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We study the quantum corrections to the conductivity of the two-dimensional disordered interacting electron
system in the diffusive regime due to inelastic scattering off rare magnetic impurities. We focus on the case of
very different g factors for electrons and magnetic impurities. Within the Born approximation for the inelastic
scattering off magnetic impurities we find additional temperature-dependent corrections to the conductivity of
the Altshuler-Aronov type. Our results demonstrate that the low-temperature transport in interacting disordered
electron systems with rare magnetic impurities is more interesting than it was commonly believed on the basis
of treatment of magnetic impurity spins as classical ones.

DOI: 10.1103/PhysRevB.98.045414

I. INTRODUCTION

As it is well known, the low-temperature properties of an
electron system are significantly affected by electron scattering
off rare magnetic impurities. The simplest approach is to treat
a magnetic impurity classically as a random three-dimensional
vector of a fixed length. Despite that such a model ignores a
quantum dynamics of the spin, i.e., treats the scattering off a
magnetic impurity elastically, the model is powerful enough
to produce a number of interesting, nontrivial effects, e.g.,
suppression of the superconducting transition temperature due
to elastic electron spin flip [1], suppression of temperature
dependence of the weak-localization correction to conductivity
[2,3], etc.

The quantum dynamics of the spin of a magnetic impurity
is responsible for the Kondo effect: renormalization of the
exchange coupling between an electron and impurity spins that
leads to nonmonotonic temperature dependence of resistivity
[4]. Physically, the quantum dynamics of the spin allows an
electron to scatter inelastically off a magnetic impurity [5–7].
For example, the Zeeman splitting of the magnetic impurity
levels results in energy dependence of the spin-flip scattering
even within the Born approximation [8]. The presence of
potential elastic scattering together with the inelastic spin-flip
scattering results in modification of the Kondo effect and the
behavior of the quantum corrections to conductivity [9–11].
For example, in disordered electron systems the inelastic
spin-flip scattering affects the weak-localization correction
and mesoscopic conductance fluctuations via the energy-
dependent dephasing time induced by spin-flip scattering
[8,12–15]. In addition to the influence on the weak-localization
correction, the inelastic scattering off magnetic impurities
results in appearance of the Altshuler-Aronov–type corrections
to the conductivity [9,16,17]. These temperature-dependent
corrections have been found in the third order in the exchange

interaction. It can be easily argued why this is the lowest
order in which such corrections can arise. Indeed, in order
to have inelastic scattering off a magnetic impurity within
the Born approximation, one needs to have the Zeeman
splitting. However, the Zeeman splitting induces a cutoff for the
relevant diffusive modes. This forbids temperature-dependent
corrections to conductivity in the second order in the exchange
interaction. However, the above arguments assume that the
Zeeman splitting for a magnetic impurity and for an electron
are the same, which is true provided the Lánde factors are the
same.

In this paper, we consider the case of very different g factors
of an electron ge and a magnetic impurity gi: |gi| � |ge|. In
this case, the impurity Zeeman splitting bi = giμBH can be
much larger than the electron Zeeman splitting be = geμBH .
Here, μB stands for the Bohr magneton and H denotes the
external magnetic field. For sake of concreteness we consider
a two-dimensional electron system in parallel magnetic field
H . Then, as we shall demonstrate, there exists the logarithmic-
in-T correction to the conductivity due inelastic scattering off
magnetic impurities within the Born approximation provided
the temperature satisfies inequalities:

|be| � T � |bi|. (1)

Also, we study how inelastic scattering off magnetic impurities
interferes with the electron-electron interaction. We find that,
on the one hand, the inelastic scattering off magnetic impurities
modifies the Altshuler-Aronov correction, and, on the other
hand, the electron-electron interaction affects the correction to
the conductivity due to the inelastic scattering off magnetic im-
purities (which also exists in the absence of electron-electron
interaction).

The paper is organized as follows. In Sec. II we remind
the formalism of the Finkel’stein nonlinear sigma model. The

2469-9950/2018/98(4)/045414(9) 045414-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.045414&domain=pdf&date_stamp=2018-07-16
https://doi.org/10.1103/PhysRevB.98.045414


I. S. BURMISTROV AND E. V. REPIN PHYSICAL REVIEW B 98, 045414 (2018)

perturbative expansion of the nonlinear sigma model and the
structure of diffusive modes are discussed in Sec. III. In Sec. IV
we present our results for the temperature dependence of
conductivity in two-dimensional electron system. We conclude
the paper with the discussion of our findings (Sec. V).

