
MSc Computer Science

Ruben Wiersma
October 2019

Harmonic
Surface
Networks

H A R M O N I C S U R FA C E N E T W O R K S

A thesis submi�ed to the Del� University of Technology in partial ful�llment
of the requirements for the degree of

Master of Science in Computer Science

by

Ruben Wiersma

October 2019

Ruben Wiersma: Harmonic Surface Networks (2019)

�e work in this thesis was made in the:

Computer Graphics and Visualisation
Department of Computer Science
Faculty of EEMCS
Del� University of Technology

Supervisors: Dr. Klaus Hildebrandt
Prof. dr. Elmar Eisemann

A B S T R A C T

We present a new approach for deep learning on surfaces, combining geometric con-
volutional networks with rotationally equivariant networks. Existing work either
learns rotationally invariant �lters, or learns �lters in the tangent plane without
correctly relating orientations between di�erent tangent planes (orientation ambi-
guity). We propose a solution to both problems by applying Harmonic Networks
on surfaces in the tangent plane: Harmonic Surface Networks (HSN).

Harmonic Networks constrain their �lters to circular harmonics, which output
complex-valued, rotatable feature maps. Considering these complex features as vec-
tors inside the tangent plane, we can use parallel transport along shortest geodesics
to transport them along the surface in a natural way. Additionally, Harmonic Net-
works can be con�gured so that the output is rotationally invariant, while contain-
ing rotationally equivariant �lters in hidden layers. �is property solves the ori-
entation ambiguity problem, while learning directional �lters. We evaluate HSN on
three di�erent problems: classi�cation on Rotated MNIST in a plane and mapped to
a sphere, correspondence on FAUST, and shape segmentation on FAUST. �e results
suggest that HSN could improve on state of the art approaches.

v

A C K N O W L E D G E M E N T S

�anks to all who supported me in completing this thesis. Special thanks to my
thesis advisor, dr. Klaus Hildebrandt, for his indispensable guidance and countless
insightful discussions on geometry; prof. dr. Elmar Eisemann, for his critical re-
marks and commi�ed mind; Gosia Migut and Remi van der Laan, for their sharp
proofreading; and Mathias Fey, Nicholas Sharp, and �omas Kipf for their amicable
support and understandable code.

And last but not least: a huge thanks to my parents, my brothers and sisters, and
Joanne who supported me throughout and helped me breathe from time to time.

vii

C O N T E N T S

1 introduction 1
1.1 Geometric Deep Learning . 2

1.1.1 Graph Approaches . 2
1.1.2 Spatial Approaches . 2

1.2 Harmonic Networks . 3
1.2.1 Rotational Equivariance . 4
1.2.2 Streams and M-equivariance 4

1.3 Harmonic Networks in the Tangent Plane 5
1.4 Parallel Transport . 5
1.5 Main Contributions . 6

2 related work 7
2.1 Geometric Deep Learning on Manifolds 7

2.1.1 Spectral . 7
2.1.2 Spatial . 8
2.1.3 Message Passing . 11

2.2 Learning with Parallel Transport . 11
2.2.1 Parallel Transport for Geometric Deep Learning 11

2.3 Rotational Equivariance . 12

3 background 13
3.1 Notation . 13
3.2 CNNs and Message Passing Networks 13

3.2.1 Input . 14
3.2.2 Message Passing Layer . 14
3.2.3 Pooling . 14
3.2.4 Output . 15

3.3 Geometry . 15
3.3.1 Logarithmic Map . 15
3.3.2 Parallel Transport . 16
3.3.3 Computing the Logarithmic Map and Parallel Transport . . 16
3.3.4 Connection for Parallel Transport 17

3.4 Harmonic Networks . 18
3.4.1 m-Equivariance . 19
3.4.2 Chaining Cross-Correlations 19
3.4.3 Rotation Order Streams . 19
3.4.4 M-Equivariant Networks . 19

4 method 21
4.1 Convolution . 21

4.1.1 Notation . 22
4.1.2 Continuous Domain . 22
4.1.3 Approximating the Integral on a Surface 23
4.1.4 Rotation Orders . 24
4.1.5 Precomputation . 24

4.2 Pooling . 25
4.2.1 Precomputation . 25

4.3 Non-Linearities . 25

ix

x Contents

4.4 Summary . 25

5 implementation 27
5.1 Messages and Updates . 27
5.2 Non-Linearities . 27
5.3 Pooling . 28
5.4 Output and Gradient Descent . 28
5.5 Complex Number Representation 28
5.6 Radial Pro�le and Radial O�set . 28
5.7 Transforms, Utilities, and Datasets 28
5.8 Reproducibility . 29
5.9 Time and Space Complexity . 29

5.9.1 Precomputation . 29
5.9.2 Learning . 29

6 experiments 31
6.1 Rotated MNIST . 31

6.1.1 Setup . 31
6.1.2 Validation . 32
6.1.3 Hypothesis 1 . 33
6.1.4 Hypothesis 2 . 35

6.2 Rotated MNIST on the Sphere . 36
6.2.1 Setup . 36
6.2.2 Hypothesis 1 . 37
6.2.3 Hypothesis 2 . 38

6.3 Segmentation and correspondence on FAUST 39
6.3.1 Setup . 39
6.3.2 Hypothesis 1 . 40
6.3.3 Hypothesis 2 . 41

6.4 Rotational Equivariance for Irregular Sampling 42
6.4.1 Interpolation and Weighting 42
6.4.2 Irregular Samples and Rotation 42

7 discussion and conclusion 47
7.1 Results . 47
7.2 Generalisability . 47

7.2.1 Applications . 47
7.2.2 Point Clouds . 48
7.2.3 Higher-Dimensional Manifolds 48

7.3 Limitations and Practical Considerations 48
7.3.1 Intrinsic vs. Extrinsic . 48
7.3.2 Expressiveness of the Filters 49
7.3.3 Irregularity . 49

7.4 Future Work . 49

A C R O N Y M S

ACNN Anisotropic Convolutional Neural Network (Boscaini et al. [2016]) 8
CNN Convolutional Neural Network . 1
exp-map Exponential Map . 2
FeastNet Feature Steered Network (Verma et al. [2018]) . 9
FPS Farthest Point Sampling . 15
GCN Graph Convolutional Network (Kipf and Welling [2016]) 8
GCNN Geodesic Convolutional Neural Network (Masci et al. [2015]) 8
GDL Geometric Deep Learning . 1
HSN Harmonic Surface Networks . v
log-map Logarithmic Map
MDGCNN Multi-Directional GCNN (Poulenard and Ovsjanikov [2018]) 11
MoNet Gaussian Mixture Model Network (Monti et al. [2017]) 8
VHM Vector Heat method . 6

xi

1
I N T R O D U C T I O N

3

ConnectionLogmap

Weighted
Sum

Compute
Messages

i

Ti S

i

i

i

S

1 2

4

Figure 1.1: An overview of HSN: (1) Map neighbouring points to the tangent plane
using the logarithmic map. �is introduces orientation ambiguity. (2)
Align bases with connection. (3) Apply circular harmonic �lters to
compute messages for each neighbour. (4) Aggregate messages using
a weighted sum. �e results is a rotatable complex feature.

�e success of Convolutional Neural Networks (CNNs) for learning from images
and other data on a Euclidean grid has inspired an e�ort to generalise CNNs to graphs
and manifolds. �is e�ort is referred to as Geometric Deep Learning (GDL) (Bron-
stein et al. [2017]). GDL unlocks a host of new applications for deep learning: from
graph problems and recommender systems, to 3D shape analysis and generation.

In this thesis, we concern ourselves speci�cally with convolutional networks on
surfaces: two-dimensional Riemannian manifolds, embedded in a three-dimensional
Euclidean space. CNNs on surfaces have many applications in, for example, medi-
cal visualisation, automated driving, and the entertainment industry. Tasks that
have already bene�ted from such methods are correspondence, shape segmenta-
tion, object retrieval, and shape generation. We aim to increase the accuracy of
convolutional networks on surfaces across most, if not all, of these tasks. To that
end, we present Harmonic Surface Networks (HSN) (Figure 1.1).

�e goal for GDL on surfaces is to learn a function that maps a signal on a sur-
face S to a prediction, given a set of examples. Surfaces are typically processed as
point clouds or meshes. A point cloud consists of an unordered set of points on the
surface. A mesh consists of vertices representing points in space, edges between
these vertices, and faces, typically triangles, discretising the surface. �e signal on

1

2 introduction

the surface at point i, xi, can consist of colour values, xyz-coordinates, or shape
descriptors, depending on the task.

1.1 geometric deep learning

As we move from images to surfaces, we are presented with an unordered set of
points. �is set of points is typically sampled irregularly. Moreover, we have no
global coordinate system on the surface. �ese properties turn out to pose signi�-
cant challenges which have been faced by previous work. �is work can be organ-
ised in two main approaches: a graph-based approach, and a spatial approach.

1.1.1 Graph Approaches

Graph-based approaches consider the points on a surface as nodes in a graph. Nodes
that are within a radius ε of each other are connected with edges:
E = {(vi, vj)|‖vj− vi‖2 < ε}. We apply a local ‘�lter’ on the neighbourhoodNi of
each node i: a learned function is applied to the neighbours’ feature vectors, which
we will refer to as messages. �ese messages are aggregated using a maximum,
average, or sum operator and combined with the feature vector at node i using
a learned function (Figure 1.2, Qi et al. [2017a]; Wang et al. [2018]; Gilmer et al.
[2017]). By performing these action on all nodes in the graph, we ‘convolve’ the
�lter over the input.

Input graph Compute messages Aggregate messages Combine with node i

Figure 1.2: Message passing on graphs.

A downside of these methods is that they apply the same message function to
each neighbour, irregardless of their orientation to point i. �at means we cannot
learn �lters which detect directional pa�erns, like edges.

�is poses a problem for learning on surfaces. Consider the following illustration
(Figure 1.3): when you imagine a simple chair, you are most likely to think of a hor-
izontal plane (the seat) supported by four vertical cylinders (its legs) and a vertical
plane a�ached to the seat (the backrest). Without these directions and relations, the
chair might as well be a picket fence or any other object consisting of four cylinders
and planes.

1.1.2 Spatial Approaches

Unlike graph-based methods, spatial methods can �nd directional pa�erns. �ey
learn directional �lters in the tangent plane and apply them to points on the surface
using the Exponential Map (exp-map) (Figure 1.4a). Spatial methods cope with the
irregular sampling of points on the surface by placing a set of Gaussian kernels at
�xed or learned locations in the tangent plane and convolving these kernels with the
neighbouring points (Boscaini et al. [2016]; Monti et al. [2017]; Masci et al. [2015]).

To apply directional �lters consistently, spatial methods have to choose an orien-
tation within the tangent plane using some heuristic, as there is no global orienta-

1.2 harmonic networks 3

Figure 1.3: Directions are important to recognise shapes.

T iM

M

i

j = expi v

v = logi j

(a) log-map and exp-map.

i

j

≠

(b) Orientation ambiguity.

Figure 1.4: Spatial methods learn �lters in the tangent plane, using the log-map. �ey
do not yet account for orientation ambiguity.

tion on the surface. Existing spatial methods either choose the maximum curvature
direction or apply the �lters at multiple directions in the tangent plane and retain
the rotation that yields the highest activation. �is creates a problem we will re-
fer to as orientation ambiguity: at di�erent locations, �lters are applied in di�erent
orientations (Figure 1.4b). Orientation ambiguity becomes an issue when features
propagate through a neural network, because the network combines and relates fea-
tures that were computed at di�ering orientations. �is is even more problematic
when pooling layers are used, because they extend the area that is covered by �lters
in subsequent layers.

We expect that orientation ambiguity decreases the accuracy of spatial methods,
illustrated by the chair example: if a human can hardly recognise a chair from its
unaligned components, how could we expect a neural network to do much be�er?

In this thesis, we aim to solve orientation ambiguity by applying a special kind
of convolutional networks, originally designed for images to enable 2D rotational
equivariance, called Harmonic Networks.

1.2 harmonic networks

CNNs for images exhibit a property called translational equivariance: if we translate
an input image and then compute the feature map, it is equivalent to �rst computing
the feature map and then translating the output of the feature map (Figure 1.5).
�is is a quintessential ingredient for CNNs’ success: it enables the recognition of
pa�erns, independent of their location in the input.

4 introduction

translation

translation

filter filter

rotation

rotation

filter filter

Figure 1.5: Translational equivariance (le�) and rotational equivariance (right).

�e equivariance property does not hold for rotation in regular CNNs: if we rotate
the input and compute a feature map, it is not the same as �rst computing a feature
map and then rotating the output (see Figure 1.5). �is inhibits the generalisability
of CNNs to di�erent orientations. With Harmonic Networks, Worrall et al. [2017]
present a way to guarantee rotational equivariance, by using �lters constrained to
the family of circular harmonics:

Wm(r, θ, R, β) = R(r)eımθ+β, (1.1)

where R : R+ → R is a learned radial pro�le, β ∈ [0, 2π) is a learned radial
o�set, and m ∈ Z is the rotation order of the circular harmonic. �e �lter is de-
�ned continuously, for all polar coordinates r and θ, and outputs a complex-valued
feature vector.

1.2.1 Rotational Equivariance

When we rotate an input X by φ and then cross-correlate with a circular harmonic
�lter, it is equivalent to �rst convolving the �lter and then rotating the output by
an angle φ:

[Wm ? Xφ] = eımφ[Wm ? X], (1.2)

where Xφ denotes the input X rotated by the angle φ.
Note that the type of rotational equivariance is de�ned by the rotation order m:

for m = 0, we achieve rotational invariance:

[W0 ? Xφ] = eı0φ[W0 ? X] = [W0 ? X]. (1.3)

For m = 1, we achieve linear rotational equivariance:

[W1 ? Xφ] = eı1φ[W1 ? X]. (1.4)

1.2.2 Streams and M-equivariance

It is necessary to separate the output of di�erent rotation orders from each other, to
retain the rotational equivariance property. �erefore Harmonic Networks separate
feature maps in streams for each rotation order (see Figure 1.6).

