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Abstract: The most common failures of belt conveyors are runout, coal piles and longitudinal tears.
The detection methods for longitudinal tearing are currently not particularly effective. A key study
area for minimizing longitudinal belt tears with the advancement of machine learning is how to use
machine vision technology to detect foreign items on the belt. In this study, the real-time detection of
foreign items on belt conveyors is accomplished using a machine vision method. Firstly, the KinD++
low-light image enhancement algorithm is used to improve the quality of the captured low-quality
images through feature processing. Then, the GridMask method partially masks the foreign objects
in the training images, thus extending the data set. Finally, the YOLOv4 algorithm with optimized
anchor boxes is combined to achieve efficient detection of foreign objects in belt conveyors, and the
method is verified as effective.

Keywords: belt conveyor; machine vision; KinD++ algorithm; YOLOv4 algorithm; low-light
enhancement

1. Introduction

With the belt conveyor being widely used in China’s coal production process in
recent years, effectively ensuring the regular operation of the belt conveyor has become
a key concern for coal companies. Effective belt tearing reduction has become a crucial
component of regular belt conveyor operation since the belt is the component most crucial
and susceptible to damage in a belt conveyor. The majority of research on belt conveyor
tear protection focuses on the belt’s ability to detect tears. Detecting whether the belt is
torn can stop the belt in time at the early stage of belt tearing and reduce belt damage [1,2].
However, the belt conveyor foreign body detection starts from the cause of belt tearing,
which can achieve belt protection from the root cause.

The two conventional techniques for detecting conveyor foreign objects are the ray
method and the infrared detection method. The ray method requires measuring the release
of each coal release bracket, and the sensor itself is more expensive, which drives up the
cost of mining. Hence, the application is narrow [3–6]. The infrared detection method can
take a variety of roof plates as working objects and is responsive. However, this method’s
recognition accuracy is influenced by the temperature of the coal mining machine and
the water spray process used to remove dust [7–9]. With the development of technology,
methods based on image recognition technology to achieve belt conveyor foreign object
detection are beginning to be applied. Zhao et al. studied a coal gangue image processing
and recognition system based on Da Vinci technology [10]. Li et al. studied a coal gangue
recognition method based on image processing [11]. Yu et al. constructed a new coal and
gangue image recognition method based on a nonlinear greyscale compression–expansion
symbiotic matrix [12].
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However, the working environment of coal mine belt conveyors is harsh, with high
dust and dim lighting. The quality of the captured images is poor and the brightness is
very low. The dataset composed of such images is not conducive to subsequent training,
so these low-light images need to be enhanced to highlight the features of their objects.
Retinex theory [13] assumes that color images can be decomposed into two components:
reflectance and illumination. The single-scale Retinex algorithm [14] (SSR) and the multi-
scale Retinex algorithm [15] (MSR) proposed by Jobson et al. are limited to how the final
result is produced, with the output often looking unnatural and over-enhanced in places.

Meanwhile, in the process of foreign object detection in belt conveyors, in addition
to pre-processing the acquired field images, classification of the images is also required.
With the development of deep learning, various advanced target detection methods have
emerged. Ross Girshick proposed R-CNN as the pioneer of target detection using deep
learning [16], and later proposed Fast R-CNN for improving these problems in order to
solve the problem of too-slow speed during model training and testing [17]. However, Fast
R-CNN still failed to achieve end-to-end target detection despite significantly improving
speed and accuracy. On the other hand, the YOLO family of algorithms proposed by Joseph
Redmon belongs to the real sense of real-time target detection [18], which differs from the
two-step target detection algorithm of the R-CNN family. YOLO is based on a separate
end-to-end network that solves object detection as a regression problem, completing from
the input of the original image to the output of object location and category.

Based on the above analysis, this paper proposes a deep KinD++ [19] algorithm to
achieve low-light image enhancement in the harsh environment of mines. It uses YOLOv4
to obtain optimal anchor box width and height values in order to detect foreign objects in
belt conveyors efficiently.