II. FINKEL’STEIN NONLINEAR SIGMA MODEL

We consider a two-dimensional interacting electron system
in the presence of short-ranged potential disorder. In addition,
we assume the presence of weak spin-flip scattering due to
an exchange interaction between rare magnetic impurities and
electrons described by the following Hamiltonian:

Hmag = J
∑

j

ψ†(rj )Sjσψ(rj ). (2)

Here, σ and Sj stand for the Pauli matrices and the spin
operator of a magnetic impurity at the position rj , respectively.
The electron creation and annihilation operators are denoted
as ψ†(r) and ψ(r). We shall treat rare magnetic disorder
under the following assumptions: (i) the magnetic scatterers
are uniformly distributed with the Poisson distribution, i.e., the
probability density to have k impurities at positions r1, . . . ,rk

is proportional to nk
s /k! where ns denotes the average con-

centration of magnetic impurities; (ii) impurity spins Sj are
independent but have their own quantum dynamics.

In the absence of magnetic scattering, the effective field
theory for disordered interacting electrons in the diffusive
regime, T � 1/τ , where τ denotes the elastic mean-free time,
is defined in a standard way (for a review, see [18,19]).
In the absence of magnetic field and magnetic impurities,
the Hamiltonian of the system preserves spin-rotational and
time-reversal symmetries. Then, the effective field theory is
formulated in terms of a matrix field Q ∈ G/K with G =
Sp(2N ) and K = Sp(N ) × Sp(N ). The rank of G is given
by N = 4NrNm where Nm denotes the number of Matsubara
frequencies involved and Nr stands for the number of replica.
For computation of physical observables, one needs to take
two limits: Nm → ∞ and Nr → 0, at the end of calculations.
We note that the limit Nm → ∞ should be taken in a way
consistent with the gauge invariance (see Ref. [20] for details).
The factor 4 appears since one needs to take into account the
spin and Nambu (particle-hole) spaces. Taking into account
Zeeman splitting due to external magnetic field, the effective
action can be written as follows [21–23]:

Sσ = −
∫

d r Tr

[
g

32
(∇Q)2 − 4πT ZωηQ − iZsbet33Q

]
− πT

4

∑
α,n,r,j

	j

∫
d r Tr Iα

n trjQ Tr Iα
−ntrjQ. (3)

Here, the 16 matrices trj , j,r = 0,1,2,3, act in a tensor product
of the spin (subscript j ) and Nambu (subscript r) spaces:

trj = τr ⊗ sj , r,j = 0,1,2,3. (4)

Here, matrices τ0 and s0 stand for the 2 × 2 unit matrices and

τ1/s1 =
(

0 1
1 0

)
, τ2/s2 =

(
0 −i

i 0

)
, τ3/s3 =

(
1 0
0 −1

)
.

The effective action (3) involves the following matrices:

ηαβ
nm = nδnmδαβt00,

(
I

γ

k

)αβ

nm
= δn−m,kδ

αβδαγ t00, (5)

where α,β = 1, . . . ,Nr stands for replica indices and indices
n,m correspond to the Matsubara fermionic frequencies εn =
πT (2n + 1). The total (including spin) dimensionless (in units
e2/h) Drude conductivity is denoted by g. The interaction
amplitudes 	j (for the singlet channel, 	0 = 	s , and for
the triplet channel, 	1 = 	2 = 	3 = 	t ) describe electron-
electron interaction in the particle-hole channel. In what
follows, it will be also convenient to use γj = 	j/Zω and
γs,t = 	s,t /Zω. We note that in the case of Coulomb interaction
γs is fixed to the value −1 (see Refs. [18,19] for details).

The parameter Zω takes into account nontrivial frequency
renormalization under the renormalization group [21–23]. We
note that the bare value of the parameter Zω is equal to πν/4
where ν denotes the density of states at the Fermi level. The last
term in the first line of Eq. (3) describes the effect of the parallel
magnetic field on electrons. This term violates explicitly time-
reversal symmetry. The quantity Zs = Zω + 	t describes the
Fermi-liquid-type enhancement of the g factor (see reviews
[18,19] for details). The bare value of Zs is given as πν(1 +
γt0)/4 where γt0 is the bare value of the interaction in the triplet
channel which can be expressed in terms of the Fermi-liquid
parameter Fσ

0 as follows: γt0 = −Fσ
0 /(1 + Fσ

0 ). Although in
this work we do not study the renormalization of the parameters
of the nonlinear sigma model action, g, 	j , Zω, and Zs , in the
presence of magnetic impurities, it is convenient to express the
final results in terms of g, 	j , and Zω rather than their bare
values.

We note that in this paper we neglect the electron-electron
interaction in the Cooper channel. By construction, the matrix
Q(r) describes local rotations around the spatially independent
matrix �:

Q = T −1�T , �αβ
nm = sgn εn δnmδαβt00. (6)

Here, the matrices T ∈ G obey the following symmetry rela-
tions:

C(T −1)T = T C, T TC = CT −1, (7)

where C = it12. The symbol T T denotes the matrix transpose
of T . As the consequence of Eqs. (6) and (7), the matrix Q is
subjected to the local nonlinear constraint Q2(r) = 1, satisfies
the condition Tr Q = 0, and obeys charge-conjugate relation

Q = Q† = CT QT C. (8)

