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Abstract

In this study, we utilize deep neural networks to approximate operators of a nonlinear partial differential
equation (PDE), within the Operator-Based Linearization (OBL) simulation framework, and discover the
physical space for a physics-based proxy model with reduced degrees of freedom. In our methodology,
observations from a high-fidelity model are utilized within a supervised learning scheme to directly train
the PDE operators and improve the predictive accuracy of a proxy model. The governing operators of
a pseudo-binary gas vaporization problem are trained with a transfer learning scheme. In this two-stage
methodology, labeled data from an analytical physics-based approximation of the operator space are used
to train the network at the first stage. In the second stage, a Lebesgue integration of the shocks in space
and time is used in the loss function by the inclusion of a fully implicit PDE solver directly in the neural
network's loss function. The Lebesgue integral is used as a regularization function and allows the neural
network to discover the operator space for which the difference in shock estimation is minimal. Our Physics-
Informed Machine Learning (PIML) methodology is demonstrated for an isothermal, compressible, two-
phase multicomponent gas-injection problem. Traditionally, neural networks are used to discover hidden
parameters within the nonlinear operator of a PDE. In our approach, the neural network is trained to
match the shocks of the full-compositional model in a 1D homogeneous model. This training allows us
to significantly improve the prediction of the reduced-order proxy model for multi-dimensional highly
heterogeneous reservoirs. With a relatively small amount of training, the neural network can learn the
operator space and decrease the error of the phase-state classification of the compositional transport
problem. Furthermore, the accuracy of the breakthrough time prediction is increased therefore improving
the usability of the proxy model for more complex cases with more nonlinear physics.

Introduction

Accurate reservoir simulation of gas injection problems for hydrocarbon production or carbon dioxide
sequestration requires compositional simulation in order to account for complex compositional effects
including the development of miscibility. However, compositional simulation is computationally intensive
due to nonlinear thermodynamics based on equilibrium relations and a complex coupling of flow, transport
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and mass transfer between the phases. Additionally, high-fidelity reservoir models contain a large number
of grid blocks thus requiring even more computation time. Developed methods to effectively manage
computational resources attempt to reduce the size of the problem by reducing the number of components
(i.e. lumping, pseudo-models, etc.) or the number of blocks (i.e. upscaling) while still conserving key
features of the full compositional solution. These proxy models are useful for optimization or history
matching problems where a large number of model runs is required and simulation with the high-fidelity
model is prohibitively expensive. Besides reducing the size of the problem, it is also possible to increase
the efficiency of compositional simulation by accelerating the thermodynamic equilibrium calculations.

Proxy modeling with a reduced number of components increases the efficiency of compositional
simulation by reducing the number of equations that need to be solved. In the lumping technique, the
problem is reformulated by presenting the formulation with a limited number of equivalent components and
delumping the components at the production stream (Rastegar and Jessen 2009a, 2009b). Further techniques
rely on a numerical representation of the method of characteristics. Tang and Zick (1993) propose a limited
compositional reservoir simulator that solves a four-component problem by solving an equivalent pseudo-
ternary problem. Ganapathy and Voskov (2018) proposes a physics-based method for proxy modeling,
termed multi-scale reconstruction in physics. In their method, a pseudo-binary proxy model is used to solve
any transport problem with an arbitrary number of components. Their model is applied to four and eight-
component systems with either the equation of state or constant K-value thermodynamics and accurately
locates the major features of the compositional displacement profile (Chen and Voskov 2020).

Further developments in the space of compositional simulation focus on accelerating phase-state or
thermodynamic equilibrium calculations. Compositional Space Parameterisation (CSP) and the following
Compositional Space Adaptive Tabulation (CSAT) techniques parameterize the entire or part of the tie-
line space (Voskov and Tchelepi 2008, 2009). CSP and CSAT are further extended to achieve an equation-
of-state-free general-purpose compositional simulation where the governing differential equations are
projected on the tie-simplex space (Zaydullin et al. 2013). Additional techniques that reduce the cost of
phase behavior computation include the reduced variable method and the shadow region method (Pan and
Tchelepi 2011; Rasmussen et al. 2003).

