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SUMMARY

Monitoring seismic wavefields caused by induced seismicity in the subsurface is a diffi-
cult process. Ideally, it requires physical receivers in the subsurface, which is unpracti-
cal. Frequently, only measurements at the surface of the Earth are available, which give
a limited amount of information about the subsurface. One way to improve the mon-
itoring of the subsurface is through the use of virtual sources and receivers, which are
not physically present but are created from the measured reflection data at the surface.
This can be achieved through the use of the classical homogeneous Green’s represen-
tation, however, this method requires two Green’s functions measured on an enclosing
boundary, which is an unrealistic requirement. Instead, a single-sided representation of
the homogeneous Green’s function can be used, where a focusing function, which is a
wavefield that focuses from a single-sided boundary to a focal position in the subsurface
without artifacts related to the internal multiples, is employed together with a Green’s
function. To obtain the Green’s function and focusing function that are needed for this
representation, the Marchenko method is used. This method employs reflection data,
without free-surface multiples, at the surface of the Earth and an estimation of the first
arrival, which can be modeled in a macro velocity model.

To test whether induced seismicity in the real subsurface can be monitored using
the single-sided representation, synthetic data are first considered, which include a syn-
thetic reflection response and macro velocity model. The Marchenko method is used in
combination with these data to obtain the focusing functions and Green’s functions that
are required for the homogeneous Green’s function representations. The classical repre-
sentation and the single-sided representation of the homogeneous Green’s function em-
ploy the Green’s functions and focusing functions to obtain the homogeneous Green’s
function of the medium. The homogeneous Green’s function is visualized by creating
snapshots of the homogeneous Green’s function and these snapshots are compared to
a directly modeled reference wavefield. This demonstrates that the classical representa-
tion, when applied to data at an open acquisition boundary, yields significant artifacts
in the results, while the single-sided representation obtains accurate results. It is also
shown that the radiation pattern of a double-couple source can be included in the re-
trieval of the homogeneous Green’s function. The synthetic reflection data are truncated
by limiting the offsets and sampling distance and applying attenuation to simulate field
conditions. These truncations show that the single-sided homogeneous Green’s func-
tion contains artifacts and lacks physical events if the reflection data are not ideal. 2D
field reflection data and a macro velocity model from the Vøring basin are considered
and pre-processed to account for these truncations. The classical and the single-sided
homogeneous Green’s function representation are both applied to the field data and the
results show that the retrieval of the homogeneous Green’s function is possible for 2D
field data using point sources while employing the single-sided representation. The re-
sults of the classical representation contain a large amount of errors. It is also shown
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that a homogeneous Green’s function can be retrieved that has a virtual source with a
double-couple radiation pattern.

Next, the application of the single-sided representation is considered in greater de-
tail. The representation is used to forecast a wavefield in the subsurface as well as to
monitor a wavefield in the subsurface. For the monitoring of the wavefield, it is assumed
that a physical source in the subsurface causes a wavefield which is measured at the sur-
face of the Earth. The Marchenko method is used to create virtual receivers inside the
subsurface, which are used in combination with the physical measurement in the single-
sided representation. This is a one-step process, because the Marchenko method is only
used to create the virtual receivers. The single-sided representation of the homogeneous
Green’s function requires the source wavelet to be symmetric in time, which is unlikely
for physical sources. Hence, a different single-sided representation can be used, which
retrieves the causal Green’s function and does not require a symmetric source wavelet.
The single-sided representation of the causal Green’s function can retrieve a majority of
the correct events, however, the results contain anti-symmetric artifacts when the phys-
ical source is located above the virtual receiver. To forecast a wavefield in the subsur-
face, given a specific source configuration, the single-sided representation of the ho-
mogeneous Green’s function can be used. In this case, a two-step process is applied,
where both the source and the receiver in the subsurface are created by the Marchenko
method and are therefore both virtual. After the homogeneous Green’s function is ob-
tained, it can be convolved with a non-symmetric wavelet. To demonstrate the differ-
ence between the one-step monitoring process and the two-step forecasting process,
2D synthetic reflection data are utilized. For the source configuration, a rupture plane
is considered, which is modeled by superposing and time-shifting point sources, which
contain a double-couple radiation pattern and are all scaled differently to simulate the
heterogeneity of the rupture plane. The total wavefield created by this rupture plane is
monitored using the single-sided representation of the causal Green’s function. There
are anti-symmetric artifacts present in the result, related to each point source, however,
the correct wavefield is retrieved above the shallowest source location and below this
source location after the first arrivals of all sources. The single-sided representation of
the homogeneous Green’s function is applied to forecast a virtual rupture plane, by re-
trieving the homogeneous Green’s function for each source separately. The retrieved
homogeneous Green’s functions are transformed to causal Green’s functions, shifted in
time and superposed to forecast the total wavefield, which is free of the anti-symmetric
artifacts at any depth. Both the monitoring approach and the forecasting approach are
tested on 2D field data and the retrieved wavefields show similar results as were seen
when the synthetic data were used. When the total wavefield is forecasted, there are
no anti-symmetric artifacts present and when the wavefield is monitored, there are arti-
facts, however, they are only present in part of the result, below the sources before and
during the first arrival of each source.

To test the application of the single-sided representation in 3D, a 3D implemen-
tation of the Marchenko method is required. The implementation is straightforward
from a theoretical standpoint, as the surface integrals are performed over two dimen-
sions instead of just one. The practical implementation is more difficult, however. The
Marchenko method requires that the reflection data are well sampled in both space and
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time for sources and receivers, hence, the 3D reflection data are of a large size. As a result,
not only a large amount of storage space is required, but the loading time of the reflec-
tion data is high, both of which are unpractical for efficient computation. We limit these
problems by pre-transforming the reflection data to the frequency domain and com-
pressing the data using floating point arrays, which reduces the storage space and load-
ing time. Two datasets are considered, one modeled in a simple four layer model and the
other in a subsection of the complex 3D Overthrust model. For both models, a Green’s
function inside the medium is retrieved, using a first arrival in the Marchenko method
that was modeled in the exact medium, and compared to a reference Green’s function
that was directly modeled. The results for both models are accurate for the single Green’s
function. Next, imaging is performed for the models, however, instead of modeling the
first arrivals, they are estimated using an Eikonal solver, because the modeling time of
all the first arrivals is too high. The results of the imaging using the Marchenko method
are compared to the results of conventional imaging, which demonstrates that artifacts,
related to the internal multiples, are attenuated.

The 3D implementation of the Marchenko method is used to retrieve the Green’s
functions and focusing functions in 3D using 3D synthetic reflection data modeled in the
Overhtrust model. The classical homogeneous Green’s function representation and the
single-sided representation of the causal Green’s function and the homogeneous Green’s
function are all applied using these data, for three different combinations of a virtual
source and a virtual receiver. The results are compared to a directly modeled wavefield,
which shows that the result obtained by using the classical representation is contami-
nated by artifacts and lacks physical events. The result of the single-sided representation
of the causal Green’s function contains anti-symmetric artifacts related to the focusing
function when the virtual receiver is located below the virtual source. The result of the
single-sided representation of the homogeneous Green’s function shows a good match to
the reference result. The single-sided representation of the homogeneous Green’s func-
tion is also applied using an Eikonal solver to obtain the first arrival that is required for
the Marchenko method. The homogeneous Green’s function that is obtained in this way
shows a small decrease in quality for the result, however, this approach is more com-
putationally feasible. The single-sided representation is used in combination with the
Eikonal solver to retrieve a large amount of virtual receivers, so that the propagation of
the wavefield in the subsurface can be visualized in time through the use of snapshots.
This reveals that the part of the wavefield that is traveling at angles that are close to the
normal of the surface is retrieved properly, while the part of the wavefield that is traveling
at greater angles to the normal is reconstructed with less accuracy. This lack of proper
retrieval is caused by the limited aperture of the reflection data. A rupture plane in 3D is
considered and constructed in a similar way as is done for the 2D synthetic data. Point
sources are used to model wavefields, which are time-shifted and superposed, however,
to further represent the heterogeneity of the rupture plane, each wavefield is modeled
using an unique causal wavelet. Both monitoring, using the single-sided causal Green’s
function representation, and forecasting, using the single-sided homogeneous Green’s
function representation, are performed on the rupture plane configuration. The two-
step forecasting approach yields accurate results, for a given distribution of sources. The
one-step monitoring approach retrieves accurate results above the shallowest source lo-
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cation, however, the result contains artifacts at the locations below the shallowest source,
before and during the first arrival of each source.



SAMENVATTING

Het monitoren van golfvelden die veroorzaakt worden door geïnduceerde seismiciteit is
een moeilijk proces. Idealiter worden er fysieke ontvangers gebruikt om het golfveld in
de ondergrond te meten, maar dit is onpraktisch. Meestal zijn er alleen metingen be-
schikbaar aan het aardoppervlak, en deze metingen geven beperkte informatie over de
ondergrond. Het monitoren van de ondergrond kan worden versterkt met behulp van
virtuele bronnen en ontvangers. Dit zijn bronnen en ontvangers die niet fysiek aanwezig
zijn, maar gemaakt worden van gemeten reflectie data aan het aardoppervlak. Het ma-
ken van deze virtuele metingen kan gedaan worden met de klassieke representatie van
de homogene Green’s functie. Dit vereist echter wel dat er twee Green’s functies geme-
ten zijn op een omsluitende grens, wat een onrealistische verwachting is. In plaats van
de klassieke representatie van de homogene Green’s functie kan een enkelzijdige repre-
sentatie worden toegepast, die een focusserende functie samen met een Green’s functie
gebruikt. Een focusserende functie is een golfveld dat van een enkelzijdige grens focust
naar een focus punt in de ondergrond zonder artefacten die gerelateerd zijn aan interne
meervoudige reflecties. De Green’s functie en focusserende functie die nodig zijn voor
deze representatie kunnen verkregen worden met behulp van de Marchenko methode.
Deze methode gebruikt reflectie data, die geen meervoudige reflecties van het vrije op-
pervlak bevatten en gemeten zijn aan het aardoppervlak, samen met een schatting van
de eerste aankomst van een golfveld, die gemodelleerd kan worden in een macro snel-
heidsmodel.

Synthetische data worden gebruikt om te testen of de enkelzijdige representatie toe-
gepast kan worden op veld data. De synthetische data bevatten een reflectie dataset
en een macro snelheidsmodel. De Marchenko methode wordt samen met deze data
gebruikt om Green’s functies en focusserende functies te bepalen, die gebruikt kunnen
worden voor de homogene Green’s functie representaties. De klassieke en enkelzijdige
representatie van de homogene Green’s functie worden beiden gebruikt om de homo-
gene Green’s functie in het medium te bepalen. Deze homogene Green’s functies wor-
den gevisualiseerd door middel van momentopnames en deze momentopnames wor-
den vergeleken met momentopnames van een direct gemodelleerd referentie golfveld.
Dit toont aan dat de klassieke representatie veel fouten bevat als het gebruikt wordt op
een enkelzijdige grens in plaats van een omsluitende grens en dat de enkelzijdige re-
presentatie nauwkeurig het golfveld weet te bepalen. Er wordt ook aangetoond dat het
radiatie patroon van een dubbelkoppel bron kan worden meegenomen in het verkrij-
gen van de homogene Green’s functie. De synthetische reflectie data worden verslech-
terd door aanpassingen te maken in de meetafstand en monstering van de data en door
energieverlies in de data aan te brengen, waarmee veldcondities worden benaderd. Deze
verslechteringen tonen aan dat de enkelzijdige representatie van de homogene Green’s
functie fouten bevat en fysieke delen van het golfveld mist als de data niet ideaal zijn.
2D veld data met een reflectie dataset en een macro snelheidsmodel worden bewerkt

xv
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om te compenseren voor deze verslechteringen. De klassieke en enkelzijdige represen-
tatie van de homogene Green’s functie worden beiden toegepast in combinatie met deze
data. De resultaten laten zien dat het mogelijk is om de homogene Green’s functie te ver-
krijgen met gebruik van 2D veld data en de enkelzijdige representatie als puntbronnen
worden gebruikt. De resulaten van de klassieke representatie bevatten grote fouten. Er
wordt ook aangetoond dat een homogene Green’s functie kan worden verkregen die een
virtuele bron met een dubbelkoppel radiatie patroon bevat.

Vervolgens wordt de enkelzijdige representatie in groter detail bekeken. De enkelzij-
dige representatie wordt gebruikt om het golfveld in de ondergrond te voorspellen en te
monitoren. Voor het monitoren van het golfveld wordt aangenomen dat een fysieke bron
in de ondergrond een golfveld veroorzaakt dat gemeten wordt aan het aardoppervlak.
De Marchenko methode wordt gebruikt om virtuele ontvangers in de ondergrond te cre-
ëren, die samen met de fysieke metingen gebruikt worden in de enkelzijdige representa-
tie. Dit is een een-staps proces, omdat de Marchenko methode alleen wordt gebruikt om
de virtuele ontvangers te maken. De enkelzijdige representatie van de homogene Green’s
functie heeft als eis dat het bronsignaal symmetrisch in tijd is, wat onwaarschijnlijk is
voor fysieke bronnen. Daarom wordt een andere enkelzijdige representatie gebruikt, die
een causale Green’s functie verkrijgt en niet de eis heeft dat het bronsignaal symmetrisch
moet zijn. De enkelzijdige representatie van de Green’s functie kan een groot deel van het
golfveld in de ondergrond bepalen, maar bevat antisymmetrische fouten als de fysieke
bron zich boven de virtuele ontvanger bevindt. Voor het voorspellen van het golfveld in
de ondergrond kan de enkelzijdige representatie van de homogene Green’s functie wor-
den gebruikt, als een specifieke bronopstelling wordt gebruikt. In dit geval is er sprake
van een twee-staps proces omdat zowel de bron als de ontvanger virtueel zijn en door
gebruik van de Marchenko methode worden verkregen. Als de homogene Green’s func-
tie is bepaald kan deze worden geconvolueerd met een niet symmetrisch bronsignaal.
Het verschil tussen deze twee aanpakken worden gedemonstreerd met behulp van 2D
synthetische reflectie data. Als bronopstelling wordt een breukvlak gebruikt, dat gecon-
strueerd wordt door middel van superpositie van puntbronnen die in de tijd verschoven
worden. Al deze bronnen bevatten een dubbelkoppel radiatie patroon en zijn anders
geschaald om de heterogeniteit van het breukvlak te simuleren. Het totale golfveld dat
door dit breukvlak wordt veroorzaakt wordt gemonitord met behulp van de enkelzijdige
representatie van de causale Green’s functie. Er zijn antisymmetrische fouten aanwezig
die gerelateerd zijn aan iedere puntbron, maar het correcte golfveld wordt verkregen op
iedere diepte boven de ondiepste bron. Onder deze diepte zijn de fouten alleen aanwezig
voor en tijdens de eerste aankomst van iedere bron. De enkelzijdige toepassing van de
homogene Green’s functie wordt gebruikt om het golfveld van een virtueel breukvlak te
voorspellen. Dit wordt gedaan door eerst de homogene Green’s functie gerelateerd aan
iedere puntbron te maken en deze dan te veranderen in een causale Green’s functie, dit
te verschuiven in tijd en tenslotte alle golfvelden te superposeren om het total golfveld
te maken. Dit totale golfveld is vrij van fouten op iedere diepte. Zowel de toepassing van
het monitoren als van het voorspellen van het golfveld worden gebruikt op 2D veld data.
De resulaten zijn vergelijkbaar met die van de synthetische data. Als het totale golfveld
wordt voorspeld zijn er geen assymetrische fouten en als het golfveld wordt gemonitord
dan zijn deze fouten wel aanwezig, maar alleen in een deel van het resultaat, namelijk
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onder de bronnen voor en tijdens de eerste aankomst van iedere bron.

Voordat er getest kan worden of de enkelzijdige representatie in 3D kan worden ge-
bruikt is eerst een 3D implementatie van de Marchenko method nodig. De uitbreiding
van de implementatie van 2D naar 3D is in theorie niet lastig, aangezien de integralen
nu over twee dimensies worden uitgevoerd in plaats van maar een. De praktische imple-
mentatie is echter een stuk ingewikkelder. Voor de Marchenko methode is het belangrijk
dat de reflectie data fijn gemonsterd zijn in zowel ruimte als tijd, wat betekent dat de
grootte van de dataset zeer hoog is. Hierdoor is niet alleen veel opslag ruimte voor de
data nodig, maar kost het ook veel tijd om de data te laden, wat niet praktisch is voor
een efficiënte berekening. Deze problemen worden beperkt door de data voor het laden
naar het frequentie domein te veranderen en deze data te comprimeren met behulp van
een zwevende punt compressie algorithme. Hierdoor neemt zowel de data grootte als
de laadtijd af. Twee datasets worden met deze methode getest, een die in een simpel,
vlak vierlaags model is gemodelleerd en een andere die in een deel van het complexe
Overthrust model is gemodelleerd. In beide modelen wordt een Green’s functie verkre-
gen, met behulp van een eerste aankomst van het golfveld die in het exacte medium is
gemodelleerd. De Green’s functies worden vergeleken met een referentie resultaat en
dit toont aan dat de verkregen Green’s functies nauwkeurig genoeg zijn. Hierna wordt
beeldvorming van de modelen toegepast met behulp van de Marchenko methode. De
eerste aankomsten die nodig zijn voor de Marchenko method worden in dit geval be-
paald met een Eikonale methode, omdat het modelleren van deze aankomsten te lang
zou duren. De beeldvorming die wordt verkregen door de Marchenko method wordt ver-
geleken met conventionele methodes, wat aantoont dat de resulaten van de Marchenko
method beter zijn, omdat fouten die veroorzaakt worden door interne meervoudige re-
flecties worden verwijderd.

De 3D implementatie van de Marchenko methode wordt gebruikt om 3D Green’s
functies en 3D focusserende functies te verkrijgen uit reflectie data die in het Overthrust
gemodelleerd zijn. De klassieke representatie van de homogene Green’s functie en de en-
kelzijdige representaties van de causale en homogene Green’s functie worden allemaal
toegepast met behulp van deze data. Iedere representatie wordt getest met drie ver-
schillende configuraties van een virtuele bron en een virtuele ontvanger. Deze resulaten
worden vergeleken met een direct gemodelleerd golfveld, wat aantoont dat de resulta-
ten van de klassieke representatie vol zitten met fouten en fysieke delen van het golfveld
missen. De resultaten van de enkelzijdige representatie van de causale Green’s functie
bevatten antisymmetrische fouten die gerelateerd zijn aan de focusserende functie als
de virtuele ontvanger zich onder de virtuele bron bevindt. De resulaten van de enkelzij-
dige representatie van de homogene Green’s functie zijn vergelijkbaar met de referentie
resultaten. De enkelzijdige representatie van de homogene Green’s functie wordt ook ge-
bruikt met golfvelden die verkregen zijn met een Marchenko methode waarin de eerste
aankomst is geschat met een Eikonale methode. Het resultaat van deze manier is minder
nauwkeurig dan wanneer de eerste aankomst gemodelleerd wordt, maar het berekenen
van dit resultaat is een stuk efficiënter. De enkelzijdige representatie wordt gebruikt in
combinatie met de Eikonale methode om een groot aantal virtuele ontvangers te creë-
ren. De beweging van het golfveld in de ondergrond wordt gevisualiseerd met behulp
van momentopnames. Dit toont aan dat het deel van het golfveld dat beweegt in een
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grote hoek ten opzichte van de normaal van het aardoppervlak niet geheel wordt gere-
construeerd. Het deel van het golfveld dat beweegt in een kleine hoek ten opzichte van
deze normaal wordt wel goed gereconstrueerd. Deze berperking wordt bepaald door de
gelimiteerde apertuur van de reflectie data. Het experiment met een breukvlak als bron-
opstelling wordt herhaald, maar ditmaal met 3D synthetische reflectie data in plaats van
2D synthetische reflectie data. Puntbronnen worden gebruikt om golvelden te model-
leren, die worden verschoven en gesuperposeerd. Ieder golfveld wordt gemodelleerd
met een uniek causaal bronsignaal. Met behulp van deze data wordt het golfveld van
het breukvlak in de ondergrond zowel gemonitord met behulp van de enkelzijdige re-
presentatie van de causale Green’s functie als voorspeld met behulp van de enkelzijdige
representatie van de homogene Green’s functie. De twee-staps voorspelling methode
verkrijgt nauwkeurige resulaten, als de bronopstelling bekend is. De een-staps monito-
ring methode verkrijgt nauwkeurige resulaten in de dieptes boven de ondiepste bron,
maar bevat fouten onder die diepte, voor en tijdens de eerste aankomst van iedere bron.



1
INTRODUCTION

In the past few centuries the human population on the planet Earth has increased con-
siderably. Due to this large number of people there is an ever growing demand for re-
sources, varying from basic necessities such as food and water, to more advanced needs,
like proper shelter and transportation. While the Earth can provide many natural re-
sources to satisfy these demands, obtaining these resources can increase the likelihood
of so-called geohazards. Floods, climate change and earthquakes are among the many
geohazards that humanity faces during its existence on the planet. Earthquakes form a
significant kind of geohazard that can cause major damage to structures by creating seis-
mic waves that propagate to the surface of the Earth [1]. The term seismicity describes
the occurrences of Earthquakes, as well as its mechanisms, magnitude and geographical
location, and is useful for determining the earthquake activity in a certain area. While
earthquakes can occur naturally, studies have shown that a large amount of seismicity is
induced, or in other words, caused by human activity, for example, during the recovery
of hydrocarbons [2]. Because the demand for natural resources was and still is high, it
is vital to understand what causes induced seismicity and how it can be possibly pre-
vented.

Measuring and processing induced seismicity has seen significant developments in
the past few decades [3]. To measure induced seismicity, arrays of geophones are used
to record the seismic events in an area. These measurements can then be processed
and studied to monitor active seismicity [4] or to forecast the occurence of seismicity [5].
In areas where human activity may cause induced seismicity, these measurements are
often employed in a traffic light system (TLS) [6]. The TLS determines whether the in-
duced seismicity passes certain levels, and when this happens, activities that potentially
induce earthquakes are halted. While this is useful to prevent damaging activities, if the
monitoring of the induced seismicity is inaccurate it can also prevent the application of
useful techniques, such as geothermal systems [7]. To properly monitor induced seis-
micity, it is vital that the location and the source mechanism of the induced seismicity is
resolved as good as possible. The source mechanism is often described by the moment
tensor [8], which can describe the radiation pattern of a variety of source mechnisms,
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such as faulting [9]. To improve on the determination of the moment tensor and loca-
tion of the source, accurate recordings of the induced seismicity are required, which can
be achieved by either employing downhole arrays [10], dense recording arrays [11] or,
ideally, a combination of the two. However, while downhole arrays can provide addi-
tional insights, they are very expensive to create and maintain.

An alternative to using only the physical measurements is the use of virtual mea-
surements, that is to say, data that are not recorded by a physical receiver, but rather ob-
tained through advanced seismic processing techniques. Depending on the technique,
virtual sources and/or receivers can be created anywhere inside the medium of interest,
so virtual receivers could be created close to the source of the induced seismicity. One
approach to create virtual sources is time-reversal mirroring [12]. This method assumes
that if the Green’s function; i.e. the impulse response of a medium; is measured on a
boundary that encloses the medium where the source of the Green’s function is located,
the Green’s function can be time-reversed and injected from the boundary. This wave-
field will propagate towards the original source location and focus, thereby creating a
virtual source at this focal location. In order for this method to function, it needs to be
actually possible to inject the time-reversed Green’s function into the physical medium,
instead of simulating this numerically by injecting the time-reversed Green’s function
into a model of the medium. This physical injection approach is popular in the field of
ultrasound [13, 14], however, for geophysical applications it is not as often used.

An alternative, similar approach is homogeneous Green’s function retrieval. A homo-
geneous Green’s function is the superposition of a Green’s function with its time-reversal.
The classical representation was derived by Porter [15] and has been applied for inverse
source problems [16], inverse scattering methods [17], seismic imaging [18] and seismic
holography [19], among others. Effectively, the representation states that if two Green’s
functions are measured on an enclosing boundary, they can be cross-correlated and in-
tegrated along the boundary to obtain the response of the medium between the source
locations of the Green’s functions. The advantage of this approach is that no medium
information is required, instead all the information is created from the measured data.
The principles used in this approach formed a basis for Seismic Interferometry, which
can be used to obtain virtual sources [20–22] or virtual receivers [23]. However, the clas-
sical homogeneous Green’s function representation relies on the assumption that the
boundary around the sources is a closed boundary. In the case of seismic monitoring,
this is hard to achieve as it is most common to have recording arrays on the surface of
the Earth, hence, at a single side of the medium. The classical representation can still
be applied using only a single-sided boundary, which will produce relatively accurate
results if the overburden above the sources is very smooth. However, if the medium con-
tains strong impedance contrasts, the homogeneous Green’s function that is obtained
will lack desired events, especially the downward propagating part of the wavefield, and
contain significant artifacts related to the internal multiples of the medium. Because
of these errors, using the classical representation for the monitoring and forecasting of
induced seismicity would create a large amount of uncertainty in the results. To avoid
some of the errors that are created by using the time-reversed Green’s function, only the
time-reversed direct arrival of the Green’s function could be used in the representation,
in combination with the full causal Green’s function [24]. While this can decrease the
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amount of artifacts caused by the internal multiples, it will not reconstruct the missing
desired part of the homogeneous Green’s function.

To overcome the limitations of the classical homogeneous Green’s function repre-
sentation, an alternative single-sided representation can be employed. This representa-
tion is designed to work with the single-sided open boundary [25] and makes use of one
Green’s function and a different wavefield, the so-called focusing function, rather than
a time-reversed Green’s function. A focusing function is a special wavefield that focuses
from the single-sided boundary to a point in the medium without artifacts caused by the
internal multiples. Estimating a focusing function is not a straightforward process, how-
ever. The single-sided focusing function is defined as the inverse of the transmission
response that is truncated below the focal location of the wavefield [26]. If one wants
to obtain the transmission response, physical receivers inside the Earth are required,
which is unpractical. A better alternative is to obtain the focusing function through the
use of the Marchenko method, which is based on the Marchenko equation of quantum
mechanics by Marchenko [27]. The method is an advanced way to estimate the Green’s
function and focusing function from reflection data, that contain no free-surface multi-
ples, at the surface of the Earth. Some of the original principles of single-sided focusing
were shown by Rose [28], Broggini et al. [29] and Slob et al. [30], for 1D media. Wape-
naar et al. [31], Broggini et al. [32] and Behura et al. [33] further developed the method
for 2D and 3D media. They showed that when the focusing function is convolved with
single-sided reflection data at the surface of the Earth, the result is a superposition of
the Green’s function and the focusing function that are related to a focal position inside
the medium. The equation that describes this is a Green’s function representation. If the
medium of interest is acoustic, the two functions are separated in time except for the
direct arrival of both wavefields, which overlay each other in time. By applying a tem-
poral muting operator, the Green’s function can be removed from the result and only the
focusing function remains. In this way, an equation with only one unknown remains,
namely the focusing function. This Marchenko-type equation can be solved using ei-
ther an iterative scheme [34] or an inversion [35] and only requires a first estimation of
the focusing function. For this purpose, often the direct arrival of the wavefield is em-
ployed, which can be estimated from a macro velocity model. After the focusing func-
tion has been obtained, it can be used in the Green’s function representation to obtain
the Green’s function. Furthermore, the Green’s function representation can also be de-
composed to relate the upgoing and downgoing Green’s function to the upgoing and
downgoing focusing function. Similarly, the Marchenko equation can be decomposed
into the coupled Marchenko equations so that the decomposed focusing functions can
be obtained, which can be used in the decomposed Green’s function representation to
obtain the decomposed Green’s functions [36]. All wavefields, the Green’s functions and
focusing functions, that are required for the single-sided representation of the homo-
geneous Green’s function can be obtained through a 2D or 3D implementation of the
Marchenko equations and the Green’s function representations.

The Marchenko method has the advantage that a virtual source or receiver can be
created at any point in the medium of interest, as long as this is covered by the aper-
ture and recording length of the reflection data. The method has the disadvantage that
evanescent waves are ignored and that the medium of interest is assumed to be lossless.
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While this makes it challenging to apply the method to field data, the method has been
successfully applied in the field for the purpose of imaging in both 2D [37–40] and 3D
[41]. Furthermore, it has been shown that the method can be employed in a variety of
ways and schemes. The method has been applied to elastic reflection data [42–44], to
remove the internal multiples from reflection data [38, 45], to work with a lossy medium
[46], to work with plane-waves [47], to obtain reflection data that only contain primaries
[48], to work with reflection data that contain free-surface multiples [49, 50] or to handle
media with very thin bedding [51, 52], among others. Wapenaar et al. [25] showed that
the Marchenko method can be used in combination with the single-sided representa-
tion of the homogeneous Green’s function to create a virtual source-receiver pair at any
point in the medium and demonstrated this on numerical data.

The main interest of this thesis is the possibility of using the Marchenko method and
the single-sided representation of the homogeneous Green’s function for the purpose of
monitoring and forecasting of wavefields related to induced seismicity. While the single-
sided representation has been shown to work with 2D numerical data, previous work
has not demonstrated that the method can be applied to 2D field data. Furthermore,
while a 2D acquisition of the reflection data in a 3D medium can be achieved, this setup
will introduce errors due to the fact that the 3D effects are not properly handled [53]. As
such, the 2D application of the method will not suffice for complex 3D media. The goal
of this thesis is to determine if the single-sided representation can be applied for realistic
situations involving induced seismicity. The thesis contains the following chapters:

• Chapter 2: Virtual sources and receivers in the real Earth
This chapter considers the application of the single-sided representation to a field
dataset containing 2D reflection data and an interpreted velocity model using the
Marchenko method. The single-sided representation is compared to the classi-
cal representation for point sources. Aside from an isotropic point source, the
response from a point source that has a double-couple radiation pattern is con-
sidered.

• Chapter 3: Monitoring of induced distributed double-couple sources using
Marchenko-based virtual receivers
This chapter considers the difference between monitoring and forecasting the in-
duced seismicity using the single-sided representation for the homogeneous
Green’s function and the Marchenko method. In the monitoring application, only
the focusing functions are obtained through the use of the Marchenko method
and the seismicity is measured. In the forecasting application, the seismicity is not
measured, but obtained through the Marchenko method as well. Both approaches
are demonstrated on numerical data and field data.

• Chapter 4: Implementation of the 3D Marchenko method
In this chapter, the implementation of the Marchenko method in 3D is consid-
ered. This includes not only the theoretical implementation, but also the practical
aspects, relating to data size and compute times. The method is used to retrieve
the Green’s functions inside a simple and complex 3D model and to create images
of these two models.



1

5

• Chapter 5: 3D virtual seismology
In this chapter, the 3D implementation of the single-sided homogeneous Green’s
function representation is considered, which is applied using the 3D Marchenko
implementation of the previous chapter. Both the monitoring and the forecast-
ing of induced seismicity are demonstrated on 3D numerical data for a strongly
heterogeneous rupture plane.

• Chapter 6: Conclusions and recommendations
In this chapter, conclusions are drawn based on the results of the other chapters.
Recommendations are given based on the results to further develop the ideas and
techniques that are described in this thesis.

• Appendices
In Appendix A, a method is shown to redatum the focusing functions from the sur-
face of the Earth to locations in the subsurface, which can help to remove artifacts
from the causal Green’s function retrieval.
In Appendix B, the single-sided homogeneous Green’s function representation is
used to retrieve the homogeneous Green’s function using reflection data that were
measured in a lab experiment.



2
VIRTUAL SOURCES AND RECEIVERS

IN THE REAL EARTH

To enhance monitoring of the subsurface, virtual sources and receivers inside the sub-
surface can be created from seismic reflection data at the surface of the Earth using the
Marchenko method. The response between these virtual sources and receivers can be ob-
tained through the use of homogeneous Green’s function retrieval. A homogeneous Green’s
function is a superposition of a Green’s function and its time-reversal. The main aim of
this chapter is to obtain accurate homogeneous Green’s functions from field data. Clas-
sical homogeneous Green’s function retrieval requires an unrealistic enclosing recording
surface, however, by using a recently proposed single-sided retrieval scheme, this require-
ment can be avoided. We first demonstrate the principles of using the single-sided repre-
sentation on synthetic data and show that different source signatures can be taken into
account. Because the Marchenko method is sensitive to recording limitations of the reflec-
tion data, we study five cases of recording limitations with synthetic data and demonstrate
their effects on the final result. Finally, the method is demonstrated on a pre-processed
field dataset which fulfills the requirements for applying the single-sided Green’s function
retrieval scheme. The scheme has the potential to be used in future applications, such as
source localization.

This chapter was published as J. Brackenhoff, J. Thorbecke, & K. Wapenaar, Virtual sources and receivers in the
real Earth: Considerations for practical applications. Journal of Geophysical Research: Solid Earth, 124, 11802-
11821 (2019).
Minor modifications have been applied to the text and figures for the sake of consistency in the thesis.
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2.1. INTRODUCTION
Seismic data can be used in a variety of ways to monitor and explore the subsurface of the
Earth. Such data are obtained by measuring the wavefield that is propagating through
the subsurface at physical receivers. Seismic data can be acquired using an active source
at the surface of the Earth, in which case receivers are usually located on the same sur-
face as the source, or in a borehole. The receivers measure the full wavefield, i.e., both
primary and multiply scattered events. These measurements are often used to obtain
information about the structure of the subsurface and its properties [54]. Alternatively,
data can be acquired using a passive source, which is a source of the wavefield that oc-
curs naturally in the subsurface of the Earth. In this setup, the wavefield is recorded by
a continuously recording receiver array, usually at the surface of the Earth. These mea-
surements can contain additional information about processes in the subsurface, such
as induced seismicity [55]. These types of measurements are receiving more attention
because of the potentially damaging effects of induced seismicity in residential areas
[56, 57].

Active measurements can be employed to supplement the passive measurments. Us-
ing advanced seismic processing techniques, the wavefield that is measured at the sur-
face of the Earth can be redatumed to locations inside the subsurface. By redatuming
receivers from their physical location on the surface to locations at depth, virtual re-
ceivers are created. The advantage of such virtual receivers is that, by considering many
of them, the evolution of the wavefield through the subsurface over time can be studied,
which can provide relevant information about source mechanisms and the locations of
scatterers in the subsurface. Similar to receiver redatuming, physical sources at the sur-
face can be redatumed to create virtual sources at any location in the subsurface. Fur-
thermore, the response between any combination of a virtual source and virtual receiver
can be retrieved, a process we call homogeneous Green’s function retrieval. Whereas
a Green’s function describes the response of a medium to a Dirac function, a homo-
geneous Green’s function is a Green’s function superposed by its time-reversal to avoid
a source singularity. The classical representation for the homogeneous Green’s function
retrieval was derived by Porter [15]. This method was further extended for inverse source
problems by Porter and Devaney [16] and inverse scattering methods by Oristaglio [17].
This classical representation has been employed as the theoretical basis in the field of
seismic interferometry to create virtual sources [20–22] or virtual receivers [23]. How-
ever, in all of these applications, it appeared that a complete enclosing boundary is vital
for retrieving a full homogeneous Green’s function without artifacts.

Recently, a new single-sided representation for homogeneous Green’s function re-
trieval has been derived. Instead of an enclosing boundary, it uses a single, non-enclosing
boundary, typically the Earth’s surface [58]. An example of the application of this method
on synthetic data can be found in Wapenaar et al. [25]. In this approach, the data-driven
Marchenko method is used to create virtual sources and receivers in the subsurface from
reflection data at the Earth’s surface. Using the homogeneous Green’s function retrieval,
the response between one selected virtual source and all virtual receivers is obtained.
The Marchenko method, for the purpose of geophysial applications, was first proposed
for 1D by Broggini et al. [29], based on work by Rose [59], and was later extended for 2D
and 3D applications [26, 60]. The method uses two types of input. The first is active-
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source single-sided seismic reflection data measured at the surface of the Earth. The
second is an estimation of the first wavefield event, which is called the first arrival, that
would be caused by a source from a location in the subsurface to receiver locations at the
surface of the Earth (hence, the first arrival of a Green’s function between a subsurface
location and the surface). The locations of the receivers of the Green’s function match
the locations of the receivers of the reflection response. The Marchenko method uses
these data to create a full waveform Green’s function, including all multiple scattering,
for a virtual source in the subsurface and receivers at the Earth’s surface. To model the
first arrival, only a background velocity model is required, which can be estimated by
processing the reflection data. A dense array of virtual sources for Green’s functions in
the subsurface can be created through repeated use of this methodology. Aside from the
Green’s function, the Marchenko method is also capable of retrieving a focusing func-
tion, which is designed to focus from the single-sided surface, where the reflection re-
sponse is measured, to a focal location in the subsurface without any reverberation arti-
facts. The single-sided representation uses the focusing function, together with a Green’s
function, to create the response between a virtual source and receiver. Due to the single-
sided focusing properties of the focusing function, the retrieval can be done for a single-
sided recording setup without any artifacts.