In the presence of magnetic impurities, the full effective
action S is the sum of the Finkel’stein nonlinear sigma model
Sσ and the additional part Smag, i.e., S = Sσ + Smag. For rare
magnetic impurities, the latter can be written as a sum over
contributions of individual magnetic impurities [24]:

Smag = 1

2

∑
j

Tr ln(1 + iπνJ Q(rj )τ3σ Ŝj ). (9)

Here, we introduce the following notations:

Ŝj =
∑

n

Sj (iωn)In, Sj (iωn) =
∫ β

0
dτ Sj (τ )eiωnτ , (10)
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where β = 1/T , ωn = 2πT n, and the matrix In is defined as
follows:

(Ik)αβ
nm = δn−m,kδ

αβt00. (11)

We note that the form (9) of the action Smag is equivalent
to the self-consistent T -matrix approximation for magnetic
scattering, i.e., it is derived by taking into account all orders
in scattering off a single magnetic impurity but by neglecting
contributions with intersecting impurity lines.

We perform the averaging over the uniformly distributed
magnetic impurities, the number of which is determined by
the Poisson distribution with the help of the following relation
[25]: 〈

exp
∑

j

f (r j )

〉
= exp

{
ns

∫
d r[ef (r) − 1]

}
. (12)

Then, we find that the contribution to the effective action due
to magnetic impurities becomes

Smag → ns

∫
d r(〈e 1

2 Tr ln(1+iπνJ Q(r)τ3σ Ŝ)〉S − 1). (13)

Here, 〈. . . 〉S stands for the averaging over dynamics of a single
magnetic impurity.

In this paper we restrict our consideration by the Born
approximation for the scattering off a single magnetic impurity.
Therefore, we can expand Tr ln in Eq. (13) up to the second
order in J . Then, we find

Smag = nsπνJ

2

∫
d r

〈
i Tr Qτ3σ 〈Ŝ〉S + πνJ

2
Tr(Qτ3σ Ŝ)2

− πνJ

4
(Tr Qτ3σ Ŝ)2

〉
S
. (14)

In order to proceed further, we need to perform averaging
over dynamics of the spin of a magnetic impurity in Smag. In
what follows, we neglect a back-action of electrons on the spin
of a magnetic impurity. This allows us to write the impurity
Hamiltonian as follows: Hi = biSz. We note that there are
several ways of how electrons affect the impurity spin. The
first one is the Kondo effect which implies renormalization
of the exchange interaction due to interaction with electrons.
The Kondo renormalization is small at temperatures much
higher than the Kondo temperature T � TK . Second, the
interaction between the magnetic impurity and electrons results
in generation of the local anisotropy which will be of the second
order in the exchange interaction [26,27]. In principle, the local
anisotropy can become important for the spin dynamics but
we neglect it in comparison with the Zeeman splitting bi . This
is possible in the case of small enough exchange interaction
νJ � √

bi/EF , where EF denotes the Fermi energy. Finally,
the electrons can mediate the indirect exchange interaction
between the spins of magnetic impurities situated nearby. In
order to neglect the indirect exchange interaction we assume
that the magnetic impurities are rare enough such that the
distance between them exceeds the length scale associated with
the temperature in disordered system, i.e., nsL

2
T � 1 where

LT = √
D/T [28].

Then, we need the corresponding Matsubara spin-spin
correlation functions

χ±(τ1,τ2) = 1

S(S + 1)

{〈S±(τ1)S∓(τ2)〉S, τ1 > τ2

〈S∓(τ2)S±(τ1)〉S, τ2 > τ1
(15)

where S± = Sx ± iSy , and

χzz(τ1,τ2) = 1

S(S + 1)

{
〈Sz(τ1)Sz(τ2)〉S, τ1 > τ2

〈Sz(τ2)Sz(τ1)〉S, τ2 > τ1.
(16)

Using the equations of motion for a free spin in a magnetic
field we find the following results:

χ±(iωn) = −eiωn0+ 2M1

iωn ± bi
, χzz(iωn) = δn,0βM2. (17)

Here, we introduced

Mn = 1

S(S + 1)

m=S∑
m=−S

mne−βbim

/ m=S∑
m=−S

e−βbim. (18)

We note the following useful relations: e−βbi〈S−S+〉S =
〈S+S−〉S and M2 = 1 + M1 coth(bi/2T ). Using the results
(17), we obtain

Smag =
∫

d r

{
i

2
nsπνJ 〈Sz〉S Tr t33Q + ZωT

4τs0

∑
n

χ+(iωn)

×
[

Tr t−InQt+I−nQ − 1

2
Tr t−InQ Tr t+I−nQ

]
+ Zω

2τs0
M2

[
Tr t33Qt33Q − 1

2
Tr t33Q Tr t33Q

]}
,

(19)

where t± = t31 ± it32 and

1

τs0
= ns(πνJ )2S(S + 1)

2Zω

(20)

denotes the classical spin-flip rate at zero magnetic field. We
mention that the parameter Zω does not appear originally in the
action (19) for magnetic impurities. However, it is convenient
to define the spin-flip rate at zero magnetic field in accordance
with Eq. (20) in order to preserve a standard form of the
diffusion propagators.