2. Principle of KinD++ Based Low-Light Image Enhancement Algorithm

The Retinex theory states that the colors observed by the human eye are not affected
by the intensity of external light. This means that the external color observed by the human
eye is always the same, regardless of whether it is in a well-lit or poorly lit environment.
The color an object exhibits therefore reflects the true properties of the object, which is
formed by reflecting light. The ability of an object to reflect light therefore contains the
essential properties of the object. Figure 1 shows the schematic diagram of the Retinex
theoretical object imaging model.
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Figure 1. Retinex theoretical object imaging model.

Retinex theory is based on the idea that the image received by the human eye is the
result of the superposition of external light and the reflection of the object. The amount of
light intensity causes the image to vary in light and darkness, but the nature of the object’s
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reflection remains the same. Therefore, to obtain a true picture of a low-light image, the
low-light component of the image needs to be removed and the reflective nature of the
object in the image needs to be estimated. This allows the image to be restored to its normal
illuminated state based on this essential property of the object.

KinD (Kindling the Darkness) is a low-light image enhancement network based on
Retinex theory [20], which was proposed by Dr. Y. H. Zhang in 2019. The KinD++ network
can be functionally divided into three modules: layer decomposition, reflectance recovery
and illumination adjustment.

2.1. Layer Decomposition Network

For images, there is no such thing as optimal lighting conditions, and there is no image
reflectance map or light map that can be used as a standard reference.

The problem of layer decomposition is essentially undetermined, so additional regu-
larization is important. Using Ih and Il to represent the high- and low-light original images
of the same scene, respectively, the image pair is fed into the layer decomposition network
as input data and decomposed into a reflectance map and a light map at the same time.
Rh and Rl are used to represent the reflection map of the original high-light image and
the reflection map of the original low-light image, respectively, and Lh and Rl are used to
represent the illumination map of the original high-light image and the illumination map
of the original low-light image, respectively. From Retinex theory, it is known that Rh and
Rl are similar, so first construct the reflectance similarity loss function as follows:

LD
rs = ‖Rl − Rh‖1 (1)

where ‖·‖1 denotes the L1 parametrization. The illumination maps Lh and Ll are known to
be segmentally smoothed, so the illumination smoothing loss function is constructed as:

LD
is =

∥∥∥∥ ∇Ll
max(|∇Il |, ε)

∥∥∥∥
1
+

∥∥∥∥ ∇Lh
max(|∇Ih|, ε)

∥∥∥∥
1

(2)

∇ in the formula represents the first order derivative operator in the horizontal and
vertical directions, with a small constant ε introduced to ensure the validity of the function
(typically set to 0.01 during the calculation). The term smoothness measures the relative
structure of the illumination with respect to the input. As Lh and Ll differ due to the
different intensities of illumination, but are structurally consistent with each other, the
mutually consistent loss function is constructed as follows:{

LD
mc = ‖M· exp(−c·M)‖1

M = |∇Ll |+ |∇Lh|
(3)

The function f (x) = x· exp(−cx) used in the formula is controlled by the positive
number c to control the shape of the function, and the overall trend is to first rise to the high-
est point and then fall to 0. The ideal value of c in this algorithm is 10 through experiments.
In addition, the layer decomposition network needs to constrain the reconstruction error,
i.e., the error before and after image decomposition should be small, so the loss function
for reconstruction error is constructed as follows:

LD
re = ‖ Il − Rl ·Ll‖1 + ‖ Ih − Rh·Lh‖1 (4)

Based on the above analysis, the loss function of the layer decomposition network is
derived as:

LD = LD
re + wrsLD

rs + wmcLD
mc + wisLD

is (5)

The equations wrs, wis and wmc are the weighting factors of the reflectance loss function,
the light smoothing loss function and the mutual consistency loss function, respectively.
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The better results were obtained through several experiments with wrs = 0.009, wis = 0.2
and wmc = 0.15.