As a logical extension of parametrization approaches, the Operator-Based Linearization (OBL) method
has been introduced in Voskov (2017). In the OBL approach, the governing equations of the physical
problem are linearized and represented as a combination of space- and state-dependent functions. In
addition, a uniform mesh is introduced into the physical space of the problem where operators are
interpolated. This limited, linear approximation of the physical space provides better nonlinear convergence
with controlled error (Lyu et al. 2021; Wang et al. 2020).

Recently, the application of machine learning techniques to solve linear or nonlinear partial differential
equations (PDEs) has gained interest for their ability to solve PDEs without any labeled data of the
solution. These machine learning techniques such as constrained learning and physics-informed machine
learning (PIML) utilize artificial neural networks (NN) to solve complex equations by encoding the known
physics of the problem into the loss function of the NN as prior-knowledge (Raissi et al. 2019). For PDEs,
this is achieved by including the residual form of the equation as a regularization constant in the loss
function in addition to a regressive term that uses initial and boundary conditions. In the loss functions,
the regularization term effectively constrains the hypothesis space of the neural network thus allowing the
physics-informed neural network (PINN) to learn the solution without any labeled data on the interior of
the solution domain (Raissi et al. 2019; Stewart and Ermon 2016).

Raissi et al. (2019) and Fuks and Tchelepi (2020) demonstrate the application of PIML for nonlinear
PDEs. Raissi et al. (2019) use PIML to accurately solves the Burgers equation, a quasi-linear PDE, and find
that with a small number of initial and boundary points that their nonlinear behavior is accurately captured.
They conclude that if the PDE is well posed, PIML can solve the problem provided that the neural network
is expressive and a sufficient number of collocation points are used. Furthermore, Fuks and Tchelepi (2020)
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expressly tests the limitations of PIML by application to a hyperbolic two-phase displacement problem.
They find that encoding the residual in the loss function does not produce an adequate estimation of
saturation irrespective of the number of collocation points or neural architecture. In particular, the neural
network is unable to resolve the location of the shock in space and time which is a defining feature of the
solution.

Stewart and Ermon (2016) apply constrained learning to convolutional neural networks to track the
movement of objects without the use of any labeled data and demonstrate the usefulness of PIML techniques
for small data regimes where data is sparse. An additional advantage of PIML for solving PDEs is that
automatic differentiation is used to supply derivatives for the residual. Consequently, they are presented as an
efficient alternative to traditional numerical modeling techniques such as the Galerkin, collocation, or finite
volume methods for higher dimensional problems (Blechschmidt an Ernst 2021). However, for application
to hyperbolic problems where an exact solution is required, as opposed to a qualitative approximate solution,
PIML remains inadequate (Fuks and Tchelepi 2021).

Besides the application of PIML to solve forward problems, PIML can be used to handle the inverse
problem for the data-driven discovery of partial differential equations where unknown parameters within
the nonlinear operator of the PDE are approximated from observations of the auxiliary quantity. Raissi et al.
(2019) use PIML to qualitatively estimate the pressure and accurately determine hidden parameters within
Navier-Stokes and Burger's equation.

In this work, PIML is used to train the operator space of the physics-based proxy of Ganapathy and
Voskov (2018) and improve performance for a compressible, gas-injection problem at isothermal conditions.
Our approach embeds neural networks in the nonlinear operator of the proxy model and uses the Lebesgue
integral of the forward solution with respect to the full compositional model in the loss function to improve
the performance of the proxy model. Our method is implemented in TensorFlow and utilizes both automatic
differentiation and operator-based linearization approaches. Transfer training is employed for increased
computational efficiency and solution accuracy.

Simulation framework

Operator based linearization (OBL)
Compositional simulation of a gas injection problem is carried out in the Delft Advanced Research Terra
Simulator (DARTS). DARTS utilizes operator-based linearization (OBL) where the mass conservation
equation is written in operator form and a mesh is introduced into the physical space. In this approach,
operator values are computed for the mesh vertices onto which a multi-linear interpolant is applied for a
continuous representation of the physics (Voksov 2017).