The first term in the right-hand side of Eq. (19) corresponds
to additional Zeeman splitting of electrons due to magnetiza-
tion of magnetic impurities. The second term in the right-hand
side of Eq. (19) describes the contribution due to inelastic
spin-flip scattering off magnetic impurity. We emphasize that
contrary to the term due to electron-electron interaction [see
the second line in Eq. (3)], the inelastic term due to scattering
off magnetic impurities mixes different replica channels.

III. PERTURBATIVE EXPANSION

For the perturbative treatment (in 1/g) of the action Sσ +
Smag we need to resolve the constraint Q2 = 1. In order to do
it, we use the square-root parametrization:

Q = W + �
√

1 − W 2 , W =
(

0 w

w̄ 0

)
. (21)
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In what follows, we shall adopt the following notations:
Wn1n2=wn1n2 and Wn4n3=w̄n4n3 where n1,3 ≥ 0 and n2,4 < 0.

The two blocks of the matrix W are related by the following
symmetry relation as

w̄ = −CwT C. (22)

We note that here the matrix transposition acts on the Matsubara space indices. Expansion of Sσ + Smag to the second order in
W yields the following Gaussian action:

S (2)
σ + S (2)

mag = −4
∫

d p
(2π )d

∑
rr ′;jj ′

∑
αl ,nl

[wrj ( p)]α1α2
n1n2

[w̄r ′j ′ (− p)]α4α3
n4n3

δn12,n34

{
δn1n3δn2n4δ

α1α3δα2α4

[
δjj ′δrr ′Zω

(
Dp2

+�ε
12 + 1

τ sf
rj

+ 1

τ sf
⊥

(h(iεn1 ) + h(−iεn2 ))

)
− Zsb̃e(δr0δr ′3 + δr3δr ′0)μ(d)

jj ′ − Zsb̃e(δr1δr ′2 − δr2δr ′1)μ(c)
jj ′

]
− 2πT 	sfδα1α3δα2α4 (1 − δn1n3 )δrr ′λr

[
δjj ′ (δj0 − δj3) Re χ̂

(
i�ε

13

) + (δj0δj ′3 − δj3δj ′0)i Im χ̂
(
i�ε

13

)]
+ 2πT δjj ′δrr ′δα1α2δα3α4

[
	j (δr0 + δr3)δα2α3 + 	sfδr3(δj1 + δj2) Re χ̂

(
i�ε

12

)]}
. (23)

Here, we introduced the following notations: wrj =
sp[wtrj ]/4, where sp denotes the trace over spin and particle-
hole indices, λr = {1, − 1, − 1,1}, �ε

12 = εn1 − εn2 , �ε
13 =

εn1 − εn3 , and χ̂(iω) = χ+(iω)/χ+(i0). The diffusion co-
efficient is given as D = g/(16Zω). The parameter 	sf =
ns(πνJ )2S(S + 1)χ (i0)/(4π ) characterizes the strength of
interaction due to the inelastic spin-flip scattering. The ef-
fective Zeeman splitting for electrons is given as b̃e = be +
πnsνJ 〈Sz〉S/(2Zs). The matrices μ

(d)
jj ′ and μ

(c)
jj ′ are defined as

follows:

μ
(d)
jj ′ =

⎛⎜⎝0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞⎟⎠
jj ′

, μ
(c)
jj ′ =

⎛⎜⎝0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎠
jj ′

.

(24)

The second line in Eq. (23) involves the elastic spin-flip
time τ sf

rj . It can be expressed in terms of the static spin
susceptibilities as follows:

1

τ sf
rj

= 1

τ sf
‖

ζ
‖
rj + 1

τ sf
⊥

ζ⊥
rj , (25)

where 1/τ sf
‖ = 2M2/τs0, 1/τ sf

⊥ = T χ+(i0)/τs0, and

ζ
‖
rj =

⎛⎜⎝0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎞⎟⎠
rj

, ζ⊥
rj =

⎛⎜⎝0 1 1 2
2 1 1 0
2 1 1 0
0 1 1 2

⎞⎟⎠
rj

.

(26)

For sake of convenience, we note that

χ+(i0) = −2M1

bi
=

{
2/(3T ), |bi| � T

2/[|bi|(S + 1)], |bi| � T .
(27)

In the limit of zero Zeeman splitting bi → 0, the elastic
spin-flip rate becomes equal 1/τ

sf,(0)
rj = 2ζrj /(3τs0), where the

matrix ζrj is defined as follows:

ζrj =

⎛⎜⎝0 2 2 2
3 1 1 1
3 1 1 1
0 2 2 2

⎞⎟⎠
rj

. (28)

Taking into account that the bare value of the parameter Zω is
equal πν/4, we obtain the well-known values for the elastic
spin-flip rates in different diffusive modes (see, e.g., Ref. [3]).