Another useful property of circular harmonic �lters is that chained cross-
correlations of rotation orders m1 and m2 lead to a result with rotational equi-

1.3 harmonic networks in the tangent plane 5

variance m1 + m2. �us, to achieve an output that is M-equivariant to the input
rotation, Harmonic Networks require that the sum of rotation orders along any path
equals M.

�e multi-stream architecture enables us to construct a network that is 0-equivariant
at the output, i.e. rotationally invariant, while having higher rotation order streams
inside the network.

M = 0

conv conv conv

0 0 0

0

-1 -1

1 1

M = 1

Figure 1.6: In Harmonic Networks, rotation orders are separated in streams.

1.3 harmonic networks in the tangent plane

In this thesis, we aim to apply Harmonic Networks in the tangent plane, to solve
the orientation ambiguity problem on surfaces. �e bene�t is that we can apply a
0-equivariant, i.e. rotationally invariant, network at any orientation in the tangent
plane, while guaranteeing the same output. Moreover, inside the network we can
learn directional �lters, by including streams of rotation orders M > 0.

To extend Harmonic Networks to surfaces, we need to face the challenges posed
by data on surfaces: it should handle unordered sets of points that are sampled
irregularly. To this end, we extend Harmonic Networks to irregular domains and
formulate it as a message passing network.

Another challenge is introduced by higher rotation orders inside the network: for
streams of M > 0, the complex features depend on the coordinate system of the
tangent plane. If we want to use streams of non-zero rotation orders, we will still
encounter the orientation ambiguity problem.

A

B

A

B

Figure 1.7: Parallel transport: start riding a bike at point A and go to point B without
changing your direction.

1.4 parallel transport

We use parallel transport along shortest geodesics to approach orientation ambi-
guity for rotation order streams of M > 0. Parallel transport is an intuitive and
widely used method to transport vectors along a surface and can be illustrated as
follows: Imagine riding a bike along a surface (Figure 1.7). You start riding in a

6 introduction

straight line from point A to point B without changing your direction. �e vector
pointing in your direction at point B is the parallel transport of the vector pointing
in your direction at point A.

When we compute parallel transport from point A to point B, we get the direction
of the parallel vector in the coordinates of B’s tangent basis. On a surface, parallel
transport amounts to a 2D rotation, which we will refer to as connection. We can
simply apply connection to our complex features resulting from harmonic �lters,
because of the rotational equivariance property.

Without the rotational equivariance property, we could not rotate feature maps
without recomputing the convolution for a rotated input. Consequently, convolu-
tional layers would not be able to use outputs from previous layers and thus we
would not be able to build neural networks.

Computing global parallel transport along shortest geodesics is a di�cult prob-
lem, as it involves computing shortest paths and then transporting vectors along
these paths. Recently, Sharp et al. [2019c] introduced a new approach to globally ap-
proximate parallel transport with vector heat di�usion using the connection Lapla-
cian: the Vector Heat method (VHM). Because the VHM only depends on a set of
Laplacian matrices, it can be used on any representation of a surface with a Lapla-
cian and connection Laplacian, including meshes and point clouds. �is allows our
method to generalise to polygon meshes, point clouds, and voxels as well.

1.5 main contributions

Our main contribution is the following: we present a solution to the orientation
ambiguity problem that combines geometric convolutional networks and equivari-
ant networks, called Harmonic Surface Networks (HSN). In doing so, we make two
technical contributions:

• We introduce a concept for vector-valued convolutional networks
on surfaces.

• We extend Harmonic Networks to irregular domains.

With HSN, we can create networks that accurately learn from signals on surfaces,
independent of the choice of orientation at each tangent plane. We have found
that such networks yield higher accuracy, compared to rotationally invariant graph-
based methods, and expect to see improvements on spatial methods with the orien-
tation ambiguity problem.

In the following chapters we survey related work, provide the necessary back-
ground, detail our method and implementation, describe our experimental evalua-
tion, and provide a discussion of our results, challenges, and future work.

2
R E L AT E D W O R K

�is chapter surveys three focus areas to give the reader an overview of the state
of the art: geometric deep learning on manifolds, learning with parallel transport,
and rotational equivariance for regular CNNs.

2.1 geometric deep learning on manifolds

Our thesis builds on concepts introduced in the �eld of Geometric Deep Learning
(GDL). As ‘regular’ CNNs gained traction, researchers have a�empted to generalise
concepts from CNNs to graphs and manifolds. Graphs and manifolds lack a number
of properties that regular CNNs build on for learning (Table 2.1), which introduces
the need for a new formulation of convolution on graphs and manifolds. In this
section, we provide a brief overview of a number of these approaches and discuss
how these methods relate to the current work. For a wider survey on the topic,
please refer to Bronstein et al. [2017].

Euclidean grid e.g. images, audio Graphs and manifolds
Natural ordering e.g. from le� to right Unordered
Regular grid e.g. pixel grid or regular sampling Irregularly sampled
Grid used for hierarchy Clustering used for hierarchy

Table 2.1: Properties of Euclidean data on a grid vs. graphs and manifolds

We will structure our discussion of geometric deep learning in two major streams:
spectral methods and spatial methods. As the �eld progressed, these two streams
have merged into the current paradigm of message passing. �e message passing
paradigm will be detailed in the background section, as this will inform how our
convolution operator is de�ned.

graphs �e survey will treat a number of methods that were primarily designed
for graphs. Consequently, most of the described works do not directly apply their
method on manifolds. We have included these works in the survey as they have
informed the design of recent convolutional networks designed for manifolds. Ad-
ditionally, many of the graph-based methods can be directly applied to manifolds
by either building a radius- or k-nearest neighbour graph from the points on the
manifold or, if a mesh is available, parsing the mesh as a graph.

2.1.1 Spectral

In the spectral domain, convolution of a �lter over a signal can be performed with a
simple multiplication. �e challenge to de�ne convolution for graphs is then shi�ed
to that of transforming a signal on a graph to the spectral domain e�ciently.

�e idea to use spectral convolution for neural networks on graphs was �rst intro-
duced in Spectral Networks (Bruna et al. [2014]). Given the graph Laplacian ∆, one

7

8 related work

can �nd the bases of the spectral domain by computing the eigenvalue decomposi-
tion of ∆ = ΦΛΦᵀ. �e eigenvectors contained in the columns of Φ constitute the
bases of the spectral domain. �e signal is projected onto the these eigenvectors, so
that the �lter can be applied in the spectral domain and a�erwards projected back
to the original domain.

�e eigenvalue decomposition is a costly operation, especially when it has to be
performed multiple times when the graph structure changes due to pooling. To
avoid the cost of eigenvalue decomposition, ChebNet (De�errard et al. [2016]) ap-
proximates di�usion using the Chebyshev polynomial. Graph Convolutional Net-
work (Kipf and Welling [2016]) (GCN) further simpli�es this design to a 1-hop ap-
proximation of the Chebyshev polynomial, resulting in the following simple de�ni-
tion for convolution:

X(l+1) = σ
(

D−1/2AD−1/2X(l)W(l)
)

, (2.1)

where X and X′ are the features in the previous and next layer in the network,
A is the adjacency matrix of the input graph, D is the degree matrix Dii = ∑j Aij,
and W is a trainable weight matrix. O�en, this formulation is rewri�en to give the
response per point:

x(l+1)
i = σ

(
x(l)i W(l)

0 + ∑
j∈N

1
cij

x(l)j W(l)
1

)
. (2.2)

�is formulation is fast and e�ective and has found widespread adoption due to
its simplicity. Another bene�t of GCN versus the pure spectral methods is that the
�lters are learned on a local neighbourhood of each node, whereas the �lters learned
through the spectral transforms depend on the Laplacian for the entire graph, which
makes it impossible to transfer learned weights to new graph topologies.

�e local support of the �lters exhibited by the GCN approach is a nice segue into
our next section: One can regard the �lter in this convolution as a local template,
or a patch, moving across the input. Such a template detects pa�erns through cross
correlation. �e template paradigm is exactly the interpretation of CNNs that is
explored by spatial approaches.

2.1.2 Spatial

When trying to mimic the ‘local template’ approach, we run into the issues outlined
at the beginning of this section: the input points are unordered, irregularly sampled,
and, additionally, they lack a meaningful global parametrisation: In CNNs for images,
we could de�ne a k× k patch consisting of a regular grid that maps directly to the
structure of the input. Locality in the input tensor was directly related to spatial
locality. For graphs and manifolds, our data is unordered. �erefore, we will need
to de�ne a local template, or patch, that is explicitly based on the spatial coordinates
of each point. �is was applied by Geodesic Convolutional Neural Network (Masci
et al. [2015]) (GCNN), Anisotropic Convolutional Neural Network (Boscaini et al.
[2016]) (ACNN), and Gaussian Mixture Model Network (Monti et al. [2017]) (MoNet).

First, locality. For graphs and manifolds, the neighbourhood is de�ned by the
r-hop neighbourhood around each point, or a radius ball around each point, respec-
tively. �e r-hop neighbourhood is the set of points that can be reached within r
hops along the graph structure and a radius ball de�nes the region of space within
a certain distance, the radius, around each point.

2.1 geometric deep learning on manifolds 9

Figure 2.1: Kernels on local patches used in GCNN, ACNN, and MoNet.

Next, local coordinates. For graphs, one can use the degree of each node, as was
done by GCN. For manifolds, it is typical to use the logarithmic map to de�ne polar
coordinates in the tangent plane for each neighbour (GCNN, ACNN, MoNet).

Finally, the network can only learn a limited amount parameters to represent a
�lter and our input data is irregularly sampled. GCNN solves this problem by placing
k Gaussian kernels at regular intervals in the local patch (Figure 2.1). �e product
between these kernels and the irregular points is computed to get a new (interpo-
lated) value for each kernel. Next, a �lter is applied to each kernel and the resulting
values are summed to retrieve the activation in the next layer. ACNN takes a slightly
di�erent approach, by using anisotropic kernels instead of Gaussian kernels, hence
the name anisotropic CNN.

Our method (HSN) takes a di�erent approach for learning limited parameters for
irregular samplings: we parametrise a continuous function, which is evaluated at
each point on the surface, instead of learning a value for each location directly. Be-
cause HSN evaluates the continuous function at each input point, it avoids the need
to set hyperparameters for the number of kernels or locations of kernels, simplify-
ing the construction and optimisation of deep networks.

MoNet and FeastNet

MoNet further generalised and parametrised the Gaussian kernels in the patch. In-
stead of placing the kernels in pre-de�ned locations, MoNet also learns the mean
and variance of each kernel to increase the ability of the network to �t the data,
thereby reaching state of the art performance. Since MoNet allows for any de�ni-
tion of pseudo-coordinates, it can be applied to graph learning problems as well as
manifold learning problems.

�e abstract de�nition of pseudo-coordinates gave way for Feature Steered Net-
work (Verma et al. [2018]) (FeastNet) to de�ne pseudo-coordinates as a learned com-
bination of features from the previous layer. �is allows the network to optimise
even further.

HSN deviates from these last two works, as it explicitly requires polar coordinates.
Furthermore, HSN parametrises continuous functions that are evaluated at each in-
put point.

Orientation Ambiguity

A �nal distinction between spatial methods and this thesis is the orientation of the
�lter in the tangent plane. GCNN, ACNN and MoNet all use �lters that are rotationally
variant; the orientation of the �lter in the tangent plane in�uences the output. To
achieve consistency across di�erent inputs, GCNN and MoNet compute the �lter re-
sponse on multiple orientations and apply angular max-pooling. ACNN applies the
�lter in the maximum curvature direction.

10 related work

Both variations pose a problem that has long gone unsolved, which we refer
to as orientation ambiguity: �lters at di�erent locations use di�erent orientations.
Consequently, these networks cannot correctly relate the direction of pa�erns at
di�erent locations, which is likely to in�uence their performance. Additionally, we
expect that angular max-pooling (used by GCNN and MoNet) negatively impacts the
stability of training, as the same �lter can be applied in di�erent directions for each
training iteration.

HSN simpli�es the choice of orientation within the tangent plane: 0-equivariant
HSN networks result in the same output for any orientation of the tangent plane.
�us, HSN does not require a consistent choice of orientation, further simplifying
the optimisation of convolutional networks for surfaces. By using parallel trans-
port on its feature vectors, HSN also accounts for orientation ambiguity between
neighbouring points. Overall, HSN provides a simpler and more accurate approach
to orientation within the tangent plane.

Other Manifold Approaches

Before our discussion moves to a generalisation covering both spectral and spatial
methods, we will cover a number of approaches related to the spatial approach that
are typically not included in discussions on geometric deep learning, even though
they share many similar problems and solutions. In contrast to MoNet, GCNN, and
ACNN, they do not have orientation ambiguity problem.

toric covers Maron et al. [2017] used a global parametrisation by mapping
the input manifold to a toric cover, on which a standard convolution can be com-
puted. Because a global parametrisation is used, the orientation ambiguity problem
is dealt with. �e limitations of this method are that toric covers are only de�ned
for objects with a sphere-like topology and that the toric cover is dependent on
three reference points on the surface. �us, the learned �lters are dependent on
the choice of reference points. Additionally, the global cover introduces undesired
deformations (e.g. stretching, squeezing) of the surface.

pointnet and pointnet++ PointNet was designed by Qi et al. [2017a] to
solve the �rst problem we encountered: our input is an unordered set of points. First,
a neighbourhood is constructed around each point with a radius ball. To retrieve a
response for point i, a function is applied to each neighbour of i and the maximum
activation across i’s neighbours is stored as the new response for i:

x(l+1)
i = γΘ

(
max

j∈N (i)∪{i}
hΘ(x(l)j , pj − pi)

)
. (2.3)

�is simple formulation is fast and e�ective for many problems. Qi et al. [2017b]
designed PointNet++ as an extension of PointNet with hierarchical functionality.
Because PointNet applies the same �lter to each neighbour, it is e�ectively rota-
tionally invariant, and thus does not have the orientation amgibuity problem.

edgeconv �e EdgeConv convolution proposed by Wang et al. [2018] is similar
to PointNet. EdgeConv provides additional information to the network by concate-
nating i’s feature vector to its neighbours’ feature vectors before feeding it to the
learned function and by using a sum operation to aggregate the neighbours’ re-
sponses instead of a max operation:

x(l+1)
i = ∑

j∈N (i)
hΘ(x(l)i ‖ x(l)j − x(l)i). (2.4)

2.2 learning with parallel transport 11

Additionally, the Wang et al. [2018] propose reconstructing the neighbourhood
graph dynamically within the network. �is should allow the network to construct
and learn from semantic neighbourhoods, instead of mere spatial neighbourhoods.