The mass conservation equation for n, components and 7, phases is written in its molar formulation for
an isothermal displacement. The mass conservation equation of component i reads:

np np np

) E E z .

a|8LxipSi| TV Loxijp =~ L xip i L e (1)
= = =

where x; is the mole fraction of component i in phase , p; is the molar phase density and s; the phase saturation
and ¢ the porosity. Furthermore, u; is the Darcy flow velocity and is a function of absolute permeability £,
phase relative permeability k,; and phase viscosity;,

kyj
uj= _kﬂ_ij' (2)
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The ratio of relative permeability and viscosity is henceforth referred to as phase mobility/,. Finite volume
discretization is applied to the general mass conservation equation with two-point flux approximation and
backward Euler approximation in time:

p m o np np
vV (Z; xl'ijSj - (Z; xijpjuj) - Al‘; Z xfjpﬂ.T;Ap
J= J= J=
. 3)
+VZx,-jquj=0, i=1..,n%
j=1

where V'is the control volume, ¢ the porosity and 7}/ the phase transmissibility across the grid block interface
L. The phase saturation is calculated as a function of phase density and molar phase fractiony; :
v j/P j
SjT P : “4)
zk vk/ P k
Following the OBL approach, the discretized equations are rewritten in their algebraic, operator form. In
this operator form, state and spatial operators are introduced. State variables (w) are a function of physical
unknowns, pressure p and the overall composition z, whereas spatial variables () are a function of spatial
coordinates (e.g., block geometry or permeability). The residual equation reads:

rde, &)= V(g Neodo) - afewn)) - 24 ) Blo)T(OMw)Ap=0,  i=1 . 1. (5)

The residual equations are defined according to the total velocity formulation and contain 2xn.+1
operators. These operators are defined according to Egs. 6,7 and § where a corresponds to the accumulation
operator, £ the flux operator and /A the total mobility which in turn is embedded into the flux operator. The
equation is solved with the Newton-Raphson method and the fully implicit method for time approximation.

ocl(w) = (1 + c,( P~ D,, f))z :l:x,- P ST Profi (6)
np
,B ,(w) = z jzllic ijljpj (7)
"p
Ao)= Y s;=1. (8)

=1
To ensure thermodynamic phase equilibrium, the fugacities f of each component in both phases must
be equal,

flnTox)= 1. T 5) ©)
Auxiliary relations are that the sum of mole fractions and phase saturations are equal to one,

e

Dxp  imL ey (10)

=1

p
> -1 (11)
=
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To determine the phase behavior of the system, flash calculations are carried out based on constant
equilibrium ratios (i.e. K-values) for each component (Orr 2007). In this approach, the phase split is
determined by solving the Rachford-Rice equation for the vapor fraction v,

z{K 1)
Z Wk (12)
and further deriving the partitioning coefficients for liquid and vapor x; and y; from from the tie-line:
z,:xi(l—v)+yl.v. (13)

Pseudo-binary model

The multi-scale reconstruction of physics (MSRP) method proposed by Ganapathy and Voskov (2018) is
utilized for a four-component gas vaporization problem with injection gas and initial oil compositions as
described in Table 1 below. The reference solution to this problem is shown in Fig. 1 The injection gas
consists of 97% of methane while the initial oil composition consists of a mixture of all four components. In a
quaternary displacement, the solution is defined according to three key tie-lines, namely the initial, injection
and cross-over tie-lines. A tie-line is a line in the compositional space where the liquid and gas phases are in
thermodynamic equilibrium for a given pressure and temperature and is expressed by the stability condition.
For gas injection processes, the compositional path enters and exits the two-phase zone through the extension
of the initial and injection tie-lines and is marked by discontinuities in the compositional and saturation
profile (i.e. shocks). Consequently, three zones are identified in the compositional profile according to their
phase state. These zones are the single-phase vapor, the single-phase liquid and the two-phase zones and
are delineated by the leading and trailing shocks. Downstream of the leading shock the mixture is liquid at
initial composition conditions while upstream of the trailing shock the composition consists purely of C1.
Further, the area between these two shocks is occupied by both phases simultaneously.