The function h(iεn) in the second line of Eq. (23) describes
the effect of the inelastic scattering off magnetic impurities on
the part of the propagator of the diffusive modes which is
diagonal in the Matsubara space. This function is defined as
(εn > 0)

h(iεn) =
∑

εn>ωk>0

Re χ̂(iωk) = bi

2πT
Im

[
ψ

(
1 + ibi

2πT

)

−ψ

(
1 + n + ibi

2πT

)]
. (29)

Here, ψ(z) denotes the Euler digamma function. The function
h(iεn) appears as the self-energy correction to the diffusive
modes in the diagrammatic approach [9]. In particular, the
function h contains the additional contribution due to inelastic
spin flip on magnetic impurities to decay rate of “cooperons”
which has been studied recently in Ref. [15] in detail. In order
to discuss this effect, it is convenient to make analytic con-
tinuation iεn1 → ε+ = ε + �/2 and iεn2 → ε− = ε − �/2.
The retarded function hR(ε) corresponding to the Matsubara
function h(iεn) is given as

hR(ε) = bi

2πT

[
1

2

∑
σ=±

iσψ

(
1

2
− iε

2πT
+ ibiσ

2πT

)

+ Im ψ

(
1 + ibi

2πT

)]
. (30)
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The real part of hR(ε) determines the additional contribution
to the decay rate of the diffusive modes:

1

τ sf
inel(ε)

= 2

τ sf
⊥

Re hR(ε) = − 1

τ sf
⊥

[
1 − bi

4T

(
2 coth

bi

2πT

− tanh
bi + ε

2πT
− tanh

bi − ε

2πT

)]
. (31)

Here, we took into account that Re hR(ε) is even function of ε.
Interestingly, the function hR(ε) produces also the imaginary
correction which is linear in � at � → 0:

1

τ sf
⊥

[hR(ε+) + hR(ε−)] = 1

τ sf
inel(ε)

− i(z(ε) − 1)� + · · · .

(32)

Here, the frequency renormalization factor is given as follows:

z(ε) = 1 + γ sf bi

4πT

∑
σ=±

Im ψ ′
(

1

2
+ i(bi + σε)

2πT

)
, (33)

where γ sf = 	sf/Zω. In the case |ε|,T � |bi| the renormaliza-
tion factor becomes z(ε) = 1 + γ sf where the parameter γ sf

is given as γ sf = 1/[π (S + 1)τs0|bi|] � 1 [see Eq. (27)]. We
note that in the case |ε|,T � |bi| the expansion (32) holds for
|�| � |bi|.

Since in what follows we are interested in the regime |be| �
T � |bi|, we neglect terms with the spin-flip rates and Zeeman
splitting in the second line of Eq. (23). Then for frequencies
which are much smaller than |bi|, we find the following result
for the propagators of different diffusive modes:

〈
[wrj ( p)]α1α2

n1n2
[w̄rj (− p)]α4α3

n4n3

〉 = 2

g
δn12,n34

{
δα1α3δα2α4

[
δn1n3Dp

(
i�ε

12

) − 2πT γj

D
δα1α2 (δr0 + δr3)D(rj )

p

(
i�ε

12

)
D̃(rj )

p

(
i�ε

12

)
+2πT γ sf

D
δα1α3δα2α4λr (δj0 − δj3)Dp

(
i�ε

12

)
D(rj )

p

(
i�ε

12

)] − 2πT γ sf

D
δα1α2δα3α4δr3(δj1 + δj2)

[
D̃(rj )

p

(
i�ε

12

)]2
}
. (34)

Here, the following propagator

[Dp(iωn)]−1 = p2 + (1 + γ sf )
|ωn|
D

(35)

describes “diffuson” (for r = 0,3) and “cooperon” (for r =
1,2) modes in the absence of electron-electron interaction. The
factor 1 + γ sf appears as a result of taking into account the self-
energy contributions due to scattering off magnetic impurities
(see Fig. 1). The propagator[

D(rj )
p (iωn)

]−1 = p2 + [1 + γ sf − γ sfλr (δj0 − δj3)]
|ωn|
D

(36)

FIG. 1. The diagrammatic representation of equations for the
diffusive propagators Dp(iω) (a) and D(rj )

p (iω) (b). The solid line
stands for the electron Green’s function averaged over potential
disorder and with self-energy correction due to scattering off magnetic
impurities. The dashed line denotes the scattering off the potential
disorder. The wavy line stands for the inelastic scattering off magnetic
impurities. The Matsubara energies ε, ω, and � are assumed to
satisfy the following conditions: ε < 0, ε + ω > 0, ε + � < 0, and
ε + ω + � > 0.

accounts for the vertex insertions of the scattering off a
magnetic impurity into the “diffuson” and “cooperon” ladder
(see Fig. 1). The electron-electron interaction appears in the
propagator of “diffuson” modes (r = 0,3) dressed by electron-
electron scattering (see Ref. [18] for details):[

D̃(rj )
p

(
i�ε

12

)]−1 = [
D(rj )

p

(
i�ε

12

)]−1 + γj�
ε
12

D
. (37)

For frequencies larger than |bi| the propagators are given by
Eq. (34) with γ sf set to zero.