PointNet and EdgeConv exhibit a familiar structure, one we have seen for GCN
as well. Each of these networks applies a learned �lter to neighbourhoods and
aggregates these values with some aggregator function. In the next section, we will
discuss a paradigm that is able to cover all of the previously mentioned approaches.

2.1.3 Message Passing

We noticed an overlap between the spectral and spatial approaches. A similarity
with another paradigm was observed by Gilmer et al. [2017], who describe message
passing networks for learning on molecular structures. A�er Gilmer et al. [2017],
many of the previously discussed methods have been reinterpreted as message pass-
ing networks (Fey and Lenssen [2019]). �e basic idea of message passing networks
is the following: to compute the response for a point i, we consider the features of
neighbouring points j ∈ N (i) and the point itself. First, a learned function is ap-
plied to the feature vectors of the neighbouring points, resulting in a message for
each neighbour. �ese message are then aggregated using some aggregator func-
tion (e.g. sum, max, mean) and combined with the feature vector of point i.

2.2 learning with parallel transport

As described in the introduction and in section Section 2.1.2, current methods either
learn �lters that are rotationally invariant, or choose an orientation within the tan-
gent plane using some heuristic. None of these methods describe how to deal with
orientation ambiguity. Recently, some other works have applied parallel transport
with direct connection to solve orientation ambiguity.

Parallel transport, a concept from di�erential geometry, is a method to transport
a vector along the geodesic of a manifold to another location on the manifold, such
that the vector is ‘parallel’ to its original location. One of its applications is vector
di�usion (Singer and Wu [2012]), which is analogous to the process performed by
message passing networks: in di�usion, a point is iteratively updated with the aver-
age of its neighbours, mirroring the aggregation step in message passing networks.
For vector di�usion, one needs to average the neighbours’ vectors, which requires
the vectors to be transformed to the same tangent plane.

One application of parallel transport outside of GDL is the approximation of the
exponential map by Sharp et al. [2019c]. Another application is that of parallel
transport unfolding of a manifold by Budninskiy et al. [2019].

2.2.1 Parallel Transport for Geometric Deep Learning

In GDL, parallel transport has been applied by Multi-Directional GCNN (Poulenard
and Ovsjanikov [2018]) (MDGCNN). �eir contribution is similar to this thesis: using
parallel transport along shortest geodesics, one can transport the �lter values from
neighbours to the tangent plane of the considered point.

MDGCNN follows GCNN’s approach of constructing a patch and computing the
cross correlation with this patch. Instead of only storing the activation for the max-
imum rotation, they store the activation for a number of rotations and apply con-
nection by indexing the correct rotation from a point’s feature tensor.

HSN di�ers from MDGCNN in the type of �lters that are learned: instead of learn-
ing GCNN-like �lters, HSN learns circular harmonic �lters that output complex values.
�ese complex values can be rotated continuously, where MDGCNN has to interpo-

12 related work

late between a limited amount of rotations. �is introduces an inaccuracy for each
application of parallel transport that grows as the network deepens. Moreover, HSN
only has to store one complex value, encoding all these rotations, saving the net-
work a valuable amount of storage space and complexity.

Another work using parallel transport to de�ne convolution on surfaces is Paral-
lel Transport Convolution Nets (Schonsheck et al. [2018]). �is work uses parallel
transport to convolve a kernel function over a manifold. Similarly, Pan et al. [2018]
use parallel frames, instead of parallel transport, to de�ne convolutions on surfaces.
In comparison, HSN uses parallel transport to relate complex feature vectors instead
of the convolution kernels. Additionally, PTCNets and Pan et al.’s CNNs have no
notion of rotation orders or rotationally equivariant �lters.

2.3 rotational eqivariance

HSN builds on Harmonic Networks (Worrall et al. [2017]). �is work exists in a �eld
of research on CNNs, where researchers are a�empting to train CNNs for images that
can generalise over rotations of the input: rotationally equivariant networks. To
reach this goal, researchers have taken a number of di�erent approaches:

• Steerable �lters (Freeman and Adelson [1991]; Liu et al. [2012]; Cohen and
Welling [2016b]),

• hard-baking transformations in CNNs (Cohen and Welling [2016a,b]; Marcos
et al. [2016]; Oyallon and Mallat [2015]; Fasel and Gatica-Perez [2006]; Laptev
et al. [2016]; Dieleman et al. [2016]), and

• learning generalised transformations (Hinton et al. [2011]).

Most relevant to HSN are steerable �lters, since we desire features that are not
only rotationally equivariant, but also features that can be transformed, or steered,
with parallel transport. �e core idea of steerable �lters is described by Freeman
and Adelson [1991] and applied to learning by Liu et al. [2012]. �e key ingredient
for these steerable �lters is to constrain them to the family of circular harmonics.
Worrall et al. [2017] added a rotation o�set to develop Harmonic Networks. �e
�lters in Harmonic Networks are designed in the continuous domain and mapped
to a discrete se�ing using interpolation.

Harmonic Networks was further developed by �omas et al. [2018] into Tensor
Field Networks. Tensor Field Networks achieve rotation- and translation equivari-
ance for 3D point clouds by moving from the family of circular harmonics to that
of spherical harmonics.

HSN continues in the vein of Harmonic Networks, rather than Tensor �eld net-
works, because its �lters are designed to operate within the 2D tangent space of
each point on the surface. HSN extends Harmonic Networks to irregular samplings
and applies it to points mapped to the tangent plane.

3
B A C K G R O U N D

In the following section, we will provide the mathematical and technical back-
ground required for our problem statement and method. We set o� by describing
the input and output to our message passing network, followed by theory on ge-
ometry, and harmonic networks. In the next chapter, we will explain how these
components �t together to build Harmonic Surface Networks (HSN).

3.1 notation

We will explain each variable and parameter as we go through equations. We use
the following convention to denote complex numbers:

√
−1 is denoted by ı, to

avoid confusion with the indices i and j.
Feature vectors and matrices are in bold. We do not use boldface for complex

values or spatial vectors.

3.2 cnns and message passing networks

Convolutional Neural Networks (CNNs), are neural networks consisting of three
types of layers: convolutional layers, pooling layers, and fully connected layers
(LeCun et al. [2015], Figure 3.1). Convolutional layers apply �lters through convo-
lution, thereby supporting weight sharing. Pooling layers downsample the input
by summarising regions using an aggregator operation, like max, min, or average.
In CNNs, pooling layers enable translation invariance and learning multi-scale hi-
erarchies. Fully connected layers are conventional neural network layers (or 1x1
convolution layers), which infer the desired result from the features provided by
the convolutional and pooling layers. We aim to build a similar architecture of
convolutional and pooling layers, but instead of Euclidean data, we provide point
clouds or meshes as input.

Input Image Convolutions Pooling Fully
Connected

Figure 3.1: A simpli�ed overview of the structure of CNNs.

13

14 background

3.2.1 Input

�e input to the network is a c-dimensional signal on surface S . �e signal can
consists of colour values, xyz-coordinates, or shape descriptors. Surface S is a two-
dimensional di�erentiable manifold. In general, a di�erentiable manifold M is a
topological space with the property that each point i in the manifold has a neigh-
bourhood that is di�eomorphic to an open ball in d-dimensional Euclidean space.
�e tangent space at a point i, TiM is a d dimensional vector space a�ached to i.
We can think of the tangent space as the vector space of all possible tangent vectors
at i of curves in the manifold (Kuehnel [2005]).

HSN is designed to work with any representation of a surface S , irregardless of
the discretisation. In this thesis, we limit our explanations to triangle meshes and
point clouds.

mesh A mesh is the discretised representation of surface S and is de�ned by
a set of vertices V, edges between these vertices E ⊆ V × V, and faces, typically
triangles: F ⊆ V×V×V. �e following properties hold for surfaces: each interior
edge, {i, j} ∈ E is shared by exactly two triangular faces ikj and jhi ∈ F and
boundary edges are part of exactly one triangular face. We can parse the mesh as a
graph by using only the vertices and edges.

point cloud A point cloud consists of an unordered set of points P, where
each point is associated with a three-dimensional vector representing its location.
�e points lie on surface S .

To be able to process a point cloud with a message passing network, a radius-ball
graph is computed. �e vertices of this graph are the points P and the edges connect
points that lie within a given radius r of each other: E = {{i, j}|‖pj − pi‖ < r}.
To work on meshes, we can build a radius-ball graph or simply use the vertices and
edges (V, E) from the mesh and discard the set of faces F.

Each vertex in the input graph is associated with the signal on the surface at node
i: xi. �e edges in the graph may also be associated with a feature vector, eij.

3.2.2 Message Passing Layer

Most convolutional operations in geometric deep learning can be formulated as
message passing layers (Gilmer et al. [2017]; Fey and Lenssen [2019], Figure 3.2).
A message passing layer (l + 1) takes the feature vector produced by the previous
layer (l). To compute a new feature vector for point i, messages are computed for
each neighbour with the learned function ϕ(l) and aggregated using an aggregator
function �. �e aggregation result is combined with x(l)i by the learned function
γ(l). �e message passing layer can be formulated as follows:

x(l+1)
i = γ(l)

(
x(l)i ,�j∈N (i) ϕ(l)

(
x(l)i , x(l)j , ei,j

))
. (3.1)

�e new feature vector x(l+1)
i is of size c(l+1). �is is determined by γ(l) and

φ(l).

3.2.3 Pooling

Pooling for surfaces can either be performed using graph clustering algorithms or
by dividing the embedding space. Previous works tend to use the prior method:
Spectral Networks (Bruna et al. [2014]) use Naı̈ve Agglomerative clustering, Hena�

3.3 geometry 15

Input graph Compute messages Aggregate messages Combine with node i

Figure 3.2: An overview of message passing networks.

et al. [2015] opt for Spectral Clustering Von Luxburg [2007], and the technique
most used for clustering was �rst adopted by ChebNet (De�errard et al. [2016]):
Graclus Multi-Level Clustering (Dhillon et al. [2007]). �ey suggest researching
other coarsening techniques as well, like Algebaric Multigrid Techniques (Ron et al.
[2011]) and the Kron reduction (Shuman et al. [2016]). �e Graclus Multi-Level
Clustering technique is also used by MoNet and FeastNet (Monti et al. [2017]; Verma
et al. [2018]).

PointNet++ makes use of a technique called Farthest Point Sampling (FPS): FPS
repeatedly picks the point that is furthest away from the previously sampled points,
until a prede�ned number of points has been sampled (Qi et al. [2017b]). All non-
sampled points are discarded. We will make use FPS, but instead of discarding non-
sampled points, we cluster these points to the nearest sampled points.

3.2.4 Output

�e network can be trained to classify the entire graph, or to classify vertices in the
graph. In either se�ing, a fully connected layer can follow the convolutional and
pooling layers.

A Global classi�cation is useful for object classi�cation and is derived by a
global pooling operation. �is operation could be a global average, maximum, or
majority vote.
Local classi�cation can be used to segment and label models into semantic (Xu

et al. [2016]) or functional (Hu et al. [2018]) parts. Local classi�cation can also be put
to use for correspondences in shape analysis. �e correspondence problem is then
transformed into a labelling problem, where each vertex in one model is labelled
with a vertex in another model (Boscaini et al. [2016]; Litany et al. [2017]).

3.3 geometry

We implement our �lters in the tangent plane. For this purpose, we use the Log-
arithmic Map (log-map). �e log-map is the map from a location on the surface to a
location in the tangent plane. Moreover, to compute the transformation from co-
ordinates in one tangent plane to those in another tangent plane, we make use of
parallel transport along shortest geodesics. We will provide a concise and intuitive
description of these concepts. For an in-depth treatment of these subjects, please
refer to O’neill [2006], Petersen et al. [2006], or Kuehnel [2005].

3.3.1 Logarithmic Map

Spatial geometric deep learning methods use polar coordinates to construct a local
patch around each point i on a manifoldM. �ese polar coordinates (r, θ) provide
the shortest geodesic from i to a neighbouring point j as the radial coordinate r

16 background

T iM

M

i

j = expi v

v = logi j

Figure 3.3: �e logarithmic map illustrated.

and the direction of that shortest geodesic as the angular coordinate θ, relative to
a reference direction θ = 0. �is is referred to as the logarithmic map logi(j) = v,
where v is a vector in TiM with length r and direction θ, relative to the reference
direction (Figure 3.3). One can think of this map as ‘unfolding‘ the curved surface
to a �at plane. Most literature on this topic refers to the logarithmic map’s inverse,
the exponential map: expi(v) = j.

Outside of geometric deep learning, the logarithmic map has many useful applica-
tions, such as texture decaling (Schmidt et al. [2006]) and interactive shape editing
(Schmidt and Singh [2010]).

3.3.2 Parallel Transport

Recall the problem of orientation ambiguity: di�erent locations on the surface have
di�erent orientations of the tangent plane. �is makes it di�cult to compare vec-
tors at di�erent locations on a manifold, as their coordinates are de�ned in di�erent
bases. Parallel transport along shortest geodesics provides an intuitive way to com-
pare vectors in di�erent tangent planes. Imagine driving a bike, like our illustration
from the introduction (Figure 1.7). If you ride along the surface from j to i without
changing your direction, it is sensible to say that your direction at i is parallel to
your direction at j. �at vector also has same magnitude as the original vector. We
will refer to parallel transport along shortest geodesics from j to i as Pj→i. If we
want to know the parallel vector to xj in the tangent basis of i, we simply apply
parallel transport to xj: Pj→i(xj).

