(G.5)  

(G.6)  

here Δϕ̄Ω,s = ΔϕΩ,s/VT with ΔϕΩ,s the ohmic potential drop over the spacer width driving the ionic current. Here 1 + Δϕ̄Ω,s/2 represents the 
enhancement of diffusion, by migration. 

There is a superficial similarity between Eqs. (G.1)-(G.2) and Eqs. (52)-(53). The electrode concentration C is assumed to increase from an initial 
value C0 allowing the channel concentration to decrease as long as c > C. Equation number two of Ref. [37] shows that, moving along with the flow, 

any decrease in c increases C until C = c. Adding Eqs. (G.1) and (G.2) gives , similar to obtained by adding Eqs. (52)-(53). 

This shows conservation of concentration. However, while in our case salt is adsorbed. In Ref. [37] the salt merely moves from the spacer into the 
electrode, increasing the local concentration there. This could be representative of the final phase where the electrode adsorption capacity is fully 
reached. Additionally, in our model we include a transport resistance inside the electrode which increases with time as more of the adsorption capacity 
saturates. Therefore, the capacitance of the electrode plays a role in our time-scale ̃t while it does not appear in . 

Appendix H. Initial phase 

During the first transit time 0 < t < tU several things happen at the same time resulting in a hard-to predict outlet concentration. A crude but 
mathematically simple approximation is, despite that this is clearly not valid, to consider the spacer as a perfectly mixed domain and write for the 
difference between inlet and outlet concentration [3,29]35 

(H.1)  

where the superscript t is used to indicate that is an approximation for all time, so also t < tU. For longer times it reduces to Eq. (F.8). This result 
was slightly generalized in Refs. [24,51] to consider the case in which the initial concentration is not at the inlet concentration but at c(0), adding a 
term 

(
c0 − c(0)

)
e− t/tU to Eq. (H.1). 

Eq. (H.1) shows that for equal 〈j〉L/ULs the concentration profiles as a function of t/tU will be the same, referred to as self-similarity in Ref. [51]. 
Our reduction to just the variables t̃ and x̃ show a similar data-collapse or “collapse to a curve” but for longer times t≳tU under diffusion-limited 
conditions. 

Inserting Eq. (F.8) 

(H.2) 

Eq. (H.2) gives ̄cout = 1 for t = 0, while it tends to Eq. (68) in case t≫tU. Therefore, this approach may also be seen as a pragmatic way of modifying 
the analytical solutions in such a way that they satisfy also the actual initial condition = 1. 

Appendix I. Computational model 

Some numerical stability issues were encountered, primarily due to the sharp transition to zero salt concentration inside the electrodes. We 
implemented similar stabilisation methods as proposed in Ref. [41], but further included a transformation to exponential concentration to ensure non- 
negativity and reduce variable scaling difference in the shocks. The computational model was formulated following the description laid out in Eqs. (9)- 
(17) in Ref. [27]. Due to the symmetries of the system only the half y > 0 of the electrode-spacer configuration was modelled. The equations were 

34 Taking for the effective specific conductance “τΛ” in Ref. [37] the dilute result κe,0
2c0

= F2D
RT = FD

VT 
we obtain for the coefficients k1 =

2D(1+Δϕ̄Ω,s/2)
L2

s 
and k2 = 2D

LeLs 
and C̄0 =

Le
Ls

k2
k1

.  
35 Here E = e−

t
tU is the (normalized) exit-age or residence-time distribution (RTD) of an ideally mixed reactor. In reality the spacer region may be far from well- 

mixed so that instead we may replace the exponent with a more suitable RTD or E-function. For example, an ideal plug flow reactor with residence time tU in 

series with a CSTR with residence time tCSTR has E = e−
t− tU
tCSTR . In case the spacer region is empty it may be approximately described by a fully-developed planar 

Poiseuille flow. A planar laminar flow-reactor without axial dispersion has E = 0 for t < 2tU/3 as nothing of the inlet reaches the outlet before 2/3 of the average 
residence time and E = 1

3(t/tU )3
̅̅̅̅̅̅̅̅̅̅̅̅̅
1− tU/3t

√ for t > 2tU/3 [34] so that 
∫

Edt = 1. Taylor-Aris dispersion due to laminar mixing may be added to this. If instead of an empty 

space the spacer region contains a spacer material that is more like a porous medium the RTD may become closer to that of a plug-flow reactor. 
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solved using equation based interfaces in COMSOL Multiphysics, in which the concentration variable was substituted with an exponential term, i.e. 

C = ec or c = logC, (I.1)  

which entirely precludes erroneous negative concentrations and obviates the need for variable rescaling, together allowing for faster computation at 
greater potentials. 

Appendix J. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.desal.2024.117408. 
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