We note that the form (34) of the propagators for the
diffusive modes should guarantee that the form of the polar-
ization operator is independent of the scattering on magnetic
impurities. Indeed, the form of the polarization operator is
restricted by Ward identity and should be consistent with the
continuity equation for electron density. Therefore, one expects
that the self-energy and vertex corrections in polarization
bubble due to scattering off a magnetic impurity cancel each
other. In order to check it, we write the density-density response
(reducible polarization operator with respect to the Coulomb
interaction) as follows (see Ref. [18]):

�(q,iωn) = − 4

π
(Zω + 	s)

[
1 − πT (Zω + 	s)

× 〈
Tr Iα

n Q(q) Tr Iα
−nQ(−q)

〉]
. (38)

Evaluation of the average with the help of Eq. (34) in the lowest
order with respect to 1/g (this approximation corresponds to
the random phase approximation) results in the following form
of the polarization operator:

�RPA(q,iωn) = − 4

π

Zω(1 + γs)Dq2

Dq2 + (1 + γs)|ωn| . (39)

As expected, the parameter γ sf drops from the expression
for �RPA due to cancellation of self-energy and vertex
contributions.
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IV. EVALUATION OF THE CONDUCTIVITY

A. Kubo formula

Within the formalism of the nonlinear sigma model the static
conductivity can be computed by means of the following Kubo
formula:

g′ = − g

16n

〈
Tr

[
J α

n ,Q(r)
][

J α
−n,Q(r)

]〉 + g2

64dn

∫
d r ′

× 〈Tr J α
n Q(r)∇Q(r) Tr J α

−nQ(r ′)∇Q(r ′)〉, (40)

where d stands for dimensionality, the limit n → 0 is assumed,
and

J α
n = t30 − t00

2
Iα
n + t30 + t00

2
Iα
−n. (41)

The average 〈. . . 〉 in Eq. (40) is defined with respect to the total
action Sσ + Smag. Evaluating the averages in Eq. (40) with the
help of Eq. (34), we find that the conductance in the one-loop
approximation can be written as

g′ = g + δgwl + δgAA + δgsf
1 + δgsf

2 . (42)

Here, δgwl represents the interference correction. It has the
standard form [3,29,30]

δgwl =
∑
r=1,2

∑
j

(2δj0 − 1)
∫

d p
(2π )d

D(rj )
p (0). (43)

Since the weak-localization correction involves cooperon
modes at zero frequency, the spin-flip scattering affects δgwl

only via decay rate of cooperon modes (see Ref. [15] for
detailed discussion).

The next term, δgAA, in the right-hand side of Eq. (42)
is the Altshuler-Aronov correction due to electron-electron
interaction [21,22,31]:

δgAA = 128πT

ngd

∑
r=0,3

∑
j

	j

∫
d p

(2π )d
p2

∑
m>0

min{m,n}

×D(rj )
p (iωm)D̃(rj )

p (iωm)Dp(iωm+n). (44)

Here, the limit n → 0 is assumed. We emphasize that for
|ωm| � |bi| the spin-flip scattering does enter the expression
for δgAA via the frequency renormalization factors in the
diffusion propagator. We mention that the Altshuler-Aronov
correction involves two types of propagators of diffusive modes
Dp(iωm) and D(rj )

p (iωm) (see Fig. 2).
Performing analytic continuation to the real frequencies,

iωn → ω + i0, and taking the limit ω → 0 we obtain the
following result:

δgAA = 64

gd
Im

∑
j

	j

∫
d p

(2π )d
p2

∫
d� ∂�

(
� coth

�

2T

)
×DR

p (�)D(0j ),R
p (�)D̃(0j ),R

p (�). (45)

Here, we took into account that diffusion propagators with
r = 0 and 3 coincide. The propagators DR

p (�), D(rj ),R
p (�), and

D̃(rj ),R
p (�) denote for the retarded propagators corresponding

to Dp(i�), D(rj )
p (i�), and D̃(rj )

p (i�), respectively.

FIG. 2. The sketch of diagrams contributing to the Altshuler-
Aronov corrections. The springlike line stands for the dynamically
screened electron-electron interaction [D(rj )

p (iωm)]−1D̃(rj )
p (iωm). The

other elements have the same meaning as in the previous figure.

Next, there is the following correction due to inelastic spin-
flip scattering:

δgsf
1 = −64πT 	sf

ng

∑
j=0,3

(−1)j
∫

d p
(2π )d

∑
m>0

mDp(iωm+n)

×
∑
r=0,3

D(rj )
p (iωm+n)[1−p2[Dp(iωm)+Dp(iωm+2n)]].