On a surface, the tangent plane is a two-dimensional plane. Because parallel
transport preserves the magnitude of the vector, we e�ectively apply a 2D rotation
to the each complex value in feature vector xj. We will refer to this rotation as con-
nection φji. �e knowledge that connection is a 2D rotation can be used when we
apply parallel transport to complex features resulting from rotationally equivariant
�lters, as proposed in Harmonic Networks.

3.3.3 Computing the Logarithmic Map and Parallel Transport

Computing parallel transport and the logarithmic map is not as straightforward as it
might seem. Nearby points have similar tangent planes, providing a natural way to
compute the exponential map by projecting points to the tangent plane. However,
the tangent planes of far-away points deviate from each other unpredictably.

A simple approach to compute the exponential map at i for the 1-ring in a mesh
is to take the Euclidean distance of the edge between i and its neighbours as r and
to either unfold or project these triangles the the tangent plane at i to retrieve the

3.3 geometry 17

angular coordinate. A similar version of this is used by GCNN and MoNet to compute
local exponential maps.

Dijkstra

Schmidt et al. [2006] show how to extend this simple approach to a larger region
by using a Dijkstra-like algorithm. �e intuition of this approach is as follows:
add up the edge lengths along the shortest path from point i to j to retrieve r and
consecutively project j to the tangent planes of points along the shortest path to
retrieve θ. Another Dijkstra-based approach was proposed by Melvær and Reimers
[2012], who reached higher accuracy than the previous work, by inferring geodesic
distances to virtual points within triangles.

Heat Di�usion

Dijkstra-based methods tend to be quite expensive, motivating research towards
close approximations of the logarithmic map (Crane et al. [2013]; Herholz and Alexa
[2019]; Sharp et al. [2019c]). �e Heat Method (Crane et al. [2013]) uses the obser-
vation that the gradients of the heat kernel closely approximate the gradients of
the distance �eld on a surface and exploits this idea to simplify the problem of com-
puting shortest geodesics (the radial coordinate r) to solving sparse linear systems
depending on the Laplacian ∆.

�e Vector Heat method (VHM) (Sharp et al. [2019c]) extends heat di�usion to
vector heat di�usion, using the connection Laplacian ∆∇. �is way, parallel trans-
port along shortest geodesics can be computed accurately and globally. Parallel
transport along shortest geodesics can then be used to compute the angular com-
ponent of the logarithmic map θ. Herholz and Alexa [2019] use a similar method
to compute the logarithmic map, but do not provide the general theory for vector
di�usion.

HSN adopts the Vector Heat method to compute parallel transport and the log-
arithmic map, because it is the state of the art in computing global and accurate
parallel transport. Additionally, because the Vector Heat method only requires a
Laplacian and connection Laplacian, we can use it on any surface representation
for which these Laplacians are de�ned. �is includes triangle meshes and point
clouds, as well as polygonal meshes and voxels.

3.3.4 Connection for Parallel Transport

Sharp et al. [2019c] detail how they compute the connection Laplacian for meshes in
their paper, but do not provide details for the connection Laplacian on point clouds.
In this section, we explain how to compute connection on point clouds, using a
method proposed by Singer and Wu [2012] and shortly summarise the Vector Heat
method’s approach to compute connection on a mesh.

Point Cloud

Given are the orthonormal basis Oi of the tangent plane TiS at i and the basis Oj
of the tangent plane at j. Oi consists of two column vectors of size three (x, y, z
coordinates), spanning TiS . �e column vectors are constructed using local PCA.
�e connection can be derived from the transformation between Oi and Oj, Oᵀi Oj.
Because of curvature, the subspaces spanned by Oi and Oj are not exactly the same,

18 background

and thus Oj, Oᵀi Oj is not guaranteed to be orthogonal. We therefore de�ne the
connection, Oij, as the closest orthogonal matrix:

Oij = argminO∈O(d)‖O−Oᵀi Oj‖HS. (3.2)

�e minimisation has a simple solution through the SVD of Oᵀi Oj. Given that
the SVD of Oᵀi Oj is:

Oᵀi Oj = UΣVᵀ, (3.3)

the connection is given by:

Oij = UVᵀ, (3.4)

which is a two by two rotation matrix.

Mesh

For meshes, we can use another way to compute the connection. Given two neigh-
bouring vertices i and j, we know that the polar coordinates for i to j should be
the inverse of the polar coordinates from j to i: θij = θji + π. �us, the di�erence
between these values gives us the connection: φij = (θji + π)− θij (Figure 3.4).

i
j

θij

θji

θji + π

θ = 0

θ = 0

Figure 3.4: Connection can be computed on meshes by comparing θij with θji.

3.4 harmonic networks

In this thesis, we apply the �lters proposed in Harmonic Networks (Worrall et al.
[2017]) in the tangent plane. �ese �lters are constrained to the family of circu-
lar harmonics, thereby enabling rotational equivariance. A function is rotationally
equivariant if we can associate a rotation of the input with an equivalent rotation
of the output (Figure 1.5).

Worrall et al. [2017] achieve rotational equivariance by using the following �lter
de�nition:

Wm(r, θ, R, β) = R(r)eı(mθ+β), (3.5)

where r and θ are the polar coordinates for the point the �lter is applied to, R :
R+ → R is the radial pro�le, which controls the shape of the �lter, β ∈ [0, 2π) is

3.4 harmonic networks 19

a phase o�set term, referred to as the radial o�set, and m ∈ Z is the rotation order
of the �lter. �e output of this �lter is a complex value. From hereon, Equation 3.5
will be denoted as Wm.

Given the rotation of feature map X by φ around the origin, denoted as Xφ =
X(r, θ − φ), it follows from the de�nition of Wm that1:

[Wm ? Xφ] = eımφ[Wm ? X0]. (3.6)

�is ful�ls the rotational equivariance condition and provides a way to steer the
output of convolutional layers, enabling the re-use of activations throughout the
network for di�erent rotations of the input.

3.4.1 m-Equivariance

Note that the rotation order, m, determines what kind of rotational equivariance is
achieved. For m = 0, rotational invariance is achieved, since for any rotation φ:

[W0 ? Xφ] = eı0φ[W0 ? F0] = [W0 ? F0]. (3.7)

For m = 1, linear rotational equivariance is achieved, which is su�cient for
parallel transport. We refer to the type of equivariance for rotation order m as
m-equivariance.

3.4.2 Chaining Cross-Correlations

If we chain cross-correlations of rotation orders m1 and m2, we achieve rotational
equivariance of order m1 + m2:

[Wm1 [Wm2 ? Xφ] = eım1φeım2φ[Wm ? X0] (3.8)

= eı(m1+m2)φ[Wm ? X0]. (3.9)

3.4.3 Rotation Order Streams

It is necessary to separate the outputs of di�erent rotation order convolutions, be-
cause the rotational equivariance property breaks when combining di�erent rota-
tion orders. �erefore, Worrall et al. [2017] propose a network architecture struc-
tured in separate streams per rotation order (Figure 3.5). For each feature map inside
a stream M, we require that the sum of rotation orders mi along any path reaching
that feature map equals M:

N

∑
i=1

mi = M. (3.10)

It is advised to trace the paths in Figure 3.5 to understand what this means.

3.4.4 M-Equivariant Networks

With this architecture, we can build networks where the output of the network is
M-equivariant to rotations of the input. An obvious application is the construction

1 Harmonic Networks’ formulation uses cross-correlation instead of convolution. �e authors of Har-
monic Networks use cross-correlation as the understanding is easier to follow.

20 background

M = 0

conv conv conv

0 0 0

0

-1 -1

1 1

M = 1

Figure 3.5: Harmonic Networks separate the result of di�erent rotation order con-
volutions into streams of M-equivariance.

of a 0-equivariant network. Such a network can have streams with M > 0, but
only outputs the M = 0 stream, or a combination of only the magnitudes from
each stream. �e output of such a network is stable, irregardless of the rotation of
the input.

4
M E T H O D

From the overview on related work and background theory, we point out the fol-
lowing challenges:

1. Many state-of-the-art GDL approaches learn rotationally invariant �lters. We
expect that this decreases the accuracy of learning on surfaces.

2. Spatial GDL approaches are able to learn directional �lters. However, they
do not account for the change of basis between points on the surface (orien-
tation ambiguity). We expect that orientation ambiguity negatively impacts
accuracy.

We observe the following advantageous properties of Harmonic Networks:

1. Circular harmonic �lters allow us to construct rotationally invariant networks
with more informative rotationally equivariant streams inside the network.

2. Circular harmonic �lters output complex valued features, which can be ro-
tated.

We propose to apply Harmonic Networks in the tangent plane of surfaces. �ese
networks would be invariant to the rotation of the orientation of the tangent plane,
eliminating the need to choose a consistent orientation.

For rotation order streams with M > 0 we still need to account for orientation
ambiguity, as the features are M-equivariant to any rotation of the input. �is is
where we apply the second property of Harmonic Networks: we can use parallel
transport along shortest geodesics to accurately rotate complex features to other
tangent planes.

We expect that the removal of orientation ambiguity, combined with the direc-
tional �lters in rotation order streams of M > 0 will improve the accuracy of learn-
ing on surfaces.

In the following sections, we present Harmonic Surface Networks (HSN): a convo-
lutional layer, pooling layer, and set of operations aimed at building more accurate
convolutional neural networks for surfaces.

4.1 convolution

We start our de�nition of the equivariant convolution �lters within the continuous
domain, because the rotational equivariance property is proven in the continuous
domain. A�er the �lter is de�ned in the continuous domain, a discrete approxima-
tion of is provided for irregularly sampled points.

Our formulation is in�uenced by implementation considerations. One example
of these considerations is the preference to apply learned parameters on as few val-
ues as possible. �is reduces the memory overhead for the automatic computation
of gradients in PyTorch. Another example is the preference to precompute and
cache expensive operations, like computing interpolation weights and the logarith-
mic map, where possible.

21

22 method

4.1.1 Notation

We denote feature vectors with a bold font, e.g. xi. For HSN, these feature vectors
are complex valued. Every operation applied to these vectors is performed element-
wise. �us, when we apply parallel transport to a feature vector, the parallel trans-
port is applied to each complex value, a two-dimensional vector in C, and not to
the entire feature vector.

�e radial pro�le R(r) and radial o�set eıβ form Wm implicitly. Wm is a matrix
of size [NO × NF] with complex values, where NF = c(l), the number of input
features, and NO = c(l+1), the number of output features. �us, when the radial
pro�le and radial o�set are applied to xj of size NF , the output is a complex-valued
vector of size NO.

r

Logmap

Compute messages
for neighbours

Sum

Weighting from
triangulation

Pj → i (xj,M)

θ

R(r) ei(mθ + β)

1

2

3

4

5

i

i

j

i

Ti S Ti S

S SS

Ti S Ti S

CONNECTION RADIAL PROFILE RADIAL OFFSET

Figure 4.1: Overview of convolution for HSN, given one complex feature xj,M: (1)
Map neighbours of i from surface S to TiS . (2) Evaluate circular har-
monic �lters for each neighbour to compute messages. (3) Use connec-
tion to apply parallel transport. (4) Weight each neighbour with the area
of its surrounding triangles. (5) Sum neighbouring messages to get a new
feature vector at i in TiS .

4.1.2 Continuous Domain

We de�ne convolution in the continuous domain for each point i and represent the
feature vectors of points in i’s neighbourhood from stream M and layer l with the
function x(l)

(r,θ),M. �e value at i in layer l + 1, using rotation order m, is computed
as an integral over the radial neighbourhood within distance ε:

x(l+1)
i,m =

∫ ε

0

∫ 2π

0
R(l)(r)eı(mθ+β(l))x(l)

(r,θ),Mr dθ dr. (4.1)

We restructure this formulation to separate the learned components and pull the
radial o�set out of the integral, motivated by the previously mentioned implemen-
tation considerations:

x(l+1)
i,m = eıβ(l)

∫ ε

0

∫ 2π

0
R(l)(r)eımθx(l)

(r,θ),Mr dθ dr. (4.2)

4.1 convolution 23

R(r)

r

Q1 2 … …

Figure 4.2: We parametrise the radial pro�le by learning the value at Q equally
spaced rings and linearly interpolate for values in between.

4.1.3 Approximating the Integral on a Surface

Moving to a discrete se�ing, our input points are irregularly distributed and exist
on a surface. �erefore, we will approximate the integral with a weighted sum over
the discrete points within the neighbourhood of i. �e neighbourhood of i,Ni is the
set of points within distance ε of i. Moreover, we need to push the feature vectors
of neighbouring points onto the tangent plane at i with parallel transport:

x(l+1)
i,m ≈ eıβ(l) ∑

j∈Ni

wjR(l)(rij)e
ımθij Pj→i(x

(l)
j,M), (4.3)

where wj is a weight for each neighbour, rij and θij are the polar coordinates of
point j relative to i, and Pj→i denotes parallel transport along shortest geodesics
from the tangent plane of j to that of i.

Radial Pro�le

For the radial pro�le R, we learn a limited number of values at equally spaced loca-
tions (or rings), which we linearly interpolate to rij (Figure 4.2):

R(l)(rij) =
Q

∑
q

µq(rij)ρ
(l)
q , (4.4)

where µq(rij) is a linear interpolation weight. Note that the radial pro�le could
be de�ned in other ways, which we do not explore in this thesis. Examples are
splines or polynomials with learned coe�cients.

Complete Formulation

Substituting Equation 4.4 into Equation 4.3, we derive the following formulation of
our �lter:

x(l+1)
i,m ≈ eıβ(l) ∑

j∈Ni

wj

Q

∑
q

µq(rij)ρ
(l)
q eımθij Pj→i(x

(l)
j,M). (4.5)

Finally, we separate our �lter into a precomputed component and a learned com-
ponent, denoted by parentheses:

x(l+1)
i,m ≈ eıβ(l)

Q

∑
q

ρ
(l)
q ∑

j∈Ni

Pj→i(x
(l)
j,M)

(
wjµq(rij)e

ımθij
)

. (4.6)

A visual overview of this �lter can be found in Figure 4.1.

