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Abstract

Serverless computing is a relatively recent paradigm that promises fine-grained
billing and ease-of-use by abstracting away cloud infrastructure for developers.
There is an increasing interest in using the serverless paradigm to execute data ana-
lysis tasks. Serverless functions often interact with external services, which can be
considered similar to the concept of side-effects in regular programming. Haskell
uses monads to isolate side-effects and to structure the composition of functions
using side-effects. This thesis explores whether the concept of the monad can be
applied in a serverless computing environment, ideally in a way that is flexible
with regards to platform. An abstraction of side-effects was developed in the form
of a monadic layer that is added to serverless functions. The monadic layer in-
teracts with monads using an interface and exposes the API of the monads to the
user. A monadic implementation was also created for a platform-independent func-
tion composition mechanism using orchestrator functions. An implementation of
a shared state side-effect has also been created as a practical use-case for the mon-
adic layer, and to explore the usability of monads on platforms with more restricted
composition frameworks. The implementations are evaluated on performance, ex-
pressiveness and usability.
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Chapter 1

Introduction

Serverless computing is a relatively recent paradigm that promises fine-grained
billing and ease-of-use by abstracting away cloud infrastructure for developers. In-
stead of renting virtual machines (VM), developers simply supply the code that
should be executed on certain triggers and the cloud provider will execute it on one
of its machines when the trigger fires. This paradigm is incredibly well-suited to
applications like stateless APIs due to their event-based and stateless nature, but
there is an increasing interest in using the serverless paradigm to execute data ana-
lysis tasks [1, 2, 3, 4]. These tasks benefit greatly from the inherent scalability
and low maintenance costs that serverless provides, and since these tasks may not
be executing 24/7 the more fine-grained billing has the potential to reduce costs
depending on the workload. However, the short lifespan of serverless functions
require a data analysis task to be implemented as a workflow containing multiple
separate functions. This causes the implementation of long-running analysis tasks
to require some coordination that is generally not inherently available in serverless
environments.

These long-running workflows would ideally be modelled as a composition of
smaller functions that dictates how the data flows between functions and how the
desired result is found. In such pipelines, the storage of intermediate data that is not
fit to be sent through HTTP request has to be explicitly managed by using a storage
solution outside of the serverless platform. The coordination of such pipelines is
implemented differently on different platforms. For example, Fission and AWS
Lambda rely on workflows defined in .YAML files1[5, 6], while Azure Durable
Functions allows the definition of an "orchestrator" as a serverless function [7].

Composed functions are limited by the fact that all serverless functions are re-
stricted to being stateless. The short-lived nature of the containers causes there to
be no guarantee what the state of any invocation’s local storage will be. However,
this construction is also what enables the scalability and elasticity of the server-

1YAML is a human-readable data-serialization language.
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less paradigm. The only way that serverless functions can become stateful is by
interacting with external services over a network. These interactions with external
sources are very similar to the concept of side-effects in regular programming. In
general programming, developers should try to isolate side-effects outside of busi-
ness logic as much as possible because not doing so can make programs more
difficult to test and debug. In serverless there is a case to be made for introducing
side-effects in a controlled way to increase the expressiveness of the serverless
functions. By providing certain side-effects as a platform, it is possible to limit
the potential errors that users may make in an attempt to implement side-effects
themselves. It will also allow developers to focus on their business logic, without
having to contaminate their code with logic for handling side-effects. More com-
plex concepts like consistency properties of state storage can be a source of issues
for the unprepared but can be handled in platform-provided side-effect implement-
ations.

The inspiration for this work is the concept that Haskell uses to isolate side-effects;
monads. Monads are used to isolate the implementation of side-effects from pure,
business logic functions. The monadic idea of separating side-effects from busi-
ness logic and composing a sequence of monadic functions in a well-defined way
would also be valuable in a serverless environment. This thesis will explore the
ways in which this might be implemented.

1.1 Research questions

RQ1: Would monads offer an effective model of abstraction to simplify the
implementation or use of side-effects in a serverless computing environment?

RQ2:Would monads be able to provide a standardised solution for serverless
function composition?
The composability of monadic functions is one of the key features of monads.
Therefore the composition of serverless functions should also be considered when
exploring a monadic abstraction of side-effects.

RQ3: Can monads be used in serverless to model and control side-effects?
Monadic functions signal via their monadic return type that they use side-effects.
A similar system may also be useful for serverless platforms to predict certain be-
haviours of a function and implement optimisations.

RQ4: What infrastructure would be required to enable cloud providers to
provide users with side-effects on their platform?
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1.2 Thesis structure

Chapter 2 explores the background of serverless computing, functional program-
ming, Haskell specifically and finally contains a small note about Aspect-Oriented
Programming. Chapter 3 summarises the different serverless function composi-
tion models that exist for the different serverless function offerings. In chapter 4,
the similarities between functional programming and serverless computing are ex-
plained. It also provides details about how some common monads are implemented
in Haskell. Chapter 5 explains the side-effect abstraction that was developed and
chapter 6 details a shared state side-effect implementation for UbiOps. The follow-
ing chapter 7 contains the evaluations that were performed on the developed work.
Finally, in chapter 8 the results are discussed, as well as related work and future
research.
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Chapter 2

Background

This section provides an overview of the current state of the serverless environ-
ment, the properties of functional programming and introduces Haskell and mon-
ads.

2.1 Function-as-a-Service

Serverless computing, or Function-as-a-Service (FaaS), is a relatively recent ad-
dition to the cloud computing domain and is currently provided by each of the
big three cloud computing providers; Amazon Web Services (AWS Lambda), Mi-
crosoft Azure (Azure Functions) and Google Cloud (Google Cloud Functions).
FaaS allows users to deploy small functions to the cloud, which can be called via
an API. The serverless platform takes care of all aspects of the deployment of the
code. The cloud platform also automatically provides functions with a high degree
of elasticity under different loads.

Before FaaS the predominant method of deploying applications in the cloud was
using Infrastructure-as-a-Service (IaaS). Infrastructure-as-a-Service allows custom-
ers to rent Virtual Machines (VMs), virtual shares of computers which users need
to install their own operating system and software stack on to. IaaS allowed com-
panies to deploy their applications without having to rely on on-premise hosting
and all the hardware, network and security management that it implies. IaaS also
made it easier to scale up or down the amount of infrastructure being rented.
IaaS has some properties that make it inefficient for certain use-cases. E.g. VMs
run continuously, meaning the customer pays for an idling machine if there are no
requests coming in at a certain time. It is possible to implement elasticity but this
requires more effort when compared to the serverless paradigm, which provides it
by default.
Serverless functions provide a much finer granularity of compute resources. AWS
Lambda, for example, scales CPU resources with memory and allows users to con-
figure the amount of memory between 128 MB and 10,240 MB, with a 1,769 MB
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function costing the equivalent of one vCPU credit [8]. In contrast, the smallest
machine type of AWS EC2 costs 3 vCPU credits [9].
VMs also take a very long time to start up compared to serverless functions. [10]
measured an average of 96.9 seconds for a Linux VM on EC2 as one of the faster
configuration options, so it is not feasible to scale a service down to zero machines
until a request comes in.

FaaS promises a number of benefits over IaaS. The first is the concept of abstracting
architecture away from users and reducing the complexity of deploying code signi-
ficantly. Users do not have to worry about managing VMs, transferring their code,
monitoring the status of the VMs or configuring virtual networks. All users need
to do is supply the code snippet for a function to the cloud platform and it will im-
mediately and always be accessible. Another advantage is the inherent, automatic
elasticity of functions. Serverless functions can be scaled up more easily, because
containers can be started more quickly [11]. Functions are automatically scaled
down to zero running instances, meaning the user does not get billed for idling
functions.

FaaS also comes with some limitations. The functions are stateless unless an ex-
ternal service is used to store state. Local file storage can not be used between
function invocations because there is no guarantee that a new invocation operates
in the same container as previous invocations. Latency may also be a issue due
to the cold start problem, meaning the latency of functions scaled down to zero
containers is significantly increased compared to functions that already have a con-
tainer running. However, the startup time of containers is still significantly lower
than the startup times of VMs. The resources that are available to a serverless func-
tion are limited. They are generally limited in properties like memory allocation,
CPU speed and function timeouts [12, 13, 14]. Each serverless platform is built up
and interacted with in a different way. Existing code bases will have to be changed
to function in a serverless setting [15]. Even between serverless platforms there are
differences making migration difficult, meaning there will also be some degree of
vendor lock-in.

The serverless paradigm is not inherently linked to a certain architecture but usually
contain at least a user-facing component, a proxy to a function container and the
function containers themselves. Current serverless offerings generally use a con-
tainer management platform like Kubernetes and a container engine like Docker to
host and execute functions. The controller is a user-facing component that the user
interacts with via RESTful APIs. In OpenWhisk, the different components com-
municate via a distributed message queue like Kafka. The components of Fission
communicate directly. Fission contains a component that keeps track of running
containers. It is responsible for starting new function containers and communic-
ating their IP addresses to the controller or router. This is called the executor in
Fission. OpenWhisk does not keep function containers running, every invocation
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starts a new container and destroys it afterwards. Fission also contains a separ-
ate component that starts up builders for environments that require compilation or
downloading of dependencies before creating a function pod image.

Functions are generally activated by triggers. For example, Fission supports four
kinds of triggers: [16]

• HTTP Triggers: invokes a function on an HTTP request.

• Timer Trigger: invokes a function based on a timer.

• Message Queue Trigger: for invoking functions using message queues.

• Kubernetes Watch Triggers to invoke functions when something in your
cluster changes

OpenWhisk provides actions, triggers and rules to interact with the platform [17].
Actions are the functions, triggers are events that may trigger execution of an ac-
tion. Rules define the actions that should be executed on triggers.

The use-cases that fit FaaS the most naturally execute short functions as reactions
to events [15]. Image processing is one example of such a class of functions [18].
As a workload, image processing scales very well due to the independent nature of
the operation. Generating thumbnails or running object detection are some prac-
tical examples of image processing use cases.
Another example of a well-suited use-case is a web service back-end with a Rep-
resentational State Transfer (REST) application programming interface (API). In-
teractions with a REST API are stateless so they fit serverless functions well. While
it is relatively straightforward to implement new projects on serverless, it is diffi-
cult to port existing projects to a serverless platform [15].
Internet-of-Things (IoT) applications also fit serverless environments very well
conceptually [19]. Sensor data measurements can be modeled as events and pro-
cessed as a serverless function. This also moves data processing away from the
sensors to the cloud, meaning low-power devices only have to send a simple HTTP
request without the need for extra processing.

