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Abstract. Conventional generalized polynomial chaos is known to fail for long time integration, loosing its optimal con-
vergence behaviour and developing unacceptable error levels. The reason for this loss of convergence is the assumption that
the probability density function is constant in time. By allowing a probability density function to evolve in time the optimal
properties of polynomial chaos are retrieved without resorting to high polynomial degrees.

This time-dependent approach is applied to a system of coupled non-linear differential equations. These results are
compared to the conventional generalized polynomial chaos solutions and Monte Carlo simulations.
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GENERALIZED POLYNOMIAL CHAOS

Generalized polynomial chaos (gPC) is employed to represent stochastic processes. Stochastic processes can be seen
as processes involving some form of randomness. They can be represented by a stochastic mathematical model, often
expressed in terms of stochastic differential equations. Stochastic mathematical models are based on a probability
space(Ω,F ,P) whereΩ is the sample space,F ⊂ 2Ω its s -algebra of events, andP its probability measure. In
addition considering some physical domainD ⊂ Rd × T (d = 1,2,3), which can be a combination of spatial and
temporal dimensions, a stochastic process can be seen as a scalar- or vector-valued functionu(x, t,w) : D×Ω → Rb

wherex is an element of the physical space,t denotes the time andw is a point in the sample spaceΩ. Furthermore,
because of the infinite-dimensional nature of the probability space, we discretize this space by characterizing it by a
finite number of random variables{x j(w)}N

j=1, N ∈ N. This can be seen as assigning a finite number of coordinates

{x j}N
j=1 to the probability space reducing it to a finite dimensional spaceΛ ⊂ RN. Consequently, the stochastic

processu becomes a mappingu(x, t,x ) : D×Λ → Rb. It is important to note that in this work, we assume that the
occurring stochastic processes are already characterized by a known set of random variables.

Wiener was the first to represent stochastic processes by orthogonal polynomial expansions [1]. To accomplish
this, he used Hermite polynomials in terms of Gaussian random variables to represent Gaussian processes, which is
referred to as homogeneous chaos. In this way, the stochastic process is represented in the form:

u(x, t,x (w)) =
∞

∑
i=0

ui(x, t)Hi(x (w)) (1)

in whichHi are Hermite polynomials andx is a vector of Gaussian random variables with zero mean and unit variance.
It is a spectral expansion in the random dimensions employing deterministic coefficients. According to the Cameron-
Martin theorem [2], for a fixed value ofx andt, this expansion converges to anyL2(Ω) functional in theL2(Ω) sense.
This implies that the application of polynomial chaos is restricted to those stochastic processes yielding∫

w∈Ω
|u(x, t,w)|2dP(w) < ∞ (2)

As a result, polynomial chaos is restricted to second-order stochastic processes, i.e. processes with finite second-order
moments. These are processes with finite variance, and this applies to most physical processes.

Although Wiener’s original polynomial chaos expansion converges to any second-order stochastic process, it is most
suitable to represent Gaussian processes, due to the random variable’s Gaussian nature, yielding a fast convergence.



TABLE 1. The correspondence of the type of Wiener-
Askey polynomial chaos and their underlying random vari-
ables

Random variablesx Wiener-Askey chaos{Φ j (x )}
Gaussian Hermite-chaos
Gamma Laguerre-chaos

Beta Jacobi-chaos
Uniform Legendre-chaos

In order to deal with a broader range of stochastic processes, the Wiener-Hermite chaos has been generalized to the
generalized polynomial chaos [3], also referred to as Wiener-Askey polynomial chaos. Analogously, gPC is a means
of representing second-order stochastic processes through the expansion:

u(x, t,x (w)) =
∞

∑
i=0

ui(x, t)Φi(x (w)) (3)

Here the random trial base{Φi(x (w))} exists out of orthogonal polynomials from the Askey-scheme, of which the
Hermite polynomials are a subset, in terms of a random vectorx = {x j(w)}N

j=1. The combination of random vector
and polynomials is carefully selected based on the distribution of the random input. It seems that for certain random
variables, their probability distribution function (PDF) uniquely corresponds to one of the weighting functionsw(x )
in the orthogonality relation of the different orthogonal polynomials of the Askey-scheme. An overview of this
correspondence is shown in Table 1.
Choosing the corresponding combination leads to a proper gPC expansion. Since each of the polynomials of the
Askey-scheme forms a complete basis in the Hilbert space determined by their corresponding support, it is expected,
according to Xiu et al. [3], that each type of Wiener-Askey expansion converges to anyL2(Ω) functional in theL2(Ω)
sense in the corresponding Hilbert functional space as a generalized result of Cameron-Martin theorem.