24 method

Integration weights

�e integration weights wj are computed using a triangulation of the neighbour-
hood. If the input is a mesh, we can use the mesh as a triangulation. If the input is
a point cloud, a Delaunay triangulation is computed for the points in the tangent
plane. For both inputs, the weight is then de�ned as a third of the sum of areas of
all triangles containing j, also known as the vertex lumped mass matrix:

wj = ∑
ijk∈F

1
3

Aijk, (4.7)

where Aijk is the area of triangle ijk.

Applying Parallel Transport

We apply parallel transport as a rotation within the tangent plane, referred to as
connection. Harmonic Networks guarantee the rotational equivariance property:

[Wm ? Xφ] = eımφ[Wm ? X0]. (4.8)

�us, given the angle of the connection, φji, we can compute the transported
feature vector as:

Pj→i(xj,M) = eı(Mφji)xj,M, (4.9)

where M is the rotation order of the source stream of xj.

4.1.4 Rotation Orders

To maintain the rotational equivariance condition throughout the network, we need
to keep the output of the �lters separated in streams of rotation orders. �is concept
is explained in the background section on Harmonic Networks. A �lter applied to
xj,M with rotation order m should end up in rotation order stream M′ = M + m.
�e output from two convolutions resulting in the same stream is summed. For
example: we apply a convolution on xj,1 with m = −1 and a convolution on xj,0
with m = 0. �ese convolutions both end up in the stream M = 0 and are summed.

We only apply parallel transport to inputs from the M > 0 rotation order streams,
as the values in the M = 0 stream are rotationally invariant.

4.1.5 Precomputation

�e precomputated part of our convolution layer has three components: the integra-
tion weight, the interpolation weight to each radial pro�le point, and the rotation
by the angle θij:

precompij =
(

wjµq(rij)e
ımθij

)
. (4.10)

We precompute the polar coordinates and integration weights with the Vector
Heat method. �e precomputation is stored in a [Q x 2] matrix for each (i, j) pair.

We compute the connection angle in precomputation as well, but apply the con-
nection during learning, as it needs to be applied to features inside the network.
We use the Vector Heat method out-of-the-box to compute the logarithmic map
and connection for each neighbour.

4.2 pooling 25

4.2 pooling

Pooling layers downsample the input by aggregating regions to representative points.
We need to de�ne an aggregation operation suitable for surfaces and a way to
choose representative points and create regions. We use farthest point sampling
and cluster all non-sampled points to sampled points using nearest neighbours.

�e aggregation step in pooling needs to be performed with parallel transport,
since the complex features of points within a pooling region do not exist in the same
tangent basis. �us, we de�ne the aggregation step for representative point i with
points j in its pooling cluster Ci as follows:

xi,M = �j∈Ci Pj→i(xj,M). (4.11)

Pooling happenswithin each rotation order stream, hence the rotation order iden-
ti�er M for both xi and xj.

4.2.1 Precomputation

�e sampling of points per pooling level and construction of corresponding radius-
graphs are performed as a precomputation step, so we can compute the logarithmic
map and parallel transport for each pooling level using the Vector Heat method
Sharp et al. [2019c] in precomputation.

4.3 non-linearities

We follow Harmonic Networks (Worrall et al. [2017]) for complex non-linearities:
Non-linearities are applied to the magnitudes of the complex features. An example
complex version of ReLU:

C-ReLU(Xeıθ) = ReLU(X)eıθ . (4.12)

4.4 summary

We propose to apply Harmonic Networks in the tangent plane, solving the orienta-
tion ambiguity problem. To accurately compute convolution in streams of M > 0,
we apply parallel transport to the complex feature maps. We expect that the result-
ing networks improve in accuracy on existing GDL methods. In the next section, we
evaluate these claims and validate our implementation of HSN.

5
I M P L E M E N TAT I O N

In this chapter we detail the implementation of HSN in the PyTorch Geometric frame-
work (Fey and Lenssen [2019]). PyTorch Geometric provides implementations for
many GDL methods, utilities to process graphs and point clouds, a mini-batch loader,
and a multitude of datasets. Furthermore, it provides a way to implement new mes-
sage passing networks by extending theMessagePassing class, which encodes
the message passing framework:

x(l+1)
i = γ(l)

(
x(l)i ,�j∈N (i) ϕ(l)

(
x(l)i , x(l)j , ei,j

))
. (5.1)

To create a message passing network with the MessagePassing class, we de-
�ne a message function, which implements ϕ, and an update function, which
implements γ. PyTorch Geometric takes care of the aggregation function � with
fast, GPU-powered sca�er and gather operations.

5.1 messages and updates

For HSN, the message function applies the precomputed �lter components to the
feature vectors and edge a�ributes ei,j = (rij, θij, φji):

ϕ(l)(x(l)j,M, rij, θij, φji) = Pj→i(x
(l)
j,M)

(
wjµq(rij)e

ımθij
)

. (5.2)

We apply Pj→i(x
(l)
j,M) as follows:

Pj→i(x
(l)
j,M) = eı(Mφji)x(l)j,M, (5.3)

where M is the rotation order of the source stream.
�e messages are aggregated with an ‘add’ operation and passed as xaggr

i,M to the
update function, which applies the radial pro�le R and radial o�set β for each
rotation order m:

x(l+1)
i,m = γ(xaggr

i,M) = eıβ(l)
Q

∑
q

ρ
(l)
q xaggr

i,M . (5.4)

5.2 non-linearities

A�er each convolution, we apply a non-linearity through the C-ReLu operation,
de�ned in Section 4.3:

C-ReLU(Xeıθ) = ReLU(X)eıθ . (5.5)

27

28 implementation

For every other layer, we apply batch normalisation (Io�e and Szegedy [2015])
with C-BatchNorm. Like C-ReLu, C-BatchNorm applies batch normalisation to the
magnitude of each complex feature and propagates the angle unchanged.

5.3 pooling

�e MessagePassing class was also used to implement pooling. We de�ne the
message as follows:

ϕ(xj,M, φji) = eı(Mφji)xj,M (5.6)

And let PyTorch Geometric aggregate the messages with a ‘mean’ operation.

5.4 output and gradient descent

We use the negative log-likelihood to de�ne loss and apply a so�max function fol-
lowed by a log operation to our predictions before computing the loss. Parameters
are optimised through gradient descent with Adam (Kingma and Ba [2014]).

5.5 complex number representation

Complex numbers are represented by their real and imaginary components and
each rotation order stream is stored separately. �us, the input and output to each
layer is a tensor of size [NV , NM, NF, NC], where NV is the number of vertices, NM
is the number of rotation order streams, NF is the number of features, and NC is
the number of complex components (real and imaginary).

5.6 radial profile and radial offset

�e radial pro�le and -o�set are learned separately for each rotation order by our
network. We chose to learn the radial pro�le by learning parameters for NR rings.
�e values in between the ring locations are linearly interpolated.

�e radial pro�le is stored in a tensor of size [Nin
M ∗ Nout

M , NR, NO, NF], where
Nin

M is the number of input rotation order streams, Nout
M is the number of output

rotation order streams, NR is the number of rings, NO is the number of output
features, and NF is the number of input features. �e radial o�set is learned as an
angle and applied with a rotation matrix. �e o�set is stored in a tensor of size
[Nin

M ∗ Nout
M , NO, NF].

To set up a convolutional layer, we have to de�ne the following hyperparameters:
the number of rings for the radial pro�le NR, the number of rotation order streams
NM, the number of output features per layer NO, and whether to learn a radial
o�set as well.

5.7 transforms, utilities, and datasets

PyTorch Geometric provides a base class for data transforms. �ese transforms
are applied to the data in each batch before training and can also be applied as
a pre-transform to be stored on disk. We wrote a transform that computes the
log-map, connection, and vertex lumped mass matrix using the Vector Heat Method
(Sharp et al. [2019c]). We wrote a Python binding for Geometry Central (Sharp et al.
[2019a]), a C++ library by the authors of the Vector Heat Method, to be able to run
the entire pipeline from PyTorch.

5.8 reproducibility 29

Alongside the Vector Heat method, we wrote transforms to compute polar coor-
dinates and connection on small neighbourhoods in point clouds using the method
described in Section 3.3.4 (including base estimation). For pooling, we wrote a trans-
formation that precomputes a radius graph for multiple levels and functionality to
retrieve the correct radius graph for each pooling level.

Next to these transforms, we wrote a number of utility functions for working
with complex numbers and PyTorch modules for complex non-linear functions, like
C-ReLU and C-BatchNorm.

Finally, we wrote a number of newDataset classes, that load and clean up data
for use in our experiments. One example of such a Dataset is the RotatedM-
NIST class, that loads the Rotated MNIST dataset as a graph and constructs the
grid graph. Another is the MNISTSphere dataset that maps MNIST to a sphere
using an elliptical mapping and stores the sphere mesh as the underlying graph.

5.8 reproducibility

�e implementation was created with other end-users in mind: it closely follows
the conventions of PyTorch Geometric, provides clear documentation, and exhibits
a modular design, so that future work could easily build on what has been developed
for these experiments.

5.9 time and space complexity

We separate the analysis of time and space complexity into two components: pre-
computation and learning.

5.9.1 Precomputation

Precomputation requires the computation of a log map for each vertex, for each
model in the dataset. �e Vector Heat Method can compute a log map from any
source point in linear time, O(n), given a factorisation step that can be precom-
puted and reused. Repeating this for each vertex on the model results in O(n2)
precomputation time for each model. �is can be improved by solving local linear
systems, instead of global linear systems, which we leave for future work.

With regards to space, we only store the log-map for local neighbourhoods (k
points in each neighbourhood) and for points selected in pooling. �is results in
the following asymptotic space requirement: O(nk + n

s1 k + n
s2 k + ...) = O(nk),

where s is the downscaling factor used in pooling.

5.9.2 Learning

Our method requires more computations than most other methods. One reason
is the cost of operations on complex numbers, which add a number of multiplica-
tions and sine/cosine evaluations. Additionally, the separate rotation order streams
require a separate convolution for each input/output rotation order combination.
�us, the number of rotation order streams has a signi�cant impact on performance.
It is hard to provide a concrete formulation for the time complexity, as PyTorch adds
additional overhead for the computation of gradients. We did �nd that our method
performs signi�cantly slower than other methods: about 30x slower. We argue that
this is due to the additional cost of separate rotation order streams and the cost of
computing gradients derived from complex operations.

30 implementation

We intend to optimise our code to improve the learning speed by writing the
convolution as a C++/CUDA extension for PyTorch, reducing the cost of interpreter
and autograd overhead.

We can provide an estimation of space requirements for the network (Table 5.1).
Each layer requires Nin

M ∗ Nout
M ∗ NR ∗ NF ∗ NO parameters for the radial pro�le

and Nin
M ∗Nout

M ∗NF ∗NO for the radial o�set. Nin
M and Mout are typically lower or

equal to 2 and the number of rings range from 2 to 4. Compared to a regular CNN,
we have a similar amount of parameters to learn, depending on the values set for
NR and NM: CNNs require K ∗K ∗NF ∗NO parameters, where K is the �lter size. K
tends to range between 3 and 5. Instead of a separate set of parameters for each path
between rotation order streams, one can consider learning parameters per rotation
order stream. �is reduces the number of parameters to (NR + 1) ∗Nout

M ∗NF ∗NO.

HSN CNN
(NR + 1) ∗ Nin

M ∗ Nout
M ∗ NF ∗ NO K ∗ K ∗ NF ∗ NO

Table 5.1: Comparison of number of parameters for CNN and regular CNNs.

6
E X P E R I M E N T S

In our experimental evaluation we aim to test two hypotheses:

1. Hypothesis 1 (H1): HSNs improve over rotationally invariant methods (like
GCN or PointNet) by including rotation order streams of M > 0.

2. Hypothesis 2 (H2): HSNs improve over directional methods by accurately
relating values from di�erent tangent planes with parallel transport along
shortest geodesics.

We test these hypotheses on three di�erent tasks: classi�cation on Rotated MNIST
and on Rotated MNIST mapped to a sphere, correspondence on FAUST, and shape
segmentation on FAUST.

�e hypotheses are tested by se�ing up an HSN with two streams (0, 1) for each
task, and evaluating the performance a�er 100 epochs of training on that task. We
did not tune hyperparameters. We then compare HSN with other con�gurations of
HSN and other methods using the same architecture and hyperparameters. For each
hypothesis we use a di�erent set of comparable methods:

1. (H1) HSN with only the 0-equivariance stream and GCN, a widely used rota-
tionally invariant network similar to PointNet.

2. (H2)HSN without parallel transport and MoNet, a state of the art spatial method.

Additionally, we report on experiments supporting the design choices for trans-
ferring Harmonic Networks to the irregular domain.

6.1 rotated mnist

We recreated the experiment performed by Worrall et al. [2017] on Rotated MNIST
(Larochelle et al. [2007]). �is dataset consists of 10000 training images, 2000 val-
idation images, and 50000 test images and was constructed by randomly rotating
images from the MNIST dataset. �e small training set, relative to the test set, and
360◦ rotations make this a challenging task for traditional CNNs.

�e goal of this experiment was twofold: (1) to validate the implementation of
our HSN and (2) to test hypotheses H1 and H2.

6.1.1 Setup

Each image from Rotated MNIST was mapped to a graph, in which nodes represent
pixels and edges represent adjacencies of pixels (Figure 6.1). �ese graphs were
used to train and test our HSN network. Each node is associated with its position
in the pixel grid and we compute relative polar coordinates for each edge in the
input graph based on these positions. We add a base o�set to each node’s polar
coordinates to simulate the change of basis on a surface and compute connection
as the di�erence between base o�sets: φji = o�setj − o�seti.

31

32 experiments

base o�set

1) MNIST as graph 2) Apply base o�set 3) Connnection

ϕ

Figure 6.1: Rotated MNIST is converted to a graph. Next, we apply a base o�set and
compute connection as the di�erence between base o�sets.

Architecture

We recreated the network used by Worrall et al. [2017] for Rotated MNIST with
HSN, using two rotation order streams. �e network consists of seven convolutional
layers (features: 8, 8, 16, 16, 32, 32, 10), interspersed with two pooling layers, and
�nally a global mean-pooling operation. We set the number of rings for the radial
pro�le to 5. Our �lters are applied to a 5× 5 region. Please refer to Figure 6.2 for
an overview of the architecture.