However, the serverless platform’s fine-grained billing and elasticity properties
would also be valuable in other applications, like long-running data analytics or
machine learning jobs. These applications currently do not fit serverless platforms
as well due to their longer run-time, intermediate storage requirements and syn-
chronisation requirements. Intermediate data storage is a problem in serverless
because using data locality is not possible in a serverless architecture. The data
will always have to move to the code because the ephemeral serverless function
containers can not be used to store data. Any data that is too big to fit in an HTTP
request will have to be written to an external data storage, and read by the next
function, which will have negative consequences on the runtime of the functions.
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There are extensions to the serverless platform like AWS Step Functions and Azure
Durable Functions that focus on function composition and orchestration. These en-
able longer run times through composition but do not solve the intermediate storage
requirements [5, 7]. AWS Step Functions also uses a separate application to create
the workflows, while it is arguably more convenient to be able to incorporate this
functionality directly in the source code, like in Azure Durable Functions.

Due to the stateless nature of serverless and the focus on breaking software up
in small re-usable functions, there are some conceptual similarities to functional
programming with pure functions.

2.2 Functional programming

Functional programming, as opposed to imperative or object-oriented program-
ming, takes a more mathematical approach to programming. Imperative program-
ming is largely based on the underlying hardware of computing systems, with
memory allocations and explicit thread management, also known as the Von Neu-
mann model. Functional programming revolves around creating programs using a
collection of functions following the mathematical definition of a function, mean-
ing they map an input domain to an output domain.

2.2.1 Pure functions and side-effects

In programming, a function that follows the mathematical definition is called a
"pure" function. Pure functions take their input as arguments, and do not produce
any observable effect besides returning a result. Their output is also deterministic
with regards to their input. Effects that violate one of these properties are called
side-effects.
Listing 2.1 contains an example of a function with a side-effect. The function
incrementX modifies the global variable x, meaning it has an observable effect be-
sides returning a value.

1 var x = 1;
2
3 function incrementX() {
4 x += 1;
5 return x;
6 }

Listing 2.1: Example of a JavaScript function with a side-effect

This example obviously causes a side-effect, but let us make x a parameter of in-
crementX. The presence of a side-effect now depends on whether x is passed as a
value or as a reference, making it much less obvious. The mutation of input vari-
ables is another source of side-effects, and the reason why functional programming
languages generally use immutable data structures.
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Another example of a side-effect is a file system or database interaction. Pure
functions are deterministic with regards to their input, but reading a file at different
times may give different results. [20]

2.2.2 Properties

Functional programming restricts the use of mutable data structures and does not
contain control flow constructs like loops. Recursion and higher-order functions
should be used for iteration instead. There are a number of advantages that these
restrictions and functional programming’s approach to side-effects enable over im-
perative programming. The first advantage is that the runtime can reason about
order of execution because all dependencies are made explicit through function ar-
guments. The runtime can determine when the result of a certain computation is
required, and defer execution otherwise. Another advantage is that functions are
easier to reason about, and test, in isolation. There is no external state that the func-
tion could depend on, which could influence its execution. The main disadvantages
of functional programming are the steep learning curve and the high memory use
due to data immutability.

Pure functions have the aforementioned beneficial properties but programs ulti-
mately need side-effects to interact with the world. The functional programming
language Haskell ran into this problem during its design but has developed one of
the cleanest solutions to separating side-effects from application logic in functional
programming; monads.

2.3 Haskell and monads

There was a consensus at the "Functional Programming Languages and Computer
Architecture" conference in 1987 that widespread adoption of functional program-
ming languages in practice was limited by the fact that there were multiple similar
languages. The proposed solution was to start a committee that would design a
common functional language. This committee created Haskell. One of the stronger
requirements for Haskell was that it should be a pure language. This requirement
eventually led to the invention of monadic programming. [21]

A monad is an abstraction that allows the implementation of side-effects without
breaking the pure functional nature of the functions [22]. A monad is essentially
a wrapper around the return value of a function that can be composed with other
function invocations in a sequence by using the bind (>>=) operator. Monads
allow the implementation of side-effects to be abstracted away from business lo-
gic and allow side-effects to be represented in a pure way. They also provided a
way for code to have a well-defined execution order. An example of a situation
where this is required is printing something to the console. Printing to the console
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does not return anything, so without monads Haskell will lazily never evaluate it
because its result is never used.
A more in-depth explanation of monads can be found in section 4

12



Chapter 3

Serverless function composition
models

The most interesting feature of monadic programming is the ability to compose
multiple monadic functions in a sequence, without the user having to explicitly
handle monadic values. Similarly, an abstraction of side-effects in serverless com-
puting should also provide functionality for function composition. For example, it
might be valuable for a parallel set of functions, or function invocations, to have
access to a shared monadic environment. Unfortunately, each serverless platform
has its own extension for function composition, which causes problems for users
like vendor lock-in and makes porting functions to another platform or language
more difficult.

An effective abstraction of side-effects should be applicable on different compos-
ition models, and functions using it should require minimal effort to port to other
models. For this reason, this section explores the different implementations of
serverless function composition. The effects of the differences between the com-
position frameworks on the architecture of the side-effect abstraction is explained
in section 5.4

Function composition extensions can be categorised into three categories based
on the way they model compositions: declarative, imperative, or functional. The
categorization is displayed in Table 3.1

Declarative Imperative Functional
Fission Workflows Google Cloud Workflows OpenWhisk Composer
AWS Step Functions Azure Durable Functions FaaS-Flow sync chain
UBiOps pipelines
FaaS-Flow async chain

Table 3.1: Categorization of composition frameworks
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3.1 Declarative composition model

The declarative composition models allow the user to define a Directed Acyclic
Graph (DAG) or a finite state machine for their compositions. DAGs are com-
monly used as a representation of a workflow for task scheduling in distributed
systems, for example in spark [23], High Performance Computing (HPC) architec-
tures [24] and grid computing [25].

A declarative composition is defined by a number of steps that represent individual
functions or operations. The steps are linked to each other by inter-dependencies or
by explicitly referencing the following step to execute. The platform is responsible
for creating an execution plan, executing steps in parallel where possible.

3.1.1 Fission workflows

Fission workflows are defined as a DAG using YAML files. Listing 3.1 shows
the definition of a simple workflow. The workflow consists of two tasks, one of
which has a dependency. The input of the tasks are defined with the help of a
special JavaScript data expressions. The $ variable contains the complete state of
the workflow invocation. In the example, the output of the workflow is defined on
the second line of the composition. The scheduler component creates an execution
plan based on the current state of an invocation.
Fission workflows also contains internal functions that are executed within the
workflow engine itself and provide users with the possibility to implement control-
flow constructs like conditional execution and loops. The internal functions can be
called the same way as other fission functions and are represented as a single task
in the DAG.
1 a p i V e r s i o n : 1
2 o u t p u t : WhaleWithFor tune
3 t a s k s :
4 G e n e r a t e F o r t u n e :
5 run : f o r t u n e
6 i n p u t s : "{$.Invocation.Inputs.default}"
7
8 WhaleWithFor tune :
9 run : wha lesay

10 i n p u t s : "{$.Tasks.GenerateFortune.Output}"
11 r e q u i r e s :
12 - G e n e r a t e F o r t u n e

Listing 3.1: Example fission workflow definition. Source:
https://github.com/fission/fission-workflows

3.1.2 AWS Step Functions

AWS step functions works with state machines instead of DAGs. They can be
defined using the JSON-based, Amazon States Language (ASL) or using a graph-
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ical user interface. Tasks are modelled as states in the state machine. Instead of
defining dependencies and using expressions to link inputs and outputs, each task
state contains a reference to the state that should be executed next. The outputs of
a task are automatically used as input for the next task. An example of a workflow
is shown in Figure 3.1.
AWS Step functions has different types of states that implement different func-
tionality. For example, the Task state type executes a single unit of work, like an
AWS Lambda function. Other state types like Choice and Parallel implement the
control-flow constructs conditional branching and parallel execution.

Conditional branching is a feature that is not available in the DAG-based approach
of Fission workflows. However, the DAG-based approach is able to automatically
infer when parallelization is possible.

Figure 3.1: Example AWS Step Functions state machine definition. Source:
https://aws.amazon.com/getting-started/hands-on/create-a-serverless-workflow-
step-functions-lambda/

3.1.3 UbiOps pipelines

UbiOps pipelines can be defined with a graphical user interface, similar to AWS
step functions, or with a YAML definition. The graphical user interface can be seen
in Figure 3.2. Pipelines consist of functions and connections. A connection con-
tains a mapping from a function’s output to the next function’s input. UbiOps func-
tions’ in- and outputs contain type definitions so the mapping is checked for type
correctness. UbiOps pipelines only support sequences with diverging branches.
If a pipeline diverges, the result of the pipeline is an array, where each element
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corresponds to the result of a branch.

Figure 3.2: Example UbiOps pipeline. Source: https://app.ubiops.com

3.1.4 FaaS-flow

FaaS-flow is the composition extension for OpenFaaS. FaaS-flows are defined us-
ing Go, and have a distinction between sync chains and async chains. Sync chains
more closely resemble the functional programming paradigm and will be covered
in section 3.3. Although the definitions of async chain DAGs are created imperat-
ively instead of using a format like JSON or YAML, the DAGs themselves stay a
declarative way to model composition. The user does not have to implement any
control-flow constructs or scheduling.
Listing 3.2 shows an example of a simple DAG definition that executes a sequence
of three tasks. The snippet creates a DAG, adds nodes with functions to it, and
finally creates the edges between the nodes. The snippet also contains a call to the
method Modify for node n2, which allows using in-line Go functions to operate on
the data.
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1 func Define(
2 flow *faasflow.Workflow,
3 context *faasflow.Context
4 ) (err error) {
5 dag := flow.Dag()
6 dag.Node("n1").Apply("func1")
7 dag.Node("n2")
8 .Apply("func2")
9 .Modify(func(data []byte) ([]byte, error) {

10 // do something
11 return data, nil
12 })
13 dag.Node("n3").Apply("func4")
14 dag.Edge("n1", "n2")
15 dag.Edge("n2", "n3")
16 return nil
17 }

Listing 3.2: Example FaaS-flow DAG definition. Source:
https://github.com/s8sg/faas-flow

3.2 Imperative composition model

Imperative composition models serverless function execution as a function call and
allows composed functions to call other functions as such.