2.2. Light-Adjusted Network

As with the problems encountered in layer decomposition networks, there is no such
thing as an optimal brightness as a reference standard for the light map. Therefore, to
enable flexible adjustment of the light map, the intensity ratio α is introduced, which is
formulated as follows:

α =
Lt

Ls
(6)

Ls is the original illumination map, Lt is the target illumination map, and α is greater
than 1 if you want to enhance the luminance based on the original illumination map, and
conversely, α is less than or equal to 1. α is used as an indicator to train the adjustment
function from the original illumination map to the target illumination map. The illumina-
tion adjustment network consists of three consecutive convolutional layers plus a ReLU
activation layer, followed by a 1 × 1 convolutional layer to adjust the number of channels
in the output, and finally, the illumination feature map is output after activation using the
Sigmoid function. The loss function of the network is:

LA = MSE(
∧
L, Lt) + MSE(∇

∧
L,∇Lt) (7)

The MSE (mean square error) in the formula is the mean square error function,
∧
L is

the result of the network input of the low-light map Ll adjusted by the network, and Lt is
the high-light map Lh.

2.3. Reflectivity Recovery Network

The loss function for the reflectance recovery network is first constructed. Since there
is no so-called standard reflectance image, the reflectance image of a highly illuminated
image decomposed by a layer decomposition network is used as a reference. The first term
in the loss function is determined in terms of the similarity of the pixel values:

LR
mse = MSE(Rh,

∧
R) (8)

where
∧
R represents the output of the low-light reflectance image Rl after processing by the

reflectance recovery network. In addition to similarity in pixel values, the structure of the
image after reflectance image recovery needs to be consistent, therefore, the second term of
the loss function should be constructed as:

LR
dsim = 1− SSIM(Rh,

∧
R)

SSIM(x, y) = (2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ
2
x+σ2

y+c2)

c1 = (k1L)2, c2 = (k2L)2

(9)

where SSIM (structural similarity) is the structural similarity function.
µx and σ2

x are the mean and variance of variable x, µy and σ2
y are the mean and variance

of variable y, and σxy is the covariance of x and y. c1 and c2 are two constants used to
prevent the denominator from being zero, where L is the range of pixel values, with k1
taken as 0.01 and k2 as 0.03. The closer the trained reflectance image is to the reference, the
larger the value of SSIM, and the smaller the value of LR

dsim, in line with the purpose of
network training. The loss function of the reflectance recovery network can be obtained
from the above analysis:

LR = LR
mse + LR

dsim (10)
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The biggest difficulty for the reflectance recovery problem is that the degradation
distribution of the reflectance image is complex. The high illumination part is less degraded,
and the low illumination part is severely degraded. Therefore, in order to better recover
the reflectance image, it is necessary to introduce the illumination information together
with the degraded reflectance into the recovery network. The structure of the reflectance
recovery network is illustrated in Figure 2.
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Figure 2. Reflectance restoration net.

The network consists of 10 convolutional layers and 4 multi-scale illumination atten-
tion (MSIA) modules. The biggest improvement of the KinD++ network over the KinD
network is the reflectance recovery network. In the KinD network, the reflectance recovery
network is structured in a U-Net-like shape, enabling the noise reduction and color correc-
tion of reflectance images. However, for some images, the processed reflectance images
can suffer from problems such as overexposure and halo artefacts. The MSIA module
was therefore introduced into KinD++’s reflectance recovery network to ameliorate this
deficiency, and the MSIA module is shown in Figure 3. The MSIA module consists of two
sub-modules, the illumination attention module and the multi-scale module. The illumina-
tion attention module guides the network to deal with heavily degraded areas, while the
multi-scale module is responsible for extracting richer features from the reflectance image
to recover color and detail.
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3. Data Augmentation and Anchor Box Optimization
3.1. Data Augmentation

YOLOv4 uses three kinds of data augmentation: CutMix [21], Mosaic and Drop-
Block [22] regularization. CutMix performs data augmentation from the perspective of
image blending, through which the strategy makes the trained target detection network
not overly dependent on certain features of the target, increases the detection capability
of occluded targets, and improves the generalization and target localization of the trained
model. CutMix obtained a blended image by cutting and pasting a gangue image block
onto the anchor image to mask it, as shown in Figure 4. The area of the cut graph is
determined by a preset percentage value, and the value of the label is determined by the
proportion of the fused area of the current picture content. In Figure 4, 30% and 70% of the
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two images are fused together, and the original labels are [1,0] and [0,1] respectively, so the
fused labels are [0.3,0.7].
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Figure 4. CutMix pictures.