8 8 16 16 32 32 10

M = 0

M = 1

= convolution = pooling

Figure 6.2: Architecture for classi�cation of Rotated MNIST.

6.1.2 Validation

�e �rst step is to validate that our test accuracy approximates that of Harmonic
Networks. Worrall et al. [2017] report 98.31% accuracy, which we were able to
reproduce with their implementation1. Although we tried to mimic Harmonic Net-
works’ implementation as closely as possible, we expect that HSN will achieve slightly
lower accuracy, due to generalisations required to work on irregular graph struc-
tures: we do not use padding, interpolate the radial pro�le, and approximate the
continuous integral in a di�erent way, by using a weighted sum. �erefore, to pass
our validation, we allow a small margin of 2%.

1 �is result was achieved by training on both the training and validation set. Without the validation set,
the results drop by about 0.5%

6.1 rotated mnist 33

Method Rotation order streams Accuracy
Harmonic Networks 0, 1 98.13%
HSN (ours) 0, 1 96.71%

Table 6.1: Results of HSN and Harmonic Networks on the Rotated MNIST dataset.
For HSN, we applied a base o�set to each node’s polar coordinates.

Method Rotation order streams Accuracy
Harmonic Networks 0 93.55%
Harmonic Networks 0, 1 98.13%
Harmonic Networks 0, 1, 2 98.31%
Harmonic Networks 0, 1, 2, 4 97.79%
HSN (ours) 0 84.64%
HSN (ours) 0, 1 96.71%

Table 6.2: Results of HSN and Harmonic Networks on the Rotated MNIST dataset
for di�erent rotation order stream con�gurations. We observe that the
1-equivariant stream improves the accuracy of our network.

Results

HSN achieves 96.71% accuracy (Table 6.1). �is con�rms that our implementation
matches the performance of Harmonic Networks and that one of the fundamental
ideas of this thesis, that we can apply connection with a simple rotation of �lter
activations, is correct.

6.1.3 Hypothesis 1

To test hypothesis 1, we compare a dual-stream HSN (M = {0, 1}) with a single-
stream HSN (M = {0}). We test the same con�gurations for the Harmonic Net-
works implementation as well. We expect that the dual-stream HSN will show im-
proved results, compared to its single-stream counterpart.

Curious about the e�ect of adding more rotation order streams, we tested Har-
monic Networks with additional streams. �e authors of Harmonic Networks claim
that higher order streams do not add signi�cantly to the performance, as images do
not exhibit high frequency pa�erns, rotationally (Jacobsen et al. [2016]), so we ex-
pect to see li�le additional improvement.

Results

We observe that the 1-equivariant stream improves the accuracy by about 4.58%
for Harmonic Networks (Table 6.2). For HSN, the gap is even larger: 12.07%. We
also see that higher rotation order streams do not signi�cantly improve our results,
supporting our expectation on higher rotation order streams.

model complexity �e improvement in accuracy might be explained purely
by the increased complexity of extra rotation order streams: each stream learns a
separate set of �lters, adding to the number of parameters to be learned. �is would
mean that we cannot a�ribute the improvement in accuracy to the additional rota-
tion orders. To test this, we repeated our experiment with a single 0-equivariant
stream for higher feature counts and, additionally, with two 0-equivariant streams
(Table 6.3). We observe that additional parameters do not improve performance,
most likely because the network is over��ing due to the increased complexity. We

34 experiments

Method Rotation order streams # Features Accuracy
Harmonic Networks 0 ×1 93.55%
Harmonic Networks 0 ×4 93.39%
Harmonic Networks 0, 1 ×1 98.13%
HSN (ours) 0 ×1 84.64%
HSN (ours) 0 ×4 84.58%
HSN (ours) 0, 0 ×1 83.96%
HSN (ours) 0, 1 ×1 96.71%

Table 6.3: Results of HSN and Harmonic Networks on the Rotated MNIST dataset for
a single stream and di�erent parameter counts. Adding parameters does
not have the same e�ect as adding higher rotation order streams.

R(r)

r

R(r)

r

HSN
Linear interpolation

Direct

Harmonic Networks

Figure 6.3: �e di�erence between how Harmonic Networks and HSN learn their
radial pro�le could lead to a di�erence in angular contrast.

also rule out the possibility that the stream architecture is the reason for our ob-
served improvement.

difference for single stream �e lower performance for m = 0 in HSN,
compared to Harmonic Networks, requires explanation. Our speculation is that
the decreased performance is caused by how we learn the radial pro�le. Harmonic
Networks learn a distinct radial pro�le value for each ring of pixels, where HSN
interpolates the radial pro�le from radial pro�le values at �xed locations (Figure 6.3).
Harmonic Networks could therefore learn �lters with more ‘angular contrast’ that
HSN cannot not construct. One way to solve this, would be to also learn the locations
of the radial pro�le parameters. Because that would increase the complexity of
the network, and because our dual-stream network performs well, we chose not to
include this.

�e experiments on Rotated MNIST support hypothesis 1. Additionally, we found
that higher rotation order streams do not improve learning for MNIST and rule out
the explanation that the improvement can be a�ributed to increase in complexity
of the model.

6.1 rotated mnist 35

Method Rotation order streams Accuracy
HSN (no parallel transport) 0, 1 90.57%
HSN (ours) 0, 1 96.71%

Table 6.4: Results of HSN and HSN without parallel transport. Parallel transport im-
proves HSN’s performance.

6.1.4 Hypothesis 2

To test hypothesis 2, we compare HSN to a con�guration of HSN without parallel
transport, i.e. without connection. We argue that Rotated MNIST with random
base o�sets provides a trustworthy proxy for understanding the e�ect of parallel
transport for real-world data: a random orientation in the tangent plane is the worst
case scenario we expect to see for surfaces.

We expect that HSN with parallel transport will improve on HSN without parallel
transport.

Results

Where HSN with parallel transport achieved 96.71%, the variant without parallel
transport only reached an accuracy of 90.57% (Table 6.4). A drop in performance
of 6.14%.

�is experiment supports hypothesis 2, demonstrating an improvement by adding
parallel transport to an otherwise unchanged HSN.

36 experiments

6.2 rotated mnist on the sphere

Next, we move from the plane to a curved surface by mapping Rotated MNIST to
a sphere. Our goal with this experiment was to test both our hypotheses. To this
end, we compare HSN with two competing methods (GCN and MoNet) in a controlled
se�ing with a familiar dataset.

6.2.1 Setup

We use an elliptical mapping (Fong [2015]) to map each of the 642 vertices on the
sphere to a location in a square grid. �e elliptical mapping maps a position in the
unit disc (u, v) to a position in the unit square (x, y). In our case, from each half of
the sphere to a square image.

�e x and y coordinates resulting from this mapping are �oats. We bilinearly
interpolate from the pixel locations to x and y, resulting in a value for each vertex
on the sphere (Figure 6.4).

Figure 6.4: Rotated MNIST mapped to a sphere

Architecture

We use the exact same architecture as was used for Rotated MNIST (Figure 6.2):
seven convolutional layers with two pooling layers in between.

Pooling

We use mean-pooling on clusters based on Farthest Point Sampling (Section 4.2).
�e pooling layers use the following downsampling ratios: 0.5, 0.25. We use the
following radii to construct a radius graph for each pooling level, starting at the
full input: 0.3, 0.45, 0.82.

Orientation within Tangent Plane

To construct polar coordinates for each neighbouring vertex, we need to choose
an orientation within the tangent plane. �e Vector Heat method’s implementation
uses the �rst edge connected to a vertex as the orientation within the tangent plane.
Because the same sphere mesh is used for each training sample, the orientation
within the tangent plane at each vertex is consistent for each training sample. Yet,
the orientation within the tangent plane is di�erent for di�erent vertices in the
same model.

Our choice of orientation within the tangent plane has the following consequences
for our experiments:

1. We can test our solution for the orientation ambiguity problem, as di�erent
vertices use di�erent orientations.

2 Recall that the input is a unit sphere.

6.2 rotated mnist on the sphere 37

2. MoNet can be applied to the dataset without angular max-pooling, as the choice
of orientation is consistent across each input model. �is change is in favor of
MoNet, as it stabilises the learning process compared to angular max-pooling.
We prefer using MoNet without angular max-pooling, as angular max-pooling
is a costly operation: each �lter response has to be computed multiple times.
In our current testing framework this also resulted in a large memory over-
head that could not be resolved within the desired time frame.

3. Rotationally invariant methods, and thus our experiments on hypothesis 1,
are not a�ected.

For future work, we suggest adding a random o�set the the polar coordinates of
each point, like we did for Rotated MNIST in the plane. �is will greatly simplify
interpreting experiments for hypothesis 2 and align more with what we expect to
see for real-world datasets.

6.2.2 Hypothesis 1

To test hypothesis 1, we compare a dual-stream HSN with a single-stream con�gu-
ration and GCN, a rotationally invariant network. GCN is a widely used method for
learning on graphs that is similar to works that learn speci�cally on point clouds
or meshes (e.g. PointNet or EdgeConv).

We also tested a version of GCN that takes the maximum of its neighbours, instead
of the average. We refer to this version as GCN (max). GCN with a max operation is
similar to PointNet, giving us an impression of how our network would compare
with PointNet.

For single-stream HSN, GCN, and GCN (max), we increase the number of features
to compensate for the extra stream of dual-stream HSN.

Because the single 0-equivariant stream achieves rotational invariance, we ex-
pect that the single-stream HSN and GCN achieve similar results. Additionally, we
expect that the additional 1-equivariant stream in the dual-stream HSN improves
the performance.

Results

We observe that HSN with two streams clearly outperforms all other con�gurations:
94.10% against 79.97% by GCN (max) (Table 6.5). �is is an increase in performance
of 14.13%. Note that we did not tune any hyperparameters and used the exact
same number of parameters (accounting for streams) and setup for each method3

We also see that the single-stream HSN resembles the accuracy of GCN, following
our expectation. �is leads us to interpret this result in support of hypothesis 1.

Method Rotation order streams Accuracy
GCN 0 (equivalent to) 77.49%
GCN (max) 0 (equivalent to) 79.97%
HSN (ours) 0 76.52%
HSN (ours) 0, 1 94.10%

Table 6.5: Results of GCN and HSN tested on Rotated MNIST mapped to a sphere for
di�erent stream con�gurations.

3 We also tested the single-stream con�gurations with the same number of features. �is resulted in a
lower accuracy. �erefore, we only report on the experiments with higher parameter counts.

38 experiments

6.2.3 Hypothesis 2

To test hypothesis 2, we compare our dual-stream HSN (M = 0, 1) network with
MoNet. Again, we use the exact same architecture for all methods and use the same
number of parameters. We do not tune any hyperparameters and use the same
logarithmic map for MoNet and HSN, derived from the Vector Heat method.

We expect MoNet to do well, because it is a state of the art spatial method. We
also expect that HSN can improve on MoNet, because it accounts for the orientation
ambiguity problem, where MoNet does not.

Results

We observe that HSN has a slight advantage over MoNet (94.10% vs. 92.19%, Ta-
ble 6.6). We suggest the following explanations for this low improvement: (1) MoNet
�lters have a higher degree of freedom, giving MoNet an initial edge over HSN. (2)
We did not use angular max-pooling for MoNet, enabling a stabler learning process
that we would not see in real-world datasets.

Nonetheless, HSN has improved over MoNet, demonstrating the importance of cor-
rectly relating di�erent tangent plane orientations.

Method Rotation order streams # Features Accuracy
MoNet - ×1 87.29%
MoNet - ×4 92.19%
HSN (ours) 0, 1 ×1 94.10%

Table 6.6: Results of MoNet and HSN tested on Rotated MNIST mapped to a sphere.

6.3 segmentation and correspondence on faust 39

6.3 segmentation and correspondence on faust

Finally, we apply HSN to a dataset derived from real-world scans: FAUST (Bogo et al.
[2014]). FAUST contains 100 scans of bodies in di�erent con�gurations. We split
the dataset in a train set of 80 scans and a test set of 20 scans. Each model contains
6890 vertices.

�e �rst task is segmentation: labelling each vertex of the model with one of
eight segment labels (Figure 6.5a). �e second task is correspondence: labelling
each vertex with its index (Figure 6.5b). �is means that each vertex has to be
assigned the correct label out of 6890 possibilities.

We aim to test our two hypotheses by comparing a dual-stream HSN with several
con�gurations of HSN as well as GCN and MoNet.

(a) Segmentation (b) Correspondence

Figure 6.5: Segmentation and correspondence on FAUST: 8 or 6890 class labels for
6890 vertices.

6.3.1 Setup

We use the meshes from FAUST as input to our network. �e input features consist
of the raw xyz-coordinates of the vertices. �e accuracy of each task is reported as
the percentage of vertices that were labelled correctly. For segmentation, this is a
natural performance measure. For correspondence, researchers tend to use a more
lenient performance measure: the percentage of correct matches, given a certain
margin of geodesic distance. Because FAUST uses the same vertex topology for
each model, we can use the exact accuracy as a performance measure.

Architecture

We set up a simple architecture to perform both tasks (Figure 6.6): six convolutional
layers with the following number of output features: 32, 32, 64, 64, 64, 64. �is is
followed by a fully connected layer of 128 features and a �nal fully connected layers
with the number of classes (Nclasses) as output. For segmentation Nclasses = 8, for
correspondence Nclasses = 6890.

We do not apply pooling and have not tuned our hyperparameters. �erefore, we
do not expect to surpass state of the art approaches that use ResNet architectures
or additional tuning measures.

Orientation within Tangent Plane

Like our sphere dataset, FAUST has a consistent mesh structure for each model in
the dataset. Consequently, the orientation in the tangent plane for each vertex is
consistent for each model, enabling us to apply MoNet without angular max-pooling.

�e consistent choice of orientation has made it di�cult to perform trustwor-
thy experiments on correspondence for MoNet and HSN without parallel transport.