3.2.1 Azure Durable Functions

Azure durable functions is an example of this approach. Durable functions allows
the definition of orchestrators, which are serverless functions themselves and can
call activities using the method callActivityAsync. The orchestrator does not wait
for the activity to finish but shuts down and is restarted when the activity is finished.
Orchestrators can be written in C#, Python or JavaScript. In C# orchestrators are
async functions and use the await keyword to signify that the result of the activity
is required at that point. An Example of an orchestrator written in C# can be seen
in Listing 3.3.
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1 [FunctionName("FanOutFanIn")]
2 public static async Task Run(
3 [OrchestrationTrigger] IDurableOrchestrationContext context)
4 {
5 var parallelTasks = new List<Task<int>>();
6
7 // Get a list of N work items to process in parallel.
8 object[] workBatch =
9 await context.CallActivityAsync<object[]>("F1", null);

10 for (int i = 0; i < workBatch.Length; i++)
11 {
12 Task<int> task = context.CallActivityAsync<int>("F2",

workBatch[i]);
13 parallelTasks.Add(task);
14 }
15
16 await Task.WhenAll(parallelTasks);
17
18 // Aggregate all N outputs and send the result to F3.
19 int sum = parallelTasks.Sum(t => t.Result);
20 await context.CallActivityAsync("F3", sum);
21 }

Listing 3.3: Example
orchestrator function in C#. Source: https://docs.microsoft.com/nl-nl/azure/azure-
functions/durable/durable-functions-overview

3.2.2 Google Cloud Workflows

Google cloud workflows defines a composition as a sequence of steps that can be
written in YAML. It is very similar to the declarative approach of AWS step func-
tions but it has features that more closely resemble imperative programming. The
first of these features is that the order of the steps in the YAML implies execution
order. This execution order can be overruled with jumps, using the next keyword
to define the next step that should be executed. Google cloud workflows also al-
lows users to define conditionals, which can be combined with jumps to enable
different execution branches. Finally it is also possible to assign variables. As-
signing a step’s result to a variable is also the only way to access the results of that
step in another step. Listing 3.4 contains an example of a google cloud workflow.
The workflow performs a get request to callA and uses the result in the following
conditional to call one of SmallFunc, MediumFunc and LargeFunc.
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1 − f i r s t _ s t e p :
2 c a l l : h t t p . g e t
3 a r g s :
4 u r l : h t t p s : / /www. example . com / c a l l A
5 r e s u l t : f i r s t _ r e s u l t
6 − where_to_jump:
7 s w i t c h :
8 - c o n d i t i o n : ${ f i r s t _ r e s u l t . body . SomeFie ld < 10}
9 n e x t : s m a l l

10 - c o n d i t i o n : ${ f i r s t _ r e s u l t . body . SomeFie ld < 100}
11 n e x t : medium
12 n e x t : l a r g e
13 − s m a l l :
14 c a l l : h t t p . g e t
15 a r g s :
16 u r l : h t t p s : / /www. example . com / Smal lFunc
17 n e x t : end
18 − medium:
19 c a l l : h t t p . g e t
20 a r g s :
21 u r l : h t t p s : / /www. example . com / MediumFunc
22 n e x t : end
23 − l a r g e :
24 c a l l : h t t p . g e t
25 a r g s :
26 u r l : h t t p s : / /www. example . com / LargeFunc
27 n e x t : end

Listing 3.4: Example Google Cloud Workflow. Source:
https://cloud.google.com/workflows/docs/reference/syntax/conditions

3.3 Functional composition model

Functional composition models define a composition as a data stream and view the
individual serverless functions as parameters, like higher-order functions.

3.3.1 OpenWhisk Composer

OpenWhisk Composer provides a library with combinator methods that can be
used to create compositions. There are a variety of combinators that implement
different programming constructs, like let, map or sequence for example. Compos-
itions are built up from a single parent combinator. It is also possible to execute
steps in parallel, but this requires access to a Redis instance that can store the in-
termediate data. Listing 3.5 shows an example of an OpenWhisk composition that
returns success or failure depending on a password check. The example uses in-line
JavaScript functions but if the actions already exist on OpenWhisk, their identifiers
can be used instead.
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1 const composer = require(’openwhisk-composer’)
2
3 module.exports = composer.if(
4 composer.action(’authenticate’, {
5 action: function ({ password }) {
6 return { value: password === ’abc123’ }
7 }
8 }),
9 composer.action(’success’, {

10 action: function () { return { message: ’success’ } }
11 }),
12 composer.action(’failure’, {
13 action: function () { return { message: ’failure’ } }
14 })
15 )

Listing 3.5: Example OpenWhisk composer workflow. Source:
https://github.com/apache/openwhisk-composer

3.3.2 FaaS-flow SyncChain

FaaS-flow’s SyncChain follows a programming model that is more similar to func-
tional programming as a composition is modelled as a series of function applica-
tions on the composition input. However, the SyncChain only allows strictly se-
quential compositions so it is not nearly as expressive as its async counterpart.
Listing 3.6 shows a SyncChain that applies two existing functions and modifies the
output with an in-line function.

1 func Define(flow *faasflow.Workflow, context *faasflow.Context) (
err error) {

2 flow.SyncNode()
3 .Apply("func1")
4 .Apply("func2")
5 .Modify(func(data []byte) ([]byte, error) {
6 // do something
7 return data, nil
8 })
9 return nil

10 }

Listing 3.6: Example FaaS-flow SyncChain. Source: https://github.com/s8sg/faas-
flow

3.4 Orchestration and choreography for function compos-
ition

The aforementioned composition models only concern the APIs for serverless
function composition. The back-end implementation can also be divided into cat-
egories that are well-known in web service composition [26]. These categories are
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orchestration and choreography.

In choreography, the individual components are responsible for calling the next
step of the composition when they terminate. This allows the implementation of
composition without the necessity for an external entity to control the composition.
The disadvantage of choreography is that some form of middleware will have to be
added to the components. Another disadvantage is that if one of the functions in a
chain fails, the chain will stop and its state will be lost.

Orchestration works by introducing a separate component that is responsible for
the co-ordination of the functions in a composition. The state of a composition
invocation is generally stored in a persistent data store. The state of the invocation
and the definition of the composition can then be used to determine the next step
to execute. The orchestrator can also retry failed functions.
The mentioned serverless composition implementations all follow some form of
the orchestration pattern. This makes sense because it does not require any changes
to the serverless functions or the serverless platform themselves. There are, how-
ever, differences between the orchestrators on the different platforms. For example,
Azure Durable Functions allows the definition of an orchestrator as a serverless
function, while, for example, fission workflows uses its internal scheduler and con-
troller components as orchestrators.

The implication of the distinction between choreography and orchestration is that
a side-effect abstraction based on choreography can be made platform-agnostic,
because it communicates from function to function in the in- and output bodies. A
similar system based on orchestration requires changes to the orchestrator to make
it aware of the abstraction. For this reason two prototypes of the state abstraction
were developed. The first prototype uses a custom implementation of orchestra-
tions, based on Azure Durable Functions, on the Fission platform. In the Durable
Functions framework, the orchestrators are functions defined by the users, meaning
the implementation of the orchestrator is very flexible. The custom implementation
of Durable Functions is built on the monadic abstraction as well, and is explained
in section 5.5. The second prototype is built on the UbiOps platform, which has
a closed-source orchestrator running on their servers. This means the prototype
needs to rely only on choreography to implement the abstraction.
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Chapter 4

Monadic programming and
serverless computing

This section explains the concept of monads in more detail and explores the ap-
plicability of monads in serverless computing.

The problem that serverless faces that prompted the research topic of this thesis
is the inherent statelessness of serverless functions. Serverless functions have the
ability to store state in memory or on disc but there is no guarantee any new func-
tion invocations will be executed in the same container. The state will be lost if the
container is destroyed, and it is inaccessible for another function invocation that is
executing on a different container.

Similarly, functional programming languages generally discourage the use of side-
effects. Haskell even disallows side-effects entirely. The concept of monads was
developed for Haskell to implement side-effects in a pure way. The question arises
whether this concept can also be used in a serverless computing environment to
transparently solve its statelessness. But first, the next section will explore what
monads are exactly.

4.1 Monads

Monads originate from category theory, where they are endofunctors mapping a
category to itself. They were first used to structure denotational semantics of pro-
gramming languages by Eugieno Moggi [27]. They were later used to structure
functional programs by Philip Wadler [28].

Monads are used by Haskell to make side-effects explicit by wrapping the return
value of a monadic function in a monad wrapper. For example, the Maybe monad
wraps a return value to allow a function to return Nothing or Just x, where x can be
any value. The implementation of the maybe monad can be found in Listing 4.1.
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The maybe monad removes the necessity of a null value, which is a type unsafe
way to represent the same concept and has been called "the billion dollar mistake"
by Tony Hoare, the inventor of ALGOL W in 1965 [29]. The Maybe monad is a
simple data structure that wraps the return value of a function but the return value
can also be wrapped in a function itself, which is how the state monad is imple-
mented.

4.1.1 Monad properties

A monad definition consists of three components: a type constructor M, a type
convertor (unit/return) and a combinator (bind). The type constructor M defines
the monadic datatype M T with respect to another type T. The definition of the
maybe monad is a class Maybe T with the instances Just T and Nothing.

A type converter converts a non-monadic value to a monadic value, it is called
unit or return. Its type signature is return : T →MT .

A combinator, the most common being called bind and denoted as (>>=), un-
wraps a monadic value and applies the next function on the unwrapped value. Its
type signature is (>>=) : Ma → (a → Mb) → Mb. Another common combin-
ator is the then operator, which is denoted by (>>). The then operator discards the
return value of the first function and only applies the monadic component to the
next function.

The implementation of the maybe monad in Haskell is shown in Listing 4.11.

1 return :: a -> Maybe a
2 return x = Just x
3
4 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
5 m >>= g = case m of
6 Nothing -> Nothing
7 Just x -> g x

Listing 4.1: Maybe monad implementation [30]

The bind function is the essence of monadic function composition. Without it,
every monadic value would need to be unwrapped using pattern matching and its
combinator logic repeated, which would greatly reduce the readability and main-
tainability of the code. The maybe monad has a relatively straightforward combin-
ator, but other monads can be significantly more complex.
The bind function is also the most interesting monadic concept for serverless be-
cause it defines rules for composition, and, for example, could be used to abstract
away intermediate data storage from the end-user.