Similar to the CutMix method, Mosaic also performs dataset enhancement by blending
the target images. However, unlike CutMix which blends two images, Mosaic does so by
randomly cropping four images before stitching them onto a single image. This strategy
enriches the background of the target object and enhances the detection of objects that
reveal only some of their features, indirectly improving the batch value at training time, as
shown in Figure 5. Since the main idea of this method is to randomly crop four pictures
and then splice them into one picture as training data, the specific size cannot be given.
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Unlike the two aforementioned data augmentation approaches that perform blend-
ing on the initial image, DropBlock regularization performs the random discarding of
block features from the feature map level during training, enhancing the robustness and
generalization of the training model.

3.2. Anchor Box Optimization

The YOLOv4 target detection framework is the final solution based on YOLOv3
by adding various tuning tools. YOLOv4 retains the Darknet53 framework structure of
YOLOv3 in the network backbone but introduces the cross stage partial network (CSP-
Darknet53), which improves the backbone structure to CSPDarknet53, which reduces the
computational effort and improves the detection accuracy. The next section describes the
principles of YOLOv4 in terms of data augmentation, network structure, bounding box
regression function and loss function, respectively.
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The YOLOv4 target detection algorithm provides nine sets of anchored rectangular
box width and height values. For the dataset of large gangue and anchor rods on the belt
conveyor collected in this paper, the anchor box dimensions of the COCO dataset provided
by YOLOv4 cannot be used directly, and the dataset with the bounding boxes calibrated
needs to be clustered to obtain the anchor box dimensions of the anchor rods and gangue
in this paper for subsequent network training.

The K-means algorithm is a classical unsupervised clustering algorithm that is able to
group similar objects into the same cluster. The K-means algorithm is generally used to
process vector data, using Euclidean distance as a metric, but the aim of this paper is to
obtain the width and height values of the anchor boxes. Therefore, the intersection ratio of
the width and height of the bounding box (IOU) is used as the metric.

As shown in Figure 6, Equation (11) is the formula for calculating the intersection and
ratio of two bounding boxes with both upper left corners at the origin, which is substituted
into Equation (12), and this distance variable distance is used in place of the Euclidean
distance in the K-means algorithm.

IOU(a, b) = intersection(a,b)
union(a,b)−intersection(a,b)

= min(wa ,wb)·min(ha ,hb)
wa ·ha+wb ·hb−min(wa ,wb)·min(ha ,hb)

(11)

distance(a, b) = 1− IOU(a, b) (12)
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K in K-means denotes the number of different clusters to be found, which is set
manually according to the requirements, and is performed as follows:

Step 1: randomly select K anchor box widths and heights from the labeled dataset
as the starting clustering centers, with the number of anchor box width–height pairs as
C = {c1, c2, · · · , ck}, where ci = (wi, hi).

Step 2: for each sample xi = (wi, hi) in the foreign matter dataset, calculate the
distance distance from it to the K clustering centers and assign it to the class with the
smallest distance.

Step 3: for each class c1, recalculate the mean value of the width–height of the anchor
boxes in this class as the width–height of the anchor boxes in the new clustering center.

Step 4: repeat Steps 2 and 3 until the width and height of the central anchor box does
not change.

From the above process, we can see that the problem with K-means is that the width
and height of the initial clustering center anchor box needs to be selected artificially, and
different initial centers may bring different clustering results. To address this problem,
this paper uses the K-means++ algorithm to improve it. The specific execution steps of
K-means++ are as follows:

Step 1: the width and height of a randomly selected bounding box from the annotated
dataset is used as the cluster center, and the anchor box is denoted as c1.
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Step 2: calculate the minimum distance between each bounding box and the currently
existing cluster center bounding box (i.e., distance of the cluster center anchor box with the
closest value of width and height), here denoted as D(x). Next, calculate the probability of
each bounding box being selected as the next cluster center anchor box as Equation (13), χ
for the whole dataset. Finally, the width and height of the next cluster center anchor box is
selected by the roulette wheel method.

Step 3: repeat the second step until K initial cluster center anchor box width and height
values are selected.

Step 4: perform Steps 2 to 4 in the K-means algorithm.