1.0

— C1
Co2

0.8 1 — nC4
— nC10

0.6

N

0.4 1

0.2 1

0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Xd

Figure. 1—Compositional (mole fraction) profile for a four-component vaporizing gas drive. The profile is
characterized by the leading shock and trailing shocks located at approximately x,=0.90 andx,=0.12. From left to
right, they delineate three zones where single-phase vapor, both phases and single-phase liquid are present.

Table 1—Vaporizing gas drive.

Component C1 CO, nC4 nC10
Initial 0.10 0.18 0.37 0.35
Injection 0.97 0.01 0.01 0.01
K-value 2.5 15 0.5 0.05
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Since the solution of the compositional problem is characterized by the leading and trailing shocks, a
lower dimensional proxy model by Ganapathy and Voskov (2018) is used to partially construct part of the
solution. This method is able to reduce a compositional problem with an arbitrary number of components
to a pseudo-binary problem where the number of components is reduced to two and thus the number of
equations is reduced to2 xn,. Their analytic approach relies on the fact that the displacement path can be
constructed according to key tie-lines of the system as the leading- and trailing shocks can only enter and
leave the two-phase zone along their tie-line extensions (Ganapathy and Voskov 2018; Orr 2007). The first
stage of the MSRP reconstruction is able to accurately reconstruct a part of the conservative solution as it
manages to locate the leading and trailing shocks in space and time for an incompressible transport problem.
Here their model is adapted to include flow as well as transport and used for an isothermal compressible
gas vaporization problem.

The location of the shocks for the injection component C1 is reconstructed. The pseudo-operator space for
component i is parameterized according to pseudo-composition z, and pressure p. The lever rule is applied
with fixed partitioning coefficients computed at initial and injection compositions,

O (14)

where z, is equal toz;. The resulting vapor fraction, v, and corresponding saturation are used to define the
operator space for the initial and injection tie-linesf”"\(ini/inj). Thereafter, the pseudo-operator space f, (w)
is defined as the convex hull of the union of each of the key tie-lines,

ﬁ”.(a)) = conv(ﬁi:m V] ﬂ;nj ) (15)

Similarly, a, (w) is defined as the product of the total density and pseudo-compositionz,,
Pror om0 ) 16y
ar(w) = ProtyAr ( 1 7)

The analytical construction is illustrated for the flux operator in one dimension (incompressible,
transport) in Fig. 2 and in two dimensions (compressible, flow) in Fig. 3a. The operator space switches
from the initial to the injection tie-lines at their point of intersection in the nonlinear, two-phase zone. The
pseudo-operator o, (w) is shown in Fig. 3b.

1.0
J— Fim' e
Finj //,/
081 ——- F, 4
/
/
/
,/
0.6 /
— /
3
Q.
0.4 1 -
0.2
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Zr

Figure. 2—The convex hull of the union of the initial and injection tie-lines is taken to define the pseudo-
operator space. For the incompressible transport problem the g operator corresponds to the fractional flow curve.
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Fig. 3a—Flux operator. Fig. 3b—Accumulation operator.

Figure. 3—Operator space of the binary proxy model.

The total mobility operator is defined by tabulation of values from the reference solution with respect to
the state variables. Care is taken to carry out the reference simulation with variable bottom-hole pressure
controls in order to ensure that data points are distributed across the range of the entire parameter space.
After that, the scattered data points are used to compute a structured OBL mesh by application of a linear
interpolant. Fig. 4 shows the gathered points and the resulting interpolation for the total mobility operator.

DATA - A(w)
10 10 N(w)
2
300 - \ 9
250 - 8
200 - .
5 6
£ 150
5
100 A
50 3 g ity
0 2
0.2 0.4 0.6 0.8 1.0
z

Fig. 4a—Collected dta points from the reference simulation.

Fig. 4b—Resulting interpolated operator space. In extremum, the
total mobility is equal to 2 and 10 in the single-phase liquid and
vapor zones.