1:: denotes a type definition
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4.1.2 Do notation

Haskell introduced the do-notation as syntactic sugar for a sequence of function
calls that allows naming function results. This notation resembles imperative pro-
gramming and variable assignment. The "variables" in do-notation assignments are
however implemented as a bind with a lambda function, not as an actual variable.
If the result of a function is not used by the next function, the variable assignment
can be left out and the do-notation will be desugared to the then operator instead
of bind. Listing 4.2 contains an example of a do-notation and its desugared form.

1 -- Do-notation example
2 do
3 action0
4 x1 <- action1
5 x2 <- action2
6 mk_action3 x1 x2
7
8 -- Do-notation example desugared
9 action0 >> action1 >>= (\ x1 -> action2 >>= (\ x2 -> mk_action3 x1

x2 ))

Listing 4.2: Do notation example

4.2 Common monads

Haskell itself provides a library with monads for common side-effects, the most
prominent of which is the IO monad. The IO monad abstracts input/output side-
effects, like the interactive console or file-system interactions. The main function
of any Haskell program is required to return an IO monad. However, the IO monad
will not be explored because there are other monads that are more applicable to
serverless computing.

Two examples of monads that may be useful in a serverless computing context
are the state and list monads. The list monad represents a list and is commonly
used for non-deterministic computations with functions returning all possible solu-
tions in a list [31]. The unit function is simply defined by unit x = [x]. The type
signature of the bind operator is [a] → (a → [b]) → [b] and is implemented as
xs >>= f = concat (map f xs). The bind operator maps over the input list with
the next function and flattens the results by concatenating them into a single list.

The state monad allows functions to use a state that implicitly gets passed through
a composition [32]. Its implementation is shown in Listing 4.3.
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1 newtype State s a = State { runState :: s -> (a, s) }
2
3 state :: (s -> (a, s)) -> State s a
4
5 return :: a -> State s a
6 return x = state ( \ s -> (x, s) )
7
8 (>>=) :: State s a -> (a -> State s b) -> State s b
9 p >>= k = state $ \ s0 ->

10 let (x, s1) = runState p s0 -- Running the first processor on
s0.

11 in runState (k x) s1 -- Running the second processor on
s1.

Listing 4.3: State monad implementation

The state monad wraps a function into another function that takes an initial state as
input and produces a new state and a value.
The data type is defined in the first line of Listing 4.3. The constructor takes a
function (s -> (a, s)) and stores it as runState using Haskell’s record syntax2.

The return function shows the simplest state wrapping. return x returns a state
monad with a lambda that takes a state s, and returns the tuple (x, s) without modi-
fying them.
The bind operator returns a state monad that takes an initial state s0 and first ex-
ecutes p with s0 using runState p s0. The function k is then applied to x and run
with state s1.
The state monad provides the get, put, evalState and execState. get returns the con-
tent of the state, put sets the state, evalState executes a state monad and returns the
value and execState executes a state monad and returns the final state.

4.3 Applicability of monads in serverless computing

Structuring side-effects using monads provides a number of benefits. The first be-
nefit is the isolation of side-effect code. The implementations of standard monadic
functions, like the set function of the state monad, are isolated in the implementa-
tion of the monad. Users do not need to concern themselves with implementation
details when using standard monadic functions. Anyone creating monads them-
selves will also be able to use them to separate monadic logic from application
logic cleanly.

Monads also make the presence of a side-effect explicit when looking at the source
code of a function, because the monad is part of the return type. Anyone that sees a
function returning a State monad can trivially conclude that the function uses some

2This means that given a state monad p, the function runState can be accessed with runState p.
The function can then be executed with an initial state s0 with runState p s0.
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kind of state.

The next benefit is that monads make sure that compositions of monadic func-
tions are well-defined, because composition is part of the monad. All monads can
be composed in the same way using the bind operator, meaning users with an un-
derstanding of monads in general can use any monad easily.

Monads also provide a vehicle for a language or platform to provide standard im-
plementations of common patterns, similar to how Haskell provides some monads
in its standard library.

Each of the mentioned benefits would be valuable in a serverless environment.
The isolation of side-effects can make testing serverless functions easier, because
an isolated side-effect can be mocked more easily.
Making the side-effects of a function explicit to the platform creates the potential
for the serverless platform to implement optimisations. For example, a function
that uses an external state storage may be scheduled to run on a machine that is
closer to the state store.
Finally, the focus on composability of monads is very valuable in a serverless envir-
onment as well. Function composition is very important for long-running analytics
jobs due to the runtime restrictions of serverless functions. Monads are therefore
a powerful tool to implement features like a state that is shared among a set of
composed functions.
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Chapter 5

Cloud monads

This section explains the developed abstraction model of cloud monads and the
underlying implementations that support it. The section 6 will also explore a shared
state implementation for serverless functions on the UbiOps platform as a use-case.

5.1 Monadic values

There are two types of monadic values considered in the abstraction. The first type
is where the monad requires some interaction with an external service, like a cent-
ralised logging service, or an external data store. The monadic components then
consist of configurations for interacting with a service. These configurations can
consist of information like the address of the service, or an identifier that the func-
tion invocation should use during its interactions with the service. This type does
not need to use the bind function explicitly, as the configuration is passed down to
an orchestrator’s child functions and does not change because the changes to the
service state are stored in the external service itself.

The second type of monadic value only embellishes function output in some way,
and does not interact with any external services. This implementation of monadic
values is closer to how they function in Haskell, because the monadic value wraps
the return value of the function. Monads that use this type of monadic value have
to implement a bind function.

An example of the distinction between both types of monadic values is the state
monad, which can use an external service to store the state, which would corres-
pond to the first type, but can also share the state directly between function invoc-
ations using request and response bodies, corresponding to the second type.

There are a few ways that monadic values and configurations can be set in a func-
tion. The first is to simply add monadic input and output to the body of the request
and the response of the function. Monadic functions look for the monads field in
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the input body. The monads field contains Key-Value pairs with the key being the
identifier of the monad, and the value being an object containing the actual config-
uration of the monad.

Environment variables can also be used to set defaults for monadic components
if the platform supports it. This is especially useful if the platform supports envir-
onment variables at different levels, for example at function, function version or
composition level. Environment variables can provide a default monad configura-
tion, with the possibility of overruling it using the request body.

The final option is not an existing features of serverless platforms, but a feature
that is part of the developed cloud monads implementation on fission. Users can
add monads to their functions by adding a JSON file to their function, containing a
list of objects. Each object contains the identifier of the corresponding monad and
any configuration options. Similar to environment variables, these configurations
can be overruled using the request body.

5.2 Monadic function layer

Implicitly handling monadic components through the function body is achieved by
adding a monad layer in the form of a function template. The monad layer acts as a
proxy to the user code, allowing it to perform some initialisation, execute the user
code, and handle termination. The user can interact with the monad layer through
an API that is exposed through the context, which is available in most serverless
offerings and contains some extra information about the function execution. A
visualisation of the flow of the monad layer can be seen in Figure 5.1. Listing 5.1
shows how a monad can be accessed and used through the context object in a Fis-
sion function. The implementation of the monadic layer for Fission can be found
in Listing B.1 in Appendix B.
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Figure 5.1: Flow diagram of a function using the monadic function template.

1 module.exports = async function(body, context) {
2 // Get logging API and function input
3 const logging = context.monads.logging;
4 const input = body.st;
5
6 await logging.log(‘Started work with ${input}‘);
7
8 // Sleep to emulate work being done
9 await sleep(1000);

10
11 await logging.log(’Finishing up’);
12
13 return {
14 st: ‘${input} +‘
15 };
16 }

Listing 5.1: Function using logging monad

The monad layer is added to the function through an extra build step. The build step
is executed by the user before uploading a function to the platform but could also
be a part of the function deployment pipeline of a platform. The build step adds
the monad code for the monads in the monads JSON file to the function. The build
step also takes the target platform as input parameter, with current implementations
available for Fission and Azure Functions.
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5.3 Monad implementation

The monad layer interacts with the monad using a number of functions. These
functions should all be implemented for the monad to function. These functions
are: runBefore, runAfter, bind and createMonadBody.

runBefore and runAfter are executed before and after the user function, which is
similar to the concept of join points in aspect-oriented programming. They both
receive the context as parameter, runBefore also receives the input body, so it can
read the monadic values. runBefore adds the monad API object to the context ob-
ject to give the user access to it. runAfter adds the monadic components to the
result of the function.
createMonadBody is a function that allows user to explicitly initialise a monadic
value component. This monadic value component can then be used as a parameter
for a function call from an orchestrator. This function is similar to the monadic
return function, because it can be used to wrap an arbitrary value into a monadic
value. The custom composition framework also implements the monadic return
function so it can be used as a starting point for composing functions using bind.
The function is called initBind instead of return to avoid confusion with the imper-
ative keyword return. initBind uses the createMonadBody function of the monad
specified in its parameters to create the monadic value.

Some monads only work using the bind function. The list monad, for example,
uses the bind function because it needs to launch multiple functions. This can only
be implemented with a bind function that is executed on the orchestrator. The bind
function is defined in the monad but has access to the composition framework so it
can launch other functions.
The bind function can also be used indirectly by invoking the do function, which
is the equivalent of the do-notation in Haskell. The do function takes a sequence
of function identifiers and returns a function that can be invoked with the initial
function input, its monadic body and the name of the monad in which context the
bind will execute.

Listing 5.2 shows how bind and do can be used. Lines 7 to 10 show a sequence
of binds. The sequence is started using the function initBind of the orchestration
monad, which wraps the input in the first parameter (the number 1) inside the
monad identified by the second parameter (the list monad). The final parameter
contains the monad configuration, and is unnecessary here because the list monad
does not require any configuration. Lines 16 to 23 show the usage of the do func-
tion. On line 16, the do function is called using an array of function identifiers. It
returns a function that is called on line 23 with the initial input, any monad config-
uration and the identifier of the monad.
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1 module.exports = async function(body, context) {
2 // Retrieve the orchestration monad from the context object
3 const o = context.monads.orchestration;
4
5 // Calling the function ’list-test’ multiple times using bind.
6 // list-test takes a number as input and returns an array

containing the input multiplied by 2, 3 and 5.
7 let res = o.initBind({num: 1}, ’list’, undefined);
8 // res contains the monadic value [1]
9 res = await res.bind(’list-test’);

10 // res contains the monadic value[2, 3, 5]
11 res = await res.bind(’list-test’);
12 // res contains the values [4, 6, 10, 6, 9, 15, 10, 15, 25]
13
14 // Calling list-test multiple times using a do function.
15 // The do function returns the composition as a function that

can be called to execute the sequence.
16 const doFunc = o.do([
17 ’list-test’,
18 ’list-test’
19 ]);
20
21 // The parameters of the do function are the input body, any

monadic values that should be added and the monad in whose
context the binds should be executed

22 const doResult = await doFunc({num: 1}, undefined, ’list’);
23 // doResult contains the values [4, 6, 10, 6, 9, 15, 10, 15,

25]
24
25 return ’Finished the orchestrator!’;
26 }

Listing 5.2: Example of an orchestrator function and the different ways to call
other functions

5.4 Using monads in different composition frameworks

Cloud monads has been implemented on two platforms; Fission and UbiOps. The
implementation on Fission uses a custom composition framework that is based on
Azure Durable Functions. The composition framework is built with monadic com-
position in mind, more details about it can be found in section 5.5. The orchestrator
pattern gives the most flexibility and control in terms of injecting monadic com-
ponents into descendant function calls. The bind function, for example, is only
feasible if it can be executed on the orchestrator.