Employing the Marchenko method on field data for practical applications is chal-
lenging due to the sensitivity of the Marchenko method to recording limitations of the
reflection response. The sensitivity is partially caused by the fact that in the deriva-
tion of the Marchenko method, evanescent waves are ignored and it is assumed that
the medium of interest is lossless. In real media, the wavefield suffers from absorption,
which violates the latter assumption. Furthermore, the method requires the reflection
response to be well sampled and the aperture to be sufficiently large. The Marchenko
method has been succesfully applied on field data, by pre-processing the reflection re-
sponse. Examples for the purpose of imaging can be found in Ravasi et al. [37] and
Staring et al. [38], who used adaptive corrections in the Marchenko method. Homoge-
neous Green’s function retrieval using the single-sided representation on field data was
achieved by Wapenaar et al. [61] and Brackenhoff et al. [62].

The aim of this chapter is to apply the single-sided representation on field data and to
consider the influence of recording limitations of the reflection response on the retrieved
homogeneous Green’s functions. To this end, we consider a 2D field seismic dataset from
the Vøring basin off the coast of Norway. Along with the field data, we also consider
a subsurface model, that is designed to simulate the subsurface of the area where the
actual reflection response is recorded. Using this model, synthetic reflection data are
created. First, we use the synthetic data to make a comparison between the results that
are obtained when the single-sided representation is used and when the classical repre-
sentation is used. The results show that the homogeneous Green’s function is more ac-
curately retrieved when the single-sided representation is used. The first arrivals that are
used in these tests in the Marchenko method are all modeled using a monopole source
mechanism. To study the influence of the source mechanism on the final result, the ex-
periment is repeated using first arrivals that were modeled using a double-couple source
mechanism, which is more representative for small-scale earthquakes [8]. The homoge-
neous Green function that is obtained in this way still contains the correct events and
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has a double-couple signature. Next, we determine the sensitivity of the result to five
recording limitations on the reflection data, namely coarse source-receiver sampling,
missing near offsets, small aperture, offsets missing in one direction and absorption of
the reflection data. The results of these numerical experiments are taken into account
so that the field reflection data can be pre-processed and the single-sided representation
can be applied properly. We employ both the classical and single-sided representation
to the field data in order to compare the results. The applications show the potential of
the single-sided representation for field data, as well as the possibility of applying the
representation to passive field recordings.

2.2. THEORY
In this section, we present an overview of the definitions and equations that are re-
quired for homogeneous Green’s function retrieval. The Green’s function and focus-
ing function are reviewed, followed by the definitions of the classical enclosed bound-
ary and single-sided representations for homogeneous Green’s function retrieval. The
Marchenko method and its limitations are considered, as well as the double-couple
source mechanism.

2.2.1. GREEN’S FUNCTION
The Green’s function is defined as the solution of the wave equation to a Dirac point
source which can be written as [63, 64]:

∂i (ρ−1∂i G)−κ∂2
t G =−δ(x−xA)∂tδ(t ), (2.1)

where G = G(x,xA , t ) describes the response of the medium, at time t , at location x to
a source at location xA . The locations are defined in 3D such that x = (x1, x2, x3). The
symbols ρ = ρ(x) and κ = κ(x) indicate the density and compressibility of the medium,
respectively, δ indicates a Dirac delta function, ∂t a temporal derivative and ∂i the partial
derivative in the three principal directions. The repeated subscript i follows the Einstein
summation convention. Note that the source at the right hand side is defined with a
temporal derivative acting on the Dirac delta function. This choice is made to simulate
a volume injection-rate source. According to the reciprocity principle, the source and
receiver location of the Green’s functions can be interchanged, G(x,xA , t ) =G(xA ,x, t ).

We also consider the Fourier-transformed Green’s function G(x,xA ,ω):

G(x,xA ,ω) =
∫ ∞

−∞
G(x,xA , t )e iωt dt , (2.2)

where ω denotes the angular frequency and i the imaginary unit. Note, that the sign
in the exponential can be reversed, as long as the same is done for the inverse Fourier
transform. Using Equation (2.2), Equation (2.1) is transformed to the frequency domain:

∂i (ρ−1∂i G)+ω2κG = iωδ(x−xA). (2.3)

A schematic illustration of the Green’s function is shown in Figure 2.1(b), where the re-
ceivers are placed at the surface of a medium and its source inside the medium. We
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Figure 2.1: Possible raypaths drawn for, (a) a reflection response R(x,xS , t ), measured at varying receiver lo-
cations x at the surface, with a source at xS also at the surface, (b) a Green’s function G(x,xA , t ), measured
at varying receiver location x at the surface with a source at xA inside the medium, (c) a focusing function
f1(x,xA , t ), emitted from the surface at varying locations x, focusing to a focal location xA inside a medium
that is truncated below xA (indicated by the horizontal dotted line), and (d) a homogeneous Green’s function
Gh(xA ,xB , t ), between two locations, xA and xB inside the medium. The homogeneous Green’s function is in-
dicated with two-sided arrows to represent that it is the superposition of Green’s function and its time-reversal.
The dotted arrows in (b) and (c) indicate the first arrival for the Green’s function and focusing function. The
surfaces at the top of all figures are transparent, hence, there are no free-surface multiples.

assume that the medium has a transparent reflection-free halfspace at the top of the
medium. In practice this situtation is obtained after the elimination of surface-related
multiples. Some possible raypaths, including scattering, have been drawn in the figure.
Figure 2.1(a) shows a special case of the Green’s function, with both source and receivers
placed at the surface of the medium. This is called the reflection response R(x,xS , t ) and
contains all the reflections, both primaries and multiples, of the medium, however, we
assume that the direct wave from the sources to the receivers are not present in the re-
flection response.

The homogeneous Green’s function is defined as the superposition of the Green’s
function and its time-reversal. Because of the temporal derivative on the Dirac delta
function in Equation (2.1), when time-reversal is applied, the source term will obtain an
opposite sign. As a result, the superposition of the Green’s function and its time-reversal
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removes the source term, thereby avoiding a singularity at the source position:

Gh(x,xA , t ) =G(x,xA , t )+G(x,xA ,−t ), (2.4)

∂i (ρ−1∂i Gh)−κ∂2
t Gh = 0, (2.5)

and in the frequency domain:

Gh(x,xA ,ω) =G(x,xA ,ω)+G∗(x,xA ,ω) = 2ℜ{G(x,xA ,ω)}, (2.6)

∂i (ρ−1∂i Gh)+ω2κGh = 0, (2.7)

where Gh(x,xA , t ) and Gh(x,xA ,ω) denote the homogeneous Green’s function in the time
domain and frequency domain, respectively, ℜ is the real part of a complex function and
the asterisk indicates complex conjugation. Figure 2.1(d) shows a schematic illustration
of the homogeneous Green’s function, Gh(xA ,xB , t ), with some possible raypaths drawn,
with both its source and receiver inside the medium. To reflect the superposition of the
Green’s function and its time-reversal, the raypaths are indicated with two-sided arrows.

2.2.2. FOCUSING FUNCTION

The focusing function f1(x,xA , t ) describes a wavefield, at time t , at location x, that fo-
cuses to a focal location xA in the subsurface. The focusing function propagates in a
medium that is truncated below xA , which means that there are no reflectors present
below the focal location.

The focusing function can be decomposed into its upgoing and downgoing parts:

f1(x,xA , t ) = f +
1 (x,xA , t )+ f −

1 (x,xA , t ), (2.8)

where f +
1 (x,xA , t ) denotes the downgoing focusing function and f −

1 (x,xA , t ) the upgoing
focusing function. The downgoing part of the focusing function is defined as the inverse
of the transmission response of the truncated medium [26].

The focusing function is schematically illustrated in Figure 2.1(c), where some possi-
ble raypaths have been drawn. The first arrival, which is indicated by the dotted raypath,
propagates from the surface to the focal location and scatters at the reflectors, creating
an upgoing wavefield. In order to ensure that these upgoing waves do not cause addi-
tional events arriving after the wavefield has focused, additional downgoing waves are
injected from the surface, which cancel out these events. This occurs at the locations
where arrowheads meet in Figure 2.1(c). Because of the reflection-free surface at x, there
are no events present in the focusing function to account for free-surface multiples. A
more detailed description of the focusing function can be found in Slob et al. [30].

2.2.3. HOMOGENEOUS GREEN’S FUNCTION REPRESENTATION

The classical representation of the homogeneous Green’s function states that the re-
sponse between a source and receiver inside a medium can be retrieved from observa-
tions at a boundary. In order to achieve this, an enclosing boundary around the medium
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f2(xA ,x, t )

Gh(xA ,xB , t )

D

∂D0

(b)

Figure 2.2: Recording setup for homogeneous Green’s function retrieval using (a) the classical representation
and (b) the single-sided representation. For both setups, a Green’s function, G(x,xB , t ) is utilized. For the
classical representation, an additional Green’s function, G(xA ,x, t ) is used to create a virtual receiver location.
The medium of interest D is surrounded by an enclosing boundary ∂D. Equation (2.9) is evaluated over this
enclosing boundary. For the single-sided representation, the virtual receiver is not created using a Green’s
function, but rather a focusing function, f2(xA ,x, t ). The medium D is not enclosed, instead only a single-
sided non-enclosing boundary ∂D0 is present at a single side. Equation (2.10) is evaluated over this single-sided
boundary. The homogeneous Green’s function is indicated by the dotted line.

of interest, over which the data can be recorded and/or injected, needs to be present
[15–17]. The classical representation in the frequency domain can be written as follows:

Gh(xA ,xB ,ω) =
∮
∂D

−1

iωρ(x)
{∂i G∗(xA ,x,ω)G(x,xB ,ω)

−G∗(xA ,x,ω)∂i G(x,xB ,ω)}ni dx,
(2.9)

where ni indicates the components of the normal vector in the three principal directions.
The integral is evaluated over a boundary ∂D enclosing the mediumD. In Equation (2.9),
the function G(x,xB ,ω) describes the response of the medium at varying location x at
the boundary to a source at location xB inside the medium. The time-reversed function
G∗(xA ,x,ω) back-propagates the responses from the boundary to the receiver location
xA , thereby creating a virtual receiver at xA . A schematic overview of the application of
this representation is shown in Figure 2.2(a).

In practice, the classical representation is often not evaluated correctly, because ac-
quisition on an enclosing boundary is not feasible and only measurements on a single-
sided non-enclosing boundary, usually the Earth’s surface, are available. As an approx-
imation, Equation (2.9) can be evaluated over the single-sided boundary. Applying the
representation in this way causes significant artifacts in the retrieved homogeneous
Green’s function, however. Due to the fact that few alternatives are available, the method
is still widely applied to cases where no closed boundaries are present.

An alternative representation that can be employed uses a focusing function instead
of a Green’s function. This representation is capable of retrieving the full homogeneous
Green’s function with significantly less artifacts from a single-sided boundary, hence it is
referred to as the single-sided representation. It can be written as [58, equation 30]:

Gh(xA ,xB ,ω) = 4ℜ
∫
∂D0

1

iωρ0
G(x,xB ,ω)∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
d2x, (2.10)
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where ∂D0 denotes the single-sided boundary and ρ0 is the density at the single-sided
boundary. The right hand side of Equation (2.10) can be combined in a single focusing
function, f2(xA ,x,ω), as:

f2(xA ,x,ω) = f +
1 (x,xA ,ω)− { f −

1 (x,xA ,ω)}∗. (2.11)

In Equation (2.10), G(x,xB ,ω) serves again as the response to a source location inside the
medium, measured at the single-sided boundary ∂D0. The focusing function f2(xA ,x,ω)
serves as the back-propagator of the responses from the boundary to the focal location
inside the medium. A schematic representation of this procedure is shown in Figure
2.2(b).

The two representations in Equations (2.9) and (2.10) for homogeneous Green’s func-
tion retrieval are similar in form, as both use a backward propagator on the response
measured on the boundary. The main difference is that, for the single-sided representa-
tion, the backward propagator is a focusing function instead of a time-reversed Green’s
function. As one can interpret from Figure 2.1(c), the convergence of the focusing func-
tion to the focal location is ensured by the first arrival, whereas the coda of the focusing
function removes unwanted reflections caused by the first arrival when it encounters re-
flectors while propagating to the focal location. The arrival times of the direct wave of
the focusing function are the same as the arrival times of the direct wave of the time-
reversed Green’s function. The difference is that the coda of the focusing function is
designed to cancel out the events that are introduced by the direct arrival, whereas the
coda of the time-reversed Green’s function introduces additional artifacts, in the form of
reverberations.

2.2.4. MARCHENKO METHOD
We use the Marchenko method to retrieve the focusing functions and Green’s functions
required for the representations for homogeneous Green’s function retrieval. A more
detailed consideration of the method can be found in Wapenaar et al. [26]. Here we
only consider the equations and properties of the method relevant for this chapter. The
Green’s function and focusing function of a medium are related via the reflection re-
sponse:

G(x,xB , t )− f2(xB ,x,−t ) =
∫
∂D0

∫ ∞

−∞
R(x,xS , t ′) f2(xB ,xS , t − t ′)dt ′d2xS , (2.12)

where xB is a location inside the mediumD and xS indicates the array of sources that are
present on the non-enclosing surface ∂D0. Equation (2.12) states that if the reflection re-
sponse R at a boundary ∂D0 and a focusing function with a focal location inside medium
D are available, the Green’s function with a source at the focal location can be retrieved.
The retrieval of the focusing function inside the medium can be achieved using the iter-
ative Marchenko equation:

f2,k+1(xB ,x,−t ) =

D(x,xB , t )−wt (x,xB , t )
∫
∂D0

∫ ∞

−∞
R(x,xS , t ′) f2,k (xB ,xS , t − t ′)dt ′d2xS ,

(2.13)
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where f2,k (xB ,x, t ) is the estimated focusing function after k iterations, D(x,xB , t ) is the
first arrival of the Green’s function and wt (x,xB , t ) is a windowing function. The win-
dowing function is used to mute the Green’s function completely. When the windowing
function is applied to Equation (2.12), the Green’s function is removed. The arrival times
of the first arrival of the Green’s function are the same as the arrival times of the last
arrival of the time-reversed focusing function, hence the windowing function also re-
moves the last arrival of the time-reversed focusing function, however, it will not remove
the coda of the time-reversed focusing function. Therefore, in order to obtain the full
focusing function in Equation (2.13), D(x,xB , t ) needs to be added after the windowing
function has been applied. The windowing function wt (x,xB , t ) can be estimated from
D(x,xB , t ), as the edge of the muting area is located around the first arrival. In order
to use Equation (2.13) and start the iterative scheme, a first estimation of the focusing
function is required. The time-reversed first arrival D(xS ,xB ,−t ) of the Green’s function
is used as this first estimation of the focusing function f2,0(xB ,xS , t ). If this arrival is emit-
ted into the medium, it will cause additional reflections that are not cancelled. By using
Equation (2.13) iteratively, until convergence is achieved, the coda of the focusing func-
tion is retrieved, which will suppress the undesired reflections. The only required com-
ponents for the iterative scheme are a reflection response measured at the single-sided
boundary (i.e. the Earth’s surface) and the direct arrival from the focal point to the same
boundary. This direct arrival can be modeled using a smooth velocity model. Because
only the direct arrival is of interest, the model requires no detailed features. Generally, a
monopole point source is used to model these first arrivals. After the focusing function
has been retrieved, it can be used in Equation (2.12) to compute the Green’s function,
G(x,xB , t ). Subsequently, this Green’s function and a similarly derived focusing function
for focal point xA are used in Equation (2.10) to retrieve the homogeneous Green’s func-
tion, Gh(xA ,xB ,ω). All the Green’s functions and focusing functions in this chapter are
retrieved using the Marchenko method to ensure the representations are applied to the
field data and the synthetic data in the same way.

The Marchenko method has restrictions, particularly when it is applied on field data.
An important underlying assumption of the Marchenko method that is considered in
this chapter, is that no free-surface multiples are present in the reflection response.
Hence, the free-surface multiples should be removed prior to applying the Marchenko
method, for example by applying a surface-related multiple elimination scheme [65].
There are ways to incorporate these multiples in the Marchenko method as well, for an
example, see Singh et al. [49]. Additionally, the reflection response that is used needs to
be accurate, as issues with the quality of the recording have strong influences on the fi-
nal result. An important requirement is that the medium of interest needs to be lossless,
which is an unrealistic approximation in real media. Also, the reflection response needs,
preferably, to be densely sampled, contain both positive and negative source-receiver
offsets and have sufficient recording length and aperture. The effects of some of the
limitations of the Marchenko method are considered in Ravasi et al. [37], Brackenhoff
[66] and Staring et al. [38]. When synthetic data are used, the reflection response can
be modeled without these limitations. However, when field data are recorded, not all of
these requirements are fulfilled and appropriate pre-processing is required.
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2.2.5. DOUBLE-COUPLE SOURCE
As mentioned before, the Green’s functions and focusing functions that are retrieved us-
ing the Marchenko method usually have a monopole source signature. In the field, espe-
cially for passive recordings, there are many different types of source mechanisms. These
different source mechanisms can be taken into account for the homogeneous Green’s
function retrieval as well. We show this by incorporating a double-couple source mech-
anism in the representation. This mechanism is chosen because it is considered to be
representative for an earthquake reponse when the wavelength of the wavefield is larger
than the dimensions of the source [8]. The mechanism differs from a monopole source
in the sense that the radiation pattern is not homogeneous, rather, the polarity and am-
plitude vary depending on the radiation angle of the source. There will be four distinct
polarity changes along the radiaton pattern, at 90, 180, 270 and 360 degrees. The source
can be inclined at various angles, for example aligned along a fault, which changes the
orientation of the polarity changes as well.

Operator Dθ
B {·} is introduced, which transforms a monopole source signature to a

double-couple source signature. This operator is defined as

Dθ
B {·} = (θ∥i +θ⊥i )∂i ,B {·}, (2.14)

where ∂i ,B is a component of the vector containing the partial derivatives acting on the
monopole signal originating from source location xB , to transform the source signature
to a double-couple mechanism, θ∥i is a component of the unit vector that orients one

couple of the signal parallel to the fault plane and θ⊥i is a component of a similar vector
that orients the other couple perpendicular to the fault plane. The operator is applied to
the representation for homogeneous Green’s function retrieval in Equation (2.10), which
yields:

Dθ
B {Gh(xA ,xB ,ω)} =

4ℜ
∫
∂D0

1

ωρ(x)
Dθ

B {G(x,xB ,ω)}∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
d2x,

(2.15)

where the subscript B in the double-couple operator indicates that the operator acts on
the source in location xB . In this representation, the double-couple operator is only ap-
plied to the Green’s function for the virtual source location, G(x,xB ,ω), and not to the fo-
cusing functions, f +

1 (x,xA ,ω)−{ f −
1 (x,xA ,ω)}∗, for the virtual receiver location. This is be-

cause the focusing function is retrieved using Equation (2.13), and thus has a monopole
source signature. For the retrieval of the Green’s function, Dθ

B {G(x,xB , t )}, we apply the
double-couple operator to Equations (2.12) and (2.13):

Dθ
B {G(x,xB , t )}−Dθ

B { f2(xB ,x,−t )} =∫
∂D0

∫ ∞

−∞
R(x,xS , t ′)Dθ

B { f2(xB ,xS , t − t ′)}dt ′d2xS ,
(2.16)

Dθ
B { f2,k+1(xB ,x,−t )} =Dθ

B {D(x,xB ,−t )}−

wt (x,xB , t )
∫
∂D0

∫ ∞

−∞
R(x,xS , t ′)Dθ

B { f2,k (xB ,xS , t − t ′)}dt ′d2xS .
(2.17)
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The first arrival is modeled using the double-couple source mechanism instead of a
monopole source mechanism, and used in Equation (2.17), for k=0, asDθ

B { f2,0(xB ,xS , t )}.

This results in an estimation of the focusing function Dθ
B { f2(xB ,x, t )}, with a double-

couple source mechanism. This focusing function is then used in Equation (2.16) to
obtain the Green’s function Dθ

B {G(x,xB , t )} with a double-couple source signature, which
in turn is used in Equation (2.15).

2.3. DATASETS
We consider both a synthetic dataset and a field dataset. The synthetic dataset is based
on the field dataset, hence we first consider the parameters of the field recording before
the synthetic dataset is considered.

2.3.1. VØRING DATA
The considered field data were recorded in a marine setting over the Vøring basin in
offshore Norway by SAGA Petroleum A.S., which is currently part of Equinor. The data
consist of a reflection response acquired along a 2D line. For each source location, the
receivers were moved along with the source position. The parameters of the acquisition
can be found in Table 2.1. An example of a single common-source record is shown in
Figure 2.3(a), where the wavelet on the data has been reshaped to a 30Hz Ricker wavelet
for display purposes (a Ricker wavelet is defined as minus the second time-derivative of
a Gaussian function). There are several events present in the common-source record,
however it should be noted that the near offsets are missing. This is a common sit-
uation for marine acquisition, because receivers cannot be placed too close to active
sources. The sources and receivers are located inside the water, and because S-waves
cannot propagate in water, only P-waves are measured by the receivers. There are con-
versions from P-waves to S-waves and back in the subsurface below the water, so there
are P-waves present in the reflection data that were converted from S-waves. The data
also contain free-surface multiples, which are indicated by the black arrows.

Table 2.1: Acquisition parameters for the Vøring dataset.

Parameter Value

Number of source positions 399
Source spacing 25m
First source position 5000m
Final source position 14950m
Number of receiver positions per source 180
Receiver spacing 25m
Minimum source-receiver offset 150m
Maximum source-receiver offset 4625m
Number of recording samples 2001
Sampling interval 0.004s
High-cut frequency 90 Hz

Aside from the reflection data, a smooth P-wave velocity model is provided by the
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Figure 2.3: (a) Unprocessed common-source record of the reflection response recorded in the Vøring basin.
The source is located at zero offset, where along with other near offsets no data could be recorded. Free-
surface multiples are present in the data at late times, indicated by the black arrows. (b) Estimated P-wave
velocity model in m s−1 of the subsurface region where the data in the Vøring basin were recorded. The white
dashed box represents the region of interest. (c) Image of the region of interest, indicated by the white dashed
box in (b). The wavelet in the data in (a) and (c) has been reshaped into a 30Hz Ricker wavelet for display
purposes.

Delphi Consortium and displayed in Figure 2.3(b). This model is used to create the first
arrivals required for the Marchenko method. The dashed white box in Figure 2.3(b) in-
dicates the region of interest where the homogeneous Green’s functions are retrieved in
this chapter. An image of the region of interest was constructed, which is shown in Fig-
ure 2.3(c), using the reflection data, the velocity model and a one-way recursive depth
migration based on Thorbecke et al. [67]. Imaging is not the main subject of this chap-
ter, so the details of the construction of this image are not discussed, however it should
be noted that free-surface multiples were removed prior to imaging. Also note that the
retrieval of the homogeneous Green’s function (discussed in the sections on synthetic
data and field data) and the construction of the image were done independently of each
other. The image is used to construct a subsurface model and to validate the homoge-
neous Green’s function retrieval on the field data.

2.3.2. SYNTHETIC DATA

The synthetic models that we use in this chapter are based on the field dataset. Because
there are no direct measurements of the subsurface available, an acoustic model is in-
terpreted based on the smooth P-wave velocity model in Figure 2.3(b) and the image in
Figure 2.3(c). This is done, because there is no S-wave velocity information of the sub-
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surface available, hence we cannot construct an elastodynamic model. It is possible to
use an elastodynamic representation for homogeneous Green’s function retrieval, see
Reinicke and Wapenaar [44], however for the Vøring basin we do not have the required
multi-component data to do so.

To construct the model, we use the image to determine the locations of geological
layer boundaries and determine the P-wave velocities by calculating the interval veloci-
ties in the smooth P-wave velocity model between the contrasts. The interpreted veloc-
ity model is displayed in Figure 2.4(b), which shows hard boundaries. Notice that below
the area of interest there are no reflectors present in the medium. It is not possible to
achieve reliable imaging in this area, therefore no structures are interpreted. Features
outside the region of interest were extrapolated to create a full model. A density model is
also constructed in order to ensure strong amplitudes in the reflection data. Because no
direct measurements of density in the subsurface are available, it is not possible to cre-
ate a density model that represents the subsurface accurately. Instead, the densities are
chosen based on realistic ranges, that ensure strong contrasts between the layers. Figure
2.4(c) displays the density model.

The finite-difference wavefield modeling code by Thorbecke and Draganov [68] is
used to create the single-sided reflection data as input for the Marchenko method. The
reflection response of the interpreted model is modeled using the same measurement
parameters as for the real dataset, shown in Table 2.1, with pressure receivers recording
the modeled wavefield at the surface of the model, in response to force sources that are
located at the same surface. However, all offsets are included, no absorption is modeled
and free-surface multiples are ignored. When comparing Figure 2.3(a) and Figure 2.4(a),
there are similar events, however fewer events are present in the synthetic data. Not
all the reflectors in the subsurface can be properly imaged and interpreted, therefore
only the major features are present. The field data is more complex than the synthetic
data. Because the exact P-wave velocity and density information of the actual medium
are not available, there is an amplitude mismatch. The converted waves due to elastic
interactions from the actual recording are also not taken into account. Furthermore, no
free-surface multiples are present in the modeled reflection data.

2.4. SYNTHETIC DATA
The synthetic data are used to retrieve the homogeneous Green’s function. The single-
sided reflection data and the velocity model are the only information employed. Fur-
thermore, the velocity model is smoothed to create a background velocity model, with-
out any detailed features. This smooth velocity model is used in an Eikonal solver that is
based on the method by Vidale [69] to determine the arrival times from every location in
the region of interest, that is indicated in Figures 2.4(b) and (c), to the single-sided sur-
face. These arrival times are combined with amplitude estimations using the method by
Spetzler and Angelov [70] and convolved with a wavelet to create a band-limited pressure
wavefield with a monopole source signature. Note that only the smooth velocity model
is used for this approach and no density information is used. The first arrivals and the
reflection data are used as input for the iterative Marchenko equation, as described by
Equation (2.13), using the code by Thorbecke et al. [34]. The windowing function is cre-
ated by using the arrival times from the Eikonal solver. Through use of the iterative code,
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Figure 2.4: (a) Common-source record of the acoustic reflection response, modeled using finite-difference
modeling in the P-wave velocity model from (b) and density model from (c), at the same location as the
common-source record in Figure 2.3(a). The data have been convolved with a 30Hz Ricker wavelet for dis-
play purposes. (b) Synthetic P-wave velocity model in m s−1 based on the smooth velocity model from Figure
2.3(b) and the image from Figure 2.3(c). (c) Synthetic density model in kg m−3 based on the image from Figure
2.3(c). The white boxes in (b) and (c) indicate the region of interest.

Green’s functions and focusing functions are obtained.

2.4.1. HOMOGENEOUS GREEN’S FUNCTION RETRIEVAL

To demonstrate the advantage of the single-sided representation, we compare different
ways of retrieving the homogeneous Green’s function. We aim to replicate a realistic sit-
uation as much as possible, hence the only data that are used are the smooth velocity
model and the modeled reflection response. First, to create a benchmark for the homo-
geneous Green’s function, we model the wavefield directly inside the medium by plac-
ing a volume injection-rate source and pressure receivers inside the region of interest.
The wavefield is time-reversed and added to the original wavefield conforming to Equa-
tion (2.4) to create the homogeneous Green’s function. Three snapshots of this result are
shown in Figures 2.6(a)-(c) at 0ms, 200ms and 400ms, respectively. This is the result to
which the homogeneous Green’s functions that are obtained using the representations
in Equations (2.9) and (2.10) are compared to. In Figure 2.6, the wavefield is convolved
with a 15Hz Ricker wavelet and dotted black lines are shown for reference where we ex-
pect scattering to take place. This type of visualization is used for all the snapshots we
produce for the synthetic data.

Now, we assume that we do not know the exact model and use the Marchenko method
to retrieve Green’s functions in the region of interest in the subsurface, from the reflec-
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Figure 2.5: Flowchart for the retrieval of the homogeneous Green’s function for (a) the synthetic data and (b)
the field data.

tion data at the single-sided surface at the top of the model. These Green’s functions are
used to evaluate Equation (2.9) at the single-sided surface, not at an enclosing surface.
The location xB of one response, G(x,xB , t ), is kept constant as the virtual source posi-
tion, while the location xA of the other response, G(xA ,x, t ), varies to serve as the virtual
receiver positions. The positions of the virtual source and receivers are exactly the same
as the respective source and receiver positions of the modeled wavefield. The retrieved
homogeneous Green’s function is shown in Figures 2.6(d)-(f) at 0ms, 200ms and 400ms,
respectively. In Figure 2.6(d), for zero time, there is noise present in the entire snapshot,
and while there is a focus of the wavefield to the source position, there are strong artifacts
present directly above the source position. Furthermore, coherent artefacts with weaker
amplitudes are present throughout the snapshot. The snapshot at 200ms in Figure 2.6(e)
shows that the downgoing primary wavefield is retrieved, however, the upgoing primary
wavefield is missing, instead forming into a weakening event with incorrect arrival times.
Furthermore, while the coda of the wavefield has been retrieved with the correct upgoing
reflections, the downgoing reflections are missing, and downgoing artifacts from above
the source location are present in the snapshot. Aside from these problems, the snapshot
is contaminated by artifacts. The final snapshot at 400ms in Figure 2.6(f) shows similar
problems.

For comparsion, we repeat the experiment, however, instead of using a full Green’s
function G(x,xB , t ) for the virtual source, we only use its first arrival to reduce the num-
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ber of artifacts. The results are shown in Figures 2.6(g)-(i) at 0ms, 200ms and 400ms,
respectively. Compared to the previous experiment, the number of artifacts decreases,
although not all are removed. The strong source artifacts at time zero remain present
and the upgoing primary wavefield and downgoing coda are not restored.

Next we apply the single-sided representation using Equation (2.10). For the virtual
source location xS the same Green’s function, G(x,xB , t ), is used as in the previous two
experiments. However, the Green’s function that was used to create the virtual receiver,
G(xA ,x, t ), is replaced by a focusing function, f2(xA ,x, t ). Figures 2.6(j)-(l) shows the
result at 0ms, 200ms and 400ms, respectively. The improvement is noticeable, as arti-
facts are removed from the homogeneous Green’s function. Aside from this, the primary
wavefield is fully reconstructed, as is the coda of the downgoing wavefield. When com-
paring this result to the benchmark, it shows that the events are retrieved at the correct
locations and times, although an amplitude mismatch is present. This is due to the fact
that the amplitude of the first arrival is not exact, because we assume that we cannot
model the first arrival in the real medium. When the amplitude of the first arrival is in-
correct it scales the retrieved focusing functions and Green’s function, although the cor-
rect relative amplitude, arrival times and events are obtained [62, 66]. Some of the events
are not reconstructed, especially when the angle of the reflection is high. This is because
the single-sided boundary is assumed to be infinite, while in reality the aperture is lim-
ited. The reflection response lacks certain angles of reflection, so these angles cannot
be reconstructed for the homogeneous Green’s function. At zero time the snapshot con-
tains less artifacts, however, some remain, which contaminate the homogeneous Green’s
function at later times.

An analysis of the wavenumber-frequency spectrum of the homogeneous Green’s
function retrieved using Equation (2.10) revealed noise at locations corresponding to
high angles of the wavefield. As mentioned before, the aperture of the reflection re-
sponse is limited, so at these angles no events can be reconstructed. However, this
also introduces noise into the final result as the Marchenko method tries to reconstruct
these angles. To remove the noise at these high angles, dip filtering is applied to the
homogeneous Green’s function, which can be applied because no physical events are
reconstructed for these angles. This creates some small artifacts around the first arrival
of the homogeneous Green’s function, which in turn are removed by applying a time-
dependent taper. The improved result is shown in Figure 2.6(m)-(o) at 0ms, 200ms and
400ms, respectively. None of the desired events have been removed, however, the arti-
facts around the source position are gone. When this result is compared to the modeled
response, we find the match of the arrival times quite satisfactory, while the amplitude
mismatch remains, and the improvement over the homogeneous Green’s function ob-
tained using the classical representation is significant. When comparing the result of this
retrieval to the modeled result from Figure 2.6(a)-(c), the match between desired events
and their arrival times are strong. A notable difference occurs in the shape of the source
at zero time. When the wavefield is modeled directly, the source radiates uniformly in all
directions, however, when the wavefield is retrieved with the Marchenko method, this
is not possible. This is caused by the limited aperture, which cannot capture the parts
of the wavefield that propagate horizontally at this depth. Additionally, the dip filtering
that is applied will also affect the source radiation. Even with these limitations, this type
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of workflow yields the optimal result, and is used for the retrieval of the homogeneous
Green’s function from here onward. The workflow is summarized in Figure 2.5(a).

Finally, we consider the workflow in Figure 2.5(a) with a double-couple source mech-
anism. Instead of using Equation (2.10) for the homogeneous Green’s function retrieval,
we use Equation (2.15). This means that we use a Green’s function, with a double-couple
source signature, obtained with the Marchenko method, to investigate whether the
source signature has a strong effect on the retrieved homogeneous Green’s function. A
first arrival caused by a double-couple source, needed to initiate the Marchenko method,
cannot be retrieved using the Eikonal solver, therefore we model the required first arrival
using the finite-difference code. The double-couple source mechanism is incorporated
into the code using the moment tensor approach for finite-difference modeling, as de-
scribed by Li et al. [71]. The double-couple source mechanism is an elastic mechanism,
however, it is assumed that all the data are acoustic. To model an acoustic response to
the double-couple source, we use the smoothed P-wave velocity model and a homo-
geneous density model of 1000kg m−3, respectively, as well as a homogenous S-wave
velocity model of 1000m s−1, except for the top layer where the S-wave velocity is set to
zero, simulating a marine setting. This means that no S-waves will arrive at the receiver
locations. The coda of this modeling will be incorrect, however, as we only use the first
arrival, this has no consequences for our results, aside from the scaling of the first ar-
rival. The first arrival will be a pure P-wave, as the velocities of the P-wave model are
larger than those of the S-wave model, which is a realistic situation.
We use a double-couple source that was inclined at -20 degrees to model the first ar-
rival that it is used in the Marchenko method to create a Green’s function. This Green’s
function replaces the one created from a monopole source that was used in the previous
examples and the resulting homogeneous Green’s function is shown in Figures 2.6(p)-
(r). The arrival times of the events are the same as the ones in the previous experiment
where only monopole signatures were employed. The main differences are found in the
polarity of the events. Due to the double-couple source, the amplitude and polarity of
the wavefield changes depending on the angle. Because the source we used to model
the first arrival for the Green’s function is inclined at -20 degrees, these polarity changes
are not occuring at 90, 180, 270 and 360 degrees, but, shifted by -20 degrees, at approx-
imately 70, 160, 250 and 340 degrees. All retrieved events, not just the first arrival, are
affected by this inclination, without introducing any additional artifacts. This shows that
different source signatures can be incorporated into the single-sided representation for
homogeneous Green’s function retrieval.