Figure. 4—Total mobility operator of the binary proxy model.
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Machine learning

Deep neural networks' ability to function as universal function approximators are used to approximate and
adapt the operator space of the pseudo-binary model. Training is carried out with a specialized regularization
constant in the loss function. Deep neural networks are composed of 7, series of functions a,

fg(X)Ian,(anl_l (...(a2 (al(X))))), (18)

where each hidden layer consists of a stack of artificial neurons which process input matrix X; as the
weighted sum of weights W; and biases b; before passing through activation function o,

a(X)=oWX,+b) i=1..n (19)
Consequently function fis parameterized according to the ensemble of weights and biases 6,
O={W, Wy, ..., Wnybyby ..., bn) (20)
Often, PIML is applied to a nonlinear PDE of the form,
ri=z+N, 21)
where z, is a scalar quantity and N the nonlinear operator. The residual form of the PDE,

029 Uor pF
0= g axe (22)

is included in the loss function in addition to a regular regressive loss term. In the first term, the mean
squared error (MSE) of a randomly selected set of boundary/initial points (/V.,) is computed and in the second
term. In the second term, the residual is computed for a random set of collocation points (V,) and used as
a regularization constant. The loss function then reads:

N, N,
10)= L)+ L(0)= 5= ) i —=if 4D P (23)
0 0

In our study, a supervised learning scheme applies physics-informed machine learning to adapt the
operator space of the aforementioned proxy model and improve its predictive performance. This is achieved
by embedding neural networks into the nonlinear operator of the PDE and utilizing the forward solution
in a regularization term of the loss function. Our approach integrates the distance between the leading and
trailing shocks of the proxy model with respect to the reference model and penalizes the loss function so
that the neural network learns the operator space for which the misfit of the shocks is minimal. This can
be effectively implemented as an application of the Lebesgue integration in the loss function instead of the
Riemann integral.

After solving the proxy and computing the loss function, TensorFlow's reverse-mode automatic
differentiation is applied to handle back-propagation and update the ensemble of weights and biases 6 (Abadi
et al. 2016). In the first step, the analytical approximation of the operator space is effectively loaded into
the neural network. Training in this step is carried out for 600 training iterations and the Adam stochastic
optimizer with a constant learning rate of 0.00/ is used. Training is carried out for a one-dimensional
homogeneous reservoir with constant permeability. Furthermore, the training scheme is described according
to neural network architecture, optimizer, and activation function. The architecture of the neural network is
identical to that of Raissi et al. (2019) and Fuks and Tchelepi (2020). It consists of § hidden layers with 20
neurons per layer. Standard gradient descent is used for the optimizer with a constant learning rate of0.0001.
A small learning rate is expressly chosen since it is necessary for the operator space to maintain the part of'its
form that defines the shocks in accordance with the velocity constraint of the method of characteristics. The
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neural network weights are initialized randomly with Xavier/Glorot initialization. The activation function
o is the hyperbolic tangent function tanh and introduces nonlinearity to the system.

Results

This section describes the main results achieved with the transfer learning approach. Three models are
compared, the reference model with n. components and the binary model before (base ML) and after transfer
training (transfer ML). Training is carried out with a one-dimensional reservoir model and the trained model
is further validated with two-dimensional heterogeneous layers of the SPE10 model.

1D-training
The operator space of the total mobility operator /4 (w) and the flux operator f(w) is adapted with our transfer
training approach.

In the first step, the neural network is exclusively trained to approximate the OBL mesh with labeled
data from the analytical construction.

In the second step, weights are transferred, and the loss function is redefined. the estimated operator
space is used within a fully implicit solver embedded in the loss function of the neural network as described
previously. The solver utilizes the OBL approach as it interpolates required values from the vertices of the
OBL mesh. Training is carried out for a one-dimensional homogeneous reservoir containing 200 grid blocks
where the permeability is equal to /00 mD and the length of the reservoir 15200 m. During the training
period, the bottom-hole pressures are fixed at the limits of the OBL mesh, namely / bar and300bar. The
Lebesgue integral of the leading and trailing shocks is computed at 70 discrete time steps ranging from 7=/
day t010 days. The range at which the Lebesgue integral of misfit is calculated lies between z,=0.90 and
0.96 for the trailing shock and between z,=0.1/ and 0.30 for the leading shock.