There are a number of ways for the user to pass monads to children of the or-
chestrator. The first is to let the orchestrator do it implicitly. If a child function call
does not receive monadic configurations, all configurations of the orchestrator will
be shared with the child. For example, for state this means it will operate in the
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same shared state as the orchestrator, and all other children with default configur-
ations. The monadic configuration can also be added to a function call explicitly
through a separate monad parameter and the exportMonad function of the corres-
ponding monad. An example of an orchestrator is shown in Listing 5.3. Line 7
uses callActivityAsync to call the function logging-test with the value of the second
parameter as input. It does not provide a third parameter so the monadic context
of the orchestrator is implicitly shared with the function. Line 15 shows a function
call where the monad body that was defined in line 12 is used to call a function in
a different context.

1 module.exports = async function(body, context) {
2 const logging = context.monads.logging;
3 const durable = context.monads.durable;
4
5 // Call function with logging monad, implicitly passing monad

configuration of orchestrator
6 await logging.log(’Calling function with call activity async

and waiting for it.’);
7 const result1 = await durable.waitFor(durable.

callActivityAsync(’logging-test’, {st: ’function-input’}))
;

8 await logging.log(’Function returned: ’ + result1);
9

10 // Call same function with logging monad, explicitly passing a
monadic configuration with identifier "invocation-2"

11 await logging.log(’Calling function with call activity async
and waiting for it.’);

12 const logMonad = {
13 logging: logging.createMonadBody(’invocation-2’, logging.

host)
14 };
15 const result2 = await durable.waitFor(durable.

callActivityAsync(’logging-test’, {}, logMonad));
16 await logging.log(’Other function returned: ’ + result2);
17
18 await logging.log(‘Finished the orchestrator!‘);
19
20 return ’Finished the orchestrator!’;
21 }

Listing 5.3: Example of an orchestrator function

If a monadic function is called without monadic configuration in the body of the
request, a default configuration is used. The orchestrator function also generates
a default configuration for any monad without configuration, which it will send to
any child invocations it calls. Any monadic function will always return the mon-
adic configuration it operated in.

The implementation of cloud monads on the platform of UbiOps is different be-
cause of being restricted to their composition framework, pipelines. The only
mechanisms for setting monadic configuration are environment variables and the
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request body. If there is a request body, the monadic layer uses that, otherwise
it uses the environment variables if they exist. If neither exist, the function fails.
Pipelines model a sequence of functions. The only way to pass monadic configur-
ations from one function to the next is by adding them to the request body. This
unfortunately means all functions in the pipeline will have to pass the configuration
to make sure it’s not lost, even if the function itself does not use it.

5.5 Custom composition framework

A custom composition framework was developed based on Azure Durable Func-
tions that allows users to create orchestrator functions that can call other functions.
Orchestrator functions themselves are built on the developed monadic abstraction
as well. It uses a monadic abstraction for state and MQTT1. It also requires a
the MQTT Trigger service. The MQTT trigger subscribes to the MQTT broker,
executes the functions that are published there, sets the results of the function in-
vocations in the state abstraction and restarts the orchestrator.

The monadic abstraction for state is an API for a simple, external key-value store
that is used to store the progress and results of child functions of an orchestrator.
The monadic abstraction for MQTT sets up a connection to an MQTT broker based
on the monadic configuration. The user can then register listeners and send mes-
sages to other processes connected to the same MQTT broker.
The MQTT trigger mechanism allows functions to be invoked by publishing a mes-
sage with its parameters in a specified MQTT topic, instead of using an HTTP en-
dpoint. This enables asynchronous function execution as no connection needs to
stay open while the function runs. The result of a function is then set in the state
of the orchestrator invocation and the orchestrator is resumed. Using MQTT to
invoke functions also makes the orchestrator itself platform-agnostic. The MQTT
Trigger is the only component of the composition framework that is dependent on
the platform.

Similar to Azure Durable Functions, orchestrator functions do not wait for its child
functions to finish executing. When a child function is called, the orchestrator exits,
returning its invocation id. When a child function is finished, the orchestrator will
be restarted using the invocation id to continue the function. Figure 5.2 shows a
visualisation of the life cycle of an orchestrator function.

1MQTT is a lightweight, publish/subscribe messaging protocol
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Figure 5.2: Flow diagram of an orchestrator calling a child function.

When the orchestrator starts a child function, it saves the fact that a child in-
vocation has been called in the state and publishes a message on the message queue
trigger containing the parameters of the function call. The composition framework
implicitly adds the monadic configurations of the orchestrator to the child invoca-
tions. Some information about the orchestrator is also added to the message so it
can be restarted by the message queue trigger when the child invocation terminates.

When the orchestrator needs the result of a function invocation, it checks its state
to find the status of the invocation and the result if it is finished. It calls the function
and terminates if it has not already been started, it terminates if the function has
been started but has not been finished, and it continues if the function has finished.

The result of the orchestrator is stored in the state when the orchestrator success-
fully terminates. The state can then be queried using an HTTP endpoint using the
invocation id of the first orchestrator invocation to get the result. The orchestrator
can also be invoked using the original invocation ID to get the result.

The orchestrator should not contain side-effects itself if they should only be ex-
ecuted once. The replays of the orchestrator will execute them again otherwise.
Orchestrators also have to be deterministic or the replays of the orchestrator will
be unpredictable, which is a restriction inherited from Azure Durable Functions.
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Chapter 6

Cloud monads for function state
on UbiOps

One of the most interesting instances of side-effects for serverless computing is
a state that is shared across invocations. There are a plethora of use-cases that
become significantly easier to implement if there is an abstraction of state in place.
It also allows developers to focus on their business logic, instead of having to worry
about issues like scalability and consistency of their state storage. A shared state
side-effect was implemented on the platform of UbiOps.

6.1 Design goals

The API for the state abstraction should be as simple as possible while still striking
a good balance between usability and expressiveness. Ideally the data in the state
can be interacted with in a way that is as similar as possible to interactions with
local data.

Consistency is a difficult consideration in a shared state for a serverless environ-
ment due to the high degree of elasticity. Ideally the user does not have to worry
about consistency when using the abstraction, or at the very least, does not have to
implement any measures to ensure it themselves. The use of atomic, incremental
operations can make sure that the state stays mostly consistent without complex
data versioning and data version dependent operations.

6.2 Data types and operations

The state abstraction is based on a number of data types and operations. The top-
level storage is a bucket. A bucket has an id that can be used to access it. A bucket
is a map that can hold key-value pairs. There are a set of common operations and
some specific operations for each datatype. Trying to apply an operation a non-

35



Data types Operations
All types Get Set Exists Delete
Boolean Invert
String Prepend Append Get length
Number Increment Multiply
Map Get keys
List Get size Append Trim Is empty

Table 6.1: Categorization of composition frameworks

existing key or to the wrong type will result in an error. An overview of the data
types and operations that were implemented can be found in Table 6.1.

Every field stored also contains a field with metadata. The metadata has been added
so the data types can be extended in later development. An example of a possible
extension would be to specify a maximum length in the list which would ensure a
list stays the specified size when appending.

6.3 API

The way a user can interact with the state is by executing operations. An operation
is defined at least by an operation identifier and the key of the data to operate on.
An example of such a function is the list length operation, which returns the length
of a list specified by the data key.

Some operations require a value as well, and may alter the contents of the state.
For example, increment number takes an optional value to define by how much a
number should be incremented. The value field can also specify another value in
the state to use as value parameter.

There are also some operations that allow additional behavior by providing op-
tional options. The function "exists", for example, has an optional parameter "oth-
erwise", which allows the user to initialise the field if it does not exist.
An example of a deployment using the shared state can be found in listing B.2 in
appendix B. This deployment uses the shared state to return a moving average of
the last 10 inputs that the deployment has received.

6.4 Implementation

6.4.1 Back-end architecture

The architecture of the shared state back-end is separated into two layers; the API
layer and the storage layer. This separation allows the API and the storage service
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to scale independently from each other. It also enables the storage service to be
interchangeable depending on the user’s requirements.

The API layer has two endpoints for registering and unregistering buckets, one
endpoint for executing an operation and an endpoint for executing a transaction,
which consists of a list of operations. The API layer also handles user authentica-
tion through API keys that need to be added to the requests by the client. The API
layer connects to the storage layer through an interface that defines reading and
writing operations.

The storage layer consists of a storage medium, like Redis or SQL, and an ad-
apter that implements the actual storage interactions the API layer needs. This
separation allows the storage medium to be interchangeable, depending on the re-
quirements of the user.

The developed prototype combines the API and storage layers into one service
for simplicity but in a complete implementation these should be separated. The de-
veloped prototype state service is a Node.js application built on the express frame-
work. It stores the users’ state in memory. An in-memory storage has obvious
limitations with regards to scalability of the amount of data that can be stored, but
works well for applications that require low latency and only have a constant, small
memory footprint.

6.4.2 Client library

The client can access the shared state through a small client library that interacts
with the back-end via HTTP requests. Each operation has a corresponding function
that executes it. Each operation also has a function that returns the operation as a
python dictionary. An array of these dictionaries can be used to execute a batched
operation, reducing the amount of round-trips to the back-end. A PyDoc document
of the python client library can be found in appendix A.