The polynomials of the gPC’s random trial base satisfy following orthogonality relation

〈ΦiΦ j〉= 〈Φ2
i 〉di j (4)

wheredi j is the Kronecker delta and〈·, ·〉 denotes the ensemble average. The inner product in (4) is in the Hilbert space
determined by the measure of the random variables

〈 f (x )g(x )〉=
∫
w∈Ω

f (x )g(x )dP(w) =
∫

f (x )g(x )w(x )dx (5)

with w(x ) the corresponding weighting function and with integration in the last integral taken over the support ofx .

LONG-TERM INTEGRATION

It is known that the generalized polynomial chaos method looses its accuracy for long time integration. The reason
for this breakdown is that in the unsteady case the probability density function changes in time and therefore new
orthogonal polynomials need to be generated. The idea is therefore to perform a transformation at a certain time of the
stochastic variables of the form

zi = xi(t∗,xi) =
P

∑
p=0

x(i)
p (t∗)Φp(xi) , (6)

wherexi(t∗,xi) is the solution of the random variablexi at timet∗. The orthogonal polynomials associated with the
probability distribution ofzi are generated by a modified Gramm-Schmidt orthogonalization. Note that in the new
stochastic variable,zi , the functionxi can be represented exactly as a linear function inzi , i.e. an expansion withP= 1
is exact. As time progresses, higher order modes inzi will appear in the solution. If these higher order modes become
large, new random variables are created using the transformation rule (6). This method was originally developed by
Vos, [4].
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FIGURE 1. Mean ofx1 vs. time fora = 0.99,b = 1 andg = 1: TDgPC solution (P = 2) compared to a gPC solution (P = 2)
and a Monte Carlo analysis (N = 131072)

This approach is applied to the Kraichnan-Orszag problem which is known to lead to inaccurate solutions for certain
initial conditions:

dx1

dt
= x2x3 (7a)

dx2

dt
= x3x1 (7b)

dx3

dt
=−2x1x2 (7c)

We solve this set of equations subject to the following initial conditions

x1(0) = a +0.01x1 , x2(0) = b +0.01x2 , x3(0) = g +0.01x3 (8)

wherea, b andg are constants andx1, x2 andx3 are uniformly distributed random variables on the interval[−1,1].
x1, x2 andx3 are statistically independent. We takea = 0.99,b = 1.0 andg = 1.0.

Following the TD-gPC approach, new random variables are generated for each of the three variables and therefore
the probability distribution of each variable will differ. As a consequence, three polynomial sets need to be constructed
to represent the uncertainty inxi . The joint probability distribution is not assumed to be statistically independent.

RESULTS

Figures. 1 and 2 show the comparison of the TDgPC solution approach with results obtained with a gPC solution
approach and a Monte Carlo analysis. The gPC method departs from the Monte-Carlo result at approximatelyt = 4.
The TD-gPC method follows the Monte Carlo results quite well up tot = 40. A comparison of results forx2 or x3
would show similar characteristics. Note that these results were obtained with a relatively low polynomial degree of
P = 2.
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FIGURE 2. Variance ofx1 vs. time fora = 0.99,b = 1 andg = 1: TDgPC solution (P = 2) compared to a gPC solution (P = 2)
and a Monte Carlo analysis (N = 131072)

CONCLUSIONS

A novel technique is presented to solve stochastic differential equations. The method adapts gPC in time. Due to
this adaptation there is no need to go to very high polynomial order. The method works with the joint probability
distribution and does not assume statistic independence. The method is much more accurate than gPC which only
employs Legendre polynomials.
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