The evolution of the loss function in the second step is plotted in Fig. 5 and the evolution of the misfit
of the trailing and leading shocks at every time step, s, and training iteration is given in Fig. 6. A global
minimum is reached at training step 7 after which improvements remain negligible. The misfit of the
leading and trailing shock decreases and the estimation of the proxy model is improved with respect to
the conservative reference solution of n. components. Changes in the operator space after training with the
forward solution are visualized in Fig. 7.

0 5 10 15 20 25
Step

Figure. 5—Evolution of the loss function.
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Figure. 6—Evolution of the Lebesgue integral of the trailing and leading shocks at every time step ts, and training step.
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Fig. 7a—Total mobility operator. Fig. 7b—Flux operator.

Figure. 7—Difference of the operator space after training. The greatest changes
in the operator space are concentrated in the area relevant to the trailing shock.

Horizontal layers of SPE10
The trained model is applied to two-dimensional heterogeneous layers from the SPE10 geological model.
The two-dimensional models consist of (220x60) cells. The SPE10 geological model is divided into two
parts, namely the Tarbert formation (top 35 layers) and the Upper Ness formation (bottom 50 layers), which
are representations of prograding near shore and fluvial environments (Christie and Blunt 2001). The cells
are of size Ax=3m, Ay=6m and Az=0.6m. A 5 -spot well pattern is used with an injection well in the middle
at fixed bottom hole pressure of 300bars injecting at 97% of methane and 4 production wells in the corners
at/bar. The breakthrough times of the first and last breakthroughs are reported for each of the models. The
first and last breakthrough coincides with the breakthrough of the leading and trailing shock at any of the
four productionwells. In addition, the quality of the prediction of the locations of the shocks in space and
time is quantified by analysis of the phase state of each grid cell.

The performance of each model is evaluated by quantifying the error of the phase-state classification,
S, of the resulting compositional profile. The phase-state maps identify three zones within the reservoir
corresponding to single- and two-phase zones where gas (2), oil and gas (1), or oil (0) are present. The state
of each cell is classified according to the tie-line end points of the injection and initial tie-lines,

T(Sr(x’ Vs t) = Sref\X, 3, t)) =1 Sfor S,— Sref #1 (24)

and the error of the model is quantified as the ratio of the number of misclassified, grid blocks with respect
to the reference model and the total number of grid blocks,
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p
Error(t): —zi T(S;bl Sref’l). (25)

Figs. 8a and 8b illustrate the distribution of the phases and the error of the proxy model before and
after training, for layer 7 of the SPE10 model. The boundary between the zones delineates the location
of the leading and trailing shock within the reservoir and thus the error gives an approximation of how
well the location of the shock is approximated in space and time. From the error maps, it is observed that
the estimation of the location of the trailing shock is visibly improved for the trained model whereas the
estimation of the leading shock remains the same or is slightly better. The evolution of the error as a function
of time is reported in Fig. 9b and the permeability of layer 7 is shown in Fig. 9a. The error increases as the
displacement front grows and the region of displacement increases.
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Fig. 8a—Base ML proxy model. Fig. 8b—Transfer ML proxy model.

Figure. 8—Distribution of the phase-states and the corresponding error at ¢ = 150 days for layer 7 of the SPE10
model. The phase-states correspond to single- and two-phase zones where gas (2), oil and gas (1), or oil (0) occupy
the grid block. The transfer ML model indicates a marked improvement in the estimation of the trailing shock.
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Fig. 9a—Logl10 of the permeability distribution of layer 7 of the Fig. 9b—Error of the phase-state classification at breakthrough of
SPEI0 model. the leading shock.

Figure. 9—Evolution of the error for layer 7 of the SPE10 model before (base ML) and after transfer training (transfer ML).