6.4.3 Developing and debugging

The state service can also be made accessible from other sources outside of func-
tions. This way the state of a function can be viewed live and issues can be de-
bugged while the function is deployed. It is also possible to run a function locally
during development, while using a deployed state service that is equivalent to one
running in production using a local Docker container.
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Chapter 7

Evaluation

The monadic abstraction and the shared state prototype have been evaluated on
three properties: performance, expressiveness and usability. The three properties
are evaluated in their respective section.

The performance section explores the execution times of the build step of the mon-
adic abstraction and the time the monadic abstraction requires to set everything
up at the start of the function. The state prototype is also evaluated by measuring
the latency between state client running on UbiOps and the back-end deployed on
Google Compute Engine. The scalabality with many concurrent functions is also
evaluated.

The expressiveness section looks at the applicability of the monadic abstraction
to different side-effects. It also explores the applicability in different programming
languages and FaaS offerings.

Finally, the usability section evaluates the usability and contains the results of an
internal evaluation of the shared state at UbiOps.

7.1 Performance

The following section evaluates the performance of cloud monads and the state
prototype.

7.1.1 Monadic function build time

The monadic abstraction implementation of Node.js uses a build step to include
the side-effect abstraction in the user’s function. The execution time of a build step
only impacts the time to deploy so requirements are not as tight as if it would influ-
ence run time. The runtime of the build step was evaluated on a windows machine
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with an i7 8700k CPU and an SSD. The measured build time is 8.59 ± 2.06 ms1

after 100 runs. The build step uses local files as source for the monads but if some
kind of remote repository is used for retrieving them, the runtime will increase.

7.1.2 Monad set-up time

Once a function has been deployed, any invocation will start with setting up the
monadic components of the function. This does factor into the execution time of
the function so the overhead should be moderate. The runtime of the build step was
evaluated on Fission running on a local Kubernetes cluster on a windows machine
executing a function with a single monad, and an orchestrator function using five
monads. The measured set-up time of the single monad function is 0.11 ± 0.02
ms. The measured set-up time of the multiple monad function is 0.36 ± 0.09 ms.
Both were executed 100 times.
The relative impact of this step on the total runtime of a function depends on the
amount of work executed in the function but it should not cause significant delays.
If monads use their set-up function to establish an active connection to an external
service the set-up step may also take longer depending on the quality of the con-
nection to the service.

7.1.3 State prototype response time

The response time of the state prototype was evaluated using a UbiOps deploy-
ment2 that implements a distributed moving average. The deployment uses the
state to keep a buffer of recent inputs. When the function is called with a new
input, the input is appended to the state, the buffer is trimmed to a constant length
and the deployment gets the current buffer to calculate the average. Essentially this
executes three state operations: append, trim and get. These operations are then
batched into a single call to the state service to reduce round-trip times. This is
possible because all three operations will always need to be executed, i.e. there is
no conditional execution that is implemented by the deployment.

The response time of state requests are measured in the deployment and the ex-
ecution time of the operations is measured in the back-end. The deployment that
was used can be found in listing B.2 in appendix B. The runtime of the batched
operation on the back-end is 1.10± 0.36 ms while the response time of the batched
operation measured by the UbiOps deployment is 45.45 ± 3.71 ms, after 100 runs.
These results show that the response time of a call to the state prototype is domin-
ated by the network request. Without batching the state interactions, the negative
impact of the network overhead on the runtime of the deployment would be even

1Execution times are denoted as (mean ± standard deviation)
2"Deployment" is the functionally equivalent UbiOps naming of a serverless function
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greater.

7.1.4 State prototype scalability

The scalability with regards to storage size is poor in the prototype because it stores
user state in memory. The amount of requests it can handle per second was evalu-
ated using Locust, an open-source load testing framework [33]. The request used
were the batched operations of the moving average implementation mentioned in
the previous paragraphs. The state service was running on an ’e2-small’ VM in-
stance on Google Compute Engine [34]. The response times for an increasing
amount of requests per second can be seen in Figure 7.1. The 95% percentile value
for response time spikes significantly around 2200 requests per second, implying
that is the amount of load that the service can comfortably handle. The requests
per second also drops significantly but the response time does not recover.
The state service itself is very lightweight, as it can handle around 2000 requests
per second without a significant increase in response time on a relatively weak
CPU. The increase in the 95% percentile value of the response times at 2200 re-
quests per second suggests that the CPU usage nears 100% around that amount of
load.
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Figure 7.1: The amount of requests per second, and the median and 95% percentile
response times in ms.

7.2 Expressiveness

The following section evaluates the expressiveness of cloud monads.

7.2.1 Haskell monads in the cloud

The possibility to implement existing Haskell monads in serverless is the first
measure of expressiveness used to evaluate the developed side-effect abstraction.
The Haskell monads that are explored are Maybe, List, State, Reader and Writer.

The maybe monad can be implemented by adding a monadic component that con-
tains the type Nothing or Just. The implementation of bind is straightforward, call-
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ing the next function if the the monadic component of the previous value is Just,
otherwise returning Nothing. The users will have to explicitly specify it if they
wish the function to return Nothing. A potential improvement would be to add an
onException to the abstraction that can be used to automatically return Nothing if
the function fails.

The list monad is an example of a function that requires bind. The list monad
is generally used to model non-deterministic computations. The bind function runs
a function for all elements of the list. In the serverless environment it needs to have
access to the composition framework so it can launch functions. The list monad
has been implemented on Fission, but it can not be implemented within the UbiOps
pipeline system because it only supports sequences. It would be possible to imple-
ment the list monad on UbiOps by using the HTTP endpoints for deployments
directly but this would incur double-billing, because the original deployment will
have to stay alive to wait for the other deployments to finish.

The state, reader and writer can be considered very similar to each other with re-
gards to their implementations because reader and writer are conceptually subsets
of state. The reader monad implements a state where reading is the only available
operation. The writer monad implements one where writing is the only available
operation. These monads can be used without using the bind function if an external
service is used, because the monadic components only contain a reference to the
service and are not changed by child functions in that case. Without external ser-
vice bind is required, because the monadic components returned by a function will
contain the state.

7.2.2 Applicability to different programming languages and FaaS of-
ferings

One of the goals of the side-effect abstraction was to ensure it can be applied in
different languages and on different platforms. It is infeasible to create implement-
ations for all languages and platforms so a a small subset of diverse options was
chosen. Implementations of the monadic layer were created for Fission in Java-
Script and Java, and for UbiOps in Python. While JavaScript and Python are quite
similar in the sense that they are scripting languages, the implementation in Java
shows that it is also possible to implement the monadic layer in a compiled lan-
guage with a strong type system and static type checking.

Fission and UbiOps were chosen as examples of opposites in terms of flexibility of
the composition framework, with UbiOps’ pipelines being closed source and sup-
porting only sequences and Fission using a custom composition framework. The
implementation of Fission is more complete and flexible in terms of usage patterns.
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The other platforms should have comparable problems to the UbiOps implementa-
tion with respect to the monads requiring a bind function in a composition. How-
ever, because the monadic components are added to the bodies of the response and
request, monads using an external service will still be able to function in any com-
position framework.

This problem only holds when using the composition solution of the platform. It is
also possible to use a port of the custom composition framework developed in this
thesis to define compositions instead, which would enable the patterns provided by
bind again.

7.2.3 State prototype use-cases

The expressiveness of the state prototype was evaluated by doing a small study
at UbiOps about use-cases that their customers may have for a shared state imple-
mentation. From the results it was possible to group the use-cases into four classes.

The first class of use-cases is sliding window models. Sliding window models use
a recent inputs to draw a conclusion about a stream of values. A simple example
is a moving average. The state that is stored in this use-case is a buffer of recent
values. Buffers are a good fit for the developed prototype as they are constant in
size. Another application that was mentioned during the study was the smoothing
of sensor input using recent values.

Another proposed use-case was the implementation of a feature store in the shared
state. Features can be stored in a bucket that can be shared by all functions that
interact with them. These functions include those that generate the feature values
and those that read them. The state service is currently limited by VM memory
because it stores everything in-memory. This means it will be infeasible to store
a complete history of data and feature values. However, if the feature calculation
can be modelled as a stream algorithm, it is possible to keep a recent history that is
discarded when the feature values are updated.

The state service would be suitable for ephemeral storage, although it does de-
pend on the form of the data. Ephemeral data can be deleted explicitly after read-
ing. Another possibility would be to add a Time-To-Live (TTL) or data persistence
configuration feature to the state. The state also contains a combined read-and-
delete operation.

The shared state can be used to tweak machine learning model parameters on-
the-go, if the function retrieves them from the state at the start of execution. It
would also be possible to update the model without having to redeploy any func-
tions by storing the model in the state and retrieving it in the function. The data
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types supported by the state and the possibility to run operations on nested values
may also make it possible to train incremental models with new values and update
the model directly in the state using incremental operations on its weights.

The shared state can also be used to model some real-world entity.Two practical
use-cases were encountered. The first use-case was an application that monitored
parking garages and could recommend users looking for a spot to one. The state
of parking garages would be kept in the shared state service. This system only
performs recommendations so consistency requirements are less compared to a
parking reservation system. The second use-case concerned an application that
monitored patients in elderly homes through sensors in their bed. The basic imple-
mentation of both systems would need two functions that perform different roles.
One function would update the state based on the sensor data. The other function
would use the current state to make a recommendation.

The shared state can also be used to do monitoring of data. A data processing
pipeline where anomalies are detected based on recent data and warnings or issues
are stored in the state. Another function periodically checks the state for issues and
takes action if necessary.

UbiOps identifies itself on the market as a solution for the deployment of ma-
chine learning models. The use-cases found are therefore mostly related to ma-
chine learning applications. However, a wider investigation with a more varied
customer-base might provide more possible use-cases.

7.3 Usability

7.3.1 Monadic functions in isolation

The power of monads is mostly expressed in compositions. However, the monads
that do not rely on the bind function to work also have value when functions are
called individually. An example of such a monad is the state monad. Users will
have to take care that they send the correct monadic body in a function request,
and that they are aware what the default values are set to. Functions may cause
unintended side-effects if a mistake is made, but the function returns the monadic
values, which provides the possibility for a check and gives an indication about any
incorrect state updates.

7.3.2 Composition

In a composition, the pass-by-reference style of monads does not require much
input from the user because it handles the monad passing implicitly in the or-
chestrator. The default behaviour can be overridden to facilitate different usage
patterns. The behaviour of the monads is summarised simply as a context that an
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orchestrator shares to its child invocations.
The monads that require bind to function require more familiarity with the concept
of monads and how they function in a composition. Additionally, it is also greatly
dependent on the individual monad what the bind function does.
Similarly to Haskell, the do-notation is a more readable way to define a composi-
tion. The serverless do-notation implementation currently only supports a sequence
of monadic functions that implicitly maps the output of each function to the input
of the next function, but a more complete implementation would also support the
assigning of variable names.