D(x)2

∑
x∈χ

D(x)2 (13)

4. Experiments and Analysis
4.1. KinD++ Algorithm Experimentation and Analysis
4.1.1. Dataset Production

For the field of low-light image enhancement, a common public dataset is the LoL
(low-light) dataset.

In this experiment, 400 low/normal light image pairs were obtained by controlling the
light intensity and angle on the belt conveyor foreign object detection and localization test
bench, which combined with 500 pairs in the LoL dataset resulted in a dataset of 900 low–
high-light image pairs. Some images of the produced dataset are shown in Figures 7 and 8:
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4.1.2. Training Setup

As there are three sub-networks in the KinD++ network, and the training is performed
in steps. The layer decomposition network is trained first, followed by the illumination
adjustment network and finally the reflectance recovery network. The gradient descent
method was optimized using the Adam optimizer when back-propagating during training.
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The training parameters for the three networks are shown in Table 1. Patch-size denotes
the basic unit of image processing by the network. The batch-size indicates the number of
images processed at each parameter update, and the Epoch value indicates the number of
traversals of the training set. LR (learning rate) is the learning rate and is set to 0.0001.

Table 1. KinD++ network training parameter setting.

Patch-Size Batch-Size Epoch LR

Layer decomposition network 48 10 2000 0.0001
Illumination adjustment network 48 10 2000 0.0001

Reflectance recovery network 384 4 1000 0.0001

4.1.3. Results and Analysis

In order to verify the enhancement effect of the KinD++ algorithm for low-light images,
the KinD model and the Retinex-Net model were trained using the same training set as
KinD++. In this experiment, low-light images were collected for enhancement in four
environments: dark with auxiliary light, evening without light, evening with light and
daytime backlight.

The results of the low-light image enhancement in a dark environment with an aux-
iliary light source are shown in Figure 9. After processing by the KinD++ algorithm, the
image can recover the original appearance very well, and the details of foreign objects such
as anchor rods and large gangue on the belt conveyor are particularly well recovered.
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Figure 10 shows a comparison of the enhancement effect of the three neural network-
based deep learning algorithms on the original image in Figure 9. It can be seen from
Figure 10 that the KinD++ algorithm and the KinD algorithm are significantly more effective
than the Retinex-Net algorithm and are able to recover more detail in the dark areas of
the image. Figure 11 shows the results of three traditional low-light image enhancement
algorithms based on Retinex theory. Comparing the results plotted in Figure 10 based on
the convolutional neural network algorithm, the processing in Figure 11 is significantly
less effective.

The results of the low-light image enhancement in the evening without light are shown
in Figure 12. As can be seen in Figure 12, the KinD++ algorithm is able to enhance the
low-light image well in this environment, while the recovered image colors are also more
accurate, and foreign objects such as anchors and gangue on the belt conveyor can be
clearly observed after processing. As can be seen from Figure 13, the KinD algorithm is as
effective as the KinD++ algorithm in recovering the details of foreign objects.
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Figure 14 shows a comparison of the enhancement effect of three conventional algo-
rithms based on Retinex theory for the original image in Figure 12. It can be seen from
the figure that the enhancement effect of these three algorithms is much less than the
enhancement effect of the neural network-based algorithm.

The results of the low-light image enhancement in an environment with an auxiliary
light source in the evening are shown in Figure 15. It can be seen from the figure that
the KinD++ algorithm is able to enhance the low-light image better. Figure 16 shows the
enhancement of the original image in Figure 15 by the three convolutional neural network-
based algorithms, and it can be seen that the colors of the KinD++ enhanced image are
closest to the original colors. The Retinex-Net algorithm, on the other hand, has more
artefacts and noise in the enhanced image.

Figure 17 shows a comparison of the enhancement effect of three conventional al-
gorithms based on Retinex theory on the original image in Figure 15. Compared with
Figure 16, the enhancement effect of the traditional algorithms is inferior to that of the
convolutional neural network-based algorithms. The color of the SSR processed image is
almost completely lost, with a greyscale image, there are blurred details of the object and
serious loss of features. The color distortion is severe.
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The results of the low-light image enhancement in a daytime backlit environment are
shown in Figure 18. KinD++ was able to successfully enhance the daytime backlighting
image, and the features of objects such as gangue and coal on the belt conveyor that were
in darkness were well recovered, as can be seen from the enhancement effect graph in
Figure 18. Figure 19 shows the enhancement effect of the deep learning algorithm on the
original image. From the comparison results, it can be seen that the KinD++ algorithm and
the KinD algorithm enhancements are significantly better than those of the Retinex-Net
algorithm.