The performance before and after training of the proxy model is compared for the top /5 layers of the
SPE10 model. The breakthrough times of the leading and trailing shocks are reported per layer in Figs.
10 and 11 together with the corresponding error of the phase-state classification at breakthrough. It is
found that the trained model consistently outperforms the model trained at the first stage in terms of error
and breakthrough time of the trailing shock while the breakthrough time of the leading shock effectively
remains the same as the base ML model already makes a good estimation. The error of the trained model at
breakthrough remains below7.5%. The average difference in breakthrough time for the trained and untrained
models with respect to the reference model is 293days versus 570days for the trailing shocks and /5days
versus /6days for the leading shock.
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Fig. 10a—Error of the phase-state classification at breakthrough — Fig. 10b—Breakthrough times of the leading shock at one of the
of the leading shock. wells.

Figure. 10—The breakthrough time of the leading shock at one of the wells and the corresponding
error of the phase-state maps is assessed for the top 15 layers of the SPE10 model.
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Fig. 11a—Error of the phase-state classification at breakthrough — Fig. | 1b—Breakthrough times of the trailing shock at one of the
of the trailing shock. wells.
Figure. 11—The breakthrough time of the trailing shock at one of the wells and the corresponding
error of the phase-state maps is assessed for the top 15 layers of the SPE10 model.
Conclusion

Compositional simulation can be prohibitively expensive for optimization and history-matching problems
where a large number of model runs are required. Therefore, proxy models that use a reduced number of
components while maintaining key parts of the high-fidelity solution are an attractive alternative for these
applications. In this report, the proxy model based on Multiscale Reconstruction in Physics is used for a
compressible gas injection problem. Neural networks' ability to operate as universal function approximators
is leveraged to learn the physical space of the full compositional simulation in the reduced dimension
(1D) and improve the proxy model for multi-dimensional simulation. Our approach uses an adaptation of
PIML by subjecting the operator space of the proxy model to neural networks and including the Lebesgue
integration of the forward solution in the loss function. Improvements in the estimation of breakthrough
times are realized for the fifteen layers of the SPE10 model. This method can be further extended for
developing a generic physical proxy model with lower degrees of freedom trained at data points generated
by a high-fidelity physical model or based on real-world observations.
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Nomenclature: Acronyms
CSP Compositional Space Parameterisation
CSAT Composiational Space Adaptive Tabulation
DARTS Delft Advanced Research Terra Simulator
OBL Operator-based Linearization
NN Neural Network
MSRP Multiscale Reconstruction in Physics
PIML Physics Informed Machine Learning
PINN Physics Informed Neural Network
PDE Partial Difterential Equation

Variables
k absolute permeability
k. relativie permeability
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Vi
v
u
z

X

/4
bi

fugacity of component 7 in phase j
number of grid blocks

. number of components

number of phases

number of hidden layers

pressure

source/sink

saturation of phase j

phase state

molar fraction of phase j

geometric transmissibility at interface /

. mole fraction of component i in phase j

liquid fraction of component i
vapor fraction of component i
bulk volume

Darcy velocity

overall composition

input feature matrix

weight matrix of layer i
biases of layer i

Greek symbols

4
Ky
Pj
¢

= R

QA D S X

mobility of phase j

viscosity of phase j

molar density of phase j

porosity

accumulation operator of component i
flux operator of component i

total mobility operator

state variable

geometric variable

ensemble of neural network weights and biases
activation function

Superscripts

ni
inj

Subscripts

10)
g
I

J
tot
r

initial
injection

oil phase

gas phase

component

phase

total

pseudo-binary solution/operator space

ref reference solution/operator space
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Appendix

Table A1—Hydrodynamic parameters.

Oil Gas
Porosity 0.3 0.3
Residual saturation 0.0 0.0
End points £, (s;) 1.0 1.0
Saturation exponents 2.0 2.0
Viscosity (cP) 0.5 0.1
Density (kg/m?3) 600 200
Compressibility (1/bar) 107(-5) 107(-3)

Table A2—Molar weights of each component in g/mol
Cl Co, nC4 nCI10
16.043 44.010 58.123 114.520
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