(46)
We remind a reader that the limit n → 0 is assumed. On
first glance, it seems that this limit is not finite such that
correction δgsf

1 violates the gauge invariance. However, taking
into account that the diffusion propagators D(rj ) are the same
for r = 0 and 3, we can rewrite this correction δgsf

1 as the sum
of two corrections δgsf

1 = δgsf
1,ω + δgsf

1,f , where δgsf
1,ω seems to

have no finite limit at n → 0 and δgsf
1,f has a smooth n → 0

limit. In particular, we find

δgsf
1,ω = 2

dn

∑
j=0,3

∑
m>0

∫
d p

(2π )d
∂

∂ p
∂

∂ p
ln

Dp(iωm)

D(0j )
p (iωm)

. (47)

Since δgsf
1,ω has the form of the second derivative with respect to

the momentum, this correction is determined by the ultraviolet
of the low-energy effective theory. Therefore, we cannot accu-
rately compute it within the nonlinear sigma model approach.
However, this correction is second order in γ sf so taking it into
account is accuracy excess.

After analytic continuation to the real frequencies, iωn →
ω + i0, and taking the limit ω → 0 the finite correction δgsf

1,f

can be written as

δgsf
1,f = 1

d
Re

∑
j=0,3

∫
d p

(2π )d
p2

∫
d� ∂�

(
coth

�

2T

)
× [

DR
p (�) − D(0j ),R

p (�)
]2

. (48)
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The last correction in Eq. (42) is also due to the inelastic
spin-flip scattering represented by the last term in Eq. (34). It
has the following form:

δgsf
2 = 128πT 	sf

ngd

∑
j=1,2

∫
d p

(2π )d
p2

∑
m>0

min{m,n}

× [
D̃(3j )

p (iωm)
]2Dp(iωm+n). (49)

Here, again, the limit n → 0 is assumed. Diagrammatically,
this correction has the structure similar to diagrams shown in
Fig. 2 in which the electron-electron interaction line should be
substituted by the dynamical spin susceptibility. Performing
analytic continuation to the real frequencies, iωn → ω + i0,
and taking the limit ω → 0, we obtain the following result:

δgsf
2 = 64	sf

gd
Im

∫
d p

(2π )d
p2

∫
d� ∂�

(
� coth

�

2T

)
× [

D̃(31),R
p (�)

]2DR
p (�). (50)

Here, we took into account the equivalence of diffusion prop-
agators with j = 1 and 2. It is worthwhile to mention that the
correction δgsf involves triplet diffusive modes with the total
spin projection equal ±1. We note that the correction (50) is
similar to the quantum correction due to electron-paramagnon
scattering [32].

B. Logarithmic corrections to conductance due to
inelastic spin-flip scattering

As we mentioned above, in this paper we focus on the case
T � |bi |. Also, we are interested in corrections of the second
order in J and in two-dimensional case. Then, expanding the
correction (45) to the first order in γ sf , we find

δgAA = − 1

π

3∑
j=0

[
1 − 1 + γj

γj

ln(1 + γj )

]
ln

1

2πT τ

− γ sf

π

[
1

2
+ 1

γs

− 1 + γs

γ 2
s

ln(1 + γs)

]
ln

|bi|
2πT

− 2γ sf

π

[
1 − 1

γt

ln(1 + γt )

]
ln

|bi|
2πT

− γ sf

π

[
3

2
− 1

γt

+ 1 − γt

γ 2
t

ln(1 + γt )

]
ln

|bi|
2πT

.

(51)

Here, the first line represents the standard Altshuler-Aronov
correction to the conductivity. Since the corresponding con-
tribution exists for frequencies larger than |bi|, the ultraviolet
cutoff for this correction is inverse transport mean-free time
1/τ . The second line describes the correction due to the effect
of the inelastic scattering off magnetic impurities on the singlet
particle-hole channel. It is worthwhile to mention that the
electron Zeeman splitting be does not affect this contribution
such that the logarithmic temperature dependence survives at
T < |be|.

The third line corresponds to the correction from triplet
particle-hole channel with the total spin projection equal
±1. The fourth line describes the correction from the triplet

particle-hole channel with the zero total spin projection.
We note that the corrections proportional to γ sf involve
ln(|bi|/2πT ) and vanish in the absence of electron-electron
interaction. We mention that in the standard Altshuler-Aronov
correction [the first line of Eq. (51)], the singlet channel
favors localization (since γs ≤ 0) whereas the triplet channel
favors antilocalization (since γt ≥ 0) at low temperature. The
corrections proportional to γ sf work in the opposite direction,
i.e., the presence of inelastic scattering off magnetic impurities
decreases the effect of localization (antilocalization) in the
singlet (triplet) channels, respectively. In the case of Coulomb
interaction, one needs to set γs = −1 in Eq. (51).