7.3.3 User-created monads

Monads in Haskell have a well-defined set of operators and functions that monads
have to implement. This definition enables users to create and use their own mon-
ads. Cloud Monads were designed with a similar principle in mind.
Users are able to create their own monads for side-effects they require. These can
be made very specific to the use-case for internal use in different functions, or
they can be kept general so they may be shared and used by other users. Creating
pass-by-reference monads is fairly straightforward, but monads that use bind also
require access to a composition mechanism. This is doable if a particular composi-
tion implementation is assumed to be used, but otherwise becomes very difficult. It
may be possible if a standard composition API is defined but it may not be possible
for different composition implementations to use the same API.

7.3.4 State prototype user study

The usability of the shared state prototype was also evaluated internally at UbiOps
with three of their employees. Two employees were back-end developers, one
senior and one junior developer. The third employee worked in sales but also has
programming experience, mainly in data science. They were tasked with using
the shared state to implement two functions and a pipeline composing them. The
first function calculates the moving average over recent inputs. The second func-
tion keeps track of the maximum value for the moving average and increments a
counter whenever it is changed. The pipeline composes the two functions in a se-
quence. The environment variables of the functions were used to set the correct
storage bucket for the functions to use.

The functionality of the first function was chosen to evaluate whether users would
use incremental list operations to track recent inputs in a consistency-preserving
way. Updating the list of recent inputs locally and setting it to the state directly
would cause a race-condition, where two simultaneous updates would result in one
of the updates being lost. The necessary operations can also be batched to optimise
the amount of round-trips. The second function was added to evaluate whether it
was clear how the monads were passed in a pipeline.
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The importance of using incremental operations to retain consistency was not im-
mediately clear. Instead, the participants’ first instincts were to set values directly.
It was also not inherently clear that data needed to be instantiated, or that it was
possible to retrieve or initialise with a single operation.
The fact that the data types were close to programming language primitives was
considered pleasant to work with.
It was not immediately clear how the state configuration in the input of the function
related to the state configuration in the environment variables. This caused some
confusion about how they should be used. The distinction is that the state configur-
ation in the function input can be used to dynamically change the configuration of
the monad for each request, while the environment variables can be used as a static
configuration. The configuration in the function input is useful for compositions.
Some practical considerations were also raised about the in-memory state, espe-
cially how it’s not suitable to any use-case that requires persistent storage. How-
ever, it was already built with the idea of extending it with multiple storage options
for different use-cases so this is to be expected.

The participants of the user study were generally positive and saw the value of
providing stateful functions as a feature on UbiOps. The intended customers of
UbiOps are data scientists with limited software engineering and DevOps skills, so
providing a state service that is tailored to the platform enables them to implement
a wider range of applications.
Users are encouraged to use incremental state updates, but the API still allows "un-
safe" operations like setting the state directly. One of the results of the user study
is that it may be better to remove unsafe operations entirely, because users will still
use them because they are conceptually more straightforward to work with.
Sending operations in batches can be implemented in a more user-friendly way, as
suggested by one of the participants. They suggested to allow the user to create
a batch object, which has the same methods as the state service, but which defers
execution of the operations until a commit function is called.
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Chapter 8

Discussion

There is a conflict between usability and faithfulness to the implementation of
monads in Haskell. The pass-by-reference style monadic values are conceptually
simple when used in an orchestrator but they do not resemble monads in Haskell
very well. The pass-by-value monadic values resemble monads more closely, but
they do not scale well due to having to send the monad in the request and response
bodies.

Monads in Haskell often represent a type of deferred execution. Monadic functions
do not return their results but instead return an ’action’. The state and IO monad
for example represent actions that can be executed by using the runState and runIO
functions. However, this does not fit the serverless platform well because a func-
tion can not return another function, and functions can not be dynamically created
or changed.

One of the advantages of monads is the possibility for users to implement their
own monads. The monad interface will then make sure that the monad is compat-
ible with the monadic encapsulation. Creating custom monads is possible in the
framework developed in this thesis but monads using the bind function are more
difficult to implement due to the dependence on the composition monad. A com-
plete solution would also contain some kind of repository for monads that users
can use to share their own monads and find those created by others.

The basis for the composition framework was kept separate as a monad from the
monadic encapsulation. The state monad that the composition monad relies on is
also separated. This enables the potential for a better composition monad to be
implemented on the same monadic encapsulation. However, making the composi-
tion part of the monadic encapsulation, or state part of the composition, may make
some aspects of composition easier. For example, it may be interesting to explore a
solution based on choreography, if the monadic encapsulation is added to all func-
tions.
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Monad transformers can be used in Haskell to compose monads. For example,
a list of maybe values. The implementation of bind presented in this thesis does
not support binding over multiple monads. Calling monadic functions directly
does share all the monads of the orchestrator so the child function is able to inherit
multiple monadic configurations. Monad transformers were left out of the imple-
mentation due to time constraints, but would be a great future improvement.

The presented composition framework is very basic and does not contain any re-
sponse to functions failing or timing out. In those cases, the composition will
simply stop. The state of the composition is still available in the state monad so a
component could be introduced that watches the states of orchestrators and takes
appropriate action.
It is currently also impossible to call other orchestrator functions from an orches-
trator.

8.1 Related work

This thesis does not aim to solve the problem of stateful serverless, as much as it
presents a model for interacting with similar features that can be considered "side-
effects". However, stateful serverless is one of the most interesting applications
and other stateful serverless solutions could be used as storage back-end for cloud
monads.

Microsoft has published a paper on Azure Durable Functions and its semantics
[35]. Durable Functions contains an implementation of state in the form of State-
ful Entities. The entities and their operations can be defined by the user. Operations
are viewed as events and ordered to determine the current state with eventual con-
sistency. Orchestrator functions are also a form of stateful serverless, as the state
of an orchestration is stored externally as well.

Crucial implements a distributed shared memory layer for serverless functions that
can be used for state management and synchronisation [36]. Their Distributed
Shared Objects (DSO) datastore allows developers to synchronise local variables
with the distributed storage layer by using the "shared" annotation. The main pro-
gramming abstraction of Crucial is a "cloud thread" which functions identically as
a regular thread from the developer’s perspective but executes on FaaS.

Boki is a serverless runtime that implements shared logs for serverless functions
[37]. Boki provides ordering, consistency and fault tolerance, by having a "met-
alog" for all log records that stores the internal state transitions of the logs. The
authors have used Boki to implement fault-tolerant workflows, durable object stor-
age and message queues. The architecture of Boki is based on the FaaS system
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Nightcore [38] and extends it with a logbook engine, storage nodes for log data,
sequencer nodes for updating metalogs and a control plane to track system health.

CloudBurst implements a distributed data layer in the form of a key-value store that
serverless functions can use for storage [39]. Cloudburst uses local data caches on
function executors to have data locality where possible.

Triggerflow is an architecture for trigger-based orchestration of serverless work-
flows [40]. It follows an Event Condition Action architecture that is extendable
on all levels. Workflows and DAGs can be mapped to triggers. For example, a
DAG can be converted to triggers by creating a task termination event and trigger
for each edge between tasks.

The "Serverless" framework [41] is an effort to make serverless as easy to use
as possible. It abstracts away a lot of the boilerplate for serverless functions and
also supports plugins that extend the functionality of the framework and of the
functions created using the framework. These plugins are similar to cloud mon-
ads in the sense that they provide additional functionality to serverless functions in
ready-to-use packages.
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Chapter 9

Conclusion

A monadic abstraction for side-effect was developed and evaluated on Fission. An
implementation of a shared state side-effect was also implemented for UbiOps.
The implementations were used to answer the following research questions.

RQ1: Would monads offer an effective model of abstraction to simplify the
implementation or use of side-effects in a serverless computing environment?
Concepts like state, logging or messaging can be implemented as monads. The user
does not need to know the underlying implementation and can simply use the API
provided by the monad through the function context. This assumes the definition
of side-effects in serverless means interactions with external services. A definition
that is closer to monads in Haskell requires the monadic programming style us-
ing bind and do-notations. However, this programming style is not very familiar
to people that are accustomed to object-oriented or imperative programming styles.

RQ2:Would monads be able to provide a standardised solution for serverless
function composition?
Function composition can be modelled using orchestrator functions that are built
on the monadic abstraction themselves. This solution does require an external com-
ponent that can invoke other serverless functions lives outside of the abstraction.
Composition does not require invoked functions to know about the composition.
The abstraction is not bound to a single platform or programming language. It can
also be used as a means to make a function platform-independent. It does require
a mechanism for asynchronous function execution.

RQ3: Can monads be used in serverless to model and control side-effects?
Abstracting the configurations of external service interactions away from the user
is an opportunity for serverless platforms to become more easy to use. It also en-
ables the implementation of concepts like remote state in a way that is transparent
to the user with regards to it being remote. It also promotes re-use of functions due
to the configurability of the monad. Developing is also easier, as a function can
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easily be configured to run in a certain environment.

RQ4: What infrastructure would be required to enable cloud providers to
provide users with side-effects on their platform?
The state side-effect on UbiOps was developed as a means to explore this question.
The developed shared state prototype is effective at functioning as a low-latency
state store for states with consistent size, like buffers or the state of some real-
world entity. It does not function well for infinitely growing states, like a persistent
history because the service will run out of memory quickly. However, this can be
solved by using a different storage solution for the service.
In the case of platform-managed state storage, some infrastructure would be re-
quired between the client code in the serverless function and storage solution. This
layer would have to take care of authentication and billing. If the side-effects
connect to user-operated infrastructure cloud providers would not have any extra
infrastructure to operate except potentially a component in the scheduler that takes
care of optimisations based on monads.

9.1 Future research

A monadic abstraction of side-effects makes the interactions with external services
of a function explicit. A possible topic for further research would be to invest-
igate if and how this information can be used to optimise the performance of the
function. Potential parameters to optimise are the connection quality between a
possible function placement and the external service, or warming certain functions
for an orchestrator function.

Another topic for future research could be to create a domain-specific language for
function composition that is based on monadic composition. This could preserve
the clean declarative nature of the monadic programming style. The orchestrators
presented in this thesis contain a lot of await and are bound to the object-oriented
nature of JavaScript. A domain-specific language would allow most of this boiler-
plate code to be removed.