Based on Retinex theory, Figure 20 compares the enhancing effects of three common
algorithms on the original image. Compared with Figure 19, the traditional low-light image
enhancement algorithm has an inferior enhancement effect on daytime backlit environment
images than the deep learning algorithm. The SSR algorithm enhances the dark areas while
losing a large amount of color, and the object features are not well recovered and are very
blurred. The MSR algorithm recovered some color, but the color distortion was severe,
and the dark areas were poorly recovered, with more object features lost. MSRCR had the
worst enhancement effect, with distorted color recovery and similarly no enhancement in
dark areas.
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The enhancement effect of the above four low-light environments was combined and
the six algorithms were compared. It can be seen that the low-light image is enhanced by
the KinD++ network, and that the dark features in the image are restored in detail. The
brighter areas of the original image do not appear overexposed either, demonstrating the
KinD++ network’s idea of zonal enhancement. In addition, the larger and more uniform
the range of illumination, the better the enhancement effect of the KinD++ algorithm,
which suggests that we should even out the light source and try to increase the range of
illumination.

4.2. Target Detection Experiments and Analysis
4.2.1. Dataset Extension Enhancement

While the majority of the huge gangue and anchor rods in the coal belt conveyor
may be partially or completely covered throughout the coal transportation operation, they
mostly show up in their entire shape in the photographs that were taken. Therefore, the
foreign objects in the captured images are masked to simulate their appearance in real
working conditions to enhance the training model’s ability to recognize semi-buried foreign
objects. It also increases the number and type of training sets, effectively preventing the
model from learning only some of the salient features of the foreign objects and improving
the generalization capability of the model. The main methods to simulate object occlusion
for data augmentation are random erasure [19], cutout [20], and hide-and-seek [23]. The
main reason for the invalid data generated by both cutout and hide-and-seek methods is
the random nature of their occlusion block positions. There is no guarantee that a valid
occlusion image will be produced consistently, and they are unstructured occlusion opera-
tions. In order to implement data augmentation methods for masking while avoiding the
problems of invalid masking in cutout and hide-and-seek methods, a structured masking
strategy with grid masks is used. Figure 21 shows the schematic diagram of Image random
erase processing.

In order to implement a data augmentation approach to masking while avoiding the
problems of invalid masking that occur in the cutout and hide-and-seek approaches, a
structured masking strategy of a grid mask is used. As shown in Figure 22, the basic cell of
the grid mask is the structure shown in the orange dashed box, and this basic cell is tiled to
form the complete mask. The grey pixel value in the figure is 1 and the black pixel value is
0. The parameters r, d, δx and δy define the size and position of the first complete basic cell
in the grid mask. r represents the ratio of the short grey edge in the basic cell to the edge
length d, which determines the retention ratio k of the image. The retention ratio is defined
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as the ratio of the sum of the pixels retained in the image to the sum of the pixels in the
whole image. The formula is 14, with M indicating the number of grey pixels retained in
the mask, and H and W indicating the height and width of the image. When considering a
grid mask consisting of an integer number of basic cells, the retention ratio k is related to r
as shown in Equation (15).

k =
sum(M)

H ×W
(14)
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Thus r determines the retention ratio after the image has been masked. Too large
a retention ratio of the grid mask will result in targets in the image being unaffected by
the masked blocks and will not avoid the overfitting problem of the neural network. In
contrast, too small a retention ratio with too large a block will lead to the introduction of
invalid data into the training dataset and the model will not converge during training, so a
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suitable R1 needs to be determined experimentally. The retention ratio is generally fixed
during the training process, so the value of r is a constant.

k = 1− (1− r)2 = 2r− r2 (15)

The parameter d is the edge length of the basic cell and the magnitude of its value does
not affect the retention ratio, so a dynamic value can be used, as shown in Equation (16)
to set a range of minimum and maximum and randomly determine an d value within the
range when the masked image expands the dataset.

d = random(dmin, dmax) (16)

The parameters δx and δy indicate the distance from the top left corner of the first
complete basic cell to the edge of the image. In order to make the masking of the grid mask
more likely, these two distance parameters are also taken randomly and limited in range.
The ranges are shown in Equation (17).