40 experiments

32 32 64 64 64 64 256 Nclasses

M = 0

M = 1

= convolution = fully connected

Figure 6.6: Network architecture for learning on FAUST.

Because the orientation at each vertex is consistent, the di�erence of orientations
between neighbouring vertices is consistent. In addition, the di�erence of orien-
tations is unique for each vertex pair. �erefore, orientation ambiguity becomes a
highly e�ective feature to predict the index of each vertex.

In real-world scans, we do not have such consistent orientations and MoNet has to
resort to angular max-pooling to choose an orientation. Due to time constraints, we
were not able to implement this within our testing framework for a fair comparison.
�erefore, we omit the experiments on correspondence for hypothesis 2.

6.3.2 Hypothesis 1

We compare a dual-stream HSN with a single-stream HSN, GCN, and GCN (max). We
expect that the dual-stream HSN improves on all of these methods.

Segmentation Results

We observe that HSN performs well on the segmentation task: 97.54% (Table 6.7).
GCN and single-stream HSN show about a 9% drop in accuracy and demonstrate
similar accuracy to each other. GCN (max) does worse than any of the other methods.

Method Rotation order streams Accuracy
GCN 0 88.67%
GCN (max) 0 82.30%
HSN (ours) 0 87.34%
HSN (ours) 0, 1 97.54%

Table 6.7: Results of segmentation on FAUST with HSN and GCN.

Correspondence Results

�is task is much harder than segmentation, a�ested to by the low accuracy of
GCN and single stream HSN: only 19.67% (Table 6.8). �e additional 1-equivariant
stream for dual-stream HSN improves the accuracy by 50%, clearly demonstrating
the added bene�t of the 1-equivariant stream. Again, we see a high similarity be-
tween GCN and single-stream HSN, con�rming our expectation that these methods
exhibit similar properties for learning.

To place the performance of HSN into perspective: GCNN achieves results in the
range of 60 − 70%, PointNet and EdgeConv achieve < 10% for exact accuracy
(Poulenard and Ovsjanikov [2018]).

6.3 segmentation and correspondence on faust 41

Method Rotation order streams Accuracy
GCN 0 19.67%
GCN (max) 0 4.36%
HSN (ours) 0 19.66%
HSN (ours) 0, 1 68.42%

Table 6.8: Results of correspondence on FAUST with HSN and GCN. HSN improves on
GCN and its single-stream counterpart.

6.3.3 Hypothesis 2

We compare a dual-stream HSN with a MoNet setup for segmentation. We have mixed
expectations for this hypothesis: with its higher degree of freedom, MoNet could
produce more salient features. �is might outweigh the loss of accuracy from ori-
entation ambiguity.

Method Rotation order streams Accuracy
MoNet - 84.52
HSN (ours) 0, 1 97.54%

Table 6.9: Results of segmentation on FAUST with HSN and MoNet.

Results

For segmentation, HSN improves over MoNet by about 13.02% (Table 6.9).
We are hesitant, however, to derive any hard conclusions from these experiments,

because our comparison methods were not up to par: MoNet was implemented by
its authors with only three layers and angular max-pooling. We used MoNet in a
network with seven layers and a di�erent number of kernels.

For future work, we intend to exactly replicate the experiments of Monti et al.
[2017] and compare with the results as reported by the authors using the same
performance metric based on geodesic distance-error.

42 experiments

6.4 rotational eqivariance for irregular sampling

Circular Harmonic �lters and their rotational equivariance property are designed
in the continuous domain. To apply these �lters on discrete surface representations,
we have to approximate the continuous convolution somehow. We performed the
following experiments to �nd an interpolation or weighting method that would best
preserve the rotational equivariance property.

6.4.1 Interpolation and Weighting

�ese experiments were performed at an early stage of the thesis and use a step that
was later found to be unnecessary: in these experiments we �rst interpolate to a
number of grid points and then sum over these grid points. From these experiments,
we concluded that interpolation based on a Delaunay triangulation would be most
suitable for our method.

If we increase the number of grid points to in�nity, we �nd that this method
is equivalent to weighting each irregular grid point with a third of the sum of its
surrounding triangles. �is makes the triangulation weighting more accurate than
any of the surveyed methods. Additionally, it removes the need to set a number of
grid points and reduces the computational complexity of our method.

Even with this change, the results are informative for rotational equivariance on
irregular grids.

6.4.2 Irregular Samples and Rotation

Motivation and questions

A crucial ingredient in our method is rotational equivariance. To apply connection
to activations, we should be able to associate a rotation in the input with a rotation
in the output:

[Wm ? Fφ] = eımφ[Wm ? F0]. (6.1)

�e main question for this experiment is the following: does the rotational equiv-
ariance property hold for irregularly sampled functions? In the process, we aim to
decide on which interpolation method to use, and �nd out more about the limits of
the rotational equivariance property when applied to real images.

Method

�e following experiment was set up to answer these questions: k unique samples
were taken from an image using a uniform distribution within a circle. �ese k
samples were interpolated to a polar grid with n rings and m angles (Figure 6.7) to
form input x.

Next, a circular harmonic �lter with radial pro�le R(r) = 1− r and phase o�set
β = 0 was sampled at the same polar grid to form �lter W. �e cross correlation
for one patch was then computed, resulting in activation a.

�is process was repeated for the same input image rotated around its centre by
φ, resulting in a rotated activation aφ.

6.4 rotational eqivariance for irregular sampling 43

Figure 6.7: Le�: Samples taken from a test image. Rejection sampling was used to
sample k unique points from a uniform distribution within a circle. Right:
interpolated to a regular polar grid with n rings and m angles.

Figure 6.8: Angular and Magnitude error plo�ed against the number of irregular
samples.

We set aφ′ = eiφa. It follows from Equation 6.1 that aφ = aφ′ . To validate this, we
repeat the experiment for 8 rotations and 100 repetitions and observed the RMSE
of the magnitude and the mean of the angular error Lφ:

Lφ = cos−1

 aφ′

Reaφ
Re + aφ′

Imaφ
Im

|aφ′ ||aφ|

 . (6.2)

We use a polar grid, consisting of the same number of points used in Harmonic
Networks: 4 rings and 12 points on each ring. �e number of rings is limited, as it
directly impacts the number of weights used in the network. We report the angular
error and magnitude error for the following interpolation methods alongside a zero
measurement of direct sampling on the polar grid (Figure 6.8):

• Delaunay triangulation
– Nearest Neighbour (DT-NN)
– Linear (DT-LIN)
– Cubic (DT-CUB)

• Radial Basis Functions
– Inverse Multiquadric (RBF-INV)
– Gaussian (RBF-GAUSS)
– Linear (RBF-LIN)

Discussion

�e resulting plots show that RBF-INV and DT-CUB perform best for the provided
input image. From k = 25 we see that the error �a�ens to an acceptable low error,
showing that interpolation can provide an approximation that is useful for rota-
tional equivariance. One problem with DT-CUB is that it �rst computes a convex

44 experiments

(a) T shaped image.

(b) Crosshair image.

(c) Flower image, sampled from photograph.

(d) Sharp edge image.

Figure 6.9: Angular and Magnitude error plo�ed against the number of irregular
samples for several images.

hull and interpolates values within the convex hull of the sampled points, leaving
some points without a value, whereas RBF-based methods have in�nite support.

Next, we repeat the same experiment for di�erent images. Shown are the images
besides their corresponding plots (Figure 6.9a, Figure 6.9b, Figure 6.9c, Figure 6.9a).
�e images that were used are smooth, di�erentiable functions, as we expect to
see on a manifold. From experiments we �nd that the interpolation fails for high-
frequency images or images with sharp edges (Figure 6.9d).

We also �nd that asymmetric images perform best, especially the image sampled
from a real photograph (Figure 6.9c). �e crosshair image fails in restoring the cor-
rect rotation. We investigate this speci�c case by plo�ing the rotation angle against
the mean angular error (Figure 6.10a). �e angular error is the same across all ro-
tations, so there must be some other e�ect than rotational symmetry at play. We
suggest the following explanation: the gradient of the crosshair, combined with
interpolation gives inconsistent values for the polar grid. We investigated this by
plo�ing the values on the polar grid (not shown in this report) and comparing the re-

6.4 rotational eqivariance for irregular sampling 45

(a) Gradient crosshair. (b) Sharp-edged crosshair.

Figure 6.10: Rotation vs Mean Angular Error for the crosshair image.

Figure 6.11: Angular and Magnitude error plo�ed against the number of irregular
samples for rotation order m = 2.

sults with a sharp-edged crosshair (Figure 6.10b). �is plot supports our suggestion:
with sharp edges, the errors for interpolated values correspond to those for regular
sampling. Both errors are high, which could be a�ributed to rotational symmetry,
as can be seen in the regular sampling plot.

A �nal analysis is concerned with the e�ect of the rotation order m. We repeat
the above experiment for m = 2 and create the same plots (Figure 6.11. We �nd
that irregular sampling performs worse for lower sample numbers, but catches up
with m = 1 at k = 64. Again, DT-CUB is the best interpolation method.

Conclusion

From the above experiments, we conclude that interpolation gives a good approx-
imation for k >= 20, especially for smooth, low-frequency images. We �nd that
cubic interpolation based on a Delaunay triangulation is the best method to use,
outperforming the other methods across the board.

7
D I S C U S S I O N A N D C O N C L U S I O N

With Harmonic Surface Networks (HSN), we present a solution to the orientation
ambiguity problem that combines geometric convolutional networks and equi-
variant networks. In doing so, we have (1) introduced a concept for vector-valued
convolutional networks on surfaces and (2) extended Harmonic Networks to
irregular domains.

We evaluated our approach, testing two main hypotheses about our method, and
supported important design decisions experimentally. We will now discuss our re-
sults, generalisability and potential applications, limitations and practical consider-
ations, and future work.

7.1 results

hypothesis 1 (h1) We are able to con�dently state that hypothesis 1, on the
bene�t of higher rotation order streams, holds true. Across every experiment, and
with a great margin, the two-stream HSN demonstrated improved performance com-
pared to a single-stream HSN and GCN.

hypothesis 2 (h2) We grew our con�dence in hypothesis 2 and the experi-
mental results are promising. We can conclude that parallel transport is bene�cial
to learning on surfaces for HSN, based on our experiments with random base o�sets.
We cannot yet make a solid claim about the bene�t of parallel transport compared
to state of the art approaches, like MoNet, due to limited comparison experiments.

7.2 generalisability

HSN can be applied to many learning problems on surfaces, and potentially on
higher-dimensional manifolds. While we demonstrate the e�ectiveness of HSN on
triangle meshes, the basic building blocks of our method also work on point clouds
and other discretisations of surfaces, such as polygonal meshes and voxels. In this
section, we highlight a number of potential applications, as well as the generalisa-
tion to point clouds and higher-dimensional manifolds.

7.2.1 Applications

Spatial geometric deep learning methods have a wide array of applications. Major
applications within the area of computer graphic are shape correspondences, seg-
ment labelling, and shape completion and generation. Other applications described
in the literature are learning shape descriptors, normal prediction, keypoint predic-
tion, style transfer, and shape generation. A thorough review of these applications
can be found in Bronstein et al. [2017].

Our method provides an additional ‘hook’ for applications: the output of our
layers is complex valued, representing vectors in the tangent plane. We currently

47

48 discussion and conclusion

only use the magnitude of these activations to derive classi�cations and discard the
orientation. �e orientation could be of use for applications with vectors as input
or output.

7.2.2 Point Clouds

Our implementation can simply be extended to point clouds: we compute parallel
transport and the logarithmic map with the Vector Heat method, which generalises
to any structure with a Laplacian and connection Laplacian. �e connection Lapla-
cian for a point cloud can be computed by the method described by Singer and Wu
[2012]. �e integration weights can be derived from a Delaunay triangulation in
the tangent plane, instead of the vertex lumped mass matrix.

7.2.3 Higher-Dimensional Manifolds

HSN might generalise to higher-dimensional manifolds. �is will require the follow-
ing advancements: higher-dimensional harmonic networks, a higher-dimensional
logarithmic map and higher-dimensional parallel transport. �omas et al. [2018]
show a generalisation of Harmonic Networks to 3D rotations, which could be a
pointer for work into higher dimensional harmonic networks. Singer and Wu [2012]
present their connection Laplacian approach for any number of dimensions and the
Vector Heat method could use this to generalise to higher dimensions. In the near
future, we will remain focused on improving HSN for surfaces. In the far future, we
could see an application of HSN in higher-dimensional manifolds.

7.3 limitations and practical considerations

Our method comes with a number of limitations and practical considerations, which
we discuss in the following section. We discuss our considerations on intrinsic
learning, the expressiveness and understanding of circular harmonic �lters, and
the limitations posed by irregular inputs.

7.3.1 Intrinsic vs. Extrinsic

HSN learns �lters in the two-dimensional tangent plane. �is is o�en referred to as
intrinsic learning, as the �lters are applied ‘inside’ the surface. Methods that apply
convolutions on the three-dimensional embedding space are referred to as extrinsic
approaches. Examples of extrinsic approaches are multi-view CNNs (Huang et al.
[2018]) and volumetric CNNs (Wu et al. [2015]).

Although intrinsic learning has many advantages over extrinsic learning (Boscaini
et al. [2016]), it also comes at a cost. Examples of problematic cases for intrinsic rep-
resentations are shapes that seem to merge into one shape but are strictly separate,
such as feathers on a bird (Poulenard and Ovsjanikov [2018]). An extrinsic repre-
sentation will ‘see’ that points on separate feathers are close to each other in the
embedding space, while the intrinsic representation will perceive a much larger
distance. �is can be a problem for tasks such as shape segmentation.

Our approach is also limited to polar coordinates as parametrisations of the tan-
gent plane. Verma et al. [2018] show with FeastNet that other local parametrisations,
for example those learned from features inside the network, could improve the ac-
curacy of networks.