The correction (48) does not produce logarithmic terms
since the integral over frequencies is restricted by |�| � T .
The other correction due to inelastic scattering, Eq. (50), reads
as

δgsf
2 = γ sf

πγt

[
1 − 1

γt

ln(1 + γt )

]
ln

|bi|
2πT

. (52)

We note that this correction is positive, i.e., works in favor
of antilocalization at low temperatures. In the absence of
electron-electron interaction, δgsf

2 is the only correction to
the conductivity due to the inelastic scattering off magnetic
impurities. It acquires the following form:

δgsf
2 → γ sf

2π
ln

|bi|
2πT

= 1

2π2(S + 1)τs0|bi| ln
|bi|

2πT
. (53)

This quantum correction works in opposite direction with
respect to the weak-localization correction.

V. DISCUSSIONS AND CONCLUSIONS

The temperature-dependent corrections to the conductivity
discussed above were derived within the Born approximation
for scattering off magnetic impurities. We remind that standard
Kondo correction to the conductance in the clean system
appears beyond Born approximation: in the third order in the
exchange interaction. In the case T � |bi|, this correction
is temperature independent since the infrared cutoff for the
Kondo logarithm is given by |bi| rather thanT . In the disordered
case, the inelastic corrections to the conductance studied
previously [9,16,17] have been also of the third order in the
exchange interaction. Since the corrections (51) and (52) are
of the second order in the exchange interaction they are more
important for small enough νJ . We note that the corrections
of the third order in J for the case |be| � T � |bi| have not
been computed yet. Therefore, we cannot compare the second
and third order corrections quantitatively.

In the absence of electron-electron interaction, the structure
of the correction (50) is similar to correction to the conductivity
of disordered electron system in diffusive regime due to
electron-electron interaction mediated by inelastic scattering
off paramagnons [32]. The difference between paramagnons
and magnetic impurities is in the form of the induced electron-
electron interaction. In the latter case, it is short ranged and is
independent of the transferred frequency for small frequencies.
Away from the ferromagnetic quantum phase transition point,
the induced electron-electron interaction due to paramagnons
becomes also momentum and frequency independent, and,
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consequently, results in the logarithmic-in-T correction to the
conductivity in two dimensions [32].

In this paper, we consider the case of the electron system
in the absence of spin-orbit splitting. If the spin-orbit splitting
is present, then it will cut off the diffusion poles of triplet
diffusons. Therefore, this results in suppression of the tem-
perature dependence of the correction (52) and the contri-
butions which involve γt in Eq. (51). The only temperature-
dependent contribution due to inelastic scattering off magnetic
impurities which remains in the case of spin-orbit coupling
is the term in the second line of Eq. (51) which describes
modification of the Altshuler-Aronov correction in the singlet
channel.

Experimentally, the influence of magnetic impurities on the
weak-localization correction via the dephasing time induced
by the spin-flip scattering has been intensively studied in
two-dimensional electron systems for many decades start-
ing from seminal papers [33,34]. We are not aware of any
systematic experimental studies of the effect of magnetic
impurities on the Altshuler-Aronov correction to the conduc-
tivity in two-dimensional electron systems. In general, clear
separation of the interference and interaction corrections is a
difficult experimental problem (see for example, recent papers
[35–37]). The effects described in this paper obviously com-
plicate this formidable task.

The large g factor of magnetic impurity is natural to expect
for impurities embedded into the electron system close to the
Stoner instability. Since the Stoner instability corresponds to
Fσ

0 = −1, i.e., γt = ∞, the closeness to the Stoner instability
implies large value of the interaction parameter in the triplet
channel γt . In this case, the g factor of magnetic impurity can
be estimated as gi ∼ 2νJγt [38]. For example, the atom of Fe
in Pd host acquires g factor of the order of 12 [39]. In such
case, one would have approximately a decade between bi and
be. The other option could be to have usual g factor of magnetic
impurity gi ≈ 2, but anomalously small g factor of electrons
ge ≈ 0. For example, such situation can be achieved in 2D

electron system based on GaAs/AlGaAs quantum wells with
the width of the order of 60–70 Å [40].

We note that potential scattering affects also the spin
susceptibility of a magnetic impurity resulting in additional
(with respect to usual Kondo renormalization) temperature-
dependent corrections [9,41,42]. Therefore, it would be inter-
esting to consider the corrections to the spin susceptibility of a
magnetic impurity in the case of different g factors and in the
presence of electron-electron interaction.

To summarize, we studied the quantum corrections to the
conductivity of the two-dimensional disordered interacting
electron system in the diffusive regime due to inelastic scat-
tering off magnetic impurities. Contrary to previous works,
(i) we considered the case of different g factors for electrons
and magnetic impurities |ge| � |gi|; (ii) we focused on the
intermediate temperature range |ge|μBH � T � |gi|μBH ;
(iii) we took into account electron-electron interaction in
the particle-hole channel. We found that within the Born
approximation the inelastic scattering off magnetic impurities
results in additional temperature-dependent correction to the
conductivity [cf. Eq. (52)]. Also, the inelastic scattering mod-
ifies the Altshuler-Aronov corrections to the conductivity [cf.
Eq. (51)]. Our predictions present a challenge for experimental
studies of low-temperature transport in electron disordered
systems with rare magnetic impurities.
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