Serverless function composition frameworks generally do not employ type check-
ing. However, this would be a valuable addition when developing compositions. A
future topic of research could be how to implement a static type checker for server-
less functions. Functions would need to specify their input and return types, and
the static type checker could access that information to find type errors.

Functional programming languages generally work with immutable data. A pos-
sible topic of future work could be to make cloud monads immutable to reap the
same benefits that functional programming languages enjoy due to this restriction.
It would be interesting to evaluate the potential benefits against the overhead of
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data duplication in terms of storage size and state update latency.
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State prototype documentation
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UbiState index

Modules
json os requests uuid

Classes
builtins.object

UbiState

class UbiState(builtins.object)
UbiState(data)

This class contains the API for the state service.
The API can be used by calling this class' functions.

Methods defined here:

__init__(self, data)
Initialise the API object using the deployment input data.
The bucketId and host are automatically extracted from the input data if they are present.
Otherwise, the deployment's environment variables are used.
If those are also absent, use defaults.

The API key can only be set using the environment variables.

bucket_keys(self)
Gets the list of keys in the bucket.

:return: Returns an array of keys.

bucket_keys_operation(self)
Returns 'invert_boolean' as operation to be used by 'sendTransaction'.

See documentation of 'invert_boolean'.

delete(self, key)
Deletes a key.
Deleting a non-existent key results in an error.

:param key: The key to delete.

:return: Returns nothing.

delete_operation(self, key)
Returns 'delete' as operation to be used by 'sendTransaction'.

See documentation of 'delete'.

deregister_bucket(self, buck=None)
Deletes a bucket.
If buck is defined, deletes a bucket with buck as id.
Otherwise default to current bucketId as initialised in the constructor.

:param buck: Optional bucket id.

:return: Returns nothing.

empty_list(self, key)
Empty a list.
Removes all elements from the list.
If key is not a list, raises error.

:param key: The key of the list

:return: Returns nothing.

empty_list_operation(self, key)
Returns 'empty_list' as operation to be used by 'sendTransaction'.

See documentation of 'empty_list'.

exists(self, key, otherwise=None)
Checks if a key exists.

If otherwise is defined and the key does not exists, set the key to the value of otherwise.
In this case, the value returned will still be false, indicating that it did not exist.

:param key: The key of the data to set.
:param otherwise: The value to set if key does not exist.

:return: Boolean



exists_operation(self, key, otherwise=None)
Returns 'exists' as operation to be used by 'sendTransaction'.

See documentation of 'exists'.

export_config(self)
Export the current state configuration.
Should be used at the end of the deployment to return the state configuration

:param op: Operation to execute

:return: Result of the operation

get(self, key, delete=None, default=None)
Gets the value associated to the given key.
The key uses [] to retrieve list and map elements.
For example:
    arr[1] will retrieve the second element of list arr.
    obj[x] will retrieve the child with key 'x' from the obj map.

The keys can be nested.
For example:
    If the second element of arr is a map, arr[1][x] wil retrieve its child 'x'

This function can be used to initialise values by using the default parameter to set a key if it does not exist yet.
The other option for initialising values is by using the 'exists' operator with the 'otherwise' param.

:param key: The key of the data to retrieve.
:param delete: If set to true, the value is deleted after it is retrieved.
:param default: If default is set and the key does not exist, the value in default is set in the state and returned.

:return: The value of the key, if it exists. Otherwise raises error.

get_operation(self, key, delete=None, default=None)
Returns 'get' as operation to be used by 'sendTransaction'.

See documentation of 'get'.

increment_number(self, key, value)
Increments a number by a certain amount.
If key is not a number, raises error.

:param key: The key of the number
:param value: The value to increment by, can also be negative

:return: Returns the new value

increment_number_op(self, key, value)
Returns 'increment_number' as operation to be used by 'sendTransaction'.

See documentation of 'increment_number'.

invert_boolean(self, key)
Inverts a boolean.
Inverting a non-existent key or an invalid datatype results in an error.

:param key: The key to invert.

:return: Returns the new value if successfull. Raises an error otherwise.

invert_boolean_operation(self, key)
Returns 'invert_boolean' as operation to be used by 'sendTransaction'.

See documentation of 'invert_boolean'.

list_append(self, key, value)
Appends an element to a list.
If key is not a list, raises error.
There are no restrictions on the types of the list elements.

:param key: The key of the list
:param value: The value to append

:return: Returns nothing.

list_append_operation(self, key, value)
Returns 'list_append' as operation to be used by 'sendTransaction'.

See documentation of 'list_append'.

list_prepend(self, key, value)
Prepends an element to a list.
If key is not a list, raises error.
There are no restrictions on the types of the list elements.

:param key: The key of the list
:param value: The value to append

:return: Returns nothing.

list_prepend_operation(self, key, value)
Returns 'list_prepend' as operation to be used by 'sendTransaction'.



See documentation of 'list_prepend'.

list_size(self, key)
Returns the length of a list.
If key is not a list, raises error.

:param key: The key of the list

:return: Returns the lenght of the list.

list_size_operation(self, key)
Returns 'list_size' as operation to be used by 'sendTransaction'.

See documentation of 'list_size'.

list_trim_left(self, key, value)
Trims a list to a certain size.
Removes elements from the start of the list.
If key is not a list or value is not an integer, raises error.
There are no restrictions on the types of the list elements.

:param key: The key of the list
:param value: The length the list should be trimmed to

:return: Returns nothing.

list_trim_left_operation(self, key, value)
Returns 'list_trim_left' as operation to be used by 'sendTransaction'.

See documentation of 'list_trim_left'.

list_trim_right(self, key, value)
Trims a list to a certain size.
Removes elements from the end of the list.
If key is not a list or value is not an integer, raises error.
There are no restrictions on the types of the list elements.

:param key: The key of the list
:param value: The length the list should be trimmed to

:return: Returns nothing.

list_trim_right_operation(self, key, value)
Returns 'list_trim_right' as operation to be used by 'sendTransaction'.

See documentation of 'list_trim_right'.

mapKeys(self, key)
Returns all of the keys in a map.
If key is not a map, raises error.

:param key: The key of the map

:return: Returns a list of keys

map_keys_operation(self, key)
Returns 'map_keys' as operation to be used by 'sendTransaction'.

See documentation of 'map_keys'.

multiply_number(self, key, value)
Multiplies a number by a certain amount.
If key is not a number, raises error.

:param key: The key of the number
:param value: The value to multiply by, can also be negative

:return: Returns the new value

multiply_number_operation(self, key, value)
Returns 'multiply_number' as operation to be used by 'sendTransaction'.

See documentation of 'multiply_number'.

register_bucket(self, buck=None)
Creates a bucket.
If buck is defined, creates a bucket with buck as id.
Otherwise default to current bucketId as initialised in the constructor.
If the bucket already exists, does nothing and raises no errors.

Executing an operation on a non-existent bucket will create the bucket automatically.
In the current version this function is not necessary to use state.

:param buck: Optional bucket id.

:return: Returns nothing.

send_operation(self, op)
Executes an operation.

:param op: Operation to execute

:return: Result of the operation



send_transaction(self, ops)
Batches multiple operations into a single transaction.
Can be used to reduce the amount of calls to the server.

:param ops: List of operations

:return: Returns the results of the operations in an array

set(self, key, value)
Sets a key to a value.
The value can be a complex, nested object or list.
If a key already existed, the value will be overwritten regardless of the previous type.

:param key: The key of the data to set.
:param value: The value to set.

:return: Returns nothing.

set_operation(self, key, value)
Returns 'set' as operation to be used by 'sendTransaction'.

See documentation of 'set'.

string_append(self, key, value)
Append something to a string.
If key is not a string, raises error.
Value can be string, number or boolean.

:param key: The key of the string
:param value: The string to append

:return: Returns nothing.

string_append_operation(self, key, value)
Returns 'string_append' as operation to be used by 'sendTransaction'.

See documentation of 'string_append'.

string_length(self, key)
Get the length of a string.
If key is not a string, raises error.

:param key: The key of the string

:return: Returns the length of the string

string_length_operation(self, key)
Returns 'string_length' as operation to be used by 'sendTransaction'.

See documentation of 'string_length'.

string_prepend(self, key, value)
Prepend something to a string.
If key is not a string, raises error.
Value can be string, number or boolean

:param key: The key of the string
:param value: The string to prepend

:return: Returns nothing.

string_prepend_operation(self, key, value)
Returns 'string_prepend' as operation to be used by 'sendTransaction'.

See documentation of 'string_prepend'.

Data descriptors defined here:

__dict__
dictionary for instance variables (if defined)

__weakref__
list of weak references to the object (if defined)

Functions
timer = perf_counter(...)

perf_counter() -> float

Performance counter for benchmarking.
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Appendix B

Code examples

1 module.exports = async function(context) {
2 // Generate an invocation id and set it in the context
3 context.invocationId = uuid.v4();
4 // Add monads object to context
5 context.monads = {};
6
7 // Dynamically load monads from monads folder based on monads.

json
8 const monadIds = JSON.parse( fs.readFileSync( join(__dirname,

’monads.json’) ) );
9 const monads = monadIds.map(m => require(join(__dirname, ’

monads’, m.id)));
10
11 // Run initialisation of monads
12 for (const m of monads) {
13 await m.runBefore(context);
14 }
15
16 // Execute user function
17 const res = await func(context.request.body, context);
18
19 // Run clean-up of monads
20 // Adds final monadic configuration to returned monadic body
21 const monadicBody = {};
22 for (const m of monads) {
23 await m.runAfter(context, monadicBody);
24 }
25
26 // Return result of the function
27 return {
28 status: 200,
29 body: {
30 value: res,
31 monads: monadicBody,
32 }
33 };
34 }

Listing B.1: Implementation of monad layer for Fission in JavaScript
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1 class Deployment:
2 def request(self, data, context):
3 state = context.state
4 results = state.send_transaction([
5 state.exists_operation(’buffer’, otherwise=[]),
6 state.list_append_operation(’buffer’, data[’input’]),
7 state.list_trim_left_operation(’buffer’, 10),
8 state.get_operation(’buffer’)
9 ])

10
11 buff = results[3]
12
13 avg = sum(buff) / len(buff)
14
15 # Return the new average
16 return {
17 ’output’: avg
18 }

Listing B.2: UbiOps deployment that calculates a moving average. Used in
evaluation of latency between UbiOps deployments and the shared state prototype.
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