δx(δy) = random(0, d− 1) (17)

Once the values of r, d, δx and δy have been determined, the size, retention ratio and
position of the basic cells are also determined, and the grid mask for tiling the basic cells is
also determined. When the mask is determined and multiplied by the original image, the
image is obtained after the grid mask is masked.

x̃ = x×M (18)

As in Equation (18), x is the original image, M is the grid mask and the range of values
is M ∈ (0, 1), i.e., the grey block has a pixel value of 1 and the black block has a pixel value
of 0. The result of multiplying the image with the mask is shown in Figure 23, with the
three different grid masks controlled by the size of the parameters.
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Figure 23. Multiply the image with the GridMask.

4.2.2. Experiments and Analysis of Results

This paper collects 4000 pictures of foreign objects contained on belt conveyors. Of
these, 1500 images contain only anchor rods, 1500 images contain only gangue, and 1000 im-
ages contain both anchor rods and gangue. A total of 1000 images were extracted from
each of the anchor-only and gangue-only images and masked using the GridMask data
augmentation method. The labelImg software was used to annotate the image dataset to
obtain 6000 labels written in XML language, and these labels were randomly disordered
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and divided into the training set, validation set and test set, accounting for 60%, 20% and
20% respectively. Figure 24 shows that when the image is masked by the grid, the labeled
bounding box is the original size of the target, and not two bounding boxes because the
masking makes the target split into two parts.
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For the anchor box optimization experiment, the 6000 XML language written labels
obtained above using labelImg software were fed into the K-means++ algorithm to obtain
nine anchor boxes, the results of which are shown in Table 2.

Table 2. Dataset anchor box width and height values.

Small Target Medium Target Big Target

Original anchor box 10,13;16,30;33,23 30,61;62,45;59,119 116,90;156,198;373,326
This article anchor box 18,28;32,37;33,13 39,18;50,22;61,31 73,44;88,10;116,54

Figures 25–27 show the results of the YOLOv4 model for the detection of foreign
objects on a belt conveyor, from which it can be seen that the improved model is able to
detect single and multiple foreign objects with high accuracy.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 22 
 

 

Table 2. Dataset anchor box width and height values. 

 Small Target Medium Target Big Target 
Original anchor box 10,13;16,30;33,23 30,61;62,45;59,119 116,90;156,198;373,326 

This article anchor box 18,28;32,37;33,13 39,18;50,22;61,31 73,44;88,10;116,54 

Figures 25–27 show the results of the YOLOv4 model for the detection of foreign ob-
jects on a belt conveyor, from which it can be seen that the improved model is able to 
detect single and multiple foreign objects with high accuracy. 

 
Figure 25. Semi-buried bolt detection. 

 
Figure 26. Semi-buried gangue detection. 

Figure 25. Semi-buried bolt detection.



Sensors 2022, 22, 6851 19 of 20

Sensors 2022, 22, x FOR PEER REVIEW 20 of 22 
 

 

Table 2. Dataset anchor box width and height values. 

 Small Target Medium Target Big Target 
Original anchor box 10,13;16,30;33,23 30,61;62,45;59,119 116,90;156,198;373,326 

This article anchor box 18,28;32,37;33,13 39,18;50,22;61,31 73,44;88,10;116,54 

Figures 25–27 show the results of the YOLOv4 model for the detection of foreign ob-
jects on a belt conveyor, from which it can be seen that the improved model is able to 
detect single and multiple foreign objects with high accuracy. 

 
Figure 25. Semi-buried bolt detection. 

 
Figure 26. Semi-buried gangue detection. Figure 26. Semi-buried gangue detection.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 22 
 

 

 
Figure 27. Semi-buried bolt and gangue detection. 