2.4.2. LIMITATIONS OF REFLECTION DATA

The reflection response that we use to retrieve the results in Figure 2.6 is nearly ideal, due
to the recording setup and the absence of absorption. In the following experiment, we
perform the homogeneous Green’s function retrieval using the workflow in Figure 2.5(a),
with five different types of acquisition limitations applied to the reflection response. In
all five cases we perform the entire process that is outlined in the workflow, starting
with the Marchenko method to retrieve the focusing function and Green’s function from
the reflection response, to which one of the limitations is applied, followed by applying
Equation (2.10) to obtain the homogeneous Green’s function. This demonstrates the ef-
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Figure 2.6: Snapshots of the wavefield at different times. Column 1 indicates t=0ms, column 2 t=200ms and
column 3 t=400ms. All wavefields have been convolved with a 15Hz Ricker wavelet for display purposes. The
black dotted lines indicate the locations of geological layer interfaces. (a)-(c) Directly modeled homogeneous
Green’s function in the subsurface used as a reference. (d)-(f) Homogeneous Green’s function retrieval using
Equation (2.9) with full Green’s functions for the virtual source and receiver positions. (g)-(i) Idem, however
with a full Green’s function for the virtual receiver position and a direct arrival as the Green’s function for the
virtual source position. (j)-(l) Homogeneous Green’s function retrieval using Equation (2.10), a Green’s function
for the virtual source position and a focusing function for the virtual receiver position, without filtering. (m)-
(o) Idem, with dip filtering and tapering applied. (p)-(r) Idem, using a Green’s function with a double-couple
source signature inclined at -20 degrees.
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fects of the limitations of the reflection response on the homogeneous Green’s function
that is obtained. The results of these tests are shown in Figure 2.7, where (a), (b) and (c),
show the result from Figure 2.6(f), (i) and (o), respectively, which are used as a reference.
All snapshots in Figure 2.7, are shown at 400ms. The results shown in the rows below
the first one are achieved in the same way as the result from Figure 2.7(c), with differ-
ent types of limitations applied to the reflection response. Each column shows a varying
value of the limitation to indicate the sensitivity of the method to these limitations.

To determine the Nyquist spatial sampling interval for the data, we use the sampling
criterion:

∆x < c1

2 fmax sin(αmax )
, (2.18)

where∆x is the spatial sampling, c1 is the velocity of the top layer of the subsurface, fmax

is the maximum frequency of the wavelet and αmax is the maximum angle of the waves
in the top layer. To determine the sampling, we use the top layer velocity of the data,
which corresponds to 1500 ms−1, a "maximum" frequency of 30Hz for the 15Hz Ricker
wavelet and a maximum angle of 60 degrees. This results in a recommended spatial sam-
pling of about 29m. The current sampling of 25m should therefore be sufficient for our
applications, which is supported by the quality of the retrieved homogeneous Green’s
function that have been obtained in the previous section.

In Figures 2.7(d)-(f), we display the result retrieved using a reflection response that
has a coarse source-receiver sampling. The sampling values for the receiver and source
spacing are 50m, 75m and 100m, which are double, triple and quadruple the original
spacing, and all exceed the Nyquist sampling. When the spacing is doubled, noise is
introduced into the homogeneous Green’s function due to spatial aliasing. The physical
events are distorted by this noise and background artifacts are present. This issue is
worsened when the spacing distance is tripled. Some events are obscured and strong
noise is present. Quadrupling the spacing produces a result that is unusable. It consists
almost entirely of noise and the physical events cannot be distinguished. Hence, for
successful use of the method the source-receiver sampling of the reflection response
must not be larger than the Nyquist sampling.

Next, we consider the influence of missing small source-receiver offsets. The result is
shown in Figures 2.7(g)-(i), where, respectively, the first 125m, 250m and 500m of the off-
sets are removed from the reflection response, for both positive and negative offsets, and
replaced with empty traces. When 125m of offsets are missing, the homogeneous Green’s
function is still comparable to the ideal situation. There is a degradation in quality and
a few artifacts are present. Removing 250m of near offsets produces a less accurate ho-
mogeneous Green’s function, with a stronger degradation in quality. When 500m of near
offsets are removed, the low angle reflections are not reconstructed properly, similarly
to the high angle noise that is caused by the limited aperture of the data. The events
below and above the virtual source position are missing and strong artifacts are present.
These artifacts can be partially removed by adjusting the dip filtering to remove the low
angle events, however, this procedure will also remove part of the physical events and is
therefore not reccomendable to apply. The near offsets do have an impact on the final
result and ideally should be reconstructed, if possible, before applying the Marchenko
method.
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Aside from missing near offsets, a reflection response can also be recorded exclu-
sively in one direction. Figures 2.7(j) shows the result using only positive source-receiver
offsets in the reflection response and Figure 2.7(k) does the same for negative source-
receiver offsets. In both cases unwanted artifacts are present and, depending on the
direction of the source-receiver offsets, large parts of the physical events are missing.
This issue can be avoided by applying source-receiver reciprocity. We perform source-
receiver reciprocity on the reflection response containing only the negative offsets and
retrieve the result shown in Figure 2.7(l). This homogeneous Green’s function is similar
to the one produced in the ideal situation. We retrieve a similar result when we apply
source-receiver reciprocity on the reflection response containing only positive offsets.

The final acquisition limitation that we review is the absence of large source-receiver
offsets, or aperture limitation of the data. In Figures 2.7(m)-(o), we show the homoge-
neous Green’s function when the largest source-receiver offset is, respectively, 2000m,
1000m and 500m. When the aperture is 2000m, the homogeneous Green’s function is
comparable to the one that is retrieved in the ideal situation, with some artifacts in-
troduced. When the aperture is limited to 1000m, a homogeneous Green’s function is
produced that contains more artifacts and is missing a larger portion of the angles of
the desired events. This is once again due to the fact that the angles of this part of the
wavefield are not present in the reflection response. If only 500m of aperture are avail-
able, a large portion of the angles of events are missing. This is clear when Figure 2.7(o)
is compared to Figure 2.7(i). The parts of the events that are missing due to the lack
of near offsets are present in the case of limited aperture and vice versa. By applying a
stronger dip filter, the artifacts can be suppressed, however, as mentioned before, this
also removes part of the physical events.

Finally, we consider the case of absorption, which is a factor that cannot directly be
influenced during the acquistion of the reflection response. Even if the recording setup
is ideal, absorption of the wavefield is present and can degrade the result. This is demon-
strated in Figures 2.7(p)-(r), where the loss is simulated by applying time-dependent ab-
sorption functions to the reflection data of 0.9e−0.2t , 0.8e−0.3t and 0.7e−0.4t , respectively.
In case of low absorption, the homogeneous Green’s function still contains the physi-
cal events, although they have a lower amplitude. The artifacts are present with a low
amplitude. If the absorption is increased, the physical events start to vanish and the ar-
tifacts are more pronounced. In case of high absorption, the physical events have very
low amplitude and there are strong artifacts present.

2.5. FIELD DATA

2.5.1. PRE-PROCESSING

The raw seismic field reflection data cannot directly be used with the Marchenko method,
because when the method uses these data it does not converge to a solution. The reflec-
tion data needs to be preprocessed to compensate for the limitations [38]. As was shown
by the results in Figure 2.7, there are multiple effects that need to be taken into account.
The reflection data are missing small source-receiver offsets, only have offsets in a nega-
tive direction, may be sub-sampled, possibly have insufficient aperture and are affected
by absorption. Aside from this, the 2D line was recorded in a 3D setting, which can cause
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Figure 2.7: Snapshots of the homogeneous Green’s function at t=400ms, retrieved using varying limitations of
the reflection response, following the workflow in Figure 2.5(a). All wavefields have been convolved with a 15Hz
Ricker wavelet. (a) Result from Figure 2.6(f), (b) result from Figure 2.6(i) and (c) result from Figure 2.6(o), the
latter used as a benchmark for the other results. Second row: Homogeneous Green’s function obtained, when
the reflection response has a source and receiver spacing of (d) 50m, (e) 75m and (f) 100m. Third row: Homo-
geneous Green’s function obtained when the reflection response is missing the small source-receiver offsets up
to a distance of (g) 125m, (h) 250m and (i) 500m. Fourth row: Homogeneous Green’s function obtained when
the reflection response contains (j) only positive source-receiver offsets, (k) only negative source-receiver off-
sets and (l) has all source-receiver offsets restored using source-receiver reciprocity. Fifth row: Homogeneous
Green’s function obtained when the reflection response has an aperture limited to (m) 2000m, (n) 1000m and
(o) 500m. Sixth row: Homogeneous Green’s function obtained when the reflection response has a loss applied
to it of (p) 0.9e−0.2t , (q) 0.8e−0.3t and (r) 0.7e−0.4t .
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complications due to out of plane effects.
The effects of having geometric spreading in a 3D setting while the Marchenko

scheme that is applied is 2D, are corrected by applying a time-dependent gain on the
data. This gain is equal to

p
t , as the geometrical spreading in 3D can be approximated

as being t−1 and in 2D as t−
1
2 [72]. Next, source-receiver reciprocity is applied to the re-

flection data to create offsets in the positive direction. Having offsets in both positive and
negative directions is vital for the next step, where the Estimation of Primaries through
Sparse Inversion (EPSI) method is applied. The EPSI method estimates the primaries in
the data, through the use of an inversion process, and estimates the free-surface mul-
tiples separately. This allows for the retrieval of a datset without the free-surface mul-
tiples. Furthermore, in this process, the information about the subsurface that is con-
tained in the free-surface multiples is used to reconstruct the missing near offsets of the
primaries. Simultaneously, an estimation of the source wavelet is made, which can be
used to deconvolve the reflection data. Note, that the EPSI method only removes the
free-surface multiples. The internal multiples remain in the data after the application of
the EPSI method. See van Groenestijn and Verschuur [73] for a detailed overview of the
EPSI method.

The effects of absorption on the data is adaptively corrected for by applying expo-
nential time-gain and a scaling factor. Note that the exponential time-gain is applied in
addition to the

p
t gain that was applied to account for the geometrical spreading factor.

This second gain is intended to counteract the effects of the absorption on the data and
therefore is estimated separately from the first gain. The first estimations of the time-
gain are based on the velocity model conforming to the method discussed by Draganov
et al. [74]. The scaling factor is estimated by minimizing the cost functions proposed by
Brackenhoff [66]. After these processing steps are applied, the reflection data are used
to retrieve a Green’s function for one location in the subsurface. If the method does not
converge to a solution, where the artifacts are minimal, the exponential gain and scaling
factor are adjusted and the test is run again. After a few iterations, we found that apply-
ing a gain of 1.73e1.3t to the data resulted in a solution that converged with significant
removal of artifacts.

Interpolation was also tested by interpolating the source-receiver spacing on the re-
flection data to smaller values, however we found that this did not significantly improve
our results. Another aspect we cannot improve is the limited aperture of the data. The
final workflow for the field data can be found in Figure 2.5(b). An example of a common-
source record before and after the pre-processing is shown in Figure 2.8. Note the im-
provement of the common-source record, as the coverage of the data has been increased
and the free-surface multiples have been weakened, as indicated by the black arrows.

2.5.2. HOMOGENEOUS GREEN’S FUNCTION RETRIEVAL

After applying all the corrections, the Marchenko method is utilized to retrieve the re-
quired Green’s functions and focusing functions in the region of interest that is indicated
in Figure 2.3(b). These functions are retrieved using only the pre-processed single-sided
reflection response and a smooth velocity model. Next, we use these functions to retrieve
the homogeneous Green’s function using the single-sided boundary representation of
Equation (2.10). Snapshots of the obtained result are shown in Figures 2.9(e)-(h), for
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Figure 2.8: (a) Common-source record from Figure 2.3(a) before any processing is applied and (b) common-
source record from (a) with source-receiver reciprocity, EPSI and an exponential gain of 1.73e1.3t applied. Both
common-source records have their wavelets reshaped to a 30Hz Ricker wavelet. Note the removal of the free-
surface multiples at late times, as indicated by the black arrows.

0ms, 300ms, 600ms and 900ms, respectively. For comparison, the homogeneous Green’s
function obtained using the classical representation and using only the first arrival for
the Green’s function for the virtual source is shown in Figures 2.9(a)-(d), for 0ms, 300ms,
600ms and 900ms, respectively. In both cases a monopole source was used to model all
the first arrivals.

We also test the creation of a virtual source that has a double-couple source signature
on the field data. We use a double-couple source inclined at -20 degrees to create the
first arrival that is used to obtain the Green’s function for the virtual source using the
Marchenko method. Similar to our approach on the synthetic data, we use the smooth
P-wave velocity model, a homogeneous density model of 1000kg m−3 and a constant S-
wave velocity model of 1000m s−1, with the top layer of water, where the S-wave velocity
is zero. We select the P-wave first arrival and use the Marchenko method to create the
Green’s function for the virtual source. The homogeneous Green’s function is obtained
through Equation (2.15) and the workflow in Figure 2.5(b). Snapshots of the result are
shown in Figure 2.9(i)-(l) for 0ms, 300ms, 600ms and 900ms, respectively.

For all images, a transparent overlay of the image from Figure 2.3(c) is used to in-
dicate locations where scattering is expected. This image is only used for verification
and was not used for the retrieval of the homogeneous Green’s function. The results of
the single-sided representation for the monopole source from Figure 2.9(e)-(h) were pre-
viously shown in Wapenaar et al. [61], and the results of the single-sided representation
for the double-couple source from Figure 2.9(i)-(l) were previously shown in Brackenhoff
et al. [62]. The details about the pre-processing of the reflection data were not discussed
before.

The snapshots of the homogeneous Green’s functions obtained using the single-sided
representation for both types of sources show multiple events, both upgoing and down-
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going. The locations of the scattering and the layer interfaces in the image overlay have
a strong match and, aside from the primary reflections, the multiple reflections can also
be seen. All of these events are completely absent when the classical representation is
used. Strong artifacts are present in this case and the coda of the downgoing wavefield is
missing entirely. The primary downgoing wavefield is present, however the upgoing pri-
mary wavefield is absent, which is similar to the result that was obtained on the synthetic
data. This shows that, as expected, the single-sided representation is an improvement
over the classical representation on field data as well. The results for the double-couple
source signature are similar to the ones that were obtained on the synthetic data. The
polarity changes are present on both the primary wavefield as well as on the coda. Be-
cause of these changes there are a few events in the coda where the amplitude is low,
which makes it harder to distinguish these events. The results in Figure 2.9 are different
from those that were obtained in Figure 2.6. As stated in the Datasets section, this is be-
cause the synthetic data do not contain all the events that are present in the field data.
The results on the field data contain more events, which could not be predicted from the
image. This is an advantage of the data-driven approach of the Marchenko method. We
find the overall results in Figure 2.9 encouraging.

However, even the homogeneous Green’s functions obtained using the single-sided
representation are not perfect as there are still artifacts present. This is partially due to
the presence of background noise in the dataset, which distorts the final result. More co-
herent events are also present, which do not correlate with the primary wavefield and
scattering locations from the image. Because we cannot be sure whether the reflec-
tion response has been pre-processed perfectly, there may be some low amplitude ar-
tifacts present that are nor fully compensated for or which are created by the Marchenko
method. The Marchenko method that we applied was intended for 2D acoustic media,
however, the true medium is 3D and elastic. As the geological layering for this region ap-
pears to be close to horizontal, the out-of-plane effects are assumed to be small. Due to
conversion from P-waves to S-waves and back, some events are present in the reflection
response that would not be present if the medium was purely acoustic and these are not
handled correctly by our acoustic Marchenko implementation.

2.5.3. DISCUSSION

The results on the field data show promise for further applications of the single-sided
representation, for example, by combining them with passive measurements. In this
case, the Green’s function for the virtual source, that was constructed through the use
of the Marchenko method, would be replaced with a passive recording. The accurately
retrieved propagation and scattering of the wavefield in the inhomogeneous medium
also holds much promise, despite the presence of some artifacts. If we wanted to track
the paths of the wavefronts emitted for example by an induced seismic source, a result
like this could provide substantial insight. However, there are several limitations. In this
chapter, we exclusively considered a 2D dataset that has few out-of-plane effects. For
complex 3D media, where the out-of-plane effects are much more severe, 3D reflection
data would be required, with sufficient coverage, as well as a 3D smooth P-wave velocity
model. In this case, the issues with offset, sampling and aperture that were present for
the 2D data would be more complex to deal with, and will be present in two directions.
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Figure 2.9: Snapshots of the homogeneous Green’s function in the subsurface of the Vøring basin, obtained
using the classical representation of Equation (2.9) for a monopole source at (a) 0ms, (b) 300ms, (c) 600ms and
(d) 900ms. Idem, using the single-sided representation of Equation (2.10) for a monopole source at (e) 0ms, (f)
300ms, (g) 600ms and (h) 900ms. Idem, using the single-sided representation of Equation (2.15) for a double-
couple source inclined at -20 degrees at (i) 0ms, (j) 300ms, (k) 600ms and (l) 900ms. All data contain a 30Hz
Ricker wavelet.

Furthermore, passive measurement setups are usually sparser than for active measure-
ments, which could yield additional complications if one wants to use a passive record-
ing for the source of the homogeneous Green’s function. These aspects are subject of
ongoing research.

2.6. CONCLUSION
We demonstrated the data-driven generation of virtual receivers and a virtual source,
which have the potential to improve, for example, the monitoring of the subsurface
and the prediction of the complex response of different source mechanisms. We did
this by utilizing a single-sided representation to retrieve the homogeneous Green’s func-
tion in the subsurface. To this end, we applied the Marchenko method, which only
requires a single-sided reflection response and a smooth velocity model. We showed
that the single-sided representation produces significantly more accurate results than
the classical representation when the reflection data are only available on a single-sided
non-enclosing boundary, typically the Earth’s surface. The sensitivity of the Marchenko
method to limitations of the reflection data was investigated by manipulating synthetic
reflection data. This showed that pre-processing of the reflection response to compen-
sate for coarse source-receiver sampling, missing offsets and absorption is vital for the
succesful application of the Marchenko method.

We considered a dataset from the Vøring basin (offshore Norway), which was affected
by some of such limitations and processed the data using geometric spreading correc-
tion, source-receiver reciprocity, the EPSI method and applying a time-gain and scaling
factor. The processed reflection response was used to obtain the focussing functions



2.6. CONCLUSION

2

31

and Green’s functions, needed to apply the representations for homogeneous Green’s
function retrieval. The homogeneous Green’s function obtained using the single-sided
representation shows potential in our opinion for wavefield monitoring in the subsur-
face, as the complete coda of the wavefield is recovered, which is not the case when the
classical representation is used. The scattering occurs at locations that correlate with
possible reflector locations. Monopole source and double-couple source signatures can
both be used in the Marchenko method and in the single-sided representation to obtain
homogeneous Green’s functions with the same source signature. To further explore this
potential, more complex source mechanisms should be considered, such as dynamic
fault planes, that are active over an extended area and time period. This includes taking
into account the effects caused by elastic media instead of acoustic media.
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MONITORING OF INDUCED

DISTRIBUTED DOUBLE-COUPLE

SOURCES USING MARCHENKO-
BASED VIRTUAL RECEIVERS

We aim to monitor and characterize signals in the subsurface by combining these passive
signals with recorded reflection data at the surface of the Earth. To achieve this, we propose
a method to create virtual receivers from reflection data using the Marchenko method. By
applying homogeneous Green’s function retrieval, these virtual receivers are then used to
monitor the responses from subsurface sources. We consider monopole point sources with
a symmetric source signal, where the full wavefield without artifacts in the subsurface can
be obtained. Responses from more complex source mechanisms, such as double-couple
sources, can also be used and provide results with comparable quality as the monopole
responses. If the source signal is not symmetric in time, our technique that is based on
homogeneous Green’s function retrieval provides an incomplete signal, with additional
artifacts. The duration of these artifacts is limited and they are only present when the
source of the signal is located above the virtual receiver. For sources along a fault rupture,
this limitation is also present and more severe due to the source activating over a longer
period of time. Part of the correct signal is still retrieved, as well as the source location of
the signal. These artifacts do not occur in another method which creates virtual sources
as well as receivers from reflection data at the surface. This second method can be used to
forecast responses to possible future induced seismicity sources (monopoles, double-couple
sources and fault ruptures). This method is applied to field data, where similar results to
synthetic data are achieved, which shows the potential for the application on real data
signals.

This chapter was published as J. Brackenhoff, J. Thorbecke, & K. Wapenaar, Monitoring of induced distributed
double-couple sources using Marchenko-based virtual receivers. Solid Earth, 10, 1301-1319 (2019).
Minor modifications have been applied to the text and figures for the sake of consistency in the thesis.

32

https://doi.org/10.5194/se-2018-142


3.1. INTRODUCTION

3

33

3.1. INTRODUCTION
Seismic monitoring of processes in the subsurface has been an active field of research
for many years. Traditionally, most recording setups are limited to the surface of the
Earth, although boreholes can also be utilized. The latter approach is more expensive
and complicated, however. In case of monitoring with active sources, the receivers in
these recording setups measure valuable reflection data, which provide quantifiable in-
formation about processes in the subsurface. Some examples of using this information
are monitoring time-shifts in seismic data to predict the velocity-strain relation for a de-
pleting reservoir [75] and the monitoring of geomechanics in the subsurface by using
time-lapse data [76]. The responses from passive sources, such as when the signal is
caused by an induced earthquake, can be measured as well. These passive measure-
ments are more difficult to process due to the fact that the signal is complex and un-
known [77], however, the information content in these induced seismic signals is of great
interest. Induced seismicity has had a large impact in countries such as the Netherlands
[56] and the USA [57] and there is much discussion about the cause and the effects. To
determine the cause of induced seismicity, the source of the signal is of particular inter-
est and consequently, inversions for the source mechanism [78] as well as the location of
the source [79] are often performed. These methods can be carried out from surveys that
are located at the surface of the Earth or inside boreholes, however, they are limited in
accuracy. Ideally, one would use a dense network of receivers around the source location
to directly monitor the wavefield.

Due to practical difficulties and expenses associated with placing a dense network of
receivers in the subsurface, the wavefield can generally not be directly measured around
the source location of the signal. An alternative to using physical receivers for these mea-
surements is the use of virtual receivers. A virtual receiver is not physically present in
the subsurface, rather, it is created through processing of measured signals at the sur-
face. Virtual receivers can be created in a variety of ways. A mathematical basis for the
retrieval of these virtual receivers is the so-called homogeneous Green’s function rep-
resentation. The classical form of this representation was proposed by Porter [15] and
extended for inverse source problems by Porter and Devaney [16] and for inverse scat-
tering methods by Oristaglio [17]. This representation states that if the responses from
two signals are measured on an enclosing recording surface, the response between the
two sources of the signals can be retrieved. It forms the basis for seismic interferometry
to create virtual sources [80] or virtual receivers [23]. All of these approaches require ac-
cess to the medium from an enclosing surface and introduce artifacts if this requirement
is not met. Even though this limitation is well known, for many cases these approaches
are still utilized.

A novel approach that can be used when the acquisition surface is not closed is the
data-driven 3D Marchenko method. This method can create virtual sources and re-
ceivers in the subsurface [26, 30]. In order to achieve this, the method requires a reflec-
tion response recorded at the surface of the Earth, and an estimation of the first arrival of
the signal from a location in the subsurface to the receiver locations in the measurement
array. This first arrival can be estimated from a background velocity model, which re-
quires no detailed information about the subsurface. Through the Marchenko method,
the Green’s function with a virtual receiver in the subsurface can be retrieved. Using this
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method, many virtual receivers can be created in the subsurface, which can be used to
monitor the wavefield from the virtual receiver locations to the receiver array. To obtain
the signal between an induced signal from the subsurface and the virtual receiver lo-
cations, homogeneous Green’s function retrieval can be employed, however, as pointed
out before, the classical approach would include artifacts due to the open surface of the
recording. These artifacts can disturb the interpretation of the signal. An alternative
retrieval scheme was developed by Wapenaar et al. [25], who showed that if a focusing
function is used in combination with a Green’s function, an open surface can be used
for the retrieval instead of an enclosing one, without the artifacts of the classical method
when applied to an open surface. A focusing function is a wavefield that is designed
to focus at a location in the subsurface and can be retrieved from reflection data using
the Marchenko method [36]. This single-sided representation has been proven to work
succesfully on both synthetic data and on field data [81].

Using the single-sided method, two approaches for monitoring induced seismicity
can be taken. First, virtual receivers can be used in combination with a virtual source.
In this case, all the signals are created from the reflection data using the Marchenko
method. This has the benefit that the virtual source can be created at any location in
the subsurface, where one expects induced seismicity to happen, and that the source
signal can be controlled. This is the way that the method has been mostly applied in
previous works. Another approach that can be taken is to create virtual receivers using
the Marchenko method and to use a real induced seismic source signal instead of a vir-
tual Green’s function. This effectively allows for the monitoring of the actual signal in the
subsurface, including the source location and mechanism. This could be a boon to in-
duced seismicity monitoring, however, this approach does require some modifications.
Induced seismicity often causes more complex source signals that evolve over a period of
time and cover an extended area in the subsurface. These rupture planes or fault sources
are the main topic of interest.

In this work, we aim to apply the single-sided homogeneous Green’s function re-
trieval on both synthetic and field data for a distribution of virtual double-couple sources.
We first apply the method on synthetic data for point sources and show the principles of
the representation. We then use the same synthetic data to apply the representation with
modifications to the sources originating from a fault plane and show the results that can
be achieved. Finally, we also apply the representation on field data for both types of
sources.

3.2. THEORY

3.2.1. GREEN’S FUNCTION AND FOCUSING FUNCTION
In this chapter, we present several representations for the retrieval of wavefields in the
subsurface. First, we review the properties and quantities that are relevant for these rep-
resentations. To this end, we consider a medium that is acoustic, lossless and inhomoge-
nous with mass density ρ = ρ(x) and compressibility κ= κ(x), where x = (x1, x2, x3) indi-
cates the Cartesian coordinate vector. We make use of a Green’s function in this medium
that obeys the following wave equation:

∂i (ρ−1∂i G)−κ∂2
t G =−δ(x−xA)∂tδ(t ), (3.1)
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where G(x,xA , t ) indicates a Green’s function that at time t describes the response of
the medium at location x due to an unit impulsive point source of volume-injection rate
densityδ(x−xA)δ(t ) at source location xA . δ(·) is the Dirac delta function, ∂t the temporal
partial differential operator ∂

∂t
and ∂i a component of a vector containing the spatial par-

tial differential operators in the three principal directions
(
∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
. Einstein’s sum-

mation convention applies to repeated subscripts. The Green’s function obeys source-
receiver reciprocity, which allows the interchange of the source and receiver position,
hence G(xB ,xA , t ) =G(xA ,xB , t ). We impose causality on the Green’s function, G(x,xA , t ) =
0 for t < 0, such that it is forward propagating, originating from the source, and a causal
solution to Equation (3.1). A schematic illustration of the Green’s function is shown in
Figure 3.1(a), where several possible raypaths are drawn for a heterogeneous model. This
includes the direct arrival, primary reflections and multiple reflections.
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Figure 3.1: (a) Schematic representation of the Green’s function G(x,xA , t ), defined in the physical medium,
with a source located at xA , which is measured at varying location x at the surface. (b) Schematic represen-
tation of the focusing function f1(x,xA , t ), defined in the truncated medium, where the wavefield propagates
from x at the surface to the focal location xA . For both functions, several possible raypaths are drawn. For the
focusing function the downgoing waves are marked with yellow arrows and the upgoing waves with red arrows.

We also consider the time-reversed Green’s function G(x,xA ,−t ), which is the acausal
solution to Equation (3.1), where the causality condition implies G(x,xA ,−t ) = 0 for t >
0. Superposition of the causal and acausal Green’s function yields the homogeneous
Green’s function:

Gh(x,xA , t ) =G(x,xA , t )+G(x,xA ,−t ), (3.2)

where Gh(x,xA , t ) obeys the homogeneous wave equation:

∂i (ρ−1∂i Gh)−κ∂2
t Gh = 0. (3.3)

Equation (3.3) is similar to Equation (3.1), with the exception of the lack of a source sin-
gularity on the right hand side of the equation.

Aside from the Green’s function, we consider the focusing function f1(x,xA , t ), which
describes a wavefield, at time t and location x, that converges to a focal location xA in the
subsurface of a medium that is truncated below the focal location. The focusing function
can be decomposed as,

f1(x,xA , t ) = f +
1 (x,xA , t )+ f −

1 (x,xA , t ), (3.4)
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where f +
1 (x,xA , t ) denotes the downgoing and f −

1 (x,xA , t ) the upgoing component of the
focusing function. A schematic representation of the focusing function can be found
in Figure 3.1(b). Similar to the Green’s function, several possible raypaths are drawn,
however, to distinguish the decomposed wavefields, the downgoing focusing function is
marked with yellow rays and the upgoing focusing function with red rays. The medium
of the focusing function and the Green’s function are identical until the focal depth, af-
ter which the medium of the focusing function becomes truncated. The physical and
truncated medium can be used in reciprocity theorems in order to relate the focusing
function to the Green’s function, which is shown in section 2 of the supplementary in-
formation. For moderately inhomogeneous media, the focusing function and Green’s
function can be separated from each other in time. The coda of the focusing function
resides in the interval between the direct arrival of a related Green’s function and its time
reversal. The direct arrival of the focusing function coincides with the direct arrival of
the time reversed Green’s function. This difference in time intervals explains some of the
effects that are present in the representations that are used in this chapter. Both the fo-
cusing function and Green’s function can be retrieved for a heterogeneous medium from
the reflection data and an estimate of the direct arrival, through use of the Marchenko
method. We will not explain this method in detail in this chapter, instead we refer the
reader to Wapenaar et al. [26] for a more detailed overview.

Due to the nature of some equations, we also make use of the frequency domain
version of the time domain quantities. To obtain these transformation we make use of
the Fourier transform. We define the Fourier transform of a space- and time-dependent
function u(x, t ) as

u(x,ω) =
∫ ∞

−∞
u(x, t )exp(iωt )dt , (3.5)

where u(x,ω) is the Fourier transformed version of u(x, t ) in the space-frequency do-
main, with ω as the angular frequency and i the imaginary unit. By using Equation (3.5)
we obtain the space-frequency domain versions of Equation (3.1), (3.2), (3.3) and (3.4),
respectively:

∂i (ρ−1∂i G)+κω2G = iωδ(x−xA), (3.6)

Gh(x,xA ,ω) =G(x,xA ,ω)+G∗(x,xA ,ω) = 2ℜ{G(x,xA ,ω)}, (3.7)

∂i (ρ−1∂i Gh)+κω2Gh = 0, (3.8)

f1(x,xA ,ω) = f +
1 (x,xA ,ω)+ f −

1 (x,xA ,ω), (3.9)

where ℜ indicates the real part of a complex function.

3.2.2. HOMOGENEOUS GREEN’S FUNCTION REPRESENTATION
The classical homogeneous Green’s function representation was originally developed for
a configuration where the Green’s function was measured on an arbitrarily shaped sur-
face enclosing the medium of interest [15–17]. The representation states that, if the re-
sponses from two sources inside the medium are recorded on the surface, the response
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between the two source locations can be obtained. For seismic recording setups, the
measurements are usually only available at the surface of the Earth, meaning that the
surface is single-sided instead of closed, which will introduce significant errors into the
final result.
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Figure 3.2: Setup for the single-sided Green’s function representation for (a) a case where the source of the
Green’s function is located below the focal location and (b) a case where the source of the Green’s function is
located above the focal location. The rays in this figure indicate full Green’s functions and focusing functions,
including multiple scattering.

In recent years a new representation for homogeneous Green’s function retrieval was
developed that is designed to work with the single-sided surface, where a focusing func-
tion is used together with a Green’s function [25]. Consider the setup in Figure 3.2, where
a heterogeneous medium D is bounded by two horizontal surfaces ∂D0 and ∂DA on two
different levels in vertical direction x3. The surfaces extend infinitely in the horizontal
directions x1 and x2. The medium above ∂D0 is homogeneous, with mass density ρ0

and compressibility κ0, and the surface itself is non-reflecting, while the medium below
∂DA can be heterogeneous. The upper surface ∂D0 corresponds to the surface where
the receiver locations x of focusing functions and Green’s functions are available. In
this scenario, we assume that we have three functions available at the upper surface,
a Green’s function G(x,x(1)

B ,ω), that has a source location x(1)
B below ∂DA , a Green’s func-

tion G(x,x(2)
B ,ω), that has a source location x(2)

B inside mediumD and a focusing function
f1(x,xA ,ω), that has a focal location xA , located at the depth of ∂DA .

The available functions can be used to obtain the response between two locations.
To this end, we use the representation given by equation (35) of the supplementary in-
formation (for the derivation see section 2.3 of the supplementary material),

G(xA ,xB ,ω)+χ(xB )2iℑ{ f1(xB ,xA ,ω)} =∫
∂D0

2

iωρ0
G(x,xB ,ω)∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
dx,

(3.10)

where ℑ is the imaginary part of a complex function and χ(xB ) is the characteristic func-
tion,

χ(xB ) =


1, for xB in D,
1
2 , for xB on ∂D= ∂D0 ∪∂DA ,

0, for xB outside D∪∂D.

(3.11)
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This representation states that, by applying the focusing function components to a
Green’s function at the upper surface, the Green’s function between the focal location
xA of the focusing function and the source location xB of the Green’s function can be ob-
tained. The focal location will become the receiver of this new Green’s function, and the
source location of the original Green’s function on the right hand side of Equation (3.10)
will become the source location of the new Green’s function. However, contributions
from the imaginary part of the focusing function between the source and receiver loca-
tions are present if the source location is located inside the medium D, as is the case if
the Green’s function from Figure 3.2(b) with source location x(2)

B is used. Because they are
related to a focusing function, these artifacts will be present between the direct arrival
of the Green’s function and its time reversal. In this case, the source location is present
above the focal location. These contributions vanish if the source location is present out-
side D, in other words if it is located below the focal location, such as when the Green’s
function from Figure 3.2(a) with source location x(1)

B is used. This would mean that, with-
out knowledge of ℑ{ f1(xB ,xA ,ω)}, we are limited in the correct application of the repre-
sentation. To overcome this limitation, we substitute Equation (3.10) into the right hand
side of Equation (3.7) to create the single-sided homogeneous Green’s function repre-
sentation:

Gh(xA ,xB ,ω) = 4ℜ
∫
∂D0

1

iωρ0
G(x,xB ,ω)∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
d2x, (3.12)

which corresponds to equation (33) from our companion paper [24]. The additional con-
tributions have vanished from this representation and the homogeneous Green’s func-
tion will be obtained when it is evaluated, instead of the causal Green’s function.

3.2.3. VIRTUAL SOURCES AND RECEIVERS
Generally, the focusing function and Green’s function are not directly available. These
functions can be obtained through the use of the Marchenko method [26, 29, 36], which
is a data-driven method that requires only reflection data at the surface of the Earth and
an estimation of the first arrival of the wavefield at the location of interest inside the
medium. The method handles the primaries of the reflection data in the same way as
conventional methods, however, unlike those methods, the Marchenko method can also
correctly handle the multiples in the data. The first arrival can be estimated through the
use of a macro-velocity model. The method cannot handle attenuation on the reflec-
tion data and ignores evanescent waves. On field data, the data requires additional pro-
cessing to account for these and other requirements. The Marchenko method has been
applied succesfully on both synthetic and field data, for examples see Ravasi et al. [37],
Staring et al. [38] and Brackenhoff et al. [81].

The method can be used in the homogeneous Green’s function retrieval scheme in
two ways, which are schematically shown in Figure 3.3. The first approach is a two-step
process, as shown in Figure 3.3(a), where both the source and receiver of the homoge-
neous Green’s function are obtained by redatuming them from the reflection response.
This type of source-receiver redatuming is discussed in section 3.4 of our companion
paper by Wapenaar et al. [24]. First, we consider the fact that the data that we use in
the field is bandlimited and therefore a source signal s(t ) is convolved with the Green’s
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Figure 3.3: Schematic setup for (a) the two step process and (b) the one step process for retrieving the homo-
geneous Green’s function in the subsurface. The red and green arrows show the focusing functions that are
used to respectively create the virtual receiver and virtual source location. The red and green dots show the
locations for the virtual receiver and virtual source, respectively. The black star indicates the source location
of a real subsurface response, indicated with a black arrow, that is measured at the surface ∂D0 on the same
receiver location x as the focusing and Green’s functions. ∂D0’ is a surface located just above ∂D0 on which the
source locations x’ of the reflection response p(x,x′,ω) are located. The rays in this figure indicate full Green’s
functions and focusing functions, including multiple scattering.

function, which changes its phase and amplitude:

p(x,xB , t ) =
∫ ∞

−∞
G(x,xB , t − t ′)s(t ′)dt ′, (3.13a)

p(x,xB ,ω) =G(x,xB ,ω)s(ω), (3.13b)

where p(x,xB , t ) is a pressure wavefield in the medium and s(ω) is the Fourier transform
of the source signal. For the first step, we introduce a second surface ∂D′

0 that is located
just above ∂D0 and assume that a reflection response p(x,x′,ω) of the medium has been
measured, where x′ is the source location on the surface ∂D′

0. The reflection response
is used to create a virtual source location in the subsurface. To this end, we utilize a
modification of Equation (3.12), and use Equation (3.13b) to create an equivalent version
for pressure wavefields, which is the same as equation (41) of our companion paper:

p(x,xB ,ω)+p∗(x,xB ,ω) =

4ℜ
∫
∂D′

0

1

iωρ0
p(x,x′,ω)∂3

(
f +

1 (x′,xB ,ω)− { f −
1 (x′,xB ,ω)}∗

)
dx′.

(3.14)

In Equation (3.14), we assume that the source spectrum is strictly real-valued. The fo-
cusing function f1(x′,xA ,ω) is obtained through use of the Marchenko method and em-
ployed in Equation (3.14) to create a wavefield with a virtual source location, which is
indicated by the green line in Figure 3.3(a). This function will be used to create a source
location for the wavefield retrieved through the homogeneous Green’s function repre-
sentation. This source is called a virtual source because it is not physically present in the
subsurface.

In the second step of the process, using the Marchenko method, many focusing func-
tions are created for focal points at varying locations in the medium, that serve as the vir-
tual receiver locations for the retrieved wavefield. This is indicated by the red dots and
arrows in Figure 3.3(a). Similarly to the virtual source, these are called virtual receivers,
again, because they are not physically present in the medium. We use these focusing
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functions in Equation (3.10), which we modify using equation Equation (3.13b) as fol-
lows

p(xA ,xB ,ω)+χ(xB )2i s(ω)ℑ{ f1(xB ,xA ,ω)} =∫
∂D0

2

iωρ0
p(x,xB ,ω)∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
dx.

(3.15)

In this representation, we make use of the wavefield p(x,xB ,ω) with the virtual source lo-
cation that we obtained in the first step. The acausal part of the left hand side of the time-
domain version of Equation (3.14) can be removed easily by applying causality through
the use of a Heaviside function. Since we assumed s(ω) to be real-valued, substitution of
Equation (3.15) into Equation (3.7) yields,

ph(xA ,xB ,ω) =

4ℜ
∫
∂D0

1

iωρ0
p(x,xB ,ω)∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
dx,

(3.16)

where ph(xA ,xB ,ω) = p(xA ,xB ,ω)+p∗(xA ,xB ,ω). This is a similar representation to equa-
tion (39) for modified back propagation from our companion paper by Wapenaar et al.
[24].

The second way we can use the Marchenko method in the application of homoge-
neous Green’s function retrieval is a one-step process, where the Marchenko method is
only used to retrieve focusing functions to create virtual receivers. This is shown in Fig-
ure 3.3(b). Here, no virtual source is created from the reflection data using Equation
(3.14), rather the actual response from a real source inside the medium is used, which is
illustrated by the black star and arrow in Figure 3.3(b). The response that is monitored
is used as p(x,xB ,ω) in Equation (3.15). It can not generally be used in Equation (3.16),
however. If the source spectrum of the response is not strictly real-valued, the signal is
not symmetric in time, because s(ω) 6= s∗(ω), and therefore there will be a phase differ-
ence between the causal and acausal wavefield, making the superposition of the signal
with its time-reverse incorrect. Assuming that through processing of the signal, the type
of wavelet that is applied to the data can be controlled, symmetry of the source signal
can be ensured by using zero-phase wavelets. When this condition is fulfilled, Equa-
tion (3.16) can be used for the subsurface response. Monitoring real source signals is the
eventual goal of this approach, such as for the case of induced seismicity. The boon of
this method is that aside from the measured signal, no information about the source of
the data is required. There are limitations to this approach as well, most pressing that to
evaluate the integral, the signal needs to be recorded on the same receiver array that was
used to record the reflection data.

3.2.4. MODIFICATIONS FOR REALISTIC INDUCED SEISMICITY SOURCES

DOUBLE-COUPLE POINT SOURCES

For the case of induced seismicity, the source signal can be more complex than just
a single monopole point source. To include the mechanics for induced earthquakes
more accurately, the double-couple source mechanism can be included in the repre-
sentation. The double-couple source mechanism is accepted as representative for an
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earthquake response if the wavelength of the signal is at least of the same dimension as
the size of the fault that originated the earthquake [8]. It can be implemented through
the use of a moment tensor, which is useful for the case of finite-difference model-
ing [71]. The response of a monopole source and double-couple source for a homo-
geneous medium is shown in Figure 3.4, along with their radiation patterns in the cen-
ter. While the monopole source response has an uniform amplitude along the wave-
front, the double-couple source response has a varying amplitude and polarity along the
wavefront, due to the variation in the radiation pattern. Consequently, the orientation of
the double-couple source affects the source signal, which is visible in the Figure 3.4(b),
while the orientation of the monopole source does not matter. Hence, the orientation of
the fault is crucial to the characteristics of the double-couple source signal. To include
this orientation in the representation, we introduce the operator Dθ

B , which acts on the
wavefield and creates the double-couple source orientation from the monopole source
signature. This operator is defined as

Dθ
B = (θ∥i +θ⊥i )∂i ,B , (3.17)

where ∂i ,B is a component of the vector containing the partial derivatives acting on the
monopole signal originating from source location xB , that turns it into a double-couple
source mechanism, θ∥i is a component of the unit vector that orients one couple of the

signal parallel to the fault plane and θ⊥i is a component of the vector that orients the
other couple perpendicular to the fault plane. The operator can be applied to Equation
(3.15):

Dθ
B {p(xA ,xB ,ω)}+Dθ

B {χ(xB )2i s(ω)ℑ{ f1(xB ,xA ,ω)}} =∫
∂D0

2

iωρ0
Dθ

B {p(x,xB ,ω)}∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
dx,

(3.18)

and assuming that the source signal is symmetric in time, the operator is also applied to
Equation (3.16)

Dθ
B {ph(xA ,xB ,ω)} =

4ℜ
∫
∂D0

1

iωρ0
Dθ

B {p(x,xB ,ω)}∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
dx.

(3.19)

In these two equations, the operator can be freely applied to both sides, because the in-
tegral is not evaluated over the source locations. Consequently, if the wavefield response
used as a source for the homogeneous wavefield has a double-couple signature, the ho-
mogeneous wavefield will also have a double-couple signature. Note that the operator
does not operate on the focusing functions, hence we can use the monopole responses
for these signals.

DOUBLE-COUPLE SOURCES ALONG EXTENDED FAULTS

In case of induced seismicity, the fault or rupture plane that triggers the signal can be
larger than the wavelength of the signal. In this case, the double-couple point source is
no longer a valid approximation for the source of the signal. Studies of induced faults
suggest that the signal develops over the fault during an extended period of time [82]. To



3

42
3. MONITORING OF INDUCED DISTRIBUTED DOUBLE-COUPLE SOURCES USING

MARCHENKO- BASED VIRTUAL RECEIVERS

(a) (b)

Figure 3.4: Comparison of the wavefields caused by (a) a monopole point source and (b) a double-couple point
source tilted at an angle of 30 degrees. For both types of sources the radiation pattern of the source is shown in
the center. The wavefields have been convolved with a 30Hz Ricker wavelet.

approximate this type of source, a superposition of many point sources can be utilized.
The total signal of the resulting superposition can be written as the superposition of the
individual signals,

P (xA ,ω) =
nS∑

k=1
Dθ,(k)

B {p(xA ,x(k)
B ,ω)} =

nS∑
k=1

Dθ,(k)
B {G(xA ,x(k)

B ,ω)s(k)(ω)}, (3.20)

where the superscript k indicates the number of the source location x(k)
B that has the

source spectrum s(k)(ω) and nS is the total number of sources. The different source spec-
tra include a linear phase term that determines the time at which the signal is triggered
along the fault plane. P (xA ,ω) can be created in two different ways, similar as before.

First, we consider the two-step process, where both the source and receiver are vir-
tual. In this case, every source location can be treated separately to retrieve the homoge-
neous wavefield, and the superposition can be done after each signal has been retrieved
through Equation (3.19) and then shifted over t (k),

P (xA , t ) =
nS∑

k=1
H(t − t (k))Dθ,(k)

B {ph(xA ,x(k)
B , t − t (k))}, (3.21)

where H is the Heaviside step function and t (k) is the time at which point the k-th signal
originates on the fault. The Heaviside in Equation (3.21) selects the shifted causal signal
from the shifted homogeneous (two-sided) signal before the superposition takes place,
which is required to construct the correct signal. If the shifted homogeneous signals
would be used instead, the shifted acausal part of later signals would overlap with the
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causal part of signals that originated earlier. Through use of Equation (3.21) the correct
signal can be retrieved.

In case the source signal is measured rather than virtually created, the same ap-
proach cannot be taken. This signal is by definition measured after superposition, there-
fore each point source cannot be evaluated seperately. To represent this, Equation (3.18)
is adjusted to take the implicit superposition into account, according to

P (xA ,ω)+
nS∑

k=1
Dθ,(k)

B {χ(x(k)
B )2i s(k)(ω)ℑ{ f1(x(k)

B ,xA ,ω)}} =∫
∂D0

2

iωρ0
P (x,ω)∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
dx =∫

∂D0

2

iωρ0

nS∑
k=1

Dθ,(k)
B {p(x,x(k)

B ,ω)}∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
dx.

(3.22)

In this scenario, the sum is inside the integral and the entire signal is superposed before
the focusing function is applied to it. This also results in a superposition of contribu-
tions of the focusing function between the virtual receiver location and the fault plane
(i.e., the second term on the left-hand side). Substituting Equation (3.22) into Equation
(3.7) will not lead to a cancellation of the focusing function on the left-hand side, as the
wavefield does not have a symmetric source signal, due to the time differences between
all the sources. As such, Equation (3.22) is the endpoint and we will not obtain a ho-
mogeneous wavefield, but rather a signal between the source and virtual receiver plus
additional artifacts caused by the focusing funtion between the virtual receiver and the
fault plane. Similar to the single source, each set of artifacts maps in between the shifted
direct arrival of the wavefield and its time-reversal. Due to the different shift of each sig-
nal, the artifacts overlap with the shifted causal and acausal parts of other signals and
cannot be easily separated. However, because of the limited duration of the artifacts, the
signal at later times will be free from these artifacts. Additionally, due to the nature of the
characteristic function, the artifacts also vanish when the source location x(k)

B is outside
the volume D. In other words, if the virtual receiver location xA is above the shallowest
source location, the correct signal can be retrieved for this virtual receiver.

3.3. RESULTS

3.3.1. NUMERICAL RESULTS

MONOPOLE AND DOUBLE-COUPLE POINT SOURCES

To demonstrate the different approaches to homogeneous Green’s function retrieval, we
apply the methods first on synthetic data. Figure 3.5(a) shows a density model and Fig-
ure 3.5(b) shows the accompying P-wave velocity model. The model contains an area of
faulting in the center of the model, which is highlighted with a black dashed line. To cre-
ate the required reflection data, the model is used in a finite-difference modeling code
for wavefield modeling [68]. An example of an acoustic common-source record from
the center of the model is shown in Figure 3.5(c). This type of common-source records
and a smoothed version of the velocity model in Figure 3.5(b), are the only input that
we will use for our applications. To retrieve the required Green’s functions and focus-
ing functions with the Marchenko method, we model the first arrival from a point in the
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subsurface to the surface of the medium using the smooth velocity model and a homo-
geneous density model. This first arrival is then used to initiate the Marchenko method
to retrieve focusing functions and a Green’s function from the reflection response at the
surface (i.e., from the common source records). The scheme that we use is based on the
Marchenko code created by Thorbecke et al. [34]. This is a code for an acoustic wavefield
Marchenko method, excluding free-surface multiples in the reflection data. Free-surface
multiples could be included in the scheme as was shown by Singh et al. [49], but this be-
yond the scope of the current chapter.
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Figure 3.5: (a) Density in kg m−3 and (b) P-wave velocity in m s−1 of the numerical model used to create
reflection data. The white box denotes the area of interest for the purpose of homogeneous Green’s function
retrieval. The black dashed line indicates a fault plane. (c) Common-source record, created using the model
data in (a) and (b), with the source at the top center of the model, using a finite-difference modeling code and
convolved with a 30Hz Ricker wavelet.

Figure 3.6 shows the results of the homogeneous Green’s function retrieval. All snap-
shots show the same area in the subsurface, which is denoted by the white box in Fig-
ures 3.5(a) and (b). Note that the box does not show the true aspect ratio of the area,
however, the snapshots in Figure 3.6 do. Each pixel in the image is a receiver location
and the source location for all images is exactly the same. The columns show snapshots
of the wavefield in the subsurface at four different points in time, 0ms, 150ms, 300ms
and 450ms. Each row corresponds to a specific way the wavefield in the subsurface was
constructed. In the first row, the source and the receivers of the wavefield are placed
inside the model and the wavefield is directly modeled. This is the benchmark that the
other results will be compared to. All snapshots contain an overlay of black dashed lines,
which indicate the locations of geological layer interfaces. As can be seen in the figure,
the wavefield of the modeling scatters at these lines.

The Marchenko based approach is an improvement over classical methods as was
shown by Brackenhoff et al. [81], because of the focusing functions that are utilized. To
demonstrate this, we first consider a more conventional approach, namely the classical
back propagation method from section 2.4 of our companion paper by Wapenaar et al.



3.3. RESULTS

3

45

[24], from which we use equation (23):

p−(xA ,xB ,ω) ≈
∫
∂D0

2

iωρ0
p−(x,xB ,ω)∂3G∗

d (x,xA ,ω)dx, (3.23)

where p− is the upgoing component of the pressure wavefield at ∂D0 and G∗
d (x,xA ,ω)

is the time-reversed first arrival of the Green’s function and is the same first arrival that
is used as the initial estimation of the focusing function that is used in the Marchenko
method. For more information about the method, we refer the reader to our companion
paper. Here, we demonstrate the issues with this approach, which can be seen in Figures
3.6(e)-(h). The primary upgoing wavefield can be recovered using this method, however,
the downgoing wavefield is missing and strong artifacts are present. This is due to the
fact that the multiples and the downgoing wavefield are not taken into account properly
using the back propagation method. To make a more detailed comparison between the
result of this method and the modeling, we extract the measurements from two receiver
locations. These locations are indicated in Figure 3.6(a), where the red dot is a receiver
location above the source location and the blue dot a receiver location below the source
location. Parts of these measurements are displayed in Figure 3.7, where the left column
corresponds to the red dot and the right column to the blue dot. The results in the rows
of Figure 3.7 correspond to the results of the rows in Figure 3.6. However, the normalized
amplitudes of the traces are used instead of the exact amplitudes. This is done because
the first arrivals that were used for the Marchenko method and back propagation were
retrieved in a smooth velocity medium without any density information, which is re-
alistic, considering the availibility of data in the field. Because of these limitations the
absolute amplitude of the first arrival will be incorrect and while this has no effect on
the relative amplitude, it does cause an incorrect overall scaling on the final retrieved
wavefield. However, we can still use the normalized traces to analyze the events that are
retrieved with the correct relative amplitude. The trace in Figure 3.7(c), located above the
virtual source, shows that while some of the correct events are retrieved, a large amount
of desired events are missing. These problems are more severe for the receiver below
the source location. In Figure 3.7(d), physical events are missing and there are artifacts
present all over the trace. The classical back propagation method lacks a great deal of
accuracy.

The third row of Figure 3.6 shows the result of Green’s function retrieval using the
method described by Equation (3.15). The Green’s function and focusing functions that
are required for this method are retrieved using the Marchenko method. This means that
all the receivers and the source are virtual. When the result is compared to the bench-
mark, it is clear that there are some issues. The wavefield below the source location, as
indicated by the yellow dashed line, contains numerous artifacts and the downgoing di-
rect arrival of the wavefield is missing, however, the coda of the wavefield is present both
above and below the source location, which is a significant improvement over the back
propagation. The remaining errors below the source location are caused by the fact that
the focusing function between the virtual source and receiver is present and the lack of
compensation for these contributions cause artifacts in the final result. When the vir-
tual receivers are located above the virtual source location, the wavefield is comparable
to the benchmark and the direct arrival is present. When the trace in Figure 3.7(a) is
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compared to (e), the arrival times of the events match and there are no artifacts present,
however there is a mismatch in amplitude. This is due to transmission losses in the re-
flection response, that the Marchenko method in its current form does not compensate.
These effects have been partially compensated for through use of the method discussed
by Brackenhoff [66], although not all the effects have been removed. Also, we expect
some numerical issues due to the fact that the modeling and the retrieval of the data are
two fundamentally different approaches and the data are discretized. The modeling of
the first arrival in the smooth model does not only affect their amplitudes, also the ar-
rival times will shift slightly. Due to this slight shift the sampling points of the modeling
and the retrieved wavefield may not match exactly. We ensure that the wavelet is zero-
phase for the modeling and the Marchenko method to fulfill the symmetric source signal
requirement for the homogeneous Green’s function representation. When the receiver
location below the source is considered in Figure 3.7(f), the results are less accurate. The
trace of the modeling contains no signal before the first arrival, whereas the trace for the
Green’s function retrieval contains numerous events and is lacking the first arrival. The
coda of the traces shows a match that is comparable to the receiver location above the
source. The arrival times of the events show a good match, while the amplitudes show
errors. Because this receiver is located deeper inside the model, the transmission effects
are stronger and therefore the error is larger.

Next, the homogeneous Green’s function retrieval using Equation (3.16) is consid-
ered. The input for this approach is exactly the same as the one used for the previous
approach using Equation (3.15), however, this time, we expect to retrieve the correct
result. Looking at Figures 3.6(m)-(p), the result more closely matches the result of the
benchmark. The improvement over the previous result for the deeper virtual receivers
is clear. For some of the deeper receivers, part of the wavefield is still not completely
present, however. This is the part of the wavefield that has a steep angle. The reason
for this missing part is that the reflection response at the surface does not contain the
reflections corresponding to the angles at larger depths, as they travel outside the aper-
ture of the recording survey. Therefore, these steep angles cannot be reconstructed. As
can be seen when the trace from Figure 3.7(e) is compared to (g), the result of the two
approaches is exactly the same if the virtual receiver is located above the source. The
improvement is noticeable when the receiver is located below the source. Figure 3.7(h)
does contain the first arrival and lacks any signal before this arrival, and therefore shows
a better match to Figure 3.7(b). While the amplitude mismatch is still present, the arrival
times of the events match and no artifacts are present. This also shows that the coda of
Figure 3.7(f) is correctly retrieved. We have indicated the moment that the correct coda
is retrieved with a yellow line in this figure.

To make a more careful comparison between the modeled wavefield and the wave-
fields retrieved from the reflection data, we plotted the traces from Figures 3.7(a)-(h) to-
gether in Figure 3.8, where the left column shows the result for the traces above and the
right column shows the result for the traces below the virtual source location. Each sub-
plot contains the modeled response with an overlay of one of the retrieval methods. The
back propagation method shows very large errors for both receiver locations as can be
seen in Figures 3.8(a) and (b). Strong physical events are missing and artifacts are present
on both traces. When comparing the results in Figure 3.8(c), the match of the events be-
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Figure 3.6: Snapshots of the wavefield inside the white box in Figure 3.5 for point sources. (a)-(d) Directly mod-
eled wavefield using the exact model from Figures 3.5(a) and (b). (e)-(h) Back-propagated wavefield obtained
using Equation (3.23). (i)-(l) Wavefield in the subsurface, retrieved for virtual receivers and a virtual source us-
ing Equation (3.15). The yellow line indicates the border between the area below and above the virtual source.
(m)-(p) Similar as (i)-(l), for the homogeneous wavefield using Equation (3.16). (q)-(t) Similar as (m)-(p), using
Equation (3.19) and a double couple signature inclined at an angle of 45 degrees. All wavefields have been
convolved with a 30Hz Ricker wavelet. The red and blue dot indicate the locations of the traces in Figure 3.7.
The black dashed lines indicate the locations of geological layer interfaces.

tween the modeled wavefield and the retrieved wavefield is not perfect. As mentioned
before, this is due to the influence of the smooth model and numerical effects that oc-
cur. A similar match can be seen in Figure 3.8(e). The retrieval of the Green’s function
with the artifacts below the source location, which is displayed in Figure 3.8(d), shows
the errors at early time, however, also demonstrates that the events in the coda are well
captured. This error is not present in case of the homogeneous Green’s function retrieval
as shown in Figure 3.8(f). These results show that the approach using the Marchenko
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method is capable of retrieving the relative amplitudes of the events and can retrieve ar-
rival times that are very close to the actual arrival times, even if a smooth velocity model
is used.

Finally, we consider the situation where the source mechanism is more complex,
through the use of a double-couple signature. The retrieval in this case corresponds
to the approach in Equation (3.19), using a virtual source. The double-couple is an elas-
tic mechanism, however, as we only require the first arrival to initiate the Marchenko
method, the coda of the wavefield is not of interest. The S-wave velocity used for the
modeling of the first arrival is set to 500m s−1, to ensure that all the S-wave events ar-
rive after the first P-wave arrival. We incline the double-couple source at an angle of
45 degrees and use it to model the first arrival, which is used to initiate the Marchenko
method to retrieve the wavefield response for the virtual source location. The focusing
functions remain the same as the ones we used for the previous approaches in Figures
3.6(e)-(h). The result of this retrieval is shown in Figures 3.6(q)-(t). As Equation (3.19)
states, because the Green’s function contains a double-couple signature, the homoge-
neous Green’s function contains the same signature, both in the direct arrival and in the
coda of the wavefield. The double-couple signature affects the amplitude of the wave-
field depending on the angle of the wavefront, however, the arrival times are similar to
those when a monopole virtual source is used. This becomes clear when the traces from
Figures 3.7(i)-(j) are considered. The arrival times for the events are similar to the pre-
vious result, however, there are apparent amplitude and phase differences, caused by
the different types of source signature. Due to these differences, we have not included
these traces in Figure 3.8, as a direct comparison between the events cannot be made.
The result shows that the double-couple signature can be succesfully integrated in the
Marchenko method.

DOUBLE-COUPLE SOURCES ALONG EXTENDED FAULTS

Until now, we only considered single point sources that have a symmetric signal. To
study the situation of induced seismicity, we simulate a source that evolves over time
over a larger area than a single point. We achieve this by placing a collection of sources
along a line in the model. For this purpose, we place 131 sources along the fault plane
that was indicated in Figure 3.5, starting at the bottom left corner, with a spacing of
7.07m. The time between the activation of the shots is 12ms, simulating a propaga-
tion speed of the source along the fault of 589m s−1. The fault is inclined at 45 degrees,
therefore we make use of double-couple sources that are inclined at the same angle. We
consider two scenarios, one where we have virtual sources and one where we have a
measurement of a real source.

For the first scenario, we approach the problem by considering each source posi-
tion separately. We do this by retrieving the homogeneous wavefield for each virtual
source location separately and by shifting and superposing the results, similar to Equa-
tion (3.21). Causality is applied to each individual wavefield before the superposition to
avoid overlap between the causal and acausal part of the wavefields. Snapshots of the
results are shown in Figures 3.9(a)-(d), for 0ms, 500ms, 1000ms and 1500ms. The reason
for the large timesteps is to ensure that all the sources along the fault have been activated
during the final snapshot. The propagation of the source location along the fault is clear
in these snapshots, however, a propagating wavefield appears to be largely absent, with
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Figure 3.7: Traces from receivers in the subsurface at two locations, extracted from Figure 3.6. In the left col-
umn, the receiver is located above the source and corresponds to the red dot in Figure 3.6(a) and in the right
column it is located below the source and corresponds to the blue dot in Figure 3.6(a). (a)-(b) Directly modeled
wavefield using the exact model from Figures 3.5(a) and (b). (c)-(d) Back-propagated wavefield obtained using
Equation (3.23). (e)-(f) Wavefield in the subsurface, retrieved for virtual receivers and a virtual source using
Equation (3.15). The yellow line in (f) indicates the time after which the correct signal is retrieved. (g)-(h) Sim-
ilar as (e)-(f), for the homogeneous wavefield using Equation (3.16). (i)-(j) Similar as (g)-(h), using Equation
(3.19) and a double couple signature inclined at an angle of 45 degrees. All wavefields have been convolved
with a 30Hz Ricker wavelet.

only a few events and ringing effects present. The reason for this phenomenon is that the
velocity at which the sources are activated along the faults is lower than the propagation
velocity of the medium. This effectively means that the phase velocity of the combined
wavefield along the fault is lower than the propagation velocity of the medium and the
emitted wavefield therefore becomes evanescent. This effect can be seen more clearly
by considering the traces from two receiver positions. Similar to Figure 3.7, we extract
the same receiver locations to consider the individual traces, as shown in Figure 3.10. In
Figures 3.10(a)-(b), the trace for the receiver location above the shallowest source loca-
tion shows a trace with few events, except for some high amplitude events. The receiver
location below the deepest source shows a trace that contains more ringing effects with
a uniform amplitude. Because the amplitudes are similar and the events located close
together, little information can be gained from this trace.

In reality, faults are not uniform, rather they are strongly heterogeneous, which causes
variations for the source amplitude along the fault plane. To account for this effect, we
apply random scaling to each source location along the fault plane before the superpo-
sition takes place. Applying a random scaling factor to the wavefield only affects the am-
plitudes of the wavefields and does not affect the arrival times or presence of the events
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Figure 3.8: (a) Overlay of the traces from Figures 3.7(a) and (c). (b) Similar as (a) for the traces from Figures
3.7(b) and (d). (c) Similar as (a) for the traces from Figures 3.7(a) and (e). (d) Similar as (a) for the traces from
Figures 3.7(b) and (f). (e) Similar as (a) for the traces from Figures 3.7(a) and (g). (f) Similar as (a) for the traces
from Figures 3.7(b) and (h). All wavefields have been convolved with a 30Hz Ricker wavelet.

in the wavefield. The result of this approach is shown in Figures 3.9(e)-(h). The propaga-
tion of the source location along the fault is similar to the uniform amplitude approach,
however, the individual wavefields are visible due to the random amplitude approach.
Both the first arrivals and the codas can be seen, although there is much overlap between
all the wavefields which makes distinguishing individual events at later times challeng-
ing. When the two receiver traces in Figures 3.10(c)-(d) are studied, this challenge is still
present. The trace contains events, however, it is difficult to say whether these events
correspond to the response of one source or another.

To make an estimation for the arrival times of the retrieved response, we numerically
model the line source in the subsurface, using the same random amplitude distribution
as in the previous case. As we lack the capability to model snapshots of the response
to the double-couple source acoustically, we make use of monopole point sources, in-
stead of double-couple sources. As a result, the amplitudes of the events should not be
compared to the retrieved response, however, the arrival times can be compared. The
wavefield in Figures 3.9(i)-(l) shows that the arrival times are well comparable between
the modeling result and the retrieved response. This is further proven when the traces in
Figures 3.10(e)-(f) are considered. The arrival times have a strong match, while the am-
plitudes are not comparable. This confirms that the correct events are retrieved through
this approach.

Next, we consider a different scenario, with a real source instead of a virtual one.
Here, we once again retrieve the wavefield response of each source separately. How-
ever, instead of retrieving a separate wavefield for each of these responses and then su-
perposing these results together, we superpose the responses before the wavefield is re-
trieved, following Equation (3.22). By using this approach we obtain a response record



3.3. RESULTS

3

51

•

•

1000 m x1 x1 x1 x1

x3

x3

x3

x3

x3

x3

Uniform virtual source 0 ms 500 ms 1000 ms 1500 ms

(a) (b) (c) (d)

Random virtual source 0 ms 500 ms 1000 ms 1500 ms

(e) (f) (g) (h)

Modeling 0 ms 500 ms 1000 ms 1500 ms

(i) (j) (k) (l)

Random real source 0 ms 500 ms 1000 ms 1500 ms

(m) (n) (o) (p)

Back Propagation
random virtual source

0 ms 500 ms 1000 ms 1500 ms

(q) (r) (s) (t)

Back Propagation
random real source

0 ms 500 ms 1000 ms 1500 ms

(u) (v) (w) (x)

t

Figure 3.9: Snapshots of the wavefield inside the white box in Figure 3.5 for line sources. (a)-(d) Response in the
subsurface, retrieved using Equation (3.21) for virtual receivers and virtual double-couple sources inclined at
45 degrees with an uniform amplitude. (e)-(h) Similar as (a)-(d), using random amplitudes for the source. (i)-(l)
Directly modeled wavefield using the exact model from Figures 3.5(a) and (b) and monopole point sources with
a random amplitude. (m)-(p) Similar as (e)-(h) using a superposition of double-couple sources with random
amplitudes using Equation (3.22). The yellow line indicates the border between the area below and above
the shallowest source. (q)-(t) Similar as (e)-(h), however instead of using the homogeneous Green’s function
retrieval, the back propagation using Equation (3.23) is used for each source position. (u)-(x) Similar as (m)-
(p), however instead of using the Green’s function retrieval, the back propagation using Equation (3.23) is used.
All wavefields have been convolved with a 30Hz Ricker wavelet. The red and blue dot indicate the locations of
the traces in Figure 3.10. The black dashed lines indicate the locations of geological layer contrasts.
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Figure 3.10: Traces of receivers in the subsurface at two locations, extracted from Figure 3.9. In the left col-
umn, the receiver is located above the source and corresponds to the red dot in Figure 3.9(a) and in the right
column it is located below the source and corresponds to the blue dot in Figure 3.9(a). (a)-(b) Response in the
subsurface, retrieved using Equation (3.21) for virtual receivers and virtual double-couple sources inclined at
45 degrees with an uniform amplitude. (c)-(d) Similar as (a)-(b), using random amplitudes for the source. (e)-
(f) Directly modeled wavefield using the exact model from Figures 3.5(a) and (b) and monopole point sources
with a random amplitude. (g)-(h) Similar as (c)-(d) using a superposition of double-couple sources with ran-
dom amplitudes using Equation (3.22). The yellow line in (h) indicates the time after which the correct signal
is retrieved. (i)-(j) Similar as (c)-(d), however instead of using the homogeneous Green’s function retrieval, the
back propagation using Equation (3.23) is used for each source position. (k)-(l) Similar as (g)-(h), however in-
stead of using the Green’s function retrieval, the back propagation using Equation (3.23) is used. All wavefields
have been convolved with a 30Hz Ricker wavelet.

that matches the response of a real source recording in the subsurface. The same ran-
dom amplitude distribution that we used for the previous two results is applied for this
approach as well, to make the comparison fair. The wavefield that is obtained is shown
in Figures 3.9(m)-(p), where we can see that the propagation of the source location along
the fault is captured properly. There are issues with the approach due to the limitation
of the representation that is used. The response to each source has artifacts that arrive
before the first arrival when the virtual receiver is located below any of the source loca-
tions. These effects overlap with the causal wavefields of sources at other locations, and
obscure the events that should be present. Additionally, the downgoing first arrival is
missing for all source locations. These problems are inherent to the representation and
cannot be easily avoided, however, the coda of the response for later times will be cor-
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rect, as we saw already for the point source in Figures 3.7(e)-(h). When the traces for this
approach from Figures 3.10(g)-(h) are studied, we can see that if the receiver is located
below the source locations, individual events belonging to the sources are impossible to
distinguish. If the receiver is located above all the sources, however, the response is re-
trieved correctly. The lower receiver contains the correct coda at later time. We indicated
this moment with a yellow line in Figure 3.10(h), similar to Figure 3.7(d). This, combined
with the fact that the source location of the signal can be clearly distinguished, shows
that this approach has potential for field recordings.

Finally, as an example for the improvement of this approach over conventional meth-
ods, we repeat the retrieval of a fault plane source using the back propagation method.
We consider both the approach for retrieving a virtual source and retrieving a real source.
For the first approach, we retrieve the response for each source location, mute the acausal
part of the response and shift it in time, to create one source signal. However, instead of
using homogeneous Green’s function retrieval to obtain the responses, we employ the
classic back propagation and show the resulting wavefield in Figures 3.9(q)-(t). While
the primay upgoing wavefield is still captured, the coda and the downgoing wavefield
are absent. Aside from the missing events, artifacts are present at all times in the re-
sult. When the extracted traces are considered in Figures 3.10(i)-(j), we can see that the
trace is completely different to the traces in Figures 3.10(c)-(d). Due to the fact that the
missing events and the artifacts shift along with the source position, it masks the entire
trace. The effects of the classical back propagation approach have a similar result when
we repeat the experiment for our real source example. We use classical back propagation
instead of Green’s function retrieval on the simulated real source response and show the
result in Figures 3.9(u)-(x). Similar problems with the coda and the downgoing wavefield
are present and the artifacts in the wavefield are still ocurring. The extracted trace above
the source locations in Figure 3.10(k) shows the same result as in Figure 3.10(i), which
is consistent with the previous results. The extracted trace below the source locations
in Figure 3.10(l) shows the strong degradation in quality and has no match with the de-
sired result in Figure 3.10(d). This shows that for both types of sources, real or virtual,
the single-sided approach with a focusing function is an improvement over the classical
approach using back propagation. Therefore, the latter approach will not be used for the
field data.

3.3.2. FIELD DATA RESULTS

To demonstrate that our approach is not limited to synthetic data, we also apply the
method on field reflection data. The field data were recorded in the Vøring basin, in a
marine setting by SAGA Petroleum A.S., which is currently part of Equinor. Due to the
setting, the receivers only recorded P-waves. The data consist of 399 common-source
records, an example of which is shown in Figure 3.11(c). The data were preprocessed
before the application of the homogeneous Green’s function retrieval, through the use
of the Estimation of Primaries through Sparse Inversion (EPSI) method to remove the
source wavelet, retrieve the near-offsets and remove the free-surface multiples [83]. More-
over, we applied source-receiver reciprocity to allow the retrieval of two directions of off-
set and adaptive corrections to compensate for attenuation and incorrect source strength.
Along with the reflection data, a smooth P-wave velocity model was also provided, which
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is shown in Figure 3.11(a). We indicate the region of interest, where we will perform
homogeneous Green’s function retrieval, with a white dashed box. The model is not dis-
played in a true to life aspect ratio. The reflection data and the velocity model are the only
inputs that are available for the homogeneous Green’s function retrieval. No direct infor-
mation about the subsurface is available for this area, however, using the reflection data
and the velocity model, an image of the subsurface was created using the Marchenko
method, shown in Figure 3.11(b), which we will use as a reference for where scattering
is expected to take place. This imaging was done independently of the homogeneous
Green’s function retrieval and is only used as a reference. More information about imag-
ing using the Marchenko method, as well as an application on field data, can be found in
Staring et al. [38]. The homogeneous Green’s function retrieval for this dataset has been
succesfully performed, as was shown in [81], however, in this work we will expand the
results to include the line source configuration.
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Figure 3.11: Real data example, (a) P-wave velocity in m s−1 of the field data. The white box denotes the area of
interest for the purpose of homogeneous Green’s function retrieval. (b) Image of the subsurface located in the
region indicated by the white dashed box. (c) Common-source record of the field reflection data, processed for
the purpose of applying the Marchenko method. The reflection data source wavelet was reshaped to a 30Hz
Ricker wavelet. The data itself was recorded in the Vøring basin in Norway and was provided by Equinor.

Because there is no information about the subsurface available, we cannot directly
model in the subsurface and therefore have no benchmark, however, we have shown
with the previous examples that the method is capable of retrieving the correct result.
We perform homogeneous Green’s function retrieval in the subsurface for both a virtual
source and virtual receivers. The virtual source is a double-couple source, inclined at
20 degrees. The result is shown in Figures 3.12(a)-(d) for 0ms, 300ms, 600ms and 900ms.
The image of the subsurface from Figure 3.11(b) is used as an overlay to help indicate the
region where scattering of the wavefield is expected. The scattering takes place along re-
gions where high amplitudes are present for the subsurface image, which indicates a
match between the image and the homogeneous wavefield. Aside from the direct ar-
rival, there is also a coda present, which contains several events. The result is not as
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clean as the synthetic data, however. This is due to the limitations of the field data. The
data is attenuated, a problem that the Marchenko method cannot properly account for.
The attenuation has been corrected for during the processing, however, this process is
imperfect and will leave imperfections in the final result. There is also incoherent noise
present in the field data, which has not been removed during the processing and will be
present in the final result.

Figure 3.12(a) shows a red and blue dot, which indicate the location of traces that
are extracted and are shown in the left and right column of Figure 3.13, respectively. No
benchmark for these traces is available, and thus it cannot be directly validated. The
results in Figures 3.13(a)-(b) show that the traces contain multiple well defined events,
and that the noise on the trace is has lower amplitudes than these events. The amplitude
of the first arrival is strong compared to the coda and the phase of all the events is similar.
This shows that if the faults in the model are small compared to the wavelength, this
approach can be useful for interpretation and characterisation of the source mechanism.

•

•
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Figure 3.12: Snapshots of the wavefield inside the white box in Figure 3.11 for the field data. (a)-(d) Homoge-
neous wavefield in the subsurface, retrieved for virtual receivers and a virtual double-couple source inclined
at -20 degrees using Equation (3.19). (e)-(h) Similar as (a)-(d), for a line source of double couple sources with
random amplitudes inclined at 22.4 degrees using Equation (3.21). (i)-(l) Similar as (e)-(h), using a superpo-
sition of double-couple sources with random amplitudes using Equation (3.22). The yellow line indicates the
border between the area below and above the shallowest source. The images are overlain with the image of the
subsurface from Figure 3.11(b). All wavefields had their source wavelets reshaped to a 30Hz Ricker wavelet.

Next, we consider the two line source configurations for the virtual and the real source
configuration. As there is no clear fault present in the model, the fault line is arbitrarily
placed in the center of the model, inclined at an angle of 22.4 degrees. 161 sources are
used with a spacing of 6.99m, where the time between the activation of the shots is 12ms,
simulating a propagation speed of the source along the fault of 583m s−1. A random am-
plitude is assigned to each of the source locations to generate propagating waves. The
first situation we consider is using Equation (3.21), where homogeneous Green’s func-
tion retrieval is performed for each location separately and the results are superposed
and causality is imposed. The results of this approach are shown in Figures 3.12(e)-(h),
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for 0ms, 1000ms, 2000ms and 3000ms. Similar to the synthetic data, the movement of
the source is well captured and the first arrival and the coda are present in the signal.
Part of the wavefield is not present, which corresponds to high angles at deeper depths,
which, as we explained before, are not present in the reflection response and can there-
fore not be reconstructed. The result has a similar quality as the single double-couple
source in Figures 3.12(a)-(d) and the results on the synthetic data Figure 3.9.

There is no induced seismicity signal present for this area, so a real source signal can-
not be used, but we simulate this as follows. Similar to the approach for the synthetic
data, we use the Marchenko method to retrieve a wavefield response with a double-
couple signature for each source location. These signals are then superposed to create a
single source record, as a substitute for a real source signal. This approach follows Equa-
tion (3.22), the results of which are shown in Figures 3.12(i)-(l). Similar to the results for
the synthetic data, the match between the two approaches above the shallowest source
location is strong. This is proven further when the traces above the source from Figures
3.13(c) and (e) are compared to each other. The traces are nearly identical. If we con-
sider a location below the the deepest source location, the results are less comparable,
again similar to the results that were achieved on the synthetic data. The traces for this
location, shown in Figures 3.13(d) and (f), support this conclusion. The match in this
situation is non-existent for earlier times, and the information is hard to appraise. At
later times, as indicated by the yellow line, the coda of the two approaches match each
other, similar as seen before. For both types of retrieval, the source locations are well-
defined in both time and space and not obscured by artifacts that could cast doubt on
the source locations. Using both types of approach shows potential for the determina-
tion of the source location and the coda and can help in the characterisation of the fault
mechanism.
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Figure 3.13: Traces of receivers in the subsurface at two locations, extracted from Figure 3.12. In the left col-
umn, the receiver is located above the source and corresponds to the red dot in Figure 3.12(a) and in the right
column it is located below the source and corresponds to the blue dot in Figure 3.12(a). (a)-(b) Homogeneous
wavefield in the subsurface, retrieved for virtual receivers and a virtual double-couple source inclined at -20
degrees using Equation (3.19). (c)-(d) Similar as (a)-(b), for a line source of double couple sources with random
amplitudes inclined at 67.6 degrees using Equation (3.21). (e)-(f) Similar as (c)-(d), using a superposition of
double-couple sources with random amplitudes using Equation (3.22). The yellow line in (f) indicates the time
after which the correct signal is retrieved. All wavefields had their source wavelets reshaped to a 30Hz Ricker
wavelet.
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3.4. CONCLUSIONS
In this chapter, we considered two methods to monitor full wavefields in the subsurface
using the Marchenko method and found that in both cases, the Marchenko based ap-
proach is an improvement over classical methods such as back propagation. The first
method is based on the creation of both virtual receivers and virtual sources in the sub-
surface. In this case, all the signals are created from the reflection data at the surface, and
no response from a real subsurface source is used. For virtual point sources, we showed
that we can assure that the source signal is symmetric and that therefore the full ho-
mogeneous wavefield can be retrieved without artifacts. The main limitation is that the
steepest part of the wavefield at large depths cannot be retrieved. This approach works
for virtual sources, both with a monopole signature and a more complex double-couple
signature, the latter of which was used as a model for a small scale induced seismicity sig-
nal. Larger scale induced seismicity signals, emitted from a fault plane, were considered
as well, simulated by a series of individual point sources with a double-couple signature.
For this case, the homogeneous wavefield was retrieved for all the sources separately, af-
ter which the causal parts were isolated, shifted in time and superposed together. This
produces a response from an extended fault rupture that is operating over a larger win-
dow of time, which produces a far more complex signal. All the source locations can be
distinguished using this method. This method can be used to forecast in a data-driven
way the response to possible future induced seismic events.

The second method we considered creates virtual receivers in the subsurface that ob-
serve a real response from a subsurface source. To this end, we considered point sources
where the source signal was not assumed to be symmetric in time. The causal wavefield
that is retrieved in this case is missing a part of the direct arrival and contains artifacts.
These problems are only present when the virtual receiver is located below the source
location, and the artifacts map exclusively in the time interval between the direct arrival
of the wavefield and its time reversal. The coda of the causal wavefield is retrieved in
full, as well as the source location of the subsurface response. When considering the
responses propagating from a fault, the artifacts are more severe. Unlike in the method
with the virtual sources, to simulate the response to a real rupturing fault, we shifted and
superposed the source responses before the Green’s function retrieval. Because of this,
the artifacts are present for each point source, however, due to the time shift, the artifacts
of one response coincided with the causal coda of other responses. As a result the coda
of the retrieved wavefield is only partially obtained. The source locations of the fault re-
sponse are retrieved correctly. This method can be used to monitor in a data-driven way
the response to actual induced seismic events everywhere between the surface and the
source.

We applied the two methods to synthetic and field data. For the synthetic data we
showed that the retrieved responses match very well with directly modelled responses.
The results obtained from the field data are very similar to those obtained from the syn-
thetic data. The results on the datasets show the potential for the application of the
method on real source signals in the future.



4
IMPLEMENTATION OF THE 3D

MARCHENKO METHOD

The Marchenko method can be applied on cross-sections of 3D data using a 2D algorithm,
but only a full 3D implementation can properly retrieve all 3D effects present in the data.
The 3D implementation of the iterative Marchenko method is in principle a straightfor-
ward extension of the 2D method, it only requires an additional surface integration di-
mension. We present a 3D implementation of the Marchenko method based on an earlier
implementation of the 2D Marchenko method. In the discussed implementation, special
attention is given to an efficient kernel implementation and limiting the amount of data
to read in, by using data compression. The algorithm properly handles 3D events and
this is illustrated in the intermediate results of individual iterations of the method. Due
to model-time and data-size constraints, the aperture of the data is limited, which leads
to finite aperture artefacts that cause a lower convergence rate. We demonstrate the 3D
method by retrieving the Green’s functions for two models and comparing these functions
to reference solutions. The two models are a horizontally layered medium and the com-
plex SEG/EAGE Overthrust model. Using the Marchenko method, imaging is applied to
both models to show that false images caused by internal multiples are attenuated. Our
3D implementation is fully opensource and is intended to be used in future studies.

This chapter is in preparation for publication. A preprint is available as J. Brackenhoff, J. Thorbecke, V. Koehne,
D. Barrera & K. Wapenaar, Implementation of the 3D Marchenko method. ArXiv, preprint number:2004.00896
(2020).
Minor modifications have been applied to the text and figures for the sake of consistency in the thesis.
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4.1. INTRODUCTION
The Marchenko method is a novel method in the field of geophysics and was first consid-
ered by Broggini et al. [29] for 1D media and Wapenaar et al. [31], Broggini et al. [32] and
Behura et al. [33] further derived the method for 2D and 3D applications. The Marchenko
method uses reflection data without free-surface multiples at the surface of a medium
together with a first arrival from a focal point in the medium to obtain the upgoing and
downgoing Green’s functions as if there was a virtual source at the focal location, with-
out artefacts caused by internal multiples [26]. Furthermore, the method is also capable
of retrieving focusing functions, which are wavefields that focus from the surface of the
Earth to the focal location. The method can be used to predict and subtract internal mul-
tiples from the reflection data [38, 45], to obtain images of the subsurface without arte-
facts caused by internal multiples [30, 32, 84, 85] or to obtain the homogeneous Green’s
functions between any two focal points in the subsurface [62, 81]. The method is also
known for its versatility, for example, Singh et al. [49] and Slob and Wapenaar [50] devel-
oped a Marchenko scheme that functions with reflection data that include free-surface
multiples, Wapenaar and Slob [42], da Costa Filho et al. [43] and Reinicke and Wapenaar
[44] applied the method to elastic media and Meles et al. [47] adjusted the scheme to
work very efficiently with plane-waves. Although the theory is fully developed for 3D
media, most published applications are based on the 2D Marchenko method, due to the
need for well sampled data, which is difficult to achieve for 3D acquisitions. Lomas and
Curtis [53] made a comparison between results obtained with a full 3D acquisition and
results obtained with linear seismic acquisition arrays, both recorded over a 3D medium.
The authors showed that while the 2D approximation can yield good results, if one wants
to take into account the full 3D effects, especially the out-of-plane reflections, a 3D ver-
sion of the Marchenko method is required.

The Marchenko method can be implemented in a variety of ways. Most applications
make use of an iterative scheme, however, the Marchenko method has also been imple-
mented as a least-squares inversion [36, 50, 86] or the iterative scheme can be combined
with adaptive subtraction [38, 41]. The least-squares inversion is computationally fea-
sible for 2D reflection data, however, for 3D data this method becomes computation-
ally expensive. The adaptive subtraction is more robust to imperfections in the reflec-
tion data, however, due to its adaptive nature, the subtraction can attenuate physical
events that are coinciding with multiples. In this chapter, we describe the iterative 3D
Marchenko implementation, that is still feasible to employ while using limited comput-
ing resources. Thorbecke et al. [34] published an opensource 2D iterative Marchenko
scheme that can be used in combination with reflection data that contain no free-surface
multiples. In this chapter, we extend this iterative implementation to the 3D situation
and discuss how the implementation and intermediate results are different from the 2D
situation.

After a brief theoretical introduction of the Marchenko method, the 3D algorithm
is explained. In the numerical examples section the basic processing steps are demon-
strated with a four layer reflection model, followed by a more complicated example based
on the SEG/EAGE Overthrust model by Aminzadeh et al. [87]. This includes the retrieval
of a Green’s function for a single focal point, which is then compared to a reference so-
lution. Furthermore the method is also used to demonstrate the imaging of the model,
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with removal of artefacts caused by the internal multiples. To obtain these results, the
3D reflection data are compressed using the ZFP algorithm by Lindstrom [88], in order
to limit the storage size and the time required to read them into the Marchenko pro-
gram. Several other modules are also implemented, including a finite difference model-
ing code, a 3D Eikonal solver and an imaging module. Appendix 4A explains how these
applications and auxiliary programs, as well as the basic 3D Marchenko program, can be
used.

4.2. MARCHENKO METHOD
In theory, the extension of the Marchenko method from 2D to 3D is straightforward, as it
only requires the integration over a line in 2D to change to an integration over a surface in
3D. In practice, it is more complicated due to a variety of reasons, which will be discussed
in the next section. Thorbecke et al. [34] discussed the implementation and theory of the
Marchenko method in 2D in great detail. The extension to 3D in this chapter is based on
the code that was presented in this previous work, along with the theory, which works in
both 2D and 3D. Because of this, the Marchenko method will not be discussed in detail
and only the most important equations will be reviewed.

The implementation is based on the use of the coupled Marchenko equations, which
are given as [26]:

G+(xB ,x, t ) =−
∫
∂D0

∫ t

t ′=−∞
R(x,xS , t − t ′) f −

1 (xS ,xB ,−t ′)dt ′d2xS + f +
1 (x,xB ,−t ), (4.1)

G−(xB ,x, t ) =
∫
∂D0

∫ t

t ′=−∞
R(x,xS , t − t ′) f +

1 (xS ,xB , t ′)dt ′d2xS − f −
1 (x,xB , t ), (4.2)

where R(x,xS , t ) is a reflection response measured at receiver location x = (x1, x2, x3) due
to a dipole source at xS at the surface ∂D0, often the surface of the Earth, G±(xB ,x, t ) are
the upgoing and downgoing Green’s functions at xB due to a source at x, f ±

1 (x,xB ,−t )
are the upgoing and downgoing focusing functions that focus from x to focal location
xB , where the superscripts + and - indicate a downgoing and upgoing wavefield, respec-
tively, and t is time. The downgoing focusing function is defined as the inverse of the
transmission response, T inv(xB ,x, t ), in a medium that is truncated below the focal lo-
cation [26]. For the purpose of the implementation, the downgoing focusing function is
written as a combination of the direct arrival following by a scattering coda:

f +
1 (x,xB , t ) = T inv

d (xB ,x, t )+M+(x,xB , t ), (4.3)

where T inv
d (xB ,x, t ) is the inverse of the direct arrival of the transmission response and

M+ is the scattering coda of the focusing function. Instead of T inv
d (xB ,x, t ), often the

time reversal of the direct arrival of the Green’s function, Gd (x,xB ,−t ), is used as the
direct wave of the focusing function. This is done for practical reasons and if this ap-
proximation is used, equation (4.3) can be estimated as

f +
1 (x,xB , t ) ≈Gd (x,xB ,−t )+M+(x,xB , t ). (4.4)

The focusing function in equation (4.4) will contain the correct travel times of the wave-
field, however, the amplitudes will contain errors, which are proportional to the trans-
mission losses of the medium.
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In equations (4.1) and (4.2), there are four unknowns, the decomposed Green’s func-
tions and decomposed focusing functions, and only two equations, making it an un-
derdetermined system. To separate the focusing functions and Green’s functions, we
introduce an offset-dependent time-windowing function:

wt (x,xB , t ) =


1 |t | < t εd (x,xB ),
1
2 |t | = t εd (x,xB ),

0 |t | > t εd (x,xB ),

(4.5)

where t εd = td − ε, td is the arrival time of the direct arrival Gd (x,xB , t ) and ε indicates a
small constant. The time window makes use of the causality relations, the direct arrival is
zero before td and the scattering coda of the focusing function is zero for t ≤−td and for
t ≥ td [30]. Applying the window, which we will refer to as wt for simplicity, to equation
(4.4) will cause only the scattering coda M+ to remain. The window will not remove any
events from the upgoing focusing function, however, if it applied to the Green’s function
it will completely remove this wavefield, as the Green’s function exist for t ≥ td and is zero
for t < td . The small constant ε is required because the seismic data are band-limited and
a shift is necessary to avoid cutting into the wavelet. Because of this, ε should be at least
equal to half the size of the wavelet. Applying wt to Equation (4.1) and (4.2) yields

M+(x,xB ,−t ) = wt

∫
∂D0

∫ t

t ′=−∞
R(x,xS , t − t ′) f −

1 (xS ,xB ,−t ′)dt ′d2xS , (4.6)

f −
1 (x,xB , t ) = wt

∫
∂D0

∫ t

t ′=−∞
R(x,xS , t − t ′) f +

1 (xS ,xB , t ′)dt ′d2xS . (4.7)

In this system, we have two unknowns and two equations, allowing us to solve it in an
iterative manner. The reflection response is the known quantity and will not change,
while the upgoing and downgoing focusing function will be updated according to

M+
k (x,xB ,−t ) = wt

∫
∂D0

∫ t

t ′=−∞
R(x,xS , t − t ′) f −

1,k−1(xS ,xB ,−t ′)dt ′d2xS , (4.8)

f −
1,k (x,xB , t ) = wt

∫
∂D0

∫ t

t ′=−∞
R(x,xS , t − t ′) f +

1,k (xS ,xB , t ′)dt ′d2xS , (4.9)

where k indicates the iteration number. The update to the downgoing focusing function
can be estimated by combining Equation (4.8) with Equation (4.4):

f +
1,k (x,xB , t ) =Gd (x,xB ,−t )+M+

k (x,xB , t ). (4.10)

To start the scheme, a first estimation is required. For the first estimation, we assume
that the scattering coda, M+

0 (x,xB , t ) is equal to zero, so that

f +
1,0(x,xB , t ) =Gd (x,xB ,−t ). (4.11)

The first estimation of Equation (4.11) is used in Equation (4.9) to create a first estimation
of the upgoing focusing function. This estimation is used in Equation (4.8) to update the
scattering coda of the downgoing focusing function, which is used in Equation (4.10) to
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create an update to the downgoing focusing function. The updated focusing function
can then be used in equation (4.9) to repeat the process until convergence has been
achieved. After the focusing functions converge to a solution, they can be employed
in Equations (4.1) and (4.2) to obtain the Green’s functions. Note that all of these results
will have the incorrect scaling due to the use of Gd (x,xB ,−t ) as the first estimation in
Equation (4.11). If the time-reversed direct arrival is replaced by T inv

d (xB ,x, t ), the results
will contain the correct scaling.

4.3. MARCHENKO ALGORITHM
Because of the similarity to the previous implementation in 2D, the flowchart in Figure
4.1 is similar to the one in Thorbecke et al. [34]. The differences of the implementa-
tion in 2D and 3D will be highlighted when they occur. For the implementation of the
Marchenko method in both 2D and 3D, additional operations are performed next to the
iterative Marchenko equations. To obtain not only the decomposed Green’s functions,
but also the full Green’s function, we also estimate the focusing function of the second
type [26, 34], which is related to the decomposed focusing functions by

f2(xB ,x, t ) = f +
1 (x,xB , t )− f −

1 (x,xB ,−t ), (4.12)

and to the full Green’s function G as

G(x,xB , t )− f2(xB ,x,−t ) =
∫
∂D0

∫ ∞

−∞
R(x,xS , t ′) f2(xB ,xS , t − t ′)dt ′d2xS . (4.13)

In both equation (4.8) and (4.9), a convolution of a wavefield with the reflection data
matrix R is performed, after which an integration is applied over the source coordinate
of R, which is a linear array in 2D and a surface array in 3D, and finally wt is applied to
the result. Because these operations are so similar, they can be used to design a compute
kernel and to this end, we rewrite the Equations (4.8) and (4.9) as a series expansion [26]:

M+
k (x,xB , t ) =

k∑
i=0

N2i+1(xB ,x, t ), (4.14)

− f −
1,k (x,xB ,−t ) =

k∑
i=0

N2i (xB ,x, t ), (4.15)

where

Ni (xB ,x, t ) =−wt RNi (xB ,x,−t ), (4.16)

RNi (xB ,x, t ) =
∫
∂D0

∫ t

t ′=−∞
R(x,xS , t − t ′)Ni−1(xB ,xS , t ′)dt ′d2xS , (4.17)

N−1(xB ,x, t ) = f +
1,0(x,xB , t ). (4.18)

In our compute kernel, we update the new vectors Ni and RNi through the convolution,
instead of the focusing functions directly. Furthermore, we consider the computation



4.3. MARCHENKO ALGORITHM

4

63

of Ni and RNi as two separate operations, because one operation is performed in the
frequency domain; the convolution with the reflection data; and the other operation
is applied in the time domain; the application of the time window. The odd an even
iterations of Ni are used in combination with equations (4.14) and (4.15) to update the
downgoing and upgoing focusing function, respectively.

Before the iterative scheme is started, f +
1,0, f2,0, and N−1 are set equal to the time-

reversed direct arrival of the Green’s function Gd (x,xB ,−t ), while all other vectors are set
to zero. To compute the direct arrival, a smooth velocity model is required, and to start
the iterative scheme, the reflection response R is also required. For convergence of the

i “ ´1

f´
1,0ptq “ 0

N´1ptq “ f2,0ptq “ f`
1,0ptq “ Gdp´tq

i `“ 1

i ă niter

true false

true

f2,iptq `“ Niptq

f´
1,iptq `“ ´Nip´tq f`

1,iptq `“ Niptq

RNiptq “ Rptq f Ni´1ptq

Niptq “ ´θtRNip´tq

Gptq “ f2p´tq ` Rptq f f2ptq

i%2

Figure 4.1: Flow chart of the Marchenko algorithm. In the notation the lateral coordinates are omitted for a
more compact notation. Based on the flowchart from Thorbecke et al. [34].

iterative Marchenko method, the 3D reflection data must be pre-processed to comply
with the assumptions made in the derivation of the Marchenko equations [89]. This
processing has to at least include [81];
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• removal of free-surface multiples,

• deconvolution with source wavelet,

• crossline interpolation to avoid aliasing.

Following Algorithm 1, the first step is to read the pre-processed reflection data from
disk, which is generally an inexpensive task in 2D. The full 3D reflection data matrix,
however, can be large and to reduce the data-size a ZFP based compression algorithm
is used [88]. Before the reflection data are compressed, they are transformed to the
frequency domain, as the reflection data is only used in the frequency domain for the
convolution, and only the data in the frequency-band of interest are compressed and
stored to disk. Typically this lossless compression reduces the 3D data size by a factor of
4, which decreases the storage space of the data and the read-in time to memory. The
program TWtransform (explained in Appendix 4A) transforms uncompressed reflection
time-data to the frequency (ω) domain, applies ZFP compression (based on tolerance)
on a selected frequency range and writes the compressed data to disk. The data on disk
contain a special compressed header that includes all location information present in
the uncompressed Segy/SU headers that are needed in the 3D Marchenko program. The
3D Marchenko program has multiple options to read the reflection data, which can be
done in the time-domain, frequency-domain, or compressed frequency-domain. In Ap-
pendix 4A, the most important options and parameter settings of the 3D Marchenko
program are explained in more detail.

The first arrival time of the focal point of interest is read from disk as well. This first
arrival time can be a full shot record e.g. modelled by finite difference, or the output of
an Eikonal, or ray-based traveltime solver. In Appendix 4A, we give a description of our
3D finite difference modeling code fdelmodc3D and our 3D Eikonal solver raytime3D,
which are used for these purposes. The first arrival times are used to construct a time
window in order to separate the focusing function from the Green’s function. A shift ε is
applied to the time window to take into account the signal width and to avoid including
a possible reflection event at time |td | in the focusing function. This can happen if the
focal point is located close to a reflector in the medium.

After the initializations of the focusing functions, the Marchenko iterations can start
and there are no specific algorithmic changes needed for the 3D implementation. The
main difference is the addition of a dimension in x2-direction, to account for the change
from 2D to 3D. After the program has computed the focusing function, equations (4.1)
and (4.2) can be used to calculate the decomposed Green’s function and equations (4.12)
and (4.13) can be used to calculate the full focusing function and Green’s function. In the
iteration kernel, the if statement ensures that the correct focusing function is updated
depending on whether the iteration is even or odd. The focusing function f2 is updated
in each iteration by Ni , as it is composed of both decomposed focusing functions.

The program can be run efficiently by computing the results for multiple focal loca-
tions simultaneously (an additional outer loop not shown in Algorithm 1), which means
that the 3D reflection data only have to be read from the disk once. This is especially
useful in 3D as reading in the 3D reflection data takes up a significant portion of the
compute time.



4.3. MARCHENKO ALGORITHM

4

65

Main begin
Reading SU-style input parameters and Allocate arrays
READ( R[Nshot s ,ω, Nr ecv ] )
makeWindow3D( Gd [Nshot s , t ],muteW [Nshot s ] )
Initialisation
N−1[Nshot s , t ] = f +

2,0[Nshot s , t ] = f +
1,0[Nshot s , t ] =Gd [Nshot s ,−t ]

f −
1,0[Nshot s , t ] = 0

for i ← 0 to ni do
synthesis3D( R, Ni−1,RNi )
Ni [Nshot s , t ] =−RNi [Nshot s ,−t ]
applyMute3D( Ni ,muteW [Nshot s ] )
f2,i [Nshot s , t ] = f +

2,i [Nshot s , t ]+Ni [Nshot s , t ]

if (iter % 2 == 0) then
f −

1,i [Nshot s , t ] = f −
1,i [Nshot s , t ]−Ni [Nshot s ,−t ]

else
f +

1,i [Nshot s , t ] = f +
1,i [Nshot s , t ]+Ni [Nshot s , t ]

end
end
synthesis3D( R, f2,ni ,Gni )
Gni [Nshot s , t ] =Gni [Nshot s , t ]+ f +

2,ni
[Nshot s ,−t ]

end

Algorithm 1: 3D Marchenko algorithm as implemented in the provided source
code. The arrays in this algorithm are stored in C-order; the last (most right) ad-
dressed dimension is contiguous in memory. The dimensions of these arrays are
within square brackets [. . . ], the arguments of function calls are within regular
brackets (. . . ).

The overview in Algorithm 2 shows how the main compute kernel is implemented.
The function synthesis3D transforms the term Ni−1 to the frequency domain, where it
is convolved with the reflection response and integrated over the receiver coordinates.
The Fourier transform is indicated by F {. . . }. After the integration, the result is trans-
formed back to the time domain to create RNi so that the time window can be applied
and Ni can be created. Thus, for each iteration i , an updated Ni is transformed to the
frequency domain, convolved with R and the result is transformed back to time. The in-
tegration is carried out over all horizontal (x1, x2) source positions at the surface for each
shot-record in the reflection data matrix R. The loop over the number of shots is paral-
lelised using OpenMP so that the integration can be performed as quickly as possible for
any number of focal positions.

Additionally, the Marchenko3D program contains a module imaging3D that com-
putes a common application of the method, namely the imaging of the medium. The
module can obtain an image of the medium at the location of the focal point using the
double-focusing method, as described in Staring et al. [38]. We use Equation (11) from
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synthesis3D( R[Nshot s ,ω, Nr ecv ), Ni−1[Nshot s , t ],RNi [Nshot s , t ] )
begin

Fop[ω, Nshot s ] =F {Ni−1[Nshot s , t ]}
RNi [Nshot s , t ] = 0
#pragma omp parallel for
for k ← 0 to Nshot s do

for ω←ωmi n to ωmax do
for j ← 0 to Nr ecv do

sum[ω] = sum[ω]+R[k,ω, j ]∗Fop[ω, j ]
end

end
RNi [k, t ] =F−1{sum[ω]}

end
end

Algorithm 2: Marchenko synthesis kernel with a parallel OpenMP loop over the
number of shots.

this paper:

G−,+(xB ,xB , t ) =
∫
∂D0

∫ t

t ′=−∞
G−(xB ,x, t − t ′) f +

1 (x,xB , t ′)dt ′d2x, (4.19)

where G−,+(xB ,xB , t ) is the upgoing Green’s function measured by a virtual receiver at
focal location xB due to a downward radiating virtual source at the same focal location.
By taking the zero-time sample, one can obtain the local reflectivity at the focal point. As
the downgoing focusing function and the upgoing Green’s function are obtained for the
same focal position, the module imaging3D requires no additional inputs. In Appendix
4A, this module is explained further.

4.4. NUMERICAL EXAMPLES
We demonstrate the application of the 3D Marchenko scheme on two models. The first
is a simple model with four layers that only varies in the vertical direction. This is the
same model as was used in Thorbecke et al. [34], only extended to 3D, to demonstrate
the basics of the 3D implementation. To take into account the complex scattering in
3 dimensions, we also apply the method on a subsection of the SEG/EAGE Overthrust
model from Aminzadeh et al. [87]. For both models, we show iterations of the focusing
functions and Green’s function and use these to obtain an image of the model.

4.4.1. HORIZONTALLY LAYERED MODEL
The velocity and density of the horizontally layered model are shown in Figures 4.2(a)
and 4.2(b), respectively. A 3D shot record with its source located at the surface in the
center of the model is shown in Figure 4.2(c). For the full reflection response, we use
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Figure 4.2: Four layer model with velocity (a) and density (b) contrasts. (c) A shot record, with source position
xs = (0,0,0) and receivers at x = (x1,r , x2,r ,0), convolved with a wavelet with a flat spectrum between 5 and
30Hz. (d) A shot record containing the first arrival response from a source at xB = (0,0,900), convolved with a
15Hz Ricker wavelet. The inverse of this shot record is the initial estimate of the focusing function.

a fixed spread acquisition, where the source is modeled at every receiver position. For
the modeling of the reflection data, we apply a wavelet with a flat frequency spectrum
that introduces ringing in the time-domain. This approximates the pre-requisite of de-
convolving for the source wavelet [34]. The frequency spectrum of this wavelet is flat
between 5 and 30Hz, and tapered to zero outside this range. The range of the frequency
spectrum is chosen for modeling runtime purposes. Figure 4.2(d) shows the shot record
of the first arrival associated with a focal point at position xB = (0,0,900), convolved with
a 15Hz Ricker wavelet. The receivers are located at the surface of the model (x3 = 0), with
an offset in the inline x-direction of −1000 to 1000m and in the crossline x2-direction
−300 to 300m with receiver spacing of dx1 =dx2 =10m. The receiver locations in the first
arrival shot-record coincide with the receiver locations of the reflection data. All shot
records in this example are computed using the finite difference program fdelmodc3D;
see Appendix 4A for more information.

The data from Figure 4.2 are used in the Marchenko scheme. To demonstrate how
the application works, we look at individual iterations of the program. Figure 4.3 shows
the inline x1t-slices and Figure 4.4 the crossline x2t-slices of the initial data and the first,
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Figure 4.3: Four successive iterations of the Marchenko method for the horizontally layered model sliced along
the x1-direction, for a constant x2-offset of 0m. The 4th column shows the full Green’s function for a source at
the focal point and receivers at the surface. The white line in this column is a trace that is plotted in solid black
in the 5th column, where the dashed grey line is a directly modeled Green’s function. The clip level is the same
for all panels.



4.4. NUMERICAL EXAMPLES

4

69

second and 30th iteration of the 3D Marchenko method. For the inline slices, the panels
are taken along a constant x2-position of 0m and for the crossline direction the slices
are taken along a constant x1-position of 300m. The f +

1,i (x,xB , t ) column for the initial
data shows the first estimation and consists of the direct arrival associated with the focal
point at (0,0,900)m. The first arrival is modeled in the exact medium and is inverted to
create an accurate estimation of the first arrival of the focusing function. This is done to
make a fair comparison between the retrieved Green’s function and a directly modeled
reference solution. The response of this first arrival with R is computed by the synthesis
process (Algorithm 2) and results in the record in the first column, labeled RNi . From the
panels in Figures 4.3 and 4.4 (all with the same clipping factor), it can be observed that
the amplitude of RNi decreases as the iteration count increases. In the 30th iteration, the
update term RNi does not give a visible contribution anymore. The dashed black lines in
the RNi figures represent the time window wt that separates the Green’s function, below
the lower truncation line, and the focusing function, in between the truncation lines.

The upgoing focusing function f −
1,i (x,xB , t ) is shown in the second column, while

the downgoing focusing function f +
1,i (x,xB , t ) is shown in the third column. The Green’s

function is shown in the fourth column. In the fifth column, the solid black line is the
central trace from the Green’s function in the fourth column, which is indicated by the
vertical white dashed line in the fourth column. The dashed grey line is a reference so-
lution of the Green’s function that was obtained by modeling the wavefield in the exact
medium. These traces show that while initially only the first arrival is obtained, subse-
quent iterations introduce additional events and artifacts are suppressed, while other
events are amplified. After 30 iterations, the iterative scheme has converged and there is
a strong match between the reference Green’s function and the computed Green’s func-
tion. Note that, compared to the 2D approach that was presented in Thorbecke et al.
[34], there seem to be more events present in the upgoing focusing function. These are
artefacts associated with the limited aperture of the data. Due to storage limitations and
computational costs, the offsets of the 3D data that are considered in this chapter are
limited, and therefore the stationary phase area is small. Because the layers in this model
are all flat, the structure can still be resolved, however, for more complex structures,
which include dipping layers, this will become a more significant problem, especially
in the crossline direction. When the integration over all source positions is performed,
additional artefacts will be introduced due to missing stationary point contributions.

The curve in Figure 4.5 shows the energy of the update Ni in Algorithm 1 relative to
the energy of the first estimation N0. If the relative energy decreases with increasing it-
erations, it indicates that the Marchenko method is converging towards a solution. The
lower the relative energy in this update the smaller the contribution of Ni to the focus-
ing functions and the smaller the update in the Green’s function. Because the aperture
is limited, there will be artefacts present in Ni that cannot be removed by the iterative
scheme. As a result the energy in the update cannot converge to zero, but is bound by
the energy of these aperture artefacts. Figure 4.5 shows the relative energy for each iter-
ation, which is a continually decreasing logarithmically smooth convergence curve, in-
dicating that successive iterations give smaller updates. After 30 iterations, the updates
are 3 orders of magnitude smaller than the first update, which is low enough to conclude
that the iterative scheme no longer gives significant energy updates anymore and has
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Figure 4.4: Four successive iterations of the Marchenko method for the horizontally layered model sliced along
the x2-direction, for a constant x1-offset of 300m. The 4th column shows the full Green’s function for a source
at the focal point and receivers at the surface. The white line in this column is a trace that is plotted in solid
black in the 5th column, where the dashed grey line is a directly modeled Green’s function. The clip level is the
same for all panels.



4.4. NUMERICAL EXAMPLES

4

71

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of iterations

10 3

10 2

10 1

100
En

er
gy

Figure 4.5: Logarithmic convergence rate of the marchenko3D/demo/marchenko3D/oneD example for 30 it-
erations using the first arrival from Figure 4.2(d). The energy level is an indication of the accuracy reached by
the method.

therefore converged. This is supported by the results in the bottom rows of Figures 4.3
and 4.4.

To further demonstrate the application of our scheme, we image the model using
Equation (4.19), which is implemented in the imaging3D module. Due to the large
amount of focal points that are required for this approach, it is not feasible to model
all the first arrivals with the finite-difference code. Instead, we make use of a 3D Eikonal
solver, raytime3D, to obtain the first arrival times. Furthermore, to approximate field
conditions, we smooth the velocity model in 3D and use no density information. The
Eikonal solver is capable of retrieving a geometric spreading factor to account for am-
plitude variation along the wavefront. Note that this is just an approximation of the
amplitude. We use the time-reversal of these arrivals as the first estimation instead of
the inverted first arrivals, because it is not possible to obtain the exact scaling either way.
Using the Eikonal solver, we compute travel-times for focal points in a depth range from
200 to 1200m with a depth spacing of 10m. The images are computed along two planes,
one in the inline direction from -1000 to 1000m and one in the crossline direction from
−300 to 300m, both with a horizontal spacing of 10m. The inline image has a constant
offset in the crossline direction of 0m, and the crossline image has a constant offset in the
inline direction of 0m, which means the images intersect each other in their respective
centers. Due to the large amount of focal points, the number of iterations for each focal
point is limited to 20. The results of the imaging are shown in Figures 4.6(b) and 4.6(d)
for the inline direction and the crossline direction, respectively. For comparison, we also
performed conventional imaging for the same planes, which are shown in Figures 4.6(a)
and 4.6(c), respectively. The conventional imaging contains a clear artefact, caused by
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Figure 4.6: Image of the horizontally layered model along a fixed x2 value of 0m using (a) conventional imaging
and (b) Marchenko imaging after 20 iterations, and image of the horizontally layered model along a fixed x1
value of 0m using (c) conventional imaging and (d) Marchenko imaging. The locations of artefacts that are
attenuated by the Marchenko imaging are indicated by the red arrows.

the internal multiples, which is indicated by the red arrows. This artefact is attenuated
by the Marchenko imaging. As the medium only has flat layers, the layer contrasts and
the multiple artefact are present at the same depth in both the inline and the crossline
direction. Due to the more limited aperture in the crossline direction, the image in this
direction is less flat, especially at the edges of the aperture, which also limits the effect of
the imaging in this direction. However, in all cases the Marchenko imaging shows a clear
improvement over the conventional imaging.

4.4.2. SEG/EAGE OVERTHRUST MODEL
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Figure 4.7: (a) Subsection of the Overthrust model used for both the velocity and density contrasts. (b) A shot
record, with source position xS = (0,0,0) and receivers at x = (x1,r , x2,r ,0), convolved with a wavelet with a
flat spectrum between 5 and 30Hz. (c) A shot record containing the first arrival response from a source at
xB = (0,0,2050), convolved with a 15Hz Ricker wavelet. The inverse of this shot record is the initial estimate of
the focusing function.

To validate our implementation for true 3D models, we use the SEG/EAGE Over-
thrust model by Aminzadeh et al. [87], that is publicly available from the SEG Wiki. We
select a subsection of the model, as a recording setup over the full extent of the model
is too large to fit in the memory of our compute nodes. Furthermore, this reduces the
modeling time for the reflection response. We insert a layer with constant velocity and
density above the model to simulate a water layer. The velocity and density of the sub-
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section are shown in Figure 4.7(a). The density model is chosen the same as the velocity
model to ensure strong reflections. Similarly to the horizontally layered model, we use
the fdelmodc3D code to model the reflection response and the first arrival from the fo-
cal point. An example of a shot record from a source at the surface in the center of the
model is shown in Figure 4.7(b), and the shot record containing the first arrival for a focal
point at xB = (0,0,2050) is shown in Figure 4.7(c). The reflection data are modeled using
the same wavelet with a flat spectrum that we use for the horizontally layered medium
and the first arrival is likewise modeled using the same Ricker wavelet as is used for the
first arrival of the horizontally layered medium. Again, this first arrival is modeled in
the exact model and inverted to create an accurate first arrival estimate for the focus-
ing function. While the setup of the recording array is once again fixed spread, with the
sources located at every receiver location, the array has coarser sampling than before.
In the inline x1-direction the source and receiver are distributed from -2250 to 2250m
with a spacing of 25m and in the crossline x2-direction the extent varies from -1250 to
1250m with a spacing of 50m. While the aperture in this case is larger than before, the
sampling is much coarser, especially in the crossline direction, and the model is more
complex. Note that the sampling in the inline and crossline directions is not equal, as
is often the case for acquisition setups in the field. The results for the Overthrust model
are shown for the inline x1-direction in Figure 4.8 and for the crossline x2-direction in
Figure 4.9. The inline panels are located along a constant offset in the x2-direction of 0m
and the crossline panels are located along a constant offset in the x1-direction of 500m.
The Green’s function Gi in Figure 4.8 shows many events arriving after the first arrival
with varying arrival times and amplitude. Similarly, both the upgoing and downgoing
focusing function contain more events with more variations than the focusing functions
obtained in the horizontally layered medium. This demonstrates that the complexity
of the model is taken into account by the Marchenko method, however, it also shows
that there are more events to resolve. The iteration count for this focal position is higher
than before, because of this complexity. After 40 iterations, the method converges to
a result where the updates of RNi contain little energy compared to the first iteration.
While the traces of the Green’s function in the fifth column show a strong match, there
are some small errors, likely caused by the complexity of the model and the larger spatial
sampling. Comparing the first iteration and the final iteration it becomes clear that the
method improves the amplitude of the desired events and removes the undesired inter-
nal multiples. The results in the crossline direction, shown in Figure 4.9 display a similar
quality of results, although they are not as smooth as the results in the inline direction.
This is caused by the coarser spatial sampling in the crossline direction. There are arte-
facts present at the edges of the panels, caused by the limited aperture. The traces of
the Green’s function show a similar match as the ones in the inline direction, despite the
coarser sampling. These results do show that the Marchenko method does not require
equal sampling in the inline and crossline direction. However, if the reflection data be-
come subsampled in either the inline or crossline direction, the result deteriorates in
quality.

Compared to the convergence rate of the previous four layer model (Figure 4.5), the
energy in Figure 4.10 converges at a slower rate and also to a higher energy level. The
convergence to a higher energy level indicates that more limited-aperture artefacts are
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Figure 4.8: Four successive iterations of the Marchenko method for the Overthrust model sliced along the x1-
direction, for a constant x2-offset of 0m. The 4th column shows the full Green’s function for a source at the
focal point and receivers at the surface. The white line in this column is a trace that is plotted in solid black in
the 5th column, where the dashed grey line is a directly modeled Green’s function. The clip level is the same
for all panels.
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Figure 4.9: Four successive iterations of the Marchenko method for the Overthrust model sliced along the x2-
direction, for a constant x1-offset of 500m. The 4th column shows the full Green’s function for a source at the
focal point and receivers at the surface. The white line in this column is a trace that is plotted in solid black in
the 5th column, where the dashed grey line is a directly modeled Green’s function. The clip level is the same
for all panels.
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present in the update fields Ni . These limited-aperture effects are caused by the acqui-
sition footprint, especially in the crossline direction. While the aperture of the recording
array is larger for the Overthrust model than for the horizontally layered medium, the
complexity of the model causes scattering at larger angles, which means that a larger
aperture is required to properly capture the reflection data. The reason for the increased
amount of iterations that are required is due to the fact that more events need to be re-
solved for the Overthrust model. We also obtain an image of the Overthrust model using
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Figure 4.10: Logarithmic convergence rate of the Overthrust model for 40 iterations.

the 3D implementation. Again, we take two cross sections, one inline for a fixed x2-offset
of 0m and one crossline for a fixed x1-offset of 0m, which intersect in their respective
centers. The travel-times from the focal points to the surface are obtained using our
3D Eikonal solver, modeled in a smoothed version of the velocity model, along a depth
range of 400 to 4400m with a sampling of 12.5m. The sampling in the inline direction is
25m and in the crossline direction it is 50m. The first arrivals are time-reversed instead
of inverted, for the sake of simplicity. The amount of iterations for these focal points are
limited to 30 due to the large computational costs. Figure 4.11(b) shows the result for the
inline direction and 4.11(d) shows the result for the crossline direction. Conventional
images for the inline and crossline directions are shown in Figures 4.11(a) and 4.11(c),
respectively. As can be seen from the figures, the subsurface is much more complex and
harder to resolve. Due to the small frequency bandwidth, the resolution of the images
is limited, however, there are still artefacts present caused by the internal multiples, as
indicated by the red arrows. The Marchenko imaging attenuates these artefacts, which
shows that even on complex 3D models, the method can produce good results.
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Figure 4.11: Image of the Overthrust model along a fixed x2 value of 0m using (a) conventional imaging and
(b) Marchenko imaging after 30 iterations, and image of the Overthrust model along a fixed x1 value of 0m
using (c) conventional imaging and (d) Marchenko imaging. The locations of artefacts that are attenuated by
the Marchenko imaging are indicated by the red arrows.

4.5. CONCLUSIONS
In this chapter, we have shown that our Marchenko implementation can be applied on
3D reflection data. We achieved this by making use of an efficient computing kernel that
updates the upgoing and downgoing focusing function during even and odd iterations,
respectively. Furthermore, our application made use of the ability to compress the reflec-
tion data to limit the amount of data that needs to be read in. Due to the requirements
of the Marchenko method for the reflection response, concessions had to be made for
generating the reflection data, including limited frequency content, coarse spatial sam-
pling and limited aperture. Despite these limitations, the method still converged to an
accurate result. We demonstrated this using two models, a simple flat layered model
and a complex model that caused full 3D scattering. On the simple model, the method
retrieved a Green’s function that showed a strong match to a reference solution. Further-
more, the imaging of the medium removed a clear internal multiple artefact, that was
present when conventional imaging was used, for both the inline and crossline direc-
tion. On the second model that was considered, a subsection of the SEG/EAGE Over-
thrust model, less accurate results were achieved, and more iterations were required.
The first effect was caused by the coarser sampling of the reflection response, while the
second effect was caused by the increased complexity of the model. The results showed
that the poorer sampling of the reflection data for this model in the crossline direction
than in the inline direction did not cause the result to converge to an incorrect solu-
tion. The retrieval of the Green’s function was still possible and the imaging of the model
showed clear attenuation of artefacts.
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4A INPUT FOR MARCHENKO3D AND AUXILIARY PROGRAMS

MARCHENKO3D
The marchenko3D program has the following parameters and options:

MARCHENKO3D - Iterative Green’s function and focusing functions retrieval in 3D

marchenko3D file_tinv= file_shot= [optional parameters]

Required parameters:

First arrival input options:
file_tinv= ............... direct arrival from focal point: G_d
file_ray= ................ direct arrival from raytimes
Shot data input options:
file_shot= ............... Reflection response (time data): R(t)
file_shotw= .............. Reflection response (frequency data): R(w)
file_shotzfp= ............ Reflection response (frequency compressed data): zfp[R(w)]

Optional parameters:

INTEGRATION
ampest=0 ................. Estimate a scalar amplitude correction with depth (=1)
tap=0 .................... lateral taper focusing(1), shot(2) or both(3)
ntap=0 ................... number of taper points at boundaries
fmin=0 ................... minimum frequency in the Fourier transform
fmax=70 .................. maximum frequency in the Fourier transform

MARCHENKO ITERATIONS
niter=10 ................. number of iterations

MUTE-WINDOW
file_amp= ................ amplitudes for the raytime estimation
file_wav= ................ Wavelet applied to the raytime data
above=0 .................. mute above(1), around(0) or below(-1) the travel times of
.......................... the first arrival
shift=12 ................. number of points above(positive) / below(negative) travel
.......................... time for mute
hw=8 ..................... window in time samples to look for maximum in next trace
smooth=5 ................. number of points to smooth mute with cosine window
plane_wave=0 ............. enable plane-wave illumination function

REFLECTION RESPONSE CORRECTION
scale=2 .................. scale factor of R for summation of Ni with G_d (only for
.......................... time shot data)
pad=0 .................... amount of samples to pad the reflection series

HOMOGENEOUS GREEN’S FUNCTION RETRIEVAL OPTIONS
file_inp= ................ Input source function for the retrieval
scheme=0 ................. Scheme for the retrieval
.......................... scheme=0 Marchenko homogeneous Green’s function retrieval
.......................... with G source
.......................... scheme=1 Marchenko homogeneous Green’s function retrieval
.......................... with f2 source
.......................... scheme=2 Marchenko Green’s function retrieval with source
.......................... depending on virtual receiver location
.......................... scheme=3 Marchenko Green’s function retrieval with G

source
.......................... scheme=4 Marchenko Green’s function retrieval with f2

source
.......................... scheme=5 Classical homogeneous Green’s function retrieval
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.......................... scheme=6 Marchenko homogeneous Green’s function retrieval
with multiple G sources

.......................... scheme=7 Marchenko Green’s function retrieval
with multiple G sources

.......................... scheme=8 f1+ redatuming

.......................... scheme=9 f1- redatuming

.......................... scheme=10 2i IM(f1) redatuming
cp=1000.0 ................ Velocity of upper layer for certain operations
rho=1000.0 ............... Density of upper layer for certain operations

OUTPUT DEFINITION
file_green= .............. output file with full Green function(s)
file_gplus= .............. output file with G+
file_gmin= ............... output file with G-
file_f1plus= ............. output file with f1+
file_f1min= .............. output file with f1-
file_f2= ................. output file with f2
file_imag= ............... output file with image
file_homg= ............... output file with homogeneous Green’s function
file_ampscl= ............. output file with estimated amplitudes
file_iter= ............... output file with -Ni(-t) for each iteration
compact=0 ................ Write out homg and imag in compact format
.......................... WARNING! This write-out cannot be displayed with SU
verbose=0 ................ silent option; >0 displays info

The input of the 3D Marchenko method is similar to the 2D implementation, requir-
ing reflection data and the first arrival time from the focal point. However, due to the
large size of 3D data, reading in the reflection data using the file_shot option can be-
come time-consuming. To mitigate this problem, the 3D implementation gives two al-
ternate options of reading in data. The first is reading in the shot data in the frequency
domain using file_shotw. These data have been pre-transformed to the frequency do-
main, which avoids the Fourier transform that was required on the shot data in the time
domain. Alternatively, the frequency data can be compressed using the ZFP algorithm
[88] before reading in, to reduce the file size. The code requires one of these three data
types as input, and the latter two options can be obtained using the TWtransform mod-
ule.

The second required input, the first arrival time, can be passed to the code in two
ways. The first is by reading in a shot record using the file_tinv option. An alternative
is using the arrival times that are calculated by a 3D Eikonal solver, an example of which
is the raytime3D program that is part of the software distribution, based on the work by
Vidale [90]. The raytime3D program also computes a geometric spreading factor that
can be used to estimate the amplitude of the first arrivals. This file can be read in using
the file_amp option. To approximate seismic broadband data, a wavelet can be read
into the code as well using file_wav. The file needs to contain a wavelet with no time
shift and have the same temporal sampling as the reflection data. For both types of input
for the first arrival, multiple focal points can be read in at the same time.

The number of iterations required for convergence depends on the reflection
strengths and on the number of events in the model; a complex model will need more
iterations. Typically the number of iterations is chosen between 8 and 20. Setting the
verbose=2 option will compute the convergence of the algorithm by printing the en-
ergy of the iteration update Ni (t ) relative to the initial value N0(t ). The energy in the
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update term Ni (t ) should become smaller in each iteration.
The marchenko3D program is capable of computing an image for the focal points

and outputting them directly through use of the imaging3D module of the code. To do
this, one can simply set the file_imag option and the code computes an image point
for each given focal-point.

The program also contains an additional module called homogeneous3D, which is
used for the purpose of retrieving the wavefield between two focal points in the sub-
surface. By setting the option file_homg to a correct path, the wavefield is computed
according to the scheme set by the option scheme. Most of these schemes are explained
in Brackenhoff et al. [62] and Brackenhoff et al. [81]. All of the schemes require that the
module is given input data by the file_inp option. This input file needs to be sampled
at the same positions as the data that are computed in the main marchenko3D program
with the same sample length and distance. It is recommended to run the module for one
focal position first before using it on a large amount of focal positions.

To compensate for the transmission losses, an approximate amplitude correction
can be used [85]. This estimation can be added to the results by setting the ampest op-
tion equal to 1. By using the file_ampscl option, the estimated amplitude correction
are written out for each focal point.

The code to reproduce the figures of the flat layered model in this chapter can be
found in the directory marchenko3D/demo/marchenko3D/oneD. The README file in that
directory explains in detail how to run the scripts. The SEG/EAGE Overthrust model by
Aminzadeh et al. [87] can be found on the SEG wiki at https://wiki.seg.org/wiki/
SEG/EAGE_Salt_and_Overthrust_Models.

FDELMODC3D
Based on the finite difference (FD) code in Thorbecke and Draganov [68] a 3D version of
the acoustic implementation is made. The finite-difference kernels are extended to 3D
and the code has the same functionality as the 2D code. In 3D it can be cumbersome
to define 3D gridded models. In the 3D FD implementation the gridded velocity and
density model can also be a 1D or 2D model and will be extended to a full 3D model by
setting ny= for 2D models and ny=nx= for 1D models. In the implementation pointers
are used to avoid copying full dimensions to 3D. The directory utils contains programs
to calculate a gridded model (makemod), source wavelets (makewave) as well as programs
for basic processing steps.

To validate the 3D modeling we compared the results with a 3D layer-based
wavenumber-frequency code (not included). To check the accuracy of the amplitude
of the modeling code (which is crucial in the Marchenko algorithm) an extra verification
is made by integration of the 3D result over the y-axis and comparing that result with the
2D solution.

TWTRANSFORM
TWtransform - Transform data from uncompressed time domain to compressed frequency

domain

TWtransform file_in= file_out= [optional parameters]

https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models
https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models
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Required parameters:

file_in= ................. File containing the uncompressed time domain data
file_out= ................ Output for the (compressed) frequency domain data

Optional parameters:

verbose=1 ................ silent option; >0 displays info
fmin=0 ................... minimum frequency in the output
fmax=70 .................. maximum frequency in the output
mode=1 ................... sign of the frequency transform
zfp=0 .................... (=1) compress the transformed data using zfp
tolerance=1e-3 ........... accuracy of the zfp compression, smaller values

give more accuracy to the compressed data but
will decrease the compression rate

weight=2.0 ............... scaling of the reflection data

The TWtransform program is intended to reduce the file size of the reflection data
and to limit the amount of time that is required for reading the reflection data. The
program transforms the time data to the frequency domain, which already reduces the
file size depending on the frequency range set by fmin and fmax. The file size can be
further reduced by using the zfp option, which will compress the frequency data using
the ZFP compression by Lindstrom [88], with an accuracy set by the input parameter
tolerance. The program also puts a custom header on the data to further reduce the
file size.
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We create virtual sources and receivers in a 3D subsurface using the single-sided homo-
geneous Green’s function representation. We employ Green’s functions and focusing func-
tions that are obtained with reflection data at the surface of the Earth, a macro velocity
model and the Marchenko method. The homogeneous Green’s function is a Green’s func-
tion superposed with its time-reversal. Unlike the classical homogeneous Green’s function
representation, this approach requires no receivers on an enclosing boundary, however, it
does require the source signal to be symmetric in time. We demonstrate that the single-
sided representation is an improvement over the classical representation by applying the
representations to numerical data that are modeled in a complex 3D model. We retrieve re-
sponses to virtual point sources with an isotropic and with a double-couple radiation pat-
tern and compare the results to a directly modeled reference result. We also demonstrate
the application of the single-sided representation for retrieving the response to a virtual
rupture that consists of a superposition of point sources. This is achieved by obtaining the
homogeneous Green’s function for each source separately, before they are transformed to
the causal Green’s function, time-shifted and superposed. The single-sided representation
is also used to monitor the complete wavefield that is caused by a numerically modeled
rupture. However, the source signal of an actual rupture is not symmetric in time and the
single-sided represenation can therefore only be used to obtain the causal Green’s func-
tion. This approach leaves artifacts in the final result, however, these artifacts are limited
in space and time.

This chapter has been submitted for publication to IEEE Transactions on Geoscience and Remote Sensing.
Minor modifications have been applied to the text and figures for the sake of consistency in the thesis.
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5.1. INTRODUCTION
Over the past few decades, the amount of induced seismicity has increased and is occur-
ring at locations around the world [91]. While the effects of induced seismicity are often
harmful, the measurements of these events can be used to gain more insight into the
mechanics of earthquake rupture [92]. For example, the measurements can be used in
an inversion process to obtain the seismic moment tensor, which describes the source
mechanism of a seismic event [8]. The knowledge of the moment tensor as well as the
location of the source can help to determine what caused the induced seismicity. These
inversions often rely on an accurate velocity model of the subsurface to obtain the re-
quired wavefields [93], because errors in the velocity model can cause mistakes in the
inversion result [94].

A recent development for obtaining accurate wavefields in the subsurface is the ho-
mogeneous Green’s function retrieval method. A homogeneous Green’s function is a
Green’s function superposed with its time-reversal. Porter [15] derived the original repre-
sentation for the homogeneous Green’s function, which was later used for inverse source
problems by Porter and Devaney [16] and further researched for inverse scattering meth-
ods [17], seismic imaging [18] and seismic holography [19]. The classical representation
of the homogeneous Green’s function involves an integral over a closed boundary. In
practical situations, data are usually available only on an open boundary. Methods like
seismic imaging and holography still work well for this situation as long as only primary
waves are considered. However, internal multiples are incorrectly handled and lead to
artifacts when the classical representation is approximated by an integral along an open
boundary.

Instead of the classical representation of the homogeneous Green’s function, a single-
sided representation can be used, which is designed to work with an open boundary, typ-
ically the surface of the Earth [25]. This single-sided representation is designed to cor-
rectly handle the internal multiples by employing so-called focusing functions. These
focusing functions can be obtained through the use of the Marchenko method, which
employs reflection data at the surface of the Earth [95]. Brackenhoff et al. [81] demon-
strated the validity of this single-sided representation for field data.

While many applications of the Marchenko method have been performed on 2D
data, recently more applications on 3D data have been achieved, for example by Pereira
et al. [96] and Staring and Wapenaar [97]. Especially in areas where there are strong out-
of-plane effects, the 2D approximation on 3D data can cause errors in the result [53].
To properly take into account the effects of wave propagation and scattering in 3D, the
single-sided retrieval scheme for the homogeneous Green’s function needs to be em-
ployed together with a 3D version of the Marchenko method.

In this chapter, we present the retrieval of the 3D homogeneous Green’s function.
We first review the classical and single-sided homogeneous Green’s function retrieval
schemes and apply the schemes to single source-receiver pairs. We use the 3D Open-
source Marchenko method by Brackenhoff et al. [98] on a synthetic reflection response,
that was modeled using a subset of the Overthrust model by Aminzadeh et al. [87], to cre-
ate the required Green’s functions and focusing functions for the retrieval schemes. We
demonstrate the method for point sources that have an isotropic radiation pattern and
compare the retrieved Green’s functions to directly modeled data. Furthermore, we also
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retrieve snapshots of wavefields at the virtual receivers in 3D to observe the propagation
of the wavefield through the medium over time. Aside from considering an isotropic
radiation pattern, we also consider the non-isotropic double-couple radiation pattern,
which describes the seismic response to a pure shear fault [8]. Furthermore, we consider
the retrieval of a response caused by a rupture in the subsurface by employing a series of
superposed point sources with varying amplitudes and activation times and a double-
couple radiation pattern, similar to Brackenhoff et al. [62], but extended to a 3D medium.
For this latter situation we use two different approaches. One is a one-step process,
where we assume that we measure the response from the rupture directly, so that we can
monitor the wavefield as it propagates through the subsurface. Hence, in this one-step
process we create virtual receivers to monitor the response to a real source. The other
is a two-step process, where we use the Marchenko method to obtain the homogeneous
Green’s function for each virtual source point separately, and superpose them after each
homogeneous Green’s function has been obtained. Hence, in this two-step process we
create virtual receivers and virtual sources. This is a way to forecast the wavefield that
would be caused by the rupture, given the properties of the rupture and reflection data
at the surface. We illustrate the methods with numerical examples. When we speak, for
the sake of argument, of measurements of the response to a real source, in the examples
these measurements are simulated by numerical modeling.

5.2. 3D VIRTUAL SEISMOLOGY

5.2.1. WAVEFIELDS

We consider a Green’s function, G =G(x,xA , t ), which describes the response of a medium
at time t and position x = (x1, x2, x3), due to an impulsive point source at xA , using a
Cartesian coordinate system. In the coordinate system that we use, the third principal
direction points downwards. The Green’s function is the solution to the following acous-
tic wave equation:

∂i (ρ−1∂i G)−κ∂2
t G =−δ(x−xA)∂tδ(t ), (5.1)

where ρ = ρ(x) is the density of the medium in kg m−3, κ= κ(x) is the compressibility in
kg−1 m s2, ∂i = ∂

∂xi
is the component of a vector consisting of the partial differential

operators in the three principal directions of the coordinate system, ∂t = ∂
∂t is the tem-

poral partial differential operator and δ(·) is a Dirac delta function. In case of repeating
subscripts, Einstein’s summation convention applies. The Green’s function is causal; i.e.
G(x,xA , t ) = 0 for t < 0, hence, it propagates away from the source location; and obeys
source-receiver reciprocity so that G(x,xA , t ) = G(xA ,x, t ). Because the wave equation
for the Green’s function contains a temporal derivative in the source term, the source is
defined as a volume injection rate source.

We also consider the homogeneous Green’s function Gh = Gh(x,xA , t ), which is de-
fined as

Gh(x,xA , t ) =G(x,xA , t )+G(x,xA ,−t ), (5.2)

where G(x,xA ,−t ) is the time-reversed Green’s function, which is acausal;
i.e. G(x,xA ,−t ) = 0 for t > 0, hence, it propagates towards the source. By combining
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Equations (5.1) and (5.2), we obtain the acoustic homogeneous wave equation

∂i (ρ−1∂i Gh)−κ∂2
t Gh = 0, (5.3)

where the right hand side vanishes, because the source term on the right hand side of
Equation (5.1) contains a temporal derivative, hence, the wave equation for the time
reversal of the Green’s function causes the source term to obtain the opposite sign.

In this chapter, we will make use of the frequency domain versions of the Green’s
function and other quantities. A time-dependent function u(x, t ) is related to the
frequency-dependent function u(x,ω) by

u(x,ω) =
∫ ∞

−∞
u(x, t )e iωt dt , (5.4a)

u(x, t ) = 1

2π

∫ ∞

−∞
u(x,ω)e−iωt dω, (5.4b)

where ω is the angular frequency in rad s−1 and i is the imaginary unit. Using Equation
(5.4a), the Green’s function can be transformed to the frequency domain, for the sake of
efficiently performing certain operations, such as convolution. The data that are con-
sidered in this chapter are band-limited and therefore we define a pressure wavefield
p(x,xA , t ), which is related to the Green’s function by

p(x,xA , t ) =
∫ ∞

−∞
G(x,xA , t − t ′)s(t ′)dt ′, (5.5a)

p(x,xA ,ω) =G(x,xA ,ω)s(ω), (5.5b)

where s(t ) and s(ω) are the time domain and frequency domain versions of a source
signal. We also define a homogeneous pressure wavefield, similar to Equation (5.2),

ph(x,xA , t ) =
∫ ∞

−∞
Gh(x,xA , t − t ′)s(t ′)dt ′, (5.6a)

ph(x,xA ,ω) =Gh(x,xA ,ω)s(ω) =
{G(x,xA ,ω)+G∗(x,xA ,ω)}s(ω) = 2ℜ{G(x,xA ,ω)}s(ω),

(5.6b)

where ℜ indicates the real part of a complex function and * indicates complex con-
jugation. Note that in Equation (5.6), we have defined that homogeneous wavefield
as the convolution of the source wavelet with the homogeneous Green’s function; i.e.
the Green’s function is superposed with its time-reversal before the convolution. If the
Green’s function is convolved with a wavelet before the superposition is applied, the
time-reversal will affect the source wavelet as well. Only if s(t ) = s(−t ) and hence s(ω) =
s∗(ω) can the convolution be applied before the superposition. In other words,

{G(x,xA ,ω)+G∗(x,xA ,ω)}s(ω) =G(x,xA ,ω)s(ω)+G∗(x,xA ,ω)s∗(ω), (5.7a)

ph(x,xA ,ω) = p(x,xA ,ω)+p∗(x,xA ,ω), (5.7b)

only holds if the source spectrum s(ω) is purely real-valued.
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5.2.2. HOMOGENEOUS GREEN’S FUNCTION RETRIEVAL
Homogeneous Green’s function retrieval has been employed in the past to obtain the re-
sponse between two locations inside a medium. The classical representation states that
the response between a source and receiver inside a lossless medium can be obtained if
observations are available on a closed boundary around the medium [15–17] and can be
written as

Gh(xA ,xB ,ω) =
∮
∂D

−1

iωρ(x)

{
∂i G∗(xA ,x,ω)G(x,xB ,ω)

−G∗(xA ,x,ω)∂i G(x,xB ,ω)
}

ni d2x,
(5.8)

where ni is the i th component of the outward pointing normal vector on ∂D. In Equa-
tion (5.8), G(x,xB ,ω) describes the response to a source at xB , inside the medium in D,
at location x on a boundary ∂D, which encloses the medium. G∗(xA ,x,ω) back prop-
agates this response from location x at the boundary to receiver location xA inside D.
This creates the response Gh(xA ,xB ,ω), with a source at location xB and a receiver at lo-
cation xA . The main practical disadvantage of this approach is that a closed boundary
around the medium is required, which is usually not feasible for seismological appli-
cations. More realistically, the boundary will be open and situated on a single side of
the medium, which is often the surface of the Earth. In this case, the representation is
approximated as

Gh(xA ,xB ,ω) ≈
∫
∂D0

2

iωρ0

{
∂3G∗(xA ,x,ω)G(x,xB ,ω)

}
d2x, (5.9)

where ρ0 is the density at a horizontal single open boundary ∂D0 and we used
n = (0,0,−1). Note that we assume that the medium above ∂D0 is homogeneous. Apply-
ing the representation in this way introduces significant artifacts in the homogeneous
Green’s function [81].

In more recent years, the homogeneous Green’s function representation has been
adjusted to take into account the single-sided open boundary [25]. The scheme that is
used in this chapter is taken from Equations (10) and (11) from Brackenhoff et al. [62],

G(xA ,xB ,ω)+χ(xB )2iℑ{ f1(xB ,xA ,ω)} =∫
∂D0

2

iωρ0
G(x,xB ,ω)∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
d2x,

(5.10)

where f1(xB ,xA ,ω) = f +
1 (xB ,xA ,ω)+ f −

1 (xB ,xA ,ω), ℑ denotes the imaginary part of a com-
plex function and χ(xB ) is a characteristic function that is defined as

χ(xB ) =


1, for xB in D,
1
2 , for xB on ∂D= ∂D0 ∪∂DA ,

0, for xB outside D∪∂D,

(5.11)

where ∂DA is a horizontal open boundary inside the subsurface of the Earth at the same
depth as xA . The medium in D is assumed to be lossless and evanescent waves are
ignored. Note, that in Equation (5.10), we retrieve the causal Green’s function instead
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Figure 5.1: Schematic representation of the single-sided Green’s function retrieval scheme from Equations
(5.10) and (5.11). (a) Retrieval of G(xA ,xB ,ω) when the receiver location is located above the source and no
artifacts are present and (b) retrieval of G(xA ,xB ,ω) when the virtual receiver location is located below the
virtual source and artifacts are present in the form of 2iℑ{ f1(xB ,xA ,ω)}. The figure is adapted from Brackenhoff
et al. [62].

of the homogeneous Green’s function. In this representation, no time-reversed Green’s
function is employed, but rather the decomposed focusing functions f +

1 (x,xA ,ω) and
f −

1 (x,xA ,ω) are used, where the superscripts + and − indicate a downgoing and upgoing
wavefield, respectively. These focusing functions are designed to focus from a single-
sided open boundary ∂D0 to a location xA inside the subsurface of the Earth, generally
referred to as the focal location, without artifacts caused by multiple scattering in the
overburden. The downgoing focusing function is defined as the inverse of the transmis-
sion response of a medium that is truncated below the focal location [26, 30]. In Equation
(5.10), the focusing functions f +

1 (x,xA ,ω) and f −
1 (x,xA ,ω) operate in a similar way as the

time-reversed Green’s function G∗(xA ,x,ω) does in Equation (5.9), backpropagating the
response from the boundary ∂D0 to location xA . The main difference is that unlike Equa-
tion (5.9), Equation (5.10) is specifically designed for application to the open boundary.

The representation in Equation (5.10) does have an issue on the left hand side of the
equation in the form of the term χ(xB )2iℑ{ f1(xB ,xA ,ω)}. Depending on the relative loca-
tions of the receiver xA and the source xB , as formulated by Equation (5.11), artifacts re-
lated to the focusing function between the two locations are introduced in the obtained
Green’s function. This is schematically shown in Figure 5.1, where in (a) the receiver is
located above the source and the Green’s function is retrieved without artifacts. When
the virtual source is located at the same depth level or above the virtual receiver, arti-
facts are present in the retrieved Green’s function. By combining Equations (5.10) and
(5.2), we obtain the single-sided retrieval scheme for the homogeneous Green’s function
[24, Equation (33)]:

Gh(xA ,xB ,ω) = 4ℜ
∫
∂D0

1

iωρ0
G(x,xB ,ω)∂3

(
f +

1 (x,xA ,ω)− { f −
1 (x,xA ,ω)}∗

)
d2x. (5.12)

Equation (5.12) expresses the retrieval of the homogeneous Green’s function between
two locations in the subsurface using a single-sided boundary, without any artifacts from
the focusing function.
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Figure 5.2: (a) Velocity and density model of the subsurface, based on the Overthrust model by Aminzadeh
et al. [87]. (b) Common-source record of a source, located at (0,0,0)m, recorded at the surface of the model in
(a). Wavelet with a flat spectrum in (c) the time domain and (d) the frequency domain. Ricker wavelets in (e)
the time domain and (f) the frequency domain. The common-source record in (b) is modeled using the blue
wavelet in (c) and (d). The black dashed wavelet in (e) and (f) is the result of the temporal convolution of the
blue wavelet in (c) and (d) with the red wavelet in (e) and (f).

5.2.3. IMPLEMENTATION OF GREEN’S FUNCTION RETRIEVAL

We will demonstrate the results of the retrieval schemes in Equations (5.9), (5.10) and
(5.12) with numerical examples. In order to obtain the required Green’s functions and
focusing function, we employ the 3D Marchenko method on acoustic reflection data.
The Marchenko method that we use is based on the theory by Wapenaar et al. [26]. The
scheme allows one to retrieve the Green’s function and focusing function between re-
ceivers at the surface of the Earth and a focal location in the subsurface of the Earth. To
obtain these functions, a reflection response without surface related multiples at the sur-
face of the Earth is required, as well as an estimation of the direct arrival from the surface
of the Earth to the focal location. Usually, the time-reversed direct arrival of the Green’s
function from the focal location to the surface is used for this, following Equation (4.4),
even though this introduces errors proportional to the transmission losses into the final
result [34].

In this chapter, we make use of the code that was developed by Brackenhoff et al.
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Figure 5.3: Examples of wavefields obtained using the Marchenko method. (a) Green’s function G(xA ,x j ,ω)

and (b) focusing function f +1 (x j ,xA ,ω)−{ f −1 (x j ,xA ,ω)}∗ convolved with the flat spectrum wavelet from Figure
5.2(c), with xA = (−350,100,2150). Pressure wavefield p(x j ,xB ,ω), i.e., a Green’s function convolved with the

Ricker wavelet from Figure 5.2(e), with (c) an isotropic source and (d) pressure wavefield Dθ
B {p(x j ,xB ,ω)} with

a double-couple source, both with xB = (500,−150,1025).

[98], which is an opensource 3D implementation of the Marchenko method. To obtain
the reflection data, we use the 3D finite-difference modeling code by Thorbecke and
Brackenhoff [99] together with a subset of the 3D Overthrust model by Aminzadeh et al.
[87], which is shown in Figure 5.2(a). To ensure strong reflections, the same model is
used for the density and velocity values. To model the data, a fixed-spread acquisition is
utilized, where a source is modeled at every receiver location. The source/receiver loca-
tions vary from -2250 to 2250m in the inline (x1) direction, with a spacing of 25m, while
the locations in the crossline (x2) direction vary from -1250 to 1250m, with a spacing of
50m. We define a common-source record as the reflection response to a fixed source, ob-
served by all receivers. The recording length of each common-source record is 4.0s with
a temporal sampling of 4ms. An example of a common-source record is shown in Figure
5.2(b). The data are modeled using a wavelet with a flat spectrum, shown as the blue
wavelet in Figure 5.2(c) and (d). Examples of Green’s functions and a focusing function
obtained from these data can be found in Figure 5.3.

Once we obtain the required Green’s functions and focusing functions, we use them
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in the various retrieval schemes. The schemes so far have been formulated assuming
we have the analytical representations instead of the numerical data that we are actually
dealing with. In reality, we will not have impulse responses, but rather wavefields with
a band-limited signal as defined by Equations (5.5a) and (5.5b). To account for this, we
use numerical approximations of the schemes and make use of pressure wavefields with
a band-limited source signature. We rewrite Equations (5.9), (5.10) and (5.12) as

ph(xA ,xB ,ω) ≈
nR∑

j

2

iωρ0

{
∂3G∗(xA ,x j ,ω)p(x j ,xB ,ω)

}
∆2x j , (5.13)

p(xA ,xB ,ω)+χ(xB )2i s(ω)ℑ{ f1(xB ,xA ,ω)} =
nR∑

j

2

iωρ0
p(x j ,xB ,ω)∂3

(
f +

1 (x j ,xA ,ω)− { f −
1 (x j ,xA ,ω)}∗

)
∆2x j ,

(5.14)

ph(xA ,xB ,ω) =

4ℜ
nR∑

j

1

iωρ0
p(x j ,xB ,ω)∂3

(
f +

1 (x j ,xA ,ω)− { f −
1 (x j ,xA ,ω)}∗

)
∆2x j ,

(5.15)

where x j is the location of the j th receiver at the surface of the Earth, nR is the amount of
receivers and ∆2x j indicates the receiver sampling distance. While ∆2x j can be unique
for each receiver position, in our fixed spread acquisition the value is the same for all
receivers, namely ∆2x j =∆x1∆x2 = 25.0 ·50.0 = 1250. Note that in all the numerical rep-
resentations, we have replaced Gh(xA ,xB ,ω), G(xA ,xB ,ω) and G(x,xB ,ω) by ph(xA ,xB ,ω),
p(xA ,xB ,ω) and p(x,xB ,ω), respectively, while some of the other quantities are still de-
noted by their original symbol. In the application of Equations (5.13)-(5.15), we assume
that p(x,xB ,ω) is obtained either through the use of the Marchenko method (in the two-
step method) or by a direct measurement (in the one-step method), while G(xA ,x,ω),
f +

1 (x,xA ,ω) and f −
1 (x,xA ,ω) are always obtained through the use of the Marchenko

method. Therefore, we can control the source spectrum of the data that are used to gen-
erate the virtual receiver data. We ensure that G(xA ,x,ω), f +

1 (x,xA ,ω) and f −
1 (x,xA ,ω)

have a source signature with a flat spectrum of amplitude 1.0 for a certain frequency
range, so that the convolution with a unique source signature in that frequency range
will produce the response to the latter source signal. This is schematically shown in Fig-
ures 5.2(c)-(f). The reflection data in Figure 5.2(b) are convolved with the blue wavelet
from Figures 5.2(c) and (d), which has a flat spectrum in a frequency range of 5Hz to
25Hz, and the estimation of the direct arrival is modeled with the same wavelet. The
result of the convolution of these wavefields is a wavefield that contains a wavelet very
similar to the original flat spectrum wavelet. If a wavefield with this source signature is
convolved with a wavefield that contains a different source spectrum, for example, the
Ricker wavelet that is shown as the red wavelet in Figures 5.2(e) and (f), the resulting
wavefield will contain a wavelet that is almost identical to the original Ricker wavelet, as
is shown by the black dashed line in Figures 5.2(e) and (f). There is some slight atten-
uation of the lowest and highest frequencies, as can be seen in Figure 5.2(f), however,
this has little effect on the wavelet shape in Figure 5.2(e). The versions of ph(xA ,xB ,ω),
p(xA ,xB ,ω) and p(x,xB ,ω) that are used in Equations (5.13)-(5.15) all include the original



5.2. 3D VIRTUAL SEISMOLOGY

5

91

20

0

20
Pr

es
su

re
 (P

a)

20

0

20

Pr
es

su
re

 (P
a)

20

0

20

Pr
es

su
re

 (P
a)

0 0.8Time (s)
1

0

1

No
rm

. p
re

ss
ur

e (
-)

0 0.8Time (s) 0 0.8Time (s)

(a) xB = (0,0,2150)

xA = (0,0,1025)Classical ph retrieval

(b) xB = (500,0,1025)

xA = (−350,0,2150)Classical ph retrieval

(c) xB = (500,−150,1025)

xA = (−350,100,2150)Classical ph retrieval

(d) xB = (0,0,2150)

xA = (0,0,1025)p retrieval

(e) xB = (500,0,1025)

xA = (−350,0,2150)p retrieval

(f) xB = (500,−150,1025)

xA = (−350,100,2150)p retrieval

(g) xB = (0,0,2150)

xA = (0,0,1025)ph retrieval FD

(h) xB = (500,0,1025)

xA = (−350,0,2150)ph retrieval FD

(i) xB = (500,−150,1025)

xA = (−350,100,2150)ph retrieval FD

(j) xB = (0,0,2150)

xA = (0,0,1025)ph retrieval Eikonal

(k) xB = (500,0,1025)

xA = (−350,0,2150)ph retrieval Eikonal

(l) xB = (500,−150,1025)

xA = (−350,100,2150)ph retrieval Eikonal

Figure 5.4: Green’s funcions of pairs of virtual sources and virtual receivers for different locations and different
types of retrieval scheme. The solid lines are the exact (directly modeled) Green’s functions and the dotted
lines are the retrieved functions. Each column corresponds to a different pair of locations. The first row corre-
sponds to the classical retrieval scheme of Equation (5.13), the second row to the Marchenko retrieval scheme
of Equation (5.14) and the third row to the homogeneous Marchenko retrieval scheme of Equation (5.15). For
all of these rows, the first arrival required for the Marchenko method is obtained using finite-difference model-
ing. For the fourth row the same retrieval method is used as in the third row, except the first arrival is obtained
using an Eikonal solver, instead of finite-difference modeling. All traces contain the Ricker wavelet from Figure
5.2(e).

Ricker wavelet from Figure 5.2(e); an example of such a pressure wavefield can be found
in Figure 5.3(c), with its source at location xB = (500,−150,1025). All other quantities are
convolved with the flat spectrum wavelet from Figure 5.2(c), examples of a Green’s func-
tion and focusing function convolved with such a wavelet are shown in Figure 5.3(a) and
(b), respectively, with their source present at location xA = (−350,100,2150). The appli-
cation of the band-limitation introduces one more complication, namely that Equation
(5.15) is only valid if the source spectrum of p(xA ,xB ,ω) is purely real valued, which holds
for the source spectrum of the zero-phase Ricker wavelet.

To demonstrate the validity of our implementation, we show the result of the retrieval
schemes in Figure 5.4, using the two-step method. Each column corresponds to a dif-
ferent pair of virtual source and virtual receiver positions, while each row corresponds
to a different type of retrieval method. The first column has a virtual receiver located
above the virtual source and the positions only differ in depth. In the second column
the virtual receiver is located below the virtual source and the locations differ in both
the inline direction and depth. For the third column the virtual receiver is located below
the virtual source and the locations differ in all three principal directions. The required
Green’s function and focusing function are obtained using the Marchenko method and
a first arrival that was obtained by modeling in the exact medium. We invert the first
arrival instead of only time-reversing it, to avoid the transmission losses. While this is
not a realistic scenario, as for field data we would not be able to use the exact model, we
wish to demonstrate that the method is, at least in theory, capable of obtaining the exact
amplitudes. The source has an isotropic radiation pattern. For each panel, the result
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that is obtained through the use of a retrieval scheme is plotted in a dashed color, while
a directly modeled reference solution is shown in solid black.

The homogeneous wavefield that is obtained using Equation (5.13) is shown in
dashed green in the first row of Figure 5.4. Both the Green’s function for the virtual source
and the virtual receiver were obtained using the Marchenko method. For all location
pairs, the results are poor. While the order of magnitude of the retrieved wavefield is
similar to that of the direct modeling, the exact amplitudes have a strong mismatch and
there are artifacts present at all times. The exceptions are the first arrival in Figure 5.4(b)
and the early coda in Figure 5.4(c). Aside from these events however, all other events are
wrong and there are still significant artifacts for both examples.

The second row shows in dashed blue the pressure wavefield that is obtained using
the open boundary retrieval scheme from Equation (5.14). When the source is located
below the virtual receiver, as is the case in Figure 5.4(d), the result shows a good match to
the reference solution in both amplitude and arrival time. Because the first arrival is iso-
lated, we apply a muting window to the data before the first arrival to remove numerical
artifacts. When the source is located above the receiver, however, the result degrades in
quality. There are strong artifacts present in the result at times before the first arrival and
the first arrival has the wrong polarity and amplitude. As these artifacts are of a similar
magnitude as the first arrival, we cannot apply the muting window. The retrieved coda in
these two latter cases is still accurate, with some slight mismatch in the amplitude of the
events. This is caused by the different lateral positions of the source and receiver. The
aperture and sampling of the data in both the inline and crossline direction are limited,
so the exact events become harder to obtain. The overall coda shows a good match to
the reference.

To improve the results of the retrieval, the representation from Equation (5.15) is used
to retrieve the homogeneous Green’s function, shown in dashed red in the third row of
Figure 5.4. The results in Figure 5.4(d) and (g) are identical, which corresponds to the
condition in Equation (5.11). The improvement is apparent when the source is located
above the receiver as is the case in Figure 5.4(h) and (i). Compared to the results in Fig-
ure 5.4(e) and (f), the unwanted artifacts are removed and the first arrival is retrieved
properly. Here, we once again apply the muting window before the first arrival. The am-
plitude mismatch in the coda is still present, indicating that this is a limitation caused by
the aperture of the recording array and not of the type of retrieval method.

Finally, in the bottom row of Figure 5.4, we apply Equation (5.15) again, however,
this time the first arrivals used in the Marchenko method are obtained using an Eikonal
solver in a smoothed version of the velocity model. This is to simulate a more realis-
tic situation, where accurate model information would not be available. Because the
exact amplitude of the first arrival cannot be obtained in this case, the retrieved homo-
geneous Green’s function is normalized and compared to a normalized version of the
reference solution. This is intended to show that even when the exact amplitude cannot
be obtained, the relative amplitude can be properly obtained. The matches for all three
source-receiver pairs are good, but of a lesser quality than when the finite-difference
modeling is employed. Due to the complexity of the model, as well as the smoothing,
the Eikonal solver can encounter issues with obtaining the correct arrival times. Fur-
thermore, we only use an estimation of the amplitude distribution along the wavefront,



5.2. 3D VIRTUAL SEISMOLOGY

5

93

which also will not properly represent the true effect that the subsurface would have on
the amplitude. However, the results still support that use of an Eikonal solver for 3D
media can yield useful results.

5.2.4. VISUALIZATION OF THE 3D RESULTS

While the traces in Figure 5.4 demonstrate the validity of our approach, they are lim-
ited in scope. To further test our approach in 3D, we obtain the results for not just a
single source-receiver pair. Instead we retrieve a large amount of focusing functions
and use these in Equation (5.15) to visualize the retrieved Green’s functions evolving in
time through the 3D medium. To obtain the results, we use the approach employing
the Eikonal solver, similarly to how we obtained the results in the bottom row of Figure
5.4. The reason for this is that the computational load and storage space for the use of
finite-difference modeling are not feasible for the amount of source-receiver pairs that
we desire. The use of the Eikonal solver is a similar approach as was used by Brackenhoff
et al. [62], however, in this work, we extend its use to 3D. We use the Eikonal solver to
obtain focusing functions at locations along three slices through the 3D medium, one
with a fixed depth at 2050m with an inline and crossline position from -2250 to 2250m
and -1250 to 1250m respectively, one at a fixed inline position of 0m with a depth and
crossline position from 400 to 4600m and -1250 to 1250m respectively and one slice at a
fixed crossline position of 0m with a depth and inline position from 400 to 4600m and -
2250 to 2250m, respectively. For all slices, the sampling in the depth, inline and crossline
direction is 25, 25 and 50m, respectively. For the source wavefield p(x j ,xB , t ), we ob-
tain a single pressure wavefield due to a source with an isotropic radiation pattern at
xB = (0,0,2050)m.

The results of the retrieval using these data and Equation (5.15) are shown in the left
column of Figure 5.5. For comparison, we have created a reference homogeneous pres-
sure wavefield by modeling the wavefield directly in the exact medium and superposing
it with its time-reversal. We also apply the muting window before the first arrival at all
the positions. The four rows each correspond to a different moment in time, namely 0,
300, 600 and 900ms. When comparing the results of the retrieval to the direct model-
ing, it can be seen that while the match in certain locations is strong, in other locations
events appear to be missing. This is due to the finite aperture of the data. The theoretical
representations in Equations (5.10) and (5.12) assume that the aperture of the data is in-
finite. In reality, the aperture is limited, especially in the crossline direction. The events
in the homogeneous Green’s function are reconstructed from the reflection data, so if
an event is not present in the reflection data, it will not be reconstructed properly. The
horizontally traveling wavefield, especially near the edges of the aperture, will not arrive
at the surface within the range of the aperture. The deeper the target is in the medium,
the more severe this problem can become. It should be noted that if the velocity of the
medium is increasing with depth, the refraction of the waves will ensure that more an-
gles of the wavefield arrive at the surface of the medium. In the Overthrust model, the
propagation velocity of the medium is generally increasing with depth, however, there
are some low velocity zones present at greater depths. Because of the general increasing
trend, some of the horizontally traveling wavefield at greater depths is still recovered.

The part of the wavefield that is traveling at a smaller angle is reconstructed properly,
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Figure 5.5: 3D snapshots of the homogeneous Green’s function retrieval of an isotropic virtual source in the
Overthrust model at (a) 0ms, (b) 300ms, (c) 600 ms and (d) 900ms. For comparison, (e), (f), (g) and (h) are
snapshots of a directly modeled homogeneous pressure wavefield at 0ms, 300ms, 600ms and 900ms, respec-
tively. The source is located at xB = (0,0,2050)m. The first arrivals for every virtual source-receiver pair were
obtained using the Eikonal solver, similar to the results in Figures 5.4(j)-(l). All wavefields contain the Ricker
wavelet from Figure 5.2(e) and (f) and contain an overlay of a cross section of the Overthrust model to indicate
the locations where we expect scattering to take place.
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even at large depths and at the edges of the aperture. The events in the center of the
model are reconstructed properly. The amplitudes and arrival times of the events are
not correct everywhere, which is caused by the use of a smooth velocity model and the
Eikonal solver for the direct arrivals, instead of modeling these in the exact medium.
However, the results still show the potential of the Marchenko method for 3D virtual
seismology.

5.3. MOMENT TENSOR MONITORING

5.3.1. NON-ISOTROPIC POINT SOURCE
In reality, an event in the subsurface is seldom generated by an isotropic point source.
Instead the source wavefield is often caused by faulting, the mechanism of which can
be described by a moment tensor [8], which causes the amplitude along the wavefront
to vary. The double-couple source mechanism is often used, which is a moment tensor
that describes a pure shear fault, by its strike, rake and dip [71]. In previous work, by
Brackenhoff et al. [81], the double-couple source mechanism was combined with the
Marchenko method to obtain the virtual response of a double-couple point source in the
subsurface, as well as that of a rupture plane. Here, we wish to demonstrate that similar
results can be achieved in 3D. We repeat the examples of the isotropic point source, using
Equations (5.13)-(5.15), however, we replace the isotropic source at xB in p(x j ,xB ,ω) by
a double-couple source generated by a moment tensor. We use an operator Dθ

B {·}, which
transforms the radiation pattern of the source at xB from an isotropic radiation pattern
to a double-couple radiation pattern. It is defined as

Dθ
B {·} = (θ∥i +θ⊥i )∂i ,B , (5.16)

where ∂i ,B is a component of the vector containing the partial derivatives acting on the
monopole signal originating from source location xB , which alters the radiation pattern,
θ∥i is a component of a vector that orients one couple of the signal parallel to the fault

plane and θ⊥i is a component of a vector that orients the other couple perpendicular to
the fault plane. Because we are dealing with acoustic reflection data, we only model the
P-waves of the double-couple source, select the first arrival and use it in the Marchenko
method to obtain the desired virtual double-couple response Dθ

B {p(x j ,xB ,ω)}. An ex-
ample of such a wavefield can be found in Figure 5.3(d), which has a source at the same
position as the pressure wavefield with an isotropic source in (c). This wavefield is then
used in Equation (5.13) or (5.15) to obtain Dθ

B {ph(xA ,xB ,ω)} or in Equation (5.14) to ob-

tain Dθ
B {p(xA ,xB ,ω)}. Previous research has suggested that the double-couple source is

not always a sufficient description of an earthquake source [9]. Our wavefield retrieval
method is valid for any type of moment tensor, however, for the sake of simplicity, we
stick with the double-couple representation.

For our example, we use a double-couple source with a strike, rake and dip of, 19,
68 and 25 degrees, respectively, and obtain the response between the virtual source-
receiver pairs, similar to the examples in Figure 5.4, using the same color scheme as
in that figure. The results are shown in Figure 5.6, at the same locations as the source-
receiver pairs for the isotropic results. Each row shows a different retrieval method, while
each column shows a different source-receiver pair. The first column shows very compa-
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(a) xB = (0,0,2150)

xA = (0,0,1025)Classical ph retrieval

(b) xB = (500,0,1025)

xA = (−350,0,2150)Classical ph retrieval

(c) xB = (500,−150,1025)

xA = (−350,100,2150)Classical ph retrieval

(d) xB = (0,0,2150)

xA = (0,0,1025)p retrieval

(e) xB = (500,0,1025)

xA = (−350,0,2150)p retrieval

(f) xB = (500,−150,1025)

xA = (−350,100,2150)p retrieval

(g) xB = (0,0,2150)

xA = (0,0,1025)ph retrieval FD

(h) xB = (500,0,1025)

xA = (−350,0,2150)ph retrieval FD

(i) xB = (500,−150,1025)

xA = (−350,100,2150)ph retrieval FD

(j) xB = (0,0,2150)

xA = (0,0,1025)ph retrieval Eikonal

(k) xB = (500,0,1025)

xA = (−350,0,2150)ph retrieval Eikonal

(l) xB = (500,−150,1025)

xA = (−350,100,2150)ph retrieval Eikonal

Figure 5.6: As Figure 5.4, but for a virtual double-couple source with a strike, rake and dip of 19, 68 and 25
degrees, respectively.

rable results to those of the first column of Figure 5.4, using the same color schemes. The
amplitude and shape of the events are different, caused by the different source mecha-
nism. Once again, the classical retrieval using Equation (5.13) shows poor results, while
the results of the Green’s function retrieval using Equation (5.14) and the homogeneous
Green’s function retrieval using Equation (5.15) are identical, because the virtual receiver
is located above the virtual source, and the match to the direct modeling is good.

If the second and third column are considered, the retrieval using Equation (5.14)
shows strong errors around the first arrival, while the coda is retrieved properly. When
the homogeneous Green’s function retrieval from Equation (5.15) is used, the result im-
proves around the first arrival, as can be seen in the bottom two rows of Figure 5.6. There
are still some errors in the early coda. The results in the final column show that parts of
the coda are also not properly obtained. Due to the more complex source signature, it
becomes harder for the method to resolve all events, especially with the limited aperture.
The Eikonal solver once again can only obtain the relative amplitudes, and has similar
issues with retrieving the proper events in the coda. Overall the results are encouraging.

To further investigate the effects of using a double-couple source mechanism, we
retrieve the wavefield for the same three 3D slices as we did for Figure 5.5. The result is
shown in Figure 5.7, where the left column shows the result for the retrieval using the
Eikonal solver and Equation (5.15), while a direct modeling is shown in the right column
for comparison. Note that the direct modeling contains a source artifact caused by the
modeling of only the P-waves. When the results of the retrieval and the direct modeling
are compared, most of the nearly vertically traveling events are properly retrieved, not
only in arrival time, but also in polarity. For events traveling nearly horizontally, the
retrieval is once again poorer. Overall, the result using the double-couple source have
a similar quality as the results for the isotropic source, which demonstrates that in 3D,
the double-couple source can be successfully integrated into the homogeneous Green’s
function retrieval.
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Figure 5.7: As Figure 5.5, but for a virtual double-couple source with a strike, rake and dip of 19, 68 and 25
degrees, respectively. Note that the direct modeling contains a source artifacts caused by only modeling the
P-waves.
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5.3.2. RUPTURE
In previous sections, we have only considered point sources, however, in the field, an
earthquake is seldom a single event, rather, it consists of a cluster of several events that
are activated over an area for a period of time [100]. Hence, the total wavefield of an
earthquake is not the result of a single instantaneous source, instead, it consists of a
superposition of wavefields caused by different sources that are activated at different
times. To approximate this kind of wavefield, we define a total wavefield P (xA , t ) that
consists of a superposition of wavefields that are caused by double-couple point sources.
The superposition can be expressed as

P (xA , t ) =
nS∑
k
Dθ,(k)

B {p(xA ,x(k)
B , t )} =

nS∑
k

∫ ∞

−∞
Dθ,(k)

B {G(xA ,x(k)
B , t − t ′)}s(k)(t ′)dt ′, (5.17a)

P (xA ,ω) =
nS∑
k
Dθ,(k)

B {p(xA ,x(k)
B ,ω)} =

nS∑
k
Dθ,(k)

B {G(xA ,x(k)
B ,ω)}s(k)(ω), (5.17b)

where x(k)
B indicates the location of the kth source of a total of nS sources, Dθ,(k)

B {·} is

the double-couple operator for each location and s(k)(t ) is the corresponding source sig-
nal for each location that contains all the information for the source strength, activa-
tion time and duration. Because of the different activation times, the source spectrum
of P (xA , t ) is no longer purely real-valued and can therefore not be used in Equation
(5.15). However, using it in Equation (5.14) is still valid, as no time-reversal is applied.
We rewrite Equation (5.14) for this purpose as

P (xA ,ω)+
nS∑
k
Dθ,(k)

B {χ(x(k)
B )2i s(k)(ω)ℑ{ f1(x(k)

B ,xA ,ω)}} =
nR∑

j

2

iωρ0
P (x j ,ω)∂3

(
f +

1 (x j ,xA ,ω)− { f −
1 (x j ,xA ,ω)}∗

)
∆2x j =

nR∑
j

2

iωρ0

nS∑
k
Dθ,(k)

B {p(x j ,x(k)
B ,ω)}∂3

(
f +

1 (x j ,xA ,ω)− { f −
1 (x j ,xA ,ω)}∗

)
∆2x j .

(5.18)

In Equation (5.18), we can retrieve P (xA ,ω), however, we will also obtain the focusing
function artifacts that are related to each source position, below the source depth. As
there are multiple sources, that can have different depths, the artifacts related to one
source can interfere with the part of the signal that originates from a deeper part of the
medium. Consequently, only above the shallowest source depth can we expect to obtain
the correct wavefield at all times. For deeper parts of the medium, we expect to retrieve
artifacts before and around the first arrival time and the correct coda at later times, sim-
ilar to the results that were shown in Figures 5.4 and 5.6. Obtaining the wavefield in this
way is a one-step process, where we first measure the total wavefield of an actual rupture
and use it in combination with the focusing functions, obtained through the Marchenko
method, to monitor the subsurface with virtual receivers.

On the other hand, to obtain the response to a virtual rupture, we can use a two-
step process to retrieve P (xA , t ). This has a significant advantage over the one-step pro-
cess. Instead of measuring the resulting wavefield of the superposed sources, we use the
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Marchenko method to retrieve the individual wavefields Dθ,(k)
B {ph(xA ,x(k)

B ,ω)} related to
each source position. In this case we do not measure the total wavefield, but predict it by
using the Marchenko method to obtain the source wavefield
Dθ,(k)

B {p(x j ,x(k)
B ,ω)} before using it in Equation (5.15). Because of this, we can ensure that

the source spectrum of Dθ,(k)
B {p(x j ,x(k)

B ,ω)} for each individual virtual source is purely
real-valued, before we apply the time-reversal. The wavefields that we retrieve in this
way are free of the artifacts related to the focusing function and can be combined to
form P (xA , t ):

P (xA , t ) =
nS∑
k

H(t − t (k))Dθ,(k)
B {ph(xA ,x(k)

B , t − t ( j ))}, (5.19)

where H is the Heaviside function and t (k) is the activation time of the source. In Equa-
tion (5.19), we shift the signals in time by t (k) before superposition is applied. Because
these wavefields are time-shifted and homogeneous, i.e. they contain time-shifted ver-
sions of Dθ,(k)

B {p(xA ,x(k)
B , t )} and Dθ,(k)

B {p(xA ,x(k)
B ,−t )}, the acausal part of one wavefield

may interfere with the causal part of another wavefield. The Heaviside function is ap-
plied to remove all acausal parts of the wavefields to avoid such an issue. While this
approach cannot be used for the monitoring of wavefields measured in the field that
are caused by sources that are active over a period of time, the approach can be used to
forecast the total wavefield of a virtual rupture, given a specific distribution of sources.

To demonstrate the monitoring and forecasting of the total wavefield, we consider
a rupture plane in the Overthrust model that consists of a cluster of 61 point sources
with a double-couple radiation pattern and that are activated at different points in time.
Instead of retrieving wavefields that contain the zero-phase wavelet, like we have done
in the previous examples, we retrieve wavefields that contain a unique causal wavelet
for each source position, as wavefields in the real subsurface will be causal and not zero-
phase. We choose the Berlage wavelet, which is defined as [101]:

W (t ) = AH(t )t ne−αt cos(2πf0t+φ0), (5.20)

where A is the amplitude of the wavelet. The time exponent n, exponential decay fac-
tor α, initial phase angle φ0 and peak frequency f0 control the shape of the wavelet. To
ensure that the wavelet has an amplitude equal to zero at t = 0, we use an initial phase
angle of -90 degrees. For the peak frequency, we use the same peak frequency as we
used for the Ricker wavelet in Figure 5.2(f). However, for the amplitude, time exponent
and exponential decay factor, we take random values, to simulate a heterogeneous re-
gion along the rupture plane. The schematic overview for the rupture simulation can
be found in Figure 5.8. The sources are located along a fault in the model, where each
source has a strike and rake of 90 and 0 degrees, respectively, and is located at a fixed
crossline position of 0m. The dip of the source is dictated by the fault orientation at each
source location. Figure 5.8(a) contains the locations of the sources, while Figure 5.8(b)
shows the activation time and random amplitude and Figure 5.8(c) shows the random
time exponent and exponential decay factor that are used for the Berlage wavelets. The
activation time for the sources is linear, with a time delay of 24ms between the activation
of subsequent sources, except for the positions where the depth of the source changes.
In these cases the time delay is increased to 32ms to account for the increase in step size.
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Figure 5.8: (a) Locations of individual double-couple sources with a strike and rake of 90 and 0 degrees, re-
spectively. The dip is oriented along the fault direction for each location. The slice is located along a constant
crossline position of 0m. (b) Activation time and amplitude in red and blue, respectively, and (c) time exponent
n and exponential decay factor α in green and purple, respectively, for computing the Berlage wavelets using
Equation (5.20). The horizontal positions of the sources in (a), (b) and (c) match.

In this way, we simulate a rupture activating and propagating along the rupture plane
with a velocity of 520m s−1.

The results of both the one-step and the two-step process can be found in Figure 5.9.
The left column of this figure shows the result for the one-step process for monitoring
a signal, using Equation (5.18), and the right column shows the result for the two-step
process for forecasting a signal, using Equation (5.19). For the monitoring process, we
convolve the Berlage wavelets with the source wavefield before we employ the causal
Green’s function retrieval. For the forecasting process, we use a flat spectrum wavelet
to obtain the individual homogeneous Green’s functions. Because we are creating ev-
erything from the data, this is a valid approach. After we obtain these homogeneous
Green’s functions, we convolve the functions with the Berlage wavelets, similar to Equa-
tion (5.6), to obtain the homogeneous wavefields. These wavefields are then utilized in
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Equation (5.19). In both cases we apply the mute window again, for the monitoring this
is only for the depths above the shallowest source and for the forecasting we apply it to
the individual wavefields before they are superposed.

When comparing the results, it can be seen that, at 640ms, there is a strong difference
between the monitoring and forecasting of the signal. Below the depth of the shallowest
source location, the wavefield contains strong artifacts, however, above this depth, the
wavefields of the two approaches are exactly the same. For later times, around 1280ms,
the area below the shallowest source matches more between the two approaches, how-
ever, the deeper parts of the medium still shows significant differences. At 1920ms, the
match between the two results is even closer, only the deepest parts of the model still
contains artifacts for the monitoring approach. We showed that applying homogeneous
Green’s function retrieval for a single source is accurate, so the superposition of the ho-
mogeneous pressure wavefields yields a good result. While the monitoring approach
does contain artifacts, we can use the method to monitor the wavefield in the subsur-
face between the surface and the shallowest source depth accurately. Moreover, we can
also use this approach to obtain the coda of the signal for late times at all depths. Over-
all, the results support the potential of using the single-sided Green’s function retrieval
in 3D in the field.

5.4. CONCLUSIONS
We have shown that the Marchenko method can be applied to 3D reflection data at
the surface of the Earth to obtain the responses for virtual source-receiver pairs in the
subsurface in a data-driven way. We did this by considering the 3D single-sided repre-
sentation for obtaining the homogeneous Green’s function in the subsurface. For the
input reflection data, we modeled a reflection dataset in a subsection of the 3D Over-
thrust model. We compared the single-sided approach to the classical representation
and showed for a number of selected source-receiver pairs that the single-sided repre-
sentation can obtain accurate results, whereas the result of the classical representation
contains artifacts. The single-sided approach can be applied in two ways, one where
the causal Green’s function and one where the homogeneous Green’s function is re-
trieved. The retrieval of the causal Green’s function is accurate between the surface and
the source location. When the virtual receiver is located below the source, artifacts are
created that are related to the focusing function from the source to the virtual receiver.
These artifacts are present before the coda, and therefore affect the first arrival, however,
the coda is obtained accurately. When the homogeneous Green’s function retrieval is
applied, the result is accurate for all times everywhere in the subsurface, however, this
requires the source spectrum to be purely real-valued.

We showed the retrieval of the homogeneous Green’s function in a 3D view for a sin-
gle point source using snapshots and compared these slices to a directly modeled result.
The retrieved result showed a good match to the reference for the wavefield that was
traveling at moderate angles with the vertical and in the shallow part of the medium.
The waves that were traveling close to horizontally were not always retrieved properly,
because these angles are not present in the events that are captured by the reflection
data. We showed these results not only for an isotropic source, but also for a source that
had a double-couple radiation pattern. In both cases, the match to the reference was
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Figure 5.9: 3D snapshots of the Green’s function retrieval for a wavefield caused by a rupture in the Overthrust
model at (a) 0ms, (b) 640ms, (c) 1280 ms and (d) 1920 ms, using Equation (5.18), and 3D snapshots of super-
posed and time-shifted wavefields in the Overthrust model, obtained using homogeneous Green’s function
retrieval using Equation (5.19), at (e) 0ms, (f) 640ms, (g) 1280 ms and (h) 1920 ms. All wavefields have an over-
lay of a cross section of the Overthrust model to indicate the locations where we expect scattering to take place.
Details about the locations, activation times and the wavelets of each source can be found in Figure 5.8.
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good.
We also considered a source mechanism that was not a single point source. To this

end, we simulated a rupture by combining point sources with a double-couple radiation
pattern and source signals that were based on causal Berlage wavelets, with unique pa-
rameters for each source location. We considered two different ways of applying the rep-
resentation. The first was for the purpose of monitoring, where we applied the method
to the total wavefield caused by all sources. Because the composite source spectrum
was not purely real-valued, we could only apply the causal Green’s function retrieval
approach, with its inherent limitations. The second method we used was for the pur-
pose of forecasting the total wavefield, given a specific distribution of sources. In this
case, we assumed that we did not measure the total wavefield, but simulated it by using
the homogeneous Green’s function retrieval for each virtual source separately. After the
retrieval was applied, the acausal part of the wavefield was muted and the remaining
causal part was shifted in time. Finally, the individual responses were summed together
to obtain the forecasted total wavefield.

The monitoring approach contained artifacts from all source locations at varying
times, although the late coda was properly retrieved. The forecasting approach yielded
no such artifacts, however, it is based on a model of sources.

The results on the synthetic data demonstrated that the method has the potential to
be applied in the field for monitoring and forecasting the wavefields associated to in-
duced seismicity in a data-driven way. The results are accurate for point sources, for
wavefields with an isotropic and double-couple radiation pattern, and for larger rup-
tures that are active over a period of time.



6
CONCLUSIONS AND

RECOMMENDATIONS

6.1. CONCLUSIONS
The primary research goal of this thesis is to determine whether the Marchenko method
can be combined with the single-sided representation of the homogeneous Green’s func-
tion to monitor and forecast seismic wavefields caused by induced seismicity. Both the
theoretical and practical aspects have been considered in this thesis.

In chapter 2, the single-sided homogeneous Green’s function representation was ap-
plied, using the Marchenko method and both 2D numerical reflection data and 2D field
reflection data. Using the numerical data, it was shown that the single-sided repre-
sentation produced a wavefield that closely resembled a directly modeled reference re-
sult, something which the classical representation could not achieve, particularly for the
downward traveling part of the wavefield. Furthermore, it was shown that aside from a
virtual source with an isotropic radiation pattern, a virtual source with a double-couple
radiation pattern could also be retrieved using the single-sided representation. When
the double-couple radiation pattern was used, it changed the amplitude behavior of
the wavefield, but not the arrival times. To determine the sensitivity of the Marchenko
method and of the single-sided homogeneous Green’s function representation to imper-
fect reflection data, the numerical reflection data were truncated before the Marchenko
method and single-sided representation were applied. The limitations that were applied
were related to the offset, sampling and attenuation of the data. The results that were
obtained when these truncated reflection data were used demonstrated the need for the
pre-processing in case the reflection data are not ideal, as is often the case for field data.
The homogeneous Green’s function retrieval was performed on the field data after the
dataset was pre-processed and the results showed that the single-sided representation
was a significant improvement over the classical representation when field data are uti-
lized. The virtual source with a double-couple radiation pattern was also retrieved using
the homogeneous Green’s function representation without complications.
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In chapter 3, two approaches for applying the single-sided representation were con-
sidered. The first approach was a one-step process to monitor a wavefield in the subsur-
face, which employed the single-sided representation of the causal Green’s function. The
measurement of the response to a physical source was used in combination with virtual
receivers created through the use of the Marchenko method. Because the Marchenko
method was only used to create the virtual receivers, this approach was a one-step pro-
cess. The second approach that was considered was a two-step process to forecast the
wavefield in the subsurface, which employed the single-sided representation of the ho-
mogeneous Green’s function. Both the source and receiver in this case were virtual and
both were created using the Marchenko method, hence this was a two-step process. The
results that were obtained using the single-sided representation of the causal Green’s
function contain artifacts in the wavefield below the shallowest source location. When
the single-sided representation of the homogeneous Green’ function was used, these
artifacts were removed. However, the single-sided representation of the causal Green’s
function could be used for any type of source wavelet, while the single-sided represen-
tation of the homogeneous Green’s function could only be used for symmetric source
wavelets. Both of these approaches were applied using 2D synthetic reflection data and
the Marchenko method for point sources with a monopole and double-couple radiation
pattern and a rupture plane source. The simulation of a wavefield caused by a rupture
plane was achieved by superposition of point sources with a double-couple radiation
pattern. The wavefields caused by these point sources were time-shifted so that the rup-
ture plane was active over a period of time rather than a single instant. The monitor-
ing of the wavefield caused by the rupture plane contained artifacts that were related to
each point source. These errors existed only before and during the first arrivals of the
sources and the later coda could be properly retrieved. The forecasting of the wavefield
caused by a virtual rupture plane was achieved by using the representation to retrieve
the homogeneous Green’s function for each source separately, removing the acausal part
of the wavefield and applying the time shift. These causal Green’s functions were then
superposed to obtain the total wavefield caused by the virtual rupture plane.The moni-
toring and forecasting approaches were applied using 2D numerical reflection data and
2D field reflection data to obtain the total wavefield of a (virtual) rupture plane. The re-
sults of these approaches matched each other above the shallowest source location at all
times and below this source location after the first arrivals of the sources.

In chapter 4, the opensource implementation of the 3D Marchenko method was
discussed. The theoretical extension of the Marchenko method from 2D to 3D was a
straightforward process, however, there were difficulties for the practical implementa-
tion. For the standard iterative implementation, the reflection data need to be well sam-
pled in both the inline and the crossline direction, meaning that more sources and re-
ceivers are required. Consequently, there was a large increase in the size of the data in
3D compared to 2D, hence a large amount of storage space was required. Aside from the
storage requirements, the time it took to load the data from the disk increased as did the
overall computation time. To reduce the required storage space and loading time, the re-
flection data were compressed using a floating point algorithm. The 3D implementation
was successfully tested on compressed 3D numerical reflection data, that were modeled
in a simple layered model and the more complex Overthrust model. For both models,
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the Green’s function and focusing function were retrieved using a direct arrival that was
modeled in the exact medium. The Green’s function showed a good match to a directly
modeled reference Green’s function. To limit the modeling time, an Eikonal solver was
used to obtain a large amount of first arrivals so that the Green’s function and focusing
function could be retrieved in many places in the models, while maintaining a feasible
computation time. These data were used to create images of the subsurface and showed
that internal multiples in the image were attenuated. These results demonstrated that
the implementation worked properly and could be used for other applications beside
imaging.

In chapter 5, the application of the single-sided homogeneous Green’s function rep-
resentation in 3D was considered. The representation was tested using the 3D Marchenko
implementation that was discussed in chapter 4. The single-sided representation of the
causal and the homogeneous Green’s function, as well as the classical representation
of the homogeneous Green’s function, were tested using three pairs of a single virtual
source and a single virtual receiver at different locations. The first arrivals that were
required for the Marchenko method were obtained by inverting the first arrival of the
Green’s function that was created by finite-difference modeling in the exact model. The
results obtained using the various representations were similar to those obtained using
the 2D versions of the representations in chapter 2, with the single-sided homogeneous
Green’s function representation demonstrating the best result. The single-sided repre-
sentation for the homogeneous Green’s function was shown to be able to not only obtain
the correct arrival times of the events, but also the correct amplitude of events, when
detailed knowledge of the subsurface is available. Due to the high computation cost
of the finite-difference modeling, an Eikonal solver was used to apply the single-sided
homogeneous Green’s function representation as well, which decreased the quality of
the result by a small amount. The Eikonal solver did make it more feasible to apply the
representation for a large amount of virtual receivers. The retrieval using the Eikonal
solver was further demonstrated by visualizing the propagating wavefield in 3D in time,
by retrieving snapshots in large cross-sections of the model. The results of the retrieval
showed a good match to a directly modeled reference wavefield, for the vertically trav-
eling events. The part of the wavefield traveling at a larger angle with the normal of the
surface were limited in their quality due to the relatively low aperture of the reflection
data, however. All these results were shown for sources with an isotropic and double-
couple radiation pattern. A rupture plane in 3D was also considered, constructed in a
similar way as was done in chapter 3, by superposing the time-shifted wavefields of indi-
vidual point sources. Unlike chapter 3, however, all sources were modeled using unique
causal Berlage wavelets, instead of identical zero-phase wavelets to simulate a more re-
alistic situation. Both the forecasting and monitoring of the total wavefield were tested
using the single-sided representation for the homogeneous Green’s function and similar
results were achieved as were seen when the 2D reflection data were used. The wave-
fields matched above the shallowest source location for all times and below this source
location after all the first arrivals related to the sources had arrived.

Overall, it has been shown that the single-sided homogeneous Green’s function rep-
resentation can be applied for the purpose of monitoring and forecasting seismic wave-
fields that are caused by induced seismicity on 2D and 3D numerical data and on 2D
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field data. The results for the 3D numerical data show potential for applying the devel-
oped method on 3D field data as well. The advantages of the single-sided representation
are that the virtual receivers can be created at any location in the subsurface and that
different source mechanisms can be incorporated in the scheme. The disadvantages are
that the demand on the quality of the reflection data is high and that for the monitoring
approach, artifacts appear in the final result below the source locations.

6.2. RECOMMENDATIONS
Considering the promise that was shown when the single-sided homogeneous Green’s
function representation was applied using 3D numerical reflection data, a logical next
step would be to apply the method using 3D field reflection data. The method has been
successfully applied to 3D field reflection data for the purpose of imaging [96, 97], which
demonstrates that the Marchenko method can work on this type of data. The main chal-
lenge would be quality of the reflection data, as the recording array needs to be well-
sampled in both space and time. As the results of the 2D field reflection data have shown,
pre-processing of the 3D field reflection dataset will be of vital importance if the single-
sided representation of the homogeneous Green’s function representation is to be ap-
plied to this field dataset.

All field data that were considered in this thesis were recorded using an active source.
This means that while the monitoring of induced seismicity could be simulated, no mon-
itoring of a signal recorded in the field was performed. To prove the viability of the
single-sided representation for the purpose of monitoring, a seismic survey should be
combined with the measurement of a passive source inside the subsurface. To ensure
a greater amount of quality control, a seismic experiment could be performed in either
a lab or in the field. In Appendix B, the application of the single-sided homogeneous
Green’s function representation on a physical lab reflection dataset is shown. The results
in this appendix can be validated with greater accuracy because the model is known.
Additionally, in a setup like this, an active source can be activated inside the model, to
simulate a passive recording, however, the source parameters are available for further
quality control. If the lab experiment is successful, the approach should be tested on a
field dataset.

When the single-sided representation has been successfully applied to field data to
retrieve the wavefield in the subsurface, the retrieved wavefields can be used for other
applications aside from just monitoring or forecasting the wavefield. An example would
be using the single-sided representation to obtain the homogeneous Green’s function in
the subsurface at different points in time. These data can then be used for the purpose of
time-lapse monitoring to see the change in properties in the subsurface. The evolution
of the location and signature of the source can also be used to make predictive models
of subsurface seismic activity. As of the writing of this thesis, there are plans to install
a network of sensors in the North of the Netherlands, so that the seismic activity in the
area can be measured using Distributed Acoustic Sensing (DAS). The network would be
densely sampled, hence the measured data will be ideal for use in the single-sided rep-
resentation.

In case of rupture planes, that are active over a period of time, there are artifacts
present below the shallowest source location, related to the focusing function. This fo-
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cusing function can be estimated from the data itself by redatuming the focusing func-
tion, a process which is shown in appendix A. However, this approach is currently not
feasible to apply to field data, as knowledge of the location and activation time of the
sources is required. Further development of the single-sided representation of the causal
Green’s function could yield a way to more effectively remove these artifacts from the
data. Doing so would make it possible to monitor the area below the sources in more
detail.

Another practical application of the single-sided representation of the homogeneous
Green’s function would be in the area of moment tensor inversion. This is a technique
where the source mechanism of a seismic event is inverted for using the measured data.
In this field, more measurements of the subsurface are of great benefit and physical
measurements could be substituted by virtual measurements created from the reflec-
tion data. One of the most important aspects for moment tensor inversion and monitor-
ing induced seismicity is that the source mechanisms of the seismic events are almost
always elastic in nature instead of acoustic. It has been shown that the double-couple
source mechanism can be acoustically approximated. However, in order to obtain the
true homogeneous Green’s function caused by a moment tensor source, an elastic ver-
sion of the Marchenko method needs to be employed. Previous research by [102] has
demonstrated that in layered elastic media, the single-sided homogeneous Green’s func-
tion representation can be applied. There are still a lot of ongoing challenges in the field
of the elastic implementation of the Marchenko method for its fundamental applica-
tion on field data [103]. If breakthroughs in this field are achieved, the elastic version of
the single-sided homogeneous Green’s function representation should be tested on syn-
thetic data. If these results are promising, the representation should then also be applied
to elastic field reflection data. And if the field data results are of good quality, the repre-
sentation should be applied for the purpose of enhancing the inversion of the moment
tensor.
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A
REMOVING FOCUSING FUNCTION

RELATED ARTIFACTS FROM

MARCHENKO-BASED GREEN’S

FUNCTION RETRIEVAL IN A

DATA-DRIVEN WAY

During the Marchenko-based retrieval of the Green’s function with its source and receiver
in the subsurface, artifacts are introduced into the final result, related to the redatumed
focusing function. These artifacts can be removed by superposing the retrieved Green’s
function with its time-reversal, however, this approach is not always viable. An alterna-
tive way of removing the artifacts is to estimate the redatumed focusing function from the
data and use it to remove the artifacts. By using the decomposed reciprocity theorems, a
representation is obtained that can accurately estimate the redatumed focusing function
from the data. To validate the representation, it is applied to 1D data, which demonstrates
that the artifacts can be correctly estimated and removed from the Green’s function.
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A.1. INTRODUCTION
In the field of seismics, the Green’s function in the subsurface is often used for target-
oriented applications, such as imaging and monitoring, as it describes the response of a
medium to an impulsive point source. The Green’s function inside the subsurface is of-
ten not available, in which case it can be obtained from processing measurements at the
surface of the Earth. For example, by employing the Marchenko method, the redatumed
Green’s function can be obtained from surface reflection data [58]. However, redatum-
ing both the source and the receiver of the Green’s function into the medium, thereby
creating a virtual source and a virtual receiver, introduces artifacts into the result [62].
These artifacts can be removed by superposing the redatumed Green’s function with its
time-reversal to obtain the homogeneous Green’s function. This approach has been ap-
plied on both synthetic and field data [58, 81]. However, this approach cannot always
be used, for example, when the source signal is active over a period of time. In this pa-
per, we present an alternative way of removing the artifacts, by redatuming the focusing
function from the surface of the Earth in a data-driven way. We derive the methodology
and demonstrate the approach on 1D examples.

A.2. THEORY
In this paper, we consider pressure-normalized wavefields that obey the acoustic wave
equation. To redatum the Green’s function from the surface of the earth into the medium,
we use Equation A-26 from Wapenaar et al. [58]:

G(xA ,xB ,ω)+χ(xB )2iℑ{ f1(xB ,xA ,ω)} =∫
∂D0

2

iωρ0
G(x,xB ,ω)∂3 f2(xA ,x,ω)dx,

(A.1)

where x = (x1, x2, x3)T is the spatial position vector, G(xA ,xB ,ω) is the Green’s function
in the frequency domain, with its source at xB and its receiver at xA , f1(xB ,xA ,ω) is the
focusing function of the first type that is present at xB and focuses downwards to focal
location xA and f2(xA ,x,ω) is the focusing function of the second type that is present at
xA and that focuses upwards to focal location x. i is the imaginary unit, ℑ denotes the
imaginary part of a complex function, ∂3 is the spatial derivative in the depth direction,
ω is the angular frequency and ρ0 is the density at the top of the medium. ∂D0 is a trans-
parent boundary at the top of the medium, above which is a reflection-free halfspace.
χ(xB ) is a characteristic function that is defined as:

χ(xB ) =


1, for x3,B < x3,A ,
1
2 , for x3,B = x3,A ,

0, for x3,B > x3,A .

(A.2)

While G(xA ,xB ,ω) is the desired wavefield in Equation (A.1), it is contaminated by
2iℑ{ f1(xB ,xA ,ω)}, depending on the positions of xA and xB .

To obtain f1(xB ,xA ,ω), we consider the decomposed reciprocity theorems from Wape-
naar [104]. We assume that we have two states, A and B. In both of these states there is a
medium D that is bounded by two horizontal flat surfaces, ∂D0 and ∂DB . ∂DB is located
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below ∂D0 at the depth of xB . The reciprocity theorems allow one to relate the wave-
fields of the states if the medium D is exactly the same for each state. The decomposed
reciprocity theorem of the convolution type is given as:∫

D
{p+

A q−
B +p−

A q+
B −q+

A p−
B −q−

A p+
B }dx =∫

∂D0

2

iωρ
{(∂3p+

A)p−
B + (∂3p−

A)p+
B }d2x−

∫
∂DA

2

iωρ
{(∂3p+

A)p−
B + (∂3p−

A)p+
B }d2x,

(A.3)

and the decomposed reciprocity theorem of the correlation type is given as:∫
D

{p+,∗
A q+

B +p−,∗
A q−

B +q+,∗
A p+

B +q−,∗
A p−

B }dx =∫
∂D0

2

iωρ
{(∂3p+

A)∗p+
B + (∂3p−

A)∗p−
B }d2x−

∫
∂DA

2

iωρ
{(∂3p+

A)∗p+
B + (∂3p−

A)∗p−
B }d2x,

(A.4)

where p± is the decomposed acoustic pressure wave field and q± the decomposed source
function. The subscripts A and B indicate whether a wavefield or source belongs to state
A or B, the superscripts + and - indicate downward or upward propagation, respectively,
ρ = ρ(x) is the density of the medium and * indicates complex conjugation. For the reci-
procity theorem of the correlation type in Equation (A.4), evanescent waves are ignored.

For both state A and B, we consider the decomposed downgoing focusing function
of the first type, f +

1 , and the decomposed upgoing focusing function of the first type, f −
1 ,

which are related to the full focusing functions as

f1(x,xA ,ω) = f +
1 (x,xA ,ω)+ f −

1 (x,xA ,ω), (A.5)

f2(xA ,x,ω) = f +
1 (x,xA ,ω)− { f −

1 (x,xA ,ω)}∗. (A.6)

The focusing function of the first type is defined in a medium that is truncated below
the focal location, which can cause problems in the reciprocity theorems. To ensure that
in both states the medium D is the same, the focal locations of the focusing functions
generally cannot be above ∂DB , as the truncation can cause a difference in the medium.
The focal location in state B is located at the same depth as ∂DB , hence the depth of the
focal location in state B cannot be greater than the depth of the focal location in state A.
Assuming that the D is the same in both states, the wavefields and sources for the states
are equal to the ones shown in Table A.1. There are no source terms present, which
results in the volume integrals of the left hand sides of Equation (A.3) and Equation (A.4)
becoming zero. Furthermore, Wapenaar et al. [26] showed that at the boundary ∂DB , the
following relations exist:

∂3 f +
1 (x,xB ,ω)|x3=x3,B = 1

2
iωρδ(xH −xH,B ), (A.7)

∂3 f −
1 (x,xB ,ω)|x3=x3,B = 0, (A.8)

where δ indicates the Dirac function and the subscript H indicates that only the hori-
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State A State B
∂D0 ∂DB ∂D0 ∂DB

p+ f +
1 (x,xA ,ω) f +

1 (x,xA ,ω) f +
1 (x,xB ,ω) f +

1 (x,xB ,ω)
p− f −

1 (x,xA ,ω) f −
1 (x,xA ,ω) f −

1 (x,xB ,ω) f −
1 (x,xB ,ω)

q+ 0 0 0 0
q− 0 0 0 0

Table A.1: Wavefields and sources of state A and B.

zontal directions are considered. By substituting the results of Table A.1, Equation (A.7)
and Equation (A.8) into Equation (A.3), we obtain:

f −
1 (xB ,xA ,ω) =∫

∂D0

2

iωρ0

(
(∂3 f +

1 (x,xB ,ω)) f −
1 (x,xA ,ω)+ (∂3 f −

1 (x,xB ,ω)) f +
1 (x,xA ,ω)

)
dx,

(A.9)

and by substituting the same wavefields and sources into Equation (A.4), we obtain:

f +
1 (xB ,xA ,ω) =

−
∫
∂D0

2

iωρ0

(
(∂3 f +

1 (x,xB ,ω))∗ f +
1 (x,xA ,ω)+ (∂3 f −

1 (x,xB ,ω))∗ f −
1 (x,xA ,ω)

)
dx.

(A.10)

Equation (A.9) and Equation (A.10) are substituted into Equation (A.5) to obtain the full
focusing function, and by making use of Equation (A.6) we obtain:

f1(xB ,xA ,ω) =∫
∂D0

2

iωρ0

(
(∂3 f2(xB ,x,ω)) f −

1 (x,xA ,ω)− (∂3 f2(xB ,x,ω))∗ f +
1 (x,xA ,ω)

)
dx.

(A.11)

Note that Equation (A.11) is only generally valid in case x3,B ≤ x3,A . When comparing this
requirement to Equation (A.2), we can see that Equation (A.11) is valid for the situation
when artifacts are present in the data. Note, that the result in Equation (A.11) can be
obtained from the reflection data without the need for a model, using the Marchenko
method.

A.3. 1D RESULTS
To demonstrate the validity of our approach, we apply the methodology to a 1D exam-
ple. Figure A.1 shows the velocity in (a) and the density in (b), which are used to gen-
erate 1D reflection data, which are shown in (c). The Marchenko method is used to ob-
tain G(x,xB ,ω), f2(xA ,x,ω), f2(xB ,x,ω), f +

1 (x,xA ,ω) and f −
1 (x,xA ,ω) using this reflection

data [26]. Using the data obtained through the use of the Marchenko method, the re-
sponse between a virtual source and a virtual receiver using Equation (A.1) is created.
The virtual source is located at a depth of 1300 meters, we will refer to this location as
xB , and the virtual receiver is located at a depth of 2500 meters, this location will be re-
ferred to as xA . Because xA is located below xB , artifacts in the retrieval of G(xA ,xB , t ) are
expected. Figure A.2-(b) shows the retrieved response between the virtual source and
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Figure A.1: (a) Velocity in ms−1 and (b) density in kg m−3 of the 1D medium used to create the 1D reflection
data in (c). The dashed black and magenta line indicate the depth of the virtual source at xB and the virtual
receiver at xA used in Figure A.2, respectively.

receiver. Comparing the result to a reference solution, shown in (a), proves that there
are artifacts present in the response, as indicated by the red arrows. Furthemore, the
first arrival, indicated by the black arrow, has incorrect amplitude and polarity. By using
Equation (A.11), the focusing function artifacts are estimated, which are shown in (c).
In (d) the result is shown after these artifacts have been subtracted from the response
in (b). It can be clearly seen that the artifacts are removed and the first arrival has been
retrieved correctly. A comparison in (e) between the response after the artifact removal,
and the reference response shows a strong match.
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Figure A.2: Responses between a virtual source located at xB = (0,0,1300)T meters and a virtual receiver at
xA = (0,0,2500)T meters, indicated by the dashed black and magenta line in Figure A.1, respectively. The solid
horizontal black line indicates zero time. (a) Reference solution. (b) G(xA ,xB , t ), obtained through use of Equa-
tion (A.1). The Green’s function is contaminated by artifacts, indicated with the red arrows. Additionally, the
first arrival, indicated by the black arrow, has incorrect amplitude and polarity. (c) 2iℑ{ f1(xB ,xA ,ω)}, trans-
formed to the time domain, obtained through use of Equation (A.11). (d) G(xA ,xB , t ) obtained by subtracting
the result in (c) from the result in (b). (e) Comparison between the result in (a), indicated by the solid red line,
and the result in (d), indicated by the dashed black line.

To further demonstrate the method, we consider a scenario with multiple virtual re-
ceivers and a single virtual source using the same model and reflection data. The virtual



A.4. CONCLUSION

A

127

source is located at the same depth as in the previous example, while the virtual receivers
vary over the entire depth of the model, with a spacing of 1 meter. The results are shown
in Figure A.3, where the green dot indicates the location of xB and the horizontal dashed
lines indicate the depths of geological layer contrasts. (a) shows a reference solution, (b)
shows the redatumed G(xA ,xB , t ) containing the focusing function artifacts. We estimate
these artifacts for x3,B ≤ x3,A , as shown in (c). Subtracting these artifacts from (b) results
in the correct redatumed G(xA ,xB , t ) in (d).
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Figure A.3: Responses between a virtual source located at xB = (0,0,1300)T meters, indicated by the green
dot, and virtual receiver locations varying in depth over the vertical axis. The horizontal axis denotes the time,
the vertical solid black line indicates zero time and the dashed horizontal black lines indicate the depths of
geological layer contrasts. (a) Reference solution. (b) G(xA ,xB , t ) obtained through use of Equation (A.1).
Note the acausal artifacts below the virtual source location and the incorrect downgoing first arrival. (c)
2iℑ{ f1(xB ,xA ,ω)}, transformed to the time domain, obtained through use of Equation (A.11). (d) G(xA ,xB , t )
obtained by subtracting the result in (c) from the result in (b).

A.4. CONCLUSION
We have shown how to redatum the focusing function from the surface of the Earth to
inside the medium of interest in a data-driven way. This redatumed focusing function
can be used to remove the artifacts that occur during the retrieval of the Green’s function
using the Marchenko method. We have shown the validity of our approach by applying
the methodology to two 1D examples, where the artifacts are completely removed. For
a single instantaneous source the homogeneous Green’s function retrieval is the easier
approach. When multiple sources are used, the method in this paper can be used to
remove the artifacts for all sources, provided that the time-delays and positions of the
original sources are known.



B
VIRTUAL ACOUSTICS IN

INHOMOGENEOUS MEDIA WITH

SINGLE-SIDED ACCESS

A virtual acoustic source inside a medium can be created by emitting a time-reversed
point-source response from the enclosing boundary into the medium. However, in many
practical situations the medium can be accessed from one side only. In those cases the
time-reversal approach is not exact. Here, we demonstrate the experimental design and
use of complex focusing functions to create virtual acoustic sources and virtual receivers
inside an inhomogeneous medium with single-sided access. The retrieved virtual acoustic
responses between those sources and receivers mimic the complex propagation and mul-
tiple scattering paths of waves that would be ignited by physical sources and recorded by
physical receivers inside the medium. The possibility to predict complex virtual acoustic
responses between any two points inside an inhomogeneous medium, without needing
a detailed model of the medium, has large potential for holographic imaging and mon-
itoring of objects with single-sided access, ranging from photoacoustic medical imaging
to the monitoring of induced-earthquake waves all the way from the source to the earth’s
surface.

This appendix was published as K. Wapenaar, J. Brackenhoff, J. Thorbecke, J. van der Neut, E. Slob & E. Ver-
schuur. Virtual acoustics in inhomogeneous media with single-sided access. Scientific Reports 8, 2497 (2018).
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B.1. INTRODUCTION

In many acoustic applications, ranging from ultrasonics to seismology, virtual sources
can be created by emitting a focusing wave field from the boundary into the medium[12,
16, 17, 105]. Time-reversal mirroring, developed by Fink and co-workers[12, 105], is a
well-known approach to create a virtual source. It exploits the fact that the wave equa-
tion in a lossless medium is symmetric in time. In many practical situations, like in
non-destructive testing[106–110], medical imaging[111, 112], near-field acoustic holog-
raphy [113–115] or geophysical holography[18, 19, 116], the medium can be accessed
from one side only. In those cases the time-reversal approach is not exact, and it breaks
down in inhomogeneous media with strong impedance contrasts. Recent work by the
authors[25, 30, 31] and others[32, 37, 117, 118] concerns the design of single-sided fo-
cusing functions. When emitted from the upper boundary into the medium, these fo-
cusing functions yield well-defined foci at predefined positions, which act as omnidi-
rectional virtual sources. This work is inspired by the Marchenko equation of quantum
mechanics[27, 119, 120] and its applications in 1D autofocusing[28, 29, 59].

We start this paper with a comparison of the time-reversal method and the single-
sided focusing approach, at the hand of a number of numerical examples. Next, we
discuss our approach for retrieving virtual sources and receivers from single-sided re-
flection data. We apply this methodology to ultrasonic physical model data and seis-
mic reflection data. Finally, we discuss potential applications for photoacoustic medical
imaging and for monitoring of induced-earthquake waves.

B.2. TIME-REVERSAL VERSUS SINGLE-SIDED FOCUSING

The time-reversal method is illustrated in the first column of Figure B.1, for a lossless
layered medium with curved interfaces (denoted by the dashed lines in the grey panels)
and different propagation velocities and mass densities in the layers between these in-
terfaces. The top panel shows the time-reversal of the response V (x,s, t ) to a point source
at s in the third layer of the medium, as a function of receiver position x = (x, z) along the
boundary and time t . V stands for the normal component of the particle velocity. Only
the response at the upper boundary is shown, but the response is available along the
entire enclosing boundary S.

The time-reversed response V (x,s,−t ) is fed to sources (the red dots) at the original
positions of the receivers, which emit the wave field back into the medium. The other
panels in column (a) show “snapshots” (i.e., wave fields frozen at constant time) of the
wave field propagating through the medium. For negative time (· · · −t2, −t1 · · · ), the field
follows the same paths as the original field, but in opposite direction. Then, at t = 0, the
field focuses at the position s of the original source. Because there is no sink to absorb
the focused field, the wave field continues its propagation, away from the focal point.
Hence, the focal point acts as a virtual source. The snapshots for positive time (· · · +t1,
+t2 · · · ) show the response to this virtual source. The virtual source is omni-directional
and radiates a perfect replica of the original field into the inhomogeneous medium.
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Figure B.1: Illustration of virtual-source methods. (a) A time-reversed point source response is emitted from
the enclosing boundary into the inhomogeneous medium. For negative time, it converges towards the focal
point, where it focuses at t = 0. Subsequently, the focal point acts as an omnidirectional radiating virtual
source. (b) Emission of the time-reversed response from the upper boundary only. Ghost foci occur at t = 0.
The virtual source radiates mainly downward. (c) Emission of a single-sided focusing function from the upper
boundary only. No ghost foci occur at t = 0. The virtual source radiates mainly downward. (d) Symmetrizing
the previous result. No ghost foci occur at t = 0. The virtual source is omnidirectional.

Mathematically, time-reversal acoustics is formulated as follows[121]:

G(r,s, t )+G(r,s,−t ) = 2
∮
S

G(r,x, t )︸ ︷︷ ︸
“propagator"

∗ V (x,s,−t )︸ ︷︷ ︸
“secondary sources"

dx (B.1)
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(see Supplementary Information). On the right-hand side, the time-reversed field
V (x,s,−t ) is propagated through the medium by the Green’s function G(r,x, t ) from the
sources at x on the boundary S to any receiver position r inside the medium (the aster-
isk denotes convolution). The integral is taken along all sources x on the closed bound-
ary. Note that the right-hand side resembles Huygens’ principle, which states that each
point of an incident wave field acts as a secondary source, except that here the secondary
sources onS consist of time-reversed measurements rather than an actual incident field.
On the left-hand side, the time-reversed Green’s function G(r,s,−t ) represents the wave
field at negative time that converges to the focal point s; the Green’s function G(r,s, t ) is
the response at positive time to the virtual source at s.

Figure B.1(b) shows what happens when the time-reversed response is emitted into
the medium by sources (red dots) at the upper boundary only. The field still focuses at
t = 0, but in addition several ghost foci occur at t = 0. The field at positive time is a
virtual-source response, contaminated by artefacts, caused by the ghost foci. Moreover,
because the focal point is illuminated mainly from above, the virtual source is far from
isotropic: it radiates mainly downward.

We now introduce the single-sided focusing approach, which is designed to over-
come the limitations of the time-reversal approach in inhomogeneous media with strong
impedance contrasts. The upper panel in Figure B.1(c) shows a 2D focusing function
F (x,s, t ), for the same focal point s as in the time-reversal example. Note that the main
event (indicated in blue) is the same as that in V (x,s,−t ) in the upper panel in Figure
B.1(b), but the other events in F (x,s, t ) come after the main event (instead of preced-
ing it, like in V (x,s,−t )). The snapshots in Figure B.1(c) show the propagation of this
focusing function through the medium. Mathematically, the emission of the focusing
function F (x,s, t ) into the medium by sources at x at the upper boundaryS0 is described
by

G(r,s, t )+anti-symmetric artefacts =
∫
S0

G(r,x, t )∗F (x,s, t )dx (B.2)

(see Supplementary Information). The right-hand side resembles again Huygens’ prin-
ciple, this time with the focusing function defining secondary sources on S0 only. The
left-hand side represents the virtual-source response G(r,s, t ), contaminated by artefacts
that are anti-symmetric in time. Because the anti-symmetric term vanishes at t = 0, the
panel at t = 0 in Figure B.1(c) shows a “clean” focus. Like in the time-reversal method,
the focused field acts as a virtual source. The snapshots at positive time show that this
virtual source radiates mainly downward.

Next, we symmetrize both sides of equation (B.2), by adding the time-reversal. This
suppresses the anti-symmetric artefacts:

G(r,s, t )+G(r,s,−t ) = Symmetrize
(∫
S0

G(r,x, t )∗F (x,s, t )dx
)

(B.3)

(see Supplementary Information). Note that the left-hand side is identical to that in
equation (B.1). However, unlike equation (B.1), the right-hand side of equation (B.3)
contains an integral along the accessible boundary S0 only. Symmetrization implies ad-
dition of the snapshots at negative times in Figure B.1(c) to those at the corresponding
positive times and vice versa, see Figure B.1(d). Note that these superposed snapshots
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are nearly identical to those obtained by emitting the time-reversed response into the
medium from the entire enclosing boundary (Figure B.1(a)). The remaining artefacts are
caused by the finite source aperture and the fact that evanescent waves are neglected in
equations (B.2) and (B.3) (see Supplementary Information).

B.3. RETRIEVING VIRTUAL SOURCES AND RECEIVERS FROM

SINGLE-SIDED REFLECTION DATA

B.3.1. VIRTUAL ACOUSTICS METHODOLOGY
The snapshots in Figure B.1 (for both methods) were obtained by numerically modelling
the medium’s response to fields emitted from (parts of) its boundary. These snapshots
nicely visualise the propagation, scattering, focusing and defocusing of the fields inside
the medium. In practical situations these fields are not visible, unless receivers would
be placed throughout the medium, which is of course not feasible. However, our fo-
cusing methodology can be extended to create not only virtual sources, but also vir-
tual receivers anywhere inside the medium. As input we need the reflection response
of the medium, measured with sources and receivers at the accessible boundaryS0 only
(hence, no physical sources nor receivers are needed inside the medium). The reflection
response is represented by the Green’s function G(x′,x, t ), where x denotes the variable
position of the source and x′ that of the receiver, both atS0. Consider the following vari-
ant of equation (B.3)

G(r,x, t )+G(r,x,−t ) = Symmetrize
(∫
S0

G(x′,x, t )∗F (x′,r, t )dx′
)

(B.4)

(see Supplementary Information). This expression shows how the recorded data
G(x′,x, t ), measured at the upper boundary of the medium, are transformed into G(r,x, t )
and its time-reversal, being the response to a real source at x, observed by a virtual re-
ceiver at r anywhere inside the medium. The focusing function F (x′,r, t ), required for
this transformation, can be derived from the recorded data G(x′,x, t ), using the multidi-
mensional Marchenko method[25, 30, 31, 66, 122]. We have implemented a 2D version of
the Marchenko method as an iterative proces[34]. The time-reversal of the direct arriv-
ing wave between x and x′ is used as an initial estimate of the focusing function F (x′,r, t ).
This direct arrival, in turn, is based on an estimate of the propagation velocity of the
medium. This does not require information about the layer interfaces, nor about the in-
ternal structure of the layers: a smooth background model suffices to compute the direct
arrival[32]. Note that estimating a background model is state-of-the-art methodology in
geophysical imaging [123]. Then, by evaluating equation (B.4) we obtain G(r,x, t ) for any
virtual receiver position r inside the medium. Next, using the retrieved virtual-receiver
data G(r,x, t ) in the right-hand side of equation (B.3), we obtain G(r,s, t ) and its time-
reversal, being the response to a virtual source at s, observed by virtual receivers at r.

Theoretical research shows that this methodology can be generalised for vectorial
wave fields in lossless media, such as electromagnetic waves, elastodynamic waves (after
decomposition at the surface into P- and S-waves), etc.[124, 125]. Small to moderate
propagation losses can be accommodated by applying loss corrections to the data before
applying the Marchenko method[126]. In the following we apply the virtual acoustics
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Figure B.2: (a) 3D physical model. The grey-levels indicate different propagation velocities and mass densities.
Ultrasonic reflection experiments are carried out along the diagonal line above the model. (b) 2D cross-section
of the physical model (with modelled snapshots, for visualisation only) and the actually recorded response at
the surface, G(x′,x, t ) (here shown for 3 source positions x and 3 × 17 receiver positions x′).

methodology for scalar wave fields in lossless media, as outlined above, to ultrasonic
physical model data and seismic reflection data.

B.3.2. APPLICATION TO ULTRASONIC PHYSICAL MODEL DATA

Figure B.2(a) shows a 3D physical model, composed of silicone gel and beeswax layers
with different acoustic propagation velocities (their numerical values are tabulated in
Figure B.2(b)). The size of the model is 70×600×600 mm. The model is placed in a wa-
tertank and probed with ultrasound, emitted and received by piezo-electric transducers
in the water. The acquisition is carried out along a horizontal diagonal line (indicated in
Figure B.2(a)), 12 mm above the upper boundary of the model and perpendicular to its
main structures. A 2D cross-section of the model below the acquisition line is shown in
Figure B.2(b). The emitting transducer sends a sweep signal in the frequency range 0.4
MHz to 1.8 MHz. The resulting wave field propagates through the water into the model,
propagates and scatters inside the model, and propagates back through the water to the
acquisition line, where it is recorded by a receiving transducer. The recorded response
is deconvolved for the sweep signal, effectively compressing the source signal to a short
zero-phase pulse with a central frequency of 1.1 MHz[127]. This experiment is repeated
106 times, with the source at the same position and the receiver moving along the ac-
quisition line in steps of 1.25 mm. Next, the source is moved 1.25 mm along the line and
again 106 traces are recorded. This whole process is carried out 301 times, leading to a
recorded reflection response consisting of 301 × 106 = 31 906 traces. Figure B.2(b) shows
51 of those traces, for 3 source positions and 17 receivers per source position. Before
further processing, source-receiver reciprocity is applied, effectively doubling the num-
ber of traces, and the data are interpolated to a twice as dense spatial grid (source and
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Figure B.3: Virtual response G(r,s, t )+G(r,s,−t ), retrieved from the single-sided ultrasonic reflection response
G(’

¯
,x, t ) of the physical model in Figure B.2(a). (a) t = 0 µs. (b) t = 9.2 µs. (c) t = 18.2 µs. (d) t = 27.4 µs. (e)

t = 40.2 µs. (f) t = 53.8 µs.

receiver spacing 0.625 mm) to suppress spatial aliasing.
We denote the recorded reflection response by Green’s function G(x′,x, t ), where x de-

notes the variable position of the source and x′ that of the receiver (actually the recorded
response is the Green’s function convolved with the compressed source pulse, but for
the sake of simplicity we treat the recorded data as a Green’s function). We apply the
methodology discussed above to this response. Figure B.3 shows snapshots of the vir-
tual acoustic response G(r,s, t )+G(r,s,−t ), for a fixed virtual source inside the second
layer of the 3D physical model and variable virtual receiver positions r throughout the
2D cross-section of the model. The different colours in the background of this figure
indicate the different layers. We used the velocities of these layers to model the direct ar-
rivals, as initial estimates for the focusing functions. Note, however, that we did not use
information about the layer interfaces for the retrieval of the virtual response: all scatter-
ing information comes directly from the recorded reflection response. The figure clearly
shows the evolution of the wave field through the medium, including scattering at the
layer interfaces. Imperfections are explained by the finite aperture, the limited radiation
angles of the piezo-electric transducers, the negligence of evanescent waves and the fact
that we used a 2D method to retrieve this virtual wave field in a 3D medium.

B.3.3. APPLICATION TO SEISMIC REFLECTION DATA

The proposed methodology can be applied to reflection data at a wide range of scales.
Next we apply our methodology to vintage seismic reflection data, acquired in 1994 over
the Vøring Basin by SAGA Petroleum A.S. (currently part of Statoil ASA). We use a smooth
background model to define the initial estimates of the focusing functions. Figure B.4
shows snapshots of G(r,s, t )+G(r,s,−t ) obtained from these seismic data. Again, the
evolution of the retrieved wave field clearly includes the primary and multiply scattered
events, which have been obtained directly from the recorded reflection data. In the back-
ground these snapshots show an independently obtained seismic image of the interfaces
between the geological layers, for visualisation only. Note the consistency between the
position of these interfaces and the apparent origin of scattering in the snapshots.
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Figure B.4: Virtual response G(r,s, t )+G(r,s,−t ), retrieved from the single-sided seismic reflection response
G(x′,x, t ) of the Vøring Basin. (a) t = 0 ms. (b) t = 152 ms. (c) t = 300 ms. (d) t = 456 ms. (e) t = 644 ms. (f)
t = 844 ms.

B.4. DISCUSSION
The ability to create virtual sources and receivers inside a medium from single-sided re-
flection data opens new ways for imaging and monitoring. An exciting new field in med-
ical imaging is photoacoustic (PA) imaging [128], a method which employs the conver-
sion of optical energy into acoustic energy at those locations inside the medium where
light is absorbed. The resulting acoustic wave field may be very complex because usu-
ally many PA sources go off simultaneously and inhomogeneities in the medium may
cause reflection artefacts[129]. Our proposed virtual acoustics methodology could be
applied to ultrasonic reflection measurements to predict the direct and scattered wave
fields of (clusters of) virtual PA sources, thus improving the interpretation and imaging
of the complex wave field of actual PA sources. With the emergence of dual-modality ul-
trasound and photoacoustic imaging tools [130] this becomes feasible and the first steps
in this direction have already been made [122]. Note that in medical applications it is
often sufficient to use a homogeneous background model, which means that analyti-
cal expressions can be used for the initial estimate of the focusing functions. Real-time
application of our virtual acoustics methodology for medical imaging therefore seems
feasible, particularly when the imaging is restricted to a finite region of interest.

Another exciting potential application is the investigation of induced seismicity. By
acquiring high-resolution seismic reflection data in areas prone to induced seismicity,
our virtual acoustics approach could forecast the wave field and the associated ground
motion caused by possible future earthquakes. Moreover, when the same acquisition
system is also used to passively record the response to actual induced earthquakes, our
method could be used to create virtual seismometers in the subsurface around the actual
earthquake and use these to retrieve accurate knowledge of the source mechanism of
the earthquake, insight in the evolution of the geomechanical state of the subsurface
(horizontal and vertical stress distribution, fault and fracture properties etc.), and deep
understanding of the link between the earthquake and the observed ground motion.
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