7.4 future work 49

7.3.2 Expressiveness of the Filters

�e �lters used in the network are constrained to the circular harmonics family.
�is strictly reduces the number of con�gurations our �lters can take. We believe
that radial o�set plays an important role in constructing more informative features.
Without it, the �lters simply act as an averaging operation over surrounding fea-
tures, resulting in an activation that points in the direction of the highest activations.
By adding the radial o�set parameter, the network can in�uence how to relate dif-
ferent rotations, which increases the expressiveness of these �lters.

We expect that the reduced expressiveness of these features is most apparent in
shallow neural architectures; in deeper architectures, where �lters in later layers
cover a wide surface area, the advantages of accurate di�usion with parallel trans-
port may outweigh the disadvantages of a constrained �lter.

Understanding of Harmonic Filters

�is brings us to another limitation of HSN: it is hard to get a good grasp of the
types of �lters learned by the network. Although we can make some statement
about the magnitude and angle of activations in early layers, the radial o�set and
input data makes it hard to understand what our network is doing. We can design
networks that function with high accuracy, but we need to understand be�er what
our �lters are doing to improve their accuracy. We propose investigating this by
visualising our �lters and visualising what our �lters ‘look for’ by generating shapes
that maximise �lter activations.

7.3.3 Irregularity

HSN uses a weighted sum to approximate a continuous integral. �e weights used for
this are derived from the area of triangles surrounding each point. Consequently,
HSN’s accuracy depends on the quality of the triangulation. We suggest using an
intrinsic Delaunay triangulation to minimise the error introduced by bad triangula-
tions (Sharp et al. [2019b]).

�ere are other ways to approximate a continuous integral, such as radial basis
functions. We have used a weighting based on triangulations, as it demonstrated
high accuracy and reduces the number of hyperparameters compared to other in-
terpolation methods. Nevertheless, further numerical optimisations could improve
this component of HSN.

7.4 future work

We have demonstrated a new concept for vector-valued convolutional networks on
surfaces. Although the experiments performed in this thesis are promising and the
concept is sound, we need to evaluate our method on a wider range of applications
and experiment with other network architectures to �nalise the concept. Ideally,
this involves an implementation for point clouds.

We intend to share our implementation as a contribution to PyTorch Geometric,
so other researchers can study and replicate our work. Such research could move
in the direction of applications for 1-equivariant networks or, in the future, higher-
dimensional manifolds.

B I B L I O G R A P H Y

Bogo, F., Romero, J., Loper, M., and Black, M. J. (2014). FAUST: Dataset and evalu-
ation for 3D mesh registration. In Proceedings IEEE Conf. on Computer Vision
and Pa�ern Recognition (CVPR), Piscataway, NJ, USA. IEEE.

Boscaini, D., Masci, J., Rodolà, E., and Bronstein, M. (2016). Learning shape cor-
respondence with anisotropic convolutional neural networks. In Advances in
Neural Information Processing Systems, pages 3189–3197.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Ge-
ometric deep learning: going beyond euclidean data. IEEE Signal Processing
Magazine, 34(4):18–42.

Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. (2014). Spectral networks and
locally connected networks on graphs. In International Conference on Learning
Representations (ICLR2014), CBLS, April 2014.

Budninskiy, M., Yin, G., Feng, L., Tong, Y., and Desbrun, M. (2019). Parallel transport
unfolding: A connection-based manifold learning approach. SIAM Journal on
Applied Algebra and Geometry, 3(2):266–291.

Cohen, T. and Welling, M. (2016a). Group equivariant convolutional networks. In
International conference on machine learning, pages 2990–2999.

Cohen, T. S. and Welling, M. (2016b). Steerable cnns. arXiv preprint arXiv:1612.08498.

Crane, K., Weischedel, C., and Wardetzky, M. (2013). Geodesics in heat: A new
approach to computing distance based on heat �ow. ACM Transactions on
Graphics (TOG), 32(5):152.

De�errard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral �ltering. In Advances in Neural
Information Processing Systems, pages 3844–3852.

Dhillon, I. S., Guan, Y., and Kulis, B. (2007). Weighted graph cuts without eigenvec-
tors a multilevel approach. IEEE transactions on pa�ern analysis and machine
intelligence, 29(11).

Dieleman, S., De Fauw, J., and Kavukcuoglu, K. (2016). Exploiting cyclic symmetry
in convolutional neural networks. In Proceedings of the 33rd International Con-
ference on International Conference on Machine Learning - Volume 48, ICML’16,
pages 1889–1898. JMLR.org.

Fasel, B. and Gatica-Perez, D. (2006). Rotation-invariant neoperceptron. In 18th
International Conference on Pa�ern Recognition (ICPR’06), volume 3, pages 336–
339. IEEE.

Fey, M. and Lenssen, J. E. (2019). Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and Man-
ifolds.

Fong, C. (2015). Analytical methods for squaring the disc.

Freeman, W. T. and Adelson, E. H. (1991). �e design and use of steerable �lters.
IEEE Transactions on Pa�ern Analysis & Machine Intelligence, pages 891–906.

51

52 BIBLIOGRAPHY

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural
message passing for quantum chemistry. CoRR, abs/1704.01212.

Hena�, M., Bruna, J., and LeCun, Y. (2015). Deep convolutional networks on graph-
structured data. CoRR, abs/1506.05163.

Herholz, P. and Alexa, M. (2019). E�cient computation of smoothed exponential
maps. In Computer Graphics Forum. Wiley Online Library.

Hinton, G. E., Krizhevsky, A., and Wang, S. D. (2011). Transforming auto-
encoders. In International Conference on Arti�cial Neural Networks, pages 44–
51. Springer.

Hu, R., Savva, M., and van Kaick, O. (2018). Functionality representations and ap-
plications for shape analysis. In Computer Graphics Forum, volume 37, pages
603–624. Wiley Online Library.

Huang, H., Kalogerakis, E., Chaudhuri, S., Ceylan, D., Kim, V. G., and Yumer, E.
(2018). Learning local shape descriptors from part correspondences with mul-
tiview convolutional networks. ACM Transactions on Graphics (TOG), 37(1):6.

Io�e, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shi�. CoRR, abs/1502.03167.

Jacobsen, J.-H., van Gemert, J., Lou, Z., and Smeulders, A. W. (2016). Structured
receptive �elds in cnns. In Proceedings of the IEEE Conference on Computer
Vision and Pa�ern Recognition, pages 2610–2619.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classi�cation with graph con-
volutional networks. CoRR, abs/1609.02907.

Kuehnel, W. (2005). Di�erential Geometry: Curves - Surfaces - Manifolds. AMS.

Laptev, D., Savinov, N., Buhmann, J. M., and Pollefeys, M. (2016). Ti-pooling:
transformation-invariant pooling for feature learning in convolutional neural
networks. In Proceedings of the IEEE conference on computer vision and pa�ern
recognition, pages 289–297.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007). An em-
pirical evaluation of deep architectures on problems with many factors of vari-
ation. In Proceedings of the 24th international conference on Machine learning,
pages 473–480. ACM.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

Litany, O., Remez, T., Rodolà, E., Bronstein, A. M., and Bronstein, M. M. (2017).
Deep functional maps: Structured prediction for dense shape correspondence.
In ICCV, pages 5660–5668.

Liu, K., Wang, Q., Driever, W., and Ronneberger, O. (2012). 2d/3d rotation-invariant
detection using equivariant �lters and kernel weighted mapping. In 2012 IEEE
Conference on Computer Vision and Pa�ern Recognition, pages 917–924. IEEE.

Marcos, D., Volpi, M., and Tuia, D. (2016). Learning rotation invariant convolutional
�lters for texture classi�cation. In 2016 23rd International Conference on Pa�ern
Recognition (ICPR), pages 2012–2017. IEEE.

BIBLIOGRAPHY 53

Maron, H., Galun, M., Aigerman, N., Trope, M., Dym, N., Yumer, E., Kim, V. G., and
Lipman, Y. (2017). Convolutional neural networks on surfaces via seamless
toric covers. ACM Trans. Graph, 36(4):71.

Masci, J., Boscaini, D., Bronstein, M., and Vandergheynst, P. (2015). Geodesic convo-
lutional neural networks on riemannian manifolds. In Proceedings of the IEEE
international conference on computer vision workshops, pages 37–45.

Melvær, E. L. and Reimers, M. (2012). Geodesic polar coordinates on polygonal
meshes. In Computer Graphics Forum, volume 31, pages 2423–2435. Wiley On-
line Library.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M. (2017).
Geometric deep learning on graphs and manifolds using mixture model cnns.
In Proc. CVPR, volume 1, page 3.

O’neill, B. (2006). Elementary di�erential geometry. Elsevier.

Oyallon, E. and Mallat, S. (2015). Deep roto-translation sca�ering for object classi-
�cation. In Proceedings of the IEEE Conference on Computer Vision and Pa�ern
Recognition, pages 2865–2873.

Pan, H., Liu, S., Liu, Y., and Tong, X. (2018). Convolutional neural networks on 3d
surfaces using parallel frames. CoRR, abs/1808.04952.

Petersen, P., Axler, S., and Ribet, K. (2006). Riemannian geometry, volume 171.
Springer.

Poulenard, A. and Ovsjanikov, M. (2018). Multi-directional geodesic neural net-
works via equivariant convolution. In SIGGRAPH Asia 2018 Technical Papers,
page 236. ACM.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Pointnet: Deep learning on point
sets for 3d classi�cation and segmentation. Proc. Computer Vision and Pa�ern
Recognition (CVPR), IEEE, 1(2):4.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. In Advances in Neural Information
Processing Systems, pages 5099–5108.

Ron, D., Safro, I., and Brandt, A. (2011). Relaxation-based coarsening and multiscale
graph organization. Multiscale Modeling & Simulation, 9(1):407–423.

Schmidt, R., Grimm, C., and Wyvill, B. (2006). Interactive decal compositing with
discrete exponential maps. In ACM Transactions on Graphics (TOG), volume 25,
pages 605–613. ACM.

Schmidt, R. and Singh, K. (2010). Meshmixer: an interface for rapid mesh composi-
tion. In ACM SIGGRAPH 2010 Talks, page 6. ACM.

Schonsheck, S. C., Dong, B., and Lai, R. (2018). Parallel transport convolution:
A new tool for convolutional neural networks on manifolds. arXiv preprint
arXiv:1805.07857.

Sharp, N., Crane, K., et al. (2019a). geometry-central. www.geometry-central.net.

Sharp, N., Soliman, Y., and Crane, K. (2019b). Navigating intrinsic triangulations.
ACM Trans. Graph., 38(4).

54 BIBLIOGRAPHY

Sharp, N., Soliman, Y., and Crane, K. (2019c). �e vector heat method. ACM Trans.
Graph., 38(3).

Shuman, D. I., Faraji, M. J., and Vandergheynst, P. (2016). A multiscale pyramid
transform for graph signals. IEEE Transactions on Signal Processing, 64(8):2119–
2134.

Singer, A. and Wu, H.-T. (2012). Vector di�usion maps and the connection laplacian.
Communications on pure and applied mathematics, 65(8):1067–1144.

�omas, N., Smidt, T., Kearnes, S. M., Yang, L., Li, L., Kohlho�, K., and Riley, P. (2018).
Tensor �eld networks: Rotation- and translation-equivariant neural networks
for 3d point clouds. CoRR, abs/1802.08219.

Verma, N., Boyer, E., and Verbeek, J. (2018). Feastnet: Feature-steered graph con-
volutions for 3d shape analysis. In CVPR 2018-IEEE Conference on Computer
Vision & Pa�ern Recognition.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing,
17(4):395–416.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M. (2018).
Dynamic graph CNN for learning on point clouds. CoRR, abs/1801.07829.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and Brostow, G. J. (2017). Har-
monic networks: Deep translation and rotation equivariance. In Proceedings of
the IEEE Conference on Computer Vision and Pa�ern Recognition, pages 5028–
5037.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. (2015). 3d
shapenets: A deep representation for volumetric shapes. In Proceedings of the
IEEE conference on computer vision and pa�ern recognition, pages 1912–1920.

Xu, K., Kim, V. G., Huang, Q., Mitra, N., and Kalogerakis, E. (2016). Data-driven
shape analysis and processing. In SIGGRAPH ASIA 2016 Courses, page 4. ACM.

	Introduction
	Geometric Deep Learning
	Graph Approaches
	Spatial Approaches

	Harmonic Networks
	Rotational Equivariance
	Streams and M-equivariance

	Harmonic Networks in the Tangent Plane
	Parallel Transport
	Main Contributions

	Related work
	Geometric Deep Learning on Manifolds
	Spectral
	Spatial
	Message Passing

	Learning with Parallel Transport
	Parallel Transport for Geometric Deep Learning

	Rotational Equivariance

	Background
	Notation
	CNNs and Message Passing Networks
	Input
	Message Passing Layer
	Pooling
	Output

	Geometry
	Logarithmic Map
	Parallel Transport
	Computing the Logarithmic Map and Parallel Transport
	Connection for Parallel Transport

	Harmonic Networks
	m-Equivariance
	Chaining Cross-Correlations
	Rotation Order Streams
	M-Equivariant Networks

	Method
	Convolution
	Notation
	Continuous Domain
	Approximating the Integral on a Surface
	Rotation Orders
	Precomputation

	Pooling
	Precomputation

	Non-Linearities
	Summary

	Implementation
	Messages and Updates
	Non-Linearities
	Pooling
	Output and Gradient Descent
	Complex Number Representation
	Radial Profile and Radial Offset
	Transforms, Utilities, and Datasets
	Reproducibility
	Time and Space Complexity
	Precomputation
	Learning

	Experiments
	Rotated MNIST
	Setup
	Validation
	Hypothesis 1
	Hypothesis 2

	Rotated MNIST on the Sphere
	Setup
	Hypothesis 1
	Hypothesis 2

	Segmentation and correspondence on FAUST
	Setup
	Hypothesis 1
	Hypothesis 2

	Rotational Equivariance for Irregular Sampling
	Interpolation and Weighting
	Irregular Samples and Rotation

	Discussion and Conclusion
	Results
	Generalisability
	Applications
	Point Clouds
	Higher-Dimensional Manifolds

	Limitations and Practical Considerations
	Intrinsic vs. Extrinsic
	Expressiveness of the Filters
	Irregularity

	Future Work