5. Conclusions 
In this study, the KinD++ network was used to implement image enhancement for 

low-light scenes. In the experimental part, multiple algorithms were used to enhance im-
ages in different lighting environments. A comparison of the results shows that the deep 
learning algorithms based on convolutional neural networks are much more effective in 
enhancing low-light images than traditional algorithms. The comparison of the three deep 
learning algorithms shows that the excellent overall performance of the KinD++ network 
in low-light image enhancement is able to recover image details in the dark well, provid-
ing a distinctly characterized image dataset for subsequent target detection. The study 
then optimizes the anchor boxes by the K-means++ algorithm. It experimentally deter-
mines the width and height values of the nine anchor boxes and the parameter values of 
the grid mask for the dataset of this paper, obtaining better optimization results and en-
hancing the generalization capability and accuracy of the model. Finally, the anchor boxes 
YOLOv4 algorithm was used to detect large gangue and anchor rods on the belt conveyor 
under various scenarios, and better results were obtained. 

Author Contributions: Data curation, X.S., L.X. and S.M.; Funding acquisition, G.C.; Investigation, 
Y.C., Y.P. and G.C.; Methodology, Y.C., S.M., J.L. and Y.P.; Resources, G.C.; Software, S.M. and J.L.; 
Supervision, Y.P. and G.C.; Writing—original draft, X.S., L.X. and J.L.; Writing—review & editing, 
Y.C. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data that support the findings of this study are available from the 
corresponding author upon reasonable request. 

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding 
the present study. 

References 
1. Yang, R.; Qiao, T.; Pang, Y.; Yang, Y.; Zhang, H.; Yan, G. Infrared spectrum analysis method for detection and early warning of 

longitudinal tear of mine conveyor belt. Measurement 2020, 165, 107856. 
2. Guo, Y.; Zhang, Y.; Li, F.; Wang, S.; Cheng, G. Research of coal and gangue identification and positioning method at mobile 

device. Int. J. Coal Prep. Util. 2022, 1–17. https://doi.org/10.1080/19392699.2022.2072305. 
3. Zhang, J.; Han, X.; Cheng, D. Improving coal/gangue recognition efficiency based on liquid intervention with infrared imager 

at low emissivity. Measurement 2022, 189, 110445. 
4. Wang, W.D.; Lv, Z.Q.; Lu, H.R. Research on methods to differentiate coal and gangue using image processing and a support 

vector machine. Int. J. Coal Prep. Util. 2018, 41, 603–616. 
5. Li, D.; Meng, G.; Sun, Z.; Xu, L. Autonomous Multiple Tramp Materials Detection in Raw Coal Using Single-Shot Feature Fusion 

Detector. Appl. Sci. 2021, 12, 107. 
6. Zhao, Y.D.; He, X.M. Recognition of coal and gangue based on X-Ray. Appl. Mech. Mater. 2013, 275–277, 2350–2353. 
7. Kelloway, S.J.; Ward, C.R.; Marjo, C.E.; Wainwright, I.E.; Cohen, D.R. Quantitative chemical profiling of coal using core-scan-

ning X-Ray fluorescence techniques. Int. J. Coal Geol. 2014, 128–129, 55–67. 

Figure 27. Semi-buried bolt and gangue detection.

5. Conclusions

In this study, the KinD++ network was used to implement image enhancement for
low-light scenes. In the experimental part, multiple algorithms were used to enhance
images in different lighting environments. A comparison of the results shows that the deep
learning algorithms based on convolutional neural networks are much more effective in
enhancing low-light images than traditional algorithms. The comparison of the three deep
learning algorithms shows that the excellent overall performance of the KinD++ network
in low-light image enhancement is able to recover image details in the dark well, providing
a distinctly characterized image dataset for subsequent target detection. The study then
optimizes the anchor boxes by the K-means++ algorithm. It experimentally determines
the width and height values of the nine anchor boxes and the parameter values of the grid
mask for the dataset of this paper, obtaining better optimization results and enhancing the
generalization capability and accuracy of the model. Finally, the anchor boxes YOLOv4
algorithm was used to detect large gangue and anchor rods on the belt conveyor under
various scenarios, and better results were